
UMIACS-TR-94-27 March, 1994CS-TR-3234Counting Solutions to Presburger Formulas: How and WhyWilliam Pughpugh@cs.umd.eduhttp://www.cs.umd.edu/faculty/pugh.htmlInstitute for Advanced Computer StudiesDept. of Computer ScienceUniv. of Maryland, College Park, MD 20742We describe methods that are able to count the number of integer solutions to selected freevariables of a Presburger formula, or sum a polynomial over all integer solutions of selectedfree variables of a Presburger formula. This answer is given symbolically, in terms of symbolicconstants (the remaining free variables in the Presburger formula).For example, we can create a Presburger formula who's solutions correspond to the it-erations of a loop. By counting these, we obtain an estimate of the execution time of theloop.In more complicated applications, we can create Presburger formulas who's solutions cor-respond to the distinct memory locations or cache lines touched by a loop, the ops executedby a loop, or the array elements that need to be communicated at a particular point in adistributed computation. By counting the number of solutions, we can evaluate the compu-tation/memory balance of a computation, determine if a loop is load balanced and evaluatemessage tra�c and allocate message bu�ers.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

1 IntroductionIn this paper, we describe methods that are able tocount the number of integer solutions to selected freevariables of a Presburger formula, or sum a polyno-mial over all integer solutions of selected free variablesof a Presburger formula. This answer is given symboli-cally, in terms of symbolic constants (the remaining freevariables in the Presburger formula). This answer canbe given symbolically, in terms of symbolic constants(other free variables in the Presburger formula). Pres-burger formulas are those formulas that can be builtup out of linear constraints over integer variables, theusual logical connectives ^ ; _ ;:, and existential anduniversal quanti�ers.The following table gives some simple examples oftraditional symbolic summations:Sum AnswerP10i=1 1 10Pni=1 1 n (if n � 1)Pni=1Pnj=1 1 n2 (if n � 1)Pni=1Pnj=i+1 1 n(n�1)2 (if n � 2)A number of symbolic math packages (such as Math-ematica and Maple) are able to compute symbolic sums.However, the methods they use assume that a sum-mation is never empty (i.e., the lower bound is nevergreater than the upper bound). The answer they giveis incorrect if this assumption is violated. For example,Mathematica reports thatnXi=1 mXj=i 1 = nXi=1(m � i + 1) = n(2m� n+ 1)2In fact, this answer is valid only if 1 � n � m. If1 � m < n, the answer is m(m + 1)=2.The notation used above strongly suggests that thesum over j must be performed before the sum over i.In our work, we don't assume any prede�ned order inwhich the variables must be eliminated. We also allowarbitrary constraints, not just a upper and lower boundon each variable. We therefore use a more general no-tation: (�v1; : : : ; vm : P : x)is the sum, for all values of v1; : : : ; vm that satisfy P(a Presburger formula with free variables), of x. As aspecial case, (�v1; : : : ; vm : P : 1) is the number ofsolutions of v1; : : : ; vm to P . Any variables appearingfree in P or x and not in V are assumed to be symbolicconstants. The answer returned will be in terms of thesymbolic constants.Since answers may need to be guarded (i.e., n2 ifn � 1), we utilize the nullary form of a summation to in-dicate a guarded sum. If V is empty (i.e., (� : P : x))

the result is a conditional value: if P is true, the valueof this expression is x, otherwise 0. As an example, ourprevious summations would be reported as:(�i : 1 � i � 10 : 1) = 10(�i : 1 � i � n : 1) = (� : 1 � n : n)(�i; j : 1 � i; j � n : 1) = (� : 1 � n : n2)(�i; j : 1 � i < j � n : 1) = (� : 2 � n : n(n� 1)2)1.1 ApplicationsThis capability has a number of applications in analysisand transformations of scienti�c programs. Within pro-grams with a�ne loop bounds, guards and subscripts,we can de�ne formulas who's solutions correspond to:� the ops executed by a loop� the memory locations touched by a loop� the cache lines touched by a loop� the array elements that need to be transmittedfrom one processor to another during the executionof a loop (in a distributed memorymulticomputer).By counting the number of solutions to these formulas,we can� estimate the execution time of a code segment,� compare the memory bandwidth requirements vs.the op counts of a code segment,� determine which loops will ush the cache, allowingus to calculate the cache miss rate [FST91],� determine whether a parallel loop is load balanced(i.e., does each iteration perform the same numberof ops) [TF92],� given an unbalanced loop, assign di�erent numberof iterations to each processor so that each proces-sor gets the same total number of ops (Balancedchunk-scheduling, as described in [HP93a]),� quantify message tra�c, and� allocate space for message bu�ers.In this paper, we� Review the Omega test and how it can be used tosimplify Presburger formulas (Section 2).� Describe how to represent some nonlinear con-straints, such as x = by=3c, in Presburger formulas(Section 3). Page 1

� Describe techniques for computing sums, startingwith the most simple forms of summations and pro-gressing to more general sums (Section 4).� Describe techniques for producing simpli�ed con-straints in disjoint disjunctive normal form. Pre-viously, we have produced simpli�ed constraints in(overlapping) disjunctive normal form. The need todo this is explained in Section 4.5.1 and techniquesto do it are described in Section 5.� Show the application of our techniques to a numberof examples and compare our techniques with rela-tion work [FST91, TF92, HP93a, Taw94] (Section6).2 The Omega testThe Omega test [Pug92] was originally developed tocheck if a set of linear constraints had an integer so-lution, and was initially used in array data dependencetesting. Since then, its capabilities and uses have grownsubstantially. In this section, we describe the variouscapabilities of the Omega test.2.1 Eliminating an existentially quanti�ed vari-ableThe basic operation of the Omega test is the eliminationof an existentially quanti�ed variable, also refered toas shadow-casting or projection. For example, given aset of constraints P over x, y and z that de�ne, forexample, a dodecahedron, the Omega test can computethe constraints on x and y that de�ne the shadow of thedodecahedron. Mathematically, these constraints areequivalent to 9z s:t: P . But the Omega test is able toremove the existentially quanti�ed variables, and reportthe answer just in terms of the free variables (x and y).Over rational variables, projection of a convex re-gion always gives a convex result. Unfortunately, thesame does not apply for integer variables. For example,9y s:t: 1 � y � 4 ^ x = 2y has x = 2, x = 4, x = 6 andx = 8 as solutions. Sometimes, the result is even morecomplicated. For example, the solutions for x in:(9i; j : 1 � i � 8 ^ 1 � j � 5 ^ x = 6i+ 9j � 7)are all numbers between 8 and 86 (inclusive) that haveremainder 2 when divided by 3, except for 11 and 83.In general, the Omega test produces an answer in dis-junctive normal form: the union of a list of clauses. Aclause may need to describe a nonconvex region. Thereare two methods of describing these regions:Stride format The Omega test can produce clausesthat consist of a�ne constraints over the free vari-ables and stride constraints. A stride constraint cje

