
The Full Degree Spanning Tree ProblemRandeep Bhatia� Samir Khullery Robert PlesszYoram J. SussmannxComputer Science Department and Institute for Advanced Computer StudiesUniv. of Maryland, College Park, MD 20742.AbstractThe full degree spanning tree problem is de�ned as follows: given a connected graph G =(V;E) �nd a spanning tree T so as to maximize the number of vertices whose degree in T isthe same as in G (these are called vertices of \full" degree). We show that this problem isNP-hard. We also present almost optimal approximation algorithms for it assuming coR 6= NP .For the case of general graphs our approximation factor is �(pn). Using H�astad's result on thehardness of approximating clique, we can show that if there is a polynomial time approximationalgorithm for our problem with a factor of O(n 12��) then coR = NP . For the case of planargraphs, we present a polynomial time approximation scheme. Additionally, we present someexperimental results comparing our algorithm to the previous heuristic used for this problem.1 IntroductionIn this paper we study the problem of computing a spanning tree T in a connected graph G = (V;E)so as to maximize the number of vertices of full degree. These are vertices whose degree in the treeT is the same as their degree in the graph G. This problem was �rst mentioned by Lewinter [10].Tree optimization problems have been very well studied. For example, see [6] for a survey. Recently,Solis-Oba obtained a 2-approximation for maximizing the number of leaves of a spanning tree [15],improving the bound of 3 obtained by Lu and Ravi [11].The problem arises as a central problem in the work by Pothof and Schut [14] which has to dowith water distribution networks. To measure ow in pipes, you can install ow-meters on edges.However, you do not need to install ow-meters on all edges in the network. If you install owmeters on edges of a cotree (a cotree H is a set of edges in the graph, such that the deletion ofedges in H leaves a spanning tree in the graph), then we can infer the ow on the edges of thespanning tree due to ow conservation (and the ow into and out of terminals). This requires thatwe install exactly m � n + 1 ow meters where m is the number of edges and n is the number ofvertices in the network, since every cotree has m� (n� 1) edges. Unfortunately, \the cost of owmeters is several times the cost of pressure meters" [14]. Pressure meters are installed at vertices,and one can compute the ow on an edge by measuring the pressures on both the incident vertices.Thus we are looking for a cotree that is incident on as few vertices as possible (to minimize cost).The savings is exactly the number of full degree vertices in a spanning tree, since these vertices�Currently at Bell Labs, Lucent Technologies, Murray Hill, NJ 07974 E-mail:randeep@research.bell-labs.com.yResearch supported by NSF CAREER Award CCR-9501355. E-mail:samir@cs.umd.edu.zE-mail:pless@cs.umd.edu.xResearch supported by NSF CAREER Award CCR-9501355. E-mail:yoram@cs.umd.edu.1

