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Abstract: The extension of Quadratic Dynamic Matrix Control (QDMC) to nonlinear process models is an
attractive option for industrial implementation. Although a nonlinear model is utilized, one has to solve only
a single Quadratic Program on-line. In this paper, we present the stability properties for the global asymptotic
stability of the closed-loop system under NLQDMC law. The conservativeness of these properties is examined by
following the steps of the proofs when this algorithm is applied to a simple example. We also demonstrate the
application of the nonlinear version of QDMC to processes for which the sign of the system gain changes around

the operating point.
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1 Introduction

The application of Quadratic Dynamic Matrix Con-
trol (QDMC) to processes which can be assumed
linear has been mostly successful in the industrial en-
vironment, for multivariable systems with input and
output constraints (Garcia and Prett, 1986). Garcia
(1984) proposed an extension of linear QDMC to
nonlinear processes (abbreviated to NLQDMC from
here onwards). Gattu and Zafiriou (1992) extended
this formulation to open-loop unstable systems, by
incorporating a Kalman filter. The requirement of
solving only one QP on-line at each sampling time
makes this algorithm an attractive option for industrial
implementation.

Model Predictive Control (MPC) algorithms uti-
lizing nonlinear models,- based on either Nonlinear
Programming techniques or linearization approaches,
seem very promising; not much progress has been
made, however, in understanding the stability and
performance properties. Li er al. (1990) and Li
and Biegler (1989) presented stability conditions for
Newton-Type controllers. Peterson et al. (1992) pre-
sented sufficient conditions for stability of a nonlinear
MPC algorithm. However, there are no numerical re-

sults available that illustrate how conservative these
stability conditions are. One goal of this paper is to
present stability properties which guarantee the global
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asymptotic stability of the closed-loop system under
NLQDMC law. Later we quantify the conservative-
ness of these conditions with the aid of an example.
We also demonstrate the application of NLQDMC to
processes where the sign of the system gain changes
around the operating point. The paper is structured
as follows. Section two presents an overview of the
NLQDMC algorithm with state estimation. Section
three demonstrates the application of NLQDMC to
a process with a sign change in the gain near the
operating point. Finally in section four, we present
the stability results and illustrate the conservativeness
of these results with the aid of an example.

2 State Estimation NLQDMC

Garcfa (1984) proposed an extension of linear QDMC
to nonlinear processes. Gattu and Zafiriou (1992) ex-
tended this algorithm to open-loop unstable processes,
by incorporating a Kalman filter for state estimation.
For a special choice of tuning parameters, state esti-
mation NLQDMC reduces to Garcfa’s algorithm. For
a detailed description the reader is referred to Gattu
and Zafiriou (1992).

For the general case of Multi-Input Multi-Output
(MIMO) systems, consider process and measurement
models of the form

x=f(x,u)+w 1

y=hx}+v )



where x is the state vector, y is the output vec-
tor, u is the vector of manipulated variables, and
w ~ (0,Q) and v ~ (0,R) are white noise processes
uncorrelated with each other. 0 and R are covariance
matrices associated with process and measurement
noise respectively. It is assumed that Q ~ ¢2] and
R = 021, where 02 and o? are scalar variances. De-
fine o = o, /oy and let o2 = 1. The ratio of ¢ to
o? determines the value of the Kalman filter gain.
Intuitively, o is the ratio between statistical measures
of the uncertainty in the state and the uncertainty in
a measurement. Therefore, o can be used as a tuning
parameter for stability and robustness in the presence
of model-plant mismatch, external disturbances and
measurement noise.

Algorithm;

Known at sampling instantk + 1 :

y(k+ 1) the plant measurement, X(k + 1]k) the estimate
of state vector at £ + 1 based on information at k£, and
u(k) the manipulated variable.

Effect of future manipulated variables

Step 1: Linearize the nonlinear model x = f(x,u) at

X(k + 1}k) and u(k) to obtain
% = Ai+Bu
= Cpx 3)

where
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Step 2: Discretize (3) to obtain

J?jﬂ = <I>k5cj+I‘ku,~
Vi = Gk @

where ®, and T’y are discrete state space matrices
(e.g., Astrém and Wittenmark, 1984), obtained from
Ag, B and the sampling time.

Step 3: Compute the step response coefficients
Sizge1 (0= 1,2,...,P) where P is the prediction hori-
zon. Step response coefficients are used only to
represent the effect of future manipulated variables.
Therefore, only P step response coefficients are re-
quired. For more details on computation issues the
reader is referred to Gattu and Zafiriou (1992). The
contribution of the future manipulated variables to the
predicted output values at k + £ + 1 is represented as
S S Auk+£+1—i) (£=1,2,...,P), where
Au is the change in manipulated variables, defined as
Aulk+1) & utk+ 1) — u®.

