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ABSTRACT

Title of Thesis: Tactile Perception for Multifingered Hands

Rui Yang, Master of Science, 1987

Thesis directed by: P. S. Krishnaprasad

Professor

Department of Electrical Engineering

Recently, tactile sensors mounted on robot fingers have been identified as es-
sential sensory devices for the control of multifingered robotic hands. A basic
tactile sensing task is to determine the force distribution on the contact area
between the fingers and grasped object. To increase the grasp stability and to
protect the fragile sensors, a kind of elastic material is required to cover the
tactile sensors. This thesis derives the relationship between the surface force
profile and the stress or strain profile measured by tactile sensors beneath the
contact surface for simplified situations. This relationship can be described by
integral equations of convolution type, or more generally, integral equations of
the first kind with two unknown functions. The algorithms for numerical inver-
sion of such equations are derived by using the techniques of Discrete Fourier
Transformation and Regularization. Several examples are given. To realize the
inversion in real time, an analog network for solving the regularization problem
is discussed. Finally, as an application of the tactile sensors, the equilibrium

condition for stable grasping by a two-fingered robotic hand is derived.
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CHAPTER

ONE
INTRODUCTION

Today’s robots are required to perform increasingly more sophisticated tasks.
Different kinds of robotic hands or ‘end effectors’, which play a role as the inter-
face between the mechanical arm and the environment, have been designed. The
structures of these hands as developed for manipulation tasks range from simple
gripper designs to multifingered and articulated hands. In order to implement
feedback control of such hands, the need for robotic sensing capability becomes

evident.

Historically, vision has been the dominant area of robotic sensory perception
research. Vision is important since it is the main sensing tool for an intelligent
robot to determine the strategies of motion such as object identification for
motion guidance and obstacle avoidance for motion trajectories. However, for
many applications in hand control, the sense of touch is often considered more
important during manipulation. For example, a robot should be able to know
the moment of contact between the robotic fingers and grasped object. A robot
should also be able to determine how much g'rasping force is being exerted upon
that object so that the grasp is stable, i.e. there exists no sliding and excess

force between the object and fingers.



Unlike simple touching, or binary sensing, which includes only two possible
states, tactile sensing can be defined as the continuous sensing of a variable
contact force, commonly by an array of sensors. This sensing should be capable
of being performed within an arbitrary three dimensional space. This generally
refers to skinlike properties where areas of force-sensitive and displacement-

sensitive surfaces are capable of graded signals and parallel patterns of touching.

Continuously variable analog sensors have been the subject of much research
for a long time. Most of these sensors have relied upon the generation of electric
signals resulting from the deformation of some force-sensitive material. These
materials have included resistive paints, conductive rubbers and polymers, piezo-
electric materials, and semiconductor strain gages. There are two key features

of most sensor designs:

1. To achieve high sensitivity, the sensor structure is often very weak and

fragile so that they cannot directly endure high pressure on them.

2. The operating principle for sensors based on these materials is that a
progressive deformation of such material causes a measurable, monotonic
change in electrical resistance. The information measured by such sensors

can not however be used directly.

In practice, when a rigid object which has a sharp boundary, e.g. a wedge,
is grasped by the robotic hand, very high pressure is developed at the contact
area. This can be illustrated by noticing that after pressing a coin on the palm
of human hand, an indentation appears on the hand due to the edge of the
coin. A common method to avoid damaging the sensors is to use an elastic
material to cover the tactile sensors. This method is effective since the intensity

of the exerted force is reduced and distributed within the material. This is the



first process of tactile sensing, called transduction which converts the feature of

contact signals into another form, e.g. the interior strain of elastic material.

On the other hand, the relation between the contact force profile and the
strain profile which is measured beneath the surface needs to be established,
and an approach to solve the surface force profile from this relation should be
obtained. This is the second process of tactile sensing, called data processing
which translates the measured signals into useful information. The main part

of this thesis deals with these problems.

In addition, when the tactile sensors are mounted on the finger tip of a hand,
and the the distribution of contact force is reconstructed, it is a fundamental
problem to design a control system to use tactile feedback. This thesis will
consider the condition of stable grasping when the robotic hand is in equilibrium

state. This condition may be one of the criteria for control system to achieve.

In chapter 2, applying the theory of elasticity for a simplified situation, we

derive the relation between the surface load and the distribution of stress or

strain beneath the surface. We find that this relation can be described by an
integral equation of convolution type. By decomposing the distribution of sur-
face force into vertical and tangential compbnents, this equation generally has
two unknown functions. Since the unknown functions are convolved , solving
for them from the observations and the property of elastic material will be re-
ferred to as the snverse problem. In chapter 3, by considering the property
of convolution and spatially discrete form of observation, we use the Discrete
Fourier Transformation(DFT) approach to solve the inverse problem approxi-
mately. Since the integral equation can be considered as an operator equation
of the first kind in a more general sense, in chapter 4, we apply the regular-

ization approach to solve the inverse problem. Several examples are given in



both chapter 3 and chapter 4. By observing that, if the calculations are carried
out by a digital computer, both approaches above are not suitable for real time
control, in chapter 5, we investigate an approach by based on an analog network
for regularization. In chapter 6, we study the condition of equilibrium for a
two-fingered hand which is grasping an object. An external force is exerted on
the gasped object. In this condition, the contact information reconstructed by
tactile sensors is applied. Finally, in chapter 7, we review the thesis and give

suggestions for further research.



CHAPTER

TWO

THE MODEL OF THE ELASTIC MATERIAL
AND SOME ASSUMPTIONS

In this chapter, we attempt to find the relation between the load profile,
which exists on the surface of a half space of elastic material, and the distribution
of stress or strain beneath the surface of that material. To specify the load, we
shall just consider the contact stress profile rather than the contact displacement

profile for the following reasons:

e The contact stress is more directly useful for stable grasping. (see, Chap-

ter 6)

e There is a complex nonlinear relation between displacement profile and

surface stress profile.(Phillips and Johnson, 1981)

We assume that the dimension of the contact area is infinitely large in a
direction, say z, such as a line load. By this assumption, we just need to an-
alyze two dimensional behavior in a slice perpendicular to that direction. We
also assume that the elastic characteristics of the material are homogeneous and
isotropic. From the theory of elasticity (Timoshenko and Goodier, 1951), under
this assumption, the differential equation of the equilibrium, the boundary con-

dition and the condition of compatibility for the stress are linear. Consequently,



it is possible to consider the interior stress or strain distribution due to a general

contact as the superposition of those quantities due to a set of line contacts.

2.1 The Expression of Stress due to Surface Contact

We now study the behavior of an infinite homogeneous and isotropic elastic
material under a line contact with negligible contact width. From the theory of
elasticity for two dimensional problems in polar coordinates( Timoshenko and
Goodier, 1951), the distribution of stress follows a simple radial distribution.
For the concentrated force inclined from the vertical by an angle, a(< 7/2), we

have

2fcos(0 — a)

Op = —m—m//———————
nr
Oy = 0
Tee =0

where o, is the radial stress at the point (r,8), oy is the stress in the plane at
(r,0) normal to the radial stress, 7,4 is the shearing stress in the r,8-plane, f
is the force per unit length and r is the distance from the point of application.
Note that we have defined the normal stress to be positive when it produces
compression. Fig.2.1. shows the above variables.

Applying the tensor transformation
_ 2
o; = 0,c05°0
— 02
oy, = 0,5tn"0
we get the stress expression in Cartesian coordinates

2f

0 = ;cos(a ~ 0)cos®0 (2.10)



y
— >
elastic material
Fig.2.1. Line force on elastic half-plane
oy, = %{:cos(a — 8)sin®d (2.1b)

where r = /2% + y?, cosf = z/r, sinf = y/r. By decomposing f into vertical

component, f, , and tangential component, f; , we have

sin(a) = ;;,i (2.2a) |
cos(a) = ‘—f;— (2.2b)
Then Eq.(2.1) can be expressed as
2z?
Oz = W(IL} + yft) (2.3(1)
2 2
oy = ;r-(;ii—yz)z-(xfg + yft) ) (2.3b)

Applying the principle of superposition, we have, for a load distributed along

the y-axis,



ou(zy) = [_[KE“ 2y - fle) + KE“(zy - Dfilldz (24)

where
atress 233
K3 (z,y) = S
. ress 2z2y
t (Z, y) ﬂ,(zz + yz)z
and
amy) = [ (K (zy - DG + KE ™ @y -f@ldz  (25)
where
. fG‘l zyzx
. ress 2 3
t (.'B y) 7r(1:2 + yz)z

for y € R and z € (0,00). f,(y) and f;(y) are the surface stress distributions in
z and y direction, respectively. Fig.2.2a shows the K2i"***(z,y) and K2¥***(z,y)

at z = 1.5 . Fig.2.2b shows the K{"**(z,y) and K;"***(z,y) at =15 .

