UMIACS-TR-94-27 March, 1994
CS-TR-3234

Counting Solutions to Presburger Formulas: How and Why

William Pugh
pugh@cs.umd.edu

http://www.cs.umd.edu/faculty/pugh.html

Institute for Advanced Computer Studies
Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

We describe methods that are able to count the number of integer solutions to selected free
variables of a Presburger formula, or sum a polynomial over all integer solutions of selected
free variables of a Presburger formula. This answer is given symbolically, in terms of symbolic
constants (the remaining free variables in the Presburger formula).

For example, we can create a Presburger formula who’s solutions correspond to the it-
erations of a loop. By counting these, we obtain an estimate of the execution time of the
loop.

In more complicated applications, we can create Presburger formulas who’s solutions cor-
respond to the distinct memory locations or cache lines touched by a loop, the flops executed
by a loop, or the array elements that need to be communicated at a particular point in a
distributed computation. By counting the number of solutions, we can evaluate the compu-
tation/memory balance of a computation, determine if a loop is load balanced and evaluate
message traffic and allocate message buffers.

This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

1 Introduction

In this paper, we describe methods that are able to
count the number of integer solutions to selected free
variables of a Presburger formula, or sum a polyno-
mial over all integer solutions of selected free variables
of a Presburger formula. This answer is given symboli-
cally, in terms of symbolic constants (the remaining free
variables in the Presburger formula). This answer can
be given symbolically, in terms of symbolic constants
(other free variables in the Presburger formula). Pres-
burger formulas are those formulas that can be built
up out of linear constraints over integer variables; the
usual logical connectives A, V=, and existential and
universal quantifiers.

The following table gives some simple examples of
traditional symbolic summations:

Sum | Answer
ST i
Dy n(ifn>1)
Z?:l Z?:l 1 n2 (lf n Z 1)

Z?:l Z?:i+1 1 ﬂnz—_l2 (if n > 2)

A number of symbolic math packages (such as Math-
ematica and Maple) are able to compute symbolic sums.
However, the methods they use assume that a sum-
mation is never empty (i.e., the lower bound is never
greater than the upper bound). The answer they give
is incorrect if this assumption is violated. For example,
Mathematica reports that

iil:i(m—i—l—l):w

i=1 j=1i i=1

In fact, this answer 1s valid only if 1 < n < m. If
1 <'m < n, the answer is m(m + 1)/2.

The notation used above strongly suggests that the
sum over j must be performed before the sum over i.
In our work, we don’t assume any predefined order in
which the variables must be eliminated. We also allow
arbitrary constraints, not just a upper and lower bound
on each variable. We therefore use a more general no-
tation:

(X1, ..., 0m 2 P o)

is the sum, for all values of vy,..., v, that satisfy P
(a Presburger formula with free variables), of . As a
special case, (Xv1,...,0p @ P : 1) is the number of
solutions of vy,..., vy to P. Any variables appearing
free in P or and not in V' are assumed to be symbolic
constants. The answer returned will be in terms of the
symbolic constants.

Since answers may need to be guarded (i.e., n? if
n > 1), we utilize the nullary form of a summation to in-
dicate a guarded sum. If V is empty (i.e., (¥ : P : x))

the result is a conditional value: if P 1s true, the value
of this expression is z, otherwise 0. As an example, our
previous summations would be reported as:

(Zi 0 1<i<10 : 1)=10

1.1 Applications

This capability has a number of applications in analysis
and transformations of scientific programs. Within pro-
grams with affine loop bounds, guards and subscripts,
we can define formulas who’s solutions correspond to:

the flops executed by a loop

the memory locations touched by a loop

e the cache lines touched by a loop

the array elements that need to be transmitted
from one processor to another during the execution
of a loop (in a distributed memory multicomputer).

By counting the number of solutions to these formulas,
we can

e estimate the execution time of a code segment,

e compare the memory bandwidth requirements vs.
the flop counts of a code segment,

e determine which loops will flush the cache, allowing
us to calculate the cache miss rate [FST91],

e determine whether a parallel loop is load balanced
(i.e., does each iteration perform the same number

of flops) [TF92],

e given an unbalanced loop, assign different number
of 1terations to each processor so that each proces-
sor gets the same total number of flops (Balanced

chunk-scheduling, as described in [HP93a]),
e quantify message traffic, and
e allocate space for message buffers.
In this paper, we

o Review the Omega test and how it can be used to
simplify Presburger formulas (Section 2).

e Describe how to represent some nonlinear con-
straints, such as « = |y/3], in Presburger formulas

(Section 3).

e Describe techniques for computing sums, starting
with the most simple forms of summations and pro-
gressing to more general sums (Section 4).

e Describe techniques for producing simplified con-
straints in disjoint disjunctive normal form. Pre-
viously, we have produced simplified constraints in
(overlapping) disjunctive normal form. The need to
do this is explained in Section 4.5.1 and techniques
to do it are described in Section 5.

e Show the application of our techniques to a number
of examples and compare our techniques with rela-
tion work [FST91, TF92, HP93a, Taw94] (Section
6).

2 The Omega test

The Omega test [Pug92] was originally developed to
check if a set of linear constraints had an integer so-
lution, and was initially used in array data dependence
testing. Since then, its capabilities and uses have grown
substantially. In this section, we describe the various
capabilities of the Omega test.

2.1 Eliminating an existentially quantified vari-

able

The basic operation of the Omega test is the elimination
of an existentially quantified variable, also refered to
as shadow-casting or projection. For example, given a
set of constraints P over x, y and z that define, for
example, a dodecahedron, the Omega test can compute
the constraints on x and y that define the shadow of the
dodecahedron. Mathematically, these constraints are
equivalent to 3z s.t. P. But the Omega test is able to
remove the existentially quantified variables, and report
the answer just in terms of the free variables (z and y).
Over rational variables, projection of a convex re-
gion always gives a convex result. Unfortunately, the
same does not apply for integer variables. For example,
Jyst. 1<y<4d4Az=2yhasz=2,z=4 =06 and
z = 8 as solutions. Sometimes, the result is even more
complicated. For example, the solutions for = in:

(Fi,j 1<i<8A1<j<BAz=6i+9j—7T)

are all numbers between 8 and 86 (inclusive) that have
remainder 2 when divided by 3, except for 11 and 83.
In general, the Omega test produces an answer in dis-
junctive normal form: the union of a list of clauses. A
clause may need to describe a nonconvex region. There
are two methods of describing these regions:

Stride format The Omega test can produce clauses
that consist of affine constraints over the free vari-
ables and stride constraints. A stride constraint c|e

is interpreted as “c evenly divides €”. In this form,
the above solution could be represented as:

r=8V 14<z<80A3|(z+1) V =286

Projected format Alternatively, the Omega test can
produce clauses that consist of a set of linear con-
straints over a set of auxiliary variables and an
affine 1-1 mapping from those variables to the free
variables. Using this format, the above solution
could be represented as

=8V (Ja : 5<a<2TAe=3a—-1) V 2 =86

These two representations are equivalent and there
are simple and efficient methods for converting between
the two of them. While the first representation i1s more
intuitive, the second representation works better for the
purposes of this paper.