is interpreted as \c evenly divides e". In this form,the above solution could be represented as:x = 8 _ 14 � x � 80^ 3j(x+ 1) _ x = 86Projected format Alternatively, the Omega test canproduce clauses that consist of a set of linear con-straints over a set of auxiliary variables and ana�ne 1-1 mapping from those variables to the freevariables. Using this format, the above solutioncould be represented asx = 8 _ (9� : 5 � � � 27^x = 3��1) _ x = 86These two representations are equivalent and thereare simple and e�cient methods for converting betweenthe two of them. While the �rst representation is moreintuitive, the second representation works better for thepurposes of this paper.Disjoint disjunctive normal form Normally, theOmega test does not produce disjoint clauses: there maybe assignments to the free variables that satisfy multipleclauses (i.e., the clauses may overlap). For purposes ofthis paper, it is preferable to have disjoint clauses. Thisallows us to compute the summation by simply addingtogether the results of summing the individual clauses.If a set of clauses are disjoint, we refer to this as disjointdisjunctive normal form. If two clauses are guaranteedto be disjoint, we denote their conjunction as P + Q(as opposed to P _Q).In our previous work, we did not need disjoint clauses.Some straightforward but naive methods would be capa-ble of converting an arbitrary disjunction normal formformula into disjoint disjunctive normal form. However,the cost of doing so would be quite high in many cases.In Section 5, we discuss some methods that allowus to directly generate disjoint disjunctive normal form(without �rst generating overlapping disjunctive normalform) and more sophisticated methods for converting anarbitrary disjunctive normal form formula into a disjointdisjunctive normal form. Disjoint disjunctive normalform may generate more clauses and require more timeto generate than disjunctive normal form.2.2 Verifying the Existence of SolutionsThe Omega test also provides direct support for check-ing if integer solutions exist to a set of linear constraints.It does this by treating all the variables as existentiallyquanti�ed and eliminating variables until it produces aproblem containing a single variable; such problems areeasy to check for integer solutions. The Omega test in-corporates several extensions over a naive application ofvariable elimination. Page 2

2.3 Removing Redundant ConstraintsIn the normal operation of the Omega test, we eliminateany constraint that is made redundant by any other sin-gle constraint (e.g., x + y � 10 is made redundant byx + y � 5). Upon request, we can use more aggressivetechniques to eliminate redundant constraints. We usefast but incomplete tests that can ag a constraint asde�nitely redundant or de�nitely not redundant, and abackup complete test. This capability is used when ver-ifying implications and simplifying formulas involvingnegation.We also use these techniques to de�ne a \gist" opera-tor, which is de�ned such that (gist P given Q) is whatis \interesting" about P , given that we already know Q.In other words, we guarantee that ((gist P given Q) ^Q) � P ^Q and try to make the result of the gist opera-tor as simple as possible. More formally, gist P given Qreturns a subset of the constraint of P such that none ofthe constraints returned are implied by the constraintsof Q and the other constraints in the result.2.4 Verifying ImplicationsBy using our ability to eliminate redundant constraints,we can verify formulas of the form P) Q, by checkingto see if the constraints of P are redundant, given thatthe constraints of Q are true. (i.e., (gist P given Q) �True). We can combine this capability with our abil-ity to eliminate existentially quanti�ed variables to ver-ify more complicated formulas such as (9y s:t: P))(9z s:t: Q).2.5 Simplifying Formulas Involving NegationThere are two problems involved in simplifying formulascontaining negated conjuncts, such as�10 � i+ j; i� j � 10 ^ :(2 � i; j � 12 ^ 2ji+ j)Naively converting such formulas to disjunctive normalform generally leads to an explosive growth in the sizeof the formula. In the worst-case, this cannot be pre-vented. But we [PW93a] have described methods thatare e�ective in dealing with these problems for the caseswe encounter. Secondly, previous techniques for negat-ing non-convex constraints, based on quasilinear con-straints [AI91], were discovered to be incomplete in cer-tain pathological cases [PW93a]. We [PW93a] describea method that is exact and complete for all cases.2.6 SimplifyingArbitrary PresburgerFormulasUtilizing the capabilities described above, we can sim-plify and/or verify arbitrary Presburger formulas. Ingeneral, this may be prohibitively expensive. There is

a nondeterministic lower bound of 22o(n) and a deter-ministic upper bound of 222O(n) on the time required toverify a Presburger formula. However, we have foundthat we are able to e�ciently analyze many Presburgerformulas that arise in practice.For example, our current implementation requires 12milliseconds on a Sun Sparc IPX to simplify1 � i � 2n ^ 1 � i00 � 2n ^ i = i00^ :(9i0; j0 s:t: 1 � i0 � 2n ^ 1 � j0 � n� 1^i � i0 ^ i0 = i00 ^ 2j0 = i00)^ :(9i0; j0 s:t: 1 � i0 � 2n ^ 1 � j0 � n� 1^i � i0 ^ i0 = i00 ^ 2j0 + 1 = i00)to (1 = i = i00 � n) _ (1 � i = i00 = 2n)3 Nonlinear constraintsGenerally, Presburger formulas are thought to allowonly linear constraints. It turns out that there are anumber of nonlinear constraints that can be supportedwhile remaining in the class of Presburger formulas.3.1 Floors, ceilings and modsIf a term bx=cc appears in a constraint C, we replace Cwith 9� s:t: c� � x < c(�+ 1) ^C 0where C0 is C with bx=cc replaced with �.If a term dx=ce appears in a constraint C, we replaceC with 9� s:t: c(� � 1) < x � c� ^ C 0where C0 is C with bx=cc replaced with �.If a term x mod c appears in a constraint C, we re-place C with9 s:t: c � x < c(+ 1) ^ C 0where C0 is C with x mod c replaced with x� .3.2 Stride constraintsA stride constraint cje requires that e be evenly divisibleby c. This is equivalent to 9� s:t: e = c�. A negatedstride constraint :(cje) requires that e not be evenlydivisible by c. This is equivalent to 9� s:t: c� < e <c(�+ 1).3.3 ApplicationsAmong other applications, nonlinear constraints of thisform show up in analyzing and compiling HPF codewith distributed arrays.Assume a one dimensional template T(0:1024) hasbeen distributed in block-cyclic fashion to 8 processors,Page 3