2.2 The Expression of Strain due to Surface Contact

Since many pressure sensors have outputs based on the strain of the sensor,
which is the fractional change in the linear dimensions of a small cubic volume
element, e.g. electric-resistance strain gauges, we need to find the relations be-
tween the components of stresses and the components of the strains. By Hooke’s

Law in the theory of elasticity, we have

8



6 Oxio
- [
4.0 22\ AP
2.0F
0.0F A
2 OF L L b e b by y
-8.0 -4.0 0.0 4.0 8.0
Fig.2.2a 1. Kre**(z,y) and 2. K&re**(z,y) at z = 1.5
-1
2'oxi.o
Iy
o G by

B i
EAVAS

0.0

/lllllll (l]ll! TTYTT Ty

-1.0

/

~

sl N 0 N T S e I T N I O O Y [7

TVrTTYTTT

-2.0

-8.0 -4.0 0.0 4.0 8.0

Fig.2.2b 1. K}’ (z,y) and 2. K}i***(z,y) at . =15



&—%M v(oy + 0,)]

1
€ = -E-[a,, —v(o, + 0;)) (2.6)
€& = =0, — v(o: + 0)]

where E is the modulus of elasticity, v is Poisson’s ratio, ¢, ¢, and ¢, are the

components of the strain along z,y, 2 directions , respectively.

Since we have assumed in the beginning of this chapter that the dimension
of the contact area is infinitely large in 2z direction, the plane strain assumption
can be applied. This assumption states that, for a line force of infinite extent
on an elastic half-space, the strain in the direction of the line, ¢,, must be zero

by symmetry. Then Eq.(2.6) becomes
1 2
€ = E[(l —v¥)o, —v(v +1)0,) (2.7)

& = (1 - 7)o, — v +1)a]

From Eq.(2.7), we can get the expressions of o, and o, in terms of ¢, and ¢,

(assuming v # 0.5)

o: = A[(1 - V)& + ve,) (2.80)
oy, = A[(1 — v)e, + ve,) (2.8b)
where
E

A= TTya=)

10



It should be note that if ¥=0.5, from Eq.(2.7), &, = —¢ = 5

o; — 0y).

That means that ¢, and ¢, are not independent. So, we will have insufficient

information to determine o, and o, from ¢, and ¢,.

Again, using the principle of superposition for general contact, we have

(o) = [ [KEn(2,y = 2)o(2) + KE*"(z,y = 2)fu(2))dz

where
K (e) = sprragml = e~ + DY)
K*n(2,9) = spraa gl — e = v+ 1027)
and

q(z) = [ K" (z,y - 2(2) + K™ (z,y - 2) )z
where

2z

train —
K:l o (z,y) - ﬂE(Iz +y2)2

[(1 - v")y = v(v +1)z)]

K%on(z,y) = 2y 7 (1 = v*)y* = v(v + 1)2%)]

rE(z*+y

(2.9)

(2.10)

for y € R and z € (0,00). Fig.2.3a shows the K*"(z,y) and K2*"(z,y) at

z = 1.5 . Fig.2.3b shows the K{"*"(z,y) and K K" (z,y) at = 1.5 . In both

of these figures, v = 0.45.

2.3 Some Assumptions

For the sake of convenience, we write Eq.(2.4), (2.5), (2,9) and (2.10) in the

general form as

11
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o) = [ [Kaly = u(2) + Kaly = 2)i(2)]dz (211)

where y € R. We will indicate that K;, K; and g are in the form of stress
or strain and in z or y direction when it is necessary. In Eq.(2.11), there is
no z dependence since we assume that the array of tactile sensors is usually

mounted on a horizontal plane beneath the surface of elastic material. Thus,

z in Eq.(2.11) is a constant which expresses the depth of the sensors from the

surface.

Eq.(2.11) expresses the relationship between surface stress profile and the
strain or stress distribution beneath the surface, in which g(y) is the known
function obtained by tactile sensors, f,(y) and f;(y) are unknown functions.
This equation is an integral equation of first kind with two unknown functions.
It should be mentioned that Fearing and Hollerbach (1985) derived the elastic

model with the form as

o) = [ Kly-2,a(2))f(:)dz

where a(z) and f(z) are unknown. This equation is not easy to be solved since

g9(v) is not the linear functional of a(z).

In the next two chapters, we shall study numerical approaches to solve the
equation. In the beginning of each of them, we shall first study Eq.(2.11) without

considering tangential components of surface force, i.e.

g(y) = /_ : Ki(y - 2)fu(2)dz (2.12)

And then, under some conditions, we shall explore the approaches to solve

Eq.(2.11).

13



Moreover, we make the following assumptions:

The assumption about f(y): We assume that f,(y) is produced by the strip

contact, i.e. it satisfies

foly) = {fl(y), if y € [a1,a2];

0, otherwise,

where f(y) is a continuous function defined on [a;,a;] , fi(y) > Ofor y € (a1,4a;)
and f;(y) > 0 at y = a; and y = a3, for some finite a; and a;. Moreover, we
will assume that | a; |< A/2, ¢ = 1,2, where A is the half width of surface of the
finger. We make this assumption because, even for a very narrow force profile, a
broad distribution of stress and strain will be produced . This is illustrated by
Fig.2.2 and Fig.2.3 which show respectively the distribution of stress and strain
due to line contact when we let one of f, and f; be a unit impulse function and
another be zero. In other words, for a strip contact, we need the observations
which distribute more broadly than the width of the strip to obtain the surface

force profile. fi(y) is produced by static friction.

The assumption about g(y): We assume that, in the sense of the norm we
shall use, the observation of g(y) is very close to the true value which is produced
by Eq.(2.11) and is without noise corruption. In Tikhonov (1977) the discussions
of the problems with the noise have been given. One of the ideas is to suppress

the influence of the components of the high frequency of noise. So, we also can

assume that the observations have been processed by a suitable low-pass filter.

14



CHAPTER

THREE

THE DFT APPROACH
FOR THE INVERSE PROBLEM

In this chapter, we shall apply the method based on discrete Fourier trans-
formation(DFT) to solve the inverse problem approximately. We assume that
the observation, g(y), is the interior strain or stress in z direction. Thus, we

shall study Eq.(2.4) and (2.9). Meanwhile, we suppose v = 0.5.

In section 3.1, we shall briefly study the DFT method to solve Eq.(2.12). In
section 3.2, based on the result in section 3.1, we shall derive the algorithm to

solve Eq.(2.11) approximately. In section 3.3, some examples will be given.

3.1 Surface Force Profile without Tangential Component

Rewrite Eq.(2.11) as follows

)= [ Kiy-af(a)dz  yeR - (31)

This integral equation is of convolution type, in which g(y) is the observation
obtained by sensors, f,(y) is an unknown function, K;(y) is known function,

usually called the kernel.

It is known that the Fourier transform of the convolution of K; and f, equals

the normal multiplication of Fourier transform of K; and f, if

15



/_:IKx(y)Idy<oo
and

_/:lfu(y)|dy<oo

That is,

Ki(w)fo(w) = §(w) (3.2)
where K; (w), f. (w) and §(w) are Fourier transforms of K;, f, and g, respectively.
By the assumption about f, and K’r**, K*\"" given in Chapter 2, one can
check that the conditions of (3.2) are satisfied. It is clear that if (a). K;(w) #

0,V|w| < oo, and (b). §(w)/K;i(w) € Ly(—o0,00), the Eq.(3.1) can be solved

simply as

fy) = r*(%) yER (3.3)

where F-! is the operator of the inverse Fourier transformation .

Physically, it is difficult to make the condition (b) satisfied because of the
existence of the noise. Tikhonov (1977) gave some approaches to solve this
problem. Since our purpose is to solve Eq.(2.11), by the assumption about g(y)
given in Chapter 2, we assume condition (b) is satisfied. On the other hand,

it is easy to check that the Fourier transforms of K2%** and K" given in

Eq.(2.4) and Eq.(2.9) are
Rar(w) = e M1+ olu]) weR

and

Kren(w) = 1.5z|wle™* weR

16
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Fig.3.1. The Fourier transform of K2*** at z = 1.5.

It is clear that if the distribution of stress can be obtained directly or indi-
rectly by sensors, the condition (a) is satisfied (see Fig.3.1).

If we have to use the distribution of strain, the condition (a) can not be
satisfied since K2*"(0) = 0, (see Fig.3.2). We will see that this problem can

be solved when the observation, g(y), is truncated and DFT is applied.

Physically, the continuous expression of g(y) can not be obtained directly,
but only the discrete data of g(y). So, we are forced to apply the discrete Fourier

transform to solve the inverse problem approximately.

The discretization of Eq. (3.1) is

9(yn) = i K1(Yn — w:) fo(¥:) Dy: n=0,+1,%2,... (3.4)

where Ay = yi41 — y; called sampling period. If we let Ay; be identical for all
i, denoted by A, and denote g(yn) by g(n), Ki(yn — %:)Ay by Ki(n — 1) and

17
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Fig.3.2 The Fourier transform of K" at z = 1.5 .

