
Improving Locality For Adaptive Irregular Scientific Codes

Hwansoo Han, Chau-Wen Tseng

Department of Computer Science
University of Maryland

College Park, MD 20742fhshan, tsengg@cs.umd.edu

Abstract

An important class of scientific codes access memory in
an irregular manner. Because irregular access patterns
reduce temporal and spatial locality, they tend to underuti-
lize caches, resulting in poor performance. Researchers
have shown that consecutively packing data relative to
traversal order can significantly reduce cache miss rates
by increasing spatial locality. In this paper, we investigate
techniques for using partitioning algorithms to improve
locality in adaptive irregular codes. We develop parame-
ters to guide both geometric (RCB) and graph partitioning
(METIS) algorithms, and develop a new graph partitioning
algorithm based on hierarchical clustering (GPART) which
achieves good locality with low overhead. We also exam-
ine the effectiveness of locality optimizations for adaptive
codes, where connection patterns dynamically change at
intervals during program execution. We use a simple cost
model to guide locality optimizations when access pat-
terns change. Experiments on irregular scientific codes
for a variety of meshes show our partitioning algorithms
are effective for static and adaptive codes on both se-
quential and parallel machines. Improved locality also
enhances the effectiveness of LOCALWRITE, a paralleliza-
tion technique for irregular reductions based on the owner
computes rule.

1 Introduction

Computational science is increasingly becoming an impor-
tant tool for scientists and engineers performing research
and development. Fast yet inexpensive microprocessors
and commercial multiprocessors provide the computing

University of Maryland, Dept. of Computer Science Technical Report
CS-TR-4039, September 1999.
This research was supported by NSF CAREER Development Award
#ASC9625531 in New Technologies. The IBM SP-2 and DEC Alpha
Cluster were provided by NSF CISE Institutional Infrastructure Award
#CDA9401151 and grants from IBM and DEC.

power they need for research and development. Compil-
ers play an important role by automatically customizing
programs for complex processor architectures, improving
portability and providing high performance to non-expert
programmers.

As scientists attempt to model more complex prob-
lems, computations with irregular memory access patterns
become increasingly important. These computations arise
in several application domains. In computational fluid dy-
namics (CFD), meshes for modeling large problems are
sparse to reduce memory and computations requirements.
In n-body solvers such as those arising in molecular dy-
namics, data structures are by nature irregular because they
model the positions of particles and their interactions.

As microprocessors become increasingly fast, memory
system performance begins to dictate overall performance.
The ability of applications to exploit locality by keeping
references to cache becomes a major (if not the key) factor
affecting performance. Unfortunately, irregular computa-
tions have characteristics which make it difficult to utilize
caches efficiently.

Consider the example in Figure 1. In the regular code,
accesses tox are made to consecutive memory locations
(since Fortran is column-major). This spatial locality al-
lows the code to take full advantage of long cache lines
to reuse each cache line multiple times before it is flushed
from cache. In comparison, in the irregular code, accesses
to x are irregular, dictated by the contents of the index
array idx. It is unclear whether spatial locality exists or
can be exploited by the cache.

Compounding the problem, regular codes benefit be-
cause compilers can analyze data access patterns, using
estimates of cache performance to guide loop and data
transformations to improve locality [37, 50, 17]. In com-
parison, there is relatively little information at compile
time concerning the locality properties of irregular pro-
grams.

Researchers have demonstrated that the performance
of irregular programs can be improved by applying a
combination of computation and data layout transforma-

1

// Regular // Irregular
do t = 1, time do t = 1, time

x(N,N) x(N), idx(M)
do i = 1, N do i = 1,M
do j = 1, N ... = x(idx(i))

... = x(j,i)

Figure 1 Regular and Irregular Applications

tions [14, 38]. The compiler identifies irregular compu-
tations which can be reordered, then inserts calls to run-
time routines which reorder computations based on lexi-
cographically sorting the edges in the mesh, then consec-
utively packingdata in memory according to the traversal
order. Space-filling curves can be used to reorganize data
when geometric coordinate information is available. The
overall premise of preprocessing data to improve perfor-
mance is based on the inspector/executor paradigm, first
used to parallelize irregular computations for message-
passing machines [13].

In this paper, we improve on existing methods in sev-
eral ways. Run-time partitioning algorithms (e.g.,RCB,
METIS) can obtain better locality by exploiting geomet-
ric information or graph structure. We show how such
algorithms may be tuned to improve performance while
balancing overhead. We present a new graph partition-
ing algorithm (GPART) based on hierarchical clustering,
and show how to tune it to improve locality with low
overhead. We also examine the impact of adaptivity on
locality optimizations, and derive heuristics for deciding
when locality optimizations should be performed. Ex-
periments demonstrate locality and performance are im-
proved for several irregular scientific codes for a variety
of application meshes. Our paper makes the following
contributions:� Develop a new graph partitioning technique based

on graph clustering that balances overhead with pre-
cision.� Selecting effective parameters for partitioning tech-
niques.� Devise cost models for guiding locality optimiza-
tions for adaptive irregular codes.� Experimental evaluation of locality optimizations
for adaptive irregular and parallel irregular codes.

The remainder of the paper begins with a discussion
of algorithms for improving data layouts for irregular
codes. We experimentally select parameters for parti-
tioning techniques and evaluate the qualities of locality
optimizations using different algorithms. We examine the
effect of adaptivity on locality optimizations, present a
simple cost model to guide optimizations, then evaluate

our model experimentally. We also investigate interaction
with previous algorithms for parallelizing irregular reduc-
tions. Finally, we conclude with a discussion of related
work.

