The Full Degree Spanning Tree Problem

Randeep Bhatia® Samir Khullerf Robert Pless*

Yoram J. Sussmann®
Computer Science Department and Institute for Advanced Computer Studies

Univ. of Maryland, College Park, MD 20742.

Abstract

The full degree spanning tree problem is defined as follows: given a connected graph G =
(V, E) find a spanning tree T so as to maximize the number of vertices whose degree in T is
the same as in G (these are called vertices of “full” degree). We show that this problem is
NP-hard. We also present almost optimal approximation algorithms for it assuming coR # N P.
For the case of general graphs our approximation factor is ©(y/n). Using Hastad’s result on the
hardness of approximating clique, we can show that if there is a polynomial time approximation
algorithm for our problem with a factor of O(n%_e) then coR = NP. For the case of planar
graphs, we present a polynomial time approximation scheme. Additionally, we present some
experimental results comparing our algorithm to the previous heuristic used for this problem.

1 Introduction

In this paper we study the problem of computing a spanning tree 7'in a connected graph G = (V, F)
80 as to maximize the number of vertices of full degree. These are vertices whose degree in the tree
T is the same as their degree in the graph . This problem was first mentioned by Lewinter [10].
Tree optimization problems have been very well studied. For example, see [6] for a survey. Recently,
Solis-Oba obtained a 2-approximation for maximizing the number of leaves of a spanning tree [15],
improving the bound of 3 obtained by Lu and Ravi [11].

The problem arises as a central problem in the work by Pothof and Schut [14] which has to do
with water distribution networks. To measure flow in pipes, you can install flow-meters on edges.
However, you do not need to install flow-meters on all edges in the network. If you install flow
meters on edges of a cotree (a cotree H is a set of edges in the graph, such that the deletion of
edges in H leaves a spanning tree in the graph), then we can infer the flow on the edges of the
spanning tree due to flow conservation (and the flow into and out of terminals). This requires that
we install exactly m — n + 1 flow meters where m is the number of edges and n is the number of
vertices in the network, since every cotree has m — (n — 1) edges. Unfortunately, “the cost of flow
meters is several times the cost of pressure meters” [14]. Pressure meters are installed at vertices,
and one can compute the flow on an edge by measuring the pressures on both the incident vertices.
Thus we are looking for a cotree that is incident on as few vertices as possible (to minimize cost).
The savings is exactly the number of full degree vertices in a spanning tree, since these vertices

*Currently at Bell Labs, Lucent Technologies, Murray Hill, NJ 07974 E-mail:randeep@research.bell-labs.com.
'Research supported by NSF CAREER Award CCR-9501355. E-mail:samir@cs.umd. edu.
‘E-mail:pless@cs.und. edu.

$Research supported by NSF CAREER Award CCR-9501355. E-mail:yoram@cs.umd. edu.

have zero degree in the corresponding cotree and we do not have to install pressure meters at these
vertices. Hence we would like to maximize the number of vertices of full degree. One pressure meter
is installed at each vertex that does not have full degree; by using these meters, we can compute
the flow on each edge in the cotree, and then infer the flow on each edge in the tree due to flow
conservation (and the flow into and out of terminals).

Previous Work: Pothof and Schut [14] suggest the following heuristic to maximize the number
of full degree vertices. Define the weight of each edge to be the sum of the degrees of the incident
vertices, and compute a minimum weight spanning tree. As discussed in their paper, there are
cases when their algorithm does very poorly. Consider a wheel graph (a cycle with an additional
central vertex with edges to all vertices on the cycle), then their algorithm may find no vertices of
full degree! In fact, for this particular graph our full degree spanning tree algorithm (for arbitrary
graphs) finds a spanning tree with % vertices of full degree.

Our Results: In Section 2 we show that the decision version of the problem is N P-hard even when
restricted to planar graphs by a reduction from the Maximum Independent Set problem, which is
known to be N P-complete for planar graphs [7]. We then consider approximation algorithms for this
problem — these are algorithms that have a polynomial running time, and produce a suboptimal
solution. The ratio of the optimal solution to the solution we produce (for a maximization problem)
is referred to as the approximation ratio p.

