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Abstract power they need for research and development. Compil-
ers play an important role by automatically customizing
An important class of scientific codes access memorygfograms for complex processor architectures, improving
an irregular manner. Because irregular access pattgsBgability and providing high performance to non-expert
reduce temporal and spatial locality, they tend to underysrogrammers.
lize caches, resulting in poor performance. Researchersas scientists attempt to model more complex prob-
have shown that consecutively packing data relative |tggms, computations with irregular memory access patterns
traversal order can significantly reduce cache miss rafggome increasingly important. These computations arise
by increasing spatial locality. In this paper, we investigain several application domains. In computational fluid dy-
techniques for using partitioning algorithms to improvgamics (CFD), meshes for modeling large problems are
locality in adaptive irregular codes. We develop paraméparse to reduce memory and computations requirements.
ters to guide both geometrie¢s) and graph partitioning |n n-body solvers such as those arising in molecular dy-
(METIS) algorithms, and develop a new graph partitioningamics, data structures are by nature irregular becauge the
algorithm based on hierarchical clusterirgP4RT) which model the positions of particles and their interactions.
achieves good locality with low overhead. We also exam- As microprocessors become increasingly fast, memory
ine the effectiveness of locality optimizations for adegti system performance begins to dictate overall performance.
codes, where connection patterns dynamically changergg ability of applications to exploit locality by keeping
intervals during program execution. We use a simple c@gterences to cache becomes a major (if not the key) factor
model to guide locality optimizations when access pafffecting performance. Unfortunately, irregular computa
terns change. Experiments on irregular scientific cod@sns have characteristics which make it difficult to uliz
for a variety of meshes show our partitioning algorithmsaches efficiently.
are effective for static and adaptive codes on both se- Consider the example in Figure 1. In the regular code,
quential and parallel machines. Improved locality alsgzcesses to are made to consecutive memory locations
enhances the effectiveness @fitaALWRITE, a paralleliza- (since Fortran is column-major). This spatial locality al-
tion technique for irregular reductions based on the owneivs the code to take full advantage of long cache lines
computes rule. to reuse each cache line multiple times before it is flushed
from cache. In comparison, in the irregular code, accesses
to « are irregular, dictated by the contents of the index
arrayidx. It is unclear whether spatial locality exists or

Computational science isincreasingly becoming anim (():r%n be exploited by the cache.
P gy 9 P Compounding the problem, regular codes benefit be-

tant tool for scientists and engineers performing research : .
. : . cause compilers can analyze data access patterns, using

and development. Fast yet inexpensive microprocessor .
estimates of cache performance to guide loop and data

and commercial multiprocessors provide the computir . : .
P P PUIE nsformations to improve locality [37, 50, 17]. In com-
parison, there is relatively little information at compile
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1 Introduction



our model experimentally. We also investigate interaction
with previous algorithms for parallelizing irregular redu

/1 Regul ar /1 lrregul ar | ’ ) ) -
dot =1, tinme dot =1, tine tions. Finally, we conclude with a discussion of related
X(N, N) X(N), idx(M work.
doi =1, N dot1 =1, M
doj =1, N o= x(idx(i))
= x(j, 1)

2 Background

Figure 1 Regular and Irregular Applications Previous research has shown that computation and data

transformation can significantly improve the locality of

tions [14, 38]. The compiler identifies irregular computregular scientific codes [14, 38]. Two techniques are
tations which can be reordered, then inserts calls to n@@mputation reordering and consecutive packing.
time routines which reorder computations based on lexi-
cographically sorting the edges in the mesh, then consgci  Computation reordering
utively packingdata in memory according to the traversal
order. Space-filling curves can be used to reorganize da@Mputation reordering works as follows. If each loop it-
when geometric coordinate information is available. TIfsation accessed one data item, sorting the loop iterations
overall premise of preprocessing data to improve perféy the addresses of the data items would yield optimal
mance is based on the inspector/executor paradigm, figgpporal and spatial locality. In many irregular scientific
used to parallelize irregular computations for messagiplications, each loop iteration tends to compute results
passing machines [13]. for a single edge in meshes or interaction between two
In this paper, we improve on existing methods in sebodies, resulting in accesses to a pair of data items. The
eral ways. Run-time partitioning algorithms (e.ggs, Pair of accesses may be viewed as a tupley), where
METIS) can obtain better locality by exploiting geomett @ndy are the addresses of the pair of data items ac-
ric information or graph structure. We show how suckessed. Rearranging the loop iterations by applying radix
algorithms may be tuned to improve performance whif€xicographic) sort to the tuples then yields a quality so-
balancing overhead. We present a new graph partitid‘r'ltion which improves both temporal and spatial locality.
ing algorithm GPART) based on hierarchical clusteringSorting is so effective that data meshes provided by ap-
and show how to tune it to improve locality with lowPlications writers are frequently presorted, eliminating
overhead. We also examine the impact of adaptivity &§ed to apply sorting at run time. In our research, all input
locality optimizations, and derive heuristics for decglinmeshes are presorted, so the base performance represents
when locality optimizations should be performed. Exhe performance of computation reordering.
periments demonstrate locality and performance are im- Data reordering algorithms we will describe in the fol-
proved for several irregular scientific codes for a varieljwing sections alter the original order of nodes, making

of application meshes. Our paper makes the followiijesorted input meshes no longer lexicographically sorted
contributions: according to the new order of nodes. Thus, the com-

putation reordering is required whenever data ordering
¢ Develop a new graph partitioning technique basedgorithms are applied. Since computation reordering is
on graph clustering that balances overhead with pthogonal to the data reordering, computation reordering

cision. can be applied in combination with any data reordering
« Selecting effective parameters for partitioning teciflgorithm. In our research, we always apply computation
niques. reordering after data reordering.

o Devise cost models for guiding locality optimiza- . .
tions for adaptive irregular codes. 2.2 Consecutive packing¢PACK)

¢ Experimental evaluation of locality optimizationgn addition to changing the order of accesses, the compiler
for adaptive irregular and parallel irregular codes.can also reorganize data layout. Ding and Kennedy pro-
. ) ) _ _posedconsecutive packin@cPACK), where data is moved

The _remalnder_of the paper begins with a Q'SCUSS'ﬂﬂo adjacent locations in the order they are first accessed

of algorithms for improving data layouts for Irreglulaff_irst—touch) by the computation [14]. The motivation is
codes. We experimentally select parameters for pagiy; the original data access order is likely to be based

“‘”?'”9 te_chnlqu_es ar_1d evaluate _the qualities of '_Oca"% the logical affinity among data items. By rearranging
optimizations using different algorithms. We examine g gatg according to the order in the temporal access se-

e_ffect of adaptivity on chahty (_)pt_lmlganons, present auence, spatial locality is likely improved over the origin
simple cost model to guide optimizations, then evaluate



storage order. Experiments seem to indiczeeck can 3.1 Recursive coordinate bisectionRcCB)

improve spatial locality of data references and can redyce . . o . .
}r% scientific applications, data items are usually logicall

conflict and capacity misses, particularly if input mesh . X .
pacity P Y b %ated in two or three dimensions. The 1D storage order

are presorted or computation reordering is applied bef | ifact of storina data it ; 0
packing. cPAck is very efficient in terms of overhead,IS simply an artifact of storing data ftems In memory. “ne

but it does not explicitly take into account structures iﬁ]ethOd for partitioning data is to take into account the

program input data. As a result, our experiments shovxii ﬁtuil_ geotme(tjric 'i’)roi('m'iy beii_ween _n(;i(il)es_. Becz;use_ Itn-
produces lower quality orderings than other heuristics. eractions tend to be local, putling heighboring hodes Into

BesidescPAck, Ding and Kennedy also proposed qw& Partition can improve Iocghty._ :
other heuristicsgroup packingand consecutive group R_ecursw_e coor_dmate b_|sect|owac(|3) is based on geo-
packingto capture the structure of input data [1Eroup metnc_ coordinate mfor_maﬂor_RCB works by _recurswe_ly
packingclassifies data according to their average reaz)qlec_tmg the Ionge_s_t dlmension: then sphttm_g the dimen-
pearance distances acohsecutive group packirapplies lon into two partitions by finding the median of data

group packingwithin a limited range of access sequencgpordmat_eS m_t_hat dimension. Because the median is
Miss rates of applications using these two other heur%s-ed' split partitions are guaranteed to have roughly equal