Disjoint disjunctive normal form Normally, the
Omega test does not produce disjoint clauses: there may
be assignments to the free variables that satisfy multiple
clauses (i.e., the clauses may overlap). For purposes of
this paper, it 1s preferable to have disjoint clauses. This
allows us to compute the summation by simply adding
together the results of summing the individual clauses.
If a set of clauses are disjoint, we refer to this as disjoint
disjunctive normal form. If two clauses are guaranteed
to be digjoint, we denote their conjunction as P +
(as opposed to PV @).

In our previous work, we did not need disjoint clauses.
Some straightforward but naive methods would be capa-
ble of converting an arbitrary disjunction normal form
formula into disjoint disjunctive normal form. However,
the cost of doing so would be quite high in many cases.

In Section b, we discuss some methods that allow
us to directly generate disjoint disjunctive normal form
(without first generating overlapping disjunctive normal
form) and more sophisticated methods for converting an
arbitrary disjunctive normal form formulainto a disjoint
disjunctive normal form. Disjoint disjunctive normal
form may generate more clauses and require more time
to generate than disjunctive normal form.

2.2 Verifying the Existence of Solutions

The Omega test also provides direct support for check-
ing if integer solutions exist to a set of linear constraints.
It does this by treating all the variables as existentially
quantified and eliminating variables until it produces a
problem containing a single variable; such problems are
easy to check for integer solutions. The Omega test in-
corporates several extensions over a naive application of
variable elimination.

2.3 Removing Redundant Constraints

In the normal operation of the Omega test, we eliminate
any constraint that is made redundant by any other sin-
gle constraint (e.g., + + y < 10 is made redundant by
z+ y < 5). Upon request, we can use more aggressive
techniques to eliminate redundant constraints. We use
fast but incomplete tests that can flag a constraint as
definitely redundant or definitely not redundant, and a
backup complete test. This capability is used when ver-
ifying implications and simplifying formulas involving
negation.

We also use these techniques to define a “gist” opera-
tor, which is defined such that (gist P given @) is what
i1s “interesting” about P, given that we already know Q.
In other words, we guarantee that ((gist P given Q) A
Q) = PAQ and try to make the result of the gist opera-
tor as simple as possible. More formally, gist P given ¢
returns a subset of the constraint of P such that none of
the constraints returned are implied by the constraints
of () and the other constraints in the result.

2.4 Verifying Implications

By using our ability to eliminate redundant constraints,
we can verify formulas of the form P = @, by checking
to see if the constraints of P are redundant, given that
the constraints of @ are true. (i.e., (gist P given @}) =
True). We can combine this capability with our abil-
ity to eliminate existentially quantified variables to ver-
ify more complicated formulas such as (Jy s.t. P) =

(Fz s.t. Q).

2.5 Simplifying Formulas Involving Negation

There are two problems involved in simplifying formulas
containing negated conjuncts, such as

—10<i+j,i—j<10 A ~(2<i,j <12A2]i+J)

Naively converting such formulas to disjunctive normal
form generally leads to an explosive growth in the size
of the formula. In the worst-case, this cannot be pre-
vented. But we [PW93a] have described methods that
are effective in dealing with these problems for the cases
we encounter. Secondly, previous techniques for negat-
ing non-convex constraints, based on quasilinear con-
straints [ATI91], were discovered to be incomplete in cer-
tain pathological cases [PW93a]. We [PW93a] describe

a method that is exact and complete for all cases.

2.6 Simplifying Arbitrary Presburger Formulas

Utilizing the capabilities described above, we can sim-
plify and/or verify arbitrary Presburger formulas. In
general, this may be prohibitively expensive. There is

g0(n)

a nondeterministic lower bound of 2 and a deter-

ministic upper bound of 92" on the time required to
verify a Presburger formula. However, we have found
that we are able to efficiently analyze many Presburger
formulas that arise in practice.

For example, our current implementation requires 12
milliseconds on a Sun Sparc IPX to simplify

1<i<2n A 1< <2nAi=1"
A=(TF st 1< <2nAl<)<n-1
N<UAT =7 A2 = 1)
AT st 1<V <2nA1<j<n-1
AN<VAY =1 A2 +1=1")

to
(I=i=1"<n)v(1<i=1i"=2n)

3 Nonlinear constraints

Generally, Presburger formulas are thought to allow
only linear constraints. It turns out that there are a
number of nonlinear constraints that can be supported
while remaining in the class of Presburger formulas.

3.1 Floors, ceilings and mods

If a term |z /c| appears in a constraint C', we replace C'
with
Ja st ca <z <cla+1) A

where C' is C' with |#/c| replaced with «.
If a term [x/c] appears in a constraint C, we replace
C with
st e(B—1)<z<cBAC

where C is C' with |z /e¢| replaced with 3.
If a term z mod ¢ appears in a constraint C', we re-
place C with

Fystey <z <ely+1)ALC!

where C” is C' with & mod ¢ replaced with o — .

3.2 Stride constraints

A stride constraint c|e requires that e be evenly divisible
by ¢. This is equivalent to o s.t. e = ca. A negated
stride constraint —(cle) requires that e not be evenly
divisible by ¢. This is equivalent to Ja s.t. ca < e <
cla+1).

3.3 Applications

Among other applications, nonlinear constraints of this
form show up in analyzing and compiling HPF code
with distributed arrays.

Assume a one dimensional template T(0:1024) has
been distributed in block-cyclic fashion to 8 processors,

using blocks of 4. This means elements T(0:3) are
mapped to processor 0, T(4:7) to processor 1, T(28:31)
to processor 7, and T(32:35) to processor 0 again. This
can be described as a mapping from a template index
t to a processor number p and an index [¢,[] of a two-
dimensional array of local data. This mapping can be
described as:

[[
[=t mod4 p:{ZJ mod 8 c:\ﬁ—QJ

which is equivalent to

t=14+4p+32eN0<I<3AN0<p<T

4 Computing sums

In this section, we describe our methods for comput-
ing sums. In computing a sum, there are two places
where we are given the option of computing the sum
exactly, or computing upper and lower bounds. Per-
forming the calculation exactly will likely be more ex-
pensive. Also, if the answer is symbolic, an exact answer
may be more complicated and harder to utilize. It may
often be preferable to compute both an upper and lower
bound on the sum. Only if these values are far apart
may it be worthwhile to compute the exact answer.

