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Abstract

Given a convex polygon P, an m-envelope is a convex m-sided polygon that contains
P. Given any convex polygon P, and any sequence of m > 3 angles A = {ay,a9,...,0an),
we consider the problem of computing the minimum area m-envelope for P whose counter-
clockwise sequence of exterior angles is given by A. We show that such envelopes can be
computed in O(nmlogm) time. The main result on which the correctness of the algorithm
rests is a flushness condition stating that for any locally minimum enclosure with specified
angles, one of its sides must be collinear with one of the sides of P.
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1 Introduction

Given a convex polygon P, for m > 3 we define an m-envelope for P to be an m-sided
convex polygon that encloses P. In this paper we consider the problem of computing the
minimum area m-envelope where the angles of the envelope are specified. More formally
the problem is, given a planar convex n-gon P, and a sequence of m prescribed angles
A = {ag,as,..., ), determine a minimum area m-envelope having these prescribed exterior
angles in counterclockwise sequence about its boundary. Clearly this sequence of angles must
satisfy

m >3 and O<ao; < and ZOHZQW-
i=1

Although the exterior angles are fixed, the lengths of the edges are not specified. We allow
for the degenerate case of envelope edges of length zero, implying that the enclosure may

have fewer than m sides.

Our main result is an O(nmlogm) time and O(n + m) space algorithm for this problem.
This is O(n) time and space if m is a constant. The algorithm itself is a straightforward
application of the method of rotating calipers [16], but some care is needed to efficiently
maintain the area of envelopes. Perhaps the most interesting aspect of our result is a proof
that any locally minimum m-envelope with given exterior angles must be flush with an edge
of P, meaning that one of the edges of the enclosure must be collinear with one of the edges
of P. Flushness is a common finiteness condition used to restrict the otherwise infinite
search performed in many geometric optimization algorithms. For many existing rotating
calipers solutions, establishing flushness is a relatively easy matter (but there are exceptions
[5]). However, for this problem the proof of the flushness condition is much subtler because
any rotation of a single side of the m-envelope affects all m sides (because of the angle
constraints). We prove the flushness condition by an induction argument that reduces the

problem to the case of a triangle with angle constraints.

Computing minimal convex enclosures for geometric objects is a fundamental geometric
problem. Because the enclosures are assumed to be convex, it is sufficient to consider com-
puting an enclosure for the convex hull of the geometric object in question. This problem

arises in applications in which one wishes to find an approximation to a convex object that
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is simpler in the sense of having a smaller number of sides. The problem of computing min-
imum convex polygonal enclosures of m sides for an n-sided convex polygon (without angle
constraints) was considered originally by Boyce, Dobkin, Drysdale, and Guibas [2] and later
by Aggarwal and Park [1], who showed that the problem can be solved in O(nm) time.

It is often of practical value to impose additional shape constraints on the enclosure,
for example, the constraint that a four-sided enclosure be a rectangle, or that a three-sided
enclosure be an equilateral triangle. Observe that both of these examples can be cast in
terms of computing enclosures with given angle constraints. Work of this type includes
that of Toussaint [16], who gave a linear time algorithm for finding the smallest enclosing
rectangle; Depano and Aggarwal [6], who gave linear time algorithms for computing the
smallest enclosing equilateral triangle and square; and O’Rourke [13], who presented an
O(n?) algorithm for the three-dimensional problem of computing the smallest rectangular

box enclosing a convex polytope.

Our algorithm, like many of those listed above, is based on the method of “rotating

calipers.”

This method has been used, for example, for the problem of determining the
smallest triangle enclosing a given convex polygon, by Klee and Laskowski [9] and O’Rourke,
et al. [14]. It has also been used by Dobkin and Snyder [7] for the problem of computing
the largest triangle enclosed in a convex polygon (see also Chandran and Mount [3]). Other

examples include algorithms for packing and covering the plane with convex polygons (see

Mount and Silverman [12] and Mount [11]).