Jo(w) by fu(7), then Eq.(3.4) can be written as

on)= 3 Kin-Of) n=0,41,42,... (3.5)

f==00
This is the discrete convolution equation. It should be noted that, physically,
it is impossible to get the data of observation, g(n), everywhere. We have to cut
off g(n), at n = —N and N,where NA = A. Due to the properties of K{ires (y)

and K{¥*"(y) and the assumption about f, (), if A is large enough, g(N) should

be very small. Then, we can replace Eq.(3.5) by

g(n) = ﬁ: Ki(n—1)f.(s) n=0,+1,+2,...,+N (3.6)

It is known that the discrete Fourier transform of convolution of K;(s) and

Ju(¢) is the normal multiplication of DFT of them. So, we have

18
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(k) = K1(k) . (k) k=0,+1,%2,...,+N

where §(k) = TN _y g(8)e™2=*¥/3N+1 | j = /=1, k= 0,%1,...,£N is the DFT

of g(1), and similarly to K (k) and J,(k). Fig.3.3 and Fig.3.4 give the DFT of

stress strain
K; and Ky,

From the theory of digital signal processing (Chen,1979), we know that,
for given function K(y), the discrete Fourier transform of it, say K (k), is the

evaluation of z-transformation of this function, say K(z), on the unit circle of

the z-plane. In other words,

k(k) = f{(z) I:=e"‘"kA

for w; = Iﬁ%ﬁ_’ k=0,+1,%2,...,&£N. We also know that the z-transformation

evaluated on the unit circle and Fourier transformation are related by

19
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R(e’”A) = [; f((w + nw,)|/A

where w, = 2 /A. From this formula, we can say that, if the Fourier transform
of K(y) is very small for |w| > w, /2,

1

f{(k) = R(Z) |3=ej“kA = Z

K (w) I“’=Wk

where w; = (%TA-, k=0,%1,%2,...,£N.

Comparing Fig.3.1 and Fig.3.2 with Fig.3.3 and Fig.3.4, we find KZire**(y)
and K2"(y) are satisfied the above condition and result. It should be noted
that for K2, they are different at 0. The reason is that our function is

truncated at |y] = A and K;(A) # 0, even it is very small. This is just right for

us to apply the DFT to solve the inverse problem.

20



Applying inverse discrete Fourier transform, the unknown function, f,(k), is

1 L G(r) | szerk/ane
fo(k) = NI > (—I:{—-(-;)-)c k=0,%1,..t N (3.8)
r=-N 1

In section 3.3, by example, we will find that the reconstructed function pro-
duced by Eq.(3.8) has very good accuracy with respect to the designed one. We

will also discuss the effect of truncation and the choice of Kj;.

3.2 Surface Force Profile with Tangential Component

In this section, the relation between vertical component of surface stress,
fv, and tangential one, f;, is based on the knowledge of the characteristic of the
friction on the contact surface. In order to avoid slipping during grasping, we are

interested in the tangential force on the average, instead of at every point (see

Chapter 6). It is assumed that the relation of fi(y) and f,(y) at the boundary

of cone of friction is estimated by

/: fi(y)dy = u/: Ju(y)dy,

. . P det
where p is the coefficient of static friction. Moreover, we assume that a = —aq, =

a; since we will need to determine the boundary of the load from g(y). By the

Mean Value Theorem, we have

c= 2“—0 /_ : fo(y)dy (3.9)

where c is a constant. As an approximation, we will substitute this constant for

fi(y) on [—a,d), i.e.

fi(y) = {c, if y € [—a,al;

0, otherwise,
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Under above assumptions, Eq.(2.11) becomes

- -] p' ©o
00) = [ K- 0@+ mKaly-2) [ fwdudz  (310)
Next, we will discuss how to solve Eq.(3.10) numerically.

By discretizing Eq.(3.10) and truncating the observation, we have

g(n) = Z Ki(n =) fu(5) + 557 (Z u(f) Kz (n — 1))( E Jo(K))

t=-N t=—N k=-N

n=0,%+1,...,+N (3.11)

in which M is taken such that 2a = 2M A, and u(s) is defined as

u(s) = {1, for i: A € [—a,a];
~ 10, otherwise.

Applying DFT to Eq.(3.11), we have

N N N
2 g(n)u™ = (3 Ki(n)w™)( 32 fu(n)w™)

n=-N n=-~N n=~N

( Z fo(n))( Z Ka(n)w™)( Z u(n)w™)

n-—N n=-N n=—N
r=0,%1,...,&N

where w = ¢~73%/2N+1 § — \ /"7 When r =0,

N

3 ol = Z_Nm(n))( z_N )
HLAR TS T Kl E fu(m)) (3.12)
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Since K;(y) is an odd function, we have
N
2 Kz (n) =
n=-N

Therefore, Eq.(3.12) becomes

FE 3 fn)=( E (3 Kalm)

n=-N n=-N n=-N

Discretizing Eq.(3.9), we have

m
=k 3.13
¢=omt (3.13)

Returning to Eq.(3.11), we have

g(n)—c Z Ki(n —1) Z Ki(n — 1) f,(7) n=0,%1,..,=N (3.14)
=-M i=-N

Denoting left hand side of previous equation as G(n), Eq.(3.14) becomes
N
= Y Ki(n—1)f.(:) n=0,%1,..+ N (3.15)
i==-N

This is the equation we have solved in above section. However, the pro‘t;lem
of this section has not been solved since we do not know M yet. As we have
assumed before, f,(y) and fi(y) have symmetric support, [—a,a]. And we will
see in the next section that the algorithm in section 3.1 has a very good accuracy.

By these properties, we can find M. The method is shown as follows.

We have known that
o) = [ Kaly—2)hule) + Kaly - ) fi(2)dz
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Then,

o(=1) = [ K~y - 2)0(2) + Ka(-y - ) fu()dz

By changing the integral variable and utilizing the odd and even property of

K,(y) and K;(y), we have

o(-v) = [ Ki(y—fo(-2) - Kaly - 2)fi(~2)d=

Since we assumed that fi(y) is a constant, taking the average of g(y) and

g(—y), we have

9(y) = f_: K\(y - 2)fu(2)dz (3.16)

where §(y) = [g(v) + 9(-v)]/2, Ju(v) = [£.() + fu(-v)]/2.
By the assumption of f,(y), f.(y) still have a symmetric support, [—a,a).
Therefore, applying the DFT to Eq.(3.16), we can find M by the algorithm in

section 3.1.

3.3 Examples
In this section we will give some examples for some special load profiles and
compare the results which are obtained from the observations expressed as the

distribution of stress and distribution of strain when v = 0.5.

Some parameters are fixed as follows.

e the depth of the sensors, z = 1.5

e the sampling period, A = 0.5

e the modulus of elasticity, E =1

¢ the numbers of elements of sensors, 2N + 1 = 121
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elastic material

Xy X
Fig.3.5 The cylindrical and rectangular indentor
In the following examples, g(y) is produced by the discrete form of Eq.(2.4)

and Eq.(2.9) directly. To evaluate the reconstructed surface stress, f, with

respect to designed one, f¢, we use the absolute error defined as

E |7%(5) — ()1 (3.17)

2N+ 1,5,

We will consider two kinds of rigid load: cylinder and rectangle, as shown in

Fig.3.5.

From Conway et al. (1966), for cylinder indenting an elastic half-plane, the

surface stress is given by

fv(y) = { rzVe for yE [—a, a],

otherwise,

where a is the half-width of the contact region and P is the force ver length; for

rectangular indentor, the stress on the surface is given by
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Fig.3.6a 1. the designed surface stress; 2. the stress at z = 1.5
P - .
) = { e v e ek
0, otherwise,
for e < 1.

Example 3.1 Cylinder indenting without friction

The distributions of stress and strain at £ = 1.5 produced by a cylindrical

indentor are given in Fig.3.6a and Fig.3.6c, respectively, in which the designed

surface stresses are also displayed. By applying Eq.(3.8), Fig.3.6b and Fig.3.6d

give the surface stress reconstructed from the observations given in Fig.3.6a

and Fig.3.6c, respectively. For comparison, the designed surface stresses are

displayed again.

By Eq.(3.17), the errors for these two cases are

et — 303 x 107 " =4.04 x 107°
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Fig.3.6c 1. the designed surface stress; 2. the strain at z = 1.5
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Fig.3.6d 1. the designed surface stress; 2. the reconstructed surface stress

Example 3.2 Rectangular indenting with constant friction

The distributions of stress and strain at z = 1.5 produced by cylindrical
indentor are given in Fig.3.7a and Fig.3.7c, respectively, in which the designed
surface stresses in vertical and tangential direction are also displayed. By ap-
plying Eq.(3.13) and (3.14), Fig.3.7b and Fig.3.7d give the surface stresses re-
constructed from the observations given in Fig.3.7a and Fig.3.7c, respectively.
For comparing, the designed surface stresses are displayed again.

By Eq.(3.17), the errors for these two cases are

elfrer = 6.21 x 107°, " =1.15x 10~°
elfrein = 2.95 x 1073, " =145 x 107°

where the subscripts v and ¢ are expressed for vertical and tangential component,

respectively.

