
ABSTRACT

Title of Dissertation: EXACT AND HEURISTIC METHODS
FOR EMERGING VEHICLE ROUTING PROBLEMS

Eric Oden
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Bruce Golden
Professor S. Raghavan
The Robert H. Smith School of Business

The rise of global supply chains and e-commerce in recent decades have intensified the

relevance of the transportation industry to both the individual and the economy. With rising

consumer expectations and slim profit margins, the various sectors within the transportation

industry rely on the development of carefully designed routes to remain competitive. Despite the

wealth of research on route design, and the responsiveness of the research community to practical

considerations, there remain gaps between the work done in practice and that appearing in the

literature. Correspondingly, the work in this dissertation is directly in response to conversations

had with contacts from real-world companies within the transportation domain. We consider

problems presented, verbally, by companies representing three distinct segments of the industry:

freight routing, last-mile delivery, and on-demand passenger transport. Each problem is centered

around an innovative strategy with the potential to dramatically disrupt its corresponding domain.

First, we consider the Shared Truckload (STL) freight shipping model, an alternative to the

dominant Less-than-Truckload (LTL) model. Both models pool shipments from multiple customers

into a single trailer, but, in the latter, consolidation is facilitated by a hub-and-spoke routing

network, whereas, in the the former, freight moves directly from origin to destination. This

strategy minimizes travel times and the risk of damage. We then investigate a novel strategy

to facilitate last-mile, last-minute delivery, through coordinating a fleet of trucks and a fleet of

smaller vehicles, referred to as shuttles. In order to accommodate requests which come in after

trucks have been dispatched, shuttles are allowed to pick up packages from a depot and intercept

trucks along their routes. This strategy can enable a shipper to make highly competitive service

guarantees. Finally, we consider the emerging field of Urban Air Mobility (UAM), a vision of

air taxis conveying passengers at lower altitudes throughout urban areas as an efficient alternative

to gridlock traffic. In particular, we consider a UAM service company in the early stages of its

development, where the chief goal is to maximize market share.

These innovations represent significant deviations from the status quo in their respective

fields, and, thus, the existing research for each is slim, if existent. Therefore, we introduce precise

mathematical formulations of each of the problems to the research community. We then develop

both exact and heuristic approaches to solve the problems, and carry out extensive computational

studies comparing the solution methodologies. Furthermore, for each of the problems, we offer a

sensitivity analysis and managerial insights. Among our contributions are original algorithms

based on solving a set-partitioning formulations via column generation, a highly successful

paradigm for solving large linear programs. Among the advantages of this approach is the

ability to include highly general route costs and constraints. We illustrate this expressiveness

by demonstrating its application to each of the three highly distinct problems we consider.

EXACT AND HEURISTIC METHODS FOR NOVEL VEHICLE ROUTING
PROBLEMS

by

Eric Oden

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Bruce Golden, Chair
Professor S. Raghavan, Co-chair
Professor Maria Cameron
Professor Zhi-Long Chen
Professor Paul Schonfeld

© Copyright by
Eric Oden

2022

Acknowledgments

It is impossible to fully enumerate all of to whom I am indebted. However, I must thank

my advisers, Dr. Bruce Golden and Dr. S. “Raghu” Raghavan for their expert guidance and

support during the completion of this dissertation. Their insights and suggestions, drawn from

deep experience with the world of transportation research, served as indispensable guides as I

navigated the wealth of extant research and worked towards the results presented in this work.

Throughout my studies, I was given the encouragement to explore and experiment with countless

ideas, always able to rely on a prompt response after hitting any bump, fork, or brick wall.

During our unfailingly collegial meetings, they helped disentangle my thoughts and ideas into

clear, coherent research directions.

Furthermore, thanks to my advisers’ network of connections with industry practitioners,

and the introductions they made, I was able work on cutting-edge problems with immediate

relevance. Through Dr. Golden’s connection with RouteSmart Technologies, I was given an

invaluable glimpse into how vehicle routing is done in practice. For that, I must also thank Dr.

Damon Gulczynski and Dr. Larry Levy, whose welcome and guidance made my experience with

RouteSmart not only edifying but deeply enjoyable. I also thank Dr. Oliver Lum and Dr. Rui

Zhang for their detailed feedback on my work.

I was extremely fortunate throughout my studies to seek the advice and insights of Dr.

Golden’s recent former students, especially Dr. Stefan Poikonen and Dr. Debdatta Sinha Roy.

ii

Both a few years ahead of me in their professional careers, they were generous to provide

their invaluable advice on mathematical methods, computational implementations, and research

writing.

I also thank the faculty and staff comprising the Applied Math and Scientific Computing

(AMSC) Program at the University of Maryland for their support during this journey, especially

the AMSC coordinator, Jessica Sadler, for her impeccable responsiveness and communication.

I thank my parents and my sister for their constant and unconditional love and encouragement

during my graduate school career. I thank my friend, Ryan, for stimulating lunchtime conversations

during his time at University of Maryland. I must finally thank my girlfriend for her role as an

uncompromising and limitless source of strength and perspective. I thank her for her patience

during my countless late nights at the computer, sudden dashes towards pencil and paper, and,

most heroically, impassioned impromptu seminars on scattered mathematical topics.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

Chapter 1: Introduction 1

Chapter 2: A Shared Truckload Service Problem with Origin and Terminal Point-Dependent
Fares 6

2.1 Introduction . 6
2.2 Literature Review . 10
2.3 Problem Description . 13
2.4 Branch-and-Price . 20

2.4.1 Labeling Algorithm . 22
2.4.2 Branching . 25
2.4.3 Extensions . 26

2.5 Heuristics . 27
2.5.1 Baseline Heuristic . 27
2.5.2 Parallel Savings Algorithm . 28

2.6 Computational Study . 32
2.6.1 Test Bed . 32
2.6.2 Results . 34
2.6.3 Sensitivity Analysis . 39

2.7 Conclusions . 44

Chapter 3: The Rendezvous Vehicle Routing Problem 46
3.1 Introduction . 46
3.2 Problem Statement . 48

3.2.1 Literature Review . 51
3.3 Solution Approaches . 53

3.3.1 Arc-Based Formulation . 53
3.3.2 Path-Based Formulation . 59

iv

3.3.3 Heuristic . 66
3.4 Computational Results . 71

3.4.1 Test Data . 71
3.4.2 Comparison of Approaches . 73
3.4.3 Input Sensitivity . 77

3.5 Conclusions . 81

Chapter 4: The Urban Air Mobility Problem 83
4.1 Introduction . 83
4.2 Problem Background . 85
4.3 Related Literature . 89
4.4 Arc-Based Approach . 91

4.4.1 Notation . 92
4.4.2 Three-Index Formulation . 93
4.4.3 Two-index Heuristic . 95

4.5 Path-Based Approach . 96
4.5.1 Path-Based Formulation . 96
4.5.2 Column Generation . 98
4.5.3 Subproblem . 100
4.5.4 Initialization . 102
4.5.5 Branching . 102
4.5.6 Network Sparsification . 103

4.6 Computational Results . 104
4.6.1 Simulated Data Sets . 105
4.6.2 Results on Simulated Data Sets . 107
4.6.3 Case Study: DC Metro Area . 118

4.7 Conclusions . 122

Chapter 5: Conclusions 124

Appendix A: Additional Material for Chapter 2 128
A.1 Proofs of Validity . 128
A.2 Savings Approximation . 129

Appendix B: Additional Material for Chapter 4 132
B.1 Modeling Extensions . 132
B.2 Two-index Heuristic . 135
B.3 Sparsification . 138
B.4 Load Factor Analysis . 141
B.5 Tables Corresponding to Computational Results in Chapter 4 142

Bibliography 150

v

List of Tables

2.1 Problem Parameters for the STLP . 15
2.2 Fare table for test bed. 34
2.3 Performance of the arc-based MIP formulation vs. B&P. 35
2.4 Run times of column generation methods. 37
2.5 Performance of heuristic approaches. 38
2.6 Performance of heuristic approaches on larger instances. 38

3.1 Performance of the arc-based and path-based methods. 74
3.2 Performance of the methods on larger instances of the RVRP. 75
3.3 Performance of the methods, with the number of trucks raised to eight. 76
3.4 Without allowing vs. allowing rendezvous . 79
3.5 Without allowing vs. allowing rendezvous, number of LMSLs doubled. 80

4.1 Parameter values. These were the fixed values used in our experiments. 107
4.2 Results on the DC problem, with 8 ports, 20 eVTOLs, and 1000 customers. . . . 122
4.3 Results on the same DC problems with and without charge constraints. 122
4.4 Results on the DC problem with 20 eVTOLs and 8 ports. 122

B.1 Problem Set A run times. 145
B.2 Problem Set A objective values. 146
B.3 Problem Set B run times. 147
B.4 Problem Set B objective values. 148
B.5 Problem Set B* run times. 148
B.6 Problem Set B* objective values. 149

vi

List of Figures

2.1 Comparison of two STL routes. 14
2.2 Visualization of the fare-expanded network. 15
2.3 Example instance of a 100-customer STLP. 34
2.4 Sensitivity analysis of the delay factor, λ. 39
2.5 Sensitivity analysis of the stop cost, E. 40
2.6 Sensitivity analysis of the maximum number of customers per route, τ 41
2.7 Sensitivity analysis of the load sizes. 42
2.8 Sensitivity analysis of the constraints. 43

3.1 Comparison of direct and indirect deliveries. 50
3.2 Sample solution to the RVRP with four trucks and one shuttle. 50
3.3 Finding the optimal shuttle return path by solving a TSP. 67
3.4 Finding a shuttle return path in a greedy fashion. 68
3.5 Performance of heuristic on several 200-customer instances. 77
3.6 Sensitivity analysis of the head start parameter, h. 80

4.1 Sparsification procedure. 105
4.2 MIP3 and B&P run time on Problem Set A. 108
4.3 Optimality gap at the root node and run times for B&P on Problem Set A. 109
4.4 Optimality gap versus number of columns generated. 110
4.5 Performance of the column generation based methods on Problem Set A. 111
4.6 Comparison of maximum reduced costs with run times and optimality gaps. . . . 113
4.7 Performance of the threshold-based heuristics on Problem Set A. 114
4.8 Performance of the better-performing methods on Problem Set B. 114
4.9 Sensitivity to time step size. 117
4.10 Performance of column generation methods on Problem Set B*. 118
4.11 Visualization of the taxi ridership data. 120

B.1 Gap of MIP2⇒3 and run times of MIP2⇒3 and MIP3 on Problem Set A. 138
B.2 Gap of MIP2⇒3 and run times of MIP2⇒3 and RCG on Problem Set B. 139
B.3 Demonstration of necessity of all anticipatory arcs. 141
B.4 Occupancy levels for various parameter settings. 143
B.5 Average flight times for various parameter settings. 143

vii

List of Abbreviations

B&P Branch and Price
CG Column Generation
EOL end-of-line
eVTOL Electric Vertical Takeoff and Landing (aircraft)
FTL Full Truckload
GMM Gaussian Mixture Model
LB Lower Bound
LIFO Last-In, First-Out
LKH Lin-Kernighan Heuristic
LMP Linearized Master Problem
LMSL Last-Minute Service Location
LTL Less-Than-Truckload
MIP Mixed-Integer Program
MP Master Problem
PSA Parallel Savings Algorithm
RCESPP Resource-Constrained Elementary Shortest Path Problem
RLMP Reduced Linearized Master Problem
RVRP Rendezvous Vehicle Routing Problem
STL Shared Truckload
STLP Shared Truckload Problem
TSP Traveling Salesman Problem
UAM Urban Air Mobility
UPS United Parcel Service
USPS United States Postal Service
VRP Vehicle Routing Problem
VRPMS Vehicle Routing Problem with Multiple Synchronization Constraints
VTOL Vertical Takeoff and Landing (aircraft)

viii

Chapter 1: Introduction

Since its introduction in 1959 [1], the Vehicle Routing Problem (VRP) has been among

the most popular examples of the utility of mathematical programming, as well as one of its

most well-studied applications. In its most basic form, the VRP seeks the minimum-distance

set of routes for a fleet of vehicles such that they collectively serve a given set of customers.

As a generalization of the Traveling Salesman Problem, the VRP is NP-Hard [2]. Nonetheless,

its immediate applicability to a variety of important settings has led to its continued attention

throughout the past several decades. In response to real-world applications, a wealth of variants

have emerged. Such variations distinguish themselves from the basic VRP through new constraints

(e.g., the VRP with time windows [3]), objectives (e.g., completion time rather than distance [4]),

and/or assumptions about the availability of information and how/when decisions can be made

(e.g., the Dynamic VRP [5]). Periodic efforts to taxonomize such variants (e.g., [6], [7], [8],

[5], [9]) illustrate this plurality. Alongside this trend, a bifurcation in the nature of papers has

emerged. On one end of the spectrum are endeavors to advance the state of the art on the more

basic, yet nonetheless difficult, variants using exact methods (i.e., methods providing optimal

solutions). On the other end are efforts to fully represent practical routing problems, leading to

complex formulations that cannot be solved to optimality, and are instead solved using heuristic

algorithms. The reliance on heuristic approaches is quite reasonable; in several applications, the

1

problem sizes likely to be encountered exceed the limits of even the best exact approaches. On

the other hand, exact methods allow researchers to characterize the nature of optimal solutions,

which can inform the development of heuristics as well as provide a benchmark against which to

test them. Furthermore, exact methods facilitate computational sensitivity analyses to problem

parameters.

This dissertation seeks to straddle this gap through the introduction of three formulations

representative of realistic problems solved using heuristic as well as exact methods. This is

accomplished by the application of modern column generation (CG) approaches [10], an effective

paradigm for routing problems that allows for a broad diversity of problem-specific constraints.

Using CG methods on our problems, we are able to find optimal solutions to instances of non-

trivial size. With access to such solutions, were are able to make qualitative observations about

the nature of the best solutions (which can inform the development of heuristics), as well as

provide quantitative assessments of heuristic methods (by comparing solution quality).

Each of the applications considered in this dissertation falls within the scope of the “Smart

Cities” movement [11], a push towards more efficient urban areas in response to the numerous

challenges arising from dramatic population growth in such regions. Indeed, the United Nations

projects 68% of the world population will be urban by 2050 [12], which will intensify existing

economic, social, and environmental issues in cities. The envisaged smart city will achieve its

efficiency through integration of information and communication technology (ICT) and Internet

of Things (IoT) technology into decision making, facilitating real-time responses that remove

inefficiencies at a system-level (e.g., traffic lights changing in response to current traffic patterns).

As transportation constitutes a vital component of urban life, models for scalable and efficient

conveyance of people and goods plays a central role in the planning of Smart Cities. We consider

2

applications, consistent with this movement, representing three distinct domains within transportation:

freight routing, last-mile parcel delivery, and on-demand passenger transport. Each of the corresponding

problems were developed under the advisement of partner companies invested in the corresponding

space.

Furthermore, each of the problems is built around a novel idea with the potential to disrupt

the status quo in their respective domains, and each anticipates a trend towards the Smart City

paradigm.

In Chapter 2, we consider a routing problem emerging in a shared truckload (STL) freight

service context, which is an alternative to full truckload (FTL) and hub-based, less-than-truckload

(LTL) service. The STL model seeks to achieve the speed and reliability of FTL shipment

and the cost-effectiveness of LTL shipment by pooling freight in trucks without consolidation

at intermediate terminals; rather, the freight of a given shipper remains in the same truck from

pickup to delivery. We take the perspective of a coordinating entity between shippers and carriers,

who possesses a batch of requests from shippers and seeks to design truck routes that collectively

serve all requests while minimizing the resulting carrier costs. It is desirable for a carrier to begin

and terminate routes in areas of high demand, as trucks are then less likely to need to travel empty

(i.e., deadhead) to begin a new route. Thus, we model costs as dependent on the demand levels

at the original and terminal nodes and introduce the resulting shared truckload design problem.

We then present a Branch and Price algorithm to arrive at optimal solutions for small (i.e., ≤ 25

customer) instances, as well as a column generation and parallel savings heuristic for finding

near-optimal solutions on larger instances (up to 90 customers), the former within hours, and

the latter within a minute. The column generation heuristic produces solutions within 1% of

optimality for the largest instances. The parallel savings heuristic produces solutions within 3%

3

of the column generation solution, significantly outperforming a strong baseline approach, whose

solutions are around 23% worse than optimal. We also carry out a sensitivity analysis of problem

parameters, and evaluate the “price” of various constraints in the problem.

In Chapter 3, we consider a novel scheme for same-day delivery with a strong potential to

reduce both transportation costs and carbon footprint as well as improve quality of service for

consumers. A delivery company has two distinct fleets: trucks devoted to scheduled deliveries

leaving on their fixed delivery routes early in the day, and shuttles leaving later in the day carrying

same-day delivery packages. By allowing shuttles to intercept trucks and hand off packages for

truck delivery, it may be possible to leverage the unfinished portion of truck routes to shorten

the delivery routes of the shuttles. We refer to this as the rendezvous vehicle routing problem.

We present a mathematical formulation of the problem, as well as a column generation algorithm

that can quickly find optimal solutions for instances with up to 200 customer stops. We also

develop and demonstrate the effectiveness of a specialized heuristic for use in larger instances

with up to 1,000 customer stops. Our computational study validates the efficacy of truck-shuttle

synchronization in this scheme, demonstrating savings of up to 77% in the test instances.

In Chapter 4, we consider a passenger transportation problem inspired by the Urban Air

Mobility (UAM) movement. Over the next two decades, UAM Systems are anticipated to

revolutionize the mass transportation industry. As envisioned presently, these systems will consist

of electric vertical take-off and landing aircraft (eVTOLs) that operate from specially designed

ports dispersed throughout a city. We consider the network logistics associated with the operation

of a UAM system in its early phases, and focus on a problem of routing and scheduling eVTOLs

to maximize passenger throughput. Key challenges for providers are the temporal nature of the

demand, time windows for customers, and battery management constraints of the eVTOLs. We

4

develop a three-index, arc-based formulation, routing eVTOLs over a time-expanded network.

Due to the computational limitations of the arc-based formulation, we develop an alternate path-

based formulation, and design a corresponding column generation procedure, identifying charge-

feasible routes by way of a resource-constrained shortest path problem. The path-based approach

is computationally robust, and can be applied in a heuristic manner by (i) sparsifying the time-

expanded network, (ii) limiting column generation to the root node in a branch-and-bound scheme,

and (iii) applying early termination criteria in the column generation procedure. Our

computational experiments on a large set of test instances indicate that the path-based approach

identifies high-quality solutions for large instances. We conduct a case study using Washington

DC taxi data to demonstrate the viability of the column generation based heuristic.

5

Chapter 2: A Shared Truckload Service Problem with Origin and Terminal Point-

Dependent Fares

2.1 Introduction

The freight industry represents a vital segment of the economy, and, to balance profitability

and market demands, it requires economically efficient routes that achieve a high quality of

service. The rise of e-commerce has been accompanied by an increased demand for lower-

cost routes and shorter delivery windows [13]. Due to globalization of supply chains in the

manufacturing and retail industries, there is a growing need to move relatively small loads that

do not occupy a full truckload but are larger than what could be delivered by a parcel service

(e.g., FedEx Ground, UPS) [14].

In response, the less-than-truckload (LTL) freight model pools together loads ranging from

150 to 15,000 lbs [15] from multiple shippers. Compared to the yield from transporting a full

load associated with a single customer, the LTL model leads to significant savings for the shipper,

which only needs to pay for a portion of the truck space, and greater revenue for the carrier.

LTL providers employ a hub-and-spoke model, called the line-haul network, to facilitate freight

consolidation and increase load factors (i.e., trailer utilization). The spokes of the network are

regional end-of-line (EOL) terminals, which can serve only as origin or destination terminals,

6

and the hubs are breakbulk terminals, which can serve as transfer points as well as origin or

destination terminals. The load of a given shipper is first brought to the nearby terminal, where

it is sorted and consolidated with other freight. The shipment then travels through the line-

haul network towards the terminal near its destination, to which it is then finally delivered. The

shipment may pass through multiple breakbulk terminals. Details on the design and operation of

LTL networks are presented by Erera et al. [16].

The principal drawbacks of the LTL model compared to the full truckload (FTL) model

are the increase in shipping time and risk of damage arising from the hub-and-spoke paradigm.

In particular, shipments in terminals are typically sorted in a first-in, first-out (FIFO) manner,

meaning entry into a terminal may correspond to entering a lengthy queue. Furthermore, freight

must be unloaded and reloaded for consolidation at breakbulk terminals, leading to a significant

risk of damage. For these reasons, LTL companies aim to allow no more than two handlings

of freight at intermediate breakbulk terminals [17]. In contrast, an FTL service will deliver

freight directly between the origin and destination specified by the shipper, which allows for

fast delivery, reliable delivery time estimates, and a minimal risk of damage. Thus, a shipper

must weigh the cost savings of LTL against the increase in shipping time and possibility of

damaged freight. However, an alternative freight model has emerged which seeks to achieve the

cost savings associated with shipment pooling while avoiding the drawbacks arising from the

hub-and-spoke design. Rather than consolidating freight at breakbulk terminals, in the shared

truckload (STL) model, the same truck will make the pickup and delivery for a given customer,

traveling along a route consisting of a sequence of multiple pickups and deliveries. The risk of

damage is minimized as freight is only loaded and unloaded once for each shipment, and the time

from pickup to delivery is comparable to that of an FTL shipment. Furthermore, by avoiding trips

7

to and from breakbulk terminals, the STL model can significantly reduce the carbon emissions

generated.

In bypassing the hub-and-spoke model, which, given its structure, brings the benefit of

simplifying route design, the success of the STL model requires carefully coordinated routes that

can simultaneously meet service expectations and avoid under-utilization of the trailers. In this

work, we take the perspective of a purchasing manager responsible for this coordination, which

interfaces with both shippers (customers) and carriers. The shippers provide requests consisting

of origin/destination pairs, descriptions of the freight (e.g., size, weight, freight class), and pickup

dates. With this information, the manager designs routes that accommodate these requests and

submits the routes for bidding among the carriers, seeking to pay as little as possible.

To model our problem, we assume the existence of a function that returns the cost of a route

submitted to bidding among the carriers. In reality, carriers determine rates based on several

parameters, and estimations of market rates require historical shipment data from a variety of

carriers [14]. We assume that this has been done and that the historical data can be adequately

fit by a known function of a particular form. Specifically, we assume this function is a linear

combination of two quantities: the duration of the route and the number of stops. The weight

of the duration (i.e., the per-hour fare) is dependent on the original and terminal locations. This

is because it is in the interest of a carrier for a route to begin and end near a depot or near the

terminals of other routes, as the trucks then do not need to travel great distances empty (i.e.,

deadhead) in order to be utilized again. We refer to such regions as high-demand regions, where

demand denotes the attractiveness of the location for a carrier to begin or end a route. This

captures the common use of industry standards called “tariffs,” which price freight based on

origin-destination ZIP codes (as well as freight class and weight). The per-mile rates incentivize

8

routes starting and ending in high-demand locations. Thus, it may be advantageous for the

purchasing manager to submit a route that ends in a high-demand area but takes more time than

a route that serves the same customers and terminates in a low-demand area. Furthermore, the

cost of a route increases with each additional stop added, with the increase referred to as the stop

cost.

There are a number of constraints the coordinator must also consider. Precedence of pickup

to delivery and truck capacity constraints must be respected. As STL providers adopt a one-

touch policy, promising minimal risk of damage by allowing only a single loading/unloading for

each shipment, shippers must be served in a last in, first out (LIFO) manner. We note that it

may be possible to consider trucks capable of side-loading or loading shipments such that they

can be unloaded arbitrarily (e.g., loading the left side and right side of a trailer independently).

However, given the relative infrequency of these options, we do not consider them in this work.

Furthermore, routes developed by the coordinator must not sacrifice the efficiency of STL shipping

from the perspective of the customer. That is, the time from pickup to delivery should be

comparable to the FTL alternative (i.e., the direct path). The size of the pools must also be

limited. That is, the number of customers served by a given route cannot exceed a given value.

According to our industry contact, as pooling at scale is a relatively novel concept in the industry,

carriers still perceive extra time and distance as an inconvenience that they must be compensated

for. While this can be captured by introducing a stop cost for each additional stop on a route,

our industry partner has observed a breaking point in the number of stops such that carriers are

unwilling to haul such a load at any price. In particular, a pool of more than four shipments is

unlikely to be accepted. Finally, trucks are not permitted to be empty for any leg of the trip. While

allowing such deadheads could lead to more cost-effective routes, our industry partner explains

9

that such routes are not likely to be accepted by carriers.

In Section 2.2, we conduct a literature review of related problems in this space. In Section

2.3, we explicitly describe the assumptions, objectives, and constraints in our problem. In Section

2.4, we present a branch-and-price model to identify optimal or near-optimal solutions to small

instances of the problem. In Section 2.5.2, we present our parallel savings algorithm to solve

practically-sized instances. In Section 2.6, we conduct a computational study of our approaches,

including a description of a test bed of instances we developed for the problem, and a sensitivity

analysis of problem parameters and the LIFO constraints.

2.2 Literature Review

The STL freight model is a fairly new approach to freight shipping, and, as such, we are

unable to identify any work directly addressing the domain. The LTL model, on the other hand,

has existed for decades, and an abundance of research has focused on solving corresponding

problems. While there is a significant difference in the organizational structure of the two

strategies, there are several commonalities between existing work on LTL problems and our

problem. In particular, many papers take the perspective of a coordinating entity between shippers

and carriers, aiming to minimize carrier costs subject to satisfaction of service constraints.

Furthermore, both freight models require intelligent routing and pooling methodologies to be

successful. In both environments, ensuring high trailer utilization is an intuitive goal. Finally, as

STL can be seen as an alternative to LTL, problem-specific parameters such as distances, load

sizes, and length of planning horizon are similar. As the LTL industry is highly fragmented,

modeling route costs is difficult. Similarly, we only expect our model of route costs to serve

10

as a prediction. A regression model for costing LTL routes, synthesizing quantitative data and

qualitative insights from practitioners, is presented by Özkaya et al. [14].

A survey of the various aspects of LTL routing, and contemporary freight more broadly, is

presented by Crainic [18]. The author introduces a taxonomy of planning levels for transportation

systems. Our work, similar to much of the research in LTL, falls within the tactical (medium-

term) level, as we seek to design truck routes and shipment pools that minimize costs at a system

level. The state-of-the-art structure in LTL planning is the load plan, which identifies a single

sequence of terminals for each origin-destination pair in the network. Given a load plan, LTL

providers create a planned flow, which is the actual sequence of truck routes along which freight

travels. In addition, an alternative sequence for each origin-destination pair may be included in

the load plan, which allows for greater flexibility for real-time adjustments of the planned flow

[19]. Powell and Sheffi [20] present a two-phase approach to generate the load plan, seeking

to minimize the number of trailers utilized. Katamaya and Yurimoto [21] formulate the load-

planning problem as an arc-based IP, which is solved using a Lagrangian relaxation method. A

slope-scaling heuristic to solve a tree-based formulation of the problem is presented by Jarrah

et al. [17]. Erera et al. [22] present an integer program-assisted neighborhood search algorithm.

An Ant Colony optimization approach is presented by Barcos et al. [23]. A Steiner-forest

based heuristic to solve for routing LTL freight through a time-expanded network is presented

in Tamvada et al. [24].

The STL routing problem can be viewed as a variant of the Dial-a-Ride Problem (DARP)

[25], itself a generalization of the Pickup and Delivery Problem (PDP) [26], both well-studied.

Similar to our problem, the PDP seeks the design of routes that transport customers (or, their

goods) from origins to destinations, where customers can occupy a vehicle simultaneously. Like

11

our problem, constraints are placed on precedence of pickup to delivery, the capacity of vehicles,

and, in the case of the DARP, the elapsed time from pickup to delivery. However, the objective of

the STL routing problem is quite different from popular PDP objectives, such as the minimization

of travel time, travel distance, or number of vehicles required. In particular, the objective in our

work depends greatly on the starting and ending nodes of selected routes. To our knowledge,

no existing application of the PDP or the DARP costs routes in such a way. Rather, most PDP

formulations introduce a depot, representing the common starting and ending location for all

routes.

Given their practical relevance to the logistics industry, there has been effort within the

vehicle routing research community to capture LIFO constraints. Solution methodologies for

PDPs with LIFO loading include exact [27, 28, 29, 30] and heuristic [31, 32, 33, 34] approaches.

Successful heuristics have been based on variable neighborhood search. However, to our knowledge,

there is no work on incorporating LIFO constraints along with the other constraints outlined in

Section 2.1, such as limiting the duration from pickup to delivery for each customer.

Our heuristic makes use of a parallel savings algorithm (PSA) for merging routes. Similar

algorithms for variants of the Vehicle Routing Problem have been proposed. Desrochers and

Verhoog [35] and Altinkemer and Gavish [36] demonstrated its use for solving the Capacitated

VRP. Gajpal and Abad [37] use a similar PSA for a VRP with simultaneous pickup and delivery.

However, to our knowledge, the PSA has not been used in conjunction with a set partitioning

formulation, the corresponding matheuristic presented in our work.

12

2.3 Problem Description

We consider a set of n customers, where each customer is associated with a pickup node

and a delivery node. Let n = |C|, P = {1, . . . , n} be the set of pickup locations and D =

{n + 1, . . . , 2n} be the set of delivery locations. We assume the delivery location for the load

picked up at i ∈ P is i+ n ∈ D. Let V = P ∪D. Each i ∈ V is associated with a demand level,

di ∈ R+. Let A be the set of arcs (i, j) between every pair of nodes i, j ∈ V, i ̸= j. Let cij be the

travel time to traverse arc (i, j). We assume c satisfies the triangle inequality. For each i ∈ P , let

qi > 0 be the load of the item that must be picked up at i and delivered at i + n. Let Q ∈ R be

the uniform truck capacity.

A truck route, r, associated with a sequence of nodes {sr = r0, r1, . . . , r|r|−1 = tr}, where

rk ∈ V for k ∈ {0, . . . , |r| − 1}, must visit both the pickup and delivery node for each customer

it visits, visiting the pickup node first, but it can begin at any pickup node and end at any delivery

node. That is, we assume trucks are ubiquitous. In practice, carriers have an initial deadhead

segment to get to their first stop. However, our industry partner also ignores this leg, with the

justification that the carrier market is quite dense. Thus, the purchasing manager should be able

to find a carrier close enough to the first stop so that the initial deadheading leg can be ignored.

Respecting the one-touch policy, the pickup and delivery sequence must satisfy LIFO constraints.

The time traveled along the route is given by cr =
∑|r|−2

i=0 cri,ri+1
. There is a per-unit time cost

associated with a route originating at node i and terminating at node j, F (i, j) ∈ R+. This value

is dependent only on the demand levels at i and j. That is, there is a function g : R × R → R

such that F (i, j) = g(di, dj) for all i, j ∈ N . Furthermore, for each route r, there is a stop

cost, er ∈ R+, which is linear with respect to each customer, after the first, added to the route.

13

A

B

A’

B’

1

1

1

A

B

A’

B’

1

0.5

1

Figure 2.1: Comparison of two STL routes.

That is, er = Emax{(|r| − 2)/2, 0}, where E ∈ R+ is the per-additional customer stop cost.

Trucks cannot travel empty at any point (i.e., deadheads are not permitted). For each customer,

the elapsed time from pickup to delivery cannot exceed a given factor, λ ∈ R, of the time to go

directly from the pickup location to the delivery location. A given route cannot serve more than

τ ∈ Z customers. At any point, the load on a truck cannot exceed Q. We compare two possible

routes in Figure 2.1 which serve two customers. A andA′ denote the pickup and delivery location

for the first customer, and B and B′ those for the second. Each arc is labeled by its associated

travel time. Both routes satisfy LIFO constraints and never deadhead. The first route has a total

travel time of 3, and the second, 2.5. However, the pickup and delivery for the first customer are

both high demand (represented by green nodes), whereas those for the second are low demand

(represented by red nodes). Correspondingly, the first route will have a lower fare. If that fare is

sufficiently lower than the fare of the second route (in this case, below a factor of 5/6), the first

route is preferable. We also note that the first route is only feasible if λ ≥ 6.

We seek the set of truck routes, R, which serves all customers exactly once and minimizes:

∑
r∈R

[F (sr, tr)cr + er] .

We call this the shared truckload problem (STLP). The problem data is summarized in

Table 2.1. It is possible to model the STLP using an integer linear formulation by defining a

14

Name Description

n ∈ Z Number of customers
P = {1, . . . , n} Set of pickup locations
D = {n+ 1, . . . , 2n} Set of delivery locations
V = P ∪D Set of all locations
di ∈ R+ Demand level at location i ∈ V
qi ∈ R+ Load associated with pickup i ∈ P
cij ∈ R+ Travel time from i ∈ V to j ∈ V
F (i, j) ∈ R+ Per-unit time cost for starting at node i ∈ P and ending at node j ∈ D
E ∈ R+ Per-additional customer stop cost
Q ∈ R+ Uniform truck capacity
τ ∈ Z+ Maximum number of customers a single truck can serve
λ ∈ R+ Maximum delay factor

Table 2.1: Problem Parameters for the STLP

(High, High)
(High, Low)

(Low, High)
(Low, Low)

s

t

Figure 2.2: Visualization of the fare-expanded network.

fare-expanded network, which we now construct.