Computation of filter gain

Step 4: Compute the steady state Kalman gain us-
ing the recursive relation (Astrdm and Wittenmark,
1984):

‘I)kij‘I)Z + Q - (PkijCI
CPpCL+R)CiPp®,  (9)
K = ®PuoiCiICiPookCE+RITN (6)

Py

where Pj is the state covariance at iteration j for
the model obtained by linearization at sampling point
k+1. P is the steady state value of state covariance
for that model.

Effect of past manipulated variables

Step 5: The effect of past inputs on future output
predictions, y*(k + 2),y*(k + 3),...,y*k+P + 1) is
computed as follows. Here the superscript ‘x’ indi-
cates that input values in the future are kept constant
and equal to u(k).

o Set#(k+ 1}K) = &k + 1]k).
o Define d(k + Lk + 1) 2 y(k + 1) — AGi(k + 11k)).

o Inthe absence of measurement information in the
future, itis assumed that d(k+ilk) = d(k+1jk+1)
fori=2,3,...,P+1.

e Fori = 1,2,...,P, successively integrate x =
f(x,u) over one sampling time from 3*(k + i|k),
with u(k + i) = u(k) and then add Ked(k+ 1|k + 1)
to obtain x*(k+i+1|k). Addition of K;d provides
correction to the state. We can then write

Yk+D)=hEE+i))E=2,....,P+1) (T)

Output Prediction

Step 6: The predicted output is computed as the sum
of the effect of past and future manipulated variables
and the future predicted disturbances.

L
J+0 = YUh+O+ Y SixAute+ L —1)

=1

+dk+1k+1)(£=2,..,P+1)(8)

Define,
Ph+2) 2 Bk+2),....5k+P+ DT
Yk+2) = FG+2),....5k+P+ DT
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where y, is the reference setpoint and M is the number
of future moves to be computed. It is assumed that
M<Panduk+M)=uk+M+1)=...=uk+P).
Then the predicted output can be written in compact
form as

Y(k+2)=YV(k+2) +SAUKk+ 1)+ Dk +1) (9)
Optimization

Jmin 3{IDEFE+2) = Y|P + FIAAU G+ D

(10)

where || @ ||? is defined by ||x||> = x"x. T and A are

diagonal weight matrices.

Step 7: The M future manipulated variables are

computed, but only the first move is implemented

(Garcfa and Morshedi, 1986). The closed form of

control law for unconstrained systems is given by

Autk+1) = e(STTTTS + ATA)ISTTTT
O =Yk +2) = Dk + 1) (11)

where e =[1,0,...,0]
Estimation of state
Step 8: Integrate x = f(x,u) from x(k + 1[k) and
u(k+ 1) over one sampling time and add Kd to obtain
Xk +2)k+1).

The above steps are repeated at each sampling
time. When K, is 0.0, which results to ¢ equal to

0.0, this formulation is equivalent to Garcia’s (1984)
algorithm.

3 Illustration

Gattu and Zafiriou (1992) applied the state estimation
NLQDMC to various examples. The incorporation
of state estimation in NLQDMC results in better dis-
turbance rejection and allows to deal with open-loop
unstable processes. The performance of the algo-
rithm is comparable with the algorithms which utilize
nonlinear programming techniques. The robustness
characteristics of NLQDMC were demonstrated by
application to an industrial challenge problem pre-
sented by Chylla and Haase (1990).

Intuitively, one would expect that a challenging ap-
plication for NLQDMC would be a process for which
the sign of the linearized model changes around the
operating point, Here, we demonstrate the applicabil-
ity of the algorithm to such a process.

The example problem is taken from Economou
et al. (1986). The process consists of an ideal
continuous stirred tank reactor, where the following
reversible exothermic reaction takes place:
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Figure 1: Concentration vs. Time; Solid line M =
5,P =5 and A = 0.0; Alternate dots and dashes M =
5,P =5 and A = 0.0004; Dotted line M = 1,P = 10
and A =0.0
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Figure 2: Feed Temperature vs. Time; Solid line
M = 5P =5 and A = 0.0; Alternate dots and
dashes M = 5,P = 5 and A = 0.0004; Dotted line
M=1,P=10and A=0.0
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Figure 3: Concentration vs. Time; Solid line M =
5,P =5 and A = 0.00005; Alternate dots and dashes
M=5P=5and A=00



The process is described by the differential equations

dAg 1
— = —(A; —Ag) — kiAo +k_1R
p ‘r( i —Ao) — kiAo 1Ro
dR 1
d_to = ;(Ri — Ro) + kiAo — k1R
dTy —AH, 1
20 = —k_1R T —
” C, (k140 — k-1 0)+T(; To)
Yy = Ko
where k& = Ciexp(—01/RTy) and k- =

C_1exp(—Q_1 /RTp) and the parameters and steady
state operating conditions used in this example are
shown in Table L.