In Subsection 3.1 we provide an algorithm with an approximation ratio of O(y/n) for the FDST
problem. In Subsection 3.2 we show that if there is a polynomial time algorithm for the FDST
problem with a worst case approximation ratio of O(n%_e), then coR = N P. This proves that our
worst case approximation ratio cannot be improved significantly, if P # N P.

In Section 4 we show that there is a polynomial approximation scheme for the FDST problem
for planar graphs using a technique due to Baker [2]. In other words, for any fixed € > 0 there is
an algorithm that runs in polynomial time, and guarantees an approximation ratio of (1 + €). This
is particularly relevant, since fluid networks are often planar [14]. To make the method work, we
have to generalize the problem we solve to allow for restricted vertices, which do not contribute to
our count of full degree vertices.

In Section 6 we compare and contrast our heuristic with the one given by Pothof and Schut [14].
For large random graphs (we tried various kinds of general graphs and planar graphs generated
by LEDA [12] and Stanford Graphbase [9]) we found that our heuristic consistently gave better
solutions. We also performed tests to compare our algorithm’s solution to the optimal solution.
For random planar graphs, we found that in all cases except one, our heuristic gave the optimal
solution. For arbitrary random graphs, on half the tests our algorithm found the optimal solution,
and on the other half of the tests it missed by one vertex (in one case it missed by two vertices).

A very recent paper independently uses identical methods to find a linear PTAS for planar
graphs. This paper also gives algorithms to find exact solutions to the FDST problem for interval
graphs, cocomparability graphs, graphs of bounded asteroidal number, and bounded tree-width
graphs [5].

2 NP-hardness

Full-degree Spanning Tree: Given a graph G' = (V, F), and an integer K, does (G contain a
spanning tree T such that there are at least K vertices with full degree?

It is easy to see that this problem is in N P. We prove that the problem is N P-complete by
showing a polynomial time reduction from the well known “independent set” problem.
Independent Set: Given a graph G’ = (V/, £'), and an integer K’, does G’ have a subset of

vertices of size K’ that form an independent set? An independent set is a subset of vertices with
no edges between them.

Theorem 1: The Full-degree Spanning Tree problem is N P-complete even when restricted to planar
graphs.

It is worth noting that the FDST problem and the Independent Set problem are “similar”,
except that in the FDST problem the constraints are not just local (between pairs of vertices),
since we have to ensure an acyclic solution.

Proof: We do the reduction from the Independent Set problem, which is NV P-complete even when
restricted to planar graphs [7], and we note that our reduction preserves planarity.

We do the reduction from I5(G’, K') to FDST(G, K) as follows. We create two new vertices
corresponding to each edge e = (2,y) of G'. We add edges from these two new vertices to and
y and remove the edge (z,y). Formally, let V' = V' U Vg U Ug/, where Vi = {v.Je € £’} and
Ugr = {ucle € E'}. Let E = {(a,v.), (2, ue), (¥, ve), (y,ue)|(2,y) € E'}. Weset K = K"+ |[V'| - 1.

We now prove that G’ has an independent set of size K’ if and only if G has a spanning tree
with K full degree vertices. Suppose GG’ has an independent set S of size K’. Fix a spanning tree
T" in G'. We will construct a tree T in G. For each v., e = (2,y) € T', we include (v.,2) and
(ve,y) in T. For each v, if e = (x,y) ¢ T’ with 2 € S then add (v.,) to T, otherwise add any one
of the two edges incident on v, to T'. For each u. if e = (x,y) with 2 € S then add (u.,z) to T,
otherwise add any one of the two edges incident on wu, to T'. This is a spanning tree that spans the
vertices in V.

The set of full degree vertices are as follows: {v|v € S} U {v.|e € T'} and has size | S|+ |V'| -1,
which has size K.