2 Background

Previous research has shown that computation and data
transformation can significantly improve the locality of
irregular scientific codes [14, 38]. Two techniques are
computation reordering and consecutive packing.

2.1 Computation reordering

Computation reordering works as follows. If each loop it-
eration accessed one data item, sorting the loop iterations
by the addresses of the data items would yield optimal
temporal and spatial locality. In many irregular scientific
applications, each loop iteration tends to compute results
for a single edge in meshes or interaction between two
bodies, resulting in accesses to a pair of data items. The
pair of accesses may be viewed as a tuple(x; y), wherex and y are the addresses of the pair of data items ac-
cessed. Rearranging the loop iterations by applying radix
(lexicographic) sort to the tuples then yields a quality so-
lution which improves both temporal and spatial locality.
Sorting is so effective that data meshes provided by ap-
plications writers are frequently presorted, eliminatingthe
need to apply sorting at run time. In our research, all input
meshes are presorted, so the base performance represents
the performance of computation reordering.

Data reordering algorithms we will describe in the fol-
lowing sections alter the original order of nodes, making
presorted input meshes no longer lexicographically sorted
according to the new order of nodes. Thus, the com-
putation reordering is required whenever data ordering
algorithms are applied. Since computation reordering is
orthogonal to the data reordering, computation reordering
can be applied in combination with any data reordering
algorithm. In our research, we always apply computation
reordering after data reordering.

2.2 Consecutive packing (CPACK)

In addition to changing the order of accesses, the compiler
can also reorganize data layout. Ding and Kennedy pro-
posedconsecutive packing(CPACK), where data is moved
into adjacent locations in the order they are first accessed
(first-touch) by the computation [14]. The motivation is
that the original data access order is likely to be based
on the logical affinity among data items. By rearranging
the data according to the order in the temporal access se-
quence, spatial locality is likely improved over the original

2

storage order. Experiments seem to indicateCPACK can
improve spatial locality of data references and can reduce
conflict and capacity misses, particularly if input meshes
are presorted or computation reordering is applied before
packing. CPACK is very efficient in terms of overhead,
but it does not explicitly take into account structures in
program input data. As a result, our experiments show it
produces lower quality orderings than other heuristics.

BesidesCPACK, Ding and Kennedy also proposed two
other heuristics,group packingand consecutive group
packingto capture the structure of input data [14].Group
packingclassifies data according to their average reap-
pearance distances andconsecutive group packingapplies
group packingwithin a limited range of access sequence.
Miss rates of applications using these two other heuris-
tics are slightly lower than usingCPACK only when many
consistent reuse patterns exist. These two other heuristics
worked slightly better for one of their application,MESH,
but worked worse for another application,MOLDYN . Fur-
thermore, these two other heuristics showed worse perfor-
mance even for theMESH, when computation reordering
was used together [14]. As a result, we believegroup
packingandconsecutive group packingare not versatile
heuristics for capturing the existing structures of input
data. We thinkCPACK is a better heuristic than their other
heuristics in general.

3 Partitioning Algorithms

A different class of data transformation algorithms we use
in our research attempt to improve the locality of irreg-
ular computations bypartitioning the data. Partitioning
algorithms exploit the fact most interactions (and mesh
connections) in scientific computations are local, between
nearby elements. For instance, in a molecular dynam-
ics the computation of the interactions may be calculated
only between molecules within a given cutoff radius (e.g.,
3 angstroms). By creating partitions containing most of
the neighboring data elements, interactions tend to remain
within the partition. Storing all elements in a partition to-
gether in memory thus increases the probability they can
remain in cache, yielding better reuse.

Partitioning algorithms were originally developed for
applications in such areas as load-balancing parallel com-
putations [27], VLSI design [2], and database storage [44].
We adapt them for improving cache performance for irreg-
ular codes, where overhead of partitioning is more impor-
tant. In this section, we examine three partitioning algo-
rithms: recursive coordinate bisection, multi-level graph
partitioning, and hierarchical graph clustering.

3.1 Recursive coordinate bisection (RCB)

In scientific applications, data items are usually logically
located in two or three dimensions. The 1D storage order
is simply an artifact of storing data items in memory. One
method for partitioning data is to take into account the
actual geometric proximity between nodes. Because in-
teractions tend to be local, putting neighboring nodes into
a partition can improve locality.

Recursive coordinate bisection (RCB) is based on geo-
metric coordinate information.RCB works by recursively
selecting the longest dimension, then splitting the dimen-
sion into two partitions by finding the median of data
coordinates in that dimension. Because the median is
used, split partitions are guaranteed to have roughly equal
number of data items. The process is recursively repeated
as desired [3, 4]. Once all partitions are selected, data
items are stored consecutively within each partition, and
partitions within an upper level partition are also arranged
consecutively, constructing a hierarchical structure. Thus,
RCB produces not only a partition but also an order among
partitions that is similar to Z-ORDERING, a space-filling
curve for dense array layout. Computation can then be
reordered by the resulting partition.

Space-filling curves also use geometric coordinate in-
formation to attempt to ensure proximity in memory. Data
are laid out in memory according to space-filling curves
(e.g., Hilbert, Morton), which are continuous, non-smooth
curves that pass through every point in a finite k-dimensional
space [24, 38, 46]. Figure 2 shows an example of us-
ing the Hilbert space-filling curve. Each point in the k-
dimensional space is mapped to its location on the 1D
space-filling curve using a sequence of bit-level opera-
tions on its k-dimensional coordinates. These mappings
attempt to minimize the distance (in memory) between
two geometrically close points in space.