. : : number of data items. The process is recursively repeated
tics are slightly lower than usingPACK only when man : o
gty "9 y Y a8 desired [3, 4]. Once all partitions are selected, data

consistent reuse patterns exist. These two other heusris . L "
worked slightly better for one of their applicationEsH, |tem_s_ are sior_ed consecutively W'th'.n each partition, and
but worked worse for another applicationoLpyn. Fur- part|t|ons_W|th|n an upper level _part|t|o_n are also arrahge
thermore, these two other heuristics showed worse perf%(?_nsecunvely, constructing a inerarchlcal structureusth
mance even for thelEsH, when computation reorderingRCB produces not only a partition but also an order among
was used together [14i As a result, we beligreup partitions that is similar to Z8RDERING a space-filling
packingand consecutive group packirgre not versatile curvg forddbentshe arra)it_layout.t_t_Computanon can then be
heuristics for capturing the existing structures of ianrJ‘ta'Or ered by the resuiting partition. . . :
Space-filling curves also use geometric coordinate in-

data. We thinkcpAack is a better heuristic than their othe ) L
iormatlon to attempt to ensure proximity in memory. Data

heuristics in general. . ; : -
are laid out in memory according to space-filling curves
(e.qg., Hilbert, Morton), which are continuous, hon-smooth
3 Partitioning Algorithms curves that pass through every pointin afinite k-dimengiona
space [24, 38, 46]. Figure 2 shows an example of us-
A different class of data transformation algorithms we u#ieg the Hilbert space-filling curve. Each point in the k-
in our research attempt to improve the locality of irreglimensional space is mapped to its location on the 1D
ular computations byartitioning the data. Partitioning space-filling curve using a sequence of bit-level opera-
algorithms exploit the fact most interactions (and mediens on its k-dimensional coordinates. These mappings
connections) in scientific computations are local, betweatiempt to minimize the distance (in memory) between
nearby elements. For instance, in a molecular dynatwo geometrically close points in space.
ics the computation of the interactions may be calculated Space-filling curves requires information on the coor-
only between molecules within a given cutoff radius (e.@linates of each point, but can yield major performance
3 angstroms). By creating partitions containing most #hprovements over randomly placed data [38].
the neighboring data elements, interactions tend to remain Figure 2 comparescsand a space-filling curvei(LBERT)
within the partition. Storing all elements in a partition tofor an example where nodes are unevenly distributed.
gether in memory thus increases the probability they c@pace-filling-curves work best when nodes are evenly dis-
remain in cache, yielding better reuse. tributed in a fixed finite space, because they assume fixed
Partitioning algorithms were originally developed fogize grid to partition nodes. However, in scientific com-
applications in such areas as load-balancing parallel copkitations such as astrophysics, celestial bodies may be
putations [27], VLSI design [2], and database storage [44jstributed unevenly. Thus, space-filling curves may fail
We adapt them for improving cache performance for irretp partition the bodies due to the coarse resolution of grid,
ular codes, where overhead of partitioning is more impgtting large set of bodies in the same grid partition and
tant. In this section, we examine three partitioning alg@iving no order among those large set of bodies in the
rithms: recursive coordinate bisection, multi-level dgragsame grid.
partitioning, and hierarchical graph clustering. Selecting an appropriate resolution of grid to handle
unevenly distributed nodes is not trivial and using ex-
cessively fine resolution increases the run-time overhead.
Space-filling curves also do not guarantee load balance
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Figure 2 Recursive Coordinate BisectiorEB) vs. AHILBERT Space-Filling Curve

Coarsening Partitioning  Projection

Figure 3 Multi-level Graph PartitioningMETIS)

among partitions. However, most scientific applicatiom®mputing a succession of coarsened graphs (with fewer

are executed in parallel where load balance is critical t@des) which approximate the original graph. Graphs are

their performance. coarsened by randomly choosing edges in a graph and
In recursive bisection, each step incurs run-time ovenatching (collapsing) its endpoints to form a node in the

head, sorcB should be halted as quickly as possibleew coarsened graph. By only selecting edges connecting

However, partitions must be small enough so that thepmatched nodes, the number of nodes is reduced roughly

can remain in cache, or else locality benefits will be lodty half at each stage. Once the graph reaches a reasonable

Compared ta@pPACK and space-filling curves, overhead isumber of nodes, k-way graph partitioning algorithms are

high since more passes of sorting are required. used to split the coarsened graph iktgartitions. The

partition is then successively mapped back towards the
3.2 Multi-level graph partitioning ( METIS) qriginal_ graph, periQdicaIIy refining (adjustin_g) the part
tion. Figure 3 provides an example of multi-level graph

A major limitation ofRCB and space-filling curves is thatpartitioning applied to a 2D domain.

geometric coordinate information is needed for each node. The multi-level algorithm improves efficiency, since

This information may not be available for some applicshe computationally expensive k-way graph partitioning

tions where two or more access patterns exist in the saaigorithm can be applied to a much smaller reduced graph.

loop without any notion of geometric proximity, which isAnalysis and measurements show multi-level graph parti-

more general assumption for applications we have to de&lning algorithms are reasonably fast and produce good

Even if it is available, user annotations may be needpdrtitions, as measured by the numbecwf edgesvhich

since the compiler may not be able to automatically deross partitions [31, 29]. The quality of the partitions are

rive coordinate information for each data item. Insteddirly close to that achieved by applying the k-way graph

of relying on coordinate information, partitions may bgartitioning algorithm to the original graph, but at a frac-

computed using the underlying graph structure that is caion of the expense.

structed by connecting data elements accessed in the same

loop iteration. Spectral methods can be effective but : ; ;

computationally intensive [45]. More recently, peop?eg'e?’ Hierarchical graph clustering (GPART)

have employed multi-level graph partitioning algorithmSince our goal is to improve cache performance at run-

encapsulated in library packages suclvasis[28, 29].  time for irregular applications, we desire partitioning al
Multi-level graph partitioning algorithms work by firstgorithms with lower overhead. We have developed a hier-
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Figure 4 Graph Partitioning Using ClusteringgART)
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Figure 5 Hierarchical Graph ClusteringsPART)

archical graph clustering algorithns#ART) that has low ¢ The nodes that are collapsed together in a pass make

overhead and produces quality ordering for cache locality.
Previous multi-level graph partitioning algorithms were
designed for improving locality in parallel computations,
VLSI circuits, and other high cost applications. As a re-
sult, greater processing time is acceptable. Experiments
indicate the overhead of preprocessingHoB andMETIS

are 7-45 times higher than consecutive packing.

Figure 4 and Figure 5 depict ha®PARTWOrkS. GPART °
collapses several nodes into a single partition in each pass
then a partition is treated as a single node in the next
pass. The same clustering algorithm is repeatedly applied
through several passes, keeping a hierarchical structure a
depicted in Figure 5. The main characteristicseART
are as follows:

¢ We randomly pick neighboring nodes to collapse
them together. Random selection may result in less
quality partitions than other sophisticated methods,
but reduces overhead.

a partition in that pass. The nodes in the same
partition are laid out in nearby memory locations.

o We keep hierarchical structures of partitions as in

Figure 5. Smaller partitions (subpartitions) in the
previous pass are stored in consecutive locations, if
they belong to the same partition in the current pass.

Large number of nodes are collapsed in each pass.
We begin by collapsing enough nodes to fit on a
single cache line, then collapse a large number (8 in
our research) of nodes at once. We also stop after
partitions reach sufficiently large size (usually after
the partition size exceeds L1 cache size).