To prove the converse, take a spanning tree T" with K vertices of full degree. For any e € F’,
we cannot have both v, and u. have degree two. In fact, without loss of generality we may assume
that w. has degree one, and v, may have degree one or two. If a vertex v € V has full degree then
no neighbor of v has full degree (otherwise we have a cycle in T'), hence the set of vertices in V' with
full degree forms an independent set in G’. Consider the vertices in Vg with full degree (degree
two). If we replace the pair of edges (v, 2) and (v.,y) with the direct edge (z,y) and delete the
vertices in Ugs then we obtain a spanning tree in G’. Since this has at most |V’| — 1 edges, we have
at most |V'| — 1 vertices in Vg with degree two. The remaining full degree vertices are from V' and
there are at least K’ of them, and these form an independent set in G’. a

3 Approximation Results

3.1 Full Degree Spanning Tree Algorithm

Let the given graph be G = (V, E) and let G have n vertices. Let G be a graph defined on vertex
set V: G1 = (V, E'), where F! C E. Let X C F be a set of edges. We define G' & X (G'& X))
to be the graph with edge set £' U X (E'\ X) and vertex set V. Let Y C V be a set of vertices.
We define Fy C F to be the set of all edges at least one of whose endpoints is incident on some
vertex in Y. We define G1 ¢ Y (G1 5Y) to be the graph G' & Fy (G1 & Ey). These operations
are augmentation (reduction) of G by a given set of vertices or edges. Let N(v) be the set of
neighbors of vertex wv.

We now present the Greedy Star-Insertion Algorithm that finds a good solution to the
FDST problem. The algorithm is extremely simple. We show how to implement it efficiently, and
then prove an O(y/n) bound for its worst case approximation factor.

High Level Description: The algorithm first sorts the vertices in nondecreasing order of degree,
then considers them one-by-one to be added to the current solution. Let 5 be the full degree
vertices (initially, S is empty) and F' the edges in the spanning tree that we are constructing. At
each step we insert a vertex into 5, together with its incident edges (a “star”), as long as it does
not create a cycle. In some sense the algorithm is similar to Kruskal’s MST algorithm, except that
we are inserting vertices (along with all their incident edges) rather than simply adding single edges
at each step.

The main hurdle regarding an efficient implementation is to check if the vertex v; we are
considering can be legally inserted or not, without creating a cycle in F. The edges incident
on v; are in two categories: edges already in F and edges not in F as yet. If the set of vertices
{vi}U{u|(v;,u) ¢ F and u € N(v;)} all belong to distinct connected components of F', then we can
insert »; without creating a cycle in F. However, if two vertices belong to the same component,
then adding the edges incident to v; will create a cycle in F.

The algorithm uses the well known Union-Find data structure (see Tarjan [16]) to maintain
the connected components induced by the current spanning forest F. The algorithm scans the
adjacency list of the current vertex v; and, for each adjacent edge not already in the forest, checks
to see which component the opposite vertex lies in. If all the components thus discovered along
with the component in which v; lies are distinct then »; can be added to the current solution. We
do this check using an array Validate[]. While processing v;, when we scan an edge (v;,u) ¢ F,
and u belongs to component ¢, we set Validate[c] = i. If for some other edge (v;,u') ¢ F, v’ also
belongs to component ¢, then we can detect that we are trying to write ¢ in location Validate|[c]
that already contains ¢. This will detect the case when two neighbors of v; belong to the same
component.

A detailed description of the algorithm is in Fig. 1. We assume that our input is a graph

G = (V, F), and the output is a spanning tree F' of (¢ and a set of vertices S that have full degree
in F.
Theorem 2: The Greedy Star-Insertion Algorithm delivers a solution of size at least %
where O PT is the size of the optimal solution. Moreover, the algorithm has a worst case time bound
of O(ma(m,n)) where n,m denote the number of vertices and edges, in the graph, respectively and
a(m,n) is the inverse Ackermann function [16].

Proof: Let Topr be an optimal solution to the FDST problem. Let OPT be the number of
vertices of full degree. Let d be a degree threshold. Let Ay (By) be the set of full degree vertices
of degree < (>) d in an optimal solution. Hence OPT = |A4| + |B4|. We will bound A4 and By
separately. Let I; denote the set of vertices of degree < d in 5, where S is the set of full degree
vertices obtained by the Greedy Star-Insertion Algorithm. Note the vertices in /; have full degree
in the final solution F. Lemma 3 shows that |A4] < 2d|I,| and Lemma 5 shows that |Bg| < 2=2.
Therefore since || > max{1,|l4]} we have:

OPT _ |Ad +1Bd _ 2\l 4555, 0 »
|5 |5 max{1, |14} d—1
Let d = \/n/2. Then we have:
OPT
2v2n

Finally note that in the Greedy Star-Insertion Algorithm each edge is considered at most
twice, once for each one of its incident vertices, and each vertex is considered once. Also note that

5] =

Greedy Star-Insertion Algorithm

S — 0.
F— (V,0).
Fori=1ton
Validate[t] — 0.
Sort the vertices in nondecreasing order of degree.
Let the sorted list of vertices be vy, vo, ..., v,.
For each vertex v; do (* scan vertices in degree order *)
Validate[Find(v;)] < .
Flag — TRUE.
For each edge e = (v;,u) ¢ F do (* scan new edges *)
¢ — Find(u).
If Validate[c] = 7 then (* cycle will be created on adding v;*)
Flag — FALSE.
Else Validate[c] — 1.
If Flag then (* insert v; into S and F' *)
¢ — Find(v;).
For each edge e = (v;,u) ¢ F do
Union(c, Find(u)).
F— Fd{v}.
S — SuU{v}.
End
Add edges to F' to make it a spanning tree.
Output F, 5.

Figure 1: Algorithm for finding a good FDST

for each edge considered by the algorithm a constant number of Union and Find operations are
invoked. This therefore implies the bound on the running time. The first sorting step can be done
in linear time, as we are only sorting degrees which are integral valued in the range 1...n. a

Lemma 3: (Bound on Low Degree Vertices) |Aq4| < 2d|I4|, where Ay (1) is the set of full degree
vertices of degree < d in the optimal solution (the tree F' output by the algorithm).

Proof: Let us first delete all the common vertices from Ay and I;. Now we have A;N1; = (. We
will prove the lemma for these new sets without any common vertices. Note that this will imply
that the lemma also holds for the original sets as well.

For ease of presentation we drop the subscripts on A4 and I; in the following proof.

Note that |Ey| < d|I| and that both G4 = (V, E4) and G7 = (V, Ey) are forests (acyclic graphs).
Let Gjg = G4 1, that is G4 is obtained from G 4 by adding all the edges incident on vertices in [
(Gra = G4 @ Ey). Since both G and G 4 are forests, there must exist a set of edges Fy C F4\ E;
and |E’| < |Ej| such that G4 © E' is a forest. Since E’y N E; = (), then by the definition of E;
none of the edges in F/; is incident on any vertex in I. Therefore, if A’ is the set of vertices each of
which is incident on some edge in E’;, then A’ NI = (). Therefore by our construction, all vertices
in [and A\ A’ have full degree in G746 £’ and in addition G4 & Ly is a forest. But if 3v € A\ A’
then v ¢ I (since I N A = 0) and v has degree < d. Therefore when the Greedy Star-Insertion
Algorithm executes its outer For loop (for each vertex v;) with S = I, it must add one more
vertex of degree at most d to 5, a contradiction since [is the set of all vertices of degree at most
din S. Therefore A\ A’ =) or A C A’. Note that by the definition of A’ (A" = {u|(u,v) € E}}),
we have |A’| < 2|E’|. This is because an edge is incident on two vertices. But |E’;| < |E;| < d|I|.
Hence |A| < |A'| < 2d|1]. O

The following corollary follows easily from Lemma 3.

Corollary 4: For graphs with degree bounded by d the Greedy Star-Insertion Algorithm delivers
a solution of size at least % where OPT is the size of the optimal solution.

n—2

7= where By is the set of full degree vertices

Lemma 5: (Bound on High Degree Vertices) | By| <
of degree > d in the optimal solution.

Proof: For ease of presentation we drop the subscript on By in the following proof.

