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Abstract

Background: Parrots belong to a group of behaviorally advanced vertebrates and have an advanced ability of
vocal learning relative to other vocal-learning birds. They can imitate human speech, synchronize their body
movements to a rhythmic beat, and understand complex concepts of referential meaning to sounds. However,
little is known about the genetics of these traits. Elucidating the genetic bases would require whole genome
sequencing and a robust assembly of a parrot genome.

Findings: We present a genomic resource for the budgerigar, an Australian Parakeet (Melopsittacus undulatus) – the
most widely studied parrot species in neuroscience and behavior. We present genomic sequence data that includes
over 300× raw read coverage from multiple sequencing technologies and chromosome optical maps from a
single male animal. The reads and optical maps were used to create three hybrid assemblies representing
some of the largest genomic scaffolds to date for a bird; two of which were annotated based on similarities
to reference sets of non-redundant human, zebra finch and chicken proteins, and budgerigar transcriptome
sequence assemblies. The sequence reads for this project were in part generated and used for both the
Assemblathon 2 competition and the first de novo assembly of a giga-scale vertebrate genome utilizing PacBio
single-molecule sequencing.

Conclusions: Across several quality metrics, these budgerigar assemblies are comparable to or better than the
chicken and zebra finch genome assemblies built from traditional Sanger sequencing reads, and are sufficient to
analyze regions that are difficult to sequence and assemble, including those not yet assembled in prior bird
genomes, and promoter regions of genes differentially regulated in vocal learning brain regions. This work
provides valuable data and material for genome technology development and for investigating the genomics of
complex behavioral traits.
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Data description
Raw genome DNA sequence reads
DNA samples were obtained from a blood sample taken
from a single male Melopsittacus undulatus, who we aptly
named Mr. B. For Illumina sequencing, reads were gener-
ated at Duke University (16×), Illumina UK (54×), and BGI
(219×) using Illumina’s TruSeq [1] version2 or version3
chemistries (Table 1 and GigaDB [2]). The version3 chem-
istry reads through GC-rich regions, which are often found
in promoters, more evenly than does version2 [3]. The in-
sert sizes for the BGI libraries ranged from 220 bp to
40 Kbp, and the insert sizes for the Duke libraries ranged
from 400–600 bp, in order to assist assemblies. Fragment
sizes for the mate pair libraries, based on genome mapping,
and the per base sequence quality distribution for the li-
braries are shown in GigaDB [2]. The Duke University Illu-
mina libraries were sequenced at two different cluster
densities: 8× coverage reads at the normal 420 k clusters/
mm density and 8× coverage at a lower 350 k clusters/mm.
The lower cluster density was used to increase the number
of GC-rich regions sequenced. For PacBio sequencing, 6.76
Gbp (~5.5× coverage) of PacBio RS reads [4] were gener-
ated at Pacific Biosciences from two insert size libraries
(7.5 K bp at 1.93× and 13 Kbp at 3.56×; PacBio reads
error-corrected with Illumina can be downloaded from the
supplementary webpage associated with [5]). With all reads
combined, the total coverage exceeds 300× (assuming a
haploid genome size of 1.23 Gbp) (Table 1), perhaps mak-
ing Mr. B one of the most sequenced individual vertebrate
animals as of to date. The read length distributions of these
different types of reads are shown in Figure 1.
Fosmid Library
To validate the assemblies in the Assemblathon 2 com-
petition, a fosmid library was created from sheared gen-
omic DNA (35–40 Kbp) of Mr. B [6]. Ten pools of
clones were generated and sequenced using Illumina as
described in [7]. Each pool of reads was individually as-
sembled using Velvet [8]. The fosmid assemblies have
been deposited at GigaDB [2]).
Transcriptome Reads
454 FLX transcriptome reads were generated from
brain RNA isolated from two males, neither of whom
Table 1 Summary of genomic reads