have zero degree in the corresponding cotree and we do not have to install pressure meters at thesevertices. Hence we would like to maximize the number of vertices of full degree. One pressure meteris installed at each vertex that does not have full degree; by using these meters, we can computethe ow on each edge in the cotree, and then infer the ow on each edge in the tree due to owconservation (and the ow into and out of terminals).Previous Work: Pothof and Schut [14] suggest the following heuristic to maximize the numberof full degree vertices. De�ne the weight of each edge to be the sum of the degrees of the incidentvertices, and compute a minimum weight spanning tree. As discussed in their paper, there arecases when their algorithm does very poorly. Consider a wheel graph (a cycle with an additionalcentral vertex with edges to all vertices on the cycle), then their algorithm may �nd no vertices offull degree! In fact, for this particular graph our full degree spanning tree algorithm (for arbitrarygraphs) �nds a spanning tree with n3 vertices of full degree.Our Results: In Section 2 we show that the decision version of the problem is NP -hard even whenrestricted to planar graphs by a reduction from the Maximum Independent Set problem, which isknown to beNP -complete for planar graphs [7]. We then consider approximation algorithms for thisproblem | these are algorithms that have a polynomial running time, and produce a suboptimalsolution. The ratio of the optimal solution to the solution we produce (for a maximization problem)is referred to as the approximation ratio �.In Subsection 3.1 we provide an algorithm with an approximation ratio of O(pn) for the FDSTproblem. In Subsection 3.2 we show that if there is a polynomial time algorithm for the FDSTproblem with a worst case approximation ratio of O(n 12��), then coR = NP . This proves that ourworst case approximation ratio cannot be improved signi�cantly, if P 6= NP .In Section 4 we show that there is a polynomial approximation scheme for the FDST problemfor planar graphs using a technique due to Baker [2]. In other words, for any �xed � > 0 there isan algorithm that runs in polynomial time, and guarantees an approximation ratio of (1+ �). Thisis particularly relevant, since uid networks are often planar [14]. To make the method work, wehave to generalize the problem we solve to allow for restricted vertices, which do not contribute toour count of full degree vertices.In Section 6 we compare and contrast our heuristic with the one given by Pothof and Schut [14].For large random graphs (we tried various kinds of general graphs and planar graphs generatedby LEDA [12] and Stanford Graphbase [9]) we found that our heuristic consistently gave bettersolutions. We also performed tests to compare our algorithm's solution to the optimal solution.For random planar graphs, we found that in all cases except one, our heuristic gave the optimalsolution. For arbitrary random graphs, on half the tests our algorithm found the optimal solution,and on the other half of the tests it missed by one vertex (in one case it missed by two vertices).A very recent paper independently uses identical methods to �nd a linear PTAS for planargraphs. This paper also gives algorithms to �nd exact solutions to the FDST problem for intervalgraphs, cocomparability graphs, graphs of bounded asteroidal number, and bounded tree-widthgraphs [5].2 NP-hardnessFull-degree Spanning Tree: Given a graph G = (V;E), and an integer K, does G contain aspanning tree T such that there are at least K vertices with full degree?It is easy to see that this problem is in NP . We prove that the problem is NP -complete byshowing a polynomial time reduction from the well known \independent set" problem.Independent Set: Given a graph G0 = (V 0; E 0), and an integer K 0, does G0 have a subset of2

vertices of size K 0 that form an independent set? An independent set is a subset of vertices withno edges between them.Theorem 1: The Full-degree Spanning Tree problem is NP -complete even when restricted to planargraphs.It is worth noting that the FDST problem and the Independent Set problem are \similar",except that in the FDST problem the constraints are not just local (between pairs of vertices),since we have to ensure an acyclic solution.Proof: We do the reduction from the Independent Set problem, which is NP -complete even whenrestricted to planar graphs [7], and we note that our reduction preserves planarity.We do the reduction from IS(G0; K 0) to FDST (G;K) as follows. We create two new verticescorresponding to each edge e = (x; y) of G0. We add edges from these two new vertices to x andy and remove the edge (x; y). Formally, let V = V 0 [VE0 [UE0 , where VE0 = fveje 2 E 0g andUE0 = fueje 2 E 0g. Let E = f(x; ve); (x; ue); (y; ve); (y; ue)j(x; y) 2 E 0g. We set K = K 0 + jV 0j � 1.We now prove that G0 has an independent set of size K 0 if and only if G has a spanning treewith K full degree vertices. Suppose G0 has an independent set S of size K 0. Fix a spanning treeT 0 in G0. We will construct a tree T in G. For each ve, e = (x; y) 2 T 0, we include (ve; x) and(ve; y) in T . For each ve if e = (x; y) =2 T 0 with x 2 S then add (ve; x) to T , otherwise add any oneof the two edges incident on ve to T . For each ue if e = (x; y) with x 2 S then add (ue; x) to T ,otherwise add any one of the two edges incident on ue to T . This is a spanning tree that spans thevertices in V .The set of full degree vertices are as follows: fvjv 2 Sg[fveje 2 T 0g and has size jSj+ jV 0j � 1,which has size K.To prove the converse, take a spanning tree T with K vertices of full degree. For any e 2 E 0,we cannot have both ve and ue have degree two. In fact, without loss of generality we may assumethat ue has degree one, and ve may have degree one or two. If a vertex v 2 V has full degree thenno neighbor of v has full degree (otherwise we have a cycle in T), hence the set of vertices in V withfull degree forms an independent set in G0. Consider the vertices in VE0 with full degree (degreetwo). If we replace the pair of edges (ve; x) and (ve; y) with the direct edge (x; y) and delete thevertices in UE0 then we obtain a spanning tree in G0. Since this has at most jV 0j� 1 edges, we haveat most jV 0j� 1 vertices in VE0 with degree two. The remaining full degree vertices are from V andthere are at least K 0 of them, and these form an independent set in G0. 23 Approximation Results3.1 Full Degree Spanning Tree AlgorithmLet the given graph be G = (V;E) and let G have n vertices. Let G1 be a graph de�ned on vertexset V: G1 = (V;E1), where E1 � E. Let X � E be a set of edges. We de�ne G1 � X (G1 	 X)to be the graph with edge set E1 [X (E1 nX) and vertex set V . Let Y � V be a set of vertices.We de�ne EY � E to be the set of all edges at least one of whose endpoints is incident on somevertex in Y . We de�ne G1 � Y (G1 	 Y) to be the graph G1 � EY (G1 	 EY). These operationsare augmentation (reduction) of G1 by a given set of vertices or edges. Let N(v) be the set ofneighbors of vertex v.We now present the Greedy Star-Insertion Algorithm that �nds a good solution to theFDST problem. The algorithm is extremely simple. We show how to implement it e�ciently, andthen prove an O(pn) bound for its worst case approximation factor.3