Space-filling curves requires information on the coor-
dinates of each point, but can yield major performance
improvements over randomly placed data [38].

Figure 2 comparesRCBand a space-filling curve (HILBERT)
for an example where nodes are unevenly distributed.
Space-filling-curves work best when nodes are evenly dis-
tributed in a fixed finite space, because they assume fixed
size grid to partition nodes. However, in scientific com-
putations such as astrophysics, celestial bodies may be
distributed unevenly. Thus, space-filling curves may fail
to partition the bodies due to the coarse resolution of grid,
putting large set of bodies in the same grid partition and
giving no order among those large set of bodies in the
same grid.

Selecting an appropriate resolution of grid to handle
unevenly distributed nodes is not trivial and using ex-
cessively fine resolution increases the run-time overhead.
Space-filling curves also do not guarantee load balance

3

HILBERT

1

2

3

4

5
6

7

8

RCB

Figure 2 Recursive Coordinate Bisection (RCB) vs. A HILBERT Space-Filling Curve

Coarsening Partitioning Projection

Figure 3 Multi-level Graph Partitioning (METIS)

among partitions. However, most scientific applications
are executed in parallel where load balance is critical to
their performance.

In recursive bisection, each step incurs run-time over-
head, soRCB should be halted as quickly as possible.
However, partitions must be small enough so that they
can remain in cache, or else locality benefits will be lost.
Compared toCPACK and space-filling curves, overhead is
high since more passes of sorting are required.

3.2 Multi-level graph partitioning (METIS)

A major limitation ofRCB and space-filling curves is that
geometric coordinate information is needed for each node.
This information may not be available for some applica-
tions where two or more access patterns exist in the same
loop without any notion of geometric proximity, which is
more general assumption for applications we have to deal.
Even if it is available, user annotations may be needed
since the compiler may not be able to automatically de-
rive coordinate information for each data item. Instead
of relying on coordinate information, partitions may be
computed using the underlying graph structure that is con-
structed by connecting data elements accessed in the same
loop iteration. Spectral methods can be effective but are
computationally intensive [45]. More recently, people
have employed multi-level graph partitioning algorithms
encapsulated in library packages such asMETIS [28, 29].

Multi-level graph partitioning algorithms work by first

computing a succession of coarsened graphs (with fewer
nodes) which approximate the original graph. Graphs are
coarsened by randomly choosing edges in a graph and
matching (collapsing) its endpoints to form a node in the
new coarsened graph. By only selecting edges connecting
unmatched nodes, the number of nodes is reduced roughly
by half at each stage. Once the graph reaches a reasonable
number of nodes, k-way graph partitioning algorithms are
used to split the coarsened graph intok partitions. The
partition is then successively mapped back towards the
original graph, periodically refining (adjusting) the parti-
tion. Figure 3 provides an example of multi-level graph
partitioning applied to a 2D domain.

The multi-level algorithm improves efficiency, since
the computationally expensive k-way graph partitioning
algorithm can be applied to a much smaller reduced graph.
Analysis and measurements show multi-level graph parti-
tioning algorithms are reasonably fast and produce good
partitions, as measured by the number ofcut edgeswhich
cross partitions [31, 29]. The quality of the partitions are
fairly close to that achieved by applying the k-way graph
partitioning algorithm to the original graph, but at a frac-
tion of the expense.

3.3 Hierarchical graph clustering (GPART)

Since our goal is to improve cache performance at run-
time for irregular applications, we desire partitioning al-
gorithms with lower overhead. We have developed a hier-

4

Figure 4 Graph Partitioning Using Clustering (GPART)

Figure 5 Hierarchical Graph Clustering (GPART)

archical graph clustering algorithm (GPART) that has low
overhead and produces quality ordering for cache locality.
Previous multi-level graph partitioning algorithms were
designed for improving locality in parallel computations,
VLSI circuits, and other high cost applications. As a re-
sult, greater processing time is acceptable. Experiments
indicate the overhead of preprocessing forRCB andMETIS

are 7–45 times higher than consecutive packing.
Figure 4 and Figure 5 depict howGPARTworks. GPART

collapses several nodes into a single partition in each pass,
then a partition is treated as a single node in the next
pass. The same clustering algorithm is repeatedly applied
through several passes, keeping a hierarchical structure as
depicted in Figure 5. The main characteristics ofGPART

are as follows:� We randomly pick neighboring nodes to collapse
them together. Random selection may result in less
quality partitions than other sophisticated methods,
but reduces overhead.

� The nodes that are collapsed together in a pass make
a partition in that pass. The nodes in the same
partition are laid out in nearby memory locations.� We keep hierarchical structures of partitions as in
Figure 5. Smaller partitions (subpartitions) in the
previous pass are stored in consecutive locations, if
they belong to the same partition in the current pass.� Large number of nodes are collapsed in each pass.
We begin by collapsing enough nodes to fit on a
single cache line, then collapse a large number (8 in
our research) of nodes at once. We also stop after
partitions reach sufficiently large size (usually after
the partition size exceeds L1 cache size).� To achieve improved partitions, we sort nodes once
by their vertex degrees (number of incipient edges),
and attempt to collapse in the sorted order. Sorting
improves the likelihood that partitions keep closely
related subpartitions together through multiple passes.