Note that Gp = (V, Fg) must be a forest. For each vertex v € B, let OUT(v) be the number of
edges incident to v whose other end point is not in B. Let I N(v) be the number of edges incident
to v whose other end point is in B. Since for each such v, we have IN(v)+ OUT(v) > d, by
summing we obtain) -p(IN(v) + OUT(v)) > d|B|. Let E% be the edges between vertices in
B. On the left hand side of the summation, the edges in E}; are counted twice, and the edges in
Ep — B are counted once. We thus obtain |Eg| + |ER| > |B|d. Since |Eg| < |B| — 1, we obtain
|B| — 1+ (n—1) > |B|d. Simplifying, gives the bound of |B| < 4=2.

a

3.2 Lower Bounds on Approximation Factor for FDST

Let the input graph be G = (V, F') and let G have n vertices. We show that it is not possible to
design an O(n(%_e))(g > 0) approximation algorithm for the FDST problem unless coR = N P.
This shows that our approximation algorithm is almost optimal assuming that coR # N P. In
addition our lower bound results hold for bipartite graphs.
We establish the lower bound by a linear reduction from the independent set problem to the
FDST problem. It is known that no polynomial time O(n'™¢)(e > 0)-approximation algorithm
exists for the independent set problem, unless coR = N P [8].

Theorem 6: No O(n(%_e))& > 0) approximation algorithm exists for the FDST problem, unless
coR = NP.

Proof: Given a graph H, an input instance of the independent set problem (we will assume w.l.o.g
that H has at least two edges, and that there are no isolated vertices in H), we create an instance
graph G of the FDST problem as follows. We also assume that the maximum independent set in
H has size at least three. G can be viewed as a four layer graph whose edges only connect vertices
in adjacent layers. Hence (G is bipartite. Layer one consists of just one vertex a. Layer two has one
vertex for every vertex of H, and every vertex in the second layer is connected to a. Layer three
has one vertex for every edge of H, and if (u,v) is an edge in H then the corresponding vertex in
the third layer is connected to the vertices in layer two, corresponding to the vertices u and v of H.
Finally layer four has two vertices b and ¢, which are both connected to every vertex in the third
layer.

Let T be a feasible solution to the FDST problem for graph G. First note that if any two
vertices have at least two common neighbors in G then they both cannot have full degree in 7.
Hence only one vertex from among {b, ¢} has full degree in T'. This is because H has at least two
edges and hence b and ¢ have at least two common neighbors. Similarly, at most one vertex in the
third layer of G has full degree in T'. This is because both b and ¢ are in the neighborhood of every
vertex in the third layer. If vertex a has full degree in 7" then none of the vertices in the third layer
of GG have full degree in T, since these vertices have two common neighbors in layer two. Finally
note that all vertices in the second layer with full degree in 7" must form an independent set in H.

The above implies that if H has an independent set of size 7 then there is a feasible solution of
size 1 4+ 1, to the FDST problem, for the graph G. In this solution vertex a, and the vertices in the
independent set have full degree. Similarly, if there is a feasible solution to the FDST problem for
the graph G of size i + 1, then if b or ¢ has full degree (only one of them can be a full degree vertex)
then no pair of vertices in the second layer can have full degree. To see this note that if v and v are
two vertices in the second layer that have full degree, then since they have edges to vertex a, and
since each one of them has an edge to a vertex in layer three (corresponding to the edge incident
on these vertices in H), which are both connected to either vertex b or ¢. By the assumption that
one of the vertex b or ¢ has full degree, this would thus imply the presence of a cycle in the solution
to the FDST, a contradiction. We cannot pick more than one full degree vertex in layer three in
any case, and also we can only pick vertex a or a vertex in layer three of full degree, but not both.
Therefore we will be able to pick at most three vertices of full degree. Hence at least ¢ vertices in
layer two have full degree in this feasible solution and therefore H has an independent set of size ¢.

By our reduction an a-approximation algorithm for the FDST problem implies an -
approximation algorithm (up to an additive term) for the independent set problem. Let N be
the number of vertices in H. Then the lower bound for the independent set problem [8] establishes
that o = Q(N(=9)(e > 0) unless coR = N P. Note that G has n = O(N?) vertices where N is the
number of vertices in H. This therefore yields the claimed lower bound on « in terms of n. a

4 Planar Graphs

The existence of an optimal solution computable in linear time for graphs of bounded tree-width
leads immediately to a polynomial time approximation scheme (PTAS) for all planar graphs by a
combination of results of Bodlaender and Baker [2, 3].