From above examples, we find that "™ > e®r*** for all cases. There are
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Fig.3.7a 1. the designed vertical surface stress;
2. the designed tangential surface stress;
3. the stress at z = 1.5
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Fig.3.7b 1. the designed vertical surface stress;

2. the reconstructed vertical surface stress;

3. the designed tangential surface stress;

4. the reconstructed tangential surface stress.
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Fig.3.7c 1. the designed vertical surface stress;
2. the designed tangential surface stress;
3. the strain at z = 1.5
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Fig.3.7d 1. the designed vertical surface stress;

2. the reconstructed vertical surface stress;

3. the designed tangential surface stress;

4. the reconstructed tangential surface stress.
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Fig.3.8a the surface stress reconstructed from the distribution of stress at z = 1.5

many sources that cause these errors. One of them is that the observation has
been truncated. We have known that the further the point is from the area of
surface load, the less is the effect of surface force on strain or stress beneath
the surface is. Comparing the distributions of stress and strain for the same
load, e.g. Fig.3.6a and Fig.3.6¢c, we find that the effect on the strain is spatially
broader than the stress. Thus, more information will be lost when we truncate
the observation which is expressed as strain instead of stress. Above argument

can be illustrated by Fig.3.8a and Fig.3.8b, in which the number of element of

sensors is only 41.
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CHAPTER

FOUR

THE REGULARIZATION APPROACH
FOR THE INVERSE PROBLEM

The inverse problem arising from chapter 2 can be considered in a general
setting — the problem of solving an integral equation of the first kind. Many
works have been devoted to it (see the references in Hilgers 1973). In view of
application, some of them are to aimed at finding algorithms for constructing

an approximate solution. In this chapter, our goal is also to derive an algorithm

for our inverse problem by using the regularization approach.

In section 4.1 and section 4.2, the concepts of ill-posed problem and reg-
ularization theory will be cited. In section 4.3, we shall derive the algorithm
for Eq.(2.12) in which f; is omitted. In section 4.4, under some conditions, we
shall extend the algorithm from section 4.3 for Eq.(2.11), in which two unknown

functions exist. In section 4.5, some examples will be given.

4.1 The Concept of Ill-posed Problem

In general, the integral equation of the first kind has the form

f K(y,2)f(2)dz=9(y) as<y<a, (4.1)

where f(y) is ti.e unknown function in a space F, g(y) is 2 known function in

a space G, K(y, z) is continuous with respect to y and has a continuous partial
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derivative 3K /8y, a;,1 = 1,2,3,4 are finite constant real numbers. Without loss

of generality, we let a; = a3 =0and a; = a4 = 1.
Moreover, Eq.(4.1) can be considered as an operator equation:

Kf=g (4.2)

where K : F — G is defined as a bounded and linear operator. In this chapter,

we shall take F as the space of continuous, piece-wise differentiable functions on

[0,1] with sup norm:
|7l = sup |f(s)] fE€F
v€E(0,1]

and G as L,[0,1] with norm:

loll = 1 o*(u)dz)?

To solve Eq(4.2) is to find an operator, K~!, such that

f=K"g

Hadamard (1923) introduced the concept of well-posed problem for Eq.(4.2).
The problem of determining the solution f in the space F from the initial data
g in the space G is said to be well-posed on the pair of metric spaces (F,G) if
the following three conditions are satisfied:

(i) for every element g € G, there exists a solution f in the space F;

(ii) the solution is unique;

(iii) the solution depends on continuously on the initial data.

The problems that do .t satisfy these conditions are said to be ill-posed.
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The equivalent statement of condition (iii) can be that the problem is stable
on the space (F,G). It means that, for any € > 0, there exists 6(¢) > 0 such
that ||g1 — g2)l¢ < 6 implies ||f1 — fallr < €, where f; and f, are solutions for

initial data g; and g,, respectively, with g; and g; in G and f; and f; in F.

The integral equation of first kind given in Eq.(4.1) is ill-posed because the
condition (iii) of well-posed problem cannot be satisfied if the norm of F and G

are defined as above. The typical example is given as follows.

Consider Eq.(4.1) and suppose f(y) is the solution to Eq.(4.1) with g(y).
Then, the function

7(y) = f(y) + Nsin(wy)

is a solution of Eq.(4.1) with

3(y) =9(y) + N/: K(y, z)sin(wz)dz

It is clear that for any N, if the value of w is sufficiently great, ||g — §ll¢ can

be arbitrary small without affecting the change in the corresponding solutions,

ie. |f = Fllr = N.

Physically, we may only know the observation with an accuracy g and it
may not be really necessary for us to find an exact solution. This implies that
conditions (i) and (ii) can be replaced by some weaker requirements. Suppose
that g is the observation of the true value g* such that ||g—g¢*|l¢ < 6. Naturally,
we may hope to find an approximate solution of Eq.(4.2) in some subspace
F, C F such that [|[Kf —g|l¢ < 6, for f € F,. However, not every element in

Fo can be taken as an approximate solu.ion of Eq.(4.2) since condition (iii) may
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not be satisfied in Fy. To solve this problem, the supplementary information

about possible solution is required.

4.2 The Regularization Approach

V. K. Ivano (1962) defined the quasi-solution for Eq.(4.2) on a compact
subset F, C F and, for g € G, to be a point f € F, for which ||K f — g| attains a
minimum on F,. Another method is regularization method given by Tikhonov,
in which the supplementary information is of qualitative nature, e.g. smoothness
of the solution. In this chapter, we shall use this latter approach to solve our

inverse problem numerically.

The basic concept of the regularization theory is the regularizing operator,

which is defined as follows.

Definition 1. Suppose that the element fr € F and gr € G are related

by Kfr = gr. An operator R(g,a) depending on a parameter « is called a

regularizing operator for the equation K f = g in a neighborhood of g = gr if
(i) there exists a positive number §; such that the operator R(g, a) is defined

for every a > 0 and every g in G for which

”9 - 91‘" <é

and

(ii) there exists a function a = a(6) of 6 such that, for every € > 0, there

exists a number §(€) < 6, such that the inclusion g; € G and the inequality
llgr — gsll < 6()
imply
”.f T fa" <e
where fo = R(gs,a(6)).
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Obviously, every regularizing operator defines a stable method of approxi-
mate construction of the solution of Eq.(4.2) if the choice for a is consistent with
the accuracy of g. f, is called as regularized aqlution. a is called as regularization
parameter. So the problem of finding a solution of Eq.(4.2) is shifted to that of

finding a regularizing operator.

To construct a regularizing operator, a functional called stabilizer is defined.
Definition 2. A continuous nonnegative functional, {f] over a subset F; of F
and everywhere dense in F is called stabilizer, or stabilizing functional, if

a) the exact solution, f, of initial data, g, belongs to the domain of definition
of 0[f].

b) for every positive number ¢, the set of elements f of F; for which Q[f] < ¢

is a compact subset of Fj.

The main idea of regularization is to find f in F; which insures ||K f—gllg = é
and minimizes the functional 2[f]. This is a conditional extremum problem. A

common way to solve this problem is to find f to minimize functional

M*(f] = IKf - gl* + ent]f] (4.3)

Tikhonov (1977) proved the existence and uniqueness of such a solution.
Theorem 1. Let K denote a continuous operator from F into G. For every
element g of G' and every positive parameter «, there exists an element f, € F,

for which the functional

Me[f] = |Kf - g|* + af2[f]

attains its lower bound:
: al £} — a
}&{lM [f1 = M®|f,]
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If K is linear and 0[f] is quadratic, the solution f, is unique.

Thus we can define an operator R;(g,a) from G into F; for a > 0, so that
f« = Ri(g,c) minimizes the functional M*[f]. The following theorem from
Tikhonov (1977) shows that R;(g, @) is a regularization operator for Eq.(4.2).
Theorem 2. For any positive number ¢ and any function $,(6) and $;(6) in
the class of functions that are nonnegative, nondecreasing and continuous on an
interval [0, 6,] such that 8;(0) = 0 and 6%/6,(6) < Bz(6), there exists a number
8o = 6o(€, By, B2) < 6, such that for g € G and 6 < & the inequality |lg—gT|| < 6
implies the inequality || fo — fr|| < €, where f, = Ri(g, ) for all a satisfying the

inequalities
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m < a < B;(6).

This theorem implies that whereas the problem described in Eq.(4.2) does
not have the property of stability, the problem of minimizing the functional
M?*[f] is stable under small changes of members of G. The choice of stabilizing
functional, 1{f], is often determined by the physical problem. This choice may

not be unique. In this chapter, we shall apply the stabilizing functional of second

order which has the form

lf] = [ 6@)() + )G d

The choice of this functional is to seek an approximate solution which minimize

IKf — glle¢ with the aid of the smoothest functions up to order two.

It should be noted that the value of the regularization parameter o plays
important role in regularization method. The admissible value of this parame-

ter depends essentially on the information available regarding the approximate
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initial data. In regularization theory, Tikhonov provided several methods to
obtain a. In this chapter, we shall not discuss how to get «, but focus on the

algorithm to find f which minimizes M?|f] with given a.

4.3 An Algorithm to Solve the Equation of First Kind

By means of variational principle, one can easily prove that the unique min-

imizer of Eq.(4.2) must satisfy

K'Kf+agf-alaf) =K"g (4.4)
f'e)y=rs'(1)=0

where K" is the adjoint operator of K.