2 Background

We begin with some observations about the nature of locally minimal enclosures with speci-
fied exterior angles for a given convex polygon P. Fach edge of any such minimal enclosure
must contact the boundary of P, for if not, we could decrease the area of any convex enclosure
having a nontouching edge by translating such an edge parallel to itself inwards towards P’s
boundary. It follows as a consequence that degenerate edges of zero length must be allowed,
or else minimum enclosures do not exist. Suppose for example that P is a square and we

seek a minimum 5-sided enclosure with the exterior angle sequence (x /2,7 /2,7 /2, 7 /4, 7 [4).



It is easy to see that for every € > 0 there is an enclosure with these exterior angles whose
area differs from P by € (see Fig. 1(a)). The limiting enclosure is equal to P and has one

side of length zero, that is, two concurrent vertices.

@ (b) (©)

Figure 1: Fixed angle enclosures.

Henceforth, assume that the edges of any polygon are directed counterclockwise around
the boundary of the polygon. Define the angle of a directed line to be the angle formed
between the unit vector on the x-axis and a unit vector directed parallel to the line. For
each angle 6. there is a unique directed line supporting P at this angle, such that P lies to
the left of the supporting line. Given a sequence of exterior angles A = (o, ..., ay,) it will
be notationally convenient to define the following sequence of angle offsets by computing
prefix sums of the a’s. Let B = (,..., ) where

Bi= Y a
1<5<q
(and ;1 = 0). For a given angle 6, there is a unique m-envelope with sides contacting P, and
satisfying the exterior angle constraints, formed by taking the intersection of the left side

halfspaces of the m supporting lines for P at the angles

Br+0,8,+0,...,3,+09.

Let Env(8) denote this m-envelope. In Fig. 1(b) and (c) we show Env(8) for two different
values of §. From our earlier observation that the edges of any minimum envelope contact

the polygon, it follows that it suffices to compute

inf  Area(Env(9)).

0<o<2r
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As 6 varies continuously from 0 to 27, define the contact points of Env(f) to be the
sequence of vertices of P that the sides of Env(6) contacts. If an edge of Env(8) is flush with
an edge of P then we take the contact point to be the counterclockwise endpoint of this edge
of P. An angle is eritical if such a flush contact occurs. Equivalently, an angle 8 is critical
if and only if, for some counterclockwise directed edge e of P and for some ¢z, 1 <1 < m,
Bi + 0 1s equal to the orientation of e. As # ranges from 0 to 27 each of the m sides of the
envelope will become flush exactly once with each of the n sides of P, and hence there are
at most n - m distinct critical angles (fewer if multiple sides are simultaneously flush). The

main result establishing the correctness of our algorithm is the following flushness condition.

THEOREM 2.1 (Flushness Condition)
Env(0) is locally minimum with respect to area only if 0 is a critical angle, that is, if an edge

of Env(0) is flush with an edge of the polygon.

This theorem is proved in Section 4. For now, assuming this result we can outline the
algorithm. As mentioned earlier, the algorithm operates by the method of rotating calipers.
We begin by computing the initial envelope, Env(0), by determining the contact points of
the directed supporting lines for each angle in B. Since the angles of this sequence are sorted,
we can do this in O(n 4+ m) time by a single counterclockwise scan around the boundary
of A. Once the contact points are known, it is an easy matter to compute the area of
the resulting envelope in O(m) time. (We assume a real-RAM model of computation in
which arithmetic operations, comparisons, square roots, and trigonometric functions can be

performed in constant time [15].)

The algorithm operates in stages, each one advancing from one critical angle to the next.
To determine the next critical event, for each edge of the envelope we compute the next
angle 6 at which it becomes flush with the edge of P lying just counterclockwise of the
contact point. Among these m angles we select the smallest to be the next critical angle. (In
general there may be ties for the next critical angle, but it will simplify the presentation to
assume that they are distinct.) By storing these angles and the associated contact points and
envelope sides in a priority queue [4] we can extract the minimum angle in O(log m) time.