Baker gives a general framework that constructs a PTAS for any problem which can be solved
optimally for k-outerplanar graphs — planar graphs where all nodes have a path of length < k to a
node on the outermost face [2]. Bodlaender [3] proves that any k-outerplanar graph has tree-width

at most 3k — 1. In the next section we describe an optimal solution to the FDST problem for graphs
of bounded tree-width, thus implying one for graphs that are k-outerplanar for a fixed constant
k. First we show the modifications necessary to Baker’s scheme to design a PTAS for the FDST
problem.

By choosing k& = [@L we will obtain an algorithm that will give at least
full degree for any € > 0.

Description of Algorithm:

Let d(v) = shortest path length from v to any node on the outer face of (. This scheme creates
a collection of decompositions of the planar graph G into a set of k-outerplanar graphs. For each
value of 7 = 0...(k — 1) we generate a decomposition as follows: delete edges that connect nodes
with label d(v) —1 and d(v), where d(v) is congruent to ¢(mod k). For example, for i = 0, we delete
edges connecting nodes with d(v) value k — 1 and k, 2k — 1 and 2k etc. After we delete these
edges, we are left with a graph G, which is a collection of connected components that are each
k-outerplanar. We obtain the optimal solution for ; by running a linear time algorithm for each
connected component, since these have bounded tree-width (see Section 4.1).

In the framework defined by Baker [2], the PTAS for independent sets is achieved by obtaining an
optimal solution for k-outerplanar subgraphs. These problems are made independent by removing a
layer of vertices between the subgraphs. This does not work for the FDST problem. For example, a
vertex that is removed may be a neighbor of two full-degree nodes already connected in the spanning
tree. Removing such a node allows a solution in the subproblem, which is not feasible when we
consider the entire graph. Instead, in our partition, every vertex in G is included in exactly one
connected component, since we remove edges between the components. The set of vertices incident
on these removed edges are restricted, and not eligible to be considered as full-degree nodes for
our subproblems. (This is necessary, otherwise we may include nodes that have full degree in the
k-outerplanar subgraphs, but do not have full degree in the original graph G.) Specifically, we solve
optimally the FDST problem with the restriction that a subset of the nodes cannot be chosen as
full-degree nodes. The set of restricted nodes are the boundary nodes of a single k-outerplanar
subgraph.

A given partition of G into a collection of k-outerplanar graphs G; will have a solution of
size at least |OPT| — |OPT N\ R;|, where R; is the set of restricted nodes in G,;. If for all
i,|OPTN Ri| > %|OPT| then 3. aven |OPT N Ri| > |OPT|. Since U; evenOPT N R; C OPT,
we obtain a contradiction. Therefore for some ¢, we obtain a solution of size at least (1 —
Z)lopr| > 1B

(14e)
Formally, we have:

|OPT|
14¢

vertices of

Input: G = (V, F)an instance of the FDST problem, and € > 0, the required degree of accuracy.
Output: A spanning tree T of G and a set of nodes .S that have full degree in T.

Define: 5(Gy, R;) = the solution found by the linear time algorithm that works for a collection
of bounded tree-width components, returning the maximum set of full degree nodes in the set
V' '\ R;, so that all edges incident on this set of nodes form a forest in G;. In the next section
we show how to compute S(G;, R;). We set k = [@L and break the graph into k-outerplanar
graphs, which have tree-width at most 3k — 1.

4.1 Bounded Tree-width Graphs

In this section we give a linear-time algorithm for bounded tree-width graphs (if the graph has
tree-width k, then the time required for the algorithm to run will be exponential in & but linear in
the size of the graph).

Since our graph G; consists of a collection of connected components, each of tree-width 3k — 1,
we can run this algorithm on each component separately, and take the union of the solutions we
obtain. The following definition is standard (see [3] for example).

Definition 1: Let G = (V, F) be a graph. A tree-decomposition of G is apair ({X; |7 € [},T =
(I,F)), where {X; | ¢ € I} is a family of subsets of V' and T" = (I, F) is a tree with the following
properties:

2. For every edge ¢ = (v, w) € F, there is a subset X;, ¢ € I, with v € X; and w € X.
3. Forall 4,7,k €1, if j lies on the path from i to &k in T, then X; N X, C X;.