Hilgers (1973) gave an algorithm to find closed form of f from Eq.(4.4)
by choosing ¢o = 0 and ¢ = 1. To solve Eq.(4.1), this choice require that
K(z,y) > Ko > 0, where K is a constant. However, our kernel given in chapter
2 does not satisfy this condition. Here, we present an algorithm to obtain f in

closed form with go = 1 and ¢; = 1. Under above conditions, Eq.(4.4) becomes
K'Kf+af —af'=K"*g (4.5)

') =s'@1)=o0

Defining
h=f
and
_ [0, ifz<y;
Glz,y) = {1, ifz>y, (4.6)
we have
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7w) - §0) = [ hz)dz = [ Gly,2)h(z)dz.

or

f(y) = (GRr)(y) + ¢

where § is integral operator defined by Eq.(4.6), ¢ = f(0). (Note that we will

use G to express a function in the rest of this chapter.) Then Eq.(4.5) becomes:

(K*K +al)(Gh+¢)—ah'=K"g

or

ah'= (K*K+al)Gh+cK'b+ ac— K*g (4.7)

where I is the identity operator and

by) = [ K(y,2)dz. (4.8)

Integrating Eq.(4.7) from y to 1, denoting the adjoint operator of § by §* and

applying the condition of f'(y) at the boundary, we have

—ah(y) = §*[(K*K + aI)Gh + ¢(K §)*b + acd — (K §)*g

or

[6°(K*K +al)§ +allh=(KG)'g—c(KG)'d— acd

where
1
d(y) = ./o G(z,y)dz (4.9)
It then follows

h=[(KG)'(KG)+aG G+l [(KG) (g —cb) —acd]  (4.10)

40



and

f=6l(KG)'(KG) +aG'§+cl]'[(KG) (9 —cb) — acd] + ¢ (4.11)
In order to find the constant ¢, define

h(y) = u(y) — cv(y)

where

u(y) =[(KG)'(KG) + GG +al]™(KG) gly)

and
v(y) = [(KG)"(KG) + a§*§ + al|*[(KG)'b + ad](y)
Since h(0) = h(1) = 0 from (4.4) , we have
u(0) — cv(0) =0
and
u(l) —ev(l) =0

Next, we shall apply the simple lemma, which has been proved by Hilgers (1973).

Lemma: For every a € L;[0,1], we have

(i) [(K §)*a](0) = (a,b) = f; a(z)b(z)dz
(i))[(K §)*a](1) = 0.

From the definition of u(y) and v(y), we have

au(y) =(§'G + 1) (K ) (g — (KG)w)l(v)

and
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av(y) = (§°G + I)7'[((K§)*b + ad) — (K §)" (K §)v]()

Applying above lemma and noting that d(1) = 0 and d(0) = 1, we have

au(0) = (§°6 + 1)M(g,8) - (KG)u,B)], (1) =0

and

av(0) = (§°G + I)7'[(6,8) — (KG)u,b) + o,  v(1)=0

It follows

c= (9,6) = ((KG)u,b)
(6,8) — ((KG)v,b) +

(4.12)

In (Hilgers 1973), it has been proved that (b,6) — ((K G)v,b) cannot be zero.

Since a > 0, the denominator of ¢ cannot be zero, either.

To obtain the numerical solution of Eq.(4.1), we need to discretize Eq.(4.11)
and (4.12). By using the mid-point rule of integration method, the discretized

version of Eq.(4.1) is

$(0) = 2 K462
i=
where 6z is the integral step-size. or, briefly,
N
g; = ,.E;K"‘f" i=12,.,N (4.13)
where g; = g(y;), fi = f(z:) and Kj; = K(y;,z;)6z. The matrix version of (4.13)
is

g =Kf
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where g and f in RN and K € RV*¥, Using above notation, the discretized

expression of (4.11) and (4.12) are
f = G[(KG)T(KG) + aGTG + o] [(KG)T(g — cb) —acd]+c  (4.14)

and

_ g™ - (KGu)™d
~ bTb - (KGv)Tb+«

¢ (4.15)

where

éz 0 ... O
e=|7 7S
6x b6z ... b6z
the elements of b € R is
N
b.' = EK.','
1
the elements of d € RN is
N
di=) Gy
J=1

and the vectors u and v are

u = [(KG)"(KG) + oG7G + oJ| {(KG)g

and

v = [(KG)T(KG) + aGTG + o]} [(KG)”b + ad]

43



In the last section of this chapter, a numerical example will be given using

Eq.(4.14) and (4.15).

4.4 An Algorithm for the Inverse Problem
with Two Unknown Functions
In the previous section, we applied the regularization method to solve Eq.(2.12),

in which only one unknown function exists. In this section, we will extend it
to solve the problem with two unknown functions . This problem is of interest
to us because in the process of lifting an object by a multifingered robot hand,
there must exist vertical and tangential force simultaneously. It is obvious that
it is not sufficient to determine two unknown functions by one observation. Ex-
tra information related to these functions is needed. In chapter 3, we studied
this problem with the knowledge of smoothness of the surface in average and
the assumption of constant tangential surface force. These conditions may be
too strong to be applied in practice. For example, physically, the value of the
coefficient of static friction at the boundary of the friction cone depends not
only on the material of finger pad, but also on the material of grasped object.

Hence, we have to know what the material of the object is before grasping.

We have known that the present technology of constructing the tactile sensor
provides the possibility to measure the strains within an elastic material in three
independent directions[]. Therefore, in this section, it is supposed that we can
observe the strain profile beneath the surface of an elastic half-spacein z and y
directions, respectively. Moreover, we suppose that the Poisson’s ratio v # 0.5
because, otherwise, the strains in z and y direction will be same except for sign
as we have mentioned in chapter 2. Under these assumptions, we can solve the
inverse problem described by Eq.(2.9) and (2.10) by applying a regularization
method.
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Consider the integral equations

/ol[Ku(y, z) [i(z) + Kiz2(y, z) f2(z)]dz = g1 (y) (4.16a)

/ol[Kn(y, z) fi(z) + K22(y, z) f2(z)]dz = g2(y) (4.16b)

where f;(z),4 = 1,2, are unknown functions in L[0,1] and g;(y),¢ = 1,2, are
given functions in L,[0,1]. In sake of convenience, we write above equations in

the form of operator equations:

Kuh+Kuafe=a

Kaifi + Ka2f2 = g2

where K;; is the integral operator from Ly [0,1] to L,[0, 1], or, more briefly,

Ki=3 (4.17)

where

Ku K
g =(*n Ko
( Ko Kaz
and f = (fi f2)T,3= (91 92)T. K can be considered as the 2 x 2 matrix integral

operator, K : L [0,1] — L}[0,1]. The norm defined on L2,[0,1] is
170 = [(sup _|fu(2)])* + (sup |fa(=)])?]/>
z€[0,1] z€[0,1]

The norm defined on L2[0,1] is

g = [/ol g (z)dz + /01 g%(z)dz]llz.
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As Eq.(4.2), Eq.(4.17) leads to an ill-posed problem. Applying the regularization

method, we hope to find a f for given § to minimize the functional

Me(f]1=IK} - 3|’ + en[7] (4.18)

where

a7} = [ (£6) + B0 + (@h6)/a) + (@h6)/d)ldy  (@419)

Rewrite Eq.(4.18) as follows:

M?(f] = (Kufi + Kizfa — @1) + (Karfi + Kaafa — 92)? + 0[] (4.20)

By taking first variation, the minimizer of M*[f] must satisfy the following

equations:

(a = KK — K21 K1) f1 — (K1 Kiz + K Ka2) f2 — aff = Ky + Kz192 (4.21a)

(@ — Ki3 K1z — K3, Ka2) f2 = (Kis K + K3, Ka1) fi — afy = Kiyg1 + Kgog2 (4.210)

and

£1(0) = £;(0) = £(1) = f2(1) =0

where K} is the adjoint operator of K;;. The matrix form of Eq.(4.21) is

(K*K+I)f—af"=K"g (4.22)

where

Kh K3
(8 5)
sz KZZ
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Using the same approach as in section 4.3, one can find f in the closed form:

F=38lR9)(KG) +(§°G+ I)]'[(KG)' (g - Be) —aDe]+2  (4.23)
where
_(§ O
2= (3 ¢)

G is the integral operator with the kernel given by (4.6);

D=(g 3)

d is given by (4.9); the elements of B € L2**[0,1] are

1
bis(v) = [ Kigly, z)dz i,j=1,2

and

z=(£(0) f:(0))"

By using the similar method as in section 4.3, we can get ¢ as follows.
Let S and T be 2 x 2 matrices with the elements defined on L,[0,1]. We

define the inner production of S and T as

_ [ (s11,t11) + (s21,221)  (s11,t12) + (521,222)
(5,7) = ((812, t11) + (822,t21) (S12,%12) + (822, tzz))

where

1
(81t =/0 sij(z)tr(z)dz 4,5,k 0=1,2
Then & has the form:
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¢=[(B,B) - ((K§)V,B) + aI]7*[(B,7) - (B, (K §)u)] (4.24)
where

a(y) = [(KG)'(KE) +a(§°G + 1) (KG)'g

and

V() =[(K9)(K) +a(§'§+ I)]'[(K§)'B + aD].