Let F = {f ∈ R | ∃i ∈ P s.t.f = F (i, i+ n)} be the (finite) set of fares. Note that due to

LIFO constraints, as well as the prohibition of deadheading, all feasible routes starting at i ∈ P

must terminate at node i + n ∈ D. For i ∈ P , we say i (respectively, i + n) is an entry node

(respectively, exit node) for fare f ∈ F , if a route starting at i has fare f .

We define the fare-expanded nodes M = V × F , where a member of M is a location-fare

pair (i.e., the fare-expanded node (v, f) ∈ M corresponds to location v ∈ V and fare f ∈ F).

15

Let s and t be fictional start and end nodes, respectively. Let B be the set of arcs between nodes

(v, f), (v′, f ′) ∈M such that f = f ′, as well as arcs of the form (s, (i, f)), where (i, f) ∈M and

i is an entry node for fare f . Also include in B arcs of the form ((i, f), t), where (i, f) ∈M and

i is an exit node for fare f . Since no arcs in B connect members of M associated with different

fares, and since s and t are not connected, we may unambiguously denote a member of B by

(i, j, f), where, if i = s, f is the fare associated with the head node, and if j = t, f is the fare

associated with the tail node. An example of such a fare-expanded network, (M∪{s, t}, B), with

four possible fares, is presented in Figure 2.2. The travel network is copied for each fare. Circles

correspond to pickup nodes, and squares correspond to delivery nodes. Green nodes correspond

to high demand, and red nodes to low demand. Arcs extend from the fictional starting node, s,

towards the entry nodes in each of the sub-networks. Arcs extend from the exit nodes in each of

the sub-networks towards the fictional end node, t. Each sub-network is fully connected. Note

that arc costs may be defined in this fare-expanded network such that the cost of a route is the

sum of the arc costs. A path from s to t through the left-most network will correspond to a route

starting and ending at a high-demand location, which will have a low per-mile fare. Define the

cost of travel along arc (i, j, f):

cfij =

0 i = s

0 j = t

f · cij + E i ̸= s, j ∈ P

f · cij j ∈ D,

where we include the stop cost,E (associated with visiting an additional customer) by associating

16

it with the travel to their pickup node, provided the customer is not the first served by the truck

(i.e., the node visited immediately before the customer’s pickup node is not s).

Let the binary decision variable xfij ∈ {0, 1} for (i, j, f) ∈ B indicate the use of arc (i, j),

traveling with fare f . Let the binary decision variable uik ∈ {0, 1} for i ∈ V ∪ {s, t}, k ∈ P

equal 1 if the freight associated with pickup location k is in the trailer when a truck departs

from location i. The uik variables are similar to those used by Benavent et al. [29] to include

LIFO constraints in the multi-vehicle pickup and delivery problem. They are inspired by the

Miller-Tucker-Zemlin subtour elimination constraints for the traveling salesman problem [38].

However, rather than representing cumulative loads, which grow monotonically along the routes,

the variables represent loads of k distinct commodities that are picked up and dropped off. We

define the coefficients βik for i ∈ V ∪ {s, t} and k ∈ P with

βik =

1 i = k

−1 i = k + n

0 otherwise,

noting that βik indicates that item k can only be picked up from node k and can only be delivered

at node k + n. Let the coefficients γi for i ∈ V ∪ {s, t} equal 1 if and only if i ∈ P . Let the

continuous decision variable αi for i ∈ V ∪ {s, t} denote the time of departure from node i. Let

the continuous decision variable vi for i ∈ V ∪ {s, t} denote the number of pickups made by the

truck upon departure from node i. The following program models the STLP:

Minimize:
∑

(i,j,f)∈B

cfijx
f
ij (2.1)

17

Subject to:
∑

{f∈F |(i,j,f)∈B}

xfij = yij ∀i, j ∈ V ∪ {s, t} (2.2)

∑
{j∈V |(i,j)∈A}

yij = 1 ∀i ∈ V (2.3)

∑
{i∈V |(i,j)∈A}

yij = 1 ∀j ∈ V (2.4)

∑
{j∈V |(i,j,f)∈B}

xfij =
∑

{j∈V |(j,i,f)∈B}

xfji ∀i ∈ V, f ∈ F (2.5)

αi + cij −M1 (1− yij) ≤ αj ∀i ∈ V, j ∈ V (2.6)

(αn+i − αi) ≤ λci,n+1 ∀i ∈ P (2.7)

vi + γj −M2 (1− yij) ≤ vj ∀i ∈ V, j ∈ V (2.8)

vi ≤ τ ∀i ∈ P (2.9)

usk = 0 ∀k ∈ P (2.10)

utk = 0 ∀k ∈ P (2.11)

ukk = 1 ∀k ∈ P (2.12)

un+k,k = 0 ∀k ∈ P (2.13)

uik = ui+n,k ∀i ∈ P, k ∈ P, i ̸= k (2.14)∑
k∈P

qkuik ≤ Q ∀i ∈ P (2.15)∑
k∈P

uik ≥ 1− yit ∀i ∈ D (2.16)

uik − ujk + yij + (1− βik − βjk)yji ≤ 1− βjk ∀i, j ∈ V ∪ {s, t}, k ∈ P (2.17)

uik −
∑
j ̸=i

βjkyji ≥ βik ∀i ∈ V, k ∈ P (2.18)

xkij ∈ {0, 1} ∀(i, j, k) ∈ B (2.19)

uik ∈ {0, 1} ∀i ∈ V, k ∈ P (2.20)

αi ∈ R ∀i ∈ V ∪ {s, t} (2.21)

18

vi ∈ R ∀i ∈ V ∪ {s, t}. (2.22)

The objective 2.1 is to minimize the sum of the arc costs. Constraints 2.2 define the

auxiliary variable yij , which is the aggregation of the xfij variables over f . This aggregation

serves to simplify the remaining constraints. Constraints 2.3 and 2.4 require each pickup and

delivery location is visited exactly once. Constraints 2.5 require continuity of flow within each

sub-network. Constraints 2.6 capture the propagation of departure times from each node, and

constraints 2.7 ensure that the elapsed time from pickup to delivery for each package is within a

factor of λ of the time associated with the direct path. Here, M1 is a sufficiently large number,

and can be set to (2τ − 1)maxi,j cij . Constraints 2.8 capture the propagation of the number of

customers served by routes, and constraints 2.9 limit these values to τ . Here, M2 is a sufficiently

large number, and can be set to τ . Constraints 2.10 and 2.11 require trucks to be empty at the

beginning and end of their routes. Constraints 2.12 and 2.13 require each load to be present in

the truck upon departure from the pickup node and absent from the truck upon departure from

the delivery node. Constraints 2.14 ensure the LIFO policy is respected, constraints 2.15 limit

the load on a trailer at any point to Q, and constraints 2.16 prevent trucks from traveling empty

within their route. Constraints 2.17 and 2.18 ensure correct propagation of truck loads. Ignoring

the fourth term on the left-hand side (which is used for strengthening the formulation), constraints

2.17 can be read as yij = 1⇒ uik + βjk ≤ ujk. That is, given that a truck travels from i directly

to j, the presence of package k in the trailer upon departure from j depends on whether it was

present upon departure from i and on whether j is its pickup or delivery location. Similarly,

constraints 2.18 can be read as yi′i = 1⇒ βi′k + βik ≤ uik. Proofs for the validity of constraints

2.17 and 2.18 follow the same lines as those given by Benavent et al. [29], and are presented

19

in Appendix A.1. Constraints 2.19 and 2.20 ensure integrality of the xkij and uik variables, and

constraints 2.21 and 2.22 permit continuous arrival times and cumulative pickups.

2.4 Branch-and-Price

The formulation presented in Section 2.3 is only suitable for modestly-sized instances.

To handle larger instances, we present a branch-and-price algorithm to solve the STLP. The

STLP is modeled as a set-partitioning formulation with an exponential number of variables (each

representing a feasible route). This formulation is solved using column generation. Initially,

possible routes are restricted to a small set. After solving the linear relaxation of this restricted

set partitioning problem, we may use the generated dual variables to identify routes to add to

the set (i.e., we generate columns). This step is called the “pricing problem.” We describe how

we solve the pricing problem in Section 2.4.1. We iterate this process (solving the linearized

set partitioning and pricing problems) until the pricing problem is unable to identify routes to

be added. At this point, we have confirmation that the incumbent solution to the linear set-

partitioning problem is optimal. Because the resulting solution may be fractional, this entire

process is embedded within a branch-and-bound tree. The manner in which we branch is described

in Section 2.4.2.

We now explicitly describe our column generation procedure. Let Ω be the set of feasible

truck routes, let the coefficient acω ∈ {0, 1} denote whether the customer associated with pickup

i ∈ P is served by route ω ∈ Ω, and let

zω = F (sω, tω)cω + qω

20

be the cost of route ω. Finally, let the decision variable yω ∈ {0, 1} denote whether truck path ω ∈

Ω is used in the solution. The problem is modeled by the following set partitioning formulation,

denoted as MP (master problem):

min
∑
ω∈Ω

zωyω∑
ω∈Ω

aiωyω = 1 ∀i ∈ P (2.23)

yω ∈ {0, 1} ∀ω ∈ Ω.

We can solve the linear relaxation of MP via column generation. We denote the linearization

of MP as LMP (linearized master problem) and denote the restriction of LMP to a small set of

routes Ω0 ⊂ Ω by RLMP (reduced linearized master problem). We assume Ω0 is such that the

RLMP is feasible (perhaps constructed by generating the n truck routes that each serve a single

customer). Let {ui}i∈P be the dual variables for the set partitioning constraints 2.23 in the RLMP.

After solving RLMP via the Simplex method, we search for dual-infeasible routes for LMP, i.e.,

routes ω satisfying

zω −
∑

{i∈P |aiω=1}

ui < 0.

The search for such routes can be expressed as a shortest path problem with side constraints

through the fare-expanded network, with arc costs modified based on the dual variables ui. The

arc costs are updated so as to reward a value of ui to a route for serving customer i. Specifically,

21

for each arc (i, j, f) ∈ B, we set the modified cost:

ĉfij =

cfij − ui j ∈ P

cfij j /∈ P.

Defining arc-costs in this way ensures that ĉfij+ ĉ
f
jk ≥ ĉfik if j ∈ D. This property, called the

delivery triangle inequality by Ropke and Cordeau [39] in the context of the Pickup and Delivery

Problem with Time Windows, assists in defining a dominance criterion in a labeling algorithm,

which can be used to solve the pricing problem. The pricing problem can then be expressed:

min
∑

{(i,j,f)∈B}

ĉfijx
f
ij

Subject to:
∑
i∈P

∑
{f∈F |(s,i,f)∈B}

xfsi = 1

∑
i∈D

∑
{f∈F |(i,t,f)∈B}

xfit = 1

Equations 2.2 and 2.5-2.22,

where the first and second constraint force a path to start at s and end at t.

2.4.1 Labeling Algorithm

We employ a labeling algorithm to solve the pricing problem, which is centered around a

data structure called a label. A label corresponds to a partial path through the network, starting

at s. A label is extended by considering all feasible extensions of the associated path by a single

node, which generates new labels. Beginning with an initial label associated with a path of length

0 starting at s, labels are iteratively extended (yielding new labels) until no feasible extensions

22

exist. In the interest of speeding up the labeling algorithm, we delete from the network certain

arcs that cannot be part of a path of minimum cost. Specifically, we remove all arcs of the form

(i + n, i, f) and all arcs of the form (i, j, f) where i ∈ P and j ∈ D\{i + n}. That is, we

delete arcs connecting the customer departure locations to pickup locations, as well as all arcs

connecting a customer’s pickup location with the delivery locations for the other customers (an

impossible connection given the LIFO constraints). We also remove arcs of the form (i, j, f)

where i, j ∈ P and either qi + qj > Q or cij + cj,j+n + cj+n,i+n > λdij , as paths including such

arcs violate capacity or time limit constraints, respectively.

In our algorithm, a label is represented L = (il, zl, ql,V l, T l, Cl). For label L, il is the final

node on the associated path, zl is the accumulated cost along the path, and ql is the current load on

the truck. V l ⊆M is the set of nodes that have been visited along the path. T l = [T l
1, . . . , T

l
n]

T is

a vector representing the remaining time available to serve each customer (i.e., the remaining time

to serve customer i, given the partial path associated with the label, is T l
i). If the pickup location

customer i has not been visited, or both the pickup and delivery locations have been visited,

T l
i = ∞. Finally, Cl is a set of indices associated with customers whose loads are currently in

the truck. As customers are served in a LIFO manner, C l is accessed as a stack. To recover the

partial path associated with a label, each label also contains a pointer to its previous label. We

define qi+n = −qi for all i ∈ P , and qt = 0.

The algorithm begins with the initial label (s, 0, 0, ∅, {∞}i∈P , ∅), which is added to a set

of untreated labels, U . While the set of untreated labels is not empty, a member is selected and

is treated. When treating a label L, we consider all feasible extensions of the associated path.

Specifically, we consider all (i, j, f) ∈ B such that i = il, ql + qj ≤ Q, j /∈ V l, T l
k − cij > 0

for all k ∈ P , and, if j ∈ D, j − n is the top element of C l. Given such an arc, we create a new

23

label, L′ = (il
′
, zl

′
, ql

′
,V l′ , T l′ , Cl′), where the components are defined as follows:

il
′

= j

zl
′

= zl + ĉfij

ql
′

= ql + qj

V l′ = V l ∪ {j}

T l′

k =

λck,k+n k = j, j ∈ P

∞ k = j, j ∈ D

T l
k − cij k ̸= j, T l

k <∞

∞ k ̸= j, T l
k =∞

Cl′ =

Cl ∪ {j} j ∈ P

Cl\{j} j ∈ D.

The resulting label is added to U . Once a label is treated, it is added to T . The algorithm

continues until U is empty. Then, T is searched for labels L such that il = t. Of those labels, the

one with the lowest zl corresponds to the minimum reduced cost path.

To prevent the labeling algorithm from exploring verifiably suboptimal paths, for each

newly generated label l, a search is conducted among the previously generated labels for a label

l′ ∈ U ∪T that dominates l. A label l′ dominates another label l if the following conditions hold:

il
′

= il

zl
′ ≤ zl

Ol′ ⊆ Ol

24

T l′

k ≥ T l
k ∀k ∈ Ol′

where Ol = {i ∈ V l | i ∈ P and i + n /∈ V l} is the set of customers whose pickup has been

visited along the path associated with l but whose delivery has not; that is, Ol is the set of open

customers associated with l. We may observe that if l′ dominates l, then l may be removed from

consideration. We see that the path associated with l′ has fewer obligated deliveries to make than

that of l, and, because of the delivery-triangle inequality, l cannot get an advantage by making a

delivery that l′ cannot. Furthermore, by the final condition, any additional customers added to l

can be added to l′, since there is at least as much time to make all subsequent deliveries.

2.4.2 Branching

In the event of fractional solutions to the LMP, we must branch the solution space. Branching

on the variables yω is undesirable, as it is nontrivial to adjust the pricing problem in a compatible

way. It is, therefore, the standard approach in the routing literature to branch on the arcs in the

underlying network. If the solution to the LMP is fractional, we use the following strategy. Let ŷ

be the primal solution to the RLMP. For each arc (i, j) ∈ A, let Hij ⊆ Ω be the set of routes that

use the arc. Define the flow for the arc
∑

ω∈Hij
ŷω. We branch on the arc with the flow closest to

0.5. In the event of ties, we branch on the tying arc of minimum lexicographic order. To prohibit

the arc (i, j), we remove from B all arcs of the form (i, j, f). To enforce the arc, we remove all

arcs of the form (i, k, f) where k ̸= j and (k, j, f) where k ̸= i.

25

2.4.3 Extensions

We investigate acceleration strategies for the above branch-and-price algorithm. In particular,

we consider solving the pricing problem in a lazy manner. Rather than solving the shortest path

problem on the entire fare-expanded network, we initially solve it on the lowest-fare sub-network

(e.g., the left-most sub-network in Figure 2.2). Failing to produce columns from that network,

we then solve the pricing problem on the second lowest-fare sub-network. Failing to produce

columns, we solve on the third lowest-fare sub-network, and so on. The rationale for this method

is that “good routes” are more likely to be found by exploring the lower fare sub-networks, and

time can be saved by avoiding exploration of the higher-fare sub-networks. However, in order

to prove optimality, each sub-network must be evaluated. Our experiments have shown that,

typically, the pricing algorithm is called at most twice when solving by column generation. The

first time, a large number of routes are produced, and the second time, none. Thus, there is little

benefit to lazily solving the pricing problem.

A heuristic version of the above described branch-and-price algorithm limits column generation

to the root node of the branch-and-bound tree. This approach produces a lower bound on the true

optimal solution. Meanwhile, the set partitioning problem, restricted to the columns generated

at the root node, can provide a high quality feasible solution. Our experiments, presented in

Section 2.6, demonstrate this heuristic is an effective solution methodology for the STLP. A

further extension of the root node heuristic restricts the pricing problem to the lower-fare sub-

networks. To accomplish this, arcs of the form (s, i, f) are removed from the network, where f is

a higher fare. This prohibits the generation of routes with high fares, and speeds up the labeling

algorithm. However, we have found that the time savings associated with this strategy do not

26

justify the resulting deterioration of solution quality. In particular, for a 24 customer problem

with nine fare subnetworks, removing the three highest fares led to drops in solution quality as

large as 17%.

2.5 Heuristics

We now describe the heuristics we developed to solve larger instances of the STLP than

can be solved by the above-described approaches in reasonable computing time. We describe a

baseline heuristic in Section 2.5.1, and then a heuristic based on parallel savings in 2.5.2. We

also describe a matheuristic extension of the parallel savings algorithm in 2.5.2.1.

2.5.1 Baseline Heuristic

We define a 1-route as a route serving a single customer. We call the solution consisting

of all 1-routes the trivial solution. Note that in the trivial solution, each customer gets their own

truck. The baseline heuristic starts from the pool of all 1-routes, R. The route with the maximum

cost, r, is selected. For each 1-route in R, r′, we identify the minimum-cost combination of r and

r′. We denote the minimum-cost route among the feasible resulting combinations by rc, and the

associated 1-route by r∗. If the combination leads to overall savings, the constituent routes are

removed from the pool and the combined route is added. Otherwise, r is added to a set of “final

routes,” F , and removed from R, and the process repeats until R is empty. Then, the routes in F

form a feasible solution. The pseudocode for this heuristic is presented in Algorithm 1.

On a set of ten 500-customer instances, the baseline heuristic takes an average of 5.98

seconds with a sample standard deviation of 0.98 seconds. For the same instances, the average

27

Algorithm 1 Baseline Heuristic
1: function BASELINE

2: R← all 1-routes
3: F ← ∅
4: while R ̸= ∅ do
5: r ← GETMAXCOSTROUTE(R)
6: rc, r∗ ← GETBESTCOMBINATION(r, R)
7: if COST(rc) < COST(r) + COST(r∗) then
8: R← R\{r, r∗}
9: R← R ∪ {rc}

10: else
11: R← R\{r}
12: F ← F ∪ {r}
13: end if
14: end while
15: return F
16: end function

improvement on the trivial solution is 70.91%.

2.5.2 Parallel Savings Algorithm

We now describe a parallel savings algorithm we employ to find stronger solutions than

those found by the baseline heuristic. Starting from some feasible solution (for example, the

trivial solution), we construct a complete network. Each node in the network corresponds to a

route in the solution, and the cost of each edge is the savings associated with merging together

the associated routes (if it is possible to do so). Specifically, if the cost of a route r is zr, and

the lowest-cost merging of route a and route b has cost zab, then the cost of the edge connecting

the nodes associated with route a and route b is zab − za − zb. Note that it may not be feasible

to merge a and b, in which case we set zab = ∞. If a solution has |R| routes, then
(|R|

2

)
such

values are computed. The minimum cost merging of route a and b, zab, can be computed or

approximated. We note that given the LIFO constraints and the prohibition of deadheading, the

28

number of feasible combinations of two routes is fairly modest by observing the following:

Theorem 1. There are (2n − 2)!/(n − 1)! routes serving a given group of n customers which

satisfy LIFO constraints and avoid deadheading, but ignore temporal and capacity constraints.

Proof. Consider a route serving n customers, satisfying LIFO constraints, with a given order of

pickup locations visited. Observe that such a route can be uniquely associated with a monotonic

lattice path along the edges of a n × n grid, starting at (0, 0) and ending at (n, n), which does

not pass below the diagonal. A pickup is associated with moving upwards, and a delivery with

moving right. The number of such paths is among the interpretations of the nth Catalan number,

Cn = 1
n+1

(
2n
n

)
[40].

Observe that if the route never deadheads, the corresponding lattice path only meets the

diagonal at the endpoints (0, 0) and (n, n). Note that the second position in the path must be

(0, 1), and the penultimate position must be (n− 1, n). Thus, the number of paths only meeting

the diagonal at (0, 0) and (n, n) is equal to the number of paths from (0, 1) to (n − 1, n) which

do not pass below the diagonal line connecting (0, 1) to (n − 1, n), namely, Cn−1. Since we

may serve the customers in n! distinct sequences, the total number of routes is then (n!)Cn−1 =

(2n− 2)!/(n− 1)!.

Therefore, if τ is set to 4, as is the case in our instances, there are at most (2 · 4− 2)!/(4−

1)! = 120 combinations that need to be considered, since we do not combine two routes if

the total number of customers exceeds τ . Therefore, we may compute the exact savings in our

implementation by enumerating all such combinations. Note that feasibility checks for such

routes only need to verify satisfaction of temporal and capacity constraints.

Once the savings are computed for each edge, we identify the routes to combine by solving

29

the maximum weight matching problem on the network. This is done in O(|V |2|E|) time, where

|V | and |E| are the number of vertices and edges in the network, respectively, using an open-

source algorithm [41] based on Edmonds’ “blossom” method [42]. This yields a set of pairs

of routes whose combination improves the objective value. We construct a new solution by

removing each matched route from the original solution and adding the combined routes. We then

repeat, starting from the new solution, until there is no positive-weight matching discovered by

the matching algorithm. Pseudocode for the heuristic is presented in Algorithm 2. Starting from

an initial solution S, a complete network, G, is constructed, where the vertices, V , correspond to

routes in the solution. For each edge, e, in the network, the savings associated with combining

the associated routes is computed (GetSavings(e)). We then solve the maximum weight

matching problem on the network to produce the matching m, a set of pairs (v1, v2) ∈ V × V

such that the combination of the associated routes produces positive savings. We then produce a

new solution, S ′, which modifies the original solution by replacing all routes that appear in the

matching with the combined routes (GetMerging(S,m)). If the new solution does not lead

to an improvement in the objective, we raise a flag to terminate. Otherwise, we set S to S ′ and

repeat.

The parallel savings algorithm repeatedly coalesces routes until a local minimum is reached.

The quality of the final solutions is sensitive to the routes in the input solutions. We embed the

parallel savings algorithm in a multi-start procedure, hoping to identify multiple local minima.

We produce M initial solutions using the following simple procedure. First, the set of all 2-

routes is generated, where a 2-route is a route that serves exactly two customers and does so

with minimum cost. Note that there are only two possibilities for such a route. The 2-routes

are then sorted by their savings, where the savings of a 2-route is the cost of the associated 1-

30

Algorithm 2 Parallel Savings Algorithm
1: function MERGING

2: S ← initial solution
3: Flag← False
4: while Flag = False do
5: V ← {Routes in S}
6: E ← {(v1, v2) | ∀v1, v2 ∈ V }
7: G← (V,E)
8: for e ∈ E do
9: weight(e)← GETSAVINGS(e)

10: end for
11: m← MAXIMUMWEIGHTMATCHING(G)
12: S ′ ← GETMERGING(S,m)
13: if cost(S) = cost(S ′) then
14: Flag← True
15: end if
16: S ← S ′

17: end while
18: return S
19: end function

routes minus the cost of the 2-route. Then, for each of the first M 2-routes in the sorted list, a

solution is generated by replacing the 1-routes in the trivial solution with the 2-route. Note that

the savings of a 2-route may be negative, meaning the perturbed solution can be worse than the

trivial solution. Nevertheless, we include such routes, for the following reason. Suppose a route

serving customers A, B, and C appears in the optimal solution, but the savings associated with

each route serving a pair of the three is negative. Then, it is impossible for the PSA to find the

optimal route. While the solutions produced by this procedure are only small perturbations of

the trivial solution, experiments have demonstrated this simple diversification procedure leads

to significant improvement in output solutions. Furthermore, we found that more elaborate

initialization schemes tended to perform no better than the one we have described. In our work,

we generate M = 16 initial solutions in this manner, and also include the baseline solution

generated using the process described in Section 2.5.1.

31

2.5.2.1 PSA as Column Generation

Casting the STLP as a partitioning problem as in Section 2.4 suggests devising a heuristic

that can generate promising routes that work well in tandem. We may employ the above-described

PSA to generate such route sets. The heuristic generates several routes, including those in the

multiple initial solutions, those in the final solutions, and intermediate routes that are generated

and then combined during the procedure. We collect all such routes and solve the set partitioning

problem on this set. The solution returned by this set partitioning problem is necessarily of greater

or equal quality than any of the final solutions produced by the PSA. We call this matheuristic

approach PSA+Opt.

2.6 Computational Study

We now share results from a computational study of our proposed solution methodologies.

We begin in Section 2.6.1 by introducing the test bed of problem instances we generated. We then

compare the exact approaches and heuristics in Section 2.6.2. Finally, we present a sensitivity

analysis of various parameters in Section 2.6.3.

2.6.1 Test Bed

To evaluate our methodologies, we generate a set of artificial instances designed to capture

the environment in which they would be employed. All generated instances, as well as the source

code for their generation, are available at https://github.com/ericoden/STLP-data.

We generate an instance with |C| customers in the following way. First, |N | (x,y) coordinates

corresponding to pickup and delivery locations are sampled from a Gaussian mixture model

32

https://github.com/ericoden/STLP-data

(GMM) with five equally-weighted components. Means of the components are drawn from a

2,000 mi. × 2,000 mi. grid. Covariance matrices are created by multiplying randomly generated

2 × 2 matrices (with values uniformly drawn from -200 to 200) with their own transpositions.

We use clustered, rather than completely random, coordinates to mimic realistic shipper location

data. The choice of five clusters is arbitrary, but the positions are set to give rise to cross-country

distances between nodes. For a given shipper, the pickup and delivery locations are sampled from

the GMM such that the Euclidean distance between the two is not below 300 miles. Thus, all

shipments are in the mid- to long-haul range, which, according to our industry contact, is the

context in which the rate-per-mile costs are most appropriate. For each shipper, the load is drawn

uniformly from 8 to 44 linear feet, which represent the lower and upper bounds of load sizes

described as most appropriate for the STL model (i.e., loads occupying 15-83% of a standard 53’

trailer). Trailer capacity is set to 53 linear feet. The maximum delay factor is set to λ = 2, and

the maximum number of customers a route can serve is set to τ = 4. Demand levels for nodes

are set so that demand levels are highest in the centers of clusters. This is done by calculating,

for each node, the average distance to its five nearest neighbors. The nodes in the lowest third

percentile are high-demand, the nodes in the top third percentile are low-demand, and the rest

are medium-demand. A visualization of the location and demand data is presented in Figure 2.3.

The per-mile fares, given the origin and destination demand levels, are set as presented in Table

2.2. The range of $1 to $4 for per-mile fares comes from our industry partner. We have also been

informed that stop costs can range from $50 to $300 per stop; we use $175 as our nominal value.

33

Demand at End Node
Low Medium High

Demand at Start Node
Low $4 $3.25 $2.5
Medium $3.25 $2.5 $1.75
High $2.5 $1.75 $1

Table 2.2: Fare table for test bed.

0 500 1000 1500 2000
x

500

750

1000

1250

1500

1750

2000

2250

y

Pickup

Delivery

Low Demand

Medium Demand

High Demand

Figure 2.3: Example instance of a 100-customer STLP.

2.6.2 Results

Experiments were run on a computer with an Intel i5-7400 processor running at 3.00 GHz

using 8 GB of RAM. All algorithms were implemented using Python 3.7.8. All linear programs

were solved with Gurobi 9.5.1. In the following, we define the “gap” associated with a solution

by the formula: 100 · (z − zbest)/zbest, where z is the objective value of the solution, and zbest

34

is that of the best known solution. We define the “MIP gap” of a solution identified by a method

that provides a lower bound on the optimal solution, LB, by the formula: 100 · (z − LB)/LB.

All run times are in units of seconds.

We first evaluated the performance of the exact approaches: the arc-based MIP formulation

(arc) presented in Section 2.3 and the branch-and-price algorithm (B&P) presented in Section 2.4.

Both algorithms were run on a set of instances ranging from 5 to 10 customers, with 10 instances

per problem size, and given a 60-second time limit. Average run times, as well as the MIP gap

and gap for the arc-based formulation, are presented in Figure 2.3. B&P was able to find and

prove the optimal solution within a second on all instances, while the arc-based formulation’s run

times quickly rose, reaching the time limit several times on the larger instances (it reached the

time limit on six of the ten 10-customer instances). The MIP gap for the arc-based formulation

also grew. However, in all except a single 10-customer instance, the upper bound was optimal.

Arc Run Time B&P Run Time Arc MIP Gap Arc Gap
Mean Max Mean Max Mean Max Mean Max

n

5 0.16 0.41 0.02 0.03 0 0 0 0
6 1.32 10.21 0.05 0.06 0 0 0 0
7 4.49 25.68 0.12 0.28 0 0 0 0
8 11.11 60.39 0.20 0.72 5.33 53.32 0 0
9 19.23 60.56 0.30 1.11 13.83 79.02 0 0

10 37.51 60.89 0.43 0.91 26.54 71.78 0.16 1.55

Table 2.3: Performance of the arc-based MIP formulation vs. B&P.

We then tested the B&P procedure on a set of larger instances ranging from 10 to 24

customers, with 100 instances per problem size. Table 2.4 presents the average and maximum

run times for each fixed customer size. We observe that B&P, on average, takes only a minute on

the largest (24-customer) instances in the set, but that it is possible for the run time on a given

35

problem to near half an hour, due to repeated branching. We also assessed the performance of the

heuristic of column generation restricted to the root node of the branch-and-price tree. We refer

to this heuristic as CG. We include the average and maximum run times, Mip Gaps, and gaps for

CG in Table 2.4. We observe CG takes under 30 seconds for all instances and on average under

7 seconds for the largest instances. Furthermore, in all but a single 21-customer instance, the

upper bound at the root node was optimal. This demonstrates the bulk of the run time in B&P

is spent proving optimality. Fitting a power function to B&P mean run times yields the estimate

1.64 · 10−6 · n5.34, and for CG, the estimate is 2.08 · 10−5 · n3.99. In addition to restricting column

generation to the root node, we also attempted modifying the pricing problem so as to ignore the

routes with more expensive fares. In particular, we deleted arcs of the form (s, i, f) from the

pricing network, where f was among the more expensive fares (i.e., $4 or $3.25). The rationale

for this restriction was that routes with high fares would not appear frequently in good solutions,

and, thus, there is a low return on investment for exploring such routes. We denote this restricted

form of root node column generationRCG, and we include the performances in Table 2.4. When

we removed routes with high fares from consideration, run times modestly decreased. However,

on average, solutions were 2% worse than the optimal solutions and could be as far as 30% from

optimal. Given the performance of this heuristic compared to the PSA described in Section 2.5.2,

we did not evaluate it further.

We then evaluated the performance of the heuristics described in Section 2.5: the baseline

(Baseline), the parallel savings algorithm (PSA), as well as the matheuristic of solving the set

partitioning problem, restricted to the routes generated by the PSA (PSA+Opt). We used the

same instances as those in Table 2.4 and recorded the gap and run time for each method. We

have access to the optimal solutions for such instances, and hence the optimality gaps for our

36

CG MIP Gap CG Gap RCG Gap B&P Run Time CG Run Time RCG Run Time
Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

n

10 0.36 9.39 0 0 2.71 30.88 0.31 2.61 0.24 0.34 0.15 0.22
11 0.25 4.21 0 0 2.85 21.21 0.40 1.32 0.35 0.61 0.21 0.31
12 0.24 6.25 0 0 2.69 25.41 0.61 5.02 0.46 0.67 0.28 0.50
13 0.26 4.55 0 0 1.72 29.80 0.84 4.39 0.62 0.86 0.39 0.49
14 0.48 4.90 0 0 2.74 20.08 2.15 72.39 0.81 2.08 0.57 1.72
15 0.36 2.74 0 0 2.86 18.84 2.03 25.35 1.02 2.08 0.70 1.28
16 0.57 7.27 0 0 2.44 15.82 3.95 72.48 1.32 2.07 0.89 1.57
17 0.36 5.22 0 0 2.79 25.49 3.65 78.75 1.76 3.05 1.06 2.08
18 0.38 3.65 0 0 2.02 12.19 5.07 125.24 2.20 3.01 1.38 2.29
19 0.41 3.38 0 0 2.82 14.90 9.99 382.61 2.68 4.55 1.65 2.27
20 0.35 3.35 0 0 2.87 16.39 7.49 72.52 3.09 5.28 2.03 4.07
21 0.44 4.04 3.4e-06 3.4e-04 3.00 31.28 20.79 1,093.10 3.80 8.86 2.47 5.55
22 0.53 5.14 0 0 2.50 17.87 31.40 1,362.13 4.58 10.21 3.03 9.74
23 0.49 4.76 0 0 2.14 11.09 45.54 1,770.96 5.68 15.58 3.87 12.52
24 0.40 3.13 0 0 2.57 17.44 26.15 635.86 6.78 25.61 4.74 21.69

Table 2.4: Run times of column generation methods.

heuristics, due to the B&P algorithm. The results, averaged over 100 instances for each problem

size from n = 10 to n = 24, are presented in Table 2.5. We observe the gap for the baseline

heuristic grows from 12% to 16% on average and can produce solutions as high as 50% from

optimal. The gap for PSA also grows, but only from 0.05% to 1.20%. Furthermore, the gap is

within 9% for all instances. PSA+Opt performs better still, with the average gap rising from 0%

to around 0.2% and never above 4%. For the largest instances, both PSA and PSA+Opt complete

within 3 seconds.