using blocks of 4. This means elements T(0:3) aremapped to processor 0, T(4:7) to processor 1, T(28:31)to processor 7, and T(32:35) to processor 0 again. Thiscan be described as a mapping from a template indext to a processor number p and an index [c; l] of a two-dimensional array of local data. This mapping can bedescribed as:l = t mod 4 p = � t4� mod 8 c = � t32�which is equivalent tot = l + 4p+ 32c^ 0 � l � 3 ^ 0 � p � 74 Computing sumsIn this section, we describe our methods for comput-ing sums. In computing a sum, there are two placeswhere we are given the option of computing the sumexactly, or computing upper and lower bounds. Per-forming the calculation exactly will likely be more ex-pensive. Also, if the answer is symbolic, an exact answermay be more complicated and harder to utilize. It mayoften be preferable to compute both an upper and lowerbound on the sum. Only if these values are far apartmay it be worthwhile to compute the exact answer.4.1 Simple sumsThere are fairly standard formulas for sums of powers ofintegers. These formulas are described in the CRC Stan-dard Mathematical Tables [Bey81] and are reviewed in[TF92, Taw94]. For example,(�i : 1 � i � n : i2) = (� : 1 � n : n(n+ 1)(2n+ 1)6)Within our implementation, we expect it will be su�-cient to hard code the formulas for p up to 10. In eachof these sums, the guard produced is 1 � n.4.2 Basic sumsIn this section, we concern ourselves with the more gen-eral problem of computing(�i : dA=ae � i � bB=bc : ip)where a, b and p are known nonnegative integer con-stants and A and B are integer expressions (equiva-lently, variables).There are three issues we need to address: lowerbounds other than 1, negative upper or lower bounds,and the cases when a or b is not 1. If p is equal to zero,the sum is simply:(� : L � U : U � L+ 1)

If p is greater than zero, we handle the �rst two issuesby breaking down the sum into four pieces:(�i : L � i � U : ip)� (�i : 1 � i � U ^ L � U : ip)�(�i : 1 � i � L� 1 < U : ip)+(�i : L � i � �1 ^ L � U : ip)�(�i : L < U + 1 � i � �1 : ip)� (�i : 1 � i � U ^ L � U : ip)�(�i : 1 � i � L� 1 < U : ip)+(�i : 1 � i � �L ^ L � U : (�i)p)�(�i : 1 � i � �U � 1 < �L : (�i)p)� (�i : 1 � i � U ^ L � U : ip)�(�i : 1 � i � L� 1 < U : ip)+(�1)p(�i : 1 � i � L � U : ip)�(�1)p(�i : 1 � i � �U � 1 < �L : ip)4.2.1 Handling rational boundsTo compute a summation involving a oor or ceiling,such as (�i : 1 � i � bUu c : ip)we have three options: compute symbolic answers,compute approximate answers, or splinter the problem(i.e., break it up into subcases) so as to produce exactbounds. For each of these techniques, we will considerthe example problem:(�i : 1 � i � bn3 c : i)Compute symbolic answers We can simply intro-duce a variable for bU=uc, and produce a result in termsof this variable. In this case, the answer would bebn=3c(bn=3c + 1)2The problem with this answer is that we cannot sym-bolically sum it over n. Therefore, we can only producesymbolic answers if the upper bound is a function onlyof symbolic constants.An eventual answer that involved terms such asbn=3c, b(n � 1)=3c and n may be hard to analyze. Itmay be better to substitute (U�U 0)=u for bU=uc, whereU 0 is a new variable de�ned to be U mod u. Since0 � U 0 < u, we can �nd the most signi�cant terms
Page 4

of the answer by just looking for the highest powers ofn. For this example, this gives:(n � n mod 3)(n+ 3� n mod 3)18� n2 + 3n18 � (n mod 3)2n+ 3� (n mod 3)18Computing approximate answers We can calcu-late three kinds of approximate answers: upper bounds,lower bounds or best-guess answers. For any positiveintegers U and u:U � (u� 1)u � bUu c � Uu � dUu e � U + (u� 1)uSo for any function f(n) that is non-decreasing for non-negative n:f(U � (u� 1)u) � f(bUu c) � f(Uu)� f(dUu e) � f(U + (u� 1)u)Since the formula for(�i : 1 � i � n : ip)is a non-decreasing function of n, we can use this tech-nique to compute upper and lower bounds on a rationalsum.We can also choose to approximate f(n) as f(n0),where n0 is the approximate value of n. In our examplesummation, the lower bound, upper bound and approx-imation of bn=3c are (n � 2)=3, n=3 and ((n � 2)=3 +n=3)=2 respectively. This gives results of of:lower bound: (� : 3 � n : (n� 2)(n + 1)18)upper bound: (� : 3 � n : n(n+ 3)18)approximation: (� : 3 � n : (n� 1)(n+ 2)18)We could also approximate the answer as the averageof the upper and lower bound. Note that this does notgive the same answer as the other method of approxi-mation.Splintering Our other choice is to splinter the prob-lem. Consider the cases ujU; uj(U +1); : : : ; uj(U+u�1). These cases are all obviously disjoint, so we generatea separate sum for each. Within case, the upper boundon i becomes integral.(�i : 3 j n ^ 1 � i � n3 : i)

+(�i : 3 j n� 1 ^ 1 � i � n� 13 : i)+(�i : 3 j n� 2 ^ 1 � i � n� 23 : i)� (� : 3 j n ^ 3 � n : n(n + 3)18)+(� : 3 j n� 1 ^ 4 � n : (n � 1)(n+ 2)18)+(� : 3 j n� 2 ^ 5 � n : (n � 2)(n+ 1)18)4.2.2 Producing a guard for rational sumsIf both L and U involve oor and ceilings, we may notbe able to produce a simple and exact guard to ensure(9i : L � i � U). If we use the splintering techniquedescribed above, our problem is resolved: within eachsplinter, we will be able to produce a simple and exactguard.Otherwise, we can choose to splinter the guard orhave the Omega test produce a simple but approximateguard. The guard could be an upper or lower bound,depending on whether we are computing an upper andlower bound on the result.4.3 Polynomial SumsIf the value x we are summing i over is not of the formip, we rewrite x as a polynomial of i:(�i : L � i � U : a0 + a1i+ a2i2 + � � �)� a0(�i : L � i � U : 1) + a1(�i : L � i � U : i)+a2(�i : L � i � U : i2) + � � �4.4 Convex SumsWe now consider a more general form of summation:(�V : P : x)which denotes the sum, for all values of the variables Vthat satisfy P , of x. For the moment, we require P tobe a conjunction of linear inequalities over variables inV and variables representing symbolic constants (i.e.,free variables).Our algorithm for dealing with a convex sum(�V : P : x)is as follows:1. Eliminate redundant constraints from P .
Page 5