In order to find a numerical solution of Eq.(4.16), Eq.(4.23) and (4.24) should
be discretized. By using the mid-point rule of integration, the discretized version

of Eq.(4.16) is

N

g1(y;) = ;[Ku(yj,zi)fx(zi) + Ki2(yj, z:) f2(z:))6z (4.25q)
92(y;) = i[KZI(yj:zi)fl(zi) + Kaa(yj, ;) f2(z:) )6z (4.25b)

for y = 1,2,..., N. The matrix versions of above two equations are
g1 = Kuf, + Kpof;

g2 = Ko f) + Kapof;

where g; and f;,1 = 1,2, are in RN and K;; € RN*V, For short, above equations

can be
g = Kf

where g = (g7 gI)7,f = (ff £I)7 and
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_ Ku K;;
K=

By using above notation, the discretized expression of Eq.(4.23) and (4.24) are

f=G[KG)T(KG)+a(GTG +I)"}(KG)T(g — Bc) —aDe]+¢  (4.26)

and

where

G is same as one expressed in (4.15);

n d o
5-(5 a)
d € RY¥ is the same as one expressed in (4.16);
= B By
B =
(Bn Bzz)
in which B,; € RY is the summation of columns of matrix Kj;
a=[(KG)T(KG) + a(GTG + 1)1 (KG)Tg
and

V = [(RG)T(RG) + o(GTG + I)]}[(K

]
=
(vs]
+
R

A~
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4.5 Numerical Examples
In this section, we will use the algorithms given by above two sections to our

inverse problem arising from chapter 2. For the sake of convenience, we rewrite

Eq.(2.9) and Eq.(2.10) in following forms

[ 1By = 902 (50) + Kaal = 90) s (90)]dse = ex(3) (4.28a)

/_ :[Kvl (v — vo) fu (o) + K2 (y — v0) fi(v0)]dwo = €, (v) (4.28b)

y € R. Here, the superscript ‘strain’ and variable z are omitted. In the following

examples, we choose £ = 1.5 and the Poisson’s ratio v = 0.45. The kernels

K.1(y), Kz2(y), K1 (v) and K2(y) are given in Eq.(2.9) and (2.10).

Applying the assumptions of g(y) and f(y) given in chapter 2, Eq.(4.28) can

be approximately expressed as

/:[Kzl (¥ — yo) fo(yo) + Kea(y — o) fi(v0)]dyo = €=(v) (4.29a)

/_ :[Kvl (¥ — 30) fu(v0) + Ky2(y — v0) fi (vo)lduo = € (v) (4.290)

for y € [~ A, A], where A is the half width of surface of the finger. Now Eq.(4.14)
and Eq.(4.15) or Eq.(4.26) and Eq.(4.27) can be applied immediately to solve
above integral equations. In following examples, £ = 1 and the number of

elements of sensors N = 81. We suppose the rigid load is cylinder. The designed

surface stress for this load is

foly) = { 2EV/aF = fory € [—a,q];

otherw1se,

where a is the half-width of the contact region and P is the force per length.
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Fig.4.1a 1. the strain at £ = 1.5; 2. the designed surface stress

Example 4.1 Cylinder indenting without friction.

Fig.4.1a shows the designed surface stress profile and the strain profile, €. (y),
beneath the surface at £ = 1.5. By choosing the regularization parameter
a = 1073 and 107* and applying Eq.(4.14) and Eq.(4.15), we get Fig.4.1b
and Fig.4.1c, in which the designed and reconstructed surface stress profiles for

two different a are shown.

Example 4.2 Cylinder indenting with friction.
In this example, let f(y) satisfy

fi(y) = 0.55,(y).
Fig.4.2a shows the designed surface stress profiles, f,(y), fi(y) and the strain
profiles, €,(y), ¢, (y), beneath the surface at £ = 1.5. By choosing the regular-
ization parameter a = 10~° and 10™* and applying Eq.(4.26) and Eq.(4.27), we
get Fig.4.2b and Fig.4.2c, in which the designed and reconstructed surface stress

profiles for two different a are shown.
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fig.4.1c 1. the designed surface stress; 2. the reconstructed surface stress.
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2. the designed tangential surface stress;
3. the strain ¢; at z = 1.5;

4. the strain ¢, at z = 1.5.
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Fig.4.2b 1. the designed vertical surface stress;
2. the designed tangential surface stress;
3. the reconstructed vertical surface stress;

4. the reconstructed tangential surface stress.
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Fig.4.2c 1. the designed vertical surface stress;

2. the designed tangential surface stress;
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3. the reconstructed vertical surface stress;

4. the reconstructed tangential surface stress.

Remark: Suppose v = 0.5 and suppose that arrays of sensors which can be
mounted on two horizontal layers in two different depths beneath the surface
can be constructed. That means we can observe strain profiles at two depths
beneath the surface. In this case, we also get two independent integral equations.

By using the same method as example 4.2, one can find the satisfied solution.
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CHAPTER

FIVE

ANALOG NETWORKS
FOR THE INVERSE PROBLEM

In the previous chapters, we derived numerical methods to solve the inverse
problem. Some examples were displayed. Although these methods are nonitera-
tive, they are in their original form unsuitable for real time calculation. For this
reason, analog networks are developed for both Fourier inversion and regulariza-
tion based methods. As computed by these networks, the results are spatially
discrete, but they can be obtained immediately after the observations are input
to the network. In this chapter, we shall study the application of analog network
realization to regularization based methods for the inverse problem described in

chapter 2.
5.1 Equivalence of Analog Networks and Regularization
From Hamilton’s principle of least action, we know that the behaviors of
many physical systems are equivalent in the sense of minimizing an associated ac-
tion functional. Electrical networks can be considered as natural computational
models for solving these minimizing processes. In this section we will demon-
strate that both the regularization principle and the minimum power principle
for an electrical network consisting of resistances and sources are equivalent to a
quadratic minimization problem in Hilbert space. It should be mentioned that

Poggio and Koch (1985) gave a proof of this idea, but their argument for the
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above equivalence appears to be incomplete. We give a complete proof below.

Consider the integral equation

/01 K(z,y)f(y)dy = g(z), 0<z<1 (5.1)

where K is an Ly-kernel, f and g are in L;[0,1] and f is piece-wise differentiable

on [0,1]. As usual, the norm of any element in L,]0,1] is defined as

Il =< 1,1 >"*= (/01 1*(z)dz)**

It can be shown that, for the space considered here, Eq.(5.1) is still ill-posed in

the sense of Hadamard.

From chapter 4, we know that the basic idea of regularization methods for
solving Eq.(5.1) is to restrict the space of possible solutions by choosing the

function f that minimizes the functional

M) = | [ K(z9)/()dy - (=) + enlf] (52)

where a is called the regularization parameter, 02[f] is the stabilizing functional

defined in chapter 4, which we chose as the functional of second order

1
alf] = [ £6) + (@ (v)/dy)dy (53)
In a more general sense, we write (5.2) with (5.3) in the form
M(fl=|IKf—gl®>+allPf|? (5.4)
where K and P are linear operators, P may be densely defined.

As denoted by Poggio and Koch (1985) , regularization principles of the form

(5.4) are equivalent to quadratic minimization problem in a Hilbert space.
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In fact, we can rewrite (5.4) in terms of inner products

<Kf-g,Kf—g>+a<Pf,Pf> (5.5)

Denoting K* and P* as the adjoint operators K and P, respectively, (5.5) can

be expressed as

<fLK'Kf>-2<f,K'¢>+a< f,P'Pf>+<g,9> (5.6)

Then, by disregarding the constant term, the regularization problem is equiva-

lent to minimizing the following quadratical functional

<f,f>-2<f,K'g> (5.7

where Q = aP*P + K*K. It is clear that P may be chosen so that Q is positive
definite.

We next prove that the minimum power principle for an electrical network
consisting of resistances and sources is also a quadratic minimization prob-
lem. Suppose we have an electrical network consisting of resistances, r; for
k =1,...,b, and voltage sources e,;, for s = 1,...,l, where b is the number of
branches of the whole network, ! is the number of independent loops. Denote the

branch currents and voltages as elements in the column vectors j = . j,,]T

and ¥ = [vy,...,v)7. By Ohm’s law, we have :

A)=7 (5.8)

where A = diag[ry,...,r]. As is well known, the constraints among v, are
derived from Kirchhoff’s voltage-law. These constraints are ! in number as

follows
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Pu Brz ... Pu 121 €

ﬂ.zx ﬂ.zz . ﬂ.zb v.z _ c:z (5.9)
Biu Bz ... Bu) \ el
where f3;; is 0 or +1 or —1. Or briefly,

Bo =g, (5.9)

If we select a tree in the network graph and if the corresponding link-branches
are numbered consecutively from 1 to I, then, by suitably choosing the reference

directions of independent loops, B can be set in canonic form

where I, € R, B € R*", n = b—1 and n + 1 is the number of the nodes
of the tree of the network. If we choose the link-branch currents jj,...,5 as
loop currents, ¢3,...,1, it is not difficult to prove (see Guillemin 1963) that the

relation between loop currents and voltage sources is

Ri=g¢, (5.10)

where ¢ = [1],...,4]7, and

A; € R™ and A, € R™" are submatrices of 4 such that A = block diag|A,;, A,).

Premultiplying Eq.(5.10) by transpose of 1, we have

iTRi =1T¢, (5.11)
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By the definition of ¢ and &,, we know that i, is the current delivered by e,.
Hence, the right hand side of Eq.(5.11) is the total power, P, produced by

sources. It is easy to see from the law of conservation of energy that the left

hand side is the power dissipated by resistances. Denoting
_ 1
2F =1TRi = Y Rui.i
0,k=1
where R,; are the elements of matrix the R, and
1
Pi=) tien
k=1

we have

P;=2F (5.12)

where F is called energy function.