Given the next critical angle we can update the contact point that has changed in constant
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time (by sliding it to the next vertex in counterclockwise order) and insert an event angle
for the next edge into the priority queue. This is repeated O(nm) times until the critical
angle cycles through a full rotation. The total time spent accessing the priority queue is
O(nmlogm), and the space needed for the priority queue and polygon together is O(n +m).
At each critical angle we must update the current area for the next envelope. We consider
how this is done later. When the algorithm is completed, then the smallest polygon found
so far is reported. We summarize the algorithm below. It is given the polygon P and the

sequence « of exterior angles.

procedure MinEnv(P, a) {

n = sizeof(P); m = sizeof(a);

B[] = 0.0; /* compute angle offsets */
for e = 2 to m do
81i) = 8li — 1] + ali — 1]

fori =1 to m do { /* initial contact points */
Ci] = Contact point of P with line at angle 3[];
Add critical angle for side ¢ into priority queue;

}

6 = 0.0;
A = area of current envelope;
while (0 < 27) { /* process next event */

(0,i) = Next critical angle and contact side;
Update Area(Env(0));

A =min(A, Area(Env(9)));

Advance contact point C[i;

Add critical angle for side ¢ to priority queue;

}

return(A);

There are two missing elements needed to complete the description of the algorithm and
establish its correctness. The first is how the area can be updated efficiently from one critical
placement to the next. This must be done in O(logm) time to achieve the desired running
time. We show how this is done in the next section. The second element, as mentioned
above, is the proof of Theorem 2.1, which shows that it suffices to consider envelopes only

at critical angles. This is proved in Section 4.



3 Area Computation

In this section we describe how the area of the m-envelope, Env(), is updated as we move
from one critical angle to the next. Intuitively, between critical angles the contact points with
the polygon P remain unchanged, and hence the area varies with § in a smooth continuous
manner. We will see that this area function can be described by a simple formula, which is
a function of 0, whose coefficients are functions of the sequence of exterior angles A (or the
derived sequence B of offset angles) and the position of these contact points. Of course the
length of such a formula (that is, the number of symbols in the formula) would expected to
grow at least proportionally with m, implying that its evaluation would require O(m) time,
and not the O(logm) time that we desire. However, we show how to express the formula
in terms of a tree-structured collection of O(m) formulas each of constant complexity, such

that when we arrive at a critical angle, this collection can be updated in O(logm) time.

We begin by deriving the formulas for the area at a local level. Let ¢y, ¢, ..., ¢, denote
the contact points for the current envelope, Env(#), where ¢; is the contact with the edge
at angle ;. Let a;(0) denote the vertex of Env(#) that lies between points ¢; and ¢;41. The
set of contact points changes discretely only at critical angles (depending on which edge
becomes flush). Let H denote the convex hull of these contact points, and for 1 < ¢ < m,
let T;(0) denote the triangle whose vertices are ¢;, ¢;41, and «a;, see Fig. 2(a). (Throughout,
indexing is performed cyclically modulo m so that ¢,,11 = ¢1.) If the envelope contains edges
of length zero, then T;(0) may degenerate to a single point. Observe that Env(#) is equal
to the disjoint union of H and the m triangles T;(#). And hence the area of Env(6) can be

computed by summing the area of H and the areas of these triangles.

As 0 varies between two critical angles, H does not change, and hence contributes a
constant additive term to the area of Env(#), whereas the area of T;(0) varies continuously.
Let us explore this variation between critical angles. First observe that because the angle at
vertex a;(f) is fixed at 7 — «o; and the contact points are fixed between critical angles, as 6
varies the vertex a,;(6) travels along an arc of a circle passing through ¢; and ¢;11 of arc size
2c;. As far as the algorithm is concerned it is not possible for a;(6) to travel along the entire

boundary of this circle, but it will be convenient for us to extend the definition of T;(6) for



Bi+1+ 6
(a (b)

Figure 2: Local area computation.

the entire range of § from 0 to 27 by defining a,;(#) to be the intersection point of a line
passing through ¢; at angle 3; + 6 and a line passing through ¢;1; at angle §,11 + 6. 1t will
also be convenient to make the convention that the “area” of T;(6), denoted Area;(6), is a
signed quantity that is negative as a; passes to the other side of the chord ¢é 7. We call

the resulting figure an extended envelope.