To achieve improved partitions, we sort nodes once
by their vertex degrees (humber of incipient edges),
and attempt to collapse in the sorted order. Sorting
improves the likelihood that partitions keep closely
related subpartitions together through multiple passes.



o , ,
sort nodes by degree RcBhas cosO(N (log, N)<), since recursively sorting

linit = cache_line_size and splitting the data in two at each level of recursion
while (limt <= max_limt i
le (limt < m an 0Ly order) { requires up ta0(log,(N)) passes over the dataueTis
P = partition for N has costD(2N log, N) + O(E), whereO(E) is the cost
H §g'r2_gg§ ;a'r't nmetr_) Mof N { of computing a k-way partition on the reduced graph [28].
/* pick patr_t?_er lnfr?ﬂndom order */ UptoO(log, V) passes over the data are needed to coarsen
iQf i Ef‘ge'( p') OQ 2i ze(Q <= limt) { thegraph,andasimilar number of passes are used to refine
nerge Qinto P the partition boundaries after partitioning the coarsened
if (size(P) —Ilmt?
break (exit for |oop) graph.
} In comparisonGPART has costO( E'logg(C)), since
} the number of clustering passes is dependent on the cache
Sort nodes by partition size, not the input data size. As a resoiPART is only a

limt =1limt * increnment small constant factor more expensive than eittrack or

_ _ ) ) _ HILBERT, and should be much more efficient theos or
Figure 6 Hierarchical Graph Clustering Algorithm  yie1is for large data sets.

The partitions produced generate data layouts Whi&h
improve locality by putting neighboring nodes in nearby

locations. The hlerarghlca_l SUUCIUrEGRARTIS _S|m|lar o In scientific applications that traverse meshes or simulate
that ofRcB. Each partition in a level keeps all its subparth_body interactions, input data are often representeckin th
tions in lower levels close in memory. Keeping hierarchfbrm of graphs. The values related to nodes in meshes or
cal str_uctures he'PS store _related n_ode_s clos_e_m MEMOPLYated to bodies are stored in the arrays that are regarded
redu_cmg cache misses. Since aPp"‘?a_“O”S visit nodes_ &$hode structures. Mesh connections or body interactions
cording to the storage order, maintaining the hlerarch|c£r% stored in separate arrays that are regarded as edge

structure of the clustered graph increases the chance of Ys . res. Using node and edge structures, applications
iting neighbor nodes which have already been accesseqrmg'emem input data as graphs

gomputations_ fqr previou_s node_s. These nodes are moregy e structures, arrays are used to keep values

likely to remain in cache, improving performam_:e. associated with each node.g., weight, velocity, force,
Thg Ov_er_a”GPART algorithm S shown n Figure 6'etc). One multi-dimensional array may be used instead

GPART IS S|m|_lar to the coarsening phase METIS, but ¢ 5o\ era) arrays, but only arrays frequently used together

fewer clustering passes are reqw_red because more n Id be merged into a multi-dimensional array to fully

are col_laps_ed at once. The quality of the partition pr83<ploit memory bandwidth and cache line utilization [15].

duced is slightly less than that producedusris, but the For edge structures, two type of structures are com-

overhead is significantly less. In addition, we can adj%%nly usedpdge listandpartner lists Figure 9 demon-

the number of clustering passes perform_ed by changifjg. ias how a graph is implemented usidgeandpartner

the number of nodes collapsed together in each Pass;gs along with changes due to data and computation re-

well as the largest partitions allowed. ordering. Inthe example, we store upper triangular part of

Implementation Issues

3.4 Complexity comparisons ** edge |ist **

. . . do time_step =
We pause to take a quick analytical look at the complexity do k = 1, num edges

of different locality optimizations, as an function 6f, = _efL[ k%(
the number of nodedy, the numb_er qf edges, anid_ the Jf ; [)IO?TDLE e](x[ i1,x[i1)
cachesize§ ~ £, N > Cfortypicalinputgraphsin our update(y[i],y[j].f)

research). The complexity analysis may help in deciding
which locality optimization to perform. ** partner |list **

Consecutive packingPAck) has cos(E), since it dodgi me step =

rearranges data based on the order data is first traversed =4, ; i spg;nt_[]io?e:t art[i+1]-1
and requires one pass through the data. Using space-filling j = partners]p] _
curves can cost close (), since the problem domain f = conpute(x[i], x[j])

may be uniformly partitioned according to the coordinate update(y[il.ylil. 1)

space, and simple mapping between coordinates and grid ) )
partitions may assign node elements to appropriate grid Figure 7 Examples okdge listandpartner list
partitions.




** original code before reordering ** ** after reordering x, y **

do tinme_step = RECRDER( x, V)
do | = 1, num.nodes do time_step =
op =start[i],start[i+1]-1 do i = 1, num.nodes
j = partners[p] dopzstart[l] start[i+1]-1
f = conpute(x[i], x[j]) j = partners[p
updte(y[l] yljl.f) 12 = idx[i] /] additional
z[i] fnl(y[l] y[j]) /1 Sl j2 = idx[j] /] indirection
do i =1, numnodes f = compute(x[i?2],x[]2])
z[i] =fn2(y[i]) /] S2 up_date(y[i2],y[j2] )
z[i] = ftni(y[i2],y[j2])
do i = 1, num.nodes
2 =i
[i] =

idx[i] /1 additional
fn2(y[i2]) /1 indirection

Figure 8 Additional Indirection

adjacency matrix, assuming edges have no direction. reinformation of connected nodes. Refer to Figure 8.
edge listtonsists of two arrays$,ef t andri ght . Apair The first segment of codes shows an original code before
of elements from each array represent the end points oftiata reordering and the second segment of codes shows a
edge. The values stored in each array point to the locationsdified code after data reordering. Additional indirec-
of nodes in node structures. Thartner listis composed tions are introduced to the edge values using an indirection
of partners andstart. Instead of explicitly keep- array,i dx, which points to correct node locations in the
ing both end points of edges, each node keeps a parte@rdered node structuresandy. To avoid these indirec-
list that stores neighboring nodes. The lists are often cotions, we may update edge structures so that they point to
binedinto onelong lispar t ner s, for easy managementthe correct positions in the new node structures. However,
and compact space. The beginning of each list is stormpilers should guarantee that updating edge structure
in each element oét art . The extra element in the lasdoes not affect the legality of the rest of the computations.
position ofst art plays asentine] making the codes cor-Figure 9 also shows an example of updating edge values.
rectly work for the last node. The valuesp@art ners Another source of indirect accesses comes from updat-
are also the positions of nodes in node structures. ing other data structures based on the reordered node data.
Figure 7 shows an example codes that usedge list Refer to the two statementS] andS2, in Figure 8. After
and apartner list respectively. The codes access edge=sordering the node structures,andy, indirections are
one by one. It calculates a valdefrom two node values, needed when computation involves reordered data struc-
x[ 1] andx[j],and updates two node valug$,i ]| and tures and other data structures In this case, indirections

y[]j 1, using the previously calculated valde, may be eliminated by reordering the other data structures,
z, in the same way as the reordered data structures. Com-
4.1 Data reordering pilers also need to guarantee that transforming the other

data does not affect the legality of the rest of the codes.
To automatically apply data layout transformation, con®nce we can eliminate all indirections, the resulting code
pilers need to recognize the code structures shown in Righ be the same as the original code in Figure 8 except for
ure 7. Once the compiler recognizes the structures, it ga@ routines that reorder nodes and update edges outside
figure out which arrays correspond to node data structurgt i me_st ep loop. Discussions about such techniques

The compiler can then insert a run-time library call thaind compiler support can be found in Ding and Kennedy's
transforms the layout of node data. FaB, users may research [14].

need to provide an extra information about coordinates of
nodes. Figure 9 shows an example input graph and n%j%
data structures before and after applying a certain data ré-
ordering algorithm. The alphabet letters inside the noéls the codes shown in Figure 7, computations usually
represent values kept in node structures and the numigcceed according to the order of edges stored iadge
outside the node represent the order of nodes stored inlisteor a partner list Thus, computation reordering can
node structures. The order of node values are chanfpedachieved by reordering tieelge listor thepartner list
after the data reordering. Compilers should verify that computations are associative
Reordering node data results in another level of indé guarantee the legality of transformation. Parallel bop
rection for the structures pointing to the node structurage surely legal to reorder their computations. Since the
to access correct nodes in newly ordered node data. E@mputation reordering sorts edges according to the order
example, edge structures point to node structures to hat@odes they are connecting, computation reordering is