High Level Description: The algorithm �rst sorts the vertices in nondecreasing order of degree,then considers them one-by-one to be added to the current solution. Let S be the full degreevertices (initially, S is empty) and F the edges in the spanning tree that we are constructing. Ateach step we insert a vertex into S, together with its incident edges (a \star"), as long as it doesnot create a cycle. In some sense the algorithm is similar to Kruskal's MST algorithm, except thatwe are inserting vertices (along with all their incident edges) rather than simply adding single edgesat each step.The main hurdle regarding an e�cient implementation is to check if the vertex vi we areconsidering can be legally inserted or not, without creating a cycle in F . The edges incidenton vi are in two categories: edges already in F and edges not in F as yet. If the set of verticesfvig[fuj(vi; u) =2 F and u 2 N(vi)g all belong to distinct connected components of F , then we caninsert vi without creating a cycle in F . However, if two vertices belong to the same component,then adding the edges incident to vi will create a cycle in F .The algorithm uses the well known Union-Find data structure (see Tarjan [16]) to maintainthe connected components induced by the current spanning forest F . The algorithm scans theadjacency list of the current vertex vi and, for each adjacent edge not already in the forest, checksto see which component the opposite vertex lies in. If all the components thus discovered alongwith the component in which vi lies are distinct then vi can be added to the current solution. Wedo this check using an array V alidate[]. While processing vi, when we scan an edge (vi; u) =2 F ,and u belongs to component c, we set V alidate[c] = i. If for some other edge (vi; u0) =2 F , u0 alsobelongs to component c, then we can detect that we are trying to write i in location V alidate[c]that already contains i. This will detect the case when two neighbors of vi belong to the samecomponent.A detailed description of the algorithm is in Fig. 1. We assume that our input is a graphG = (V;E), and the output is a spanning tree F of G and a set of vertices S that have full degreein F .Theorem 2: The Greedy Star-Insertion Algorithm delivers a solution of size at least OPT2p2nwhere OPT is the size of the optimal solution. Moreover, the algorithm has a worst case time boundof O(m�(m;n)) where n;m denote the number of vertices and edges, in the graph, respectively and�(m;n) is the inverse Ackermann function [16].Proof: Let TOPT be an optimal solution to the FDST problem. Let OPT be the number ofvertices of full degree. Let d be a degree threshold. Let Ad (Bd) be the set of full degree verticesof degree � (>) d in an optimal solution. Hence OPT = jAdj + jBdj. We will bound Ad and Bdseparately. Let Id denote the set of vertices of degree � d in S, where S is the set of full degreevertices obtained by the Greedy Star-Insertion Algorithm. Note the vertices in Id have full degreein the �nal solution F . Lemma 3 shows that jAdj � 2djIdj and Lemma 5 shows that jBdj � n�2d�1 .Therefore since jSj � maxf1; jIdjg we have:OPTjSj � jAdj+ jBdjjSj � 2djIdj+ n�2d�1maxf1; jIdjg � 2d+ nd� 1 :Let d = pn=2. Then we have: jSj � OPT2p2n:Finally note that in the Greedy Star-Insertion Algorithm each edge is considered at mosttwice, once for each one of its incident vertices, and each vertex is considered once. Also note that4