5

sort nodes by degree
limit = cache_line_size
while (limit <= max_limit) {

for each node N (in sorted order) {
P = partition for N
if (size(P) < limit) {

for each partner M of N {
/* pick partner in random order */

Q = partition of M
if (size(P) + size(Q) <= limit) {

merge Q into P
if (size(P) = limit)

break (exit for loop)
}

}
}

}
sort nodes by partition
limit = limit * increment

}

Figure 6 Hierarchical Graph Clustering Algorithm

The partitions produced generate data layouts which
improve locality by putting neighboring nodes in nearby
locations. The hierarchical structure inGPART is similar to
that ofRCB. Each partition in a level keeps all its subparti-
tions in lower levels close in memory. Keeping hierarchi-
cal structures helps store related nodes close in memory,
reducing cache misses. Since applications visit nodes ac-
cording to the storage order, maintaining the hierarchical
structure of the clustered graph increases the chance of vis-
iting neighbor nodes which have already been accessed by
computations for previous nodes. These nodes are more
likely to remain in cache, improving performance.

The overallGPART algorithm is shown in Figure 6.
GPART is similar to the coarsening phase inMETIS, but
fewer clustering passes are required because more nodes
are collapsed at once. The quality of the partition pro-
duced is slightly less than that produced byMETIS, but the
overhead is significantly less. In addition, we can adjust
the number of clustering passes performed by changing
the number of nodes collapsed together in each pass, as
well as the largest partitions allowed.

3.4 Complexity comparisons

We pause to take a quick analytical look at the complexity
of different locality optimizations, as an function ofN ,
the number of nodes,E, the number of edges, andC, the
cache size (N � E,N � C for typical input graphs in our
research). The complexity analysis may help in deciding
which locality optimization to perform.

Consecutive packing (CPACK) has costO(E), since it
rearranges data based on the order data is first traversed
and requires one pass through the data. Using space-filling
curves can cost close toO(N), since the problem domain
may be uniformly partitioned according to the coordinate
space, and simple mapping between coordinates and grid
partitions may assign node elements to appropriate grid
partitions.

RCBhas costO(N (log2N)2), since recursively sorting
and splitting the data in two at each level of recursion
requires up toO(log2(N)) passes over the data.METIS

has costO(2N log2N) + O(E), whereO(E) is the cost
of computing a k-way partition on the reduced graph [28].
Up toO(log2N) passes over the data are needed to coarsen
the graph, and a similar number of passes are used to refine
the partition boundaries after partitioning the coarsened
graph.

In comparison,GPART has costO(E log8(C)), since
the number of clustering passes is dependent on the cache
size, not the input data size. As a result,GPART is only a
small constant factor more expensive than eitherCPACKor
HILBERT, and should be much more efficient thanRCB or
METIS for large data sets.

4 Implementation Issues

In scientific applications that traverse meshes or simulate
N-body interactions, input data are often represented in the
form of graphs. The values related to nodes in meshes or
related to bodies are stored in the arrays that are regarded
as node structures. Mesh connections or body interactions
are stored in separate arrays that are regarded as edge
structures. Using node and edge structures, applications
implement input data as graphs.

For node structures, arrays are used to keep values
associated with each node (e.g.,weight, velocity, force,
etc). One multi-dimensional array may be used instead
of several arrays, but only arrays frequently used together
should be merged into a multi-dimensional array to fully
exploit memory bandwidth and cache line utilization [15].

For edge structures, two type of structures are com-
monly used;edge listsandpartner lists. Figure 9 demon-
strates how a graph is implemented usingedgeandpartner
lists, along with changes due to data and computation re-
ordering. In the example, we store upper triangular part of

** edge list **
do time_step =
do k = 1, num_edges
i = left[k]
j = right[k]
f = compute(x[i],x[j])
update(y[i],y[j],f)

** partner list **
do time_step =
do i = 1, num_nodes
do p = start[i],start[i+1]-1
j = partners[p]
f = compute(x[i],x[j])
update(y[i],y[j],f)

Figure 7 Examples ofedge listandpartner list

6

** original code before reordering **
do time_step =

do i = 1, num_nodes
do p = start[i],start[i+1]-1

j = partners[p]
f = compute(x[i],x[j])
update(y[i],y[j],f)
z[i] = fn1(y[i],y[j]) // S1

do i = 1, num_nodes
z[i] = fn2(y[i]) // S2

** after reordering x, y **
REORDER(x, y)
do time_step =
do i = 1, num_nodes
do p = start[i],start[i+1]-1
j = partners[p]
i2 = idx[i] // additional
j2 = idx[j] // indirection
f = compute(x[i2],x[j2])
update(y[i2],y[j2],f)
z[i] = fn1(y[i2],y[j2])

do i = 1, num_nodes
i2 = idx[i] // additional
z[i] = fn2(y[i2]) // indirection

Figure 8 Additional Indirection

adjacency matrix, assuming edges have no direction. The
edge listconsists of two arrays,left andright. A pair
of elements from each array represent the end points of an
edge. The values stored in each array point to the locations
of nodes in node structures. Thepartner list is composed
of partners andstart. Instead of explicitly keep-
ing both end points of edges, each node keeps a partner
list that stores neighboring nodes. The lists are often com-
bined into one long list,partners, for easy management
and compact space. The beginning of each list is stored
in each element ofstart. The extra element in the last
position ofstart plays asentinel, making the codes cor-
rectly work for the last node. The values inpartners
are also the positions of nodes in node structures.