We then investigated the performance of the baseline, CG and PSA+Opt heuristics on larger

instances of the problem. Table 2.6 presents the performances of the two approaches for problem

sizes ranging from 30 to 90 customers, in steps of 10, with five instances per problem size. The

best solutions are found by CG in all instances. Furthermore, the lower bounds produced by CG

demonstrate that the solutions found are, on average, within 1% of optimal. The average run

times for CG exceed an hour for the 90-customer instances and took 8 hours in one instance.

37

Baseline Gap PSA Gap PSA+Opt Gap PSA Run Time PSA+Opt Run Time
Mean Max Mean Max Mean Max Mean Max Mean Max

n

10 12.34 43.82 0.05 3.10 0 0 0.16 0.40 0.18 0.45
11 10.78 38.23 0.10 3.01 0.01 1.17 0.21 0.49 0.23 0.53
12 11.64 47.68 0.10 7.20 0 0 0.27 0.57 0.29 0.61
13 12.99 39.66 0.18 2.80 0.03 1.62 0.36 0.75 0.38 0.77
14 13.54 41.93 0.11 3.06 0 0 0.45 0.89 0.48 0.92
15 13.63 50.10 0.19 4.49 0.04 3.19 0.53 0.93 0.59 1.03
16 13.29 42.01 0.42 5.23 0.02 1.50 0.66 1.17 0.70 1.17
17 13.71 50.95 0.56 6.02 0.01 0.57 0.68 1.33 0.72 1.35
18 12.83 40.11 0.53 8.85 0.11 1.76 0.83 1.45 0.86 1.50
19 15.97 36.68 0.75 4.76 0.09 3.09 1.02 2.04 1.06 2.07
20 14.62 47.22 0.72 6.13 0.13 2.67 1.19 2.00 1.19 1.92
21 15.92 40.83 0.85 6.06 0.11 3.67 1.32 2.28 1.36 2.60
22 14.58 29.96 0.70 4.81 0.14 2.15 1.46 2.29 1.51 2.26
23 14.84 38.96 0.92 4.81 0.20 3.22 1.60 2.45 1.65 2.53
24 16.76 43.05 1.20 8.48 0.18 1.97 1.74 2.63 1.82 2.75

Table 2.5: Performance of heuristic approaches.

The solutions produced by baseline algorithm have, on average, about 23% larger objective

value. Meanwhile, those found by PSA+Opt are, on average, within 3%, and always within

5%. Furthermore, the solutions found by PSA+Opt were always found within a minute. Overall,

we conclude the PSA+Opt heuristic is an effective and scalable solution methodology for the

STLP.

Baseline Gap CG MIP Gap CG Gap PSA+Opt Gap CG Run Time PSA+Opt Run Time
mean max mean max max mean max mean max mean max

n

30 19.14 37.02 0.32 1.22 0 0.11 0.34 15.83 21.35 3.30 5.20
40 23.72 30.12 0.69 1.20 0 1.25 4.22 50.82 56.56 7.85 8.90
50 22.92 31.73 0.35 0.56 0 1.75 2.92 215.11 494.16 12.53 14.58
60 23.64 30.80 0.58 1.07 0 1.06 1.86 1,925.31 5,541.06 17.09 22.15
70 25.21 30.68 0.11 0.33 0 2.28 3.64 2,013.65 3,795.46 26.47 32.25
80 24.75 29.29 0.31 0.71 0 1.27 2.73 2,790.91 4,844.06 36.34 44.77
90 23.30 32.42 0.37 1.03 0 2.66 4.88 8,776.56 28,958.66 44.79 52.02

Table 2.6: Performance of heuristic approaches on larger instances.

38

2.6.3 Sensitivity Analysis

To learn more about the STL model, we performed a sensitivity analysis on various problem

parameters. Figure 2.4 presents the results of an experiment evaluating the dependence on the

maximum delay factor, λ. The PSA+Opt heuristic was used to solve fifty 100-customer instances,

with λ varying from 1 to 4 in steps of 0.25. We plot the average objective value, as well as the

average number of customers served by 1-, 2-, 3-, and 4-routes. Naturally, when λ = 1, no

pooling is possible, and all routes are 1-routes. When λ is increased to 1.25, we observe a jump

in the number of 2-routes as well as a significant (29%) drop in the objective value. However,

we quickly observe diminishing returns for further increases of λ; increasing from 1.25 to 1.5

only decreases the objective by 6%. As λ rises further, the additional flexibility allows for more

3- and 4-routes. However, even for λ = 4, a customer is most likely to be pooled with a single

other customer. This is likely a consequence of the relatively large load sizes. The average load

occupies around half of a trailer, and, thus, pools of three or four customers are necessarily rare.

1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

λ

120

140

160

180

200

220

240

260

280

O
b

je
ct

iv
e

V
al

u
e

(t
h

ou
sa

n
d

s)

Objective Value

Avg. Customers per Route

1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

λ

0.0

0.2

0.4

0.6

0.8

1.0 % 1-Route Customers

% 2-Route Customers

% 3-Route Customers

% 4-Route Customers

0

1

2

3

4

#
C

u
stom

ers
p

er
R

ou
te

Figure 2.4: Sensitivity analysis of the delay factor, λ.

39

Figure 2.5 presents the results of a similar experiment where the stop cost, E, was varied

from 100 to 1,000 in steps of 100. We observe that the relative proportions of the 1-, 2-, 3-,

and 4-route customers evolve slowly as the stop costs are increased. Rather than encouraging

alternative poolings and sequences, the increase in stop costs merely increases the cost of the

(near) optimal routes, resulting in an almost perfectly linear trend. However, we do observe that

the number of 1-routes gradually increases while the number of 2-, 3-, and 4-routes gradually

decreases.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Stop Cost

150

160

170

180

190

200

210

220

230

O
b

je
ct

iv
e

V
al

u
e

(t
h

ou
sa

n
d

s)

Objective Value

Avg. Customers per Route

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Stop Cost

0.0

0.2

0.4

0.6

0.8

1.0

% 1-Route Customers

% 2-Route Customers

% 3-Route Customers

% 4-Route Customers

0

1

2

3

4

#
C

u
stom

ers
p

er
R

ou
te

Figure 2.5: Sensitivity analysis of the stop cost, E.

Setting a maximum number of customers per route, τ , significantly reduces the number

of feasible routes, ignoring capacity and temporal constraints. However, experiments suggest

raising τ from the nominal value of 4 will not lead to lower costs overall. Figure 2.6 presents the

average objective values over 50 instances for problem sizes from 70 to 100, with τ set to 1, 2, 3,

and 4. We observe the rapidly diminishing returns from increasing τ . This is largely due to the

combined effect of the routing constraints and the relatively large size of the freight, as routes

40

serving several customers are relatively rare under such settings.

70 80 90 10
0

n

0

50

100

150

200

250

O
b

je
ct

iv
e

V
al

u
e

(t
h

ou
sa

n
d

s)

τ = 1

τ = 2

τ = 3

τ = 4

Figure 2.6: Sensitivity analysis of the maximum number of customers per route, τ .

We demonstrate the dependence on the customer load sizes with the experiment presented

in Figure 2.7. For each value of α ∈ {0.1, 0.2, . . . , 0.9, 1}, and for fifty 100-customer instances

each, the load for each customer was multiplied by α and the problem solved. A customer’s load

is therefore between 8α and 44α linear feet. The results are averaged over each value of α. We

observe that for lower values of α lead to larger poolings. For α ≤ 0.6, 4-routes become the

dominant variety. Interestingly, 3-routes are never dominant.

Next, we investigated the effect of the LIFO constraints on the problem. Specifically,

we wanted to determine the “price” of the constraints. We identified solutions by relaxing the

constraint in PSA+Opt. Specifically, when computing the savings associated with combining

two routes, we also considered combinations that do not satisfy LIFO constraints. In doing so,

the number of possible combinations significantly increases. For example, ignoring capacity and

time constraints, a route serving four customers has 120 feasible sequences with LIFO constraints

41

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

α

60

80

100

120

140

160

180
O

b
je

ct
iv

e
V

al
u

e
(t

h
ou

sa
n

d
s)

Objective Value

Avg. Customers per Route

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

α

0.0

0.2

0.4

0.6

0.8

1.0

% 1-Route Customers

% 2-Route Customers

% 3-Route Customers

% 4-Route Customers

0

1

2

3

4

#
C

u
stom

ers
p

er
R

ou
te

Figure 2.7: Sensitivity analysis of the load sizes.

and 1,776 without. This significantly increases the run time of the GetSavings procedure in

PSA+Opt, and, in order for the algorithm to scale, it is advisable to approximate the maximum

savings rather than compute it exactly. We developed such an approximation scheme for the

PSA, which we present in Appendix A.2. We also investigated the effect of allowing intermediate

deadheads (i.e., allowing trailers to be empty during the route). This similarly expands the space

of solutions, and we once again used the PSA+Opt procedure with a modified GetSavings

function to identify solutions, also described in Appendix A.2.

We then ran PSA+Opt on the problem with all constraints, with all except LIFO constraints,

and with all except deadhead constraints (the latter two using the approximation scheme) on

instances ranging from 30 to 100 customers, with 50 instances per problem size. Figure 2.8

presents the average objective values, as well as the average number of customers per route

in both settings. No LIFO refers the problem with LIFO constraints relaxed, and DH refers

to the problem with the prohibition on deadheading relaxed. We observe that the price of

the deadheading constraints appears to be greater than that of the LIFO constraints. The cost

42

of LIFO constraints rises with increasing n, from 21% when n = 30 up to 27% when n =

100. Meanwhile, the cost of the deadheading constraints is consistently around 33% for all n.

We observe that the average number of customers per route in all three settings is relatively

unresponsive to n, remaining near 1.75, 2.3, and 3.2 for the original problem, the problem with

LIFO constraints relaxed, and the problem with deadhead constraints relaxed, respectively.
30 40 50 60 70 80 90 10
0

n

0

25000

50000

75000

100000

125000

150000

175000

200000

O
b

je
ct

iv
e

V
al

u
e

Objective Value

No LIFO Objective Value

DH Objective Value

Customers per Route

No LIFO Customers per Route

DH Customers per Route

0

1

2

3

4

#
C

u
stom

ers
p

er
R

ou
te

Figure 2.8: Sensitivity analysis of the constraints.

As noted in Section 2.1, relaxation of LIFO constraints is likely unrealistic, given the one-

touch policy of the STL provider, the relatively large size of the shipments most appropriate for

STL transport, and the relative rarity of trucks capable of side-loading. However, the deadhead

constraints arise from a reluctance for carriers to accept such routes, due to their perceived

inefficiency. Based on the results of the experiment presented in Figure 2.8, we recommend

that deadheading routes be seriously considered by STL carriers.

We summarize our managerial insights as follows:

43

• Increases of λ have rapidly diminishing returns. Simply raising λ from 1 to 1.25 leads to

29% drop in objective value, but increasing from 1.25 to 1.5 only leads to a 6% drop.

• The better solutions generally remain so, even after increasing the stop cost.

• 2-routes are the dominant variety, even with larger values of λ. This can be explained by

the relatively large size of the freight. Furthermore, there is little benefit from considering

routes serving more than 4 customers.

• The possible savings from allowing deadheading within the routes are dramatic, and exceed

those from relaxing LIFO constraints. As the prohibition of deadheading strikes us as

somewhat artificial, efforts to normalize such routes in the STL industry could make sense.

2.7 Conclusions

We have presented a shared truckload design problem relevant to an emerging freight

paradigm, which offers the savings associated with freight pooling as well as the reliability

and minimal risk associated with direct shipping. We offer a mathematical formulation of the

problem as well as a corresponding branch-and-price algorithm. We demonstrate that, given

parameter settings advised by an industry contact, the algorithm is able to produce and prove

optimal solutions within an hour for instances with 24 customers, with typical run times of less

than a minute. Furthermore, we demonstrate that the heuristic of restricting column generation to

the root node can produce solutions provably within 1% of optimality within an hour for instances

with up to 80 customers. We also present a parallel savings algorithm, as well as an optimization-

based enhancement. We demonstrate the resulting heuristic can produce solutions within 3%

44

of optimality within a minute for 90-customer instances. Using this heuristic, we conduct a

sensitivity analysis of the problem and illustrate the diminishing returns associated with relaxing

the quality of service constraints, the relative insensivity to stop costs, the dominance of routes

serving only two customers, and the savings possible due to relaxation of LIFO and deadheading

constraints.

There are a number of further directions to pursue in this domain. While efforts were

made to simulate realistic instances, it would be useful to evaluate our approaches on real freight

data. In particular, it would be useful to compare the costs and benefits of the LTL and STL

paradigms from the perspective of the coordinating entity as well as that of the shippers and

carriers. In addition, there may be important practical considerations unique to STL that are not

included in our model. For example, according to our industry contact, there is an execution

risk associated with pooling. Specifically, the greater the time before the last pickup, the greater

the risk of a trucker experiencing service issues that prevent them from picking up remaining

shipments. The pickups that remain must then be rescued (i.e., serviced alone). Extending our

model to incorporate such concerns is a possible next step. Finally, there are further areas for

improvement of the PSA+Opt algorithm. In particular, the initial solutions were generated by

a fairly simple procedure (i.e., producing solutions within a small neighborhood of the trivial

solution). We experimented with other initialization schemes, and found little improvement upon

the one we employed. However, it may be worth continuing to investigate initialization schemes

that could lead to the generation of a more diverse pool of high-quality routes. We believe the

synthesis of the PSA and the set-partitioning formulation is a promising solution methodology

which may also serve other applications.

45

Chapter 3: The Rendezvous Vehicle Routing Problem

3.1 Introduction

The e-commerce industry has steadily grown over the past decade, with the share of total

sales in the U.S. rising from 4.5% in 2011 to 14.3% in 2020 [according to 43]. The rise of online

sales has, in turn, popularized same-day delivery, nullifying the instant-gratification advantage

of brick-and-mortar retail options. Indeed, same-hour shipping has entered the lexicon [44].

This frontier of convenience presents a number of formidable logistical challenges which have

received considerable attention in the operations research community [see the survey by 45].

In this chapter, we consider a problem posed to us by a leading provider of logistics

software in the package delivery industry. By some accounts, last-mile delivery accounts for

41% of total supply chain costs [see 46]. With the increased volume of same-day delivery, and

the proportion of costs that last-mile delivery represents, it is critical for delivery companies

to provide for same-day delivery efficiently. Typically, parcel delivery companies dedicate a

distinct fleet of vehicles (that we will refer to as shuttles) for same-day delivery. Because same-

day delivery takes place in the afternoon and evening (after a sufficient number of orders have

accumulated in the morning) the shuttles leave on their routes later in the day than the rest of the

vehicles involved in regular parcel delivery (that we refer to as trucks). The question posed to us,

and the opportunity it represents, relates to allowing for some type of synchronization between

46

the trucks and shuttles [specifically, operational synchronization, as described by 47]. The idea

is to allow shuttles to hand off or transfer packages to trucks for customers on a truck’s route

that have not yet been visited. This would free the shuttle from visiting those customers, thereby

reducing costs and allowing for larger volumes of same-day delivery with a fixed number of

shuttles.

In this work, we seek to design efficient shuttle routes that aim to minimize the distance

traversed by the shuttles. With the proposed algorithm, we can then quantify the savings this

routing strategy could generate when compared to the current status quo (i.e., having shuttle(s)

visit all of the same-day delivery location). We begin by explicitly defining our problem and

exploring the relevant literature in Section 3.2. We then develop a number of approaches to

address the problem in Section 3.3, including an arc-based formulation (3.3.1), a path-based

formulation (and corresponding column generation scheme) (3.3.2), and a heuristic (3.3.3). Next,

we evaluate the relative strengths of the three approaches, as well as the effectiveness of truck-

shuttle synchronization in different scenarios, in Section 3.4. We conclude, in Section 3.5,

that our column generation approach is an efficient exact algorithm for designing shuttle routes

for instances with up to 200 nodes, and that our heuristic provides excellent solution quality

for larger instances, with as many as 1,000 nodes. For the test instances considered in this

chapter, we demonstrate that shuttle-truck synchronization results in as much as a 77% savings

in transportation costs, and, thus, should be seriously considered by logistics providers in the

same-day delivery industry.

47

3.2 Problem Statement

We assume truck routes partition the entire customer network. That is, each possible

customer is assigned to a unique truck, which weaves through its daily route regardless of the

particular day’s deliveries. This is motivated by the example of the US Postal Service (USPS),

where every potential customer is located on a mail delivery route. The situation is similar in

the package delivery industry (e.g., UPS, Fedex, and Amazon) where routes remain roughly the

same on a daily basis even if there is no package delivery at a specific customer’s location on

a given day [see 48]. For the USPS, UPS, Fedex, Amazon, and other major logistics providers,

the density of customer locations within a neighborhood is sufficiently high to necessitate that

nearly every street, if not every home, is visited on a daily basis. The impact of this observation

is that nearly every last-minute service location (LMSL) will lie on some truck’s route, and, thus,

the trucks will not have to alter their routes in order to serve them. In the rare cases where an

LMSL cannot be easily inserted into a truck route or where the LMSL has already been passed

by its truck at the beginning of the problem, we require the shuttle to make the delivery. To be

clear, this is not an artificial problem. Rather, it was posed recently by one of the major logistics

providers in the U.S.

Given a fleet of trucks, a depot, fixed truck routes (each defined as a sequence of locations,

starting and ending with the depot), a fleet of shuttles, a set of LMSLs that lie somewhere on the

truck routes, and current locations of each truck, we seek the minimum distance shuttle routes,

each starting and ending with the depot, such that each LMSL is serviced. An LMSL can be

serviced either by meeting with a truck that will visit the LMSL later on, or by visiting the LMSL

itself. Such meetings can only happen at service locations (where the truck will be stopped

48

anyway), rather than at any point on the truck’s route. We do not consider capacities (as same-

day delivery packages tend to be small and truck capacity is generally not the limiting factor),

nor service times. A shuttle must wait for a truck to arrive, but a truck cannot wait for a shuttle.

A delivery is direct if a shuttle visits the LMSL itself in order to deliver the package; a delivery

is indirect if the package is delivered by a truck, which has met with a shuttle at a previous

stop. Figure 3.1 visualizes this distinction. LMSL A and B are both direct deliveries, since the

shuttle visits both of them. Meanwhile, LMSL C is an indirect delivery, since LMSL C is visited

by a truck that has previously met with the shuttle (at the rendezvous point). All other nodes,

including the rendezvous point, are regular service locations. Altogether, we call this problem

the Rendezvous Vehicle Routing Problem (RVRP). A sample solution to the RVRP with four

trucks and one shuttle is presented in Figure 3.2. The gray paths correspond to truck routes, with

arrows indicating their direction. The black node is the depot, and the red nodes are LMSLs. The

orange path is the optimal shuttle route, which serves all LMSLs either directly or indirectly, with

the minimum distance traveled. It first makes a nearby direct delivery, then makes a rendezvous

with the truck on the top right to hand over four packages. It then meets with the truck on the top

left to hand over one package, then makes three direct deliveries, then meets with the truck on

the lower right to hand over one package, and finally returns to the depot. Note that each time a

rendezvous occurs, the truck and shuttle appear to have traveled roughly the same distance along

their respective routes.

We note an important subtlety in the choice of objective, specifically, to minimize the length

of the shuttle route(s). Though this is a natural choice when the problem is viewed as a variant

of the traditional vehicle routing problem, it may be more important, in practice, to minimize the

time before the shuttles return to the depot. Optimal solutions for each objective function may be

49

Shuttle Path

Truck Path

LMSL B

LMSL C

LMSL A

Rendezvous Point

Figure 3.1: Comparison of direct and indirect deliveries.

Figure 3.2: Sample solution to the RVRP with four trucks and one shuttle.

different, due to the possibility of a shuttle waiting at a node in anticipation of a truck. Yet another

objective is the minimization of the number of shuttles necessary to achieve a certain quality of

service (e.g., each LMSL delivered prior to some deadline). Some of the structures we develop

in this chapter can be adapted for each of these cases in a straightforward manner. However,

motivated by reducing the carbon footprint of logistics providers, in our work, we concentrate on

the distance-minimization version of the problem.

To our knowledge, our work is the first to study this delivery strategy. For that reason,

50

we focus on the simplest version of the problem. That is, we study the static and deterministic

version (i.e., all information is known at the outset, and all quantities are nonrandom). However,

in practice, building stochastic travel times into the model seems advantageous. In particular,

it is easy to imagine a long shuttle path made necessary by a single missed connection. Such

considerations, however, can be incorporated into the deterministic model by introducing, for

each rendezvous point, a deadline prior to the truck’s arrival by which a shuttle must arrive for a

rendezvous to occur. The length of the interval between the deadline and the truck arrival can be

the same for all rendezvous points, or can vary (perhaps larger for stops further along a truck’s

path). Furthermore, the length of the interval can be tuned by a practitioner to balance robustness

to travel time fluctuations with solution quality.

We observe that the RVRP is NP -Hard. Consider an instance of the RVRP with a single

shuttle, in which each truck has already passed all of the LMSLs on its route. Then, the distance-

minimizing shuttle tour that serves each LMSL is simply the solution to the traveling salesman

problem on the complete graph defined by the LMSLs and the depot.

3.2.1 Literature Review

The RVRP can be viewed as a VRP with multiple synchronization constraints (VRPMS),

a broad class of problems described and categorized in the survey presented by Drexl [47]. The

survey defines a VRPMS as a “vehicle routing problem in which more than one vehicle may or

must be used to fulfill a task”. The paper establishes a taxonomy of such problems, describing

five kinds of synchronization constraints: task, operation, movement, load, and resource. The

first two apply to the RVRP. Task synchronization refers to the specification that each task must

51

be performed exactly once by one or more suitable vehicles. In our case, each LMSL must be

served by either a truck or a shuttle. Operation synchronization refers to some requirement that,

in order to perform some operation between them, multiple vehicles must coordinate in time

and/or space. This includes the requirement of meeting at a node for truck-shuttle transshipment

in our problem. An archetypal case (that is, one exhibiting all five varieties of synchronization

constraints) is presented in Drexl [49]. Fink et al. [50] solve another archetypal case exactly

with a branch-and-price scheme. In the RVRP, synchronization arises only from the possibility

of transshipment of deliveries between trucks and shuttles.

The inclusion of transshipment capabilities in vehicle routing contexts has received attention

in recent years, with several papers exploring an extension of the pickup and delivery problem

where there exists a set of transshipment locations at which vehicles can transfer their loads.

Cortés et al. [51] present an MIP formulation of the problem, as well as an exact approach based

on Benders’ decomposition. Rais et al. [52] present a formulation where the flows of vehicles and

loads are distinct and are linked using multicommodity flows. Heuristic approaches include that

of Mitrović-Minić and Laporte [53], who present a two-phase heuristic, with a construction phase

and an improvement phase. Masson et al. [54] and Sampaio et al. [55] utilize an adaptive large

neighborhood search algorithm, the latter to solve in the context of crowdshipping. Thangiah

et al. [56] heuristically solve the problem, where transshipments are allowed at any pickup or

delivery location. We note, however, the problems described in these six papers do not apply in

the same-day delivery context.

The RVRP is designed to produce solutions in the context of same-day delivery. Ulmer et al.

[57] consider accommodating same-day orders by modifying truck routes to include preemptive

depot returns (i.e., returning to the depot prior to delivering all cargo). They use an approximate

52

dynamic programming approach to develop routes that maximize the number of served requests,

where values of decisions are generated using approximate value iteration. Their method enables

nearly instantaneous decision making at run time. Voccia et al. [58] seek to maximize the number

of same-day deliveries, where customers also have time windows. They use a scenario-sampling

approach, where the action taken at each epoch is determined by the action that is representative

of the solutions in various scenarios. They demonstrate situations in which strategic waits at

the depot in anticipation of demand can increase the total number of customers served. Azi et al.

[59] solve a similar problem, except where the objective is to maximize customer-specific profits.

They too use a scenario-sampling approach, but limit the route length by a fixed parameter.

Klapp et al. [60] also solve a similar problem, except that all requests are on a line. In their

work, an approximate linear programming approach is employed. In none of the above papers

is transshipment considered as a scheme in the same-day delivery setting, which is the principle

contribution of our work.

3.3 Solution Approaches

We now present three approaches developed to address the RVRP. We begin with an arc-

based formulation in Section 3.3.1, then a path-based formulation (with an associated column

generation algorithm) in Section 3.3.2, and finally a heuristic in Section 3.3.3.

3.3.1 Arc-Based Formulation

Let N = {0, 1, . . . , n, n + 1} denote the set of nodes in the problem (including the depot,

all LMSLs, and all regular service locations). Let node 0 and node n+ 1 denote the depot at the

53

beginning and end of the problem, respectively (these may be at the same location). Let L ⊂ N

be the set of LMSLs. Let R ⊆ N be the set of nodes that lie on a truck route. For each r ∈ R,

let Tr ∈ R+ be the time the truck arrives at that node (this is a known quantity). Let dij ∈ R+

be the distance from node i ∈ N to node j ∈ N , such that dii = d0,n+1 = 0 for all i ∈ N , and

dij > 0 otherwise, and let the matrix d satisfy the triangle inequality. Let xij ∈ {0, 1} be the

decision variable which denotes whether a shuttle travels from node i ∈ N to node j ∈ N . Let

the decision variable pr ∈ {0, 1} for r ∈ R denote the use of node r as a rendezvous point. For

each r in R, let Sr ⊆ L be the set of LMSLs that can served by making a rendezvous with a truck

at node r, but not including node r if node r ∈ L. Thus, nodes in Sr are all serviced indirectly by

the visit to r. Let the decision variables ti ∈ R+ and ui ∈ R+ represent the time a shuttle arrives

at node i and departs from node i, respectively. If node i is not visited by a shuttle, ti and ui

are meaningless. Let V ∈ Z+ be the number of shuttles available. The following mixed-integer

linear program models the RVRP:

min
∑
i∈N

∑
j∈N

dijxij (3.1)

s.t.
∑
j∈N

xjl +
∑

r∈R|l∈Sr

pr = 1 ∀l ∈ L (3.2)

∑
j∈N

xij −
∑
j∈N

xji =

V i = 0

−V i = n+ 1

0 i ∈ {1, . . . , n}

∀i ∈ N (3.3)

pr ≤
∑
j∈N

xjr ∀r ∈ R (3.4)

ui + dij − (M + dij)(1− xij) ≤ tj ∀(i, j) ∈ N ×N (3.5)

54

tr −M(1− pr) ≤ Tr ∀r ∈ R (3.6)

Trpr ≤ ur ∀r ∈ R (3.7)

ti ≤ ui ∀i ∈ N (3.8)

t,u ≥ 0,x,p ∈ {0, 1} (3.9)

The objective 3.1 minimizes total travel distance for the shuttles. Constraints 3.2 ensure

each LMSL is either visited directly (first term) or is visited indirectly by meeting with a truck

that will visit with the LMSL (second term). Constraints 3.3 ensure the conservation of flow

through the network. Constraints 3.4 ensure that node r is used as a rendezvous point only if a

shuttle visits it. Constraints 3.5 capture the propagation of shuttle arrival times (where M is a

sufficiently large number). Constraints 3.6 require shuttle arrival prior to truck arrival at node

r ∈ R if r is to be used as a rendezvous point, and constraints 3.7 further impose that the shuttle

must wait for the truck. Constraints 3.8 impose that departures follow arrivals. Constraints

refrvrp:eq:domains establish the domains of the decision variables. The following proposition

provides a value for M .

Proposition 1. Let TST ∈ R+ be the length of the minimum-distance tour which starts at node

0, ends at node n+1, and visits each node in L. If M = TST +maxr∈R Tr, then constraints 3.5

and 3.6 are valid.

Proof. Let (x,p, t) be an optimal solution to the RVRP. Note tn+1 ≥ ti for all i ∈ N . If the

optimal solution does not rendezvous with a truck, then tn+1 = TST . If the optimal solution

does rendezvous with a truck, then tn+1 ≤ Tr + TST , where r ∈ R is the final truck rendezvous

55

node on the route. Thus, for all i, j ∈ N ,

ti − tj ≤ tn+1 ≤ TST +max
r∈R

Tr =M

and for all r ∈ R,

tr − Tr ≤ tn+1 ≤ TST +max
r∈R

Tr =M

We may derive a set of valid inequalities from the observation that, in an optimal solution,

each truck is intercepted by a shuttle at most once.

Proposition 2. Let (x,p, t) be an optimal solution to the RVRP. Let K be the set of truck routes.

Let Rk ⊆ R be the set of rendezvous points on truck route k ∈ K. We have

∑
r∈Rk

pr ≤ 1 ∀k ∈ K (3.10)

Proof. Suppose 3.10 does not hold. Then, there is some k ∈ K and i, j ∈ Rk such that pi, pj = 1.

Either Si ⊆ Sj or Sj ⊆ Si. Without loss of generality, suppose Sj ⊆ Si. If j ∈ L, then j ∈ Si.

By 3.4, there is some a ∈ N such that xaj = 1, and by 3.3, there is some b ∈ N such that

xjb = 1. Setting xaj, xjb, pj = 0 and xab = 1 is feasible and, by the triangle inequality, decreases

the objective value. Thus, 3.10 must hold.

Therefore, we can include constraints 3.10 in the formulation.

56

3.3.1.1 Extensions

Our formulation can be modified to capture other elements that may be necessary to include

in some settings. We shall explicitly describe two important extensions here. Firstly, we observe

that the time required to serve an LMSL and the time required to transfer a package from a shuttle

to a truck may be too large to ignore. Let hr ∈ R+ be the time required to transfer the packages

at rendezvous point r ∈ R. Let sl be the time required to make the direct delivery at node l ∈ L,

and let si = 0 for i ∈ N\L. We must decide whether the truck or the shuttle delivers the package

if the rendezvous node is also an LMSL. We shall assume the truck makes the delivery. The

arc-based formulation is modified by replacing constraints 3.5, 3.7 and 3.8 with

ti + si(1− pi) + hipi ≤ ui ∀i ∈ R (3.11)

ti + si ≤ ui ∀i ∈ N\R (3.12)

(Tr + hr)pr ≤ ur ∀r ∈ R. (3.13)

Constraints 3.11, and 3.12 ensure the difference between arrival time and departure time is

at least long enough for the required service (delivery or transfer). Constraints 3.13 impose that a

shuttle meeting a truck for a rendezvous at r cannot depart until hr units of time after the truck’s

arrival.

Secondly, we may wish to respect a deadline for each truck’s return to the depot, given the

additional load from a shuttle. Since a given truck is only met at most once by a shuttle, a transfer

of packages is only infeasible if the additional load from that single rendezvous causes it to return

after the deadline.

57

Therefore, we may implicitly respect the deadlines in the following way. For each rendezvous

point, r, we enumerate theQr ∈ Z+ subsets of Sr ⊆ L, {Sq
r}1≤q≤Qr , such that the additional load

on the truck does not exceed the truck’s capacity, and such that Sa
r ̸⊆ Sb

r ∀a, b ∈ {1, . . . , Qr}.

That is, we enumerate all sets of packages we could transfer at r such that no one set is a subset of

another, and such that the corresponding increase in the truck’s arrival time at the depot is within

the deadline. These sets can be computed a priori. We note that we may relax our assumption that

all potential LMSLs lie on truck routes, as we can include the time to deviate from the original

route to accommodate an LMSL. In this setting, an LMSL l is in Sr if it is possible to transfer the

package at r and for the truck to visit l, even if l is not on the original truck route.

The arc-based formulation is modified as follows. Let pqr ∈ {0, 1} denote the use of

rendezvous node r ∈ R to transfer the LMSLs Sq
r ⊆ L, where q ∈ {1, . . . , Qr}. We replace

the constraints:

∑
j∈N

xjl +
∑

r∈R:l∈Sr

pr = 1 ∀l ∈ L

with

∑
j∈N

xjl +
∑
r∈R

∑
q∈Qr:l∈Sq

r

pqr = 1 ∀l ∈ L

and include the constraints:

pqr ≤ pr ∀q ∈ Qr, r ∈ R.

We can include both of the above considerations simultaneously. If the time to transfer

58

packages at rendezvous point r is a function of the set of packages itself, small modifications to

constraints 3.11 and 3.13 are necessary. Letting hqr be time required to transfer the set of packages

Sq
r at rendezvous point r, we instead include the constraints:

ti + si(1−
∑
q∈Qi

pqi) +
∑
q∈Qi

hqip
q
i ≤ ui ∀i ∈ R∑

q∈Qi

(Tr + hqr)p
q
r ≤ ur ∀r ∈ R.

Although it is possible to include service times and impose a maximum length on truck

routes with increased complexity in the formulation, we proceed for the remainder of the chapter

with the assumption of zero service times and no constraints on truck route duration.