Greedy Star-Insertion AlgorithmS ;.F (V; ;).For i = 1 to nV alidate[i] 0.Sort the vertices in nondecreasing order of degree.Let the sorted list of vertices be v1; v2; : : : ; vn.For each vertex vi do (* scan vertices in degree order *)V alidate[Find(vi)] i.Flag TRUE.For each edge e = (vi; u) =2 F do (* scan new edges *)c Find(u).If V alidate[c] = i then (* cycle will be created on adding vi*)Flag FALSE.Else V alidate[c] i.If Flag then (* insert vi into S and F *)c Find(vi).For each edge e = (vi; u) =2 F doUnion(c; F ind(u)).F F � fvig.S S [fvig.EndAdd edges to F to make it a spanning tree.Output F; S. Figure 1: Algorithm for �nding a good FDST
5

for each edge considered by the algorithm a constant number of Union and Find operations areinvoked. This therefore implies the bound on the running time. The �rst sorting step can be donein linear time, as we are only sorting degrees which are integral valued in the range 1 : : :n. 2Lemma 3: (Bound on Low Degree Vertices) jAdj � 2djIdj, where Ad (Id) is the set of full degreevertices of degree � d in the optimal solution (the tree F output by the algorithm).Proof: Let us �rst delete all the common vertices from Ad and Id. Now we have Ad \ Id = ;. Wewill prove the lemma for these new sets without any common vertices. Note that this will implythat the lemma also holds for the original sets as well.For ease of presentation we drop the subscripts on Ad and Id in the following proof.Note that jEI j � djI j and that both GA = (V;EA) and GI = (V;EI) are forests (acyclic graphs).Let GIA = GA�I , that is GIA is obtained from GA by adding all the edges incident on vertices in I(GIA = GA�EI). Since both GI and GA are forests, there must exist a set of edges E 0A � EA nEIand jE 0Aj � jEI j such that GIA 	 E 0A is a forest. Since E0A \ EI = ;, then by the de�nition of EInone of the edges in E 0A is incident on any vertex in I . Therefore, if A0 is the set of vertices each ofwhich is incident on some edge in E 0A, then A0 \ I = ;. Therefore by our construction, all verticesin I and AnA0 have full degree in GIA	E0A and in addition GIA	E 0A is a forest. But if 9v 2 AnA0then v =2 I (since I \ A = ;) and v has degree � d. Therefore when the Greedy Star-InsertionAlgorithm executes its outer For loop (for each vertex vi) with S = I , it must add one morevertex of degree at most d to S, a contradiction since I is the set of all vertices of degree at mostd in S. Therefore A nA0 = ; or A � A0. Note that by the de�nition of A0 (A0 = fuj(u; v) 2 E 0Ag),we have jA0j � 2jE 0Aj. This is because an edge is incident on two vertices. But jE 0Aj � jEI j � djI j.Hence jAj � jA0j � 2djI j. 2The following corollary follows easily from Lemma 3.Corollary 4: For graphs with degree bounded by d theGreedy Star-Insertion Algorithm deliversa solution of size at least OPT2d where OPT is the size of the optimal solution.Lemma 5: (Bound on High Degree Vertices) jBdj � n�2d�1 , where Bd is the set of full degree verticesof degree > d in the optimal solution.Proof: For ease of presentation we drop the subscript on Bd in the following proof.Note that GB = (V;EB) must be a forest. For each vertex v 2 B, let OUT (v) be the number ofedges incident to v whose other end point is not in B. Let IN(v) be the number of edges incidentto v whose other end point is in B. Since for each such v, we have IN(v) + OUT (v) � d, bysumming we obtain Pv2B(IN(v) + OUT (v)) � djBj. Let E 0B be the edges between vertices inB. On the left hand side of the summation, the edges in E0B are counted twice, and the edges inEB � E 0B are counted once. We thus obtain jEBj+ jE 0Bj � jBjd. Since jE0Bj � jBj � 1, we obtainjBj � 1 + (n� 1) � jBjd. Simplifying, gives the bound of jBj � n�2d�1 . 23.2 Lower Bounds on Approximation Factor for FDSTLet the input graph be G = (V;E) and let G have n vertices. We show that it is not possible todesign an O(n(12��))(� > 0) approximation algorithm for the FDST problem unless coR = NP .This shows that our approximation algorithm is almost optimal assuming that coR 6= NP . Inaddition our lower bound results hold for bipartite graphs.We establish the lower bound by a linear reduction from the independent set problem to theFDST problem. It is known that no polynomial time O(n1��)(� > 0)-approximation algorithmexists for the independent set problem, unless coR = NP [8].6