Let ~; denote the angle of the directed segment from ¢; to ¢;11. It will be convenient

notationally to define

ﬂj’ =7 — B and 62'_ = f; — Yi-1 and 63: = 62+ - 62:-1'

Now referring to Fig. 2(b), the side of Env(f) contacting ¢; has the angle ; 4+ 6, and hence

forms the angle

Bo— (B4 0) = B =0
with chord &¢;y1. The side of Env(#) contacting ¢;41 has the angle 8,11 4+ 0, and forms the
angle

(Bigr +0) =i =B + 0

with the same chord. Letting d; denote the length of the chord ¢ 7 we apply a standard

formula for the area of a triangle [8] (which is an immediate consequence of the included



angle formula for the area of a triangle and the law of sines), yielding

Aveas(9) = S sin(8F —O)sin(i, +6),

2sin «;

It is a straightforward matter to verify that this signed area function satisfies the convention

mentioned earlier as 0 varies from 0 to 2.

For now let us drop the subscripts to simplify the notation. Expanding the above formula

we have
2
Area(f) = d sin(3T — 0)sin(3~ + 0),

281n «

which, after tediously expanding, multiplying, combining terms, and then further simplifying
by expressing in terms of 20 and 5%, leads to

2

4 sin oy

Area; () (sin B 8in 20 + cos B cos 20 — cos(B7 + Biz1))-

Given that 3" + 83, = Biz1 — Bi = «;, we can formulate the area function for each

triangle in either of the following simple forms.

LEMMA 3.1  Consider the sequence of contact points (c1,c¢a, ..., ¢Cp) arising in the compu-
tation of the envelope, let Area;() denote the area of the triangle T;(0) bounded between the

contact points ¢; and ciy1, and let Area() denote the total area function.
(i) Area;(0) = (d?/(4sin «;))(sin BE sin 20 + cos BE cos 20 — cos a;).
(ii) Area;(0) = (d?/(4sin «;))(cos(260 — @i) — cos ;).

(iii) Area(0) is of the general form a(cos(20 4 b))+ ¢, for constants a, b, ¢ independent of 6.

PROOF: Parts (i) and (ii) follow from the derivation given above and standard trigonometric
identities, and part (iii) follows from the facts that (1) each function Area;(6) is of the form
a(cos(20 + b)) + ¢, (2) it is well known from trigonometry that the sum of two functions of

this form is of this same form, and (3) Area(f) = Area(H) + >_; Area;(0). O

Part (i) of this lemma describes Area; as a linear function of sin 26 and cos 20 of the
form p; sin 20 + ¢; cos 20 + r;, where the triple of coefficients, (p;, ¢, i), depends only on the
8



local structure of T;. Henceforth we assume that each triangle’s area function is represented
symbolically as such a triple. Let Area;;(f) denote the sum of the areas of consecutive
triangles from T;(0) through Ty (6), that is,
Area;(0) = Z Ti(0).
j<i<h

As before, although the function Area;j is meaningful to the algorithm only between a pair
of critical angles, we will extend this function over the entire period 0 < § < 2x. This
function can be represented by simply storing the corresponding sums of coefficients

pig= >, p and  gp= > ¢ and = > 7

i<i<k i<i<k i<i<k

We can now discuss how area calculations are performed. We use a standard technique
of representing the function as the sum of functions stored in a binary tree. We construct a
balanced binary tree of height O(log m) whose leaves, from left to right, contain the vector
representations (p;, g;, ;) of Area; for 1 <7 < m. Each internal node is the root of a subtree
whose leaves are associated with a consecutive set of triangles T;, say for j < ¢ < k. At this
node we store the vector coefficients (p;x, ¢; 5, 7jk) representing the aggregate area function
Area; .

Initializing the leaves of this tree at the start of the algorithm can be performed in O(m)
time, given the initial set of contact points. We can compute the coefficients at the internal
nodes of the tree by simply summing the vectors of coefficients of the two children. At the
same time we also compute the area of H, the convex hull of the contact points, in O(m)

time.

As the algorithm is running, the area of Env(#) can be computed in constant time by
computing the area function at the root of the tree, and adding to this the area of the convex
hull of the contact points, which is maintained separately. When a contact point ¢; changes
locally, implying a change in the adjoining triangles T; and T;_;, we perform the following

steps.

e Update the area of the new convex hull of the contact points. Since only one point ¢;
has changed position, and it lies in the same relative position within the convex hull,

9



this can be done by subtracting the area of the old triangle formed by ¢;_1, ¢; and ¢;41

and adding in the area of the new triangle after modifying ¢;.

e Compute the updated area functions for 7; and T;_;. Each can be done in constant

time.

e For each ancestor of T; or T;_1, recompute its area function. Since the height of the

tree is O(logm), this can be done in O(log m) time.