4.1 Simple sums

There are fairly standard formulas for sums of powers of
integers. These formulas are described in the CRC Stan-
dard Mathematical Tables [Bey81] and are reviewed in
[TF92, Taw94]. For example,

)= (D 1< MnFDEED

Yoo 1< < :
(Xi <i<n < 6

Within our implementation, we expect it will be suffi-
cient to hard code the formulas for p up to 10. In each
of these sums, the guard produced is 1 < n.

4.2 Basic sums

In this section, we concern ourselves with the more gen-
eral problem of computing

(Si : [Afa] <i< |BJb| :)

where a, b and p are known nonnegative integer con-
stants and A and B are integer expressions (equiva-
lently, variables).

There are three issues we need to address: lower
bounds other than 1, negative upper or lower bounds,
and the cases when a or b is not 1. If p is equal to zero,
the sum is simply:

(X LU :U=-L+1)

If p 1s greater than zero, we handle the first two issues
by breaking down the sum into four pieces:

(i : L<i<U : i)

=i 1<i<UALSU : iF)
(% 1<i<L—1<U :)
H(Si: L<i<—1AL<U : i)
(%P L<U41<i<—1: %)

(01t 1<i<UAL<U : i7)
(% 1<i<L—1<U :)

- i)

=i 1<i<UALSU : iP)
(% 1<i<L—1<U :)
F(—1)P(Si c 1<i<L<U & i)
SIP(SG s 1<i<—U—1<—L : i)

—(

4.2.1 Handling rational bounds

To compute a summation involving a floor or ceiling,
such as

. . U .
(i 2 1<i<|[—] =)
u

we have three options: compute symbolic answers,
compute approximate answers, or splinter the problem
(i.e., break it up into subcases) so as to produce exact
bounds. For each of these techniques, we will consider
the example problem:

(Xd 1§Z§|_§J)

Compute symbolic answers We can simply intro-
duce a variable for |U/u], and produce a result in terms
of this variable. In this case, the answer would be

[2/3](In/3] + 1)
2

The problem with this answer is that we cannot sym-
bolically sum it over n. Therefore, we can only produce
symbolic answers if the upper bound is a function only
of symbolic constants.

An eventual answer that involved terms such as
[n/3], [(n — 1)/3] and n may be hard to analyze. Tt
may be better to substitute (U —=U")/u for |U/u], where
U’ is a new variable defined to be U/ mod u. Since
0 < U'" < u, we can find the most significant terms

of the answer by just looking for the highest powers of
n. For this example, this gives:

(n —n mod 3)(n+ 3 — nmod 3)
18

_n?+3n
18

2n+ 3 — (n mod 3)
18

— (n mod 3)

Computing approximate answers We can calcu-
late three kinds of approximate answers: upper bounds,
lower bounds or best-guess answers. For any positive
integers U and w:
U—(u—1) U

» SL;JS

U U

==

So for any function f(n) that is non-decreasing for non-
negative n:

U—(u—1)

U

i)< HUZD < 55
U4 (u—1)

U

< S5 <)

Since the formula for
(i 1<i<n)

is a non-decreasing function of n, we can use this tech-
nique to compute upper and lower bounds on a rational
sum.

We can also choose to approximate f(n) as f(n'),
where n’ is the approximate value of n. In our example
summation, the lower bound, upper bound and approx-
imation of |n/3] are (n —2)/3, n/3 and ((n — 2)/3 +
n/3)/2 respectively. This gives results of of:

-2 1
lower bound: (¥ : 3<n %)
upper bound: (X : 3<n : 71(7117—81_3))

-1 2
approximation: (X : 3<mn %)

We could also approximate the answer as the average
of the upper and lower bound. Note that this does not
give the same answer as the other method of approxi-
mation.

Splintering Our other choice is to splinter the prob-
lem. Consider the cases u|U, u|(U+1), ..., u|(U4+u—
1). These cases are all obviously disjoint, so we generate
a separate sum for each. Within case, the upper bound
on i becomes integral.

(Zi 3|nA1§i<§)

n—1

+(3i 3| n-1A1<i<)

—9
HETi 3|n—2/\1§i§nT)

E(E:3|n/\3§n:n(n17—8|—3))
+(E:3|n—1/\4§n:%)
+(E:3|n—2/\5§n:%)

4.2.2 Producing a guard for rational sums

If both L and U involve floor and ceilings, we may not
be able to produce a simple and exact guard to ensure
(Fi : L <i<U). If we use the splintering technique
described above, our problem 1s resolved: within each
splinter, we will be able to produce a simple and exact
guard.

Otherwise, we can choose to splinter the guard or
have the Omega test produce a simple but approximate
guard. The guard could be an upper or lower bound,
depending on whether we are computing an upper and
lower bound on the result.

4.3 Polynomial Sums

If the value # we are summing ¢ over is not of the form
P, we rewrite & as a polynomial of i:

(Zi : L<i<U : ag+ari+asi®+--)

=ap(Xi LLi<U @ D4+ar(Bi : LL<i<U)

tas(Yi 0 L<i<U + i)+

4.4 Convex Sums

We now consider a more general form of summation:
XV . P x)

which denotes the sum, for all values of the variables V'
that satisfy P, of #. For the moment, we require P to
be a conjunction of linear inequalities over variables in
V' and variables representing symbolic constants (i.e.,
free variables).

Our algorithm for dealing with a convex sum

XV . P x)
1s as follows:

1. Eliminate redundant constraints from P.

2. Pick a variable v € V to consider. In picking a
variable, we try to pick a variable who’s bounds can
be expressed without floors or ceilings, and that has
as few upper and lower bounds as possible.

3. If v has multiple upper bounds Uy, Us,..., U, in
P, we replace the summation with the sum of p
new summations, where in the 7" summation, the
upper bounds on v in P are replaced with:

v<U; SUpg1,Usgn, .., Up
ANU; < U, Us, ... Ui_1

In each resulting summation, we simplify the re-
sulting conditions (the new, more restrictive con-
straints might allow us to substantially simplify the
conditions), remove redundant constraints and re-
consider which variable to eliminate (it might not

be v).