Figure 7 shows an example codes that use anedge list
and apartner list, respectively. The codes access edges
one by one. It calculates a value,f from two node values,
x[i] andx[j], and updates two node values,y[i] and
y[j], using the previously calculated value,f.

4.1 Data reordering

To automatically apply data layout transformation, com-
pilers need to recognize the code structures shown in Fig-
ure 7. Once the compiler recognizes the structures, it can
figure out which arrays correspond to node data structures.
The compiler can then insert a run-time library call that
transforms the layout of node data. ForRCB, users may
need to provide an extra information about coordinates of
nodes. Figure 9 shows an example input graph and node
data structures before and after applying a certain data re-
ordering algorithm. The alphabet letters inside the node
represent values kept in node structures and the numbers
outside the node represent the order of nodes stored in the
node structures. The order of node values are changed
after the data reordering.

Reordering node data results in another level of indi-
rection for the structures pointing to the node structures
to access correct nodes in newly ordered node data. For
example, edge structures point to node structures to have

an information of connected nodes. Refer to Figure 8.
The first segment of codes shows an original code before
data reordering and the second segment of codes shows a
modified code after data reordering. Additional indirec-
tions are introduced to the edge values using an indirection
array,idx, which points to correct node locations in the
reordered node structures,x andy. To avoid these indirec-
tions, we may update edge structures so that they point to
the correct positions in the new node structures. However,
compilers should guarantee that updating edge structure
does not affect the legality of the rest of the computations.
Figure 9 also shows an example of updating edge values.

Another source of indirect accesses comes from updat-
ing other data structures based on the reordered node data.
Refer to the two statements,S1 andS2, in Figure 8. After
reordering the node structures,x andy, indirections are
needed when computation involves reordered data struc-
tures and other data structures,z. In this case, indirections
may be eliminated by reordering the other data structures,
z, in the same way as the reordered data structures. Com-
pilers also need to guarantee that transforming the other
data does not affect the legality of the rest of the codes.
Once we can eliminate all indirections, the resulting code
will be the same as the original code in Figure 8 except for
the routines that reorder nodes and update edges outside
thetime step loop. Discussions about such techniques
and compiler support can be found in Ding and Kennedy’s
research [14].

4.2 Computation reordering

As the codes shown in Figure 7, computations usually
proceed according to the order of edges stored in anedge
list or a partner list. Thus, computation reordering can
be achieved by reordering theedge listor thepartner list.
Compilers should verify that computations are associative
to guarantee the legality of transformation. Parallel loops
are surely legal to reorder their computations. Since the
computation reordering sorts edges according to the order
of nodes they are connecting, computation reordering is

7

a b

left

right

start

partners

edge list partner list

c d

2 4 1 3

3 5 4 5

1 3

5 4

1 3 4 6

4 5 3 4

7

5 5

e

7
a b

left

right

start

partners

edge list partner list

c d

5 3 1 4

4 2 3 2

1 4

2 3

1 3 3 4

3 2 2 3

6

2 4

e

7

Reordering
Data (x, y)

Updating
Edge Values

x

z

node data

a e d c

a e d c

b

b

x

y

node data

a b c d

a b c d

e

e

1 5

4 3 2

1 2

3 4 5

left

right

start

partners

edge list partner list

1 1 3 4

2 3 2 2

4 5

3 4

1 3 3 4

2 3 2 2

6

3 4

7

Reordering
Computations

y a e d c b

z a e d c b

x

y

node data

a b c d

a b c d

e

e

z a b c d e

Reordering
Associated Data (z)

Figure 9 Implementation of Data and Computation Reordering

usually applied after the data reordering.
Once compilers recognize the computation structures

shown in Figure 7, compilers can recognize which arrays
correspond to edge data structures. Then, the compiler in-
serts an appropriate run-time library call that lexicograph-
ically sortsedge listor partner list, which is described in
Section 2.1. Figure 9 shows an example of computation
reordering foredge listand partner list. The values in
left, right, andpartners point to the positions of
the nodes in node structures. In this example, the input
graph is not presorted. After data reordering is applied,
the values of edge structures are updated to match with
the correct positions in the new node structures. Then,
the computation reordering is applied to lexicographically
sort the edge structures.

4.3 Inspector/executor paradigm

Locality optimizations for irregular codes can be auto-
mated using a combination of compiler and run-time tech-
niques first developed in the context of identifying inter-
processor communication for message-passing machines.
Saltzet al.designed a compiler which can generate anin-
spectorto preprocess memory access patterns to identify
non-local data needed by each processor [13]. Pre-
vious researches on data-parallel compilers such as the
Fortran D compiler have discussed compiler techniques

for automatically generating inspectors and executors for
CHAOS [21, 25]. Simplified versions of those techniques
can be used to generate inspectors and executors for lo-
cality optimizations. Compilation techniques were also
developed to determine when inspectors are needed, as
well as when they must be rerun if memory access pat-
terns change for adaptive computations [19, 25].