In summary, we can maintain a data structure which allows us to compute the area
of Env(8) in constant time for any 6, and can be initialized in O(n) time and updated in
O(logm) time. As mentioned earlier, the total number of updates is O(nm), leading to a

total cost of O(nmlogm).

4 Flushness Condition

Recall from the introduction that an angle 8 is critical if one of the edges of the envelope,
Env(#) is collinear, that is flush, with an edge of the polygon P. In this section we prove
Theorem 2.1, which states that the minimum area m-envelope with specified exterior angles
will be equal to Env(#) for some critical angle 8, thus reducing the search to a set of angles
of size O(nm).

Consider the sequence B of m offset angles (31, 2, ..., B,) introduced earlier. As before,
we consider the current set of m contact points of the envelope, {¢1, ca,. .., ¢, }, and describe
the area of the envelope as a function of 8, Area(#). As before we are only interested in the
value of this function between two critical angles, but we extend its definition over the period
2w, by considering the extended envelope with these contact points. Because this function
represents the area of Env(#) in the interval between two critical angles, to prove that local
minima occur only at critical angles it suffices to show that this function has no local minima
in the interval between critical angles. This function is positive between two critical angles,
but may be nonpositive when extended to the full 27 range of angles. Thus it suffices to

show that any local minima occur when the function value is nonpositive, since any such

10



angles cannot lie in the interval between critical angles. The rest of this section is devoted

to establishing this.

We prove this by an inductive argument on m, the number of sides in the envelope. By
our hypothesis that no exterior angle exceeds , it follows that if we consider m unit vectors
given the same orientations as the offset angles B, these vectors positively span the plane
(for otherwise there would be no envelope of finite area having sides at these angles). If
m > 4 then there exists a subset of angles of size m — 1 that positively spans the plane.
By successively removing one angle at a time we can form a sequence of area functions for

envelopes of m,m — 1,...,3 sides
Area(m)(e), Area(m_l)(ﬁ), e Area(S)(G).

See Fig. 3.

Ared®(0) Ared®(0) Aredd(@)

Figure 3: Nested areas.

From Lemma 3.1(iii) we know that each of these functions is of the form
Area(i)(e) = a-cos(20 + b) + ¢,

for constants a, b, and ¢ that are independent of §. Since each function is a cosine function
of period 7, each function has exactly two local minima of equal value (and hence they are
global minima) over this extended range. Recall that we have reduced proving flushness to
showing that any local minima for Area(m)(e) are nonpositive. This will follow from the

following two lemmas, which we prove later.

LEMMA 4.1 There exists an angle 0* such that Area(?’)(e*) =0.

11



LEMMA 4.2 For3 <t <m, and for 0 <0 < 27, Area(i)(e) < Area(i_l)(ﬁ).

The first result says that there is an angle at which Areal® is nonpositive, and from the
second result it follows that all higher order area functions are nonpositive at this angle.
Observe that the second lemma is trivial for all angles of interest to the algorithm, but to
establish our result we need to show that it is true for all angles in the range 0 to 2x. Given
these two lemmas it follows that the global minimum for Area™ must be nonpositive. It
only remains to establish the two results listed above. The proofs of both lemmas make use

of the following rather remarkable result from classical geometry [8, 10].

LEMMA 4.3 (Pivot Lemma) Let A’B'C" be any (nondegenerate) triangle and let A, B, and
C be three points (different from A’, B', and C') lying on the extensions of the sides B'C”,
C'A', and A'B', respectively. Then the three circles A'BC, AB'C, and ABC' meet in a
unique point P, called the Miquel point. (See Fig. 4(a).)

a’(6)

@ (b)

Figure 4: Pivot Lemma.