Computation reordering
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Figure 9 Implementation of Data and Computation Reordering

usually applied after the data reordering. for automatically generating inspectors and executors for
Once compilers recognize the computation structur€slAOS [21, 25]. Simplified versions of those techniques
shown in Figure 7, compilers can recognize which arragan be used to generate inspectors and executors for lo-
correspond to edge data structures. Then, the compilerdality optimizations. Compilation techniques were also
serts an appropriate run-time library call that lexicograpdeveloped to determine when inspectors are needed, as
ically sortsedge listor partner list which is described in well as when they must be rerun if memory access pat-
Section 2.1. Figure 9 shows an example of computatitarns change for adaptive computations [19, 25].
reordering foredge listand partner list The values in Inspectors for locality optimizations are given as run-
| eft,right, andpartners point to the positions of time library calls. These locality inspectors are inserted
the nodes in node structures. In this example, the infoyt compilers and modify the data and computation or-
graph is not presorted. After data reordering is appliedker at run-time. The overheads of the inspectors are also
the values of edge structures are updated to match wathortized over many time steps. For example, locality
the correct positions in the new node structures. Thémspectors can be inserted outside there_st ep loop
the computation reordering is applied to lexicographjcalin Figure 7. Then, the inspectors execute once before
sort the edge structures. the computation begins, benefiting computations through-
out the wholet i me_st ep loop. When access patterns
change such as in adaptive computations, locality inspec-
tors may be inserted. However, unlike inspectors for in-
Locality optimizations for irregular codes can be auteerprocessor communications, locality inspectors need no
mated using a combination of compiler and run-time tecte be rerun each time the access patterns change. Without
niques first developed in the context of identifying intererunning the locality inspectors, the cache performance
processor communication for message-passing machimeay degrade, but the codes still generate correct results.
Saltzet al. designed a compiler which can generateran Due to this nature, we develop a guide for adaptive com-
spectorto preprocess memory access patterns to identgfytation that decides how often inspectors are to be rerun,
non-local data needed by each processor [13]. Peensidering their benefit and their overhead. We will dis-
vious researches on data-parallel compilers such as d¢bes this issue in more detail later.
Fortran D compiler have discussed compiler techniques

4.3 Inspector/executor paradigm



** | RREG (edge list) ** NBF (partner list) ** Mol dyn (edge list)

do time_step = do time_step = do tine_step = ]
do i = 1, num edges do i =1, numatons do i =1, numinteractions
nl = left[i] do_p:start[il,start[iﬂ]-l nl = left[i]
n2 = right[i] j = partners|p] n2:_r|ght[|}
force = (x[nl]-x[n2])/4 d = x[i]-x[]j] d = distance(x[nl], x[n2])
y[nl] += force force = d**(-6)/1000 if (d < cutoff)
y[n2] += -force y[i] += force force = d**(-7) - d**(-4)/2
Y[J'] += -force y[nl += force
y[n2] += -force
Figure 10 Key Kernels of Applications
Name | # Nodes| # Edges Description
FOIL | 144649 | 1074393 3D mesh of a parafoil
SUB | 214765 | 1679018 3D mesh of a submarine
AUTO | 448695 | 3314611 3D mesh of GM’s Saturn
MoLl | 131072 | 1179648| semi-uniform 3D molecular dynamics mesh (sn)
MoL2 | 442368 | 3981312| semi-uniform 3D molecular dynamics mesh (1q)
Table 1 Input Meshes
5 Evaluating Locality Optimizations IRREG is a representative of iterative partial differen-
tial equation (PDE) solvers found in computational fluid
5.1 Evaluation environment dynamics (CFD) applications. In such codes, unstructured

meshes are used to model physical structures. The mesh

1 ted by nodes and edges. The mai tati
piler using the Stanford SUIF compiler. The prototype representea by noces and euges. e main compLation

. ] L : ernel iterates over the adge lisf computing modifica-
can identify and parallelize irregular reductions, gekerg < 1o its end POINtSIRREG computes a force which is
ing parallel pthreadsprograms. The compiler can als

lied to both endpoints of dge. Madifications to th
determine where inspectors need to be inserted, base gﬁ]le 0 DOth encpoints ofan eage. Modiricatons fo the

e of all nodes are in the form of irregular reductions.
when memory access pattems are changed. However,NBF is a kernel abstracted from the GROMOS molec-
we have not implemented the actual inspector generatj 0 dynamics code [20]. Instead of an edge list as in
phase using technlques developed by Chaos [20, 21]. IRREG, it maintains goartner listfor each molecule. Part-

a result, we currently insert lns_pectors by hand for bOHer lists are more compact than edge lists, but need extra
the sequential E.md parallel versions of each program.  yata structures to specify the range of partners for each
In our experiments, we measured both cache miss "Secule.NBF computes a force which is applied to both

and actual sequential and parallel execution times fora?nolecule and its partner.

DEC multiprocessor with four 275MHz Alpha 21064 pro- MOLDYN is abstracted from the non-bonded force cal-

cessors. Each processor has a 16K OIireCt'mar’pedclu?ationin CHARMM, a key molecular dynamics applica-

cache with 32 byte cache lines, as well as a 4M d're(ﬁtén used at NIH to model macromolecular systems. Like

mapped L2 cache with 64 byte CaCh‘? lines. Cache MRREG, an edge listrepresenting interactions between pairs
rates were measured using a cache simulator based Y olecules is maintained. Since the strength of interac-

Shade utllity from Sun Microsystems. tions between molecules drops with increasing distance,
only molecules within a cutoff distance of each other are

5.2 Applications and meshes assumed to interact. The main computation kernel iterates
over all interactions between molecules, computing a sin-
le force which is applied to both interacting molecules.

; . : The key kernels of these codes are shown in Figure 10.
followed by the main computation enclosed in a sequentia : S
: : L To test the effects of locality optimizations, we chose
t i me_st ep loop. The main computation is thus repeated

. : : . a variety of input data meshesoiL, SUB, andAUTO are
on each iteration of thei me_st ep loop. Statistics and v P

. L ; 3D meshes of a parafoil, submarine, and GM Saturn au-
timings are collected after the initialization section a . . .

; : : . : omobile, respectively. The ratios of edges to nodes are
the first few iterations of thei ne_st ep loop, in order

. between 7-10 for these meshe®mL1 andvoL2 are smalll
to more closely match steady-state execution. . S
and large 3D meshes derived from semi-uniformly placed
molecules oMOLDYN using a 1.5 angstrom cutoff radius.

We examine three irregular applicatioimsREG, NBF, and
MOLDYN. All applications contain an initialization sectio
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Figure 11 Impact of Partition Sizes a¢ics andMETIS (overhead excluded)

We applied these meshesIRREG, NBF, andMOLDYN to ciently small so that a min-cut algorithm can be applied to
test the locality effects of implementing edge lists amtoduce the target number of partitions.
partner lists. All meshes are initially sorted, so computa- The number of partitions affects the locality of the
tion reordering is not required originally, but computatioresulting program. More partitions divide the data into
reordering is applied only after data reordering techrsquamaller groups, increasing the likelihood that data in a
are used. partition can remain in cache. Fewer partitions produce
larger number of elements in each partition, reducing the
5.3 Partitioning parameters [RCB, METIS) probability elem_ents access_ed will still be in cache_z._ How-
ever, overhead increases with the number of partitions, so
An important issue is how to select parameters for pave cannot simply choose an arbitrarily large number of
titioning algorithms when used as locality optimizationgartitions. Smaller partitions may also lead to more ac-
For classic partitioning algorithms suchrasB andMETIS, cesses outside the partition, so may be counter-productive
the main parameter is how many partitions to create. kless partitions are also grouped hierarchically.
RCB, larger domains are recursively divided into halves un- To evaluate desirable partitioning parameters, we per-
til the total number of desired partitions is reachei@Tis formed a number of experiments by choosing different
can also produce any number of desired partitions. Thembers of partitions for each combination of kernel and
input graph is coarsened until the resulting graph is suffipplication mesh. Results are shown in Figure 11. The
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Figure 12 Overhead vs. Partition Size facs andMETIS

x-axis represents the size in bytes of data in each pasiie of allthe node data accessed in a partition is roughly on

tion. The y-axis presents execution time in seconds fike order of the data cache or smaller, we seem to obtain

40 iterations of the computation, excluding the overheatbst of the locality benefits available. The system can

of layout optimizations. The overheads are excluded ttius choose a desirable number of partitions by examining

focus on the quality of partitions, versus various pamitidche number of data arrays accessed, as well as the size of

sizes. As expected, results show execution time generaach data element. It then choose a number of partitions

improves as smaller partition size is selected, but we nesdficient to divide data into L1 cache-sized chunks.

to take into account the overhead.