4. The case where v has a single upper bound but
multiple lower bounds is handled similarly.

5. If v has a single upper bound U and a single lower
bound L, compute the sum as

EV —{v} : PP : (v : L<v<U : 1))

Once we have simplified the term (Zv @ L <wv <
U :), we can simplify the result using the rewrite

rules:
XV :P:as+y)=EV : P: o)+ (XV : P :y)
xvV . P (E:Pl :x))E(EV:P/\P')

If variables remain to be summed over, we will
need to repeat this process.

4.5 General Sums

We now consider summations where the conditions P
are an arbitrary Presburger formula.

We can use the Omega test, as described in Section
2, to simplify an arbitrary Presburger formula into the
union of several clauses. In many cases, the clauses
can be described by the conjunction of a set of linear
inequalities. In general, a clause may need to be rep-
resented as a conjunction of linear inequalities from a
set of auxiliary, existentially quantified variables and an
affine, 1-1 mapping from the auxiliary variables to vari-
ables in V' and symbolic constants.

There are three issues we need to deal with:

e Dealing with overlaps between clauses

e Dealing with clauses that are represented by a pro-
jection

e Allowing the Omega test to perform approximate
simplification

4.5.1 Overlapping clauses

The problem is that some solutions might be solutions
to more than one clause. If we sum over the clauses
independently, we will count some solutions more than
once. One way to handle this, as described in [FST91],
is to subtract the count of elements counted twice:

XV . PVQ : %)

=XV P)4V Q 2)—(ZV : PAQ : 2)

The problem with this is that it quickly gets out of
control if there are more than a few clauses (7 sum-
mations are needed for 3 clauses). An alternative is to
put the formula in digjoint disjunctive normal form, in
which the clauses are mutually exclusive. We provide
two techniques that let us avoid generating overlapping
clauses in digjunctive normal form, and a method that
converts an arbitrary formulain disjunctive normal form

into digjoint digjunctive normal form. These techniques
are described in Section 5.

4.5.2 Projected Sums

For a clause P in projected form, we can assume the
constraints are of the form:

3a st Ad < b

ANF=QA+q7 N vT=Ra+7
Here, §is a vector of symbolic constants (variables not
in V), ¥ is a vector of the variables in V', and & is a vec-
tor of wildcards: quantified variables used only in this
clause. We have used matrix notation here because we
will utilize some linear algebra theory. This form is the
worst-case situation we will need to encounter (gener-
ally, only a few or no symbolic variables or variables in
V are defined by projections). However, we can easily
convert an arbitrary clause into this form.

We calculate the Smith normal form [Sch86] of Q:
D 0
v [by] v

where U and V are unimodular matrices and D is a
integer diagonal matrix (in Smith normal form, D has

other properties but these are not important to us here).
The constraints defining § can be rewritten as

U_l(é'—q'):[loj 8]1/&

We substitute 5f0r V&, and partition U~! and 3 into
top and bottom portions to reflect the block structure

D 0 .
of [0 0] This gives

(o Je-o= [0 0] 5]

=U;'G-)=Dfr ANUZ'G-0) =0

Let d be the diagonal of D. These constraints can be
rewritten as:

d|UE—9) ANUGH(E-9) =0
We can now calculate & in terms of s and 53:

DU N5~ q)
fn

In the following equations, we need to syntactly sub-

V—l

&

stitute this expression for «. To keep the expressions
simple, we do not show the results of this substitution.
Therefore, our constraints P are equivalent to:

d|UE—9) ANUGH(E-9) =0

A3fp st (AG<b A 7= Ra+7)
Therefore, (XV @ P : x)

1s equivalent to
(:d| UG- A Ugt(5—9)=0:
(253 : A&gE 2)

where 2’ is ¢ with R& + 7 substituted for v

4.6 Approximate simplification

If we are only counting solutions, and are interesting
in computing simple upper and lower bounds (as op-
posed to more complicated but exact answers), we can
allow the Omega test to simplify P approximately. The
Omega test can produce an answers that are an upper
bound or lower bound on the solutions to P. The key
place where this approximation occurs is in performing
elimination. When an elimination would cause splinter-
ing, the Omega test can instead return the real shadow
(i.e., allow the eliminated variable to take on real val-
ues) or the “dark shadow” (a conservative bound on the
solution, described in [Pug92]).

5 Disjoint disjunctive normal form

We now describe techniques that allow us to simplify
Presburger formulas so as to produce disjoint disjunc-
tive normal form. We use three different techniques:

e Summarizing uniformly generated sets — In a num-
ber of applications, we need to express the memory
locations touched by a set of array references (e.g.,
by the array references al[i] and al[i+1] in a loop
in which i runs from 1 to n).

Naively building a Presburger formula to represent
the memory locations m touched by this loop:

(Fi 1 <i<nAm=149)Vv(3i : 1 <i<nAm=i+l)

will result in an answer with overlapping clauses.
By building the formula in a better way:

(Fi,d : 1<i<nA0<d<1Am=1i+d)

we avoid this problem.

e Disjoint splintering — When the Omega test
projects away a variable, it may need to splinter
the problem: describe the result as the union of
several problems. In practice, this can often be
avoided but we need to be prepared for it. The
splinters the Omega test normally generates may
be overlapping. We describe here a way to gener-
ate splinters that are guaranteed to be disjoint.

e Conversion to disjoint disjunctive normal form —
We describe a method for converting an arbitrary
formula in disjunctive normal form into disjoint dis-
junctive normal form.

5.1 Summarizing uniformly generated sets

When computing the number of memory locations or
cache lines touched by a set of references in a set of
loops, we often have a situation where many of the ref-
erences differ only in constant parts, as in the SOR, ex-
ample given by [FST91]:

for i = 2 to N-1 do
for j = 2 to N-1 do
a(i,j) = (2*a(i,j) + a(i-1,j) + a(i+1,j)
+ a(i,j-1) + a(i,j+1))/6)/6

The elements of a touched by this loop are:
O{li-1]2<ij<N-1)
O{li+1]]2<ii< N -1}

We can recognize this as a uniformly generated set
[GJI88] with offsets {(0,0),(—1,0),(1,0),(0,—1),(0,1)}.
This set can be described exactly as the integer points
inside the convex hull of the points. Therefore, we can
summarize the elements z,y of a touched by iteration
1,7 of this loop as:

{li+Aij+Aj] |

and the elements touched by the entire execution of the
loop are:

A —1<Ai+AjAi—Aj< 1}

Using standard techniques, we can simplify this by
eliminating Az and Aj:

(i1 1<ij<NA3<i+j<2N -1
A2—N<i—j<N-=2}

—1<Ai+AjAi—Aj <1}

5.1.1 Describing a set of constant offsets with
linear constraints

In cases such as this, we must convert a set of m constant
offsets p1,p2,...pm Into a set of linear constraints. We
describe two methods:

1. As described by Ancourt [AI91], we can use 0-1
programming methods. Create m new variables
Z1,%9, ... Zm, and a set of new constraints C': 0 <
z <1A1=>3" 2. The points can be summa-
riz)e}d by {[p] : (321, 22,...2m p= >t npi
CH}.