3.3.2 Path-Based Formulation

The arc-based formulation is computationally expensive, and is only appropriate for modest

problem sizes. For example, Gurobi takes over one hour to find the optimal solution to a problem

with one shuttle, two trucks, forty customers, and ten LMSLs. Meanwhile, it finds the optimal

solution to a problem with one shuttle, two trucks, twenty customers, with ten of the customers

being LMSLs within five seconds. For this reason, we develop a path-based formulation and

corresponding column generation scheme, which has demonstrated success in several vehicle

routing contexts. For an introduction to column generation, we refer the reader to the presentation

by Barnhart et al. [61].

Let Ω be the set of all feasible shuttle routes. Let dr ∈ R+ be the distance associated

with the shuttle route r ∈ Ω, defined as the sum of the lengths of the arcs traversed by the

shuttle. Let δlr ∈ {0, 1} denote whether route r ∈ Ω serves LMSL l ∈ L. Let the binary

59

variable yr ∈ {0, 1} represent the decision to include the route r in the solution. The following

set-partitioning formulation models the RVRP:

min
∑
r∈Ω

dryr

s.t.
∑
r∈Ω

δlryr = 1 ∀l ∈ L (3.14)∑
r∈Ω

yr = V (3.15)

yr ∈ {0, 1} ∀r ∈ Ω.

As |Ω| is, in general, exponential in the number of nodes in the network, the direct use

of the formulation is intractable for problem sizes of interest, and we instead solve with column

generation. Denote by MP the above (master) problem, and denote by l-MP the linearization of

the MP (where the binary yr variables are relaxed to be non-negative real). Let {πl}l∈L and πV

be the dual variables associated with constraints 3.14 and 3.15 in the l-MP, respectively. The dual

feasibility constraints for the l-MP are:

πV +
∑
l∈L

δlrπl ≤ dr ∀r ∈ R.

In a column generation scheme, we instead solve a linearized reduced master problem (l-

RMP), by limiting the columns to a subset of feasible routes Ω0 ⊂ Ω. In our implementation,

Ω0 initially consists of two columns. The first is associated with the TSP tour through each

of the LMSLs, beginning and ending at the depot. The second is associated with the solution

generated by the heuristic described in Section 3.3.3. After solving the l-RMP (and in so doing,

generating the dual variables {πl}l∈L and πV), we can then identify columns to add to the l-RMP

60

by identifying the route of minimum reduced cost:

min
r∈Ω

[
dr −

∑
l∈L

δlrπl − πV

]
. (3.16)

This step is referred to as the pricing problem. If the solution objective value is negative,

the route is added to the l-RMP. Otherwise, the optimal solution to the l-RMP is the optimal

solution to the l-MP. If the solution is binary-feasible, it provides an optimal solution to the MP.

Otherwise, the solution serves as a lower bound, and we must branch-and-bound until a non-

fractional optimal solution is identified. At each node in the branch-and-bound tree, we may

solve the problem using the same column generation process.

With the following proposition, we note that in the one-shuttle case branching is unnecessary:

Proposition 3. If V = 1, a binary-valued optimal solution can be constructed from any optimal

solution to the l-MP.

Proof. Proof. Consider an optimal solution to the l-MP, and let Z ⊆ {1, . . . , |Ω|} be the indices

of the nonzero yr variables in the solution. Suppose δ l̂ri = 0 for some l̂ ∈ L and some i ∈ Z.

Then, ∑
r∈Ω

δ l̂ryr =
∑
i∈Z

δ l̂riyri <
∑
i∈Z

yri =
∑
r∈Ω

yr = 1,

which violates 3.14. Thus, δlri = 1 for all i ∈ Z, for all l ∈ L. Therefore, the binary-valued

solution yri = 1 and yr = 0 for all r ∈ Ω such that r ̸= ri is feasible for all i ∈ Z. Letting

i∗ = argmini∈Zdi, a binary-feasible optimal solution is given by yr∗i = 1 and yr = 0 for all r ∈ Ω

such that r ̸= ri∗ , since

di∗ ≤
∑
i∈Z

di

61

and the rightmost quantity is optimal.

3.3.2.1 Pricing Problem

We may cast 3.16 as a resource-constrained elementary shortest path problem (RCESPP).

To this end, we introduce a modified network, which can capture the distinction between visiting

an LMSL on a truck route for a rendezvous and visiting the same LMSL only for a direct delivery.

Without loss of generality, we assume the triangle inequality is satisfied by the road network. Let

L0 ⊆ L be the set of LMSLs that can also be used as rendezvous points. For each l ∈ L0,

we create a copy at the same location which corresponds to the location only being visited for

the purposes of a direct delivery. The original then corresponds to a visit to the location for a

rendezvous. Denote the new, direct delivery, nodes L∗. For each LMSL with a copy, l ∈ L0∪L∗,

denote its copy l̂. For each l∗ ∈ L∗, let πl∗ = πl̂∗ . We introduce the set N∗ = (N,L∗), which is

the extension of N by appending the members of L∗. For each i ∈ N∗\R, set Si = ∅. For each

i ∈ N∗, define the time of shuttle arrival limits:

bi =

Ti i ∈ N

∞ i /∈ N,

and for each i ∈ N∗, define the ‘prize’ for a shuttle making the visit to i:

λi =

πi +

∑
k∈Si

πk i ∈ L0 ∪ L∗

∑
k∈Si

πk i /∈ L0 ∪ L∗

Consider the complete network G = (N∗, E). Let F be the set of arcs connecting direct

62

delivery nodes with earlier rendezvous nodes on the same truck route, as well as the set of arcs

connecting rendezvous nodes with all nodes later on the same truck route. By the triangle

inequality, such arcs are unnecessary, and, furthermore, deleting such arcs avoids issues with

double counting prizes. Define for each arc (i, j) ∈ E\F , the cost

eij =

dij − λj j ∈ N∗\{n+ 1}

dij − πV j = n+ 1.

The solution to 3.16 is the path through the network G′ = (N∗, E\F), starting at s = 0

and ending at t = n+ 1, of minimum cost (defined as the sum of the edge costs along the path),

such that, for each stop in the path, i, the arrival happens prior to the time limit, bi, and such that

each LMSL is served at most once.

To solve this RCESPP, we employ a labeling algorithm, which dynamically attributes labels

to each node in the network, where a label corresponds to a path starting at s (see Ahuja et al. [62]

for an introduction to labeling algorithms). Each path is associated with the resource consumption

(in our case, time, t) at the path’s end, as well as the accumulated cost, c.

To prevent cycles, we introduce a dummy resource for each node in N∗, with only one

unit available for each dummy resource, which is consumed when the corresponding vertex is

visited. Furthermore, the visit to node i consumes the dummy resource for each node in Si. If

i has a copy, the resource associated with its copy, î, is also consumed. The consumption of the

N∗ dummy resources is indicated by a N∗ × 1 vector D initialized at 0. Altogether, each label

has the form (D, t, c, i). Furthermore, to recover the path associated with a label, each label has

63

a pointer to the previous label. Let Dl, tl, cl, and il denote the dummy vector, time consumption,

accumulated cost, and current node associated with label l, respectively.

The algorithm is as follows. We define the set U of unextended labels and P of extended

labels. Starting with U = {(0, 0, 0, 0}}, choose a member l of U , and generate new labels by

‘extending’ l. The extension of label l is as follows. For each j ∈ N∗ such thatDj
l = 0, tl+dil,j ≤

bj , and (il, j) ∈ E\F (i.e., the extension is feasible), create the new label (Dl′ , tl′ , cl′ , j), where:

Dk
l′ =

1 Dk

l = 1 or k = j or k ∈ Sj or (j ∈ L0 ∪ L∗ and k = ĵ)

0 otherwise
∀k ∈ N∗

tl′ =

bj bj <∞

tl + dil,j bj =∞
cl′ = cl + eil,j.

Add the new labels (if any) to U , and add l to P . Repeat until U is empty. The members of

P corresponding to a complete path (i.e., those that terminate at the depot) are searched for that

of minimum cost. This route is the optimal solution of 3.16. All paths of negative reduced cost

(if any) are added to the l-RMP. If no path of negative reduced cost has been found, the existing

solution to the l-RMP is optimal.

The run time of the labeling algorithm is largely determined by the number of labels

produced. It is, therefore, desirable to remove unnecessary labels. A common technique is to test

whether a newly produced label l is dominated by any label already in U or P prior to allowing

it to join U . If this is the case, the label may be discarded. Furthermore, if a label dominates a

64

label in U or P , the latter may be discarded. A label, a, dominates another label, b, only if

Dj
a ≤ Dj

b ∀j ∈ N∗, ia = ib, ta ≤ tb, and ca ≤ cb, (3.17)

and at least one of the inequalities is strict. That is, if the resource consumption and the

cost of the partial path associated with a do not exceed those of the partial path associated with b,

and both partial paths terminate at the same node. This dominance criterion ensures the optimal

path is still found. We can also accelerate the algorithm by identifying nodes which cannot be

visited in any feasible extension of a given state (i.e., unreachable nodes). When a node is found

to be unreachable from a given state, the consumption of the corresponding dummy resource in

that state is set to 1. This leads to more label domination, and, thus, fewer labels generated.

The choice of which label in U to extend can have a significant influence on the run time.

In our implementation, labels are explored according to the nodes they are associated with. All

nodes are visited in a cycle, and for each node, the algorithm extends all labels associated with

the nodes that have not yet been extended. Labels associated with the same node are extended by

increasing order of time consumption.

We also introduce a heuristic version of the dominance criterion, which leads to fewer

labels produced:

Va ≥ Vb, ia = ib, ta ≤ tb, and ca ≤ cb, (3.18)

and at least one of the inequalities is strict, where Vl is the number of LMSLs served by the

shuttle at the current state along the path associated with l. The use of this dominance criterion

speeds up the pricing step, but the resulting solution may not be optimal. Once the pricing step is

65

unable to produce a path of negative reduced cost, optimality is verified (or refuted) by a second

run, using the original dominance criterion 3.17.

3.3.3 Heuristic

We now describe the heuristic developed for the one-shuttle problem. A good heuristic for

the one-shuttle case can be used to find a solution for the multiple shuttle case. For example, a

reasonable strategy might be to partition trucks among a fleet of shuttles, transforming a multi-

shuttle problem into several one-shuttle problems.

Our heuristic is divided into two stages. The first identifies a set of candidate solutions. The

second attempts to make local improvements to each of the candidates. The design of the first

stage is governed by two trends we observed in optimal solutions to small test instances. First,

truck-shuttle meetings (rendezvous) tend to happen early in the shuttle’s route. Second, given

multiple locations to rendezvous, the location that minimizes the time until the truck and shuttle

meet tends to be selected. Note that the second point implies the shuttle may travel farther than

necessary to meet with the truck. However, by meeting earlier with the truck, it is often the case

that the shuttle is enabled to make other rendezvous before the other trucks are too far away, or

have already passed their respective LMSLs.

With these trends in mind, our candidate solutions are constructed as follows. Every

ordered pair of two trucks is considered. For a given ordered pair of trucks, two paths are

constructed. Both paths begin at the depot, then visit the first truck as early as possible, and then

visit the second truck as early as possible (starting at the rendezvous point with the first truck).

For the first path, the LMSLs which are unserved by either of the two rendezvous are visited in the

66

Current Position

Depot

fictitious node

Figure 3.3: Finding the optimal shuttle return path by solving a TSP.

distance-minimizing sequence that begins at the current position (the rendezvous point with the

second truck) and terminates at the depot. This last sequence is determined by solving a (typically

small) Traveling Salesman Problem (TSP), using each of the remaining LMSL locations, the

current shuttle location, the depot, and a fictitious node connected only to the depot and the

current shuttle location. We illustrate this method in Figure 3.3. A fictitious node is included

in the network, only connected to the node corresponding to the current position of the shuttle

and the depot. Both arcs have a cost of 0. The TSP is solved on this network. The subpath

connecting the depot, fictitious node, and the current position will necessarily be a component

of the optimal tour, and the optimal shuttle path can be recovered from the solution. The orange

route shows the resulting shuttle path, first visiting all the remaining LMSLs directly and then

arriving at the depot. The TSP problem is solved by the LKH2 solver, a powerful open-source

implementation of the Lin-Kernighan heuristic [63]. We do not have a guarantee of optimality

by using this heuristic for this subproblem. However, for the problems we solve in our tests, in

which N ≤ 100, the LKH2 heuristic typically finds the optimal TSP tour.

The second path is completed using a greedy heuristic. Given the current location, we

identify a set of candidate locations, which include rendezvous as well as direct deliveries. A

67

Current Position

Depot

Figure 3.4: Finding a shuttle return path in a greedy fashion.

node n ∈ N∗ is a candidate if the visit would serve a yet-unserved LMSL (directly or indirectly),

and, if n is a rendezvous point, the shuttle would arrive no earlier than E units of time before the

truck, and no later than the truck. This prevents the shuttle from selecting rendezvous locations

at which it would need wait excessively long. The nearest candidate is selected, and the heuristic

repeats from the new location until all LMSLs are served, at which point the shuttle returns to

the depot. See Figure 3.4 for a visualization of this procedure. In the Figure, candidate nodes are

highlighted in green. All unvisited LMSLs (red) are candidates, as well as all rendezvous points

(black) that the shuttle can reach from its current position within E units of time before the truck

arrives. Of these, the shuttle will move to the closest to its current position, and then the process

will repeat.

By design, each ordered pair of trucks gives rise to two shuttle paths (one completed by

the TSP tour, the other completed greedily). In particular, if the problem includes K trucks,

2K(K − 1) paths are produced in stage 1. We choose the best M of these paths as candidate

solutions, which are passed to the second stage for local improvement.

We now describe the second stage of our heuristic, which attempts to improve upon solutions

generated by the first stage. Starting with a solution produced by the first stage, we apply

68

six different improvement procedures sequentially, and repeat until the most recent pass of the

procedures fails to improve upon the existing solution. To aid the description of these procedures,

we introduce the following notation. A shuttle route is denoted r = {s1, s2, . . . , sm}, where m

is the total number of stops on the route, and si ∈ N∗. Note that s1 and sm correspond to the

depot at the beginning and end, respectively. Let τi denote the time at which service at stop si is

completed. We now describe each of the six procedures, in the order in which they are applied:

3-Opt: We consider the modifications of r that arise from deleting three connections,

reversing the order of some of the resulting subpaths, and reconnecting. Specifically, for each

i, j, k ∈ {2, . . . ,m − 1} such that i < j < k, we consider each reconnection of the paths: {s1},

{s2, . . . , si}, {si+1, . . . , sj}, {sj+1, . . . , sk}, and {sk+1, . . . , sm}, where we may reverse any of

the middle three paths (a total of seven possibilities). If, for given i, j, k, one of the options forms

a feasible route of improved objective value, r is replaced with the route, and the process repeats

from the beginning. If no such route exists for all i, j, k, the process terminates.

Add-Rendezvous: We proceed, in order of visits, through the route r. If stop si is a direct

delivery (i.e., if bsi = ∞), we consider inserting a rendezvous into the route that serves the

corresponding LMSL. Denote the rendezvous nodes considered Qsi ⊆ N∗. A node j ∈ N∗ is in

Qsi if si ∈ Sj and τi−1 + di−1,j ≤ bj . That is, a rendezvous at j is considered if it serves si, and

if it is possible to intercept the truck at j after the visit to si−1. Given the rendezvous j ∈ Qri , we

consider the route created by deleting si from r (as well as any other stop in r made unnecessary

by a visit to node j) and inserting j into r in the cheapest feasible way (without changing the

order of the other visits). If such a route exists and decreases the objective cost, the solution is

replaced and the procedure repeats.

Remove-Rendezvous: We proceed, in order of visits, through the route r. If stop si is a

69

rendezvous point (i.e., if bsi < ∞ and i ̸= 1), and is such that the visit to si indirectly serves

at most two LMSLs yet unserved by the route, we consider removing the rendezvous si. This is

done by examining the (at most two) routes that arise from replacing si with the direct deliveries

while preserving the order of the other stops in r. The shortest valid route is selected if the total

distance is at most five percent greater than the original distance.

The procedure allows ‘uphill’ moves, and is motivated by the opportunity cost of a shuttle

waiting a long time for a truck, as other rendezvous become impossible. By removing such

rendezvous, the shuttle then has greater flexibility to meet with other trucks later on.

Move-Rendezvous: We proceed, in order of visits, through the route r. If stop si is a

rendezvous point (i.e., if bsi < ∞ and i ̸= 1), each member of the set of equivalent rendezvous

points, Psi ⊆ N∗, is considered to replace si. A node j ∈ N∗ is in Psi if Ssi ⊆ Sj , and the route

resulting from replacing si with j is feasible. We then identify the replacement that minimizes

the total distance, while keeping the arrival time at ri+1 within 10% of the original time of arrival,

if it exists. If such a replacement exists, and the resulting route improves the objective value, the

solution is replaced and the procedure repeats.

Add-Rendezvous (version 2): We run this procedure again, but with a different criterion

for possible rendezvous nodes, Qsi . A node j ∈ N∗ is in Qsi if si ∈ Sj and bj − E ≤ τi−1 +

di−1,j ≤ bj . That is, we consider adding those rendezvous points that serve the LMSL at si that

can be reached after the visit to the previous node, si, but not earlier than E units of time before

the truck arrives. The latter constraint removes rendezvous points which lead to long idle times

for the shuttle.

Reinsert: We proceed, in order of visits, through route r. For each stop ri ∈ r, and for each

j ∈ {2, . . . ,m}, we evaluate the modified route, r∗, which moves ri from its current position

70

to directly in front of rj . Furthermore, the path r∗ is passed through the Move-Rendezvous

procedure, with the restriction on arrival times relaxed. If r∗ is feasible and improves the objective

value, r∗ replaces r and the process repeats.

3.4 Computational Results

We now conduct a computational study for the RVRP. We first describe the data sets we

developed for the RVRP, and evaluate the relative performances of the three approaches. We

then perform a sensitivity analysis of the utility of truck-shuttle synchronization against problem

parameter settings.

3.4.1 Test Data

We now describe procedure used to construct our test instances. Coordinates of service

locations and the depot were obtained from the well-known Solomon data set [64]. This data set

provides random, clustered, and mixed location data for 25, 50, and 100-customer instances

(altogether nine instances). We use the Euclidean metric for distances. The Solomon data

provides [x,y] integer-valued coordinates drawn from a [0, 100]× [0, 100] grid. With this data, we

design the fixed truck routes. The set of customers is partitioned among the trucks by a k-means

clustering algorithm (where k is set to the number of trucks, T). Each truck is then sequenced

through its cluster with the LKH2 solver [63]. Then, given a uniform ‘head start’ parameter,

h ∈ R, each of the trucks is initialized at the first location on their route visited after h units of

time have elapsed since departure from the depot (where travel times are equal to distances). This

is their location at the beginning of the problem. Finally, we randomly choose l% of the service

71

locations to be LMSLs (rounding up to the nearest integer). In our initial tests, we set T = 4,

h = 10, and l = 10. Any changes to these nominal values for the purpose of testing will be made

explicit.

In order to evaluate the approaches on larger instances, we applied the same process on

the Gehring and Homberger data set [65]. This data set provides random, clustered, and mixed

location data for instances with 200, 400, 600, 800, and 1000 customers. Locations are drawn

from a [0, 150] × [0, 150] grid for the 200-customer instances, and a [0, N/2] × [0, N/2] grid for

the rest, where N is the number of customers. For these instances, we set T = 4, h = 10, and

l = 5. The reason l is decreased for these instances is that this lower value is more realistic in

practice (i.e., only 5% of consumers may have ordered packages for same day delivery). The

parameter is kept at 10 for the Solomon instances (which are smaller) to keep the problems more

challenging.

We denote the instances with randomly, clustered, and mixed location data by R, C,

and RC, respectively, concatenated with the number of customers (25, 50, and 100 from the

Solomon set, and 200, 400, 600, 800, 1000 from the Gehring and Homberger set). For example,

the instance with clustered location data and 400 customers is drawn from the Gehring and

Homberger data set, and is denoted C400.

We make a couple of notes on implementation. First, in Section 3.3.2, the RVRP is cast

as a set-partitioning problem. However, we found it slightly computationally advantageous to

relax the master problem into a set-covering problem. Specifically, we allow the left hand side in

Constraint 3.14 to be greater than the right hand side. This only affects our procedure in that it

restricts the dual variables to non-negative values. Second, in the heuristic presented in Section

3.3.3, we must specify two parameters: M , the number of paths produced in stage 1 to pass to

72

stage 2, and E, the limit on how early a shuttle can arrive before a truck at a given node. After

some brief experimentation, we foundM = 10 andE = 50 find a good balance between solution

quality and efficiency. Our results reported for the heuristic were found with these settings. All

run times reported are in seconds. The data sets generated for this study are made available at

https://github.com/ericoden/RVRP-data.

3.4.2 Comparison of Approaches

We investigated the relative performances of the arc-based and path-based methods,

described in Sections 3.3.1 and 3.3.2, respectively. In order for the path-based approach to

be exact, column generation needs to be embedded in a branching procedure in the event of

fractional solutions. However, in the one-shuttle case, this is unnecessary, as an integer optimal

solution always exists to the LP relaxation if the reduced master problem is feasible. Thus, for

one shuttle problems, we may compare the two approaches in terms of their ability to identify

and prove optimality. We present the performances on the problems based on the Solomon data

set in Table 3.1.

For all nine instances, the path-based approach identifies and proves the optimal solution

within 11 seconds. Meanwhile, the arc-based approach is only able to do this with the 25-

customer instances within a five minute time limit. In the rightmost columns, we record the

optimality gap of the incumbent solution of the arc-based method (relative to the true optimal

solution identified by the path-based method), as well as the current MIP gap (the gap relative to

the MIP lower bound), after one minute and after five minutes. These columns indicate that the

arc-based approach is able to quickly identify the best solution for the 50-customer instances, but

73

https://github.com/ericoden/RVRP-data

Time to Prove Optimality (sec) Gaps for Arc-Based (%)

Instance Arc-Based Path-Based 1 Min 5 Min
True MIP True MIP

R25 0.23 1.08 0 0 0 0
R50 - 0.80 0 42 0 29
R100 - 10.61 23 67 1 54
C25 0.06 0.61 0 0 0 0
C50 - 0.69 0 39 0 35
C100 - 4.14 19 87 19 84
RC25 0.57 0.41 0 0 0 0
RC50 - 0.67 0 54 0 50
RC100 - 9.40 16 68 16 61

Table 3.1: Performance of the arc-based and path-based methods.

struggles to prove optimality. Altogether, these experiments confirm the computational superiority

of the path-based approach in this context.

However, the path-based approach struggles on the larger instances derived from the Gehring

and Homberger data set. In Table 3.2, the objective values and run times (with a one hour

cap) are reported. A dash indicates the method failed to terminate within an hour, and the

corresponding objective value is that of the incumbent solution. We observe the exact algorithm

is only able to produce and verify the optimal solution for the 200 customer instances within

the time limit. However, the heuristic presented in Section 3.3.3 performs quite well on these

instances, either matching or exceeding the solutions from the path-based method. For these

instances, we also present the (optimal or near optimal) objective value of the tour which makes

only direct deliveries, which we denote by TSP. These values were found by the LKH2 solver.

We observe the significant savings associated with allowing truck rendezvous (e.g., 77% in the

R1000 instance). Next, the experiments in Table 3.2 are repeated, with the single change of

increasing the number of trucks to eight. We observe similar results, reported in Table 3.3.

74

Instance TSP Path-Based Heuristic

Obj Time Obj Time

R200 416.76 287.55 50.10 287.55 1.15
R400 858.35 447.58 - 447.58 3.72
R600 1435.24 378.49 - 371.76 4.63
R800 2141.68 973.36 - 754.67 14.02
R1000 2995.27 910.18 - 674.21 9.87
C200 448.90 356.26 42.61 356.26 0.97
C400 599.28 501.73 - 501.73 8.13
C600 1233.63 830.07 - 680.15 8.07
C800 1967.97 1326.43 - 1098.79 47.01
C1000 2810.40 1752.25 - 1428.86 43.45
RC200 477.89 351.85 91.87 351.85 1.32
RC400 778.16 409.26 - 409.26 2.77
RC600 1250.13 782.87 - 532.04 9.87
RC800 2019.16 1357.22 - 838.73 29.38
RC1000 2746.30 1421.92 - 983.70 21.76

Table 3.2: Performance of the methods on larger instances of the RVRP.

The path-based method is still capable of quickly identifying the optimal solution for the 200

customer instances, but cannot for any of the larger instances. Meanwhile, the heuristic solutions

either match or improve upon the incumbent solutions produced by the path-based method after

an hour of computation.

To verify the effectiveness of our heuristic, we constructed one hundred instances of R200,

where the locations of the LMSLs were randomized in each instance. Furthermore, the seeds

for the k-means clustering algorithm were also randomized, giving rise to different truck routes

among the instances. We then compared the solution produced by the heuristic with the optimal

solution, which can be produced relatively quickly for such instances using the path-based method.

The histogram in Figure 3.5 presents the number of instances whose heuristic solution match the

optimal solution in objective value, and the number of instances where the percent optimality

gap falls within the intervals (0, 1], (1, 2], (2, 3], (3, 4], (4, 5], and (5,∞). The same experiment

75

Instance TSP Path-Based Heuristic

Obj Time Obj Time

R200 416.76 327.17 5.34 327.17 2.76
R400 858.35 759.88 - 746.24 11.55
R600 1435.24 1434.54 - 1247.50 32.05
R800 2141.68 2070.17 - 1656.33 76.76
R1000 2995.27 2842.98 - 2300.17 167.90
C200 448.90 433.50 8.24 433.50 2.96
C400 599.28 552.74 - 552.87 14.42
C600 1233.63 1116.12 - 1070.44 32.28
C800 1967.97 1967.97 - 1855.85 134.39
C1000 2810.40 2801.28 - 2549.73 274.85
RC200 477.89 450.91 27.40 450.91 3.43
RC400 778.16 637.38 - 624.78 10.48
RC600 1250.13 1130.23 - 1075.99 43.85
RC800 2019.16 1966.30 - 1697.60 88.79
RC1000 2746.30 2591.95 - 2456.85 234.20

Table 3.3: Performance of the methods, with the number of trucks raised to eight.

was carried out with the number of trucks set to eight. We observe the heuristic is quite effective,

matching the exact solution around 80% of the time, and on average below 1% optimality gaps for

both four and eight truck instances. Furthermore, in neither of the sets of instances does the gap

between the heuristic and optimal solution exceed 5%. We notice the heuristic performs slightly

better on instances with eight trucks. A possible explanation is that there are fewer LMSLs per

truck in this case, and, thus, the set of highly distinct solutions is smaller. For instance, if a

truck has one LMSL on the route, a shuttle can either rendezvous with the truck beforehand, or

make the direct delivery. If the truck has two LMSLs, the shuttle can rendezvous before the first,

rendezvous between the first and the second (directly delivering to the first), or directly deliver

both.

76

0 (0,1] (1,2] (2,3] (3,4] (4,5] (5,∞)
0

20

40

60

80

100

% Gap from Optimal Solution

#
o
f
In
st
a
n
ce
s

Four Truck (Avg.: 0.378%)

Eight Truck (Avg.: 0.107%)

Figure 3.5: Performance of heuristic on several 200-customer instances.

3.4.3 Input Sensitivity

Among our goals in this work is to characterize when a shuttle-truck synchronization policy

works to the greatest benefit. We, therefore, are interested in comparing the optimal use of such

a policy against the optimal solution with only direct deliveries (i.e., the TSP solution). We focus

on the smaller instances (i.e., the Solomon instances and the Gehring and Homberger instances

where the number of stops is 200), where our path-based method can generate optimal solutions

within a reasonable length of time.

In Table 3.4, we compare the TSP solution with shuttle-truck synchronization (i.e., allowing

indirect deliveries). We test the latter with both one shuttle and two shuttles available using our

exact path-based approach. For each of the instances, the solution at the root node for our column

77

generation procedure was optimal, meaning branching was unnecessary (this is not guaranteed to

happen in the multiple shuttle case).

In four smaller instances (R25, C25, RC25, and RC50), there is little benefit from allowing

rendezvous; the optimal traveling salesman tour through the LMSLs is the optimal (or nearly

optimal) solution to the RVRP. However, as the instances become larger, the benefit of allowing

rendezvous emerges. We also remark that instances in which locations are randomly determined

are the most conducive to synchronization, and that the clustered locations are the least conducive.

This might be explained by the resulting proximity of truck routes to one another in the former

case, enabling a shuttle to quickly travel from one rendezvous to another. We finally notice

that in the smaller instances, there is little benefit to a second shuttle. In all but one of the

instances with 50 customers or fewer, the optimal solution only uses a single shuttle. This is

largely due to the objective of minimized distance. Situations in which alternative objectives

(such as minimization of the time before the shuttles return) are more relevant could benefit from

a larger fleet of shuttles.

We then investigated how LMSL density (that is, the proportion of truck stops that are

LMSLs) affects the utility of shuttle-truck synchronization. The instances from Table 3.4 were

modified by doubling the number of LMSLs for each instance. Table 3.5 reports the results.

We observe the TSP solution is unsurprisingly increased, and we also observe the improvement

using shuttles is similar to the results in the previous experiment, with the larger instances

seeing more improvement. The extent of the improvement is about the same, indicating that

it is the availability of rendezvous locations, rather than the number of LMSLs, that drives the

performance improvement.

It is easy to see that the position of the trucks at the beginning of the problem influence

78

Instance TSP RVRP (1 shuttle) RVRP (2 shuttles)

Obj Obj Savings (%) Obj Savings (%)

R25 116.92 116.55 0.32 116.55 0.32
R50 189.23 172.56 8.81 172.56 8.81
R100 205.98 152.10 26.16 152.10 26.16
R200 416.76 287.55 31.00 249.99 40.02
C25 87.68 87.68 0 .00 87.68 0.00
C50 103.77 97.37 6.17 97.37 6.17
C100 202.71 171.88 15.21 169.16 16.55
C200 448.90 356.26 20.64 290.29 35.33
RC25 133.06 133.06 0.00 133.06 0.00
RC50 262.84 262.84 0.00 262.84 0.00
RC100 245.21 194.00 20.88 194.00 20.88
RC200 477.89 351.85 26.37 294.98 38.27

Table 3.4: Without allowing vs. allowing rendezvous

the efficiency of synchronization. The further away they are at the outset, the further the shuttle

must travel to intercept them, and these effects compound if a shuttle attempts to make multiple

rendezvous. We conducted an experiment to observe this effect. We created 100 instances of

the problem, with the location data given by the R50 data. Problems differed only by which

of the stops were set to be LMSLs. Then, for each instance, and for each setting of the truck

head start parameter h in {5, 10, 15, . . . , 100}, the optimal solutions for one and two shuttles are

determined. The average improvements upon the TSP solution are shown in Figure 3.6. We

see, as expected, a sharp decrease in utility as the head start of the trucks increases, eventually

leveling off towards the same value as the trivial solution. This behavior is explained by the

observation as h is increased, trucks are more likely to have passed their LMSLs, and thus, there

are fewer opportunities for synchronization. In practice, the synchronization approach could

yield significant benefits when a large fraction of the truck routes remain to be completed.

79

Instance TSP RVRP (1 shuttle) RVRP (2 shuttles)

Obj Obj Savings (%) Obj Savings (%)

R25 156.98 156.25 0.47 156.25 0.47
R50 212.52 198.70 6.50 198.70 6.50
R100 271.12 169.55 37.46 156.22 42.38
R200 492.42 356.37 27.62 338.48 31.26
C25 97.87 97.87 0.00 97.87 0.00
C50 136.16 125.40 7.90 125.40 7.90
C100 308.47 265.05 14.08 247.24 19.85
C200 578.44 481.47 16.76 427.59 26.07
RC25 164.62 164.62 0.00 164.62 0.00
RC50 270.88 270.88 0.00 270.88 0.00
RC100 355.41 292.11 17.81 272.33 23.38
RC200 518.93 379.30 26.91 331.72 36.08

Table 3.5: Without allowing vs. allowing rendezvous, number of LMSLs doubled.

0 20 40 60 80 100

0

5

10

Head Start (h)

A
ve
ra
ge

Im
p
ro
ve
m
en
t
(%

)

One Shuttle
Two Shuttles

Figure 3.6: Sensitivity analysis of the head start parameter, h.

80

3.5 Conclusions

In this chapter, we presented a new vehicle routing problem with relevance to contemporary

last-minute shipping concerns. We propose a column generation approach as a quick and effective

means to generate optimal routes for problem instances with up to 200 nodes. Furthermore, we

propose our two-stage heuristic as a reliable means of generating solutions for larger problem

instances, with up to 1000 nodes. Our computational experiments demonstrate that allowing

shuttles to rendezvous with trucks mid-route can save up to 77% on travel costs.

Our computational experiments illustrated situations appropriate for employing truck-shuttle

synchronization. In particular, the larger the instances, the greater the benefit. If trucks have

more stops along their routes, shuttles have more opportunities to meet with them. Truck-shuttle

rendezvous are most suitable in environments where truck routes are fairly close to each other, as

a shuttle route can leverage this proximity to minimize travel distance.

There are several possibilities for further research. One natural question to explore is: How

do the results vary as a function of the ‘head start’ parameter h? This parameter defines a batching

strategy for LMSLs. If h is too small, the objective value and the number of LMSLs serviced will

be small. If h is too large, the objective value and the number of LMSLs serviced will be much

larger. The challenge is to determine a smart batch size h. In this chapter, we assumed that h was

already known.