Theorem 6: No O(n(12��))(� > 0) approximation algorithm exists for the FDST problem, unlesscoR = NP .Proof: Given a graph H , an input instance of the independent set problem (we will assume w.l.o.gthat H has at least two edges, and that there are no isolated vertices in H), we create an instancegraph G of the FDST problem as follows. We also assume that the maximum independent set inH has size at least three. G can be viewed as a four layer graph whose edges only connect verticesin adjacent layers. Hence G is bipartite. Layer one consists of just one vertex a. Layer two has onevertex for every vertex of H , and every vertex in the second layer is connected to a. Layer threehas one vertex for every edge of H , and if (u; v) is an edge in H then the corresponding vertex inthe third layer is connected to the vertices in layer two, corresponding to the vertices u and v of H .Finally layer four has two vertices b and c, which are both connected to every vertex in the thirdlayer.Let T be a feasible solution to the FDST problem for graph G. First note that if any twovertices have at least two common neighbors in G then they both cannot have full degree in T .Hence only one vertex from among fb; cg has full degree in T . This is because H has at least twoedges and hence b and c have at least two common neighbors. Similarly, at most one vertex in thethird layer of G has full degree in T . This is because both b and c are in the neighborhood of everyvertex in the third layer. If vertex a has full degree in T then none of the vertices in the third layerof G have full degree in T , since these vertices have two common neighbors in layer two. Finallynote that all vertices in the second layer with full degree in T must form an independent set in H .The above implies that if H has an independent set of size i then there is a feasible solution ofsize i+ 1, to the FDST problem, for the graph G. In this solution vertex a, and the vertices in theindependent set have full degree. Similarly, if there is a feasible solution to the FDST problem forthe graph G of size i+1, then if b or c has full degree (only one of them can be a full degree vertex)then no pair of vertices in the second layer can have full degree. To see this note that if v and v0 aretwo vertices in the second layer that have full degree, then since they have edges to vertex a, andsince each one of them has an edge to a vertex in layer three (corresponding to the edge incidenton these vertices in H), which are both connected to either vertex b or c. By the assumption thatone of the vertex b or c has full degree, this would thus imply the presence of a cycle in the solutionto the FDST, a contradiction. We cannot pick more than one full degree vertex in layer three inany case, and also we can only pick vertex a or a vertex in layer three of full degree, but not both.Therefore we will be able to pick at most three vertices of full degree. Hence at least i vertices inlayer two have full degree in this feasible solution and therefore H has an independent set of size i.By our reduction an �-approximation algorithm for the FDST problem implies an �-approximation algorithm (up to an additive term) for the independent set problem. Let N bethe number of vertices in H . Then the lower bound for the independent set problem [8] establishesthat � =
(N (1��))(� > 0) unless coR = NP . Note that G has n = O(N2) vertices where N is thenumber of vertices in H . This therefore yields the claimed lower bound on � in terms of n. 24 Planar GraphsThe existence of an optimal solution computable in linear time for graphs of bounded tree-widthleads immediately to a polynomial time approximation scheme (PTAS) for all planar graphs by acombination of results of Bodlaender and Baker [2, 3].Baker gives a general framework that constructs a PTAS for any problem which can be solvedoptimally for k-outerplanar graphs | planar graphs where all nodes have a path of length � k to anode on the outermost face [2]. Bodlaender [3] proves that any k-outerplanar graph has tree-width7