The stencil above can be summarized as:

{le,y] 1 (321,20, 23, 24,25 @ & = 21— 29A\Y = 23— 24

5

N0 < 21,29, 23, 24, 25 < 1/\12222')}
i=1

2. We can construct the convex hull of the points and
check for non-unit strides among the points (e.g.,
is the first coordinate always odd or the difference
of the first two coordinates always a multiple of
three).

The hull and any stride constraints we find are con-
servative. We next have to check to see if they are
exact. One way to do this i1s to count the number
of solutions to the hull and stride constraints, and
compare this to the number of points.

The problem with the first technique is that it de-
pends on the constraint system being able to simplify a
0-1 integer programming problem, an iffy proposition at
best. We found that although the Omega test can sum-
marize 4-point and 5-point stencils specified this way as
a convex region plus stride constraints, it was unable to
produce a convex summary for a 9-point stencil. How-
ever, the first approach might be able to summarize sets
that are missed by the second. Until we have more ex-
perience with these techniques in practice, we plan to
try both and use whichever give the better result for
each case.

5.2 Disjoint splintering when eliminating vari-

ables

If 8 < bz and az < o (where a and b are positive in-
tegers), then af < abz < ba. If z is a real variable,
dz s.t. af < abz < ba if and only if a8 < ba. Fourier
variable elimination eliminates a variable z by combin-
ing together all pairs of upper and lower bounds on z
and adding the resulting constraints to those constraints
that do not involve z. This produces a set of constraints
that has a solution if and only if there exists a real value
of z that satisfies the original set of constraints.

In [Pug92], we showed how to compute the “dark
shadow” of a set of constraints: a set of constraints
that, if it has solutions, implies the existence of an in-
teger z such that the original set of constraints is sat-
isfied. Of course, not all solutions are contained in the
dark shadow.

For example, consider the constraints:
F0st. 0<3—a<TAl<a—-28<5h

Using Fourier variable elimination, we find that 3 <
a < 27 if we allow [to take on non-integer values. The
dark shadow of these constraints is 5 < o < 25. In fact,
this equation has solutions for o = 3,5 < a < 27 and
a = 29.

In [Pug92], we gave a method for generating an addi-
tional sets of constraints that would contain any solu-
tions not contained in the dark shadow. These “splin-
ters” still contain references to the eliminated variable,
but also contain an equality constraint (i.e., are flat).
This equality constraint allows us to eliminate the de-
sired variable exactly. For the example given previously,
the splinters are:

(33 : a=38A0<38—a<TAl<a—23<5)

(38 : a+1=38A0<33—a<TAl<a—-23<5)
(38 : a=5=20AFst. 0<38—a <TAl < a—27 <))
Simplifying these produces:

(Fy : a=3yAl<=7y<=5)

(Fy - a=3y—-1A2<=7<=6)
(Fy : a=2y4+5A5 <=7y <=12)

Our goal was to do so in a way that generate as few
sets of constraints as possible. Unfortunately for our
current situation, the solutions contained in the addi-
tional sets of constraints could overlap with each other
and with the solutions in the dark shadow. In Figure
1 we give a technique for eliminating integer variables
that produces disjoint subproblems. For contrast, we
also give our standard algorithm for performing elim-
ination that produces overlapping subproblems. With
the new algorithm, the number of subproblems may be
larger, but the fact that they are disjoint is much more
valuable for our current applications. For this example,
the splinters produced are:

(38 : a=3A0<33—-a<TALl<a—-28<5)
(38 : a=4A0<33—-a<TALl<a—-28<5)
(38 : a=26Aa>5A0<30—a<TAL<a—28<5)
(38 : a=2TAa>5A0<30—a<TAL< a—28<5)

Simplifying these produces o« = 3 and o = 27 (the other
two clauses simplify to false).

This disjoint splintering is primarily useful only as the
last projection step. Consider computing Iy, z s.t. P,
where P is a set of constraints over x, y and z. If neither
y nor z can be eliminated exactly without splintering,
we have a problem. Say we perform disjoint elimination
of z to get:

Elys.t. P1—|—P2—|——|—Pq

The problem is that we cannot distribute the Ay over the
disjoint union’s without destroying the disjoint prop-
erty. For example, 1 < z < y < 10 is disjoint from
1 <y<az<10, but Jyst. 1 <z <y < 10 is not
disjoint from Jy s.t. 1 <y < 2 < 10.

Fortunately, this problem is not too severe. We have
found that we frequently do not need to splinter any
eliminations. When we do, we often need do only one
such elimination and we can postpone it to the very
last elimination. If we are forced to perform multi-
ple splintering eliminations, only the last elimination
is done with disjoint splinters, and then the techniques
described in the next section are used to transform the
entire formula into disjoint disjunctive normal form.

5.3 Converting arbitrary DNF formulas into
disjoint DNF formulas

Given a formula in disjunctive normal form that may
have overlapping conjunctions, we perform the following
steps.

Step 1 Check to see if any conjunct is a subset of
another conjunct [PW92]. If so, eliminate the one that
is a subset.

Step 2 Compute the connected components of the
conjunctions, where there is an edge between two con-
junctions if they overlap.

Consider each connected component separately in
steps 3 and 4.