A second extension deals with designing truck routes based on a future (probabilistic)

forecast of same-day demand. The idea being that accounting for same-day demand (along with

scheduled package delivery) in designing truck routes, may yield additional savings opportunities.

This could be cast as a bilevel program that minimizes expected total travel costs (i.e., for both

81

trucks and shuttles) subject to the design of truck routes, where shuttles are routed optimally

given the design of the truck routes. Another extension deals with allowing for multiple shuttle

dispatches throughout the day, making the problem much more dynamic. Questions that arise in

this setting include when to (optimally) dispatch shuttles, and how to determine an appropriate

rendezvous/delivery strategy. We believe the benefits of shuttle-truck synchronization would

increase in such a setting, and, therefore, we intend to continue our work in this direction.

82

Chapter 4: The Urban Air Mobility Problem

4.1 Introduction

Traffic congestion has become one of the greatest detriments to urban living. A key

challenge is to produce clean, scalable, cost-efficient technologies to improve mobility in cities of

the future. Looking ahead, many aerospace companies have focused on electric vertical takeoff

and landing (eVTOL) aircraft that can provide safe, rapid transport in an urban environment

without the need of significant additional infrastructure (i.e., no need for a runway, etc.) as a

technology to address this problem. Some estimates predict a reduction of an average of three

hours of daily travel time for a commuter in New Delhi [66] when opting to fly rather than drive.

This burgeoning area of research, encompassing a large variety of logistical, engineering, and

regulatory concerns, is referred to by the umbrella term Urban Air Mobility (UAM), or ‘Flying

Taxis’ by the popular press.

A form of UAM service already exists in the form of helicopter flights [67], which are

used, for example, to bypass traffic on time-sensitive trips to the airport. As the service exists

currently, it is considered a luxury service rather than a regular commuting option. However, the

promise of eVTOL aircraft, with their order of magnitude advantages on noise, manufacturing

cost, and fuel efficiency, has resulted in a belief that such technology can deliver as a mass market

option for rapid intracity travel. Indeed, many aerospace companies have ventured into this

83

industry. Several manufacturers, including Airbus, Airspace Experience Technologies, Aurora

Flight Sciences, Bell Helicopter, The Boeing Company, EHANG, Embraer, Karem Aircraft,

Kitty Hawk, Lilium [they already have a prototype capable of carrying five passengers, achieving

speeds of 186 miles per hour and landing in narrow urban areas, see 68], Neva Aerospace, Opener,

Pipistrel, Volocopter, and Workhorse Group are seeking eVTOL certification.

The white papers put out by the eVTOL industry [see 66, 69, 70] envision the market to be

largely an airborne taxi service, integrated with a ridesharing platform. The eVTOLs will operate

out of specially designed transportation hubs referred to as ‘ports’. Presently, the industry is

largely focused on regulatory and engineering aspects in making eVTOLS a reality. While these

are key in the development of the technology, network logistics associated with the operation

of the UAM system (once certified and commercialized) are likely to be another key factor in

the success of this market. Particular challenges operators face include the temporal nature of

demand, time windows for customers, and battery management constraints for the eVTOLs.

In this chapter, we take the perspective of a company in the early stages of development of

an urban air transportation network. In particular, we assume that demand exceeds supply, due to

a limited fleet size. This represents a divergence from many vehicle routing applications, which

assume a steady-state environment, where enough resources exist to accommodate all requests.

In the more typical setting, the objective is usually to minimize operational costs. In contrast, the

priority of a new company (using a new technology) intending to rapidly grow its service may

be to maximize market share. Indeed, the importance of this objective was emphasized by our

industry contact. For the UAM service provider, this can mean maximizing the throughput of

their service, i.e., getting as many passengers aboard their eVTOLs as possible.

The rest of this chapter is organized as follows. Section 4.2 provides relevant background,

84

modeling assumptions, and a description of the problem studied in this chapter. Section 4.3

discusses relevant literature. Section 4.4 develops an arc-based mixed integer program

formulation of the problem. However, this approach is not scalable and has computational

difficulties dealing with battery management constraints. Consequently, Section 4.5 develops a

path-based approach that can adequately address the scale of problems anticipated in practice (at

least, initially). First, Section 4.5.1 introduces the path-based formulation, while Sections 4.5.2

and 4.5.3 describe the associated column generation procedure and pricing problem (which is a

shortest path problem with resource constraints), respectively. Section 4.5.4 provides details on

the initialization and Section 4.5.5 explains our branching scheme. Section 4.6 provides a detailed

computational study, which includes a case study involving the Washington D.C. metropolitan

area that demonstrates the ability of our approach to solve (anticipated) real-world instances.

Section 4.7 discusses future areas of research in the UAM arena.

4.2 Problem Background

Our knowledge of the network logistics problems has been gained by industry white papers

[66, 69, 70], participation in industry sponsored conferences (e.g., Uber Elevate Summit 2019,

Washington D.C.), and contacts in the industry. Based on these, network logistics for the UAM

provider (in the early phases) can be separated into three distinct and interrelated problems.

First, where should eVTOL ports be located? The success of this service will largely be

dictated by the convenience of the ports for the users. Therefore, ports will have to be constructed

to accommodate the expected travel demand (both existing and latent). It is expected that the

eVTOLs will be used as one leg in a multi-modal transportation trip. Thus, passengers are likely

85

to weigh the tradeoffs of a direct road trip against a multi-modal trip with up to three legs (road

trip to eVTOL port, eVTOL trip to destination port, road trip from eVTOL port to destination).

Second, a daily schedule for the eVTOLs must be set. Although it is envisaged that UAM service

at maturity will be a fully on-demand service, it is expected that in the multi-modal ridesharing

setting where the service will be deployed, to reduce complexities of the system, the eVTOL

schedule will be fixed (while the road legs will be scheduled dynamically when a request comes

in), customers will be offered an eVTOL option if there is capacity available on their trip. Thus,

given the location of ports and daily (potential) trip demands (i.e., origin port, destination port,

and time window at origin) the goal is to develop an a priori eVTOL schedule to maximize

customer throughput. Third, since day-to-day demand patterns may vary, when required (e.g., if it

becomes clear that changing the schedule will result in a significant improvement in throughput),

the provider should be able to modify the a priori schedule in real time to improve throughput.

In this chapter, we concentrate on the second problem (determining an a priori schedule

for the eVTOLs based on the anticipated demand) for several reasons. The placement of ports

is a one time decision as they are capital intensive and require several years of planning and

construction (currently UAM system providers are planning on retrofitting roofs of large garages

as ports). Although their location could be optimized, there are other factors that play a larger

role in determining their location (e.g., tax incentives, partnerships with garage operators, etc).

Once port locations are fixed, the success of the UAM system depends on its ability to route

as much demand as possible. Thus, the a priori routing and scheduling problem is critical.

Further, as demand changes and grows, it will be necessary to repeatedly solve this problem.

With eVTOL service several years away from being ready for commercialization (several cities

including Dallas, Los Angeles, and Melbourne (Australia) have announced plans and hope to

86

pilot ride sharing transportation networks that use eVTOLs, potentially as early as 2023, but this

could be delayed as eVTOLs continue to be designed and await certification, a lengthy process)

the parameters necessary to formulate the third problem are unclear at this juncture. Finally, we

note that a solution procedure for the second problem can be a key tool for strategic planning for

the UAM service provider (i.e., it could be used right away as it plans ahead for service and allows

one to answer many strategic what-if questions and explore scenarios). With this background, we

now elaborate and explicitly describe the second problem.

Suppose a provider possesses a fleet of eVTOLs, each of a finite, uniform capacity and a

finite, uniform charge capacity. There is a set of ports dispersed throughout the area at which the

eVTOLs are limited to take off and land. The charge level of each eVTOL is reduced as it travels,

but may be recharged when stationed (either by swapping the battery or by plugging the battery

into a power source). The provider has a set of customers who wish to use the eVTOLs over some

time horizon (e.g., this could be the entire day, or the day could be broken up into pieces like an

AM peak, PM peak, and off-peak periods). Each customer is characterized by an origin port,

destination port, and a time window in which the departure is requested. The customer may only

be routed on a nonstop flight from her origin port to her destination port. Given that the eVTOL

leg is one of multiple legs in a multi-modal trip, and that the eVTOLs have a limited capacity, it is

expected to be more efficient operationally and profitable in terms of maximizing revenue to only

allow direct legs for the eVTOL portion. Naturally, allowing only non-stop flights reduces the

flexibility of the system overall. However, this constraint was confirmed by our industry contact.

At the beginning of the time horizon, the eVTOLs may be placed at any of the ports

(facilitated by overnight relocation). The charge level of each of the eVTOLs is initialized to

a given value (typically full charge), and must remain above the minimum charge level. An

87

eVTOL can pick up a passenger if the eVTOL is currently located at the customer’s origin port,

the current time is within the passenger’s time window, and the eVTOL immediately flies directly

to the passenger’s destination port. The number of passengers the eVTOL can carry cannot

exceed the eVTOL’s capacity. Each eVTOL’s charge level decreases as it flies from one port to

another, but can increase while the eVTOL is stationary at a port (by recharging). We seek to

maximize the total number of customers served. We call this the Urban Air Mobility Problem

(UAMP).

We note that the UAMP (as described) is deterministic (significant variations from the

planned for demand that necessitate schedule changes would be addressed on a day-to-day basis

in real-time). In this chapter, we assume a linear charge/discharge behavior for the batteries.

However, nonlinear charge/discharge behavior (which is more typical as factors including payload

and current charge level influence the recharge/drainage rates) is easily incorporated into the path-

based approach described in Section 4.5. Note that a given customer is associated with a single

origin port and a single destination port. It may be the case that in a multi-modal trip, there are

multiple possibilities for the eVTOL leg, with differing origins and destinations (this could be the

case in a network with a very large number of eVTOL ports). This distinction is equivalent to that

between single and multiple allocation in hub network design [71]. However, in our modeling, we

assume that a given customer’s demand will only be associated with a single origin-destination

port pair. In the early phases, the possibility of having multiple possible origin-destination pairs

for the eVTOL leg is low due to the fact that there will be few ports. We note, however, with

minor adaptations (as described in Appendix B.1.0.1), one can modify our model to account for

multiple port options for a given customer.

88

4.3 Related Literature

To the best of our knowledge, there is no published work in the operations research literature

on the UAMP. There are a handful of papers (all of these research efforts are largely in parallel

to ours) that deal with various aspects of an urban air mobility system. Chen et al. [72], Lim

and Hwang [73], Wang et al. [74], and Wu and Zhang [75] focus on the port placement problem.

Specifically Chen et al. [72] describe a variable neighborhood search heuristic that is able to

solve 144 node instances (of the port placement problem) rapidly. Lim and Hwang [73] used a

k-means algorithm to cluster the commuting data and select ports for Seoul, Korea. Wang et al.

[74] describe a sophisticated adaptive discretization approach to approximately solve (typically

within 1% of optimality) a port placement problem that accounts for tradeoffs between the

strategic aspects of the port placement problem, tactical aspects of UAM operations, and customer

adoption. Wu and Zhang [75] build an integer programming model for the port placement

problem that accounts for customer’s mode choice between ground transportation and multimodal

UAM service. They apply their model to a case study in the Tampa Bay (Florida, USA) area.

Pelegrin and D’Ambrosio [76] and Tang et al. [77] focus on automated route planning and

collision avoidance systems in UAM systems. This is an important issue since it is envisaged

that eVTOLs will be “pilotless”. Garrow et al. [78] and [79] focus on survey data and market

segmentation analysis to estimate demand for air taxi service.

We note that the UAMP has similarities with the well-studied Dial-a-Ride Problem (DARP),

first introduced in the 1970s, which seeks the minimum-cost routing of a fleet of vehicles such that

each customer is picked up and dropped off at nodes within passenger-set time windows. Multiple

passengers can simultaneously occupy a given vehicle, but the ride time of each customer must

89

not exceed some maximum length. Mathematical models of the DARP are presented by Cordeau

and Laporte [80] and Ropke et al. [81]. For an account of the state of recent work on the DARP,

we refer the reader to the survey presented by Ho et al. [25]. According to the survey, the

most successful exact method for solving the DARP is the branch-and-cut-and-price approach

developed by Gschwind and Irnich [82]. The strongest heuristic method is the adaptive large

neighborhood search approach created by Gschwind and Drexl [83]. While the Dial-a-Ride

problem guarantees a level of service through limiting the duration of each passenger’s travel, this

is distinct from the guarantee of a non-stop journey from origin to destination which is assumed

in this setting.

With the increasing presence of electrically powered automobiles on urban road networks,

many vehicle routing problems have been adapted to incorporate battery life constraints. Energy-

consumption models have been developed expressly for this purpose [e.g., 84, 85, 86]. Such

models can be used to predict charging and discharging rates for use in transportation modeling.

In particular, Masmoudi et al. [87] solve an electric DARP using an Evolutionary Variable

Neighborhood Search approach to solve a mixed-integer program, using the model presented in

Genikomsakis and Mitrentsis [84] to determine energy consumption. In the work of Masmoudi

et al. [87], recharging is accomplished by battery swapping stations dispersed throughout the

network. In the work of Bongiovanni et al. [88], a branch-and-cut approach is used to solve the

electric DARP.

We develop a discrete-time model of the UAMP, which maps routing/scheduling decision

points onto a time-expanded network. This technique for representing a problem involving

temporal constraints has been applied in many contexts. For example, see Marshall et al. [89]

and Bsaybes et al. [90].

90

There are two important differences between the UAMP and the above problems. First,

rather than minimizing the routing costs while guaranteeing that each customer is served, we

seek to maximize the number of customers served. This stems from our perspective of a UAM

provider in early development. Rather than the ‘steady-state’ environment, where the priority is

to minimize operational costs, this ‘early-state’ seeks to maximize market share. Second, in each

of the earlier problems, routes need not travel to a customer’s destination node immediately after

traveling to the request’s origin node. Instead, quality of service considerations are incorporated

by including time windows on arrival times and maximum trip lengths. As stated in Section 4.2,

our assumption of non-stop passenger flights is more appropriate here.

4.4 Arc-Based Approach

In our work, we have focused on a discrete-time model of the problem, where the time

horizon is partitioned into time steps. We will describe both an arc-based and path-based approach

in this discrete time setting. It has been noted that there is a price to pay for the quantization

of time in some models [91]. However, this approximation can be justified as an operational

reality. Though improved routing may be possible if flight departures could be scheduled down

to the second, it is perhaps unreasonable to expect such precision in reality. If flight times are

rounded up to the nearest time step (say, five minutes), we automatically incorporate temporal

‘padding’ for any proposed schedule. We now describe an arc-based mathematical formulation

of the problem. We first define notation and then present the formulation.

91

4.4.1 Notation

Let N be the set of eVTOL ports, and let T = {0, 1, . . . , tmax} ⊂ Z be the discrete time

horizon. Each time step corresponds to a fixed amount of time, τ . For instance, if the service is

to begin at 8:00 am, and the time step, τ , is five minutes, then 0 corresponds to 8:00 am, 1 to 8:05

am, and so on. Let C be the set of customers. Each customer c ∈ C is associated with an origin

port oc ∈ N , a destination port dc ∈ N , and a set of times Tc ⊆ T in which the customer can

depart from her origin node. Tc must be a contiguous set of times. That is, if tac = min{t|t ∈ Tc},

tbc = max{t|t ∈ Tc}, and t ∈ T is such that tac ≤ t ≤ tbc, then t ∈ Tc. Thus, Tc represents the

discrete time window for customer c. Let K = {1, . . . , |K|} denote the fleet of eVTOLs, and

let S ∈ Z+ be the capacity (number of seats) of each eVTOL. Let Q+, Q−, and Q0 denote the

uniform maximum, minimum, and initial charge levels of each eVTOL, respectively.

Define the complete, directed graph G = (N,A). Each arc (i, j) ∈ A is associated with

a travel time, tij ∈ Z+ ∪ {0} (this quantity may include take-off, landing, and some minimum

’turnaround’ time allocated for inter-flight processes such as deplaning, boarding, etc.). The

units here correspond to time steps, as opposed to minutes. Without loss of generality, we

assume travel times satisfy the triangle inequality. Define the directed, time-expanded graph

H = (M ∪ {s, f}, B), where M = N × T , s and f represent fictitious origin and destination

nodes, respectively, and B is the set of directed arcs connecting members of M ∪ {s, f}. Each

node i ∈ M corresponds to a port-time pair (p, t), where p ∈ N and t ∈ T . When the port

associated with node i ∈ M must be specified, it is denoted pi. Likewise, the time associated

with node i is denoted ti. An arc (i, j) is included in B if and only if tj − ti = tpi,pj , or if i = s

and tj = 0, or if j = f and ti = tmax. This includes all possible eVTOL flight connections,

92

as well as links the fictitious origin and destination nodes with each of the ports at the beginning

and end of the time horizon, respectively. We allow for an eVTOL to remain stationary at port

i ∈ N for a single time step by defining tii = 1 for all i ∈ N . Note, H is an acyclic network.

Denote the change in an eVTOL’s charge level associated with arc (i, j) ∈ B with eij ∈ R, which

may correspond to an increase or a decrease. Let δ+(i) ⊂ M ∪ {s, f} and δ−(i) ⊂ M ∪ {s, f}

denote the set of outgoing and incoming nodes for node i ∈ M ∪ {s, f}, respectively. That

is, δ−(i) denotes those j such that (j, i) ∈ B, and δ+(i) denotes those j such that (i, j) ∈ B.

Let F(c) ⊆ B denote the set of possible flights for customer c. This will be the collection of

arcs (i, j) ∈ B, such that pi = oc, pj = dc, and ti ∈ Tc. Denote the set of all possible flights

F =
⋃

c∈C F(c).

4.4.2 Three-Index Formulation

For each arc (i, j) ∈ B, and for each eVTOL k ∈ K, let xkij be a binary variable equal to 1

if and only if eVTOL k traverses arc (i, j). For each customer c ∈ C, and for each (i, j) ∈ F(c),

let the binary variable ycij be equal to 1 if and only if customer c flies along arc (i, j). For each

i ∈ M ∪ {s, f}, and for each eVTOL k ∈ K, let qki ∈ R indicate the charge level of eVTOL

k upon arrival at node i. If eVTOL k does not visit node i, the quantity is meaningless. With

these variables, we can formulate the UAMP with the following mixed-integer program, which

we denote MIP3 to reflect the three indices on the decision variable xkij:

max
∑
c∈C

∑
{(i,j)∈F(c)}

ycij (4.1)

93

s.t.
∑

j∈δ+(i)

xkij −
∑

j∈δ−(i)

xkji =

1 i = s

0 i ∈M\{s, f}

−1 i = f

∀i ∈M ∪ {s, f}, k ∈ K (4.2)

∑
{c|(i,j)∈F(c)}

ycij ≤
∑
k

Sxkij ∀(i, j) ∈ F (4.3)

∑
(i,j)∈F(c)

ycij ≤ 1 ∀c ∈ C (4.4)

qk0 = Qk
0 ∀k ∈ K (4.5)

qkj ≤ (qki + eij) +M(1− xkij) ∀(i, j) ∈ H, k ∈ K (4.6)

Q− ≤ qki ≤ Q+ ∀i ∈M,k ∈ K (4.7)

xkij ∈ {0, 1} ∀(i, j) ∈ H, k ∈ K (4.8)

yrij ∈ {0, 1} ∀(i, j) ∈ F(c), c ∈ R (4.9)

qki ∈ R ∀i ∈M,k ∈ K (4.10)

The objective function 4.1 maximizes the number of customers that are served. Constraints 4.2

ensure that each vehicle k follows a path through the time-expanded network H , beginning

at s and ending at f . Constraints 4.3 ensure that for each possible flight arc, the number of

passengers traveling along that arc is bounded from above by the number of eVTOLs taking

the same arc, multiplied by the uniform eVTOL capacity. Constraints 4.4 ensure that each

customer is served at most once. Constraints 4.5 initialize the charge level of each eVTOL.

Constraints 4.6 ensure that the charge level of an eVTOL evolves according to its path. This is

achieved with a ‘Big M’ term, where, e.g., M = Q+ + max(i,j)∈B eij . Constraints 4.7 bound

the charge levels. Constraints 4.8 and 4.9 ensure binary-valued eVTOL flow and passenger flow

variables, respectively, and constraints 4.10 ensure real-valued charge levels. There are a number

94

of extensions that can be incorporated into this formulation, including customer groups, soft time

windows, and battery swaps. We describe these modifications in Appendix B.1.0.3,B.1.0.2, and

B.1.0.4, respectively.

4.4.3 Two-index Heuristic

The charge constraints significantly complicate the problem, and, therefore, severely limit

the problem sizes that can be solved using MIP3 within a reasonable computation time. One

idea is to relax the charge constraints, solve the problem, and, then, repair the solution to make it

charge-feasible. When the charge constraints are relaxed it suffices to aggregate the arc variables

to obtain a two-index formulation, i.e., aggregate the eVTOL flow variables from MIP3, xij =∑
k∈K x

k
ij . The integer-valued variable xij in a two-index formulation thus corresponds to the

number of eVTOLs traveling along arc (i, j). The resulting integer program (that we refer to

as MIP2) is described in Appendix B.2. The solution to MIP2 provides a set of K throughput-

maximizing paths through the network, which may not satisfy charge constraints. To obtain a

charge-feasible solution, we use the solution to MIP2 to sparsify the network and then apply

MIP3.

The process is as follows. We first solve MIP2 and obtain an optimal solution x∗ =

{x∗ij}(i,j)∈B. We then construct a sparsified network B0. An arc (i, j) ∈ B is included in B0

if and only if x∗ij > 0 or pi = pj and tj = ti + 1. That is, we only keep the arcs from the

solution of MIP2 as well as the arcs corresponding to remaining at a port for consecutive time

steps. Keeping these latter arcs ensures charge feasibility. MIP3 can be run on this dramatically

sparsified network. We refer to the process of sparsifying in this fashion, and then running MIP3

95

on the sparsified network as MIP2⇒3.

Although this approach dramatically improves upon MIP3 in terms of the size of the

problems solved, it’s efficacy is limited as the scale of problems grows even larger (a detailed

discussion of our computational experience with MIP2⇒3 is provided in Appendix B.2.0.1).

Instead, to improve our ability to find high-quality solutions to larger instances, we pursue a

path-based approach in the next section.

4.5 Path-Based Approach

We now describe a path-based approach to solve the UAMP. Path-based approaches generally

lend themselves to efficient column generation schemes, as well as lead to stronger LP-relaxations

than arc-based counterparts. We present the path-based formulation in Section 4.5.1 and develop

the corresponding column generation problem in Section 4.5.2. We then present the subproblem

algorithm in Section 4.5.3, the manner in which initial paths can be determined in Section

4.5.4, and the branching rules we employ in the event of fractional solutions in Section 4.5.5.

Finally, Section 4.5.6 describes a network sparsification heuristic that we apply in the path-based

approach to speed up the procedure.

4.5.1 Path-Based Formulation

Let C continue to be the set of customers, and V the fleet of eVTOLs. Let R be the set of

all charge-feasible eVTOL paths. That is, the set of all paths through the network H from s to f

such that all charge constraints are respected. Each route r is associated with a set of customers it

serves. For each route, we define the binary-valued vector sr = {scr}c∈C , where scr ∈ {0, 1} is 1

96

if and only if customer c is served by route r. We refer to sr as the service vector of route r. For

each path r ∈ R, let xr ∈ {0, 1} be 1 if and only if route r is selected. Let yc ∈ {0, 1} be 1 if and

only if customer c is served. We may reformulate the UAMP as the following integer program:

max
∑
c∈C

yc (4.11)

s.t. yc −
∑
r∈R

scrxr ≤ 0 ∀c ∈ C (4.12)∑
r∈R

xr = |V | (4.13)

xr ∈ {0, 1} ∀r ∈ R (4.14)

yc ∈ {0, 1} ∀c ∈ C (4.15)

We denote this integer program MP, for master problem. The objective 4.11 maximizes the

number of customers served. Constraints 4.12 ensure customers are only counted as served if

a route which serves them is selected. Constraint 4.13 ensures the number of eVTOLs is equal

to |V |. Constraints 4.14 and 4.15 ensure binary-valued route selection and customer service

variables, respectively. The above formulation may be relaxed as a linear program by replacing

constraints 4.14 and 4.15 with the constraints below:

yc ≤ 1 ∀c ∈ C (4.16)

yc ≥ 0 ∀c ∈ C (4.17)

xr ≥ 0 ∀r ∈ R (4.18)

Constraints 4.16 prohibit any customer from being counted more than once, and constraints

4.17 and 4.18 ensure nonnegativity. We need not bound the xr variables by 1, as there is no benefit

97

obtained with solutions that have xr > 1 (i.e., if xr > 1 occurs, we replace xr by 1, remaining

feasible and use the excess above 1 to bring in another route variable(s)). However, as a linear

relaxation, fractional solutions are a possibility. We denote this linear relaxation L-MP, for linear

master problem.

4.5.2 Column Generation

The main challenge in the path-based approach is the size ofR, the set of all charge-feasible

paths. This set is generally very large, and, therefore, the MP formulation consists of too many

variables to be efficiently solved using a simplex/branch-and-bound based solver. Instead, we

employ a column generation approach, by first selecting a small subset of paths, R0 ⊂ R. We

then solve the L-MP, restricted to this subset of paths. We denote this restricted problem L-

RMP, for linear restricted master problem. We denote the corresponding problem with binary

constraints the RMP. Solving the L-RMP results in a set of dual variables associated with each

constraint. We can then use these variables to identify ‘useful’ paths. That is, those paths which,

if included in the formulation, would lead to an increase in objective value. These paths are

added to R0, and the procedure is repeated. This can continue until no more useful paths can be

identified, or some other stopping criterion is satisfied.

We now explicitly develop this idea. Let the dual variables αi, β, and γi correspond to

constraints 4.12, 4.13, and 4.16, respectively. Taking the dual of the path-based formulation, we

have:

98

min |V |β +
∑
c∈C

γc

s.t. αi + γi ≥ 1 ∀c ∈ C

β −
∑
c∈C

scrαc ≥ 0 ∀r ∈ R (4.19)

αc ≥ 0 ∀i ∈ C

γc ≥ 0 ∀i ∈ C.

If constraint 4.19 is violated for any route r ∈ R, it indicates that route has a positive

reduced cost, implying the primal solution must be suboptimal. Thus, we seek routes r such that:

β −
∑
c∈C

scrαc < 0

and the subproblem can be stated as:

max
r∈R

{∑
c∈C

scrαc

}
.

Thus, we seek the route r ∈ R such that the inner product of its service vector, sr, and α =

{αc}c∈C is maximized. This can be stated as an elementary shortest path problem with resource

constraints, a well-studied problem [see 92]. This is done in the following way. For each customer

c ∈ C, each arc (i, j) ∈ F(c) is given a weight of −αc. If an arc (i, j) corresponds to a flight

arc for multiple customers (i.e., (i, j) ∈ F(c1) ∩ F(c2) ∩ . . . ∩ F(ck)), the weight is simply the

negative of the sum of the corresponding α values (i.e., −(αc1 + . . .+ αck)). If the number, k, of

99

such customers is greater than the uniform eVTOL capacity (i.e., k > S), then the arc weight is

the negative of the sum of the S greatest corresponding α values. All other arcs in the network

are given a weight of 0. We then seek a path from s to t of minimum weight, where the path

weight is the sum of the arc weights along the path. Of course, multiple paths can have the same

weight, and indeed, many paths can share a service vector despite taking a different route through

H . Because our underlying network is acyclic, all feasible paths are acyclic, and, thus, we may

instead solve the shortest path problem with resource constraints (SPPRC), a significantly easier

problem (the elementary shortest path problem with resource constraints requires that the path be

loopless, while the shortest path with resource constraints has no such restriction). We implement

a label-setting algorithm to solve this problem, which we describe in Section 4.5.3.

4.5.3 Subproblem

We seek to identify paths of positive reduced cost to be added to the reduced master

problem, which amounts to solving the shortest path problem with resource constraints on the

time expanded network H = (M,B). A standard way to solve shortest path problems is to

use a label-setting algorithm, which we implement here. For an introduction to the method, see

Ahuja et al. [62]. The main data structure in the algorithm is the label, which corresponds to

the state of an eVTOL at a particular point on its path, having completed some sub-path through

the network. Labels are identified by the current node, current charge level, current score, and a

pointer to the previous label. We establish two lists of labels: the unprocessed labels, U , and the

processed labels, P . We initialize by adding the starting label, l0, to U , where l0 = [s,Q0, 0, ∅].

That is, the starting label is assigned the current node s, the initial charge, a score of zero, and

100

no previous label. While U is nonempty, we choose a label l ∈ U . Let il, ql, and zl be the

node, charge level, and score associated with label l, respectively. We then ‘treat’ this label.

This is done by observing all j ∈ δ+(il) (the outgoing nodes of il), and creating the new label,

l′ = [j,min(Q+, ql+eij), zl+zij, l], where zij is the the weight of the arc (the sum of the reduced

costs of the customers that can be served along the arc, or the greatest such sum if the number

of customers exceeds the capacity). If ql + eij < Q−, the label is thrown away. Otherwise, the

label is added to U . Once l is treated, it is added to P . This continues until U is empty. Once U

is empty, P is searched for the label l ∈ P corresponding to a complete path that maximizes zl.

That is, we identify argmaxzl
{l ∈ P | il = f}. This path will be the solution to the SPPRC. We

can identify the path corresponding to this label by backtracking through the pointers to previous

labels. We can likewise identify the customers served along the path by, for each arc, identifying

those customers who can be served along the arc. If the number of such customers exceeds the

capacity, we choose the S customers of greatest reduced cost.

There are a couple of considerations that can speed up this algorithm. We can employ

a dominance filter to the labels added to U . A new label, l∗, is added to U only if it is not

dominated by any label l ∈ U ∪ P . A label a dominates another label b if and only if ia =

ib and qa ≥ and za ≥ zb. A useful feature of the label-setting algorithm is that many paths

of positive reduced cost can be produced in one pass. Rather than only extracting the path of

maximum reduced cost, we can instead extract several paths of positive reduced cost at a time.

101

4.5.4 Initialization

In the column generation approach, a set of starting paths must be identified. It has been

noted [by, for example, 61] that the choice of initial paths is important, as they influence the

dual variables identified by L-RMP, and, thus, the new paths produced. Efforts must be made to

produce ‘good’ paths.

We implement a simple greedy initialization procedure. First, we randomly select a starting

port and initialize the charge level (typically setting the charge to full). Then, we consider each

possible choice of a next node, determined by the arcs in the network, as well as the current

charge level. We choose the arc of the greatest score. The score is determined the same way as

in the label-setting method, where each customer’s α value is set to 1. We then add the arc to

the path and move to the corresponding node. In the case of a tie in score, we randomly choose

between the tied arcs. We continue until reaching node f . This greedy heuristic can also be used

as a heuristic to the subproblem, as an alternative to the labeling algorithm discussed in Section

4.5.3. That is, we can apply the greedy heuristic to find ‘good’ paths with positive reduced cost,

and resort to the exact labeling procedure if the greedy algorithm yields no paths.

4.5.5 Branching

We branch on the fractional xr variables, by creating two nodes, one corresponding to

xr = 0, the other xr = 1. This corresponds to partitioning solutions into those that prohibit route

r (as well as all routes that serve the same customers as route r) and those that include route r.

In the latter case, the (pricing) subproblem becomes simpler, as the number of eVTOLs can be

reduced by 1, and the customers served by route r may be removed from consideration.

102

In the former case, when xr is enforced to be 0, we must prohibit the corresponding variable

from entering the solution. Note that other routes may serve the same set of customers as route r.

This can happen, for example, by shifting the departure times. We say two routes are equivalent if

they serve the same set of customers, i.e., r′ is equivalent to r′′ iff sr′ = sr′′ . We remove all routes

equivalent to r from the L-RMP. Furthermore, to prevent the entry of an equivalent route into the

L-RMP, we add the set of customers served by r to a list of prohibited customer sets. Then, for

each route in P (the set of complete routes found by the labeling algorithm), we check if the set

of customers served by the route is in the list. If so, the route is removed from consideration.

4.5.6 Network Sparsification

To improve the run times of the above approaches, we implemented a network sparsification

procedure to further limit the size of the solution space. For a customer c, the arcs F(c) are her

passenger flight arcs. Let tac = min{t|t ∈ Tc}, tbc = max{t|t ∈ Tc} be the first and last

time values at which customer c can depart from her origin port, respectively. Let the two arcs

F̂(c) = {(i, j) ∈ F(c) | ti ∈ {tac , tbc}} be the extreme flight arcs. For a customer c, the arcs

A(c) = {(i, j) ∈ B | pj = oc, tj ∈ Tc, pi ̸= pj}, are the customer’s anticipatory arcs. These

are those arcs that are traveling from another port to the customer’s origin within the customer’s

time window. Let the arcs Â(c) = {(i, j) ∈ A(c) | tj ∈ {tac , tbc}} be the customer’s extreme

anticipatory arcs. Denote the arcs {(i, j) ∈ B | pi = pj, ti + 1 = tj} as the stay put arcs. We

limited the time expanded networks in our data sets to only include the extreme passenger flight

arcs, extreme anticipatory arcs, stay put arcs, and the arcs connecting the fictitious starting and

ending nodes to the network. Figure 4.1 illustrates this sparsification for a 3-customer, 3 port, 20

103

time step problem. Left: The original network, which includes every possible eVTOL flight. The

passenger flight arcs are in bold. One customer wants to go from Port 1 to Port 3, departing at t =

2, 3, or 4. Another wants to go from Port 2 to Port 1, departing at either t = 6 or 7. A third wants

to travel from Port 2 to Port 1, departing at t = 10, 11, or 12. Right: The sparsified network, with

only the extreme passenger flight arcs, extreme anticipatory flights, and stay put arcs. Extreme

passenger flight arcs are in bold, and extreme anticipatory flights are dashed. In this example, the

number of arcs is reduced from 167 to 80.