Using this lemma we can establish the following result, which describes the behavior of

the area function defined by three rotating lines about three contact points.
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LEMMA 4.4 Let A, B, and C be three noncollinear points in the plane and let 3,, By, and B.
be three pairwise distinct angles in the range 0 to . There is a unique angle * in this same
range such that the three lines passing through A, B and C at the angles 3, + 6%, 3,4+ 0" and

B. + 0%, respectively, pass through a common point.

PROOF: For 0 <0 < 7, let A'(f) denote the intersection point of the lines passing through
B and C at the angles 3, + 6 and 3. + 0, respectively. Define B’(8), and C'(#) analogously.
Observe that because of the angle constraint between pairs of lines, as # varies from 0 to
7, A'(8) travels continuously, counterclockwise along a circle passing through B and C.
Analogous statements hold for B’(#) and C’(8). Considering any fixed 4, and applying the
Pivot Lemma, we see that these circles pass through the Miquel point, P.

We argue that all three intersection points arrive at the Miquel point for the same value
of §. Consider the angle §* at which A’(*) reaches P. For this angle the lines passing
through B and C intersect at P. Consider the point C’(6*). We know that this point lies
on the circle ABC’, and it lies on the line passing through B (which also passes through
P). Hence C’(0) lies on the intersection of the lines BP and the circle ABC’, that is, either
P or B. Applying a similar argument to B'(6*) shows that it is equal to either P or C.
If C'(6*) = P or B'(#) = P then we are done, because either implies that all three lines
intersect at P. Otherwise C’(6*) = B and B'(6*) = C'. However because these two points lie
on the line passing through A, this would imply that A, B and (' are collinear, contradicting

our initial hypothesis.

This shows the existence of §*. To prove the uniqueness of §* over the range 0 to w,
observe that the functions A’(8), B'(#) and C’(#) all have a period of 7, and over this period

they intersect the only possible point of coincidence, P, exactly once. a

PROOF (of Lemma 4.1.): Let ¢1, ¢3 and ¢3 be the contact points and a1(0), as(9), and as(8)
be the vertices of the extended envelope, so that a,;(6) lies between ¢; and ¢;41 (indices taken
cyclically). As we observed before, as § varies from 0 to m, a;() traces out a circle passing
through ¢; and ¢;11. Applying Lemma 4.4 to the extended envelope for any fixed 6y (where
ABC are the contact points), we find that there is a unique angle 6* at which the vertices

13



a;(0*) intersect in a common point. At this angle we have Areal® (%) = 0. O

PROOF (of Lemma 4.2.): Suppose that the difference between the extended envelopes
defining Areal”(0) and Areal™" () is the removal of contact point ¢; and its incident side.
Let a*(f) denote the intersection of the extensions of the edges ¢iai(0) and czax(0). (See
Fig. 4(b).) Observe that the difference between Area”(#) and Areal™Y(8) is the area of
triangle aq(0)a*(0)az(0). We show that this triangle is of positive (signed) area for all 6 in
the range 0 to m. To see this, observe that the area is positive for some # (in particular
any 6 in the interval between two critical angles). Because the area of the triangle varies
continuously with 6 with a period of 7, if the area becomes negative, there must be at least
two angles in this period at which the area is equal to zero. Since the triangle is bounded
by three lines which pass through noncollinear points, ¢y, ¢ and c3, it follows that the area
can equal zero only if all its vertices coincide at a common point. However, by applying
Lemma 4.4 to the contact points it follows that there is a only one angle over this range at

which the vertices coincide, and thus the area is never negative. O

5 Conclusions

We have presented an O(nmlogm) algorithm for computing the smallest area m-envelope
enclosing a convex polygon with n sides, whose sides obey a given sequence of exterior angle
constraints. The algorithm is a simple application of the method of rotating calipers. The
principal subproblems are those of maintaining a data structure that allows the area to be
updated efficiently (which we showed can be done in O(log m) time per event), and proving
the flushness criterion, which states that the minimum area is achieved when at least one

edge of the envelope is collinear with an edge of the polygon.

One open problem suggested by this work is how to solve the problem with weaker angle
constraints. For example, computing the smallest enclosing parallelogram can be stated in
terms of angle constraints which force opposite edges to be parallel, but the angles between

adjacent edges are not specified. Can this problem be solved efficiently if edge orientations
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are specified by a system of linear equations, for example? Another important direction

for future research involves computing minimum enclosures in three dimensions with given

dihedral angles. For example, O’Rourke has given a finiteness characterization of enclosing

rectangular boxes [13], but it is unknown whether this criterion can be applied to shapes

with arbitrary angle constraints.
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