Step 3 Within each component, pick a conjunction to
extract. The selection criteria are:

1. If possible, pick a conjunction that is an articula-
tion point of the graph constructed in step 2.

2. Pick the conjunction with the fewest constraints
Assume the formula being considered is
CivCyV.---V QG
and we extract €. Transform the formula to

Cy + (_‘Cl/\(CQV"'\/Cp))

If ¢ was an articulation point, removal of C7 will
allow us to break up C>V ---V €}, into disjoint sections:

Ci 4+ (A (Cra V-V Cip)+ (C2a VoV Capy) +)

We distribute the negated C7 term across the disjoint
sections:

C14+-CiAN(C11V-- VO p) +CIA(Con Ve Vo)+ - -

Step 4 To simplify a term
=C'A(CLV -V Cy)
we first replace C” with
C" = gist C' given Cy V -+ -V C
This is valid because

AN-B = AA-(AAB)
AN =(AA (gist B given A))
A A —(gist B given A)

We calculate
gist C' given Cy V -+ -V O,
as
(gist C’ given Cy) A -+ A (gist C’ given CYy)
Next, we perform a disjoint negation of C”. If C" is
ciNeaNeg /A -
The disjoint negation of C" is
—c1 + ¢t A= + g Aeg A—eg + - -

We now distribute the disjoint negation of C" across
C1V---VCy, and reapply the techniques described here
to convert it to disjoint DNF.

6 Related work and examples

Nadia Tawbi [Taw91l, TF92, Taw94] describes an algo-
rithm for summing a polynomial over a polytope. This
is used [TF92] to estimate the execution time of loops
and evaluate the load balance of a loop. Tawbi de-
scribes techniques roughly equivalent to what we have
described in Sections 4.1 — 4.3. For rational bounds, she
computes symbolic answers when feasible and computes
average values otherwise. She does not describe how to
compute upper and lower bounds or split the problem
to compute exact answers. The significant differences
between our work and hers are the techniques for han-
dling convex sums (ours are an improvement on hers)
and general sums (which she does not address).
In Tawbi’s algorithm for convex sums,

Eliminate z from C, producing possibly overlapping

subproblems
R = False
C' = all constraints from C' that do not involve z
O// — O

for each lower bound on z: § < bz
for each upper bound on z: az < «
C'=C"NaB+ (a—1)(b—1) < b
% Misses a8 < abz <ba < afB+ (a—1)(b—1)
%Missesﬁgbz<ﬁ+%
let amax = max coefficient of z in upper bound on z
for ¢ = 0 to ((a¢max — 1)(b—1) — 1)/amax do
R=RVCApB+i=0bz
% C' is the dark shadow
% R contains the splinters
% C' v (3 integer z s.t. R) = 3 integer z s.t. C'

Eliminate z from C, producing disjoint subproblems
R = False
if exists constraints oo < ¢z < o 4+ b such that b < ¢ — 1 then
%need to perform parallel splintering
C' = False
for + = 0 to b do
R=Rv3azst. CAa=cz—1
else
C' = all constraints from C that do not involve =z
c=C
for each lower bound on z: 8 < bz
for each upper bound on z: az < «
if C" AaB + (a—1)(b—1) > ba is feasible
C'=C"NaB+ (a—1)(b—1) < b
% Misses a3 < abz < ba < aff+(a—1)(b—1)
fori=0to (a—1)(b—1)—1do
R=RvC"ANaB+i=ba
C"=0C"NaB+ (a—1)(b—-1) < b
Simplify and check for feasibility each clause in C’ and R
% C' is the dark shadow
% R contains the splinters
% C' v (3 integer z s.t. R) = 3 integer z s.t. C'

Figure 1: Algorithms for integer variable elimination with overlapping and with disjoint splintering

e the variables in the summation must be eliminated
in a predetermined order,

e no attempt is made to eliminate redundant con-
straints.

Tawbi handles the problem of empty summations by
performing an initial polyhedral splitting step, de-
scribed in [Taw91, Taw94], so that no summation can
be empty. Since this splitting step respects the original
elimination order, it may split a summation into more
pieces than we do.

Example 1 Tawbi [Taw94] gives an example of:
2.2 1
i=1j=1k=j

Her polyhedral splitting technique transforms this to:

DR

ifm>n
i=1j=1k=j
iiil—l— Zn: iil otherwise

i=1 j=1k=j i=m—1j=1k=j

The summations can then be computed using stan-
dard computer symbolic algebra techniques.
Our techniques work as follows on this example:
(Zt,5,k : 1<i<nAl<j<ing<k<m : 1)
Eliminate redundant constraint 1 <z
=5,k 1<y<i<nAj<k<m : 1)
Sum over k (single upper and lower bound)
=) 1<j<i<nAj<m:m-—j+1)
Sum over ¢ (single upper and lower bound)

=(EXj :1<j<n,m: (n—j+1)(m—yj5+1))
Splinter upper bounds for j
= 1<j<n<m s (n—j+1)(m—j+1))
+(Zj :1<j<m<n : (n—j4+1)(m—j5-1))
Sum over j
2

mn 77,3 7297 k23
=X :1<n<m : & —2?—1—37—1—5)
HE 1<m<n : TR -S4+ 4F)

In comparing our technique with Tawbi’s, we find that
our greater flexibility and our ability to eliminate redun-
dant constraints makes our techniques more efficient for
many cases (in this example, we only needed to consider
2 terms rather than 3). Also, the techniques described
in Sections 4.5 and b are a useful contribution above
and beyond her work.

Example 2 Mohammad Haghighat and Constantine
Polychronopoulos [HP93a, HP93b] describe a method
for volume computation, and give two examples. Their

first example 1s:
n g 5
2201

i=1 j=3k=j
Our techniques compute this as:

(S k : 1<i<nA3<j<inj<k<5b :1)
Eliminate redundant constraint 1 <z

=(Z4,5,k : 3<y<i<nAj<k<5 1)
Sum over k

=(Sij 1 3<j<i<nAj<5: 6)
Sum over ¢

= (S :3<j<50 : (n+1—)(6-)))
Splinter upper bounds for j

=(Xj : 3<j<5<n: (n+1—-4)(6—1y))
+(Z5 - 3<i<n<5 : (n41=5)(6-7))
Sum over j

=(X :5<n : 6n—16)

+XE :3<n<5

24—38n+15n2 —n’)
6

If we further recognize that the second summation is
only defined at two points (n = 3 and n = 4), we realize
that it can be defined by a first degree polynomial (i.e.,
a linear term), and find that it is 5n — 12. This allows
us to simplify the above expression to:

(X2 :5<n :6n-16)+(X :3<n<b : bn-12)

Haghighat and Polychronopoulos [HP93a, HP93b] de-
rive an answer of

p(min(n—2, 3))(—(min(n, 5))>+15(min(n, 5))2—38 min(n, 5)+24) /6
+6max(n — 5,0)

where pi() is defined to be 1 if z is positive, 0 otherwise.
The answer they derive gives the same answers as ours;
the form of their answer is quite different because of the
min and max expressions they introduce. We have de-
veloped a way of introducing min’s and max’s into the
result. Although it sometimes allows us to avoid split-
ting a summation because of a multiple upper or lower
bound, the results tend to be much more complicated.
We have decided that in general that it is not worth
generating min’s and max’s.