If there is no upper limit on the eVTOL charge level, and all flight/anticipatory arcs are

included (rather than just the extreme arcs), we can prove the sparsification does not cut off the

optimal solution (see Appendix B.3). We place an upper bound on the charge level, and only use

the extreme flight/anticipatory arcs, and, thus, do not have this guarantee. However, experiments

on synthetic data have shown there is little loss in objective value, but a considerable speed up in

run time, when using this procedure. In particular, as the number of customers increases, the loss

in objective value decreases.

4.6 Computational Results

We now describe our computational experience with the arc-based and path-based approaches.

These include experiments on simulated data sets and a case study using Washington D.C. taxicab

data. Since the instances are difficult to solve to optimality, a major goal in our experiments was

to develop a heuristic variant of the path-based approach that is capable of finding high-quality

solutions for the size of instances that may be expected when UAM service is rolled out. Our

experiments were run on a Windows computer, using an Intel(R) Core(TM) i5-7400 CPU @

104

s

t

19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Port 1 Port 2 Port 3

T

s

t

Port 1 Port 2 Port 3

Figure 4.1: Sparsification procedure.

3.00GHz processor. Our codes were implemented in Python 3.7, and Gurobi 9.0 was used to

solve all linear programs.

4.6.1 Simulated Data Sets

We developed problem sets to evaluate the relative performance of our solution methodologies.

We first establish a discrete time horizon, T = {1, 2, . . . , tmax}, partitioned into minute-long

intervals, so that one time step corresponds to one minute. We then initialize a |T |
10
× |T |

10
grid, in

which |P | ports are then randomly placed. The distance between ports i and j, dij , is Euclidean,

rounded up to the nearest integer. The corresponding travel time, tij , between the ports is

taken to be equal to dij . Each customer is randomly assigned an origin port and a (different)

destination port, as well as the uniform time window length W ∈ Z minutes. That is, each is

willing to wait for W minutes after the beginning of her time window. The beginning of each

customer’s time window then is randomly drawn from T ′ = {0, 1, . . . , tmax −W − tM}, where

105

tM = maxi,j∈N tij ∈ Z+ is the longest of all the pairwise travel times. This ensures all flights

arrive at their destination prior to the end of the time horizon. Charge transition values between

nodes i and j, eij , are established as follows:

eij =

−ψtpi,pj pi ̸= pj

ϕ pi = pj and tj − ti = 1

where ψ and ϕ are the charge depletion and recharge levels per time step, respectively. Charge

transitions are, thus, linear with respect to time. There are many parameters involved in the

UAMP (number of ports, eVTOL speed, eVTOL capacity, number of eVTOLs, number of customers,

passenger waiting time, etc.) that at this time vary based on eVTOL manufacturer (since most

eVTOLs are still in the early concept phase with prototypes yet to be manufactured and certified),

and market assumptions. Consequently, after reviewing industry white papers and studying

several papers [see 93, 94, 95] describing specifications of the different eVTOLs in development,

we chose a set of reasonable default values that the parameters could assume for testing purposes.

Table 4.1 provides these values, along with their symbolic notation.

We created a set of smaller test instances, that we refer to as Problem Set A, that the branch-

and-price approach was largely able to solve to optimality. This baseline family of problems has

4 ports and 4 eVTOLS, and the number of customers range from 5 to 200 in steps of 5 (a total

of forty problems). We then introduce a larger (in terms of the port and eVTOL infrastructure)

and more difficult family of problems, which considers 8 ports and 8 eVTOLs, with the number

of customers ranging from 50 to 300 in steps of five (a total of fifty problems); we refer to

these as Problem Set B. The branch-and-price approach was no longer viable for Problem Set B,

106

Parameter Notation Default Value

Time Horizon Length tmax 60 Time Steps
Time Step Size τ 1 minute
Time Window Width W 3 minutes
Maximum Charge Level Q+ 100
Minimum Charge Level Q− 0
Initial Charge Level Q0 100
Charge Depletion Per Time Step ψ 5
Recharge Per Time Step ϕ 10
eVTOL Capacity S 6

Table 4.1: Parameter values. These were the fixed values used in our experiments.

necessitating the use of column generation as a heuristic to obtain solutions for these instances.

We have largely focused our evaluation of algorithms (in terms of how they scale) by varying the

number of customers. This is because (i) the market demand is a big uncertainty and there is great

value to UAM operators in understanding how solutions vary as the number of customers varies,

and (ii) we found that the performance of our approaches was most sensitive to the number of

customers (as compared to the number of eVTOLS or number of ports).

4.6.2 Results on Simulated Data Sets

We now present our findings with the arc-based and path-based procedures when applied

exactly on Problem Set A. We then focus on the larger instances in Problem Set B, and experiment

with heuristic versions of the path-based approach (for example, by limiting column generation

to the root node). For ease of visualization, we present our results with figures. Tables including

run times and objective values for each of the figures are included in Appendix B.5. All run times

are in units of seconds.

107

0 50 100 150 200

10−2

100

102

104

Number of Customers

R
u
n
T
im

e

MIP3
B&P

Figure 4.2: MIP3 and B&P run time on Problem Set A.

4.6.2.1 Comparing the Arc- and Path-Based Formulations as Exact Approaches

We compared the Three-Index formulation (MIP3) presented in Section 4.4.2 and the

Branch-and-Price method (B&P) presented in Section 4.5 on Problem Set A, with a time limit

of three hours. Figure 4.2 displays the results. While MIP3 appears more efficient for smaller

instances, at around 70 customers, B&P outperforms it, and is able to produce and prove the

optimal solution for all but five instances (when |C| = 105, 180, 190, 195 and 200). Both methods

exhibit high variability in run time, with problems of similar size showing run times sometimes

differing by an order of magnitude. This reveals a high level of sensitivity to the randomly

determined customer data (i.e., origin-destination pairs and departure times).

4.6.2.2 Column Generation Heuristics

A popular heuristic version of path-based formulations is to limit column generation to the

root node. Generation of columns at each node along the branch and bound tree can be a time

consuming process, and it may be the case that such generation is unnecessary if, ultimately,

108

0 50 100 150 200

0

1

2

3

4

Number of Customers

G
a
p
(%

)

0 50 100 150 200
10−3

10−2

10−1

100

101

102

103

104

Number of Customers

R
u
n
T
im

e

B&P
Root Node Evaluation

Figure 4.3: Optimality gap at the root node and run times for B&P on Problem Set A.

the optimal columns are already in the RMP. In Figure 4.3, we present justification for such a

heuristic. On the left, we plot the optimality gap (between the upper and lower bounds) for B&P

upon completing the root node on Problem Set A. We observe that, for the larger problems, the

gap is less than 2%. On the right, with the y-axis shown in logarithmic scale, we show the run

times for B&P and the run times to complete solving the RMP at the root node. We observe the

bulk of computation time in B&P is spent closing a 2% gap, which can justify the heuristic of

only generating columns at the root node.

We implemented several column generation based heuristics. First, we only generated

columns at the root node. When no more columns of positive reduced cost can be identified,

the program performs traditional branch and bound to find the optimal solution, subject to only

having the columns generated at the root available. This heuristic is denoted RCG, for root

node column generation. We then considered an extension of RCG, where column generation

is not only constrained to the root node, but also stops generation after a certain number of

columns have been produced. In Figure 4.4, we demonstrate how the marginal improvement of

solutions diminishes as more columns are generated. Using ten instances of a 100 customer,

109

0

1,
00
0

2,
00
0

3,
00
0

4,
00
0

5,
00
0

6,
00
0

7,
00
0

8,
00
0

9,
00
0

10
,0
00

0

10

20

30

40

50

60

Number of Columns Generated

G
ap

(%
)

100 Customers
150 Customers

Figure 4.4: Optimality gap versus number of columns generated.

8 port, 8 eVTOL problem (these are distinct from Problem Set B), we record the gap from

the best known solution (computed beforehand) as well as the number of columns generated

so far. We do the same for ten instances of a 150 customer, 8 port, 8 eVTOL problem (again

distinct from Problem Set B). We plot a point for each time the subproblem finishes, reporting

the number of columns generated as well as the current gap from the optimal solution (computed

beforehand using B&P). We observe that the 100 customer cases find their solutions after fewer

columns generated than the 150 customer instances, with medians of 1782.5 and 3495 columns,

respectively. Furthermore, we notice the ‘tailing off’ effect often seen in column generation

approaches, with quick early improvement followed by slow incremental progress. We selected

the limits of 1000, 3000, and 5000 columns, and denote the resulting heuristics RCG1000,

RCG3000, and RCG5000.

Figure 4.5 presents the optimality gaps and run times for RCG, RCG1000, RCG3000, and

RCG5000 on Problem Set A (we use Problem Set A in order to compare with the exact solutions

obtained by B&P). We also include run times for B&P. The optimality gaps for the five problem

110

0 50 100 150 200

0

10

20

30

40

50

Customers

G
a
p
(%

)

0 50 100 150 200

10−2

10−1

100

101

102

103

104

Customers

R
u
n
T
im

e

B&P
RCG

RCG1000
RCG3000
RCG5000

Figure 4.5: Performance of the column generation based methods on Problem Set A.

sizes for which B&P could not produce an optimal solution within three hours are calculated

with respect to the best known solution. We observe the gap for RCG is very small (mostly zero)

while requiring much less time than B&P. Meanwhile, RCG1000, while fast, produces a large

optimality gap. As the number of columns produced increases, naturally, the gap goes down, and

the run time goes up. Setting the number of columns to 5000 seems to find a good balance.

We observe the noted ‘tailing off’ effect of the column generation procedure, where the

reduced costs of the generated columns diminish with the number generated, and the improvement

in the upper and lower bounds slows. Consequently, we experimented with a strategy where we

specify a threshold value such that if the maximum reduced cost of the latest batch of columns

is below the threshold, we stop generating columns. Effectively, we determine at what point

to treat very small reduced costs as 0. We applied this to both the B&P procedure (losing the

optimality guarantee), and to RCG. To this end, we experimented with a set of five 150 customer,

8 port, 8 eVTOL problems. These instances are distinct from Problem Set B and the instances in

Figure 4.4). We recorded the maximum reduced cost, as well as the optimality gap, upon each

111

pass of the LRMP. Figure 4.6 displays plots of this investigation. The left plot shows the value

of the maximum reduced cost of the latest batch of columns found by the subproblem versus the

elapsed time. We observe the maximum reduced costs show roughly exponential decay. On the

right is a plot of the current optimality gap versus the maximum reduced cost among the latest

batch of columns.

Together, these plots reveal that, initially, useful columns are produced, with maximum

reduced costs on the order of 10−2 to 101. As time passes, the magnitude of the reduced costs

decreases. Our investigation indicates that columns of reduced cost less than 0.01 do not improve

the objective value.

We also noticed that reduced costs can plummet to the order of 10−14, suggesting error

due to floating point arithmetic. Two of the five instances spend a significant portion of the

computation time identifying these columns of such extremely small reduced cost before terminating

(these instances account for the cluster of points on the bottom left of the right plot). We

also observed that once these columns are being produced, the objective value is already at the

maximum value it will reach. Thus, we treated reduced costs below 10−6, as being the same

as 0. We apply this modification for all procedures involving column generation (including the

instances solved using B&P previously).

As a heuristic, we then considered threshold values of 10−1 and 100 as a stopping criterion

for RCG (rather than setting a limit on the number of columns to generate). We label the heuristics

RCG-TH-0.1 and RCG-TH-1, respectively. Figure 4.7 compares RCG, RCG-TH-0.1 and RCG-

TH-1 on Problem Set A. Both RCG-TH-0.1 and RCG-TH-1 show a small optimality gap for all

problem sizes. The run times of RCG-TH-0.1 often improve on those of RCG by an order of

magnitude, while the run times for RCG-TH-1 are, naturally, even better. The small optimality

112

0 200 400 600 800 1,000 1,200

10

1

0.1

0.01

1e-3

1e-4

Time

M
a
x
im

u
m

R
ed
u
ce
d
C
o
st

1010.1
0.5%

1%

5%

10%

100%

Maximum Reduced Cost

O
p
ti
m
a
li
ty

G
ap

Figure 4.6: Comparison of maximum reduced costs with run times and optimality gaps.

gap and the significant time savings indicate RCG-TH-1 finds a good balance.

We then investigated the performance of the ‘winners’ from the previous experimentation

(RCG, RCG5000, RCG-TH-0.1, and RCG-TH-1) on the larger data set, Problem Set B. The

plot in Figure 4.8 reveals that RCG5000 eventually suffers in performance on larger instances.

Meanwhile, RCG-TH-0.1 and RCG-TH-1 both provide high-quality solutions remaining close

in objective value to the best solution found by RCG across all problem sizes, while yielding

significant time savings. In particular, RCG-TH-1 appears to reduce the run time from RCG by

an order of magnitude, while remaining within 2% of the best known objective value across all

problem sizes.

4.6.2.3 Sensitivity to Time Step Size

Our model is built on a time-expanded network, where each port is paired with each point

in time to create a ‘port-time’ node. This can be interpreted as modeling the operational practice

of eVTOLs leaving only at discrete, regularly spaced times, say every five minutes. Clearly,

113

0 50 100 150 200

0

10

20

30

Customers

G
a
p
(%

)

0 50 100 150 200

100

101

102

103

104

105

106

Customers

R
u
n
T
im

e
(s
)

B&P
RCG

RCG-TH-0.1
RCG-TH-1

Figure 4.7: Performance of the threshold-based heuristics on Problem Set A.

0 50 100 150 200 250 300
−5

0

5

10

15

20

Customers

G
ap

(%
)

0 50 100 150 200 250 300

10−2

10−1

100

101

102

103

104

Customers

R
u
n
T
im

e

RCG
RCG5000

RCG-TH-0.1
RCG-TH-1

Figure 4.8: Performance of the better-performing methods on Problem Set B.

114

the finer the discretization of the time horizon (i.e., the shorter the spacing), the larger the

resulting network, and, thus, the greater the computational demands. However, the increased

flexibility of the denser network can theoretically lead to an improved objective value. In our

initial experiments, we chose a time step size of one minute. However, in practice, this level

of precision may be too ambitious. It may be unreasonable to expect all parties (eVTOLs and

customers) to conform to any schedule right down to the minute, and, thus, in practice, a coarser

discretization of time would serve as a buffer for small delays. The computational advantage is

clear by observing that merely doubling the time step reduces the number of nodes by half, and

similarly at least halves the number of edges in the network.

However, an issue arises when applying customer time window constraints. Because eVTOLs

only depart at time steps, if a customer’s time window is entirely contained within the width of a

time step, the customer is unable to be serviced. For example, if the time horizon is partitioned

into five minute intervals, such that possible departure times are 8:00 am, 8:05 am, 8:10 am, etc.,

a customer whose time window spans 8:06 am to 8:09 am would be impossible to serve. The best

way to address this situation depends on the modeling approach.

One approach is to allow the customer to take the first departure after her window ends. For

example, we allow the customer in the above example to take the 8:10 am flight. To be consistent,

we must allow all customers to take the first departure after their windows end. For example, a

customer whose window is 8:04 am to 8:09 am will also be allowed to take the 8:05 am or the

8:10 am flights. This artificial extension of time windows is straightforward to implement and

seems justifiable from a practical perspective.

We note this approach makes it difficult to compare various discretizations with respect

to the objective value. A consequence of allowing for the first departure after a window is

115

that coarser discretizations have longer effective time windows, making the problem easier.

Meanwhile, the reduced flexibility limits the space of solutions. The degree to which these effects

cancel out one another is difficult to predict.

We conduct tests on the effects of increasing the time step size using this approach. We

considered a set of ten 100 and ten 150 customer instances with 8 ports and 8 eVTOLs (these

are distinct from the previously discussed instances). For these instances, we varied the time

step size from 1 to 6 minutes, and solved each of the resulting problem instances using RCG.

We measured the impact of the network losing flexibility by measuring the percent throughput

compared to the one-minute time step case. Figure 4.9 plots the average percentages and average

run times (averages are for the ten instances of a given time step size). We observe a linear

decrease in objective percentage as the step size is increased. For example, when the time step

is increased to two minutes, the objective value reached is, on average, around 95% of the value

reached when the time step is one minute, and that value drops to 90% when the step is increased

to three minutes. Meanwhile, the run times appear to decrease exponentially, dropping from 200

seconds to 70 seconds when going from one-minute to two-minute time steps. The plots indicate

that, if one is willing to tolerate a certain decrease in objective value, the run time can be reduced

significantly.

Increasing the time step substantially reduces computational time, thereby allowing one

to address larger problems. To compare the scalability of the different approaches and assess

their solution quality we created an augmented Problem Set B*. This data set contains the test

instances from Problem Set B with 50, 100, 150, 200, 250, and 300, customers as well as larger

8 port, 8 eVTOL instances starting at 350 customers, going up to 900 customers in increments

of 50 customers. Since RCG-TH-1 has a significant advantage over RCG-TH-0.1 in terms of

116

1 2 3 4 5 6
70

80

90

100

110

Step Size (Minutes)

P
er
ce
n
t
O
b
je
ct
iv
e

1 2 3 4 5 6
0

200

400

600

Step Size (Minutes)

R
u
n
T
im

e

100 Customers
150 Customers

Figure 4.9: Sensitivity to time step size.

running time without a significant deterioration in objective value, for these large-scale instances

in Problem Set B*, we dropped RCG-TH-0.1 from consideration. Instead, we compared RCG,

RCG5000, RCG-TH-1, and a new variant of RCG-1hr on Problem Set B*. RCG-1hr limits root

node column generation to one hour, and then branches, subsequently. Further, we apply the

following heuristic procedure which significantly speeds up the column generation procedures.

After each run of the linear master problem, the |V | largest xr variables are identified. Each

of these |V | xr variables can be set to 1, providing a feasible solution and, thus, a lower bound.

We use the best lower bound identified in this way as the starting solution for each run of the

linear master problem. We found this provides a significant speed up, especially as the number

of columns gets large.

Figure 4.10 displays the results for RCG, RCG5000, RCG-TH-1, and RCG-1hr on Problem

Set B*, using a time step size of two minutes. Notice that we are able to consider larger numbers

of customers with the coarsened time step (indicating it could be a productive strategy to scale

the approach). For instance, with the one-minute time step, RCG takes over two hours to solve

117

0 200 400 600 800

0

10

20

30

40

50

Customers

G
a
p
(%

)

0 200 400 600 800

101

102

103

104

Customers

R
u
n
T
im

e

RCG
RCG5000
RCG-TH-1
RCG-1hr

Figure 4.10: Performance of column generation methods on Problem Set B*.

the 300 customer instance, whereas, with the two-minute time step, it takes around 9 minutes.

RCG and RCG-1hr are identical in behavior except for larger instances where RCG generates

columns for more than an hour. Since the performance or RCG-1hr dominates RCG-TH-1 with

respect to objective value and its run time is limited to (at most) a little over an hour by design,

we recommend RCG-1hr as the column generation variant for large scale instances.

4.6.3 Case Study: DC Metro Area

We now transition to exploring the insights possible when applying our algorithms to a real-

world problem. In this section, we model the UAMP on the DC metropolitan area and evaluate

how various operational parameters affect solution quality.

4.6.3.1 DC Problem Set

We introduce a problem set which attempts to model the anticipated real-world setting.

The District of Columbia Department of For-Hire Vehicles (DFHV) provides publicly-available

118

taxi ridership records, including origin location, destination location, and trip duration for all

taxi trips in a given year. For privacy reasons, departure times are provided only to the nearest

hour. We pulled 5000 trips of duration greater than 30 minutes from this data set from the year

2017. This is because longer trips of this kind will be the most likely to be replaced by eVTOL

trips. Then, to place the eVTOL ports, a k-means clustering algorithm [see 96] is run on the

resulting set of nodes (that is, all origin and destination nodes). The resulting centers are the port

locations. As origins and destinations are given in geographic coordinates, distances between

nodes are given by the Haversine great-circle distance formula. A visualization of the taxi data,

as well as the resulting port locations, is presented in Figure 4.11. In the plot, we represent a

trip as a thin arc from its origin to its destination. Overlaid on the plot is the resulting placement

of eVTOL ports as determined by the k-means clustering algorithm. We see from this plot that

airport trips account for a significant portion of long taxi trips, and accordingly, each of the DC

area’s major airports has an eVTOL port nearby.The travel time between port i and j is calculated

with tij = ⌈dij/v⌉ + K, where v is the eVTOL flight speed, and K is a fixed amount of time

allotted for takeoff/landing/etc.

To construct a realistic test instance, we create a problem with 8 ports, a fleet of 20 eVTOLs,

a set of 1000 customers, over a three hour horizon partitioned into 5 minute intervals Customer

origins and destinations are sampled from the 5000 trips from the taxi data set, mapped to their

nearest port.

Flight speeds are set at 240 kilometers per hour and time for takeoff/landing set to five

minutes. Customer windows are set to be ten minutes long (which corresponds to two time steps,

given a step size of five minutes). Requested departure times are spread uniformly over the time

horizon (though restricted so that all possible flights arrive at their destination prior to the end of

119

−77.6 −77.4 −77.2 −77.0 −76.8 −76.6

Longitude

38.4

38.6

38.8

39.0

39.2

L
a
ti

tu
d

e
IAD

DCA

BWI

DC Taxi Trips and eVTOL Port Placements

eVTOL Ports

Figure 4.11: Visualization of the taxi ridership data.

the time horizon). The eVTOL charge depletion rates were set to 5% per five minutes of flight,

and recharge rates to 10% per five minutes of charging. At the beginning of the time horizon,

the eVTOLs are at full charge. [Recall we used industry white papers and 93, 94, 95, to help us

determine specifications for eVTOLs.] We ran RCG-1hr on five instances of the above problem.

4.6.3.2 Results

We now describe several experiments that we conducted on the case study problem to

assess the quality of the solutions generated by our path-based approach, and to assess some

tradeoffs that managers are likely to be interested in. First, we were interested in the benefit in

applying the path-based approach in contrast to a (simpler) greedy strategy. Table 4.2 presents the

objective value found by RCG, with a one hour limit on column generation and a thirty minute

limit on branching, compared with the objective values obtained when applying the greedy route

120

generating procedure described in Section 4.5.4. We see that our path-based approach leads to a

30-50% improvement in the solution quality for problems of this size.

Battery management is an important operational restriction in eVTOL logistics. Operators

of eVTOLs have an option (though it can be expensive) to swap batteries as needed, instead of

waiting for the battery to be charged (if the next trip cannot be performed with the current charge).

We wanted to see how much customer throughput can be increased when eVTOL operations are

freed from battery recharging constraints. In effect, we are assuming there will always be a

replacement battery available to swap at a port when necessary (we note that swapping is only

necessary when the next trip of the eVTOL cannot be performed without recharging). We were

then interested in how solutions change when the charge constraints are relaxed (thus, allowing

a manager to evaluate the tradeoff between the increased throughput and the increased cost of

batteries). We ran the same test instances, but changed the charge depletion per time step to zero

(effectively removing battery management from the problem). Table 4.3 compares the resulting

objective values. We observe that the objective value can increase by 7-10% if we relax battery

constraints. We should note that without battery management (i.e., when we can swap batteries as

needed instead of waiting to recharge), we can solve problem instances that are (at least) an order

of magnitude larger to optimality—-indicating that the battery management constraints make it

difficult to solve large-scale instances to optimality.

Finally, we wanted to understand how the throughput varied as the demand changed with

a fixed fleet size. When there are 1000 customers, only about 62% of the requests can be

accommodated. We decreased the total number of customers from 1000 to 500 in steps of 100.

Table 4.4, presents the result of RCG on the first instance of the DC problems, as the total number

of customers is varied from 500 to 1000. We see that, though the total throughput decreases as

121

Problem Instance Greedy Solution RCG Solution Improvement Factor

1 440 648 1.47
2 482 636 1.32
3 461 647 1.40
4 491 661 1.35
5 466 640 1.37

Table 4.2: Results on the DC problem, with 8 ports, 20 eVTOLs, and 1000 customers.

Problem Instance With Charge Constraints No Charge Constraints Improvement Factor

1 648 704 1.09
2 636 690 1.08
3 647 711 1.10
4 661 719 1.09
5 640 687 1.07

Table 4.3: Results on the same DC problems with and without charge constraints.

the total number of customers is reduced, the proportion of satisfied requests increases.

4.7 Conclusions

UAM systems have the promise to improve our daily lives by decreasing the time and cost

of moving people and goods in and around cities. They have vast implications for the future of

transport, work-life, and urban design. An important ingredient in designing an effective and

well-utilized UAM system involves the network logistics.

Number of Customers Throughput Percentage

500 404 80.8%
600 479 79.8%
700 532 76.1%
800 579 72.4%
900 622 69.1%
1000 648 64.8%

Table 4.4: Results on the DC problem with 20 eVTOLs and 8 ports.

122

In this chapter, we consider a problem that would be encountered by a UAM provider

in the early stages of the company’s development. Specifically, we focus on determining an a

priori schedule for the eVTOLs based on the anticipated demand, with the goal of maximizing

the throughput. The temporal nature of the demand, time windows for customers, and battery

management constraints of the eVTOLs make the UAMP particularly challenging. We develop

a three-index, arc-based formulation, routing eVTOLs over a time-expanded network. Due

to the computational limitations of the arc-based formulation, we also develop a path-based

formulation, and apply a column generation procedure to it. The path-based column generation

procedure can be applied in a heuristic manner by (i) sparsifying the time-expanded network,

(ii) limiting column generation to the root node in a branch-and-bound scheme, and (iii) applying

early termination criteria in the column generation procedure. Our computational experience

on a large set of test instances indicates that the path-based approach can identify high-quality

solutions for small to large instances.

There are several directions for future research. They include the synchronization of air

and ground transportation. In other words, when a customer request for transport arises and it

can be served in a multi-modal fashion—it is necessary to coordinate the ground transportation

mode with the ‘scheduled eVTOL service’. Another issue is the online problem of determining

real-time changes to the scheduled eVTOL service to address significant changes or variations in

demand for service. Related to the network logistics is the issue of pricing of the eVTOL service.

The UAMP discussed in this chapter is an important first step in developing our understanding,

and providing methods for the industry to use. As the industry evolves—with changes in market

demands and technology—additional network logistics problems will arise. Their solutions could

play an important role in the path towards making eVTOL transport a commercial reality.

123

Chapter 5: Conclusions

We conclude by looking ahead for each of the three problems we have considered. Specifically,

we consider how the respective domains may evolve, as well as how the approaches offered in

this dissertation may be applied, adapted, and expanded.

The deregulation of the trucking industry in the 1980s led to the proliferation of LTL

transport [97], which, in turn, led to significant cost reductions and improved quality of service.

However, inefficiencies remain in the LTL model. The necessity of establishing a comprehensive

hub-and-spoke network creates a barrier for entry into the industry, travel along such a network

can be circuitous and accident-prone, and the energy consumption of both hubs and long routes is

becoming less attractive in light of mounting pressure towards environmentally-friendly policies.

Accordingly, the industry is again observing a set of changes, driven by technological development.

In particular, the emergence of online platforms, easily accessible to both shippers and carriers,

has facilitated direct communication between both parties. This centralization allows for the

origins and destinations of shippers to be matched with carriers, facilitating accurate quotes and

delivery time estimates. Due to the efficiency of the resulting routes from both an economic

and an environmental perspective, the STL model appears likely to grow in prevalence. The

approaches developed in this work can be used to tackle the resulting pooling/routing problem.

Among the principal unknowns in this space are the costs of routes as the industry evolves

124

[14]. However, our algorithms, by design, make only modest assumptions with regards to such

costs. For example, a pool might break down, meaning a truck encounters service issues mid-

route and cannot serve the remaining customers in the pool. If the cost of having to rescue the

customers can be included in a given route, the PSA approach we have described is immediately

compatible. As STL grows, so may constraints change. We have demonstrated how our work

can accommodate such modifications, including the relaxation of LIFO constraints and allowing

deadheads. Currently, while trailers capable of side-loading do exist, they are relatively rare.

By effectively relaxing LIFO constraints, our work has demonstrated the significant benefits that

could come from investment in such trailers. Other constraints, such as separation of freight

classes, heterogeneous vehicles and/or time windows, may become necessary to include as the

industry expands. In addition, the techniques we have demonstrated can be applied to other

routing situations where the terminal locations of a path are factored into its cost.

For smaller deliveries, the most crucial stage is the last mile [98]. Consumers are increasingly

shopping online, with, for example, virtual grocery shopping gaining significant momentum in

the last decade. Consumer expectations on the timeliness of delivery have also risen, with quality

of delivery serving as a deciding element in the customer’s overall experience. Furthermore,

consumers have demonstrated a willingness to pay a premium for faster deliveries. On the other

hand, the last mile is the costliest link in the supply chain. In order to remain competitive,

companies sometimes subsidize their deliveries. In light of these trends, innovative solutions

abound, including drone-assisted delivery, autonomous vehicles, self-service lockers, and delivery

to consumer vehicles. The shuttle-truck synchronization approach outlined in our work falls into

this category as a relatively low-tech, minimal infrastructure solution; the improvements of GPS

technology can make curbside rendezvous a realistic option. The work in this dissertation serves

125

as a proof of concept for this kind of strategy. However, the setting in which we have applied

our work (i.e., shuttles dispatched some fixed length of time after the trucks) may not be optimal.

The benefits of truck-shuttle synchronization might be fully realized in settings with multiple

depots, and greater flexibility in truck and shuttle dispatch times. For instance, staggered truck

dispatches from two depots could allow greater opportunity for interceptions by shuttles, which

can start and end their paths at either depot. As delivery expectations become more demanding,

and delivery guarantees on the scale of hours become more prevalent, the generalization to the

dynamic problem will be necessary. To make deliveries within two hours in a cost-effective

manner, the ability to re-route shuttles and trucks mid-trajectory will become an important source

of flexibility. However, it may still be the case that a “batching” strategy, where shuttles are

dispatched upon the emergence of a given number of LMSLs (implicitly employed in our work),

is the most effective approach.

Finally, the future of passenger transit is one of the most important considerations within

the Smart City movement. Ground infrastructure has become increasingly congested, leading to

increased pollution, car accidents, and portions of lives spent in gridlock. Urban Air Mobility

may emerge as a safe, clean alternative. Despite the abundance of regulatory and technological

hurdles to be overcome, there is cause to be optimistic about the reality of UAM. Indeed, advancements

in electric propulsion and battery technology have led to significant investment from multiple

companies racing to be the first to create a viable design. The industry has started to coalesce

around key players such as Joby, Volocopter, and Wisk. The work in this dissertation serves to

assist a fledgling UAM provider seeking to maximize market share in an intracity mobility setting.

However, inter-city transport may be the dominant use case. In this setting, the problem statement

described in our work is still compatible (merely a modification in distances). Other possibilities

126

include larger cargo deliveries and services such as fighting wildfire, relief, and medevac [99]. In

these cases, it appears battery management will remain a decision-driving force, as was the case

in our work.

The Smart Cities movement promises a cleaner, safer, and more efficient future. Making

it a reality requires not only investment in powerful, widespread, low-latency communication

technology, but the ability to use the resulting information effectively. Through mathematical

modeling and computational experimentation, this dissertation has worked to serve the latter

step.

127

Appendix A: Additional Material for Chapter 2

A.1 Proofs of Validity

Theorem 2. Constraints 2.17 are valid for the STLP.

Proof. Observe that constraints 2.4 imply yij ∈ {0, 1}. We consider cases:

• Case 1: yij = 1. Observe that constraints 2.5, 2.6, and 2.7 imply yji = 0, meaning the

fourth term on the left side of 2.17 vanishes.

– Subcase 1: βjk = 1. Then, uik = 0, ujk = 1, and uik − ujk + yij = 0− 1 + 1 = 0 =

1− βjk.

– Subcase 2: βjk = 0. Then, uik = ujk, and (uik − ujk) + yij = (0)+ 1 = 1 = 1− βjk.

– Subcase 3: βjk = −1. Then, uik = 1, ujk = 0, and uik − ujk + yij = 1 − 0 + 1 =

2 = 1− βjk.

• Case 2: yij = 0. That is, the third term on the left side of 2.17 vanishes.

– Subcase 1: yji = 1. We must show uik − ujk ≤ βik.

* Subsubcase 1: βjk = 1. Then, ujk = 1, and uik − ujk ≤ βik is only violated if

uik = 1 and βik = −1, which is impossible.

128

* Subsubcase 2: βjk = 0. Then, if βik = 1, then uik = 1, and ujk = 0. If βik = 0,

then uik = ujk. If βik = −1, then ujk = 1 and uik = 0. In all three cases the

constraint is satisfied.

* Subsubcase 3: βjk = −1. Then, uik = 0, ujk = 0, and βik = 0.

– Subcase 2: yji = 0, meaning the fourth term on the left side of 2.17 vanishes.

* Subsubcase 1: βjk = 1. Then, ujk = 1, and uik − ujk ≤ 0 = 1− βjk.

* Subsubcase 2: βjk ∈ {−1, 0}. Then uik − ujk ≤ 1− 0 ≤ 1 ≤ 1− βjk.