_ Figl_Jrg 12_ pres_ents the overheads fo_r eaf:h partiti(g]_-4 Collapsing parameters GPART)

ing optimization with respect to the patrtition size. As we

can see, overheads go up quickly as the number of paSimilar torcB andMETIS, a possible parameter for graph

tions increases, particularly foaeTis. Thus, we should clustering is the number of partitions. However, unlike

compromise to get most locality benefit without muckcB and METIS which begin with a single partition and

overhead. creates more partitiongPART begins with each node as
Based on these experimental results, we find a goagbartition and repeatedly clusters them together through

criterion for choosing the number of partitions is based oaultiple passes. Another way of specifying parameters

the relationship of partition size to cache size. When tf@r GPARTIs thus to specify the desired partition size after
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Figure 14 Overhead vSGPART Parameters

the last clustering pass, and how many nodes to collapses of collapsing passes for various collapsing rates. As
in each clustering pass. expected, the overhead becomes higher when the number

Again, to evaluate desirable partitioning parameten$ passes increases. One thing to notice is that collapsing
we performed a number of experiments by combiningtes little affect the overheads. Thus, selecting best per
MOLDYN with differentapplication meshes, applyi@garRT formance under the same number of collapsing passes is
with different collapsing rates. Results are shown in Fig-right way to decide parameters when you consider the
ure 13. The x-axis represents the number of clusteripgrformance including the overhead.
passes performed. The y-axis presents execution time inOnce again, results indicate most locality benefits may
seconds for 40 iterations of the computation after optie obtained by having the size of all the data accessed in a
mization, excluding the overhead of layout optimizationpartition to be roughly the size of the data cache or larger.
The overheads are excluded again to focus on the quie choice of the number of nodes to collapse in each pass
ity of partitioning with respect to the various parameteris. more tricky when you consider the quality of partitions.
Different data series represent different collapsings;at&mall collapsing rates yield quality partitions, but rerqui
ranging from collapsing 2 to 32 nodes in each clusterimgore passes. Large collapsing rates take fewer passes,
pass. The number of nodes in a partition at each pass bahproduce poor quality partitions. Our results seem to
then be calculated as the collapsing rate raised tathe indicate collapsing eight nodes at a time yields reasonably
power, wheren is the number of passes performed. Wgood locality while keeping the number of passes (and
see that performance improves with more passes, and ocokrhead) low.
lapsing a reasonably large number of nodes on each pass
does not hurt performance.

Figure 14 shows the overheads in seconds versus num-
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5.5

. .. .C
In our experiments, we evaluated several optimization
techniques for each application/mesh combination. TQF?\
different optimizations are as follows:

Optimizations on the partition size for all data arrays accessed in the
omputation is roughly the L1 cache size.
In GPART we start from a partition containing 4 nodes,
ce each node in our applications contains an 8-byte
double-precision floating point number. Thus, 4 nodes
a}/&ill fit into 32-byte cache line in DEC Alpha processors.
XKe merge 8 nodes on each pass, resulting in 5 passes.
As we mentioned early, computation reordering is ap-
plied after any data reordering algorithms are applied.
RCB. Recursive coordinate bisection is applied to

rearrange data layout, based on user-provided cogrg  OQyerhead of optimizations
dinate information.

ORIG. The original program. Since input meshes
presorted, it corresponds to the result of computati
reordering.

) o ~ Figure 15 displays the costs of data reordering techniques
METIS. The multi-level graph partitioning algorithmmeasured relative to the cost oback. The overhead
in the METIS library is used to compute data partijncludes the cost to update edge structures and transform
tions and rearrange data layout. other related data structures to avoid the extra indirect
GPART. The graph is partitioned through successjAccesses caused by the data _reorderlng._The overhead also

. I o : INcludes the cost of computation reordering.
clustering passes. Initial partitions contain 4 nodes, . P
" The least expensive data layout optimizatiooRack

additional passes collapse up to 8 nodes. The se- ) ,

- . which we use as the base for comparison. In comparison,
quence of passes thus produces partitions contamm:gﬂs is quite expensive when used for cache optimiza
4,32, 256, 2K, 16K nodes through 5 passes. _ : . i

gh>p tions, on the order of 10—45 times higher tltaack. RCB
cPACK. The data layout is rearrange by consecutii@ less expensive thameTis, costing around 8-17 times
packing based on the original access order. higher thancPAck. The overhead o6PART is 3-5 times
higher tharcpack, but much less thameTis andRcCB.

BothrcBandMETIS use partition parameters described
in Section 5.3. The number of partitions selected is based

13
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Figure 17 Normalized Execution Time for OptimizationsgIG = 1, overhead included)
5.7 Impact on miss rates applying partitioning techniques, outperformiagack.

. . ) B and METIS show the best performance, baPART
We first look at simulated L1 cache miss rates for a 16R P

o : so achieves nearly the same performance. Partitioning
cache, S|m|Iar_to the L1 (primary) _cache for the DEC A chnigues achieve lower miss rates than original codes by
pha21064. Miss rates are shown in the upper three gra[‘])e[ﬁO 7 5%,
of Figure 16. Miss rates of original, unoptimized pro-
grams are about 12%—-28%. All partitioning techniques, .

RCB, METIS, andGPART reduce miss rates to 6%—8%, out2-8  Impact on sequential performance

performingcPACK by 1%—6%.RCB andMETIS achieve the Next we look at se
best over all performanc&pPART obtains nearly the SameAIpha. Normalized execution times are presented in Fig-

pen:/?/rmalncel. K imulated L2 h _ ‘ ure 17, calculated relative to the execution timeoaiG.
€ also look at simulate cache miss rates forg,oqe resyits include the overhead of data layout optimiza-

4M cache, similar tothe L2 (secondary) _cac_he forthe DE{Sns. since optimizations are performed once at the be-
Alpha 21064. The lower three graphs in Figure 16 sh nning, the benefits of the optimizations are accumulated

miss rates for the L2 cache. Miss rates are calculated as; Sugh the iterations. Thus, the performance becomes

percentages of all memory references, not the percentages. o< the number of iterations increases

of L2 cache references. L2 miss rates are also reduced bygat of pars atnfinity in the Figure 17 are shown to

quential execution times on the DEC
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the same performance with a third overheadraB or

Normalized | Cache miss rate| Normalized || with a quarter overhead ofeTiS. cPACK s the least over-
overhead L1 L2 | sequentialtime|| pagq algorithm, but improves only 20% for the sequential
ORIG N/A 19.77% | 5.15% 1.000 execution times.
RCB 11.15 7.08% | 2.25% 0.692
METIS 16.74 7.21% | 2.25% 0.695
CPACK 1.00 10.04% | 2.92% 0.799