at most 3k�1. In the next section we describe an optimal solution to the FDST problem for graphsof bounded tree-width, thus implying one for graphs that are k-outerplanar for a �xed constantk. First we show the modi�cations necessary to Baker's scheme to design a PTAS for the FDSTproblem.By choosing k = d2(1+�)� e, we will obtain an algorithm that will give at least jOPT j1+� vertices offull degree for any � > 0.Description of Algorithm:Let d(v) = shortest path length from v to any node on the outer face of G. This scheme createsa collection of decompositions of the planar graph G into a set of k-outerplanar graphs. For eachvalue of i = 0 : : :(k � 1) we generate a decomposition as follows: delete edges that connect nodeswith label d(v)�1 and d(v), where d(v) is congruent to i(modk). For example, for i = 0, we deleteedges connecting nodes with d(v) value k � 1 and k, 2k � 1 and 2k etc. After we delete theseedges, we are left with a graph Gi, which is a collection of connected components that are eachk-outerplanar. We obtain the optimal solution for Gi by running a linear time algorithm for eachconnected component, since these have bounded tree-width (see Section 4.1).In the framework de�ned by Baker [2], the PTAS for independent sets is achieved by obtaining anoptimal solution for k-outerplanar subgraphs. These problems are made independent by removing alayer of vertices between the subgraphs. This does not work for the FDST problem. For example, avertex that is removed may be a neighbor of two full-degree nodes already connected in the spanningtree. Removing such a node allows a solution in the subproblem, which is not feasible when weconsider the entire graph. Instead, in our partition, every vertex in Gi is included in exactly oneconnected component, since we remove edges between the components. The set of vertices incidenton these removed edges are restricted, and not eligible to be considered as full-degree nodes forour subproblems. (This is necessary, otherwise we may include nodes that have full degree in thek-outerplanar subgraphs, but do not have full degree in the original graph G.) Speci�cally, we solveoptimally the FDST problem with the restriction that a subset of the nodes cannot be chosen asfull-degree nodes. The set of restricted nodes are the boundary nodes of a single k-outerplanarsubgraph.A given partition of G into a collection of k-outerplanar graphs Gi will have a solution ofsize at least jOPT j � jOPT TRij, where Ri is the set of restricted nodes in Gi. If for alli; jOPT TRij > 2k jOPT j then Pi even jOPT TRij > jOPT j. Since [i evenOPT \ Ri � OPT ,we obtain a contradiction. Therefore for some i, we obtain a solution of size at least (1 �2k)jOPT j � jOPT j(1+�) .Formally, we have:Input: G = (V;E) an instance of the FDST problem, and � > 0, the required degree of accuracy.Output: A spanning tree T of G and a set of nodes S that have full degree in T .De�ne: S(Gi; Ri) = the solution found by the linear time algorithm that works for a collectionof bounded tree-width components, returning the maximum set of full degree nodes in the setV n Ri, so that all edges incident on this set of nodes form a forest in Gi. In the next sectionwe show how to compute S(Gi; Ri). We set k = d2(1+�)� e, and break the graph into k-outerplanargraphs, which have tree-width at most 3k � 1. 8