Inspectors for locality optimizations are given as run-
time library calls. These locality inspectors are inserted
by compilers and modify the data and computation or-
der at run-time. The overheads of the inspectors are also
amortized over many time steps. For example, locality
inspectors can be inserted outside thetime step loop
in Figure 7. Then, the inspectors execute once before
the computation begins, benefiting computations through-
out the wholetime step loop. When access patterns
change such as in adaptive computations, locality inspec-
tors may be inserted. However, unlike inspectors for in-
terprocessor communications, locality inspectors need not
to be rerun each time the access patterns change. Without
rerunning the locality inspectors, the cache performance
may degrade, but the codes still generate correct results.
Due to this nature, we develop a guide for adaptive com-
putation that decides how often inspectors are to be rerun,
considering their benefit and their overhead. We will dis-
cuss this issue in more detail later.

8

** IRREG (edge list)
do time_step =
do i = 1, num_edges
n1 = left[i]
n2 = right[i]
force = (x[n1]-x[n2])/4
y[n1] += force
y[n2] += -force

** NBF (partner list)
do time_step =

do i = 1, num_atoms
do p = start[i],start[i+1]-1

j = partners[p]
d = x[i]-x[j]
force = d**(-6)/1000
y[i] += force
y[j] += -force

** Moldyn (edge list)
do time_step =
do i = 1, num_interactions

n1 = left[i]
n2 = right[i]
d = distance(x[n1],x[n2])
if (d < cutoff)

force = d**(-7) - d**(-4)/2
y[n1] += force
y[n2] += -force

Figure 10 Key Kernels of Applications

Name # Nodes # Edges Description
FOIL 144649 1074393 3D mesh of a parafoil
SUB 214765 1679018 3D mesh of a submarine

AUTO 448695 3314611 3D mesh of GM’s Saturn
MOL1 131072 1179648 semi-uniform 3D molecular dynamics mesh (sm)
MOL2 442368 3981312 semi-uniform 3D molecular dynamics mesh (lg)

Table 1 Input Meshes

5 Evaluating Locality Optimizations

5.1 Evaluation environment

We have begun implementation of our prototype com-
piler using the Stanford SUIF compiler. The prototype
can identify and parallelize irregular reductions, generat-
ing parallelpthreadsprograms. The compiler can also
determine where inspectors need to be inserted, based on
when memory access patterns are changed. However,
we have not implemented the actual inspector generation
phase using techniques developed by Chaos [20, 21]. As
a result, we currently insert inspectors by hand for both
the sequential and parallel versions of each program.

In our experiments, we measured both cache miss rates
and actual sequential and parallel execution times for a
DEC multiprocessor with four 275MHz Alpha 21064 pro-
cessors. Each processor has a 16K direct-mapped L1
cache with 32 byte cache lines, as well as a 4M direct-
mapped L2 cache with 64 byte cache lines. Cache miss
rates were measured using a cache simulator based on the
Shade utility from Sun Microsystems.

5.2 Applications and meshes

We examine three irregular applications,IRREG, NBF, and
MOLDYN . All applications contain an initialization section
followed by the main computation enclosed in a sequential
time step loop. The main computation is thus repeated
on each iteration of thetime step loop. Statistics and
timings are collected after the initialization section and
the first few iterations of thetime step loop, in order
to more closely match steady-state execution.

IRREG is a representative of iterative partial differen-
tial equation (PDE) solvers found in computational fluid
dynamics (CFD) applications. In such codes, unstructured
meshes are used to model physical structures. The mesh
is represented by nodes and edges. The main computation
kernel iterates over the anedge list, computing modifica-
tions to its end points.IRREG computes a force which is
applied to both endpoints of an edge. Modifications to the
value of all nodes are in the form of irregular reductions.

NBF is a kernel abstracted from the GROMOS molec-
ular dynamics code [20]. Instead of an edge list as in
IRREG, it maintains apartner listfor each molecule. Part-
ner lists are more compact than edge lists, but need extra
data structures to specify the range of partners for each
molecule.NBF computes a force which is applied to both
a molecule and its partner.

MOLDYN is abstracted from the non-bonded force cal-
culation in CHARMM, a key molecular dynamics applica-
tion used at NIH to model macromolecular systems. Like
IRREG, an edge list representing interactions between pairs
of molecules is maintained. Since the strength of interac-
tions between molecules drops with increasing distance,
only molecules within a cutoff distance of each other are
assumed to interact. The main computation kernel iterates
over all interactions between molecules, computing a sin-
gle force which is applied to both interacting molecules.
The key kernels of these codes are shown in Figure 10.

To test the effects of locality optimizations, we chose
a variety of input data meshes.FOIL, SUB, andAUTO are
3D meshes of a parafoil, submarine, and GM Saturn au-
tomobile, respectively. The ratios of edges to nodes are
between 7–10 for these meshes.MOL1 andMOL2 are small
and large 3D meshes derived from semi-uniformly placed
molecules ofMOLDYN using a 1.5 angstrom cutoff radius.