2. Pick a variable v 2 V to consider. In picking avariable, we try to pick a variable who's bounds canbe expressed without oors or ceilings, and that hasas few upper and lower bounds as possible.3. If v has multiple upper bounds U1; U2; : : : ; Up inP , we replace the summation with the sum of pnew summations, where in the ith summation, theupper bounds on v in P are replaced with:v � Ui � Ui+1; Ui+2; : : : ; Up^ Ui < U1; U2; : : : ; Ui�1In each resulting summation, we simplify the re-sulting conditions (the new, more restrictive con-straints might allow us to substantially simplify theconditions), remove redundant constraints and re-consider which variable to eliminate (it might notbe v).4. The case where v has a single upper bound butmultiple lower bounds is handled similarly.5. If v has a single upper bound U and a single lowerbound L, compute the sum as(�V � fvg : P 0 : (�v : L � v � U : x))Once we have simpli�ed the term (�v : L � v �U : x), we can simplify the result using the rewriterules:(�V : P : x+ y) � (�V : P : x) + (�V : P : y)(�V : P : (� : P 0 : x)) � (�V : P ^ P 0 : x)If variables remain to be summed over, we willneed to repeat this process.4.5 General SumsWe now consider summations where the conditions Pare an arbitrary Presburger formula.We can use the Omega test, as described in Section2, to simplify an arbitrary Presburger formula into theunion of several clauses. In many cases, the clausescan be described by the conjunction of a set of linearinequalities. In general, a clause may need to be rep-resented as a conjunction of linear inequalities from aset of auxiliary, existentially quanti�ed variables and ana�ne, 1-1 mapping from the auxiliary variables to vari-ables in V and symbolic constants.There are three issues we need to deal with:� Dealing with overlaps between clauses� Dealing with clauses that are represented by a pro-jection� Allowing the Omega test to perform approximatesimpli�cation

4.5.1 Overlapping clausesThe problem is that some solutions might be solutionsto more than one clause. If we sum over the clausesindependently, we will count some solutions more thanonce. One way to handle this, as described in [FST91],is to subtract the count of elements counted twice:(�V : P _Q : x)� (�V : P : x)+(�V : Q : x)� (�V : P ^Q : x)The problem with this is that it quickly gets out ofcontrol if there are more than a few clauses (7 sum-mations are needed for 3 clauses). An alternative is toput the formula in disjoint disjunctive normal form, inwhich the clauses are mutually exclusive. We providetwo techniques that let us avoid generating overlappingclauses in disjunctive normal form, and a method thatconverts an arbitrary formula in disjunctive normal forminto disjoint disjunctive normal form. These techniquesare described in Section 5.4.5.2 Projected SumsFor a clause P in projected form, we can assume theconstraints are of the form:9~� s:t: A~� � ~b^ ~s = Q~�+ ~q ^ ~v = R~�+ ~rHere, ~s is a vector of symbolic constants (variables notin V), ~v is a vector of the variables in V , and ~� is a vec-tor of wildcards: quanti�ed variables used only in thisclause. We have used matrix notation here because wewill utilize some linear algebra theory. This form is theworst-case situation we will need to encounter (gener-ally, only a few or no symbolic variables or variables inV are de�ned by projections). However, we can easilyconvert an arbitrary clause into this form.We calculate the Smith normal form [Sch86] of Q:U � D 00 0 �Vwhere U and V are unimodular matrices and D is ainteger diagonal matrix (in Smith normal form, D hasother properties but these are not important to us here).The constraints de�ning ~s can be rewritten asU�1(~s � ~q) = � D 00 0 �V ~�We substitute ~� for V ~�, and partition U�1 and � intotop and bottom portions to reect the block structureof � D 00 0 �. This gives� U�1TU�1B � (~s � ~q) = � D 00 0 � " ~�T~�B #
Page 6

� U�1T (~s� ~q) = D~�T ^ U�1B (~s � ~q) = 0Let ~d be the diagonal of D. These constraints can berewritten as:d j U�1T (~s � ~q) ^ U�1B (~s � ~q) = 0We can now calculate ~� in terms of ~s and ~�B :~� � V �1 � D�1U�1T (~s � ~q)~�B �In the following equations, we need to syntactly sub-stitute this expression for �. To keep the expressionssimple, we do not show the results of this substitution.Therefore, our constraints P are equivalent to:d j U�1T (~s � ~q) ^ U�1B (~s � ~q) = 0^ 9~�B s:t: (A~� � ~b ^ ~v = R~�+ ~r)Therefore, (�V : P : x) is equivalent to(� : d j U�1T (~s � ~q) ^ U�1B (~s� ~q) = 0 :(�~�B : A~� � ~b : x0))where x0 is x with R~�+ ~r substituted for ~v.4.6 Approximate simpli�cationIf we are only counting solutions, and are interestingin computing simple upper and lower bounds (as op-posed to more complicated but exact answers), we canallow the Omega test to simplify P approximately. TheOmega test can produce an answers that are an upperbound or lower bound on the solutions to P . The keyplace where this approximation occurs is in performingelimination. When an elimination would cause splinter-ing, the Omega test can instead return the real shadow(i.e., allow the eliminated variable to take on real val-ues) or the \dark shadow" (a conservative bound on thesolution, described in [Pug92]).5 Disjoint disjunctive normal formWe now describe techniques that allow us to simplifyPresburger formulas so as to produce disjoint disjunc-tive normal form. We use three di�erent techniques:� Summarizing uniformly generated sets { In a num-ber of applications, we need to express the memorylocations touched by a set of array references (e.g.,by the array references a[i] and a[i+1] in a loopin which i runs from 1 to n).Naively building a Presburger formula to representthe memory locations m touched by this loop:(9i : 1 � i � n^m = i)_(9i : 1 � i � n^m = i+1)

will result in an answer with overlapping clauses.By building the formula in a better way:(9i; d : 1 � i � n ^ 0 � d � 1 ^m = i+ d)we avoid this problem.� Disjoint splintering { When the Omega testprojects away a variable, it may need to splinterthe problem: describe the result as the union ofseveral problems. In practice, this can often beavoided but we need to be prepared for it. Thesplinters the Omega test normally generates maybe overlapping. We describe here a way to gener-ate splinters that are guaranteed to be disjoint.� Conversion to disjoint disjunctive normal form {We describe a method for converting an arbitraryformula in disjunctive normal form into disjoint dis-junctive normal form.5.1 Summarizing uniformly generated setsWhen computing the number of memory locations orcache lines touched by a set of references in a set ofloops, we often have a situation where many of the ref-erences di�er only in constant parts, as in the SOR ex-ample given by [FST91]:for i = 2 to N-1 dofor j = 2 to N-1 doa(i,j) = (2*a(i,j) + a(i-1,j) + a(i+1,j)+ a(i,j-1) + a(i,j+1))/6)/6The elements of a touched by this loop are:f[i; j] j 2 � i; j � N � 1g[f[i� 1; j] j 2 � i; j � N � 1g[f[i+ 1; j] j 2 � i; j � N � 1g[f[i; j � 1] j 2 � i; j � N � 1g[f[i; j + 1] j 2 � i; j � N � 1gWe can recognize this as a uniformly generated set[GJ88] with o�sets f(0; 0); (�1; 0); (1;0); (0;�1); (0;1)g.This set can be described exactly as the integer pointsinside the convex hull of the points. Therefore, we cansummarize the elements x; y of a touched by iterationi; j of this loop as:f[i+�i; j +�j] j �1 � �i +�j;�i��j � 1gand the elements touched by the entire execution of theloop are:f[i+�i; j +�j] j 2 � i; j � N � 1^ � 1 � �i+�j;�i��j � 1gUsing standard techniques, we can simplify this byeliminating �i and �j:f[i; j] j 1 � i; j � N ^ 3 � i + j � 2N � 1^2� N � i � j � N � 2g Page 7