Theorem 3. Constraints 2.18 are valid for the STLP.

Proof. Note that the second term equals βi′k, where i′ is the node visited by the truck that also

visits i whose visit immediately precedes that of i. We consider cases to verify uik − βi′k ≥ βik.

• Case 1: βi′k = 1. Then, βik ∈ {−1, 0}. If βik = −1, then uik = 0. If βik = 0, then uik = 1.

In either case, the constraint holds.

• Case 2: βi′k = 0. Then, the constraint is only violated if uik = 0 and βik = 1, which is

impossible.

A.2 Savings Approximation

A key step in the parallel savings algorithm is the calculation of the maximum possible

savings associated with combining two routes. Since we compute this value for every pair of

129

routes in a given solution, the performance of the algorithm is highly sensitive to the efficiency

of this step. Due to LIFO constraints, the prohibition of intermediate deadheading, and limit of

four customers per route, there are at most 120 combinations that need to be evaluated, meaning

that computing the savings exactly is inexpensive. However, if LIFO constraints are relaxed,

this number rises to 1,776, making exact calculation too slow for the problem sizes we target (≈

100 customers). We describe here the procedure employed to approximate the maximum savings

associated with combining two routes when LIFO constraints are relaxed.

We only compute optimal combinations for 1-routes. Otherwise, we employ an approximation

procedure, which appeals to the following insight: due to the iterative nature of the algorithm, the

input routes are likely to be “good.” That is, the terminal points are likely to be in higher-demand

locations, and the order of the nodes visited is likely to be sensible. Rather than throw away this

progress, we consider combinations designed to inherit these qualities.

Correspondingly, we evaluate each of the sequence-preserving merges of the two routes.

That is, we identify those combinations of the two routes such that the order of the nodes visited in

the combination is the same as their order in the original routes. This guarantees that the start/end

node in the combination is one of the original start/end nodes. Furthermore, this guarantees that

the combination respects precedence constraints, meaning the check for feasibility can ignore this

constraint. We note that if the number of stops of the two routes are m and n, respectively, there

are
(
m+n
n

)
= (m+n)!

m!n!
such combinations. Thus, if a route can serve at most four customers, there

are at most 8!
4!4!

= 70 such sequences to evaluate for each combination of two routes. Because

the best possible combination of two routes may not be among the above described merges, we

also consider routes generated in a greedy fashion. Specifically, for each pickup destination in

the original routes, we consider the unique route that emerges from iteratively adding the closest

130

feasible next stop. That is, we identify the greedy route starting from each of the possible starting

points. The lowest-cost route generated by either of the procedures is used to calculate savings.

Furthermore, if the corresponding arc is included in the matching, the original routes are replaced

with the generated route.

Relaxing the deadhead constraints also increases the number of solutions. In particular,

if the total number of customers a route can serve is four, there are at most 312 combinations

if deadhead constraints are relaxed. We modify the GetSavings algorithm in the following

way. If the total number of customers served by the input routes is three or fewer, we compute

the optimal combination. If the total number of customers is four, we compute the optimal

sequence-preserving merge. If both LIFO and deadheading constraints are relaxed, we only

consider sequence-preserving merges.

131

Appendix B: Additional Material for Chapter 4

B.1 Modeling Extensions

The three-index formulation described in the chapter can be extended to incorporate a

variety of realistic modeling goals. We discuss such considerations in this section and the ways

in which the model can be adapted to include them.

B.1.0.1 Multiple Port Allocation

In our work, we assume a single customer-port allocation. That is, we assume each customer

has a unique origin and destination port, when in reality there may be a choice of such ports

available. For instance, if the customer’s final destination is sufficiently close to two ports, a

customer may accept flights to either one.

We extend our definitions in the following way. Suppose there are L possible origin-

destination pairs, each with possibly different time windows. We define, for each customer, a set

of origin-destination port pairs {(ojc, djc)}Ll=1 and a corresponding set of discrete time windows

{T j
c }Ll=1. We extend F(c) to include each of the possible flight arcs for customer c. This will

be the collection of arcs (i, j) ∈ B, for which there exists an l ∈ {1, . . . , L} such that pi = olc,

pj = dlc, and ti ∈ T l
c . Besides this generalization of F(c), nothing else needs to be changed in

132

MIP3 to account for multiple port allocation.

B.1.0.2 Soft Time Windows

In many vehicle routing applications involving time windows, a popular extension is the

inclusion of ‘soft’ time windows. The idea is to relax each time window constraint and instead

penalize its violation in the objective function. This relaxation may be desirable in our setting,

where a UAM provider may accept a small loss in quality of service in exchange for increased

market share.

Such an extension can be achieved in the following way. For each customer c ∈ C, and

for each (i, j) ∈ F(c), we define a coefficient wc
ij ∈ R. This coefficient reflects the value of

servicing customer c by flying him along arc (i, j). The coefficients can be determined using

any model desired. For instance, if Tc = {tac , . . . , tbc} is the contiguous, discrete time window of

customer c, one simple such definition is:

wc
ij =

tbc − ti
tbc − tac

∀(i, j) ∈ F(c),

which linearly decays from 1 to 0 the later the departure time, ti. The objective function is

then modified to

max
∑
r

∑
{(i,j)∈F(r)}

wc
ijy

c
ij.

133

B.1.0.3 Customer Groups

The three-index formulation assumes each customer is traveling individually, when, in

reality, passengers may wish to travel together. Groups of customers can be included in the

formulation by simply weighting the objective value of the particular customer (now customer

group), c, by the number of customers in the group, nc, changing the objective to

max
∑
c∈C

nc

∑
{(i,j)∈F(c)}

ycij

and changing the passenger flow equation to

∑
{c|(i,j)∈F(c)}

ncy
c
ij ≤

∑
k

Sxkij ∀(i, j) ∈ F ,

to account for the increase in load factor.

B.1.0.4 Battery Swaps

The model above assumes charge levels evolve according to eij , defined for each (i, j) ∈

B. Each arc (i, j) ∈ B corresponds to a possible transition an eVTOL may make in the time

expanded network. If pi ̸= pj , then it must be the case that ti + tpi,pj = tj (that is, the time at

node j must be equal to the time at node i, plus the travel time between the two nodes). We allow

for eVTOLs to remain at a port by defining the artificial travel time tii = 1 for each i ∈ N . In the

case pi ̸= pj , eij < 0, as an eVTOL is depleting its charge level by flying from one port to another.

In the case pi = pj , eij ≥ 0, corresponding to a battery charge increase from recharging. As such

134

arcs correspond to a single time step forward, eij is specifically the charge increase possible in

one time step. This can correspond to a recharging policy or a battery swap policy. In the battery

swap policy, eij = Q+, fully replenishing the charge level.

However, it may be the case that the battery swap process takes more than a single time

step. We can account for this by adapting our network in the following way. Suppose a battery

swap takes X time steps. For each i ∈ M such that ti + X ∈ T , add the arc (i, j) to B, where

pj = pi and tj = ti + X . These arcs correspond to remaining at a port for X time steps. Then,

for each of these arcs, define eij = Q+. This will allow the possibility of an eVTOL swapping its

battery, with such a choice preventing take-offs during the battery swap period. One can include

battery swap and recharging options simultaneously.

B.2 Two-index Heuristic

The charge constraints significantly complicate the problem, and, therefore, limit the problem

sizes that can be solved within a reasonable computation time by an MIP solver. In this section,

we present an MIP-based heuristic to identify feasible solutions for large problem sizes. We use

a two-index formulation of the UAMP with charge constraints relaxed, and then use the output of

such a formulation to dramatically sparsify the network prior to re-solving with the three-index

formulation.

The charge-relaxed two-index formulation is constructed by aggregating the eVTOL flow

variables from MIP3, xij =
∑

k∈K x
k
ij . The integer-valued variable xij thus corresponds to the

number of eVTOLs traveling along arc (i, j). We have the resulting integer program (MIP2):

135

max
∑
c∈C

∑
{(i,j)∈F(c)}

ycij (B.1)

s.t.
∑

j∈δ+(i)

xij −
∑

j∈δ−(i)

xji =

|K| i = s

0 i ∈M\{s, f}

−|K| i = f

∀i ∈M ∪ {s, f} (B.2)

∑
{c|(i,j)∈F(c)}

ycij ≤ Sxij ∀(i, j) ∈ F (B.3)

∑
(i,j)∈F(c)

ycij ≤ 1 ∀c ∈ C (B.4)

xij ∈ Z ∀i, j ∈M (B.5)

ycij ∈ {0, 1} ∀(i, j) ∈ F(r), c ∈ C (B.6)

The objective B.1 maximizes the number of customers that are served. Constraints B.2

ensure continuity of flow throughout the network. Constraints B.3 limit the number of customers

flying along an arc by the number of eVTOLs flying along the same arc multiplied by the eVTOL

capacity. Constraints B.4 ensure that each customer is served at most once. Constraints B.5

ensure integer-valued eVTOL variables, and B.6 ensure binary-valued passenger flow variables.

By both relaxing charge-constraints and aggregating eVTOL flow variables, MIP2 is extremely

efficient, running within seconds on large (e.g., 1000+ customer) problem sizes.

Let R-MIP3 denote MIP3 without the charge constraints. It is clear that any feasible

solution of R-MIP3 can be converted into a feasible solution of MIP2. It is straightforward

to show that any feasible solution of MIP2 can be converted into a solution of R-MIP3 by

disaggregating the integer-valued flow variables xij . That is, we can identify xkij ∈ {0, 1} for

136

all (i, j) ∈ B and k ∈ K such that
∑

k x
k
ij = xij and the flow equations hold. Thus, MIP2

provides a set of K throughput-maximizing paths through the network, which may not satisfy

charge constraints.

Our sparsification heuristic appeals to the efficiency of MIP2, as well as the throughput-

maximizing quality of the arcs in a given solution. The process is as follows. We first solve

MIP2, and obtain an optimal solution x∗ = {x∗ij}(i,j)∈B. We then construct a sparsified network

B0. An arc (i, j) ∈ B is included in B0 if and only if x∗ij > 0 or pi = pj and tj = ti + 1. That is,

we only keep the arcs from the solution of MIP2 as well as the arcs corresponding to remaining

at a port for consecutive time steps. Keeping these latter arcs ensures charge feasibility. MIP3

can be run on this dramatically sparsified network. We refer to the process of sparsifying in this

fashion, and then running MIP3 on the sparsified network as MIP2⇒3.

This heuristic naturally can lead to suboptimal solutions, as the only customer-serving

paths in the problem are those produced by MIP2, which may be charge-infeasible. This can

be mitigated by, instead of running MIP2 once, running it multiple times, each time cutting off

the previously obtained paths. Then, each of the arcs from all the MIP2 runs are included in B,

allowing greater system flexibility. However, a balance must be sought, as the more arcs included

in B, the longer the computation time.

B.2.0.1 Computational Performance

We evaluated the performance of the two-index heuristic presented in Section 4.4.3, which

dramatically reduces the size of the flow network by using a two-index formulation without

charge constraints to select candidate arcs. We ran the sparsification procedure on the data,

137

0 50 100 150 200

0

10

20

30

40

50

Customers

G
a
p
(%

)

0 50 100 150 200

10−1

100

101

102

103

104

Customers

R
u
n
T
im

e
(s
)

MIP3
MIP2⇒3

Figure B.1: Gap of MIP2⇒3 and run times of MIP2⇒3 and MIP3 on Problem Set A.

and then applied MIP3 to identify the heuristic solution. We call this procedure ‘Two-Index with

Repair’, and denote it MIP2⇒3.

In Figure B.1, the performance on Problem Set A of MIP2⇒3 is compared to that of the

exact MIP3. We observe the solution quality is always within 8% of the optimal solution (or the

best known solution, if the optimal solution is unavailable). Meanwhile, the run time of MIP2⇒3

is quite insensitive to increases in the number of customers, whereas MIP3 explodes in run time.

However, MIP2⇒3 falls short when compared to the path-based heuristics. In Figure B.2,

MIP2⇒3 is compared to RCG, using Problem Set B. We see that (with one exception), RCG

produces better solutions in less time, particularly as the number of customers increases.

B.3 Sparsification

We may prove that, with certain assumptions, the sparsification procedure does not cut off

the optimal solution.

Theorem 4. Suppose Q+ = ∞, the distances between ports satisfy the triangle inequality, and

138

0 50 100 150 200 250 300

0

10

20

30

40

50

Customers

%
G
a
p

0 50 100 150 200 250 300

10−2

10−1

100

101

102

103

104

Customers

R
u
n
T
im

e

RCG
MIP2⇒3

Figure B.2: Gap of MIP2⇒3 and run times of MIP2⇒3 and RCG on Problem Set B.

that the change in charge level due to recharging is convex with respect to the current charge level.

Then, the optimal solution to the UAMP has the same objective value as the optimal solution to

the UAMP restricted to the stay-put arcs, anticipatory arcs, and flight arcs.

Proof. Let r = {r1, . . . , rn} be an optimal path for the UAMP, where ri ∈ M ∀i ∈ {1, . . . , n},

and (ri, ri+1) ∈ B ∀i ∈ {1, . . . , n − 1}. We shall construct a charge-feasible path r′ =

{r′1, . . . , r′m}, where r′i ∈ M for all i ∈ {1, . . . , n}, that serves the same customers as r, and

is such that (r′i, r
′
i+1) ∈ B′ for all i ∈ {1, . . . , n− 1}.

The construction is as follows. Initialize r′ = {r1}. Starting from i = 1, we determine

if (ri, ri+1) ∈ B′. If so, append ri+1 to r′. Suppose (ri, ri+1) /∈ B′. Since (ri, ri+1) /∈ B′,

the arc is neither a flight arc, nor a stay put arc, nor an anticipatory arc. Since the distances

between ports satisfy the triangle inequality, we may assume, without loss of generality, that

there is some k ∈ Z+ such that {(ri+1, ri+2), . . . , (ri+k, ri+k+1)} is a sequence of stay put arcs,

and that (ri+k, ri+k+1) is a flight arc. Let rji ∈ M denote the node satisfying prji
= pri and

trji
= tri + j. That is, rji is the port-time node at the same port as ri, j time steps ahead. We may

139

observe that rather than following the sequence {ri, ri+1, ri+2, . . . , ri+k−1, ri+k}, we may follow

the sequence {ri, r1i , r2i , . . . , rki , ri+k}, consisting of only stay put arcs and an anticipatory arc.

Since the charge level is convex with respect to the current charge level, and since Q+ =∞, the

charge level upon arrival at ri+k along the second sequence will be no less than along the first

sequence. We therefore can append the nodes r1i , . . . , r
k
i , ri+k, ri+k+1 to r′, and continue from

i = i + k + 1. We continue this until reaching i = n − 1, in which case (rn−1, rn} is, without

loss of generality, either a stay put arc or a flight arc, and thus in B′, so rn may be appended to r′.

By construction, r′ is charge-feasible, and furthermore, r′ serves the same customers as the path

r.

We may demonstrate we need all anticipatory arcs, rather than just the ‘extreme’ anticipatory

arcs, in order for the sparsified network to keep the optimal solution by means of an example

instance of the UAMP, visualized in Figure B.3. In the instance, there is a single eVTOL, and

three customers. Passenger 1 wishes to depart from Port 1 towards Port 2 at time 0. Passenger

2 wishes to depart from Port 3 towards Port 4 at either time 5, 6, or 7. Passenger 3 wishes to

depart from Port 4 towards Port 5 at time 8. Assuming it is charge feasible, the optimal solution

is to fly Passenger 1 from Port 1 to Port 2 at time 0 (arriving at time 3), then to immediately dead

head from Port 2 to Port 3. From there, we immediately bring Passenger 2 from Port 3 to Port 4

(departing at time 6), and then immediately take Passenger 3 from Port 4 to Port 5. We note that

this sequence is the only way to serve each of the customers, and that it requires a non-extreme

anticipatory arc (the one connecting Port 2 to Port 3, departing at time 3). Thus we cannot delete

such arcs from the network and guarantee that we do not cut off optimal solutions.

140

s

t

19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Port 1 Port 2 Port 3 Port 4 Port 5

T

Figure B.3: Demonstration of necessity of all anticipatory arcs.

B.4 Load Factor Analysis

Of particular relevance to a UAM provider may be the average flight occupancy, or load

factor. In particular, there may be interest in the proportion of ‘deadheads’ (flights in the solution

in which there are no passengers), flights with a single customer, two customers, and so on. We

selected parameters to establish a crowded scenario. In particular, the number of ports was set to

four, the number of eVTOLs to three, and the number of time steps to 25. We then were able to

quickly solve 500-customer problems. Furthermore, by reducing the time horizon in this fashion,

we significantly increase the density of customer flight requests. There are roughly tmax ·
(|P |

2

)
possible flight paths, corresponding to every origin-destination pair and every flight time. Thus,

when we restrict the number of ports to four and the number of time steps to 25, there are at most

150 possible paths (fewer if it is infeasible to get from any one particular port to another in one

time step). If customer requests are distributed uniformly across the possible requests, each with

141

a wait time of three time steps, then varying the number of customers from 50 to 500 corresponds

to an expected number of passengers requesting a particular arc varying from roughly 1 to 10.

In this setting, we observed how the load factor of the eVTOLs and the total system

throughput varies as we increase the density of customer requests. In Figure B.4, we present

the average load factor for four different parameter settings: setting the number of eVTOLs to 3

and 4 and setting the capacities of the eVTOLs to 5 and 6. While all parameter settings appear

to have similar results in the extreme cases (highly sparse and highly dense customer requests,

respectively), the lower capacity configurations climb slightly faster towards full occupancy.

An important metric for a UAM provider might also be the eVTOL flight time per customer

(that is, the total time spent flying divided by the number of customers served). One of the

principal costs for a UAM provider might be the recharging of its fleet, and providing service

might only be profitable if the flight time per customer is below a certain threshold. In Figure B.5,

we plot the average flight time per customer for the four different parameter settings versus the

number of customers (corresponding to customer request density). We observe a clear delineation

between the different capacity levels: When the capacity is increased from 5 to 6, there is a

decrease in flight time per customer. Meanwhile, increasing the fleet size increases the flight

time per customer slightly, as the chances of flying at less than full load factor decrease when

more eVTOLs are available.

B.5 Tables Corresponding to Computational Results in Chapter 4

Tables B.1 to B.6 present the detailed computational results for the various algorithms

discussed in the chapter. For all methods, and all instances, a three hour time limit is imposed.

142

100 200 300 400 500
0%

20%

40%

60%

80%

100%

Number of Customers

A
ve
ra
g
e
P
er
ce
n
t
O
cc
u
p
an

cy

|K| = 3 S = 5

|K| = 4 S = 5

|K| = 3 S = 6

|K| = 4 S = 6

Figure B.4: Occupancy levels for various parameter settings.

100 200 300 400 500

0.5

1

1.5

2

Number of Customers

F
li
gh

t
T
im

e
P
er

C
u
st
om

er
(m

in
u
te
s)

|K| = 3 S = 5

|K| = 4 S = 5

|K| = 3 S = 6

|K| = 4 S = 6

Figure B.5: Average flight times for various parameter settings.

143

For all tables containing objective values, the best values are bolded. The run times for the various

methods on Problem Set A is presented in Table B.1. The corresponding objective values are

presented in Table B.2. For the exact methods (MIP3 and B&P), values in parenthesis correspond

to the best feasible solution found after three hours. For MIP3, the values in brackets correspond

to the best upper bound after three hours. The run times for the better-performing methods on

Problem Set B are presented in Table B.3, and the objective values are presented in Table B.4.

Finally, the run times for the better-performing methods on Problem Set B* are presented in Table

B.5, and the objective values are presented in Table B.6.

144

|C| MIP3 B&P MIP2⇒3 RCG RCG1000 RCG5000 RCG-TH-0.1 RCG-TH-1

5 0.10 0.02 0.24 0.02 0.03 0.02 0.12 0.01
10 0.12 0.03 0.14 0.03 0.03 0.03 0.02 0.02
15 0.15 0.00 0.14 0.01 0.01 0.01 0.00 0.01
20 0.20 0.64 0.15 0.76 0.76 0.81 0.65 0.24
25 0.30 1.62 0.18 0.83 0.86 0.89 0.75 0.45
30 0.57 19.21 0.30 1.95 2.31 2.07 1.70 1.70
35 0.87 7.49 0.25 6.33 5.76 5.54 4.24 3.51
40 2.08 8.57 0.62 7.14 6.39 6.60 5.48 5.44
45 4.13 68.85 0.49 23.21 12.67 21.60 17.69 6.92
50 2.76 10.34 0.93 9.99 10.84 10.52 8.67 5.26
55 7.69 46.44 1.05 26.65 9.01 28.89 23.23 14.52
60 256.53 421.73 1.03 48.99 12.41 53.12 40.79 28.62
65 196.29 510.12 1.44 59.28 11.09 45.23 34.08 19.37
70 9331.85 1237.34 2.49 213.70 13.13 194.60 95.90 28.63
75 - 442.87 3.60 152.88 11.39 97.23 93.33 24.22
80 - 4124.29 1.83 265.44 13.35 183.63 95.45 44.49
85 - 1678.56 2.51 211.46 13.38 112.65 94.23 33.38
90 1802.00 453.70 2.08 390.62 16.90 155.37 89.80 41.40
95 - 4350.80 2.39 565.81 11.06 390.67 114.31 49.59
100 5859.01 1324.05 10.74 678.49 11.00 346.09 174.26 63.68
105 - - 6.59 350.01 16.51 201.85 151.96 65.25
110 - 2108.75 2.63 758.20 12.54 420.80 171.61 71.99
115 - 2227.74 6.74 472.44 10.45 432.99 187.21 62.81
120 - 4251.86 21.37 450.73 16.59 531.97 389.80 82.36
125 - 1761.92 11.61 1383.51 20.54 591.81 301.59 112.10
130 - 6979.26 13.65 446.69 13.39 595.59 327.11 87.00
135 - 473.77 14.68 416.73 17.55 326.19 471.23 82.25
140 - 4127.90 25.78 1012.70 19.62 411.56 328.45 110.07
145 - 465.69 24.67 702.39 17.28 981.10 894.33 117.06
150 - 3154.59 11.63 434.50 23.00 296.18 404.18 198.66
155 - 518.08 15.39 499.90 17.60 270.52 448.89 184.74
160 - 1892.63 9.66 479.97 18.90 308.77 437.32 108.63
165 - 276.66 10.53 298.51 23.13 358.18 279.36 137.36
170 - 1323.80 3.34 774.97 21.01 381.62 742.45 207.75
175 - 1958.68 7.57 1151.33 20.38 284.00 1081.95 235.68
180 - - 11.96 1701.53 18.48 200.04 1343.20 425.97
185 - 1461.04 4.89 998.20 23.01 180.84 935.21 332.32
190 - - 4.35 9308.63 22.61 241.64 8997.49 329.72
195 - - 4.66 668.65 21.79 144.53 757.74 428.56
200 - - 13.96 1248.66 21.78 153.82 733.00 298.59

Table B.1: Problem Set A run times.

145

|C| MIP3 B&P MIP2⇒3 RCG RCG1000 RCG5000 RCG-TH-0.1 RCG-TH-1

5 5 5 5 5 5 5 5 4
10 10 10 10 10 10 10 10 10
15 15 15 15 15 15 15 15 15
20 19 19 19 19 19 19 19 18
25 24 24 24 23 23 23 23 22
30 28 28 27 27 27 27 27 27
35 33 33 33 33 33 33 33 32
40 36 36 35 36 36 36 36 36
45 41 41 39 40 40 40 40 40
50 44 44 43 44 44 44 44 44
55 47 47 44 47 43 47 47 45
60 50 50 48 50 46 50 50 49
65 55 55 52 55 51 55 55 54
70 58 58 56 58 53 58 58 57
75 (61)[62] 61 57 61 56 61 61 60
80 (64)[65] 64 61 63 57 63 63 61
85 (66)[67] 66 62 66 58 66 66 64
90 69 69 66 69 62 69 69 68
95 (71)[72] 71 68 71 61 71 71 70
100 74 74 71 74 64 74 74 73
105 (74)[76] (74) 71 74 65 74 74 73
110 (77)[79] 77 75 77 67 77 77 77
115 (77)[83] 79 76 79 73 79 79 78
120 (81)[85] 81 77 81 71 81 81 79
125 (83)[88] 84 80 84 73 83 83 83
130 (85)[91] 86 84 86 74 86 86 85
135 (89)[94] 90 87 90 76 90 90 89
140 (91)[97] 93 86 93 84 93 93 93
145 (93)[99] 94 90 94 81 94 94 93
150 (97)[103] 98 95 97 82 97 97 97
155 (97)[104] 100 95 99 73 99 99 99
160 (102)[106] 102 99 101 88 101 101 100
165 (101)[106] 102 99 102 88 101 102 101
170 (103)[108] 104 101 104 79 104 104 103
175 (105)[110] 106 102 106 78 106 106 104
180 (109)[114] (110) 105 110 85 109 110 109
185 (112)[116] 112 107 112 95 111 112 112
190 (113)[118] (114) 109 114 100 114 114 114
195 (116)[121] (115) 111 115 93 114 115 114
200 (117)[124] (117) 111 117 97 114 117 116

Table B.2: Problem Set A objective values.

146

|C| MIP2⇒3 RCG TH-0.1 TH-1 5K |C| RCG TH-0.1 TH-1 5K

50 16.71 14.99 14.36 14.90 14.26 180 1426.21 938.63 566.89 132.92
55 7.90 26.63 25.52 15.22 25.71 185 1546.70 964.29 487.61 161.67
60 1329.88 39.16 37.46 27.33 48.65 190 3018.32 1179.87 632.71 155.45
65 22.83 117.97 70.01 34.27 128.95 195 1572.06 1110.85 596.91 198.65
70 143.82 105.54 79.23 43.19 117.59 200 1941.76 1215.70 467.46 206.68
75 195.88 113.87 76.97 48.29 116.46 205 1321.91 1035.66 537.96 171.20
80 1316.59 155.29 95.66 59.01 152.20 210 3407.82 1462.72 794.22 207.87
85 246.78 173.16 121.40 57.93 171.38 215 2511.90 1530.85 679.69 185.31
90 867.10 289.71 177.44 125.28 130.00 220 2530.22 1304.18 605.49 173.17
95 625.37 282.65 190.96 110.72 146.56 225 2866.63 1663.74 705.77 186.45
100 3018.94 301.34 222.02 117.55 188.68 230 3312.65 1868.20 677.83 169.47
105 954.91 512.73 327.45 143.31 130.40 235 2774.25 2252.59 1100.95 210.71
110 968.78 477.10 293.19 139.02 133.44 240 3065.07 2136.53 917.93 200.28
115 1828.50 426.10 348.62 171.46 156.00 245 2458.76 1640.78 701.38 188.20
120 - 731.29 450.96 192.95 136.26 250 3175.04 2112.46 958.49 221.19
125 - 643.29 418.90 197.04 174.08 255 2838.78 1777.94 831.14 229.44
130 7223.39 546.30 437.25 232.38 141.74 260 3525.95 1936.10 861.40 202.58
135 - 586.42 428.78 213.42 122.71 265 5087.25 1471.67 812.28 240.54
140 - 693.43 416.50 250.17 139.83 270 2746.22 2016.43 1048.99 312.02
145 - 814.92 589.67 307.64 109.76 275 4108.26 2077.59 1062.55 267.96
150 - 979.33 634.90 318.43 166.60 280 3650.89 1937.69 998.77 297.42
155 - 764.67 535.62 280.33 122.35 285 4728.99 3585.57 1453.53 247.58
160 - 800.13 606.47 281.82 140.54 290 10775.53 3606.87 1495.18 277.19
165 - 1021.26 786.12 375.09 121.08 295 4486.52 2906.29 1257.12 224.44
170 - 1649.21 967.40 452.61 131.14 300 8045.45 3939.81 1477.68 269.14
175 - 1716.01 1026.88 460.01 189.94

Table B.3: Problem Set B run times.

147

|C| MIP2⇒3 RCG TH-0.1 TH-1 5K |C| MIP2⇒3 RCG TH-0.1 TH-1 5K

50 49 50 50 50 50 180 115 120 119 117 112
55 53 54 54 52 54 185 117 121 121 119 114
60 56 57 57 56 57 190 118 123 123 122 112
65 61 62 62 60 62 195 117 125 125 123 114
70 63 65 65 63 65 200 120 127 127 124 118
75 65 68 68 66 68 205 121 128 128 127 117
80 67 70 70 69 70 210 122 130 130 129 120
85 70 73 73 72 73 215 125 132 132 130 121
90 76 77 77 75 77 220 127 133 133 133 122
95 77 81 80 79 80 225 125 133 133 132 120
100 81 83 83 80 82 230 130 136 136 135 123
105 82 85 85 84 84 235 132 138 138 137 123
110 85 87 87 85 86 240 134 139 139 137 127
115 87 90 90 88 88 245 133 139 139 136 128
120 90 94 94 92 91 250 135 141 141 139 129
125 95 98 98 96 96 255 138 142 142 140 129
130 98 101 101 99 97 260 135 143 143 141 128
135 99 102 102 99 96 265 136 144 144 141 136
140 101 104 104 103 99 270 138 145 145 143 129
145 101 105 105 104 99 275 139 148 148 146 137
150 104 107 106 105 101 280 144 150 150 149 138
155 105 108 108 106 104 285 146 154 154 151 141
160 108 111 111 108 107 290 150 156 156 153 144
165 109 113 112 111 106 295 148 158 157 155 136
170 111 114 114 112 103 300 152 158 158 156 146
175 112 117 117 114 110

Table B.4: Problem Set B objective values.

|C| RCG RCG-TH-1 RCG5000 RCG-1hr

50 7.47 5.40 7.34 7.47
100 82.71 36.68 77.36 82.71
150 175.50 93.45 84.80 175.50
200 260.35 153.83 110.27 260.35
250 223.84 180.04 113.25 223.84
300 517.36 216.42 126.83 517.36
350 783.61 368.97 125.93 783.61
400 1348.88 631.26 145.69 1348.88
450 1977.14 534.88 141.25 1977.14
500 2489.50 939.86 157.97 2489.50
550 2553.20 1129.97 180.98 2553.20
600 1820.28 1301.80 202.19 1820.28
650 2111.24 1242.99 187.52 2111.24
700 7551.02 1975.04 236.80 3652.00
750 13575.44 2235.51 253.19 3662.51
800 8595.37 1972.04 276.69 3625.09
850 10262.08 3150.56 268.09 3954.77
900 8919.09 3861.25 213.83 3813.95

Table B.5: Problem Set B* run times.

148

|C| RCG RCG-TH-1 RCG5000 RCG-1hr

50 48 48 48 48
100 81 79 81 81
150 103 102 101 103
200 121 121 120 121
250 133 133 130 133
300 151 151 146 151
350 169 169 161 169
400 186 185 169 186
450 203 201 186 203
500 213 211 192 213
550 228 226 206 228
600 241 241 221 241
650 252 250 242 252
700 267 265 240 267
750 281 279 252 281
800 290 290 257 290
850 303 302 271 303
900 320 318 271 318

Table B.6: Problem Set B* objective values.

149

Bibliography

[1] G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem. Management Science, 6
(1):80–91, 1959. URL http://www.jstor.org/stable/2627477.

[2] Richard Karp. Reducibility among combinatorial problems. In Raymond Miller, James
Thatcher, and Jean Bohlinger, editors, Complexity of Computer Computations: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored
by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation,
and the IBM Research Mathematical Sciences Department, The IBM Research Symposia
Series, pages 85–103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2. doi:
10.1007/978-1-4684-2001-2 9. URL https://doi.org/10.1007/978-1-4684-
2001-2 9.

[3] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization
algorithm for the vehicle routing problem with time windows. Operations Research, 40
(2):342–354, April 1992. ISSN 0030-364X. doi: 10.1287/opre.40.2.342. URL https:
//pubsonline.informs.org/doi/abs/10.1287/opre.40.2.342. Publisher:
INFORMS.

[4] Xingyin Wang. Vehicle Routing Problems that Minimize the Completion Time: Heuristics,
Worst-Case Analyses, and Computational Results. 2016. doi: 10.13016/M27F7Z.
URL https://drum.lib.umd.edu/handle/1903/18710. Accepted: 2016-09-
08T05:34:44Z.

[5] Harilaos N. Psaraftis. Dynamic vehicle routing: Status and prospects. Annals of Operations
Research, 61(1):143–164, December 1995. ISSN 1572-9338. doi: 10.1007/BF02098286.
URL https://doi.org/10.1007/BF02098286.

[6] Lawrence Bodin. A taxonomic structure for vehicle routing and scheduling problems.
Computers & Urban Society, 1(1):11–29, January 1975. ISSN 0305-7097. doi: 10.1016/
0305-7097(75)90003-4. URL https://www.sciencedirect.com/science/
article/pii/0305709775900034.

[7] Lawrence Bodin and Bruce Golden. Classification in vehicle routing and scheduling.
Networks, 11(2):97–108, 1981. ISSN 1097-0037. doi: 10.1002/net.3230110204. URL

150

http://www.jstor.org/stable/2627477
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://pubsonline.informs.org/doi/abs/10.1287/opre.40.2.342
https://pubsonline.informs.org/doi/abs/10.1287/opre.40.2.342
https://drum.lib.umd.edu/handle/1903/18710
https://doi.org/10.1007/BF02098286
https://www.sciencedirect.com/science/article/pii/0305709775900034
https://www.sciencedirect.com/science/article/pii/0305709775900034

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110204.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110204.