Library sizes Tot

454 Shotgun, 3 kb, 8 kb, 20 kb mate pair 41

Illumina 220, 230, 500, 400–600, 800, 2 kb,
5 kb, 10 kb, 20 kb, 40 kb paired end

561

Pacific Biosciences 7.5Kb, 13 kb 4,

Combined 607
was Mr. B. An initial set of sequencing runs of both males
was conducted at Washington University at St. Louis, pro-
ducing 89.2 Mb of transcriptome sequence as reported in
[9] (NCBI accession numbers SRR029329–30) and were
assembled using Newbler [10] into 19,198 contigs. An
additional 21× coverage (run label GK0K2XF01) was gen-
erated at Duke University from one of the males.
Assemblies
We present three hybrid assemblies: 1) Budgerigar
454-illumina hybrid v6.3 using the CABOG assem-
bler; 2) Budgerigar PBcR hybrid using the CABOG as-
sembler; and 3) Budgerigar illumina-454 hybrid using
the SOAPdenovo2 assembler. The first two assemblies
were annotated, after which, optical-map assisted mega-
scaffolds were constructed based on them. As of yet, the
SOAPdenovo2 assemblies have not been annotated or
aligned to optical maps. The quality statistics of these as-
semblies are in listed in Table 2, and brief descriptions of
their construction and relative quality are provided in
Additional file 1.
Validating sequence assemblies with optical maps
Optical Mapping is a single molecule system for the
construction of ordered restriction maps of whole ge-
nomes [11], and it has been used to guide and validate
sequence assemblies [12]. An optical map for the bud-
gerirgar genome was created, using a method described
in Additional file 1. The optical map contigs ranged in
size from 2 Mbp to 74 Mbp and spanned over 900 Mbp
with a resolution of 13.94 Kbp (i.e., one non-redundant
SwaI every 13.94 Kbp). The contigs were then aligned to
in silico restriction maps generated from Budgerigar_v6.3
and PBcR assembly scaffolds in order to validate the scaf-
folds. An approximate 859.21 Mb of the optical maps
aligned to the Budgerigar_v6.3 assembly, in 146 scaffolds
with 3 or more SwaI restriction fragments (excluding ends
and fragments less than 0.4 Kbp). Of these 146 scaffolds,
43 appeared chimeric (i.e., aligned to two or more optical
map contigs). For the PBcR assembly, 796.63 Mbp optical
map contigs aligned, in 673 scaffolds. Of the 673 scaffolds,
only 51 were chimeric. Thus, while the Budgerigar_v6.3
assembly has a higher N50 scaffold metric and hence lon-
ger scaffolds compared to the PBcR assembly, 30% the
al reads Total BP (Mb) Coverage (assuming 1.23 Gbp
genome size)

,898,557 19,736 15.4×

,074,047 356,597 289×

176,242 6,763 5.5×

,148,846 383,096 309.9×
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Figure 1 The distribution of read lengths in 454, Illumina and
PacBio budgerigar sequences. The reads are binned into 5 bp
buckets based on their lengths, and the fraction of reads
(normalized by the size of the largest bucket) falling into each
bucket is shown. Thus, curves shifted towards the right indicate
longer read lengths. The reads labeled “20 Kbp”, “8 Kbp” and “3 Kbp”,
“FLX Titanium” and “FLX Titanium XL+” are 454 reads. The reads
labeled “PacBio pre-release C2” are uncorrected PacBio reads. The
Illumina read lengths appear as colored square boxes, since these
read lengths are uniform. The “Illumina Duke” reads are of length 76,
The “Illumina UK” reads are of length 101, and the “Illlumina BGI”
reads are of lengths 90 or 150. The longest reads come from
PacBio sequencing, followed by 454 FLX + (i.e., FLX Titanium
XL+) sequencing.
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v6.3 scaffolds are chimeric, whereas only 7.6% of the PBcR
assembly are chimeric.
Optical map assisted assemblies
We took both Budgerigar_v6.3 and PBcR assemblies and
filtered out alignments that did not extend to the end of
either the genomic sequence scaffold or the optical map.
The remaining high-quality alignments were then used
to identify optical map alignments that bridged scaffolds,
such that a single optical map aligned to the ends of at
least two sequence scaffolds. We then iteratively ex-
tended the megascaffolds beyond pairs of sequence scaf-
folds, using three heuristics: (1) we limited the overhangs
(i.e., the portion of the scaffold sequence that does not
align to the optical map) to 2 Mbp total; (2) we bridged
two scaffolds together only if the size of the gap separating
them is less than 2 Mbp of Ns; and (3) if a sequence scaf-
fold aligned to more than one optical map, we placed it
into the largest one it aligns with. The above procedure
slightly reduced the number of scaffolds from 25,212 to
25,163 in the Budgerigar_v6.3 assembly, and from 54,668
to 54,138 in the PBcR assembly. This relatively small
change in number is expected as our procedure tended to
join only sequence scaffolds that were already fairly large
into even larger megascaffolds, since it is only possible to
confidently align an optical map to a fairly large sequence
scaffold bearing numerous SwaI restriction sites. However,
this analysis substantially improved the scaffold N50 sizes
from 10.6 Mbp to 13.8 Mbp in the Budgerigar_v6.3, and
1.7 Mbp to 7.3 Mbp in the PBcR assemblies, respectively
(Table 2). Without limiting the length of the overhangs
and gap sizes to 2 Mbp, the increase in N50 scaffold sizes
in the Budgerigar_v6.3 is 17.1 Mbp (which we think could
be an artifact). We speculate that some of the large gaps
in the optical map correspond to centromeres or highly
repetitive DNA that are difficult to assemble.