9

IRREG - foil

13.0

13.5

14.0

14.5

15.0

15.5

16.0

72
32

5

36
16

2

18
08

1

90
41

45
20

22
60

11
30 56

5

28
3

14
1 71 35 18

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

IRREG - sub

20.0

21.0

22.0

23.0

24.0

25.0

26.0

10
73

83

53
69

1

26
84

6

13
42

3

67
11

33
56

16
78 83

9

41
9

21
0

10
5 52 26

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

IRREG - auto

40.0
42.0
44.0

46.0
48.0
50.0
52.0
54.0

56.0
58.0
60.0

22
43

48

11
21

74

56
08

7

28
04

3

14
02

2

70
11

35
05

17
53 87

6

43
8

21
9

11
0 55

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

IRREG - mol1

14.0

15.0

16.0

17.0

18.0

19.0

20.0

65
53

6

32
76

8

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

IRREG - mol2

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

22
11

84

11
05

92

55
29

6

27
64

8

13
82

4

69
12

34
56

17
28 86

4

43
2

21
6

10
8 54

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

NBF - foil

9.0

9.5

10.0

10.5

72
32

5

36
16

2

18
08

1

90
41

45
20

22
60

11
30 56

5

28
3

14
1 71 35 18

Partition Size (byte)

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

RCB

METIS

NBF - sub

15.0

15.5

16.0

16.5

17.0

10
73

83

53
69

1

26
84

6

13
42

3

67
11

33
56

16
78 83

9

41
9

21
0

10
5 52 26

Partition Size (byte)
E

xe
cu

tio
n

T
im

e
(s

ec
)

RCB

METIS

NBF - auto

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

22
43

48

11
21

74

56
08

7

28
04

3

14
02

2

70
11

35
05

17
53 87

6

43
8

21
9

11
0 55

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

NBF - mol1

10.0

10.5

11.0

11.5

12.0

12.5

13.0

65
53

6

32
76

8

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

NBF - mol2

35.0

40.0

45.0

50.0

55.0

22
11

84

11
05

92

55
29

6

27
64

8

13
82

4

69
12

34
56

17
28 86

4

43
2

21
6

10
8 54

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

MOLDYN - foil

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

21
69

74

10
84

87

54
24

3

27
12

2

13
56

1

67
80

33
90

16
95 84

8

42
4

21
2

10
6 53

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

MOLDYN - sub

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

32
21

48

16
10

74

80
53

7

40
26

8

20
13

4

10
06

7

50
34

25
17

12
58 62

9

31
5

15
7 79

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

MOLDYN - auto

108.0

110.0

112.0

114.0

116.0

118.0

120.0

67
30

43

33
65

21

16
82

61

84
13

0

42
06

5

21
03

3

10
51

6

52
58

26
29

13
15 65

7

32
9

16
4

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

MOLDYN - mol1

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

19
66

08

98
30

4

49
15

2

24
57

6

12
28

8

61
44

30
72

15
36 76

8

38
4

19
2 96 48

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

MOLDYN - mol2

110.0

115.0

120.0

125.0

130.0

135.0

140.0

66
35

52

33
17

76

16
58

88

82
94

4

41
47

2

20
73

6

10
36

8

51
84

25
92

12
96 64

8

32
4

16
2

Partition Size (byte)

E
xe

cu
tio

n
T

im
e

(s
ec

)

RCB

METIS

Figure 11 Impact of Partition Sizes ofRCB andMETIS (overhead excluded)

We applied these meshes toIRREG, NBF, andMOLDYN to
test the locality effects of implementing edge lists and
partner lists. All meshes are initially sorted, so computa-
tion reordering is not required originally, but computation
reordering is applied only after data reordering techniques
are used.

5.3 Partitioning parameters (RCB, METIS)

An important issue is how to select parameters for par-
titioning algorithms when used as locality optimizations.
For classic partitioning algorithms such asRCB andMETIS,
the main parameter is how many partitions to create. For
RCB, larger domains are recursively divided into halves un-
til the total number of desired partitions is reached.METIS

can also produce any number of desired partitions. The
input graph is coarsened until the resulting graph is suffi-

ciently small so that a min-cut algorithm can be applied to
produce the target number of partitions.

The number of partitions affects the locality of the
resulting program. More partitions divide the data into
smaller groups, increasing the likelihood that data in a
partition can remain in cache. Fewer partitions produce
larger number of elements in each partition, reducing the
probability elements accessed will still be in cache. How-
ever, overhead increases with the number of partitions, so
we cannot simply choose an arbitrarily large number of
partitions. Smaller partitions may also lead to more ac-
cesses outside the partition, so may be counter-productive
unless partitions are also grouped hierarchically.

To evaluate desirable partitioning parameters, we per-
formed a number of experiments by choosing different
numbers of partitions for each combination of kernel and
application mesh. Results are shown in Figure 11. The

10

MOLDYN - foil

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

21
69

74

10
84

87

54
24

3

27
12

2

13
56

1

67
80

33
90

16
95 84

8

42
4

21
2

10
6 53

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

MOLDYN - sub

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

32
21

48

16
10

74

80
53

7

40
26

8

20
13

4

10
06

7

50
34

25
17

12
58 62

9

31
5

15
7 79

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

MOLDYN - auto

0.0

20.0

40.0

60.0

80.0

100.0

120.0

67
30

43

33
65

21

16
82

61

84
13

0

42
06

5

21
03

3

10
51

6

52
58

26
29

13
15 65

7

32
9

16
4

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

MOLDYN - mol1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

19
66

08

98
30

4

49
15

2

24
57

6

12
28

8

61
44

30
72

15
36 76

8

38
4

19
2 96 48

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

MOLDYN - mol2

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

66
35

52

33
17

76

16
58

88

82
94

4

41
47

2

20
73

6

10
36

8

51
84

25
92

12
96 64

8

32
4

16
2

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

NBF - foil

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

72
32

5

36
16

2

18
08

1

90
41

45
20

22
60

11
30 56

5

28
3

14
1 71 35 18

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

NBF - sub

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

10
73

83

53
69

1

26
84

6

13
42

3

67
11

33
56

16
78 83

9

41
9

21
0

10
5 52 26

Partition Size (byte)
O

ve
rh

ea
d

(s
ec

)