Example 3 The second example in [HP93a, HP93b]

2n min(4,2n—j)

2. > !

i=1 ji=1
is easily handled by our system:

1,7 : 1 <1< 2nAl < g <ini43 < 2n ¢
S i 1< i< IMAL< i< iNidi <D 1

Eliminate redundant constraints 1 < < 2n

=(4,j : 1<j<i<2n—j : 1)
Sum over ¢

=(j : 1<j<n : 2n—-2j+1)
Sum over j

=(X :1<n : n?

In comparison, Haghighat’s and Polychronopoulos’
techniques require 9 steps for their first example and 15
steps for their second example. Haghighat and Poly-
chronopoulos [HP93a, HP93b] do not describe their
technique in detail. They give a number of rules that
can be used in transforming expressions (e.g., p(zy) =
u(@)p(y) + p(—2)p(—y)), but do not describe how to
decide which rule to apply when. They, like [TF92], as-
sume the summation must be performed in a predeter-
mined order and do not attempt to eliminate redundant
constraints.

In comparing our techniques with theirs, we find that
ours 1s fully defined and is much easy to apply for a
number of examples (such as Example 2 from [HP93a,
which is much harder for their system to analyze).

Example 4 Ferrante, Sarkar and Thrash [FST91] give
methods for computing the number of distinct memory
locations and cache lines accessed by a loop nest. This
information is useful in evaluating cache effectiveness.

The first example they give is calculating the number
of distinct memory locations touched by:

for i := 1 to 8 do
for j := 1 to 5 do
a(6i+9j-7) = a(6i+9j-7) + 5

This question can be phrased and answered within
our system as follows:

(S (Ji,j @ 1<i<8A1<j<5B5Az=

6i+95—7) : 1)
Simplify using omega test

=Xz : z=8:1) 4+ (Zz : (Ja : 5<a<
2TAz =3a—1) : 1) + (Zz : =286 : 1)

= (Zz r =8 1)+ (Za 5 < a <27
N+ (Zz : =86 : 1)

=25

Example 5 The second example in [FST91] is to cal-
culate the number of memory locations touched in a
Successive Over-Relaxation (SOR) code:

for i = 2 to N-1 do
for j = 2 to N-1 do
a(i,j) = 2*a(i,j) + a(i-1,j) + a(i+1,j)
+a(i,j-1) + a(i,j+1)

Using techniques described in Section 5.1, we can
state and solve this as shown in Figure 2 (to be sim-
ilar to [FST91], we assume N = 500).

To calculate the number of cache lines touched, we
need a mapping from array elements to cache lines. A
simple mapping ' is to state that a reference to element
ali, j] of an array references cache line [(i — 1) = 16, j]
(where + stands for integer division). With this map-
ping, we generate the following answer for the number

of cache lines touched by this loop:
(Zz,y ¢ (30,4, A4, A7 -
z=(G+Ai—1)+16Ay =7+ A;A2< 4,5 <499
A—1< Ai+AjAI—Aj<1)
1)

Simplify using omega test

=(Zz,y : 0<z<31A1<y <500 : 1)
= 16000
We can also perform these computations symbolically.
We find that the loop touches (¥ : N >3 : N2 —4)
distinct memory accesses and
(X : N>3 : N1+ (N-2)=16))
+(X : Nmodl6=1AN>17 : N —2)

1We could also assume more general mappings, in which the
cache lines can wrap from one row to another and in which we
don’t know the alignment of the first element of the array with
the cache lines.

T= i ANIAY=jHAFA2<i<A99A -1 < Ai+AjAI—Aj< 1) : 1)

1,3— 95,4984+ y <2 <999 — y <498+ y A999 — y < 500A 1 <y < 500 : 1)
1,3— 5,498+ y < 2 <498+ y < 999 — 3,500 A 1 < y <500 : 1)

(Ba,y ¢ (3,5, AdAF
Simplify using omega test

=XBzr,y : 1<2,y<b00A3<e+y<999A—-498 <o —y <498 : 1)
Put in terms of upper and lower bounds on x

=X,y : 1,3—y,498 4+ y < 2 <500,999 — ¢, 498 + y A1 <y <500 : 1)
Splinter upper bounds on z

=Xz,y : 1,3—y,4984+y <2 <500<999 —y, 498 +y A1 <y <500 : 1)
+(Xz,y -
+(Xz,y -
Resimplify

=(Br,y : 2<2<499A1 <y <500 : 1)
+(Xz,y : 2 =500A2<y<499 1)
+(XBz,y 2 =1A2<y<499 ¢ 1)

= 249996

Figure 2: Computation of number of distinct memory locations touched by SOR loop

distinct cache lines.
The method described in [FST91] works well for many
simple cases, but:

e cannot handle coupled subscripts or iterations
spaces,

e was not originally designed to compute symbolic
answers (although it might be adapted),

e often computes a conservative approximation, and

e uses expensive methods to handle the cache lines
touched by a set of references (comparing with our
methods for summarizing uniformly generated ref-
erences).

Example 6 We now work through a more elaborate
example, which will require us to utilize a number of the
techniques we have described. We also mention some
additional techniques, not elaborated here, that allow
us to further simplify our result.
(Bt : 1<ingj<nA20<35 @ 1)
Splinter by considering 3 as even or odd

=(24,7 2 2|3JA1<iAF<nA20<3) ¢ 1)
+(Xe,g + 2|3 —1A1I<iAF<nA2<
37 : 1)

Simplify using Omega test

= (X4,j : (Fa : jg=2aAl <iA3aA2a<n) : 1
+(Sij ¢ (38 ¢ j=28-1A1<i<
33—2A28<n+1) : 1)
Deal with projected clauses

=(Zha : 1<i<3aA2a<n : 1)
H(Si, B : 1<i<38-2A28<n+1:1)
Sum over ¢

=(Za : 1<2a<n : 3a)
+(X8 s 1<28<n+1: 38-2)
Sum over « and f

= (E .92 S n - 3(n—nmod2)(8n—nmod2+2))

~—

. (n+nmod2)(3n+3(nmod2)—2))
: 8

If we now do some additional simplification, we can
get a even better result. The guard of the first term is
identical to the guard of the second term except that it
excludes n = 1. Upon checking, we find the the value
of the first clause for n = 1 is 0, even if we ignore the
guard. So we can safely relax the guard of the first
clause to n > 1 and combine the terms:

3(n — n mod 2)(n — n mod 2 + 2)

(Z:1<n:
8

+(n + n mod 2)(3n + 3(n mod 2) — 2)

5)

Simplifying this gives:

2 _ 2
(T :1<n 3n 4+ 2n 4(nmo4d2) —|—3(nmod2))

We can further simplify this by recognizing that (n mod
2)? = (n mod 2):

2 _
(T 1<n : 3n° +2n nmod2)
4

7 Conclusions

We have described methods that are able to count the
number of integer solutions to selected free variables of a
Presburger formula, or sum a polynomial over all integer
solutions of selected free variables of a Presburger for-
mula. This answer can be given symbolically, in terms
of symbolic constants (the remaining free variables in
the Presburger formula). This ability has many appli-
cations in the analysis and transformation of scientific
programs.