4.1 Bounded Tree-width GraphsIn this section we give a linear-time algorithm for bounded tree-width graphs (if the graph hastree-width k, then the time required for the algorithm to run will be exponential in k but linear inthe size of the graph).Since our graph Gi consists of a collection of connected components, each of tree-width 3k� 1,we can run this algorithm on each component separately, and take the union of the solutions weobtain. The following de�nition is standard (see [3] for example).De�nition 1: Let G = (V;E) be a graph. A tree-decomposition of G is a pair (fXi j i 2 Ig; T =(I; F)), where fXi j i 2 Ig is a family of subsets of V and T = (I; F) is a tree with the followingproperties:1. Si2I Xi = V .2. For every edge e = (v; w) 2 E, there is a subset Xi, i 2 I , with v 2 Xi and w 2 Xi.3. For all i; j; k 2 I , if j lies on the path from i to k in T , then XiTXk � Xj.The tree-width of a tree-decomposition (fXi j i 2 Ig; T) is maxi2IfjXij � 1g. The tree-width of agraph is the smallest value k such that the graph has a tree-decomposition with tree-width k.Many problems are known to have linear time algorithms on graphs with constant tree-width,and there are frameworks for automatically generating a linear time algorithm, given a problemspeci�cation in a particular format [1, 4]. The FDST problem can be expressed in the formalismof Borie et. al. [4] as: max jV1j [Forest(V1; IncE(V1)], which states that we want to maximize theset of nodes such that the graph induced by this set of nodes and all edges incident upon thesenodes is a forest. The algorithm required for the PTAS additionally requires the restriction thatsome nodes cannot be included in the set of full degree nodes, so the explicit problem we need analgorithm for can be described as follows: max jV1j [V1 � V nR ^ Forest(V1; IncE(V1))].5 Absolute size of the solution to the FDST problemIn this section we show that we can always �nd a solution to the FDST problem of size
(n=�2),where � is the maximum degree in the input graph G. In addition we give an example of a graph,with maximum degree �, for which the size of any solution to the FDST problem is O(n=�2).Let G2 be the graph obtained from G by adding additional edges between those vertices of Gthat have a common neighbor in G. Note that any two vertices that belong to an independentset of G2, do not have a common neighbor in G. Hence the set of edges of G incident on thevertices in any independent set of G2 do not contain any cycles. Hence, the set of vertices in anyindependent set of G2 form a solution to the FDST problem on the graph G. Observe that we canpick a maximal independent set in G2 of size
(n=�2). Therefore we can always �nd a solutionto the FDST problem, of size
(n=�2). The following example shows that in general, the biggestpossible solution to the FDST problem will be of size O(n=�2).For our example we use the graph shown in Fig. 2 (� � 4). The vertices of this graph canbe thought of as the points on a grid of size (�=2 + 1) � (�=2 + 1): there are �=2 + 1 verticesin any horizontal strip and there are �=2 + 1 vertices in any vertical strip. Thus n � �2=4. Forevery horizontal (vertical) strip there is a horizontal (vertical) clique that connects the vertices ofthe strip. Thus, every vertex is in two cliques, each of size �=2 + 1: one vertical and the otherhorizontal. Every vertex thus has degree �. Clearly no two vertices that belong to a common9

�=2 + 1�=2 + 1
Figure 2: Tight example for the size of the FDST solution.clique can be of full degree in the FDST, since any three vertices in a clique are connected in acycle. Also, every pair of vertices that are not in a common clique have two common neighbors,one in a horizontal clique and one in a vertical clique. Thus the maximum number of full-degreevertices in an FDST on this graph is 1. Clearly, this can be extended for larger values of n byduplicating this structure.Note: For planar graphs, there are excellent (absolute) bounds of the size of independent setsobtained by the greedy algorithm (see Papadimitriou and Yannakakis [13]). Perhaps such boundscan be obtained for independent sets in the square (G2) of bounded degree planar graphs? (If thedegree is unbounded, then K2;n�2 is an example of a planar graph whose square is a clique, andthere is only one vertex of full degree.)6 Experimental ResultsWe implemented the Pothof and Schut heuristic [14], as well as our Greedy Star-Insertion heuristicand compared the performance of the two heuristics. We refer to the heuristics as PS and BKPSrespectively. Preliminary testing has been done on various kinds of graphs generated in LEDA andStanford Graphbase [9] (random planar and non-planar graphs) of sizes ranging from 10 vertices to200 vertices. The charts shown here are tests on graphs with 100 vertices for various edge densities.The �rst chart shows the performance of the two algorithms on random planar graphs of 100vertices. The second chart shows the performance on random graphs of 100 vertices. The x axisrecords the number of edges in the graph, and the y axis records the number of full degree nodesthat we �nd.We also computed the optimal solution by writing an integer program capturing the FDSTconstraints, and ran it through an IP solver. (This method computed the optimal solution only forgraphs of at most 30 vertices, and took too long to run for larger graphs.) Another approach basedon the following idea was very useful in computing the optimal solution for larger graphs (we wereable to obtain optimal solutions for dense graphs with 100 vertices fairly quickly). For each vertexi, we consider both options, namely including or excluding the vertex from the solution. Whenwe decide to include the vertex, we know that many other vertices cannot be included since theywould create cycles with the previously included vertices. This enables a pruning step that worksextremely well when the optimal solutions are not big (up to 8 vertices), even though the graphsare not small. For dense graphs this does very well, as the optimal solution sizes are pretty small.For random planar graphs only in one case (out of about 35 tests) was there a di�erence betweenthe optimal solution and BKPS, and that too by only one vertex. For arbitrary random graphs10