Table I:  Parameter values

T =60s

C, =5.0e+03 s~!

C-1 = 1.0e+06 5~!

01 = 10000 cal mot~!
0 = 15000 cal mof™*
R =1.987 cal mot~! K~!
~AH, =5000cal mot!

p =10kg/L

C, =1000 cal kg~' K~!
A; = 1.0 mof/L

R; = 0.0 mot/L

Ag =0.4913

Ry = 0.5087

T; =4359K

To =43847K

The reactor equilibrium curve of conversion as
a function of feed temperature has a well defined
maximum. The control objective is o operate the
reactor at these steady state conditions. The model
has a gain very close to zero at the steady state.
The inlet feed stream temperature T; and the desired
product concentration Ry are chosen as manipulated
and controlled variables respectively.,

Figs. 1 and 2 give the response of the re-
actor for a setpoint change from an initial con-
dition Ag = 0.5279,Ry, = 0.4721,Ty = 412.0 and
T; = 409.64 to Rp = 0.5087. We assume that there
is no model-plant mismatch. The lower and upper
bounds on T; are kept at 200K and 600K respectively.
A sampling time of 20 sec is used in simulations. The
simulations demonstrate that, for » = M and A = 0.0,
the controller inverts the model and the response be-
comes unstable. The system can be stabilized by
choosing P > M or a very small nonzero value for the
weight on the change in manipulated variables. Fig 3
gives the response of the reactor for a step disturbance
of 0.02 units in the feed concentration A; ina system
running at the steady state setpoint. The responses are
similar tc those for setpoint change.

4 Stability Analysis

As a simple case, we consider the analysis of
NLQDMC algorithm without state estimation. The
approach taken here is similar to the approach taken
by Li et al. (1990), for establishing global prop-
erty for Newton-Type controllers, We show that,
for open-loop globally asymptotically stable systems,
by choosing M = 1, and a large sampling time and
weights on change in manipulated variables, global
asymptotic stability of the closed-loop system under
NLQDMC is guaranteed. Later in this section, we
quantify the conservativeness of the this result with
the aid of a simple example.

It is assumed that the inputs are piecewise constant
functions (u(®) = uk); 4 < t <  +T). For the
discrete system with sampling time T, the solution of
x=f(x,u)atk+1 is defined as

X(®) £ xk+1) = x(T; (0, u®)  (12)

i & Ox(T; x(k), u(k))
M= ax(k)

Theorem 1 [f an unconstrained open-loop system
is globally asymptotically stable, then the global
asymptotic stability of the closed-loop system under
NLODMC lawis guaranteed, by choosing M = 1, and
a sufficiently large sampling time and weight A.

(13

Proof: Assume that the setpoint is constant in the
future and there is no model error or disturbances. For
simplicity we assume ' =Jand A= M. < -, - > is
defined as < x,y >= xTy. In the following develop-
ment the notation Au(k + 1) and Auyg, is equivalent
and is used interchangeably. For M = 1, the objective
function J is

R 2
Sk 1) = 217+ 2) B+ —/\2—||Au(k+ DR

(14)
J(O) = %]]Y*(k +2) — V|]* (15)
For an unconstrained system, at optimal solution:
J(Au(k + 1)) < J(0) (16)
[¥(e+2) = Vo2 + 22| Auk+ DI < 742 = Vil ?
a7
Y(k+2) 2 [y +2),yk+3),...,y(k+P+ 1)]T
Yk +2) £ Wk +2), yk +2), ... vk + 217
0@ = [0(6u),0(w)....,0)I"
O(®pr1) = [0, O(besiy1)s - - -» O(grrtyp—1)1"

The effect of past inputs on the predicted output at
k + 2 is related to the output of nonlinear model at
k+1las

Yh+23= Y&+ 1)+ 0@y (18)



= |Gk +2) - V|
= YK+ 1) =Y+ 0@
= |IVk&+1) = Y+ [0@)IP
+2 < Yk +1) = V,,0(@) >
|V + 1) = Yii* + 0@ +
2| Yk +1) = Vrl[|O@n)]] (19)

The output of the nonlinear model at £ + 2 is related
to the predicted outputat k + 2 as

IA

Y(k+2) = Y(k+2) + O(A,) 20)
Yk +2) = Yk +2) + O(@n) @1

IV +2) - V|2

= |[Fk+2) = Y+ 0(A,,) — O(@e)|

= [Pk +2) = VoIl + 10(Aud1) — O@en)|?
+2 < Y(k+2) — Y, 0(ALd,)) — O(Bpar) >
2||¥(k+2) — YlIllOCA1G,) — O@rn)|
H|Pk+2) = V|
+H0(A1},1) — O@wn)|? (22)