Annotations
The Budgerigar_v6.3 and PBcR assemblies were annotated
at BGI for protein coding genes by first generating a refer-
ence set of human, chicken and zebra finch proteins, and
then aligning the reference set to the assemblies, and
propagating annotations to 30% coverage of the reference
at TBlastN, E = 1e−5. For the Budgerigar_v6.3 assembly,
the reference set comprised of human proteins from
Ensembl 60 and a set of zebra finch and chicken proteins
re-annotated based on these human proteins, using a cus-
tom BGI pipeline reported on separately (Jarvis et al. in
preparation; Zhang et al., in preparation). For the PBcR
assembly, the reference set comprised of the Ensembl
60 human, chicken and zebra finch proteins. The
propagation of these reference sets to the budgerigar
assemblies is described in more detail in Additional
file 1. Further, in the PBcR assembly, UTRs were an-
notated for 6,203 genes using the GK0K2XF01 tran-
scriptome runs with a pipeline similar to the one
described in [13]. The assembly annotations were then
propagated to the corresponding sets of megascaffolds.
No de novo gene annotations were performed.
The annotated Budgerigar assemblies had fewer genes

(15,470 and 16,204 genes in the Budgerigar_v6.3 and
PBcR assemblies respectively) than the published Zebra
Finch (18,618 genes) and Chicken genome assemblies
(17,108 genes in the 2011 Galgal4 assembly [14]). We
believe the lower number of annotated genes in budgeri-
gar assemblies is due to the differences in annotation
methods rather than assembly completeness, for two
reasons: (1) These annotations were produced based on
similarities to zebra finch, chicken and human proteins,
and hence they cannot contain more genes than the
source genome annotations; and (2) The independent
GenScan annotation of the Budgerigar_v6.3 assembly at
the UCSC Genome Browser contains more genes than
in zebra finch and chicken, 24,095 in total.



Table 2 Summary of assemblies
Budgerigar_v6.3 PBcR Megascaffolds from

Budgerigar_v6.3 +Optical
Map

Megascaffolds from
PBcR +Optical Map

Illumina + 454
SOAPdenovo2

Zebra
Finch [15]

Chicken
v4 [13]*

Chicken
v3 [16]

Peregrine
Falcon [17]

Puerto Rican
Parrot [21]

Macaw
1.1 [20]

Assembler Celera CABOG
[25]

PBcR assembler
[5]

SOAPdenovo2
[26]

PCAP [27] NA PCAP [27] SOAPdenovo
[28,29]

Ray [30] CLC Genomics
Workbench

Sequence
method

454 FLX, FLX+,
Illumina

PacBio corrected
with Illumina,
454 FL×, FL×+

454 FLX, FLX+,
Illumina, Optical

Maps.

PacBio corrected
with Illumina, 454
FL×, FL×+, Optical

Maps.