(out of 25 tests), for half the tests BKPS obtained an optimal solution, and for the other half ofthe tests the optimal solution had one more vertex (in one case, BKPS missed by two vertices).
100 120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

60

70

80

m (number of edges)

nu
m

be
r

of
 fu

ll
de

gr
ee

 n
od

es
 fo

un
d

Planar Graphs: average simulated results

BKPS

PS

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

m (number of edges)

nu
m

be
r

of
 fu

ll
de

gr
ee

 n
od

es
 fo

un
d

Random Graphs: average simulated results

BKPS

PSAcknowledgments: We thank Jan Schut for sending us a copy of [14] and Sudipto Guha foruseful comments.References[1] S. Arnborg, J. Lagergren, D. Seese, \Easy Problems for Tree-Decomposable Graphs", Journalof Algorithms Vol 12(2), (1991), pp. 308{340.[2] B. Baker, \Approximation Algorithms for NP-Complete Problems on Planar Graphs", JACM,Vol 41 (1), (1994), pp. 153{190.[3] H. L. Bodlaender, \Some classes of graphs with bounded tree width", Bulletin of the EuropeanAssociation for Theoretical Computer Science, (1988), pp. 116{126.[4] R. B. Borie, R. G. Parker, and C. A. Tovey, \Automatic generation of linear-time algorithmsfrom predicate calculus descriptions of problems on recursively constructed graph families"Algorithmica, Vol 7, (1992), pp. 555{581.[5] H.J. Broersma, A. Huck, T. Kloks, O. Koppius, D. Kratsch, H. M�uller, H. Tuinstra, \Degree-preserving forests", Mathematical Foundations of Computer Science, (1998) LNCS 1450, pp.713{721.[6] G. Galbiati, A. Morzenti and F. Ma�oli, \On the approximability of some maximum spanningtree problems", Theoretical Computer Science, Vol 181(1), (1997), pp. 107{118.[7] M. R. Garey and D. S. Johnson, \Computers and intractability: A guide to the theory ofNP-completeness", Freeman, San Francisco, (1979).[8] J. H�astad, \Clique is hard to approximate within n1��", 37th Annual Symposium on Founda-tions of Computer Science, (1996), pp. 627{636.[9] Donald E. Knuth. \The Stanford Graphbase", ACM/Addison Wesley, (1993).11

[10] M. Lewinter, \Interpolation theorem for the number of degree-preserving vertices of spanningtrees", IEEE Trans. Circ. Syst., CAS-34, (1987), page 205.[11] H. Lu and R. Ravi, \Approximating maximum leaf spanning trees in almost linear time",Journal of Algorithms, Vol 29(1), (1998), pp. 132{141.[12] K. Mehlhorn and S. N�aher, \LEDA: A platform for combinatorial and geomet-ric computing", Communications of the ACM, Vol 38(1), (1995), pp. 96{102.http://mpi-sb.mpg.de/LEDA/leda.html.[13] C. H. Papadimitriou and M. Yannakakis, \Worst-case ratios in planar graphs and the methodof induction on faces" 22nd Annual Symposium on Foundations of Computer Science, (1981),pp. 358{363.[14] I. W. M. Pothof and J. Schut, \Graph-theoretic approach to identi�ability in a water distri-bution network", Memorandum No 1283, Universiteit Twente (1995). Submitted to ElsevierScience.[15] R. Solis-Oba, \2-Approximation algorithm for �nding a spanning tree with maximum numberof leaves", to appear, 6th Annual European Symposium on Algorithms, (1998).[16] R. E. Tarjan, \Data Structures and Network Algorithms", Society for Industrial and AppliedMathematics, (1983).

12