The minimum power principle states that in a linear network containing ideal
sources, the distribution of currents and voltages at every instant assumes values
such that the total rate of energy dissipation becomes a minimum, subject to the
constraint that energy for the whole system‘ is conserved. In other words, the
distribution of the currents should minimize F under the constraint P; = 2F.
This is a constrained minimization problem. In producing a Lagrange multiplier,

the currents should minimize the functional

F + \(P; — 2F) | (5.13)

As usual, to minimize the functional (5.13), we have ! equations

a%[F + APi—2F)] =0 (5.14)
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for k = 1,...,l. By multiplying the separate equations (5.14) respectively by

t1,...,4; and adding them together, we have

> 2 {4 A(Pa— 2F )} =0 (5.15)

From the expression of F and Pz, we note that

! 8P,
‘ i=1 9% *
and
1 . OF.
F—Ekgl-ézik

Then Eq.(5.15) becomes

2F + A(P;— 4F) =0

or

2(1 — A)F + A(P;— 2F) =0 (5.16)

Since P; = 2F, Eq.(5.16) implies A = 1. Therefore, the distribution of currents

t1,...,% should minimize the quadratic functional

1

1

s,k=1

:
Pi—F =) tien+
k=1
It is obvious that by discretizing (5.7), it must has same form as (5.17).

If we write equation (5.15) more explicitly, we find that the distribution of
the currents which minimize the dissipated power of the whole network just

satisfies Kirchhoff’s law. In fact, by solving
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3
P Fl=0, k=1,...,1

we have
1
ER),J,:c.k k=1,...,l
=1

It is the Kirchhoff loop equation, or the equilibrium equation on a loop ba-

sis. Therefore, we conclude that regularization problems can be mapped into a

problem of relaxation of electrical networks.
5.2 Analog Network for Inverse Problem

In this section, we will investigate the method of minimizing functional (5.2)
with (5.3) by relaxation of an analog network. Instead of discretizing Eq.(4.23)

in chapter 4, we first of all discretize the functional (5.2) with (5.3) directly.

Using the norm we chose, the functional (5.2) with (5.3) is explicitly

/ dz / (z,9)/(v)dy - ¢()]* + @ / 1) + £ (v)ldy (5.18)

The discretized version of above functional is

N N N-1 N
Yol Kiifi—gl+a0 Y (fin—fi) +ao)_ f}

=0 =0 =0 =0

where K;; = K(z;,y;)o. This version can be expressed in matrix vector form as

follows

oG- KT(@—Kf)+a0c™'7TQFf + acf'}

or

61



fTleKTK + a0™'Q + aol]f - 2]TK g + 057§ (5.19)

where K is formed by elements K;;, f = (fo,...,f~)7,3 = (g0,---,9~)T and

1 -1 O 0

-1 2 -1 .. 0
Q= ..

0 -1 2 -1

0 0 -1 1

It is clear that (5.19) is a quadratical functional of vector f. By minimizing

(5.19) over f, we have

P}=% (5.20)

where

b=KTj
P=KTK 4+ a07?Q +al

It is clear that P is a symmetric positive definite matrix.

Based on the results in section 5.1 and this section, we will determine an
analog network to solve Eq.(5.20). Instead of using the equilibrium equations
on a loop basis, we will use the equations from a node basis since the relationship
of loop and node analysis is a dual one. From basic network analysis (Jensen,
1974), we have following result. Suppose we are given an electrical network which
has n+41 nodes and has some current sources and conductances connecting these
nodes such that the graph of this network is connected. After numbering the
nodes from 1 to n + 1, we choose (n + 1)th node as the reference or ground, and
denote the voltage of 1th node with respect to the ground by V;. Then we have

the equilibrium equations,
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guu G2 ... Gin Vi Jy

g21 922 .-+ Gn Va| 12
gnt 9n2 ... @Gnn Va Jn

where g;; is self-conductance of ith node, which is defined as the sum of all
conductance attached to the sth node, for ¢+ = 1,...,n; gi; = gji,¢ F J is
mutual conductance between ith and jth node, which is defined as the sum
of all conductance from sth to jth node with a negative sign J; are the current

sources entering the 1th node.

From above result, the electrical network for Eq.(5.20) can be designed as
follows. Let g;; = pi; be the mutual conductance connecting tth and jth nodes,
t # 7, andt,j = 1,...,n, and g; = pi; be the self-conductance of ith node.

Then the conductance between sth and (n + 1)th node g; = pi; + E’};g Pij.
I#

Moreover, let J; = b; be the current sources entering from (n + 1)tk node to
others. By using this circuit, we can solve Eq.(5.9) by measuring the voltages
between tth node and ground. As we have proved in section 5.1, this solution is
the discrete minimizer of functional (5.18). Fig.5.1 shows a circuit designed by
above approach, in which n=5. :

It should be noted that, in the above circuit, the negative conductances,’ or
resistances, may appear. As pointed out by Poggio and Koch (1985), there are
at least three ways for implementing negative resistances by using basic circuit
components. That is (i) replacing the positive and negative by inductances
and capacitances with impedance iwL and —i(wC)™? respectively; (ii) using
operational amplifiers or other circuits; (iii) exploiting the negative impedance

regions in a nonlinear system.
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CHAPTER

SIX

AN APPLICATION OF TACTILE SENSORS
IN STATICS OF MULTIFINGERED HAND

6.1 Definitions and Assumptions

From Salisbury(1982), a robotic hand is defined as an interface between the
mechanical arm and the objects it interacts with, and a multifingered hand or
articulated hand is defined as a device with two or more powered joints that
can grip and manipulate objects. Here, we define a multifingered hand system
as a multifingered hand together with the grasped object. For simplification, a
planar-multifingered hand system is defined as a multifingered hand system in
which the net grasping force and net external force lie in a plane defined by the
contact points and center of mass of the object. In this chapter we shall study
this kind of hand system. Moreover, we define the fingertip as the last link of
every fingers, on which tactile sensors covered by some kind of elastic material

are mounted.

In this chapter, we make following assumptions:

(1) the hand has two fingers and two links for every finger.

(2) the grasped object is in the hand workspace, which is defined as the range
of possible manipulation.

(3) no sliding occurs between the fingertips and the object.
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Fig.6.1 Surface contact and point contact

(4) the surface of fingertip is a plane and the surface of the object is a smooth
side without vertex or wedge, and the boundary of the contact area is within
the surface of fingertip.(see Fig.6.1).

(5) the tangential component of surface stress is in the same direction and
is directly proportional to the magnitude of the normal surface stress.

(6) the characteristics of the elastic material satisfy the assumptions given
in chapter 2 and the plane-strain assumption(see chapter 2) can be applied
approximately.

(7) the stiffness of the elastic material covering the tactile sensors is large
enough so that we can treat that the deformation of the fingertip is infinitesimal
with respect to the dimension of the finger and the grasped object and that the

fingertip is rigid when the multifingered hand system is in static state.

6.2 The Concept of Concentrated Contact Force
We have known that when a rigid object is pressed on the surface of an

elastic material with a force, F, there is a distribution of stress on the surface.
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By Newton’s law, this stress can be expressed as the distributed force, which is
defined as force per unit length, exerted on at the object over the contact area.
When the object is in a stable static state, this distributed force should balance
the force F. By means of the method derived from previous chapters, this
distributed force can be reconstructed by tactile sensors. However, to analyze the
static properties of the grasped object , it is more convenient to use concentrated
forces for every contact. If the type of contact between the fingertip and the
object is point contact with friction, the force at the contact is a concentrated
one and the multifingered hand system becomes an articulated system with a

closed loop.

In this section, we intend to transform the distributed force to equivalent
concentrated force. The meaning of equivalence here is that if one substitutes
the distributed force by a equivalent concentrated force, the behavior of the
system is still in stable equilibrium state. The expression of this concentrated
force should provide the magnitude, the direction and the location of the force

with respect to the finger surface.

Suppose an external force F, and a force distribution f act on an object
such that the object is in stable equilibrium (see Fig.6.1). By the assumptions
given by above section, we can consider f to be distributed along the y axis,
ie. f(y) = (fu(v), fe(y))T, where f,(y) and f;(y) are the vertical and tangential
component of f(y), y € [-A, A], where A is the half-width of fingertip. Then

the sum of forces and sum of moments with respect to point o are 0, i.e.

Fo+ [ ‘:f(y)dy —0 (6.1)

and
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roxFot [ : yf(y)dy =0 (6.2)

Denoting the equivalent concentrated force by F = (F,, F;)T , from (6.1) we

have

F, = / : Jo(v)dy (6.3a)

Fo=[" 1) (6.3t)

The angle of the force with respect to the surface normal is

o F

a=tan
F,

(6.4)

Since we have assumed that f is distributed along the y axis, the moment due
to tangential components can be omitted. Then from (6.2) the exerting point

of equivalent concentrated force, y*, satisfies

A
v'F, = /_ . vfo(v)dy

or

. _ fA yfv(y)dy

v = ffA fu(y)dy

(6.5)

Using above method, the side contact between the fingertip and the object
can be simplified as point contact with friction by changing I3, 0; into I, 8}, (see

Fig.6.1).