The techniques we have described are rather elabo-
rate and complicated. This was necessitated by our de-
sire for a method that could handle an arbitrary Pres-
burger formula. This is necessary for applications such
as counting distinct memory accesses, cache line ac-
cesses and array elements that need to be communicated
in a distributed process. For simpler applications requir-
ing only more limited capabilities, such as described by
[TF92, HP93a], we make two simple but important ob-
servations:

e Summations over several variables should not pre-
sume a order in which to perform the summation

e Eliminating redundant constraints is useful

As of March 1994, we have not implemented the com-
plete system described here. As we do so, we will un-
doubted learn more about efficient techniques for count-
ing solutions and performing summations over Pres-
burger formulas.

8 Acknowledgements

Thanks to Wayne Kelly and Dave Wonnacott for their
close readings of this manuscript, and to my entire re-

search team
Wayne Kelly Vadim Maslov Evan Rosser

Tatiana Shpeisman Dave Wonnacott
for their work on the implementation. This work is sup-
ported by an NSF PYT grant CCR-9157384 and by a
Packard Fellowship.

9 Further Info

The Omega project 1s exploring the use of advanced con-
straint technology in analyzing and transforming scien-
tific programs for execution on supercomputers. Among
other topics, we are investigating unified frameworks
for reordering transformations [KP93b, KP93a], ad-
vanced forms of dependence analysis [PW93b, PW93a],
and techniques for dealing with polynomial constraints
[MP94]. Much of our research is implemented in pub-
licly available implementations, which are being used
by other research groups around the world. More info
about our research project or software can be obtained
via:

e email: omega@cs.umd.edu

e anonymous ftp:

ftp.cs.umd.edu : pub/omega

o world wide web:

http: //www.cs.umd.edu/projects/omega

REFERENCES

[A191]

[Bey81]

[FSTI1]

[GI88]

[HP93a]

[HP93b]

[KP93a]

[KP93b]

[MP94]

Corinne Ancourt and Francois Irigoin. Scan-
ning polyhedra with DO loops. In Proc. of
the 3rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming,

pages 39-50, April 1991.

William H. Beyer, editor. CRC Standard
Mathematical Tables. CRC Press, 1981.

J. Ferrante, V. Sarkar, and W. Thrash. On
estimating and enhancing cache effectiveness.
In Advances in Languages and Compilers for
Parallel Processing, pages 328-343. The MIT
Press, 1991.

D. Gannon and W. Jalby. Strategies for cache
and local memory management by global pro-
gram transformation. Journal of Parallel and
Distributed Computing, pages 587616, 1988.

M. Haghighat and C. Polychronopoulos. Sym-
bolic analysis: A basis for parallelization, op-
timization and scheduling of programs. In
Utpal Banerjee et al., editor, Languages and
Compilers for Parallel Computing. Springer-
Verlag, August 1993. LNCS vol. 768; pro-
ceedings of the Sixth Annual Workshop on
Programming Languages and Compilers for
Parallel Computing.

M. Haghighat and C. Polychronopoulos. Sym-
bolic analysis: A basis for parallelization, op-
timization and scheduling of programs. Tech-
nical Report 1317, CSRD, Univ. of Illinois,
August 1993.

Wayne Kelly and William Pugh. Determin-
ing schedules based on performance estima-
tion. Technical Report CS-TR-3108, Dept.
of Computer Science, University of Maryland,
College Park, July 1993. to appear in Parallel
Processing Letters (1994).

Wayne Kelly and William Pugh. A frame-
work for unifying reordering transformations.
Technical Report CS-TR-3193, Dept. of Com-
puter Science, University of Maryland, Col-
lege Park, April 1993.

Vadim Maslov and William Pugh. Simpli-
fying polynomial constraints over integers to
make dependence analysis more precise. Tech-
nical Report CS-TR-3109.01, Dept. of Com-
puter Science, University of Maryland, Col-
lege Park, February 1994. Submitted to CON-
PAR ’94.

[Pug92]

[PW92]

[PW93a]

[PW93b]

[Sch86]

[Taw91]

[Taw94]

[TF92]

William Pugh. The Omega test: a fast and
practical integer programming algorithm for
dependence analysis. Communications of the

ACM, 8:102-114, August 1992.

William Pugh and David Wonnacott. Go-
ing beyond integer programming with the
Omega test to eliminate false data depen-
dences. Technical Report CS-TR-3191, Dept.
of Computer Science, University of Maryland,
College Park, December 1992. An earlier ver-
sion of this paper appeared at the SIGPLAN
PLDI’92 conference.

William Pugh and David Wonnacott. An eval-
uation of exact methods for analysis of value-
based array data dependences. In Sizth An-
nual Workshop on Programming Languages
and Compilers for Parallel Computing, Port-
land, OR,, August 1993.

William Pugh and David Wonnacott. Static
analysis of upper and lower bounds on depen-
dences and parallelism. ACM Transactions on
Programmaing Languages and Systems, 1993.
accepted for publication.

A. Schrigver. Theory of Linear and Integer
Programmang. John Wiley and Sons, Chich-
ester, Great Britain, 1986.

Nadia Tawbi. Parallélization Automatique:
Estimation des Durées d’Fzécution et Allo-
cation Statique de Processeurs. PhD thesis,
Université Pierre et Marie Curie, April 1991.

Nadia Tawbi. Estimation of nested loop exe-
cution time by integer arithmetics in convex
polyhedra. In Proc. of the 199 International
Parallel Processing Sympostum, April 1994.

Nadia Tawbi and Paul Feautrier. Processor al-
location and loop scheduling on multiproces-
sor computers. In Proc. of the 1992 Interna-
tional Conference on Supercomputing, pages

63-71, July 1992.