Table 2 Averages of Experimental Results 6.1 Parallelizing irregular reductions

(overhead excluded in sequential times) In addition to improving locality of irregular codes for se-
guential execution, locality can also be improved for paral
lel execution. The core of irregular scientific applicatgon

compare quality of each optimization, ignoring its ovets frequently comprised ofeductions associative com-
head. Partitioning algorithms perform better tremack  Putations (e.g.sum, MAX) which may be reordered and
in quality of data reordering.RcB, MeTs, andGparT Parallelized [41, 34, 48]. Compilers for shared-memory
achieve 10%-60% improvements, whileack improves multiprocessors generally parallelize irregular redurcdi
execution times about 5%—40%. by having each processor compute a portion of the reduc-
In real situations we should consider the overheadsitn. storing results in a locaeplicated buffer Results
locality optimizations. Even thougkcB andMETIS gen- from all replicated buffers are then combined with the orig-
erate better quality ordering, they require hundreds of itéh@l global data, using synchronization to ensure mutual
ations to be competitive witbpack. Meanwhile,cparT €Xclusion [18, 41].
begins to outperfornspack around 40 iterations due toits ~ An example of the RPLICATEBUFStechnique is shown
low overhead. Since some scientific applications repdafigure 18. Iflarge replicated buffers are to be combined,
the computation several hundreds of times without charlge compiler can avoid serialization by directing the run-
ing access patternscs andMETIS will be most beneficial fime system to perform global accumulations in sections
for those applications. The overhead of data layout dgsing @ pipelined, round-robbin algorithm [18]. ERL-
timizations can be amortized, just as for inspectors usetTEBUFs works well when the result of the reduction is
to reduce communications in parallel codesearT and 0 a scalar value, but is less efficient when the reduction is
cpack will be more effective for applications with smallfo @n array, since the entire array is replicated and few of
numbers of iterations due to their low overhead. Thus, di.elements are effectively used.
lecting a proper locality optimization algorithm is depen-  Previously we introduced &CALWRITE, a new com-
dent on the number of iterations expected, but all shol#er and run-time technique for parallelizing irreguler r
prove beneficial. Due to the low overheadssehrTand ductions [19]. IOCALWRITE avoids the overhead of repli-
CPACK, they can be also effectively used in adaptive appﬁated buffers and mutual exclusion during global accumu-
cations that occasionally change access patterns. We {@fiion by partitioning computation so that each processor

discuss adaptive computations in more detail later. ~ Only computes new values for locally-owned data. It sim-
ply applies to irregular computations tbesner-computes

59 S f . tal It rule used in distributed-memory compilers [22]o¢AL-
: ummary of experimental results WRITE is implemented by having the compiler insert in-

Since we present many experimental results for differeftectors to ensure each processor only executes loop it-
applications and different input meshes, we try to surfitations which write to the local portion of each variable.
marize the results by averaging all combinations. Tablé/glues of index arrays are examined at run time to build a
shows the averages of the results for the original code disé of loop iterations which modifies local data.

the different optimization algorithms The second column An example of IOCALWRITE is shown in Figure 19.
shows the average overhead of each optimization relatfive@mputation may be replicated whenever a loop itera-
to the average overhead oPack. The third and forth tion assigns the result of a computation to data belong-
columns show average L1 and L2 cache miss rates, i@ to multiple processor(t edg¢. The overhead for
spectively. The fifth column presents average sequenti®ICALWRITE should be much less than classic inspec-
execution times relative to the average sequential exet@i/executors, because th@®EALWRITE inspector does
tion time of the original code. To summarize the resulf$t build communication schedules or perform address
again,Rce andMETIS produce the best quality data ordertranslation. Besides acALWRITE does not perform global
ing, achieving 30% improvement in sequential executi@cumulation for the non-local data. InsteadydaL-

times, but require high overheadseArT achieves nearly WRITE replicates computation, avoiding expensive com-
munications across processors.
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Figure 18 RePLICATEBUFSExample
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The LocALWRITE algorithm inspired our techniques
for improving cache locality for irregular computations.

Speedup (4 procs)

Foil Foil- Sub Sub- Auto Auto- Moll Moll- Mol2 Mol2-

Conventional compiler analysis cannot analyze, much less A e e o ¥
improves locality of irregular codes because the mem-
ory access patterns are unknown at compile time. The
lightweight inspector in bCALWRITE, however, can re-
order the computations at run time to enforce local writes.
It is only a small modification to change the inspector to

Figure 20 Parallel Speedups (based on
unoptimized sequential execution time,
overhead excluded)

reorder the computations for cache locality as well as local

writes. We can use all of the existing compiler analysigars with input mesh names and -LW correspond to the
for identifying irregular accesses and reductions (to ensgpeedups for thebCALWRITE versions. We see that in all
reordering is legal). cases, the versions optimized for locality achieved better

Currently data reordering is sequentially performegerformance. Locality optimizations are thus carried over
since we do not have parallel version of those algorithritsthe parallel versions of each program. Table 3 summa-
yet. Once we parallelize the algorithms, we can expétzes the parallel speedups by averaging all speedups for
lower overhead in parallel executions. different locality optimizations and different parallzd-
tion options.

In addition, we found that with locality optimizations,
programs parallelized usingdcALWRITE achieved much
Figure 20 displays 4-processor speedups for each mdxtiter speedups than the original programs usiegLR
calculated versus the original, unoptimized program. WeTEBUFS, except fomsF with smaller mesheg-0IL and
exclude overheads to investigate the impact of the queibL1). The LOCALWRITE algorithm tends to be ineffec-
ities of locality optimizations. A cost model that willtive with smaller graphs where duplicated computations
be described in later sections should be used to decide relatively high compared to computations performed
which optimization should be applied. There are twlocally. In general, however, thedcALWRITE algorithm
parallelization options, the original program usingFRi- benefited more from the enhanced locality. Intuitively
CATEBUFS, and a transformed version usingtALWRITE.  these results make sense, since theALWRITE optimiza-

We present speedups for each version of the program tiom can avoid replicated computation and communication
Figure 20, the bars only with input mesh names correspdretter when the mesh displays greater locality.
to the speedups for theERLICATEBUFS versions and the

6.2 Impact on parallel performance
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Figure 22 Impact of Adaptivity (-a : transformations are applied wieer access pattern changes,
overhead excluded)

suffers for highly adaptive computations with many fre-

Parallel speedups quent changes in access patterns.
REPLICATEBUFS | LOCALWRITE Fortunately, locality optimizations can be more re-
ORIG 1.18 1.48 . : :
cB 269 3.40 laxed. First, changes in the access pattern reduce locality
METIS 267 336 and degrade performance, but do not affect the legality of
GPART 2:63 3:10 locality transformations. Second, degradations in Idgali
CPACK 215 2.40 is a function of the amount of change, not the frequency of

change. Locality transformations thus do not need to be
repeated each time the access pattern changes, only when
it is profitable.

To evaluate the effect of adaptivity on locality op-
timizations, we performed a number of experiments by
combining MOLDYN with different application meshes,

7 Adaptive Computations then periodically swapping the positions of molecules to
create an adaptive code. Results are shown in Figure 22.
A problem confronting locality optimizations for irreg-The x-axis marks the passage of time in the computation
ular codes is that many such applications adaptive in groups of 20 iterations. 20% of the nodes are randomly
where the data access pattern may change over time assitigpped after every 20 iterations. The y-axis measures the
computation adapts to data. The example in Figure 2leigecution time per 20 iterations of the kernel, excluding
adaptive because conditiahange may be satisfied on the overhead of the locality transformations. By excluding
some iterations of the time-step loop, modifying elementse overhead, we can better understand the role of locality
of the index arrays dx1 andi dx2, changing overall transformation in adaptive computations.
data access patterns as a result. For adaptive codes, hovEach data series represents a different locality opti-
quickly the application mesh changes thus affects the lgization. oRriG is the original program. RCB, METIS,
cality improvements from data layout optimizations.  gpaRT, andcPACKrepresent versions of the program where
locality optimizations are applied once at the beginning
7.1 Impact of adaptivity on optimizations  ©of program execution. In comparisoRCE-a, METIS-a,
GPART-a, andCPACK—a represent adaptive versions of each
When compiling adaptive irregular computations for digsrogram where locality optimizations are applied when-
tributed memory machines, the compiler must rerun t@er access patterns are changed.
inspector whenever the connection pattern changes, sinceresults show that without reapplying locality transfor-
new communication may result [25, 19]. Performanggations, all optimized versions degrade in performance
and eventually match the performance of the unoptimized