Illumina, 454
FL×+

Sanger Sanger, 454 Sanger v2.1 Illumina Illumina Illumina,
454 FL×+

Coverage 14× 17× 137.59 Illumina,
6.85 FL×+

6× 19.1× 7.1×s 107× 26.9× 26×

Genome
size

1.2Gbp 1.2Gbp 1.2Gbp 1.2Gbp 1.2Gbp 1.2Gbp 1.2Gbp 1.05Gbp 1.2Gbp 1.58Gbp 1.2 Gbp

Total bases
in scaffolds

1,117,358,947 1,219,132,003 1,118,758,630 1,241,439,339 1,169,860,945 1,224,525,252 1,046,932,099 1,047,124,295 1,174,046,505 1,164,566,833 997,000

Number of
scaffolds

25,212 54,668 25,163 54,138 151,393 37,698 15,932 23,776 21,224 148,255 140,453

Avg. scaffold
size

44,319 22,300 44,460 22,931 7,727 32,482 65,713 44,041 55,317 7,855 Not available

N50 scaffold
size

10,614,387 1,705,751 13,823,040 7,280,340 13,497,021 10,409,499 90,216,835 11,125,310 3,891,469 19,470 15,968

Largest scaffold
size

39,887,647 11,564,683 61,483,320 33,208,800 66,566,439 56,620,707 195,276,750 51,053,708 18,327,016 206,462 177,843

Total gaps in
scaffolds

51,150 26,444 51,295# 27,118 60810 124,736 NA NA 77,368 Not available Not available

Number of
Contigs

70,863 77,556 NA NA 212,203 126,053 27,027 85,191 98,540 259,423 214,754*

Avg. contig
size

15,334 15,344 NA NA 4664 9,714 38,736 12,291 11,914 4,304 Not available

N50 contig size 55,633 102,885 NA NA 51,034 38,549 279,750 45,280 28,599 6,983 6,366