5.1.1 Describing a set of constant o�sets withlinear constraintsIn cases such as this, we must convert a set ofm constanto�sets p1; p2; : : : pm into a set of linear constraints. Wedescribe two methods:1. As described by Ancourt [AI91], we can use 0-1programming methods. Create m new variablesz1; z2; : : :zm, and a set of new constraints C : 0 �zi � 1 ^ 1 = Pmi=1 zi. The points can be summa-rized by f[p] : (9z1; z2; : : : zm : p = Pmi=1 zipi :C)g.The stencil above can be summarized as:f[x; y] : (9z1; z2; z3; z4; z5 : x = z1�z2^y = z3�z4^ 0 � z1; z2; z3; z4; z5 � 1 ^ 1 = 5Xi=1 zi)g2. We can construct the convex hull of the points andcheck for non-unit strides among the points (e.g.,is the �rst coordinate always odd or the di�erenceof the �rst two coordinates always a multiple ofthree).The hull and any stride constraints we �nd are con-servative. We next have to check to see if they areexact. One way to do this is to count the numberof solutions to the hull and stride constraints, andcompare this to the number of points.The problem with the �rst technique is that it de-pends on the constraint system being able to simplify a0-1 integer programming problem, an i�y proposition atbest. We found that although the Omega test can sum-marize 4-point and 5-point stencils speci�ed this way asa convex region plus stride constraints, it was unable toproduce a convex summary for a 9-point stencil. How-ever, the �rst approach might be able to summarize setsthat are missed by the second. Until we have more ex-perience with these techniques in practice, we plan totry both and use whichever give the better result foreach case.5.2 Disjoint splintering when eliminating vari-ablesIf � � bz and az � � (where a and b are positive in-tegers), then a� � abz � b�. If z is a real variable,9z s:t: a� � abz � b� if and only if a� � b�. Fouriervariable elimination eliminates a variable z by combin-ing together all pairs of upper and lower bounds on zand adding the resulting constraints to those constraintsthat do not involve z. This produces a set of constraintsthat has a solution if and only if there exists a real valueof z that satis�es the original set of constraints.

In [Pug92], we showed how to compute the \darkshadow" of a set of constraints: a set of constraintsthat, if it has solutions, implies the existence of an in-teger z such that the original set of constraints is sat-is�ed. Of course, not all solutions are contained in thedark shadow.For example, consider the constraints:9� s:t: 0 � 3� � � � 7 ^ 1 � �� 2� � 5Using Fourier variable elimination, we �nd that 3 �� � 27 if we allow � to take on non-integer values. Thedark shadow of these constraints is 5 � � � 25. In fact,this equation has solutions for � = 3; 5 � � � 27 and� = 29.In [Pug92], we gave a method for generating an addi-tional sets of constraints that would contain any solu-tions not contained in the dark shadow. These \splin-ters" still contain references to the eliminated variable,but also contain an equality constraint (i.e., are at).This equality constraint allows us to eliminate the de-sired variable exactly. For the example given previously,the splinters are:(9� : � = 3� ^ 0 � 3� � � � 7 ^ 1 � �� 2� � 5)(9� : �+ 1 = 3� ^ 0 � 3� � � � 7 ^ 1 � �� 2� � 5)(9� : ��5 = 2�^� s:t: 0 � 3��� � 7^1 � ��2� � 5)Simplifying these produces:(9 : � = 3 ^ 1 <= <= 5)(9 : � = 3 � 1 ^ 2 <= <= 6)(9 : � = 2 + 5 ^ 5 <= <= 12)Our goal was to do so in a way that generate as fewsets of constraints as possible. Unfortunately for ourcurrent situation, the solutions contained in the addi-tional sets of constraints could overlap with each otherand with the solutions in the dark shadow. In Figure1 we give a technique for eliminating integer variablesthat produces disjoint subproblems. For contrast, wealso give our standard algorithm for performing elim-ination that produces overlapping subproblems. Withthe new algorithm, the number of subproblems may belarger, but the fact that they are disjoint is much morevaluable for our current applications. For this example,the splinters produced are:(9� : � = 3 ^ 0 � 3� � � � 7 ^ 1 � �� 2� � 5)(9� : � = 4 ^ 0 � 3� � � � 7 ^ 1 � �� 2� � 5)(9� : � = 26^� � 5^0 � 3��� � 7^1 � ��2� � 5)(9� : � = 27^� � 5^0 � 3��� � 7^1 � ��2� � 5)Page 8

Simplifying these produces � = 3 and � = 27 (the othertwo clauses simplify to false).This disjoint splintering is primarily useful only as thelast projection step. Consider computing 9y; z s:t: P ,where P is a set of constraints over x; y and z. If neithery nor z can be eliminated exactly without splintering,we have a problem. Say we perform disjoint eliminationof z to get: 9y s:t: P1 + P2 + � � �+ PqThe problem is that we cannot distribute the 9y over thedisjoint union's without destroying the disjoint prop-erty. For example, 1 � x � y � 10 is disjoint from1 � y < x � 10, but 9y s:t: 1 � x � y � 10 is notdisjoint from 9y s:t: 1 � y < x � 10.Fortunately, this problem is not too severe. We havefound that we frequently do not need to splinter anyeliminations. When we do, we often need do only onesuch elimination and we can postpone it to the verylast elimination. If we are forced to perform multi-ple splintering eliminations, only the last eliminationis done with disjoint splinters, and then the techniquesdescribed in the next section are used to transform theentire formula into disjoint disjunctive normal form.5.3 Converting arbitrary DNF formulas intodisjoint DNF formulasGiven a formula in disjunctive normal form that mayhave overlapping conjunctions, we perform the followingsteps.Step 1 Check to see if any conjunct is a subset ofanother conjunct [PW92]. If so, eliminate the one thatis a subset.Step 2 Compute the connected components of theconjunctions, where there is an edge between two con-junctions if they overlap.Consider each connected component separately insteps 3 and 4.Step 3 Within each component, pick a conjunction toextract. The selection criteria are:1. If possible, pick a conjunction that is an articula-tion point of the graph constructed in step 2.2. Pick the conjunction with the fewest constraintsAssume the formula being considered isC1 _ C2 _ � � � _ Cpand we extract C1. Transform the formula toC1 + (:C1 ^ (C2 _ � � � _ Cp))