Table 3 Average Parallel Speedups (based on
unoptimized sequential execution time,
overhead excluded)

x[ nodes], y[nodes]  // data in nodes program. In comparison, reapplying partitioning algo-
dot = /1 tinme-step |oop rithms after access pattern changes can preserve the per-
! fi g)c(fl‘f‘]”gf /'l change accesses formance benefits of locality, if overhead is excluded. Per-

i dx2[ ] - formance for the original version eoiL andAuTO also
doi =1, edges // work on edges degrades, because the initial data set has been presorted.
nm gi% : The difficult question is when data should be reordered,

=i
=i i
force = f(l([ n, x[n]) // conputation if overhead of transformation must be taken into account.
y[n] += force /'l update edge  Fortunately, it appears that the degradation in performanc
y[m += -force /1 endpoi nt s . : .
is mostly proportional to the fraction of data changed. As

Figure 21 Example Adaptive Irregular Computation 2 result, it should be possible to predict the effectiveness
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Figure 23 Analytical Model for Adaptive Computations

of locality optimizations, based on the rate at which thierations where the locality transformations are applied
underlying connection structure becomes disordered dagain. Resulting execution times per iteration will plot

to changes. In the next section we attempt to estimate Hasv-tooth shape. Execution times per iteration do not
benefit using a cost model which takes into account tmelude the overhead of the locality transformation but we

overhead. will take into account the overhead in our cost model.
Note we are using a simplified model. In thygtimized
7.2 Adaptive optimization code execution times per iteration approach the constant

line of theoriginal codewith a non-linear rate. However,

To guide locality optimizations for adaptive codes, Wge approximate this behavior with a linear rate increase as
present a simple cost model for calculating the benefitsigfrigure 23 (b) for the sake of simplicity. Since the per-
locality optimizations for irregular computations. It caformance obptimized codés changing at a constant rate
also be used to predict how often locality optimizationg), we choose the tangent of the lin@)to ber(a — b).
should be applied and which locality optimization shouldor example, if a optimized graph randomly changes 20%
be used. of edges at every iteration, therwill be 0.2, becoming a

To make a simple analytical model we assume inptally random graph after 5 iterations. With the tangent
graphs are randomly initialized so that there is almost gglue selected in our model, the execution time per itera-
locality between nodes. We also assume that a constgst will start from the lowest point} and reach the upper
amount of edges are randomly selected and changed, aftgistant pointd) after 5 iterations.
each iteration. We assume two analytical model programs, The performance gair{(n)) from using periodic lo-
original codeand optimized code Figure 23 (a) plots cality transformations can be calculated asin the follgwin
execution time per iteration for botbriginal codeand equation (1). Since the area below the line is the total ex-
optimized codexcluding the overhead. The upper straiglscution time, the performance gain we can expect is the
line corresponds to theriginal codeand the lower saw- area between two linest) minus the overheacQ, ).
tooth line corresponds to tlaptimized code

Since input graphs are already randomly initialized,  G(n) = A—-nO, (n>1) @
further changes to graphs do not increase the randomnesswhere,

of graphs. Thus, execution times per iteration for the mt mi?

o . A = (a=(+—Nt = (a—b)t——

original code stay constant. In theptimized codea 2n 2n
O, = costof transformation

locality transformation is applied at the beginning of the
program and the transformation is periodically applied n = number of transformations applied

as the program proceeds. So, the execution times per

iteration increase as input graphs change toward randomThe performance gain graph is now a functionnof
graphs, but periodically drop to the lowest point at tiBe number of transformations applied, as plotted in Figure
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Figure 24 Experimental Verification of Cost Model (vertical bars regpent the numbers chosen by the cost model)

23 (c). Finding the point where the performance gainiisodel can be also applied to non-adaptive computations.
maximized is straight forward as derived in equation (2)sing the equation 1 and setting the graph changenake (
and (3). The maximal point can be determined using its zero, you may directly get an expected performance
differential equation. gain. Since the transformation will be applied once only
at the beginning, the gain function will become much

o = ( ™ )t (& (n0) = 0) @ simpler. Based on the calculated gain, the system can
20+ decide which locality transformation should be used.
where, , To experimentally verify our cost model, we ran a
G'(n) = %G(n) - % -0, programmMmOLDYN with a input grapimoL1 on both 1 pro-

cessor and 4 processors. The input graph randomly swaps
) ) ) 20% of edges every 20 iterations, and the application iter-

~ Then, maximum gairt,.,;) can be obtained accord-gtes 240 time steps. Results are shown in the Figure 24.
ing to the value of as in the following equation (3).  The first graph shows the measured performance gain on
1 processor and the second graph shows the gain on 4

G = { G(no) = (a = b)t — (Vtzzmov)t (ro21) 5 processors, parallelizing withdcALWRITE. The y-axis
G)=(a—b)t ="~ =0v (n0<1) represents the percentage of performance gain over orig-

inal execution time. The x-axis represents the number
Considering the equation (2)o can be less than 1qf transformations applied throughout the 240 time steps.
when the graphs change slowlyn(is small) and the pifferent curves correspond to the measured performance
overhead @,) is high under the given number of iteragains for different locality transformations, varying num
tions (). In such case, we may apply the transformatiqfpys of transformation applied. The vertical bars represen
only at the beginning in order to get the maximum gae numbers of transformation chosen by our cost model.
(Gmaz = G(1)). Onthe contrary, if graph changes rapidlyhe percentage numbers under the vertical bars represent
(m is large) then we can apply locality transformationge calculated performance gain by our cost model. Re-
multiple times o > 1) depending on their overhead. Theyts show our cost model selects quite precise numbers
smaller overhead the more transformation we can applyt§jecide how often locality transformations should be ap-

order to get the maximum gain. plied to get the maximum performance gain. Our cost

~ Inpractice, graphs often change periodically, not evepyodel also predicts relatively precise performance gains.
iteration, trading off precision for execution time. Even

in such cases, we can directly apply our model, assuming

one iteration in our model corresponds to a set of iteratioBs Related Work
that do not change graphs except for the last iteration.
Another consideration in practice is picking number @.1
transformations based ory that is generated by the cost L . L
model. Since our cost model produces a real number }Brsmentlﬂc appl_lcatlons, significant amount of computa-
no, we may pick a closest integer number for actual us#§nS are reductions(g, sum, MAX, etc). Suppose the
However, ifng falls in around the midpoint of two integers,numer'c‘?lI errors caus_ed by Chang'”g <_:omputat|on (_)rders
the system may pick either. Experimental result show@tf negllg_lble, red_uct|o_ns_ can be efﬂuentl_y parallell_zed
both choices produce nearly same performance. Our cbae techniques of identifying and parallelizing reducsion

Irregular computations
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are well established in several researches [23, 34, 41, 48kgular computations use them [8, 35]. Furthermore,
In irregular applications, reductions are also core pdrtsammmunication for non-local data is aggregated to reduce
computations, taking up dominant portions of executimverheads. The performance of irregular applications on
times. Researches in irregular computations have focusefiware DSM systems shows nearly the same as message-
on general techniques supporting irregular computatipassing systems, but with simpler compiler support.
including irregular reductions. Researches are catego- Several researches also investigated combining soft-
rized in two classes depending on their target systemsre DSMs and explicit message passing aided by com-
message-passing systems and software DSM systemspilers in order to enhance general performance of software
DSM systems [8, 16, 11]. This hybrid approach improves
8.1.1 Message-passing systems the performance of regular computations as well as irregu-
lar computations, making software DSMs more attractive
Efficientrun-time primitives are first developed in CHAOQ, message-passing machines. Without compiler support,
library [13]. The CHAOS library provides primitivessoftware DSMs also exploit iterative nature of scientific
that efficiently move data between processors and mang@gjications by prefetching the same non-local data used

copies of remote data. Using CHAOS primitives, inspegy the previous iteration to eliminate access misses [30,
tor/executor paradigm is applied to parallelize wregula@].