The tree-width of a tree-decomposition ({X; | i € I},T') is max;er{|X;| — 1}. The tree-width of a
graph is the smallest value & such that the graph has a tree-decomposition with tree-width k.

Many problems are known to have linear time algorithms on graphs with constant tree-width,
and there are frameworks for automatically generating a linear time algorithm, given a problem
specification in a particular format [1, 4]. The FDST problem can be expressed in the formalism
of Borie et. al. [4] as: max |Vy| [Forest(Vy, IncE(V1)], which states that we want to maximize the
set of nodes such that the graph induced by this set of nodes and all edges incident upon these
nodes is a forest. The algorithm required for the PTAS additionally requires the restriction that
some nodes cannot be included in the set of full degree nodes, so the explicit problem we need an
algorithm for can be described as follows: max |Vi|[V1 C V' \ R A Forest(Vy, IncE(Vy))].

5 Absolute size of the solution to the FDST problem

In this section we show that we can always find a solution to the FDST problem of size Q(n/A?),
where A is the maximum degree in the input graph G. In addition we give an example of a graph,
with maximum degree A, for which the size of any solution to the FDST problem is O(n/A?).

Let G2 be the graph obtained from G by adding additional edges between those vertices of
that have a common neighbor in . Note that any two vertices that belong to an independent
set of G2, do not have a common neighbor in . Hence the set of edges of ¢ incident on the
vertices in any independent set of G? do not contain any cycles. Hence, the set of vertices in any
independent set of G2 form a solution to the FDST problem on the graph (. Observe that we can
pick a maximal independent set in G? of size Q(n/A?). Therefore we can always find a solution
to the FDST problem, of size Q(n/A?). The following example shows that in general, the bhiggest
possible solution to the FDST problem will be of size O(n/A?).

For our example we use the graph shown in Fig. 2 (A > 4). The vertices of this graph can
be thought of as the points on a grid of size (A/2+ 1) X (A/2+ 1): there are A/2 + 1 vertices
in any horizontal strip and there are A/2 + 1 vertices in any vertical strip. Thus n ~ A%/4. For
every horizontal (vertical) strip there is a horizontal (vertical) clique that connects the vertices of
the strip. Thus, every vertex is in two cliques, each of size A/2 4 1: one vertical and the other
horizontal. FEvery vertex thus has degree A. Clearly no two vertices that belong to a common

Figure 2: Tight example for the size of the FDST solution.

clique can be of full degree in the FDST, since any three vertices in a clique are connected in a
cycle. Also, every pair of vertices that are not in a common clique have two common neighbors,
one in a horizontal clique and one in a vertical clique. Thus the maximum number of full-degree
vertices in an FDST on this graph is 1. Clearly, this can be extended for larger values of n by
duplicating this structure.

Note: For planar graphs, there are excellent (absolute) bounds of the size of independent sets
obtained by the greedy algorithm (see Papadimitriou and Yannakakis [13]). Perhaps such bounds
can be obtained for independent sets in the square (G?) of bounded degree planar graphs? (If the
degree is unbounded, then Ky ,_5 is an example of a planar graph whose square is a clique, and
there is only one vertex of full degree.)

6 Experimental Results

We implemented the Pothof and Schut heuristic [14], as well as our Greedy Star-Insertion heuristic
and compared the performance of the two heuristics. We refer to the heuristics as P.S and BK PS
respectively. Preliminary testing has been done on various kinds of graphs generated in LEDA and
Stanford Graphbase [9] (random planar and non-planar graphs) of sizes ranging from 10 vertices to
200 vertices. The charts shown here are tests on graphs with 100 vertices for various edge densities.

The first chart shows the performance of the two algorithms on random planar graphs of 100
vertices. The second chart shows the performance on random graphs of 100 vertices. The z axis
records the number of edges in the graph, and the y axis records the number of full degree nodes
that we find.