From (17),(19) and (22) we get

1Yk +2) = Vi|* - l0(Aut,) — O @e)|?
2Tk +2) - Y l|0(AU,) = O( @)
+22]| Auk + 1|2
<YK +2) = V|2 + N Autk + D
<P k+2) - Y
< Y&+ = VP + (0@ +

2| Yk +1) = VrllllOo@all (23)

Choose A and T such that

IN

A Autk + D)
> 2| Yk +1) - Yrllllo@ol|
+2||F(k +2) = VlllocAwd,) — 0(@u)]|
k+1) = VP
Hiog@p|p + ZEL =2
+|0(AU,)) — O(@rt)|? 4)

This can be accomplished because as T — oo, the
first and third terms on the right hand side go to zero,
the fifth term goes to zero as fast as 3¢ and the second
term goes to zero as fast as ,\1—4 The fourth term goes
to zero as fast as le whereas the term on the left hand
side of the inequality goes to zero as fast as Xlz So
there exist a A and T such that (24) is satisfied.

Then from (23)

IVk+2) = VP <OllVKk+1) - VP 25)
where § = (1 — ;\1-_;).

Ik +) =3I <ok+ D -3 6

with0 < 8 < 1.

From (26), for large k, y(k) tends to y,. For large
sampling time, from (18), Y*(k + 1) tends to Y(k).
Hence from (11), for large &, the value of Au(k) tends
to zero. And for large T and k, it can be shown that
u(k) converges to a constant value u,. For open-loop
globally stable system

Am fak+D,uk) = 0 @n
Am feam xk),ur) = 0 (28)

which implies limg. x(k) = x, where x, is the
unique solution to f(x,u,) = 0. Hence, the closed-
loop system under NLQDMC law is globally asymp-
totically stable.
Example (CSTR)

The example problem is taken from Limqueco and
Kantor (1990). The modeling equations are described

v Een

Figure 4: Dimensionless temperature vs. Time; T =
20and A =3.2

dx
d_tl = —¢x1K+q(xiy —x1) (29) .
dx;
" = féxnK —(q+ a)xy+ au+qxy (30)
X2
= - 1
K exp Py (31
y = x (32)

where x; is the dimensionless concentration, x; is the
dimensionless temperature and u is the dimensionless
cooling jacket temperature. The parameter values are
¢ =0.072, v =200, xiy = 1.0, xoy = 0.0, ¢ = 1.0,
a =03, u=00and g = 80. For these parameter
values there are three possible steady states. So,
this example violates the assumption of open-loop
global asymptotic stability of the stability theorem.
However, it serves the purpose of demonstrating the
conservativeness by making a small setpoint change
around the stable steady state setpoint. We examine
thc conscrvativencss of the stability conditions by



making a setpoint change of 0.5 units in the output
from the stable steady state xT = [0.8560,0.8859].

vEen

4
Time

Figure 5: Dimensionless temperature vs, Time; T =
0.2and A=00

The tuning parameter values of P=5and M = 1
are used in the simulations. To satisfy the inequality
in (24) at every sampling time, the values of T > 20.0
and A > 3.2 are required. In other words, for
convergence towards setpoint a sampling time of
at least 20.0 units and a value of 3.2 or greater for
weight in change in manipulated variable are required.
The simulations are shown in Fig. 4. However, the
simulations in Fig. 5 show that convergence towards
setpoint can be achieved by a value of T = 0.2
and A = 0.0. Therefore, the stability conditions
established are extremely conservative, Also, there
is no procedure for off-line analysis to compute the
values of T and A, as (24) depends on the values of
manipulated variables and the measurement at each
sampling time.

5 Conclusions

In this paper, we have applied the nonlinear QDMC
algorithm to a process where the sign of the sys-
tem gain changes around the operating point. We
have demonstrated that by choosing the proper tuning
parameter values, such processes can be stabilized.
Both setpoint changes and disturbance rejection were
considered. In the second part of the paper, we have
presented the stability conditions that guarantee the
global asymptotic stability of the closed-loop system
under NLQDMC law. we have examined the stability
conditions by following the steps of the proof when
NLQDMC algorithm is applied to a simple example.
It was quantitatively demonstrated that, as expected,
the stability conditions are quite conservative. More-
over, there is no procedure for an off-line analysis
to compute values of sampling time and weights on
change in manipulaicd variables that siabilize the

system. Further research is required to reduce the
conservativeness of the stability conditions.
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