computations. CHAQOS primitives are inserted as inspec-

tors before irregular computations begin. The inspecttgrs2 L lit timizati fori | d
gather non-local data that will be used later in irregul Ocality optimizationsforirregular Codes

computations, storing them in local buffer. Then, irre@ata locality has been recognized as a significant perfor-
ular computations are executed, accessing only locafiance issue for modern processor architectures. Most re-
owned data and locally stored remote data. After the &archers have focused on loop transformations on dense-
ecution, other CHAOS primitives are inserted to scattgfatrix codes [37, 47, 43, 50], though recent work has fo-
the values of non-local data to appropriate owners. Ffised on data layout transformations for both arrays [26,
adaptive computations where access patterns change gg[-and pointer-based data structures [10].
ing the whole execution, inspectors need to rerun when- Recentresearches show several different approaches to
ever the access patterns change to get new communicagigfimize the locality of codes. One approach is improving
schedules. Even for adaptive applications, the CHAGfgta locality with hardware support. Using smart mem-
system has been shown to scale well on Intel iPSC/88§) controllers, irregular accesses to memory are merged
machines [25]. Furthermore, researchers investigate gHd passed to caches. Another approach is rearranging
tomatically inserting CHAOS primitives using compilegiata structures in application level, improving data lecal
analysis [25, 20, 21]. Based on the compiler analysis i§f from the source of locality problems. Data locality
producer/consumer of data, communication schedules @iiectly affects the performance, since data accesses with
generated between processors. Appropriate primitives g locality pollute cache blocks and waste memory bus
then inserted in proper places, aggregating necessary cgghdwidth. In the following sections, we will look at
munications. different approaches that improve data locality.
Anotherimplementation of run-time library is found in
the PILAR _system, where non-_loc_al_data accesses are igp- | Locality optimization with hardware support
resented amtervalsinstead of individual elements [32].
Using more compact representation, PILAR reduces tHsing smart memory systems, irregular memory accesses
amount of communications and improves performane@n be avoided. Insuch systems, irregular data are remapped
PILAR also unifies communication schedules for regte another contiguous space, making data accesses rather
lar computations and irregular computations, exploitinggular.
a possible communication aggregation across regular andCarteret al. proposed a memory controller that can

irregular computations [7]. remap scattered data into contiguous spacshiadow
memoryunused physical memory address space [6]. When
8.1.2 Software DSM systems programs access data in shadow memory, memory con-

troller gathers data from actual locations using a separate
Irregular computations are as easily executed as regiafress table in memory controller. Gathered data are then
computations on software DSM systems. However, effjassed in compact forms through memory bus. Effectively
ciently executing irregular computations requires similgsing their memory controller requires compiler or user
techniques used in message-passing systems. Withd86istance. Compilers or users should insert remapping
knowledge of data access patterns, shared-memory cefstem calls for the data with scattered accesses so that
pilers recognize and prefetch non-local data before acty@d data are remapped to shadow pages with contiguous
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placement. Computation parts also need modificationgmvement for large randomly generated data sets. How-
use different data remapped in shadow pages. Using haer, space-filling curves cannot guarantee evenly bal-
ware simulation, they show improvement in sparse mataxced partition when data is unevenly distributed, which
applications. may cause significant performance degradation in paral-
Luk and Mowry provided a hardware mechanism thél execution. They also used computation blocking by
automatically fetches reordered data, usirfgravard bit restructuring computations with multiple loop nests such
that is added to each address [36]. If the forward bit &s tiling in regular codes. A block of computations is fin-
set for an address, the actual value is fetched from ashed before the next block of computations begins. They
other address pointed by the value in the current addressuld improve performance by computation blocking, but
Using this mechanism, data can be freely reordered withe performance was somewhat less than that of sorting
out changing the rest of the codes. Memory forwardirmpmputation according to space-filling curves. The best
mechanism will make data reordering easy to use. performance comes when data is ordered with space-filling
Both hardware supports, however, introduce additioralrves and computation is ordered according to the data
level of indirection in hardware, which means we need @wdering. Since irregular codes usually deal sparse data
pay extra cost whenever we access irregular data fretructures, there are not many benefits for computation
memory. In comparison, source level modifications dbocking. A simple lexicographical sort according to the
not need extra cost, once modifications are done with mai@a ordering will do better for computation ordering.
cost and effort. In the following section we will take alook  Mitchell et al. used a bucket sorting to reorder irreg-
at other researches that directly modify data structuresuiar computations [39]. They improved the performance

source level. of two NAS applications (CG, and IS) and a medical sim-
ulation of heart. Their technique, however, works only
8.2.2 Locality optimization for array data when a single irregular access pattern exists for a given

data array. In comparison, we investigate more complex
Locality optimizations for irregular applications mainly-ases where two or more irregular access patterns exist.
focus on rearranging data layout for improved locality, applications we use, two access patterns typically exist
Computation reordering is also used along with data figtting our algorithms recognize them as edges between

ordering to further improve performance. two data elements accessed in the same iteration.
Al-Furaih and Ranka studied usinmgTis and breadth-

first-search (BFS) to reorder data in irregular computatiog 2
and improve locality [1]. BFS and its variances have been
successfully used in sparse matrix computations to reortlemodern programming languages, data objects are dy-
the sparse matrices [12, 33]. They extended the applicamically allocated from heap, a free memory space. Such
bility of BFS and graph partitioning algorithms to irregulaobjects are often linked with pointers if they are logically
graph orderings, but did not combine computation reordeelated. The placements of the objects in memory, how-
ing or compare against other types of techniques. ever, do not reflect their logical affinity. Thus, accessing
Ding and Kennedy explored applying dynamic copyegically related objects could show poor memory access
ing (packing) of data elements based on loop traversal behavior. Researchers try to rearrange objects by putting
der, and show major improvements in performance [14fhem together if they have temporal and spatial locality.
They were able to automate most of their transformations Calderet al. proposedcache conscious data place-
in a compiler using user provided information. Their teciment[5]. They use profiled information to find temporal
nigue has low overhead, but the quality of rearrangemémtality between data, then rearrange data placement for
can be further improved, which motivates us to develamproved locality. For static data, executable files are
high quality but low overhead algorithms. Ding andirectly modified to rearrange the static data. For dy-
Kennedy also discussed reorganization of single arrayamically allocated data, a special heap allocation reutin
into multi-dimensional arrays depending on how closely used to allocate heap data in proper places guided by
they are accessed in computation, and found that theiofiled information. They reduced miss rates for SPEC
technique improves the performance of irregular applicdateger programs and two SPEC floating point programs.
tions [15]. They also showed their technique does not htttbwever, their data placement technique does not handle
the performance of regular applications if back-end comearranging data elements within an array or a heap object.
pilers are smart enough to extract the existing instruction Chilimbi et al. developed a technique to rearrange
level parallelism in transformed codes. pointer-based data by clustering data elements into a cache
Mellor-Crummeyet al. used a geometric ordering alblock [10]. They focused on tree data structures including
gorithm based on space-filling curves to map multidimelinked lists. Putting a parent node and its child nodes near
sional data to memory [38]. They showed significant inlh memory, they improved tree maintenance/search appli-

.3 Locality optimization for heap objects
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cations. Usingccnor ph, a run-time tree optimization approaches the quality of more precise algorithms. We ex-
routine, a tree structure is converted to an optimized trperimentally evaluate how to choose parameters such as
structure for locality. They also present an alternativeghethe number of partitions and graph clustering factor. We
allocation routineccnal | oc, that allocates a memoryalso investigate how locality optimizations may be used
space close to a user specified heap location. The newfal-adaptive codes, using a cost model to select how often
location routine constructs data structures with improvéalreorder data and which optimization to be applied.
locality. Chilimbi et al. also suggest internally reorga- As processors speed up relative to memory systems,
nizing the fields of data structures with assistant of profiksing graph partitioning to improve data layout should
ing [9]. They distinguish frequently used fields from othéncrease in importance, since processing costs go down
fields, split them out, and pack them into a cache bloakhile benefits increase. For very large graphs, we should
When structures are too large to fit in cache block, thejso obtain benefits by reducing TLB misses and paging
reorder the fields inside the structures according to teim-the virtual memory system. By improving compiler
poral affinity. Using field reorganization, they improvedupport for irregular codes, we are contributing to our
applications programmed in object-oriented languageslong-term goal: making it easier for scientists and engi-
neers to take advantage of the benefits of high-performance

8.3 Contribution of our research computing.

Our research is one of efforts to improve irregular ap-
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