Largest contig
size

465,633 849,044 NA NA 500,974 424,635 NA 624,663 247,807 75,003 87,225

*The Chicken v4 assembly consists of chromosomes and not scaffolds with explains the very high scaffold length statistics.
#The increased number of gaps in megascaffolds reflects the fact that each megascaffold may be merger of many original scaffolds with gaps in between them.
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Comparisons to other avian assemblies
Our budgerigar genome assemblies were compared with
the zebra finch, chicken, and falcon genomes [15-17].
The other assemblies from the Assemblathon 2 competi-
tion are available from GigaDB [18]. The zebra finch and
chicken had similar contig and scaffold N50 values
(38.5 kb and 10.4 Mb for zebra finch, and 279.8 kb and
90.2 Mb for chicken, respectively). In addition, since the
Peregrine Falcon is the closest relative to parrots [19],
we also compared the budgerigar genome assemblies to
this bird. However, it was not possible to do an in depth
comparison of these genomes to the recently sequenced
Scarlet Macaw and Puerto Rican Parrot genomes [20,21],
because both bird genomes had N50 scaffold sizes under
20,000 and N50 contig sizes under 7,000. A summary of
assemblies, including the Scarlet Macaw and Puerto Rican
Parrot, are shown in Table 2. Apart from the standard
genome assembly quality statistics, we assessed the quality
Figure 2 Number of nucleotide gaps assess relative assembly incomp
surrounding 10,000 base pair regions upstream and downstream (collective
territories with gaps. In both the panels, different species assemblies are co
The budgerigar assemblies with the “-mega” suffix are optical map enhanc
budgerigar assemblies have the highest numbers of gapless gene territorie
the recent chicken v4 assembly, which used a similar technology (left pane
of the budgerigar assemblies along two other dimensions:
(1) the coverage of highly conserved avian exons, and (2)
the number of gaps 10 Kbp upstream and downstream of
each gene (gene territories), and conversely, the number
gene territories assembled without gaps. Of 3,288 highly
conserved exons (>86% coverage across >87% of their
length) we identified between chicken and zebra finch,
3,165 (96.25%) and 3,134 (95.31%) were covered with >86%
identity across >87% of their length in the Budgerigar_v6.3
and PBcR assemblies respectively, pointing to good coverage
of coding regions in these assemblies. The budgerigar as-
semblies had fewer gaps within the coding sequences and
gene territories than all other avian genomes examined, ex-
cept the newer unpublished Galgal4 chicken assembly that
is similar to the budgerigar in that it is a hybrid that includes
both short and long sequences (Sanger and 454 FLX+)
(Figure 2). This suggests that our budgerigar assemblies
have very well assembled genes and promoter regions.
leteness. A) Shows the total number of gaps in genes and the
ly called gene territories). B) Shows the number of such gene
lored differently, with the budgerigar assemblies shown in dark blue.
ed versions of the Budgerigar_v6.3 and PBcR assemblies. The
s (right panel) and the fewest number of gaps of all assemblies except
l).
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Using the online CoGe tool [22-24], we assessed the
structural similarities between the various budgerigar as-
semblies and other avian assemblies [25-30], by computing
the level of coding sequence synteny among assemblies.
The highest numbers of genes in synteny were observed,
as expected, between a budgerigar assembly and the optical
map assisted version of the same assembly (Figure 3A).
However, the number of genes in synteny between the
Budgerigar_v6.3 and the PBcR assemblies was similar to
the number of genes in synteny between budgerigar and
falcon (Figure 3A, B). Further, the number of genes in syn-
teny did not strictly reflect phylogenetic relationships, as
the zebra finch and budgerigar, close relatives [19], had a
lower level of synteny than budgerigar and chicken. In
addition, a number of inversions were observed even in the
syntenic dotplots between the original budgerigar assem-
blies and their optical map-assisted assemblies (88 inver-
sions between Budgerigar_v6.3 and Budgerigar_v6.3_mega;
209 inversions between PBcR and PBcR_mega, plots
shown in GigaDB [2]). This suggests that synteny based on
CoGE syntenic maps is affected by the quality of the as-
semblies and the characteristics of the synteny algorithm.
Thus, the number of genes in synteny computed using the
available methods is only a rough measure of the actual
structural similarity between the assemblies compared.
In summary, this study shows that the budgerigar gen-

omic resource we have generated has provided [5,6] (and is
still expected to provide more) valuable data and material
for genome technology development and for further inves-
tigating complex behavioral traits at the genomics level.
T

Figure 3 The number of genes that are part of a syntenic block betw
and non-budgerigar assemblies (B). The numbers were calculated from
represented in syntenic blocks. The y-axis limits have been cut off close to
of values.
All procedures on live animals were approved by the
Institutional Animal Care and Use Committee of Duke
University.

Availability and requirements
The genomic sequence reads have been deposited in NCBI’s
sequence read archives (SRA) and the EBI’s ENA archive,
under the same project accession number ERP002324. The
SOAPdenovo2 assembly has been submitted to GigaDB by
the Assemblathon 2 team and is available at GigaDB [18].
Other supporting resources that have been deposited in
GigaDB [2] are:

� Duke University brain transcriptome reads.
� Budgerigar_v6.3, PBcR assemblies (contigs and

scaffolds) and optical map assisted megascaffolds
based on these two assemblies (two contigs and four
scaffolds in total).

� The per base sequence quality distribution of the
paired end and mate paired libraries. The estimated
fragment length distribution of the mate paired
libraries. Peptide and coding sequences (CDS) for
the Budgerigar_v6.3 and PBcR assemblies.

� Gene annotations and Repeat Masker annotations
for the scaffolds.

� Optical map alignments of Budgerigar_v6.3 and
PBcR assemblies in Microsoft Excel and XML
formats and software (Gnomspace.rar) to view the
XML alignments.

� The optical map dataset.
een different budgerigar assemblies (A) and between budgerigar
CoGE syntenic dotplots (not shown), as the total number of genes
the minimum value in the plot to show a more detailed spread
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Additional file

Additional file 1: Supplementary materials.

Abbreviations
CABOG: Celera assembler with the best overlap graph; CoGE: Comparative
genomics; PBcR: Pac bio corrected reads; XML: Extensible markup language.
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