If C1 was an articulation point, removal of C1 willallow us to break up C2_ � � �_Cp into disjoint sections:C1 + (:C1^ ((C1;1_� � �_C1;p1) + (C2;1 _� � �_C2;p2) + � � �))We distribute the negated C1 term across the disjointsections:C1+:C1^(C1;1_� � �_C1;p1)+:C1^(C2;1_� � �_C2;p2)+ � � �Step 4 To simplify a term:C0 ^ (C1 _ � � � _ Cq)we �rst replace C0 withC00 � gist C0 given C1 _ � � � _CqThis is valid becauseA ^ :B � A ^ :(A ^B)� A ^ :(A ^ (gist B given A))� A ^ :(gist B given A)We calculategist C 0 given C1 _ � � � _ Cqas (gist C 0 given C1) ^ � � � ^ (gist C0 given Cq)Next, we perform a disjoint negation of C00. If C00 isc1 ^ c2 ^ c3 ^ � � �The disjoint negation of C00 is:c1 + c1 ^ :c2 + c1 ^ c2 ^ :c3 + � � �We now distribute the disjoint negation of C00 acrossC1_� � �_Cq, and reapply the techniques described hereto convert it to disjoint DNF.6 Related work and examplesNadia Tawbi [Taw91, TF92, Taw94] describes an algo-rithm for summing a polynomial over a polytope. Thisis used [TF92] to estimate the execution time of loopsand evaluate the load balance of a loop. Tawbi de-scribes techniques roughly equivalent to what we havedescribed in Sections 4.1 { 4.3. For rational bounds, shecomputes symbolic answers when feasible and computesaverage values otherwise. She does not describe how tocompute upper and lower bounds or split the problemto compute exact answers. The signi�cant di�erencesbetween our work and hers are the techniques for han-dling convex sums (ours are an improvement on hers)and general sums (which she does not address).In Tawbi's algorithm for convex sums, Page 9

Eliminate z from C, producing possibly overlappingsubproblemsR = FalseC0 = all constraints from C that do not involve zC00 = Cfor each lower bound on z: � � bzfor each upper bound on z: az � �C0 = C0 ^ a� + (a� 1)(b� 1) � b�% Misses a� � abz � b� < a� + (a� 1)(b� 1)% Misses � � bz < � + (a�1)(b�1)alet amax = max coe�cient of z in upper bound on zfor i = 0 to ((amax � 1)(b� 1)� 1)=amax doR = R _C ^ � + i = bz% C0 is the dark shadow% R contains the splinters% C0 _ (9 integer z s:t: R) � 9 integer z s:t: C
Eliminate z from C, producing disjoint subproblemsR = Falseif exists constraints � � cz � �+ b such that b < c� 1 then%need to perform parallel splinteringC0 = Falsefor i = 0 to b doR = R _ 9z s:t: C ^ � = cz � ielse C0 = all constraints from C that do not involve zC00 = Cfor each lower bound on z: � � bzfor each upper bound on z: az � �if C00 ^ a� + (a� 1)(b� 1) > b� is feasibleC0 = C0 ^ a� + (a� 1)(b� 1) � b�% Misses a� � abz � b� < a�+(a�1)(b�1)for i = 0 to (a� 1)(b� 1)� 1 doR = R_ C00 ^ a� + i = b�C00 = C00 ^ a� + (a� 1)(b� 1) � b�Simplify and check for feasibility each clause in C0 and R% C0 is the dark shadow% R contains the splinters% C0 _ (9 integer z s:t: R) � 9 integer z s:t: CFigure 1: Algorithms for integer variable elimination with overlapping and with disjoint splintering� the variables in the summation must be eliminatedin a predetermined order,� no attempt is made to eliminate redundant con-straints.Tawbi handles the problem of empty summations byperforming an initial polyhedral splitting step, de-scribed in [Taw91, Taw94], so that no summation canbe empty. Since this splitting step respects the originalelimination order, it may split a summation into morepieces than we do.Example 1 Tawbi [Taw94] gives an example of:nXi=1 iXj=1 mXk=j 1Her polyhedral splitting technique transforms this to:nXi=1 iXj=1 mXk=j 1 if m � nmXi=1 iXj=1 mXk=j 1 + nXi=m�1 mXj=1 mXk=j 1 otherwiseThe summations can then be computed using stan-dard computer symbolic algebra techniques.Our techniques work as follows on this example:(�i; j; k : 1 � i � n^ 1 � j � i^ j � k � m : 1)Eliminate redundant constraint 1 � i= (�i; j; k : 1 � j � i � n ^ j � k �m : 1)Sum over k (single upper and lower bound)= (�i; j : 1 � j � i � n ^ j � m : m� j + 1)Sum over i (single upper and lower bound)

= (�j : 1 � j � n;m : (n � j + 1)(m� j + 1))Splinter upper bounds for j= (�j : 1 � j � n � m : (n� j + 1)(m� j + 1))+(�j : 1 � j � m < n : (n� j+ 1)(m� j� 1))Sum over j= (� : 1 � n � m : mn22 � n36 + nm2 + n6)+(� : 1 � m < n : m2n2 � m36 + nm2 + m6)In comparing our technique with Tawbi's, we �nd thatour greater exibility and our ability to eliminate redun-dant constraints makes our techniques more e�cient formany cases (in this example, we only needed to consider2 terms rather than 3). Also, the techniques describedin Sections 4.5 and 5 are a useful contribution aboveand beyond her work.Example 2 Mohammad Haghighat and ConstantinePolychronopoulos [HP93a, HP93b] describe a methodfor volume computation, and give two examples. Their�rst example is: nXi=1 iXj=3 5Xk=j 1Our techniques compute this as:(�i; j; k : 1 � i � n ^ 3 � j � i ^ j � k � 5 : 1)Eliminate redundant constraint 1 � i= (�i; j; k : 3 � j � i � n ^ j � k � 5 : 1)Sum over k= (�i; j : 3 � j � i � n ^ j � 5 : 6� j)Sum over i= (�j : 3 � j � 5; n : (n + 1� j)(6� j))Splinter upper bounds for j= (�j : 3 � j � 5 � n : (n + 1� j)(6� j))+(�j : 3 � j � n < 5 : (n+ 1� j)(6� j))Sum over j= (� : 5 � n : 6n � 16) Page 10