68



It should be noted that under above simplicity, the length of I; and the
angle 8 can be calculated from the location of y* or, more precisely, from the
information detected by tactile senors. By the assumptions in above section, this
link can still be considered as rigid. Moreover, if a coordinate frame (O, X,Y’)
is set as shown in Fig.6.1, the representation of F in (0,z,y) can be easily
transformed to (0, X,Y’). In next section, we will use this simplified contact to

study the static problem in a multifingered hand system.

6.3 The Statics Problem in a Multifingered Hand System

The static problem of a manipulator with one chain is to find the relationship
between the generalized forces at the end-effector, fs«1, and the motor torques
at the joints of the links, 7,x1, where n is the number of links. It is known that

this relationship is described by

r = JTf, (6.6)

where J € R3*" is Jacobian matrix of the manipulator. Using above equation
one can easily calculate what torques the motors should apply at the joints
to produce a desired force at the tip. The static problem of multifingered hand
system is to determine the relationship among the torques that the motors should
apply at the joints of links of the fingers, the desired grasping force and the
resultant external force and torque exerted on the grasped object when the

grasped object is in a stable equilibrium state.

Using the simplifying assumption of the previous section, the planar mul-
tifingered hand system with two fingers and two links for every finger can be

shown as Fig.6.2.

In Fig.6.2, L : (0}, X,,Y}) and R : (O,, X,,Y,) are coordinate systems fixed

on the tips of left and right finger, respectively; P : (Op, X,,Y}) is the coordinate
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Fig.6.2 Two finger grasping

system fixed on the palm of the hand; f; and f, are the equivalent concentrated
contact forces; f, and t. are the external force and torque exerting on the object,
respectively; r. is the vector from the point B, where f, exerts, to O;; r,; is the

vector from O, to O;.

From the basic statics, to keep the object in an equilibrium state, the net
force and the net moment acting on it should be zero, respectively, i.e.
and, if the reference point is chosen as Oy,

r'ler+rexf¢+t¢=0 (6.8)

”

where “ X ” is the cross product of the vectors.

It is obvious that, Eq.(6.7) and (6.8) can only describe the state of the

grasped object, but can not describe the state of the hand system completely
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because there is redundancy in these equations. This redundancy can be ex-

plained as follows. Suppose f, = 0 and t. # 0. Decomposing f, into two

components, £+ and f!, where f* is perpendicular to r,; and f! parallel to it.

Similarly, f; is decomposed into f* and f]. Then the scalar forms of Eq.(6.7)
and (6.8) are

ft+ff=0
£l +£l =0
flxry+t. =0

It is clear that the solution of f," and f! is not unique. However, if a constraint

is set for the magnitude of f," or f! the solution will be unique.

To completely describe the two-fingered hand system, we define the grasping
Jorce,f, as a scalar which equals the sum of magnitudes of the projections of
finger-contact force on the line connecting two contact points minus the magni-
tude of projection of net external force on the same line. The admissible range of
value of this quantity is prespecified depending on the requirement of the task,
the material of the grasped object and the fingers (including the tactile sensors).

By using this concept, the forces f},f, and f, should satisfy

|rrl . fll + Irrl . frl - |rrl . fel = fg (6.9)

where “-” is the point product of the vectors. For grasping, the direction of f;
and f, must be towards the interior of the object. According to the direction of

r,; we chose, Eq.(6.9) becomes

=Tyl * fl + Ty fr - |rrl * fel = fg (6.10)
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Before expressing Eq.(6.7), (6.8) and (6.10) as the scalar equations, we dis-
cuss the transformation of the coordinates of L, R, and P. From Paul(1981),
we know that for any point p, if its expressions of homogeneous coordinate in
L,R, and P are r! = (z;,4,1)%," = (zr,¥r,1)T and r? = (z,,y,,1)7, then the

homogeneous transformations from P to L and R are

r'=Tpr* (6.11)
and
r" =TI (6.12)

respectively. In equations (6.11) and (6.12), the matrices T, and T} in R**® have

the form:

| Apl bpl
Ty = ( 0 1

and

A b
r _ pr pr
where A, and A, in R?*? are matrices of rotation transformation, b, and: by,

in R? are vectors of translation transformations. From Eq.(6.11) and (6.12), the

homogeneous transformation from R to L is

rt=Tir" = T)TFr (6.13)

where

-1 _ -1
T:=(T;)“=(A5' A';"”')

72



1 _ [An bu
I = ( 0 1
in which A,; = ApA;} and by = —Au AL by, + by are rotation and translation

transformation from R to L, respectively.

Next, we will represent vector equations (6.7), (6.8) and (6.10) as scalar
equations, in which every vector is presented in the coordinate system L. Let

f} and fT in R? be representations of f; and f, in the coordinate systems L and
R, respectively. Let f? be the representation of f, in the coordinate system P.

Then the scalar expression of Eq.(6.7) is

i+ Aaf] + Auf? =0 (6.14)

Let r? be the homogeneous coordinates of points B represented in P. Then the
representation of the homogeneous coordinates of r, in L is
re = —Tor? (6.15)

Directly applying Eq.(6.13), the representation of homogeneous coordinates of

rpin Lis

"it = _Trl = (A,;A;,lbp, — by, I)T (6-16)

- O O O

Define a row vector, S(r), for r = (z,y,1)7 as

5(r) = (-v,2) (6.17)
Then the scalar expression of Eq.(6.8) is
S(ry)Anfl + S(rl)Auff +t.=0 (6.18)
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Define a row vector, T(r), for r = (z,y,1)7 as

T(r) = (z,y) (6.19)

Then the scalar expression of Eq.(6.10) is

=T(r)fi + T(ru)Anf] + |T(rp) Ap f2| = £, (6.20)

In the rest of this section, we will derive the equilibrium equations expressed
by the motor torques at the joints of the fingers and the external force and
moment. Let 7, and 7, in R? denote the motor torques on the left and right

fingers, respectively. From Eq.(6.6), we have

fi=J"n (6.21)

and

fr=9"Ts, (6.22)
where J; and J, are Jacobian matrices of left and right finger, respectively. The
inverse of them exists if and only if the joint angle between two links for every
finger is not zero (Horn 1979). Substituting Eq.(6.21) and (6.22) to (6.14), (6.18)
and (6.20), we have

T AJT A fP
( 0 S(rﬁ,)A,,J;T) (") = ( S(rl)Afr +t, ) (6.23)
~T()IT T()And;T )\ fo = IT(R) A2

or briefly,

Jr=7% (6.23)

It can be proved that the inverse of matrix J exists. In fact, we can rewrite J

as
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I T JT 0
J= 0 S(rh) ( ’0 A J-'r) = h/ (6.24)
—-T(ry) T(r3) i

The inverse of second matrix of (6.24), J;, obviously exists. From linear algebra,

we know that if a square matrix has the form

A B
C D
where A and D are square and det(A) # 0, then its determinant is

det(A)det(D — CA™'B)

Appling above result to the first matrix of (6.24), J;, its determinant is

det(J)) = det (2‘;,(('55‘)))

By the definitions of T'(-) and S(:), it is clear that det(J;) # 0. Therefore,
if the external force and moment and the position of point B with respect to
coordinates system P are known, we can use Eq.(6.23) to obtain the motor

torques to keep the grasped object in static state with required grasping force.
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CHAPTER

SEVEN
CONCLUSION

In this thesis, we derived the basic relationship between the distribution of
force exerted on the boundary of an elastic half-space and the distribution of
stress or strain beneath the surface. This relationship is described by an integral
equation of convolution type with two unknown functions. By noticing that the

discrete Fourier transformation of the kernel for both stress and strain is real

and nonnegative, we were able to use the DFT approach to solve the equa-
tion. Under some assumptions about friction, we use same approach to solve
the corresponding inverse problem in the presence of tangential surface force.
We noticed that the integral equation of convolution type with two unknown
functions is the particular case of an operator equation of the first kind and that
it is ill-posed on the natural function space for the problem. We developed an
algorithm to solve it for two unknown functions by assuming that the distri-
bution of strain or stress can be measured in two orthogonal directions. The
two approaches above have been examined by examples. During the calculation
of these examples, we found that above approaches are in their original form
unsuitable for real time calculation. Hence, we also investigated the possibility
of realizing analog networks to solve the inverse problem. Finally, as an appli-

cation of tactile sensors, we derived the equation which expresses the relation of
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the motor torques on the joints of the fingers and the external force exerted on
the grasped object. In this equation, the contact force distribution measured by

tactile sensors is simplified as an equivalent concentrated contact force.

The results given in this thesis are just preliminary ones. There is a number
of problems left to be solved. With regard to the elastic model, we have not
determined stress and strain for general three-dimensional contact. We expect
that this model can be expressed as a double convolution of point contact.
Moreover, in practice, the applied elastic material is not a half space, but a thin
layer. Hahn and Levinson (1974) gave some results for this problem, but the
form of their solution is an infinite series and inconvenient for applications. It
would be interesting to recast their results in an integral form. Regarding the
DFT approach, we did not find an algorithm to solve the inverse problem for
the general case. The reason is that f{,g is an odd function. With regard to
the regularization approach, an algorithm for finding the optimal regularization
parameter has to be produced. Bates, Lindstrom, Wahba and Yandell (1987)
gave a program for this problem, but it has to be modified for our stabilizing
functional. With regard to the analog networks, to realize a real circuit for the

inverse problem, many implementation questions have to be addressed.
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