We also computed the optimal solution by writing an integer program capturing the FDST
constraints, and ran it through an IP solver. (This method computed the optimal solution only for
graphs of at most 30 vertices, and took too long to run for larger graphs.) Another approach based
on the following idea was very useful in computing the optimal solution for larger graphs (we were
able to obtain optimal solutions for dense graphs with 100 vertices fairly quickly). For each vertex
1, we consider both options, namely including or excluding the vertex from the solution. When
we decide to include the vertex, we know that many other vertices cannot be included since they
would create cycles with the previously included vertices. This enables a pruning step that works
extremely well when the optimal solutions are not big (up to 8 vertices), even though the graphs
are not small. For dense graphs this does very well, as the optimal solution sizes are pretty small.
For random planar graphs only in one case (out of about 35 tests) was there a difference between
the optimal solution and BK PS, and that too by only one vertex. For arbitrary random graphs

10

(out of 25 tests), for half the tests BK PS obtained an optimal solution, and for the other half of
the tests the optimal solution had one more vertex (in one case, BK PS missed by two vertices).

Planar Graphs: average simulated results Random Graphs: average simulated results
80 T T T T T T T T T 90 T T

805
701

~
=)
T

@
S
T
-3
=]
T

a
=]
T

IS
S
T

W
S
T

number of full degree nodes found
number of full degree nodes found

W
S
T
N
=)
T

20
10

10 I I I I I I I I I 0 I I I I I I i
100 120 140 160 180 200 220 240 260 280 30C 100 200 300 400 500 600 700 800 900 1000
m (number of edges) m (number of edges)

Acknowledgments: We thank Jan Schut for sending us a copy of [14] and Sudipto Guha for
useful comments.

References

[1] S. Arnborg, J. Lagergren, D. Seese, “Easy Problems for Tree-Decomposable Graphs”, Journal
of Algorithms Vol 12(2), (1991), pp. 308-340.

[2] B. Baker, “Approximation Algorithms for NP-Complete Problems on Planar Graphs”, JACM,
Vol 41 (1), (1994), pp. 153-190.

[3] H. L. Bodlaender, “Some classes of graphs with bounded tree width”, Bulletin of the European
Association for Theoretical Computer Science, (1988), pp. 116-126.

[4] R. B. Borie, R. G. Parker, and C. A. Tovey, “Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families”
Algorithmica, Vol 7, (1992), pp. 555-581.

[5] H.J. Broersma, A. Huck, T. Kloks, O. Koppius, D. Kratsch, H. Miiller, H. Tuinstra, “Degree-
preserving forests”, Mathematical Foundations of Computer Science, (1998) LNCS 1450, pp.
713-721.

[6] G. Galbiati, A. Morzenti and F. Maffioli, “On the approximability of some maximum spanning
tree problems”, Theoretical Computer Science, Vol 181(1), (1997), pp. 107-118.

[7] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide to the theory of
NP-completeness”, Freeman, San Francisco, (1979).

[8] J. Hastad, “Clique is hard to approximate within n'=", 37th Annual Symposium on Founda-
tions of Computer Science, (1996), pp. 627-636.

[9] Donald E. Knuth. “The Stanford Graphbase”, ACM/Addison Wesley, (1993).

11

[10]

[11]

[12]

[15]

[16]

M. Lewinter, “Interpolation theorem for the number of degree-preserving vertices of spanning
trees”, IEEE Trans. Circ. Syst., CAS-34, (1987), page 205.

H. Lu and R. Ravi, “Approximating maximum leaf spanning trees in almost linear time”,
Journal of Algorithms, Vol 29(1), (1998), pp. 132-141.

K. Mehlhorn and S. Naher, “LEDA: A platform for combinatorial and geomet-
ric computing”, Communications of the ACM, Vol 38(1), (1995), pp. 96-102.
http://mpi-sb.mpg.de/LEDA/leda.html.

C. H. Papadimitriou and M. Yannakakis, “Worst-case ratios in planar graphs and the method
of induction on faces” 22nd Annual Symposium on Foundations of Computer Science, (1981),
pp. 358-363.

I. W. M. Pothof and J. Schut, “Graph-theoretic approach to identifiability in a water distri-
bution network”, Memorandum No 1283, Universiteit Twente (1995). Submitted to Elsevier
Science.

R. Solis-Oba, “2-Approximation algorithm for finding a spanning tree with maximum number
of leaves”, to appear, 6th Annual Furopean Symposium on Algorithms, (1998).

R. E. Tarjan, “Data Structures and Network Algorithms”, Society for Industrial and Applied
Mathematics, (1983).

12