+(� : 3 � n < 5 : 24�38n+15n2�n36)If we further recognize that the second summation isonly de�ned at two points (n = 3 and n = 4), we realizethat it can be de�ned by a �rst degree polynomial (i.e.,a linear term), and �nd that it is 5n� 12. This allowsus to simplify the above expression to:(� : 5 � n : 6n� 16) + (� : 3 � n < 5 : 5n� 12)Haghighat and Polychronopoulos [HP93a, HP93b] de-rive an answer of�(min(n�2; 3))(�(min(n; 5))3+15(min(n; 5))2�38min(n; 5)+24)=6+6max(n� 5; 0)where �(x) is de�ned to be 1 if x is positive, 0 otherwise.The answer they derive gives the same answers as ours;the form of their answer is quite di�erent because of themin and max expressions they introduce. We have de-veloped a way of introducing min's and max's into theresult. Although it sometimes allows us to avoid split-ting a summation because of a multiple upper or lowerbound, the results tend to be much more complicated.We have decided that in general that it is not worthgenerating min's and max's.Example 3 The second example in [HP93a, HP93b]2nXi=1 min(i;2n�j)Xj=1 1is easily handled by our system:(�i; j : 1 � i � 2n^1 � j � i^i+j � 2n : 1)Eliminate redundant constraints 1 � i � 2n= (�i; j : 1 � j � i � 2n� j : 1)Sum over i= (�j : 1 � j � n : 2n� 2j + 1)Sum over j= (� : 1 � n : n2)In comparison, Haghighat's and Polychronopoulos'techniques require 9 steps for their �rst example and 15steps for their second example. Haghighat and Poly-chronopoulos [HP93a, HP93b] do not describe theirtechnique in detail. They give a number of rules thatcan be used in transforming expressions (e.g., �(xy) =�(x)�(y) + �(�x)�(�y)), but do not describe how todecide which rule to apply when. They, like [TF92], as-sume the summation must be performed in a predeter-mined order and do not attempt to eliminate redundantconstraints.In comparing our techniques with theirs, we �nd thatours is fully de�ned and is much easy to apply for anumber of examples (such as Example 2 from [HP93a],which is much harder for their system to analyze).

Example 4 Ferrante, Sarkar and Thrash [FST91] givemethods for computing the number of distinct memorylocations and cache lines accessed by a loop nest. Thisinformation is useful in evaluating cache e�ectiveness.The �rst example they give is calculating the numberof distinct memory locations touched by:for i := 1 to 8 dofor j := 1 to 5 doa(6i+9j-7) = a(6i+9j-7) + 5This question can be phrased and answered withinour system as follows:(�x : (9i; j : 1 � i � 8 ^ 1 � j � 5 ^ x =6i + 9j � 7) : 1)Simplify using omega test= (�x : x = 8 : 1) + (�x : (9� : 5 � � �27 ^ x = 3�� 1) : 1) + (�x : x = 86 : 1)= (�x : x = 8 : 1) + (�� : 5 � � � 27 :1) + (�x : x = 86 : 1)= 25Example 5 The second example in [FST91] is to cal-culate the number of memory locations touched in aSuccessive Over-Relaxation (SOR) code:for i = 2 to N-1 dofor j = 2 to N-1 doa(i,j) = 2*a(i,j) + a(i-1,j) + a(i+1,j)+ a(i,j-1) + a(i,j+1)Using techniques described in Section 5.1, we canstate and solve this as shown in Figure 2 (to be sim-ilar to [FST91], we assume N = 500).To calculate the number of cache lines touched, weneed a mapping from array elements to cache lines. Asimple mapping 1 is to state that a reference to elementa[i; j] of an array references cache line [(i � 1) � 16; j](where � stands for integer division). With this map-ping, we generate the following answer for the numberof cache lines touched by this loop:(�x; y : (9i; j;�i;�j :x = (i+ �i� 1)� 16^ y = j +�j ^ 2 � i; j � 499^ � 1 � �i+�j;�i��j � 1): 1)Simplify using omega test= (�x; y : 0 � x � 31^ 1 � y � 500 : 1)= 16000We can also perform these computations symbolically.We �nd that the loop touches (� : N � 3 : N2 � 4)distinct memory accesses and(� : N � 3 : N (1 + (N � 2)� 16))+(� : N mod 16 = 1 ^N � 17 : N � 2)1We could also assume more general mappings, in which thecache lines can wrap from one row to another and in which wedon't know the alignment of the �rst element of the array withthe cache lines. Page 11

(�x; y : (9i; j;�i;�j : x = i +�i ^ y = j +�j ^ 2 � i; j � 499 ^ �1 � �i+�j;�i��j � 1) : 1)Simplify using omega test= (�x; y : 1 � x; y � 500^ 3 � x+ y � 999 ^ �498 � x� y � 498 : 1)Put in terms of upper and lower bounds on x= (�x; y : 1; 3� y; 498 + y � x � 500; 999� y; 498 + y ^ 1 � y � 500 : 1)Splinter upper bounds on x= (�x; y : 1; 3� y; 498 + y � x � 500 � 999� y; 498 + y ^ 1 � y � 500 : 1)+(�x; y : 1; 3� y; 498 + y � x � 999� y � 498 + y ^ 999� y < 500^ 1 � y � 500 : 1)+(�x; y : 1; 3� y; 498 + y � x � 498 + y < 999� y; 500 ^ 1 � y � 500 : 1)Resimplify= (�x; y : 2 � x � 499^ 1 � y � 500 : 1)+(�x; y : x = 500 ^ 2 � y � 499 : 1)+(�x; y : x = 1 ^ 2 � y � 499 : 1)= 249996 Figure 2: Computation of number of distinct memory locations touched by SOR loopdistinct cache lines.The method described in [FST91] works well for manysimple cases, but:� cannot handle coupled subscripts or iterationsspaces,� was not originally designed to compute symbolicanswers (although it might be adapted),� often computes a conservative approximation, and� uses expensive methods to handle the cache linestouched by a set of references (comparing with ourmethods for summarizing uniformly generated ref-erences).Example 6 We now work through a more elaborateexample, which will require us to utilize a number of thetechniques we have described. We also mention someadditional techniques, not elaborated here, that allowus to further simplify our result.(�i; j : 1 � i ^ j � n ^ 2i � 3j : 1)Splinter by considering 3j as even or odd� (�i; j : 2 j 3j ^ 1 � i ^ j � n ^ 2i � 3j : 1)+(�i; j : 2 j 3j � 1 ^ 1 � i ^ j � n ^ 2i �3j : 1)Simplify using Omega test� (�i; j : (9� : j = 2�^1 � i^3�^2� � n) : 1)+(�i; j : (9� : j = 2� � 1 ^ 1 � i �3� � 2 ^ 2� � n + 1) : 1)Deal with projected clauses� (�i; � : 1 � i � 3� ^ 2� � n : 1)+(�i; � : 1 � i � 3� � 2 ^ 2� � n + 1 : 1)Sum over i� (�� : 1 � 2� � n : 3�)+(�� : 1 � 2� � n + 1 : 3� � 2)Sum over � and �� (� : 2 � n : 3(n�nmod2)(n�nmod2+2)8)