[8] M. Desrochers, J. K. Lenstra, and M. W. P. Savelsbergh. A classification scheme for vehicle
routing and scheduling problems. European Journal of Operational Research, 46(3):322–
332, June 1990. ISSN 0377-2217. doi: 10.1016/0377-2217(90)90007-X. URL https:
//www.sciencedirect.com/science/article/pii/037722179090007X.

[9] Burak Eksioglu, Arif Volkan Vural, and Arnold Reisman. The vehicle routing
problem: A taxonomic review. Computers & Industrial Engineering, 57(4):1472–1483,
November 2009. ISSN 0360-8352. doi: 10.1016/j.cie.2009.05.009. URL https:
//www.sciencedirect.com/science/article/pii/S0360835209001405.

[10] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Column Generation.
Springer Science & Business Media, March 2006. ISBN 978-0-387-25486-9.

[11] Bhagya Nathali Silva, Murad Khan, and Kijun Han. Towards sustainable smart cities:
A review of trends, architectures, components, and open challenges in smart cities.
Sustainable Cities and Society, 38:697–713, April 2018. ISSN 2210-6707. doi:
10.1016/j.scs.2018.01.053. URL https://www.sciencedirect.com/science/
article/pii/S2210670717311125.

[12] United Nations, Department of Economic and Social Affairs, and Population Division.
World urbanization prospects: the 2018 revision. 2019. ISBN 978-92-1-148319-2. OCLC:
1120698127.

[13] Alan Hooper and Dan Murray. E-Commerce Impacts on the Trucking Industry. Technical
report, American Transportation Research Institute, February 2019.

[14] Evren Özkaya, Pınar Keskinocak, V. Roshan Joseph, and Ryan Weight. Estimating and
benchmarking Less-than-Truckload market rates. Transportation Research Part E: Logistics
and Transportation Review, 46(5):667–682, September 2010. ISSN 1366-5545. doi:
10.1016/j.tre.2009.09.004. URL https://www.sciencedirect.com/science/
article/pii/S1366554509001240.

[15] Troy Segal. Less-Than-Truckload (LTL), June 2021. URL https://
www.investopedia.com/terms/l/lessthantruckload.asp.

[16] Alan Erera, Michael Hewitt, Martin Savelsbergh, and Yang Zhang. Creating schedules and
computing operating costs for LTL load plans. Computers & Operations Research, 40(3):
691–702, March 2013. ISSN 0305-0548. doi: 10.1016/j.cor.2011.10.001. URL https:
//www.sciencedirect.com/science/article/pii/S0305054811002887.

[17] Ahmad Jarrah, Ellis Johnson, and Lucas Neubert. Large-Scale, Less-than-Truckload
Service Network Design. Operations Research, 57(3):609–625, June 2009. ISSN 0030-
364X. doi: 10.1287/opre.1080.0587. URL http://pubsonline.informs.org/
doi/abs/10.1287/opre.1080.0587. Publisher: INFORMS.

151

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110204
https://www.sciencedirect.com/science/article/pii/037722179090007X
https://www.sciencedirect.com/science/article/pii/037722179090007X
https://www.sciencedirect.com/science/article/pii/S0360835209001405
https://www.sciencedirect.com/science/article/pii/S0360835209001405
https://www.sciencedirect.com/science/article/pii/S2210670717311125
https://www.sciencedirect.com/science/article/pii/S2210670717311125
https://www.sciencedirect.com/science/article/pii/S1366554509001240
https://www.sciencedirect.com/science/article/pii/S1366554509001240
https://www.investopedia.com/terms/l/lessthantruckload.asp
https://www.investopedia.com/terms/l/lessthantruckload.asp
https://www.sciencedirect.com/science/article/pii/S0305054811002887
https://www.sciencedirect.com/science/article/pii/S0305054811002887
http://pubsonline.informs.org/doi/abs/10.1287/opre.1080.0587
http://pubsonline.informs.org/doi/abs/10.1287/opre.1080.0587

[18] Teodor Gabriel Crainic. A Survey of Optimization Models for Long-Haul Freight
Transportation. Technical report, Center for Research on Transportation, 2002.

[19] Ian Herszterg, Yassine Ridouane, Natashia Boland, Alan Erera, and Martin Savelsbergh.
Near real-time loadplan adjustments for less-than-truckload carriers. European
Journal of Operational Research, December 2021. ISSN 0377-2217. doi:
10.1016/j.ejor.2021.11.044. URL https://www.sciencedirect.com/science/
article/pii/S0377221721009954.

[20] Warren Powell and Yosef Sheffi. The load planning problem of motor carriers:
Problem description and a proposed solution approach. Transportation Research Part
A: General, 17(6):471–480, November 1983. ISSN 0191-2607. doi: 10.1016/
0191-2607(83)90167-X. URL https://www.sciencedirect.com/science/
article/pii/019126078390167X.

[21] Naoto Katamaya and Shigeru Yurimoto. The Load Planning Problem for Less-Than-
Truckload Motor: Carriers and a Solution Approach. In Developments in Logistics and
Supply Chain Management, pages 240–249. Palgrave Macmillan, January 2002. ISBN
978-1-349-55848-3.

[22] Alan Erera, Michael Hewitt, Martin Savelsbergh, and Yang Zhang. Improved Load Plan
Design Through Integer Programming Based Local Search. Transportation Science, 47(3):
412–427, August 2013. ISSN 0041-1655. doi: 10.1287/trsc.1120.0441. URL http:
//pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0441. Publisher:
INFORMS.

[23] L. Barcos, V. Rodrı́guez, M. J. Álvarez, and F. Robusté. Routing design for less-than-
truckload motor carriers using Ant Colony Optimization. Transportation Research Part E:
Logistics and Transportation Review, 46(3):367–383, May 2010. ISSN 1366-5545. doi:
10.1016/j.tre.2009.11.006. URL https://www.sciencedirect.com/science/
article/pii/S1366554509001392.

[24] Srinivas Subramanya Tamvada, Bahareh Mansouri, Elkafi Hassini, and Theodore Pribytkov.
An integer programming model and directed Steiner-forest based heuristic for routing
less-than-truckload freight. International Journal of Production Economics, 232:107925,
February 2021. ISSN 0925-5273. doi: 10.1016/j.ijpe.2020.107925. URL https:
//www.sciencedirect.com/science/article/pii/S0925527320302802.

[25] Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Petering,
and Terence W.H. Tou. A survey of dial-a-ride problems: Literature review and
recent developments. Transportation Research Part B: Methodological, 111:395–421,
May 2018. ISSN 01912615. doi: 10.1016/j.trb.2018.02.001. URL https://
linkinghub.elsevier.com/retrieve/pii/S0191261517304484.

[26] Sophie Parragh, Karl Doerner, and Richard Hartl. A survey on pickup and delivery
problems. Journal für Betriebswirtschaft, 58(2):81–117, June 2008. ISSN 1614-631X.
doi: 10.1007/s11301-008-0036-4. URL https://doi.org/10.1007/s11301-
008-0036-4.

152

https://www.sciencedirect.com/science/article/pii/S0377221721009954
https://www.sciencedirect.com/science/article/pii/S0377221721009954
https://www.sciencedirect.com/science/article/pii/019126078390167X
https://www.sciencedirect.com/science/article/pii/019126078390167X
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0441
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0441
https://www.sciencedirect.com/science/article/pii/S1366554509001392
https://www.sciencedirect.com/science/article/pii/S1366554509001392
https://www.sciencedirect.com/science/article/pii/S0925527320302802
https://www.sciencedirect.com/science/article/pii/S0925527320302802
https://linkinghub.elsevier.com/retrieve/pii/S0191261517304484
https://linkinghub.elsevier.com/retrieve/pii/S0191261517304484
https://doi.org/10.1007/s11301-008-0036-4
https://doi.org/10.1007/s11301-008-0036-4

[27] Marilène Cherkesly, Guy Desaulniers, and Gilbert Laporte. Branch-Price-and-Cut
Algorithms for the Pickup and Delivery Problem with Time Windows and Last-in-First-
Out Loading. Transportation Science, 49(4):752–766, November 2015. ISSN 0041-
1655. doi: 10.1287/trsc.2014.0535. URL http://pubsonline.informs.org/doi/
10.1287/trsc.2014.0535. Publisher: INFORMS.

[28] Jean-François Cordeau, Manuel Iori, Gilbert Laporte, and Juan José Salazar González.
A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with
LIFO loading. Networks, 55(1):46–59, 2010. ISSN 1097-0037. doi: 10.1002/net.20312.
URL http://onlinelibrary.wiley.com/doi/abs/10.1002/net.20312. -
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.20312.

[29] Enrique Benavent, Mercedes Landete, Enrique Mota, and Gregorio Tirado. The
multiple vehicle pickup and delivery problem with LIFO constraints. European
Journal of Operational Research, 243(3):752–762, June 2015. ISSN 03772217.
doi: 10.1016/j.ejor.2014.12.029. URL https://linkinghub.elsevier.com/
retrieve/pii/S0377221714010479.

[30] Andriansyah, Nissa Prasanti, and Prima Denny Sentia. Pickup and delivery problem with
LIFO, time duration, and limited vehicle number. MATEC Web of Conferences, 204:
07003, 2018. ISSN 2261-236X. doi: 10.1051/matecconf/201820407003. URL https:
//www.matec-conferences.org/10.1051/matecconf/201820407003.

[31] L. Cassani and Giovanni Righini. Heuristic Algorithms for the TSP with rear-loading.
Lecce, Italy, September 2004. URL http://optlab.dti.unimi.it/Papers/
Cassani.pdf.

[32] Francesco Carrabs, Jean-françois Cordeau, and Gilbert Laporte. Variable neighborhood
search for the pickup and delivery traveling salesman problem with lifo loading. INFORMS
Journal on Computing, 19(4):618–632, 2007.

[33] D. Tu, Songshan Guo, Hu Qin, Wee-Chong Oon, and A. Lim. The Tree Representation
of Feasible Solutions for the TSP with Pickup and Delivery and LIFO Loading. In AAAI,
2010.

[34] Xiang Gao, Andrew Lim, Hu Qin, and Wenbin Zhu. Multiple Pickup and Delivery
TSP with LIFO and Distance Constraints: A VNS Approach. In Kishan G. Mehrotra,
Chilukuri K. Mohan, Jae C. Oh, Pramod K. Varshney, and Moonis Ali, editors, Modern
Approaches in Applied Intelligence, Lecture Notes in Computer Science, pages 193–202,
Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-21827-9. doi: 10.1007/978-3-642-
21827-9 20.

[35] Martin Desrochers and T. W. Verhoog. A Matching Based Savings Algorithm for
the Vehicle Routing Problem, 1989. URL /paper/A-Matching-Based-
Savings-Algorithm-for-the-Vehicle-Desrochers-Verhoog/
1cca59362704ba5397b92818df3e5d2389fb6994.

153

http://pubsonline.informs.org/doi/10.1287/trsc.2014.0535
http://pubsonline.informs.org/doi/10.1287/trsc.2014.0535
http://onlinelibrary.wiley.com/doi/abs/10.1002/net.20312
https://linkinghub.elsevier.com/retrieve/pii/S0377221714010479
https://linkinghub.elsevier.com/retrieve/pii/S0377221714010479
https://www.matec-conferences.org/10.1051/matecconf/201820407003
https://www.matec-conferences.org/10.1051/matecconf/201820407003
http://optlab.dti.unimi.it/Papers/Cassani.pdf.
http://optlab.dti.unimi.it/Papers/Cassani.pdf.
/paper/A-Matching-Based-Savings-Algorithm-for-the-Vehicle-Desrochers-Verhoog/1cca59362704ba5397b92818df3e5d2389fb6994
/paper/A-Matching-Based-Savings-Algorithm-for-the-Vehicle-Desrochers-Verhoog/1cca59362704ba5397b92818df3e5d2389fb6994
/paper/A-Matching-Based-Savings-Algorithm-for-the-Vehicle-Desrochers-Verhoog/1cca59362704ba5397b92818df3e5d2389fb6994

[36] Kemal Altinkemer and Bezalel Gavish. Parallel Savings Based Heuristics for the
Delivery Problem. Operations Research, 39(3):456–469, June 1991. ISSN 0030-
364X. doi: 10.1287/opre.39.3.456. URL https://pubsonline.informs.org/
doi/10.1287/opre.39.3.456.

[37] Y. Gajpal and P. Abad. Saving-based algorithms for vehicle routing problem with
simultaneous pickup and delivery. The Journal of the Operational Research Society, 61
(10):1498–1509, 2010. ISSN 0160-5682. URL http://www.jstor.org/stable/
40802326. Publisher: Palgrave Macmillan Journals.

[38] C. E. Miller, Albert Tucker, and Richard Zemlin. Integer Programming Formulation
of Traveling Salesman Problems. Journal of the ACM, 7(4):326–329, October 1960.
ISSN 0004-5411. doi: 10.1145/321043.321046. URL http://doi.org/10.1145/
321043.321046.

[39] Stefan Ropke and Jean-François Cordeau. Branch and Cut and Price for the Pickup and
Delivery Problem with Time Windows. Transportation Science, 43(3):267–286, August
2009. ISSN 0041-1655, 1526-5447. doi: 10.1287/trsc.1090.0272. URL http://
pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0272.

[40] Richard Stanley. Enumerative Combinatorics, volume 2 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, January 1999. ISBN 978-0-521-78987-5.

[41] Aric Hagberg, Daniel Schult, and Pieter Swart. Exploring Network Structure, Dynamics,
and Function using NetworkX. In Proceedings of the 7th Python in Science conference
(SciPy 2008), pages 11–15, 2008.

[42] Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:
449–467, 1965. ISSN 0008-414X, 1496-4279. doi: 10.4153/CJM-1965-045-4.
URL https://www.cambridge.org/core/journals/canadian-
journal-of-mathematics/article/paths-trees-and-flowers/
08B492B72322C4130AE800C0610E0E21. Publisher: Cambridge University
Press.

[43] U.S. Census. Quarterly retail e-commerce sales 3rd quarter 2020, November
2020. URL https://www.census.gov/retail/mrts/www/data/pdf/
ec current.pdf?

[44] Alina Selyukh. Optimized prime: how AI and anticipation power amazon’s 1-
hour deliveries, November 2018. URL https://www.npr.org/2018/11/21/
660168325/optimized-prime-how-ai-and-anticipation-power-
amazons-1-hour-deliveries.

[45] Nils Boysen, Stefan Fedtke, and Stefan Schwerdfeger. Last-mile delivery concepts: a survey
from an operational research perspective. OR Spectrum, 43(1):1–58, September 2020. ISSN
0171-6468, 1436-6304.

154

https://pubsonline.informs.org/doi/10.1287/opre.39.3.456
https://pubsonline.informs.org/doi/10.1287/opre.39.3.456
http://www.jstor.org/stable/40802326
http://www.jstor.org/stable/40802326
http://doi.org/10.1145/321043.321046
http://doi.org/10.1145/321043.321046
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0272
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1090.0272
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21
https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf?
https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf?
https://www.npr.org/2018/11/21/660168325/optimized-prime-how-ai-and-anticipation-power-amazons-1-hour-deliveries
https://www.npr.org/2018/11/21/660168325/optimized-prime-how-ai-and-anticipation-power-amazons-1-hour-deliveries
https://www.npr.org/2018/11/21/660168325/optimized-prime-how-ai-and-anticipation-power-amazons-1-hour-deliveries

[46] Kees Jacobs, Shannon Warner, Marc Rietra, Lindsey Mazza, Jerome Buvat, Amol
Khadikar, Sumit Cherian, and Yashwardhan Khemka. The last-mile delivery challenge.
Technical report, 2019. URL https://www.capgemini.com/wp-content/
uploads/2019/01/Report-Digital-%E2%80%93-Last-Mile-Delivery-
Challenge1.pdf.

[47] Michael Drexl. Synchronization in vehicle routing—a survey of VRPs with multiple
synchronization constraints. Transportation Science, 46(3):297–316, 2012. ISSN 0041-
1655.

[48] Chris Groër, Bruce Golden, and Edward Wasil. The Consistent Vehicle Routing Problem.
Manufacturing & Service Operations Management, 11(4):630–643, 2009.

[49] Michael Drexl. Applications of the vehicle routing problem with trailers and
transshipments. European Journal of Operational Research, 227(2):275–283, June 2013.
ISSN 0377-2217.

[50] Martin Fink, Guy Desaulniers, Markus Frey, Ferdinand Kiermaier, Rainer Kolisch,
and François Soumis. Column generation for vehicle routing problems with multiple
synchronization constraints. European Journal of Operational Research, 272(2):699–711,
January 2019. ISSN 03772217.

[51] Cristián Cortés, Martı́n Matamala, and Claudio Contardo. The pickup and delivery problem
with transfers: Formulation and a branch-and-cut solution method. European Journal of
Operational Research, 200(3):711–724, February 2010. ISSN 0377-2217. doi: 10.1016/
j.ejor.2009.01.022.

[52] A. Rais, F. Alvelos, and M.S. Carvalho. New mixed integer-programming model for
the pickup-and-delivery problem with transshipment. European Journal of Operational
Research, 235(3):530–539, June 2014. ISSN 03772217.

[53] Snežana Mitrović-Minić and Gilbert Laporte. The pickup and delivery problem with time
windows and transshipment. INFOR: Information Systems and Operational Research, 44
(3):217–227, August 2006. ISSN 0315-5986.

[54] Renaud Masson, Fabien Lehuédé, and Olivier Péton. An adaptive large neighborhood
search for the pickup and delivery problem with transfers. Transportation Science, 47:
344–355, August 2013.

[55] Afonso Sampaio, Martin Savelsbergh, Lucas P. Veelenturf, and Tom Van Woensel. Delivery
systems with crowd-sourced drivers: a pickup and delivery problem with transfers.
Networks, 76(2):232–255, 2020. ISSN 1097-0037.

[56] Sam Thangiah, Adel Fergany, and Salman Awan. Real-time split-delivery pickup and
delivery time window problems with transfers. Central European Journal of Operations
Research, 15(4):329–349, November 2007. ISSN 1613-9178.

155

https://www.capgemini.com/wp-content/uploads/2019/01/Report-Digital-%E2%80%93-Last-Mile-Delivery-Challenge1.pdf
https://www.capgemini.com/wp-content/uploads/2019/01/Report-Digital-%E2%80%93-Last-Mile-Delivery-Challenge1.pdf
https://www.capgemini.com/wp-content/uploads/2019/01/Report-Digital-%E2%80%93-Last-Mile-Delivery-Challenge1.pdf

[57] Marlin Ulmer, Barrett Thomas, and Dirk Mattfeld. Preemptive depot returns for dynamic
same-day delivery. EURO Journal on Transportation and Logistics, 8(4):327–361,
December 2019. ISSN 2192-4384.

[58] Stacy Voccia, Ann Melissa Campbell, and Barrett Thomas. The same-day delivery problem
for online purchases. Transportation Science, 53(1):167–184, May 2017. ISSN 0041-1655.

[59] Nabila Azi, Michel Gendreau, and Jean-Yves Potvin. A dynamic vehicle routing problem
with multiple delivery routes. Annals of Operations Research, 199(1):103–112, October
2012. ISSN 1572-9338.

[60] Mathias Klapp, Alan Erera, and Alejandro Toriello. The one-dimensional dynamic dispatch
waves problem. Transportation Science, 52(2):402–415, May 2016. ISSN 0041-1655.

[61] Cynthia Barnhart, Ellis Johnson, George Nemhauser, Martin Savelsbergh, and Pamela H.
Vance. Branch-and-price: column generation for solving huge integer programs.
Operations Research, 46(3):316–329, June 1998. ISSN 0030-364X.

[62] Ravindra Ahuja, Thomas Magnanti, and J. Orlin. Network flows - theory, algorithms and
applications. Prentice Hall, 1993.

[63] Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, October
2000. ISSN 03772217. doi: 10.1016/S0377-2217(99)00284-2. URL https://
linkinghub.elsevier.com/retrieve/pii/S0377221799002842.

[64] Marius Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254–265, April 1987. ISSN 0030-364X.

[65] Hermann Gehring and Jörg Homberger. A parallel hybrid evolutionary metaheuristic for the
vehicle routing problem with time windows. In Proceedings of EUROGEN99–Short Course
on Evolutionary Algorithms in Engineering and Computer Science, pages 57–64, 1999.

[66] Uber. Fast-Forwarding to a Future of On-Demand Urban Air Transportation. 2016.

[67] Madeline Stone. ’Uber-for-helicopters’ startup Blade just raised $38 million — here’s what
it’s like to fly to the Hamptons, 2015. URL https://www.businessinsider.com/
what-blade-the-uber-for-helicopters-is-like-2017-5. Library
Catalog: www.businessinsider.com.

[68] Andrew J. Hawkins. Electric air taxi startup Lilium completes first test of its new five-seater
aircraft, May 2019. URL https://www.theverge.com/2019/5/16/18625088/
lilium-jet-test-flight-electric-aircraft-flying-car. Library
Catalog: www.theverge.com.

[69] Jan Hendrik. Pioneering the Urban Air Taxi Revolution. Technical report, Volocopter,
2020. URL https://press.volocopter.com/images/pdf/Volocopter-
WhitePaper-1-0.pdf.

156

https://linkinghub.elsevier.com/retrieve/pii/S0377221799002842
https://linkinghub.elsevier.com/retrieve/pii/S0377221799002842
https://www.businessinsider.com/what-blade-the-uber-for-helicopters-is-like-2017-5
https://www.businessinsider.com/what-blade-the-uber-for-helicopters-is-like-2017-5
https://www.theverge.com/2019/5/16/18625088/lilium-jet-test-flight-electric-aircraft-flying-car
https://www.theverge.com/2019/5/16/18625088/lilium-jet-test-flight-electric-aircraft-flying-car
https://press.volocopter.com/images/pdf/Volocopter-WhitePaper-1-0.pdf
https://press.volocopter.com/images/pdf/Volocopter-WhitePaper-1-0.pdf

[70] Huaxiang Xu. The Future of Transportation: White Paper on Urban Air Mobility Systems.
Technical report, EHang, 2020. URL https://www.ehang.com/app/en/EHang%
20White%20Paper%20on%20Urban%20Air%20Mobility%20Systems.pdf.

[71] M.E. O’Kelly, D. Bryan, D. Skorin-Kapov, and J. Skorin-Kapov. Hub network design with
single and multiple allocation: A computational study. Location Science, 4(3):125–138,
October 1996. ISSN 09668349. doi: 10.1016/S0966-8349(96)00015-0. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0966834996000150.

[72] Liting Chen, Sebastian Wandelt, Weibin Dai, and Xiaoqian Sun. Scalable vertiport hub
location selection for air taxi operations in a metropolitan region. INFORMS Journal on
Computing, 34(2):834–856, 2022.

[73] E Lim and H Hwang. The selection of vertiport location for on-demand mobility and its
application to Seoul metro area. International Journal of Aeronautical and Space Sciences,
20(1):260–272, 2019.

[74] Kai Wang, Alexander Jacquillat, and Vikrant Vaze. Vertiport planning for urban aerial
mobility: An adaptive discretization approach port placement for uam service in a
multimodal transportation network. Technical report, Heinz College of Information Systems
and Public Policy, Carnegie Mellon University, 2021.

[75] Zhiqiang Wu and Yu Zhang. Integrated network design and demand forecast for on-demand
urban air mobility. Engineering, 7:473–487, 2021.

[76] Mercedes Pelegrin and Claudia D’Ambrosio. Aircraft deconfliction via mathematical
programming: Review and insights. Transportation Science, 56(1):118–140, 2022.

[77] Hualong Tang, Yu Zhang, Vahid Mohmoodian, and Hadi Charkhgard. Automated flight
planning for high-density urban air mobility. Transportation Research C, 131:103324, 2021.

[78] Laurie A. Garrow, Patricia Mokhtarian, Brian German, and Sreekar-Shashank Boddupalli.
Commuting in the Age of the Jetsons: A Market Segmentation Analysis of Autonomous
Ground Vehicles and Air Taxis in Five Large U.S. Cities. 2020. doi: 10.2514/6.2020-3258.
URL https://arc.aiaa.org/doi/abs/10.2514/6.2020-3258.

[79] Conor Hill and Laurie A. Garrow. A Market Segmentation Analysis for an eVTOL Air Taxi
Shuttle. 2021. doi: 10.2514/6.2021-3183. URL https://arc.aiaa.org/doi/abs/
10.2514/6.2021-3183.

[80] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and
algorithms. Annals of Operations Research, 153(1):29–46, September 2007. ISSN
1572-9338. doi: 10.1007/s10479-007-0170-8. URL https://doi.org/10.1007/
s10479-007-0170-8.

[81] Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-
and-cut algorithms for pickup and delivery problems with time windows. Networks,
49(4):258–272, 2007. ISSN 1097-0037. doi: 10.1002/net.20177. URL

157

https://www.ehang.com/app/en/EHang%20White%20Paper%20on%20Urban%20Air%20Mobility%20Systems.pdf
https://www.ehang.com/app/en/EHang%20White%20Paper%20on%20Urban%20Air%20Mobility%20Systems.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0966834996000150
https://linkinghub.elsevier.com/retrieve/pii/S0966834996000150
https://arc.aiaa.org/doi/abs/10.2514/6.2020-3258
https://arc.aiaa.org/doi/abs/10.2514/6.2021-3183
https://arc.aiaa.org/doi/abs/10.2514/6.2021-3183
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20177. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.20177.

[82] Timo Gschwind and Stefan Irnich. Effective Handling of Dynamic Time Windows
and Its Application to Solving the Dial-a-Ride Problem. Transportation Science,
49(2):335–354, September 2014. ISSN 0041-1655. doi: 10.1287/trsc.2014.0531.
URL https://pubsonline.informs.org/doi/10.1287/trsc.2014.0531.
Publisher: INFORMS.

[83] Timo Gschwind and Michael Drexl. Adaptive Large Neighborhood Search with a Constant-
Time Feasibility Test for the Dial-a-Ride Problem. Transportation Science, 53(2):480–
491, March 2019. ISSN 0041-1655. doi: 10.1287/trsc.2018.0837. URL http:
//pubsonline.informs.org/doi/abs/10.1287/trsc.2018.0837. Publisher:
INFORMS.

[84] K. N. Genikomsakis and Georgios Mitrentsis. A computationally efficient simulation model
for estimating energy consumption of electric vehicles in the context of route planning
applications. Transportation Research Part D: Transport and Environment, 50:98–118,
2017. doi: 10.1016/J.TRD.2016.10.014.

[85] Dominik Goeke and Michael Schneider. Routing a mixed fleet of electric and
conventional vehicles. European Journal of Operational Research, 245(1):81–99,
August 2015. ISSN 0377-2217. doi: 10.1016/j.ejor.2015.01.049. URL http://
www.sciencedirect.com/science/article/pii/S0377221715000697.

[86] Samuel Pelletier, Ola Jabali, and Gilbert Laporte. Charge scheduling for electric
freight vehicles. Transportation Research Part B: Methodological, 115:246–269,
September 2018. ISSN 0191-2615. doi: 10.1016/j.trb.2018.07.010. URL http:
//www.sciencedirect.com/science/article/pii/S0191261517308871.

[87] Mohamed Amine Masmoudi, Manar Hosny, Emrah Demir, Konstantinos N. Genikomsakis,
and Naoufel Cheikhrouhou. The dial-a-ride problem with electric vehicles and battery
swapping stations. Transportation Research Part E: Logistics and Transportation
Review, 118:392–420, October 2018. ISSN 1366-5545. doi: 10.1016/
j.tre.2018.08.005. URL http://www.sciencedirect.com/science/article/
pii/S1366554517310086.

[88] Claudia Bongiovanni, Mor Kaspi, and Nikolas Geroliminis. The electric autonomous
dial-a-ride problem. Transportation Research Part B: Methodological, 122:436–456,
April 2019. ISSN 0191-2615. doi: 10.1016/j.trb.2019.03.004. URL http://
www.sciencedirect.com/science/article/pii/S0191261517309669.

[89] Luke Marshall, Natashia Boland, Martin Savelsbergh, and Mike Hewitt. Interval-based
Dynamic Discretization Discovery for Solving the Continuous-Time Service Network
Design Problem. page 36, 2019.

[90] Sahar Bsaybes, Alain Quilliot, and Annegret K. Wagler. Fleet management for autonomous
vehicles using flows in time-expanded networks. TOP, 27(2):288–311, July 2019. ISSN

158

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.20177
https://pubsonline.informs.org/doi/10.1287/trsc.2014.0531
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2018.0837
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2018.0837
http://www.sciencedirect.com/science/article/pii/S0377221715000697
http://www.sciencedirect.com/science/article/pii/S0377221715000697
http://www.sciencedirect.com/science/article/pii/S0191261517308871
http://www.sciencedirect.com/science/article/pii/S0191261517308871
http://www.sciencedirect.com/science/article/pii/S1366554517310086
http://www.sciencedirect.com/science/article/pii/S1366554517310086
http://www.sciencedirect.com/science/article/pii/S0191261517309669
http://www.sciencedirect.com/science/article/pii/S0191261517309669

1863-8279. doi: 10.1007/s11750-019-00506-4. URL https://doi.org/10.1007/
s11750-019-00506-4.

[91] Natashia Boland, Mike Hewitt, Luke Marshall, and Martin Savelsbergh. The price of
discretizing time: a study in service network design. EURO Journal on Transportation
and Logistics, 8, March 2018. doi: 10.1007/s13676-018-0119-x.

[92] Stefan Irnich and Guy Desaulniers. Shortest Path Problems with Resource Constraints. In
Column Generation, pages 33–65. Springer, March 2006. doi: 10.1007/0-387-25486-2 2.
Journal Abbreviation: Column Generation.

[93] Nicholas Polaczyk, Enzo Trombino, Dr Peng Wei, and Dr Mihaela Mitici. A Review
of Current Technology and Research in Urban On-Demand Air Mobility Applications.
In Proceedings of the Vertical Flight Society Autonomous VTOL Technical Meeting and
Electric VTOL Symposium, page 11, 2019.

[94] Alessandro Bacchini and Enrico Cestino. Electric VTOL Configurations Comparison.
Aerospace, 6(26), 2019.

[95] Uber. UberAir Vehicle Requirements and Missions, 2018. URL https:
//s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+
Requirements.pdf.

[96] Douglas. Steinley. K-means clustering: A half-century synthesis. British
Journal of Mathematical and Statistical Psychology, 59(1):1–34, May 2006. ISSN
00071102. doi: 10.1348/000711005X48266. URL http://doi.wiley.com/
10.1348/000711005X48266.

[97] THOMAS M. CORSI, CURTIS M. GRIMM, and JANE FEITLER. The Impact of
Deregulation on LTL Motor Carriers: Size, Structure, and Organization. Transportation
Journal, 32(2):24–31, 1992. ISSN 0041-1612. URL http://www.jstor.org/
stable/20713155. Publisher: Penn State University Press.

[98] Capgemini Research Institute. The Last-Mile Delivery Challenge. Technical
report, Capgemini Research Institute, 2019. URL https://www.capgemini.com/
insights/research-library/the-last-mile-delivery-challenge/.

[99] Johnny T Doo, Marilena D Pavel, Arnaud Didey, Craig Hange, Moffett Field, Nathan P
Diller, Michael A Tsairides, Michael Smith, Bell Textron, Edward Bennet, Michael
Bromfield, Jessie Mooberry, and Airbus Sv. NASA Electric Vertical Takeoff and Landing
(eVTOL) Aircraft Technology for Public Services – A White Paper. Technical report,
NASA, August 2021.

159

https://doi.org/10.1007/s11750-019-00506-4
https://doi.org/10.1007/s11750-019-00506-4
https://s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+Requirements.pdf
https://s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+Requirements.pdf
https://s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+Requirements.pdf
http://doi.wiley.com/10.1348/000711005X48266
http://doi.wiley.com/10.1348/000711005X48266
http://www.jstor.org/stable/20713155
http://www.jstor.org/stable/20713155
https://www.capgemini.com/insights/research-library/the-last-mile-delivery-challenge/
https://www.capgemini.com/insights/research-library/the-last-mile-delivery-challenge/

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	A Shared Truckload Service Problem with Origin and Terminal Point-Dependent Fares
	Introduction
	Literature Review
	Problem Description
	Branch-and-Price
	Labeling Algorithm
	Branching
	Extensions

	Heuristics
	Baseline Heuristic
	Parallel Savings Algorithm

	Computational Study
	Test Bed
	Results
	Sensitivity Analysis

	Conclusions

	The Rendezvous Vehicle Routing Problem
	Introduction
	Problem Statement
	Literature Review

	Solution Approaches
	Arc-Based Formulation
	Path-Based Formulation
	Heuristic

	Computational Results
	Test Data
	Comparison of Approaches
	Input Sensitivity

	Conclusions

	The Urban Air Mobility Problem
	Introduction
	Problem Background
	Related Literature
	Arc-Based Approach
	Notation
	Three-Index Formulation
	Two-index Heuristic

	Path-Based Approach
	Path-Based Formulation
	Column Generation
	Subproblem
	Initialization
	Branching
	Network Sparsification

	Computational Results
	Simulated Data Sets
	Results on Simulated Data Sets
	Case Study: DC Metro Area

	Conclusions

	Conclusions
	Additional Material for Chapter 2
	Proofs of Validity
	Savings Approximation
	Additional Material for Chapter 4
	Modeling Extensions
	Two-index Heuristic
	Sparsification
	Load Factor Analysis
	Tables Corresponding to Computational Results in Chapter 4
	Bibliography