+(� : 1 � n : (n+nmod2)(3n+3(nmod2)�2)8)If we now do some additional simpli�cation, we canget a even better result. The guard of the �rst term isidentical to the guard of the second term except that itexcludes n = 1. Upon checking, we �nd the the valueof the �rst clause for n = 1 is 0, even if we ignore theguard. So we can safely relax the guard of the �rstclause to n � 1 and combine the terms:(� : 1 � n : 3(n � n mod 2)(n � n mod 2 + 2)8+(n + n mod 2)(3n + 3(n mod 2)� 2)8)Simplifying this gives:(� : 1 � n : 3n2 + 2n� 4(n mod 2)2 + 3(n mod 2)4)We can further simplify this by recognizing that (n mod2)2 = (n mod 2):(� : 1 � n : 3n2 + 2n� n mod 24)7 ConclusionsWe have described methods that are able to count thenumber of integer solutions to selected free variables of aPresburger formula, or sum a polynomial over all integersolutions of selected free variables of a Presburger for-mula. This answer can be given symbolically, in termsof symbolic constants (the remaining free variables inthe Presburger formula). This ability has many appli-cations in the analysis and transformation of scienti�cprograms. Page 12

The techniques we have described are rather elabo-rate and complicated. This was necessitated by our de-sire for a method that could handle an arbitrary Pres-burger formula. This is necessary for applications suchas counting distinct memory accesses, cache line ac-cesses and array elements that need to be communicatedin a distributed process. For simpler applications requir-ing only more limited capabilities, such as described by[TF92, HP93a], we make two simple but important ob-servations:� Summations over several variables should not pre-sume a order in which to perform the summation� Eliminating redundant constraints is usefulAs of March 1994, we have not implemented the com-plete system described here. As we do so, we will un-doubted learn more about e�cient techniques for count-ing solutions and performing summations over Pres-burger formulas.8 AcknowledgementsThanks to Wayne Kelly and Dave Wonnacott for theirclose readings of this manuscript, and to my entire re-search teamWayne Kelly Vadim Maslov Evan RosserTatiana Shpeisman Dave Wonnacottfor their work on the implementation. This work is sup-ported by an NSF PYI grant CCR-9157384 and by aPackard Fellowship.9 Further InfoThe Omega project is exploring the use of advanced con-straint technology in analyzing and transforming scien-ti�c programs for execution on supercomputers. Amongother topics, we are investigating uni�ed frameworksfor reordering transformations [KP93b, KP93a], ad-vanced forms of dependence analysis [PW93b, PW93a],and techniques for dealing with polynomial constraints[MP94]. Much of our research is implemented in pub-licly available implementations, which are being usedby other research groups around the world. More infoabout our research project or software can be obtainedvia:� email: omega@cs.umd.edu� anonymous ftp:ftp:cs:umd:edu : pub=omega� world wide web:http : ==www:cs:umd:edu=projects=omega

REFERENCES[AI91] Corinne Ancourt and Fran�cois Irigoin. Scan-ning polyhedra with DO loops. In Proc. ofthe 3rd ACM SIGPLAN Symposium on Prin-ciples and Practice of Parallel Programming,pages 39{50, April 1991.[Bey81] William H. Beyer, editor. CRC StandardMathematical Tables. CRC Press, 1981.[FST91] J. Ferrante, V. Sarkar, and W. Thrash. Onestimating and enhancing cache e�ectiveness.In Advances in Languages and Compilers forParallel Processing, pages 328{343. The MITPress, 1991.[GJ88] D. Gannon and W. Jalby. Strategies for cacheand local memory management by global pro-gram transformation. Journal of Parallel andDistributed Computing, pages 587{616, 1988.[HP93a] M. Haghighat and C. Polychronopoulos. Sym-bolic analysis: A basis for parallelization, op-timization and scheduling of programs. InUtpal Banerjee et al., editor, Languages andCompilers for Parallel Computing. Springer-Verlag, August 1993. LNCS vol. 768; pro-ceedings of the Sixth Annual Workshop onProgramming Languages and Compilers forParallel Computing.[HP93b] M. Haghighat and C. Polychronopoulos. Sym-bolic analysis: A basis for parallelization, op-timization and scheduling of programs. Tech-nical Report 1317, CSRD, Univ. of Illinois,August 1993.[KP93a] Wayne Kelly and William Pugh. Determin-ing schedules based on performance estima-tion. Technical Report CS-TR-3108, Dept.of Computer Science, University of Maryland,College Park, July 1993. to appear in ParallelProcessing Letters (1994).[KP93b] Wayne Kelly and William Pugh. A frame-work for unifying reordering transformations.Technical Report CS-TR-3193, Dept. of Com-puter Science, University of Maryland, Col-lege Park, April 1993.[MP94] Vadim Maslov and William Pugh. Simpli-fying polynomial constraints over integers tomake dependence analysis more precise. Tech-nical Report CS-TR-3109.01, Dept. of Com-puter Science, University of Maryland, Col-lege Park, February 1994. Submitted to CON-PAR '94. Page 13

[Pug92] William Pugh. The Omega test: a fast andpractical integer programming algorithm fordependence analysis. Communications of theACM, 8:102{114, August 1992.[PW92] William Pugh and David Wonnacott. Go-ing beyond integer programming with theOmega test to eliminate false data depen-dences. Technical Report CS-TR-3191, Dept.of Computer Science, University of Maryland,College Park, December 1992. An earlier ver-sion of this paper appeared at the SIGPLANPLDI'92 conference.[PW93a] WilliamPugh and DavidWonnacott. An eval-uation of exact methods for analysis of value-based array data dependences. In Sixth An-nual Workshop on Programming Languagesand Compilers for Parallel Computing, Port-land, OR, August 1993.[PW93b] William Pugh and David Wonnacott. Staticanalysis of upper and lower bounds on depen-dences and parallelism. ACM Transactions onProgramming Languages and Systems, 1993.accepted for publication.[Sch86] A. Schrijver. Theory of Linear and IntegerProgramming. John Wiley and Sons, Chich-ester, Great Britain, 1986.[Taw91] Nadia Tawbi. Parall�elization Automatique:Estimation des Dur�ees d'Ex�ecution et Allo-cation Statique de Processeurs. PhD thesis,Universit�e Pierre et Marie Curie, April 1991.[Taw94] Nadia Tawbi. Estimation of nested loop exe-cution time by integer arithmetics in convexpolyhedra. In Proc. of the 1994 InternationalParallel Processing Symposium, April 1994.[TF92] Nadia Tawbi and Paul Feautrier. Processor al-location and loop scheduling on multiproces-sor computers. In Proc. of the 1992 Interna-tional Conference on Supercomputing, pages63{71, July 1992.
Page 14