RCB

METIS

NBF - auto

0.0

20.0

40.0

60.0

80.0

100.0

120.0

22
43

48

11
21

74

56
08

7

28
04

3

14
02

2

70
11

35
05

17
53 87

6

43
8

21
9

11
0 55

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

NBF - mol1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

65
53

6

32
76

8

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

NBF - mol2

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

22
11

84

11
05

92

55
29

6

27
64

8

13
82

4

69
12

34
56

17
28 86

4

43
2

21
6

10
8 54

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

IRREG - foil

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

72
32

5

36
16

2

18
08

1

90
41

45
20

22
60

11
30 56

5

28
3

14
1 71 35 18

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

IRREG - sub

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

10
73

83

53
69

1

26
84

6

13
42

3

67
11

33
56

16
78 83

9

41
9

21
0

10
5 52 26

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

IREG - auto

0.0

20.0

40.0

60.0

80.0

100.0

120.0

22
43

48

11
21

74

56
08

7

28
04

3

14
02

2

70
11

35
05

17
53 87

6

43
8

21
9

11
0 55

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

IRREG - mol1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

65
53

6

32
76

8

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

IRREG - mol2

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

22
11

84

11
05

92

55
29

6

27
64

8

13
82

4

69
12

34
56

17
28 86

4

43
2

21
6

10
8 54

Partition Size (byte)

O
ve

rh
ea

d
(s

ec
)

RCB

METIS

Figure 12 Overhead vs. Partition Size forRCB andMETIS

x-axis represents the size in bytes of data in each parti-
tion. The y-axis presents execution time in seconds for
40 iterations of the computation, excluding the overhead
of layout optimizations. The overheads are excluded to
focus on the quality of partitions, versus various partition
sizes. As expected, results show execution time generally
improves as smaller partition size is selected, but we need
to take into account the overhead.

Figure 12 presents the overheads for each partition-
ing optimization with respect to the partition size. As we
can see, overheads go up quickly as the number of parti-
tions increases, particularly forMETIS. Thus, we should
compromise to get most locality benefit without much
overhead.

Based on these experimental results, we find a good
criterion for choosing the number of partitions is based on
the relationship of partition size to cache size. When the

size of all the node data accessed in a partition is roughly on
the order of the data cache or smaller, we seem to obtain
most of the locality benefits available. The system can
thus choose a desirable number of partitions by examining
the number of data arrays accessed, as well as the size of
each data element. It then choose a number of partitions
sufficient to divide data into L1 cache-sized chunks.

5.4 Collapsing parameters (GPART)

Similar toRCB andMETIS, a possible parameter for graph
clustering is the number of partitions. However, unlike
RCB and METIS which begin with a single partition and
creates more partitions,GPART begins with each node as
a partition and repeatedly clusters them together through
multiple passes. Another way of specifying parameters
for GPART is thus to specify the desired partition size after

11

MOLDYN - foil

35

36

37

38

39

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

2

4

8

16

32

MOLDYN - foil

54

55

56

57

58

59

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

E
xe

cu
tio

n
T

im
e

(s
ec

)

2

4

8

16

32

collapsed
nodes

collapsed
nodes

MOLDYN - foil

112

114

116

118

120

122

124

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

E
xe

cu
tio

n
T

im
e

(s
ec

)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

48

50

52

54

56

58

60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

E
xe

cu
tio

n
T

im
e

(s
ec

)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

160

170

180

190

200

210

220

230

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes
E

xe
cu

tio
n

T
im

e
(s

ec
)

2

4

8

16

32

collapsed
nodes

Figure 13 Impact ofGPART Parameters (overhead excluded)

MOLDYN - foil

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

O
ve

rh
ea

d
(s

ec
)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

O
ve

rh
ea

d
(s

ec
)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

O
ve

rh
ea

d
(s

ec
)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

O
ve

rh
ea

d
(s

ec
)

2

4

8

16

32

collapsed
nodes

MOLDYN - foil

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Passes

O
ve

rh
ea

d
(s

ec
)

2

4

8

16

32

collapsed
nodes

Figure 14 Overhead vs.GPART Parameters

the last clustering pass, and how many nodes to collapse
in each clustering pass.

Again, to evaluate desirable partitioning parameters
we performed a number of experiments by combining
MOLDYN with different application meshes, applyingGPART

with different collapsing rates. Results are shown in Fig-
ure 13. The x-axis represents the number of clustering
passes performed. The y-axis presents execution time in
seconds for 40 iterations of the computation after opti-
mization, excluding the overhead of layout optimizations.
The overheads are excluded again to focus on the qual-
ity of partitioning with respect to the various parameters.
Different data series represent different collapsing rates,
ranging from collapsing 2 to 32 nodes in each clustering
pass. The number of nodes in a partition at each pass can
then be calculated as the collapsing rate raised to thenth
power, wheren is the number of passes performed. We
see that performance improves with more passes, and col-
lapsing a reasonably large number of nodes on each pass
does not hurt performance.

Figure 14 shows the overheads in seconds versus num-

bers of collapsing passes for various collapsing rates. As
expected, the overhead becomes higher when the number
of passes increases. One thing to notice is that collapsing
rates little affect the overheads. Thus, selecting best per-
formance under the same number of collapsing passes is
a right way to decide parameters when you consider the
performance including the overhead.

Once again, results indicate most locality benefits may
be obtained by having the size of all the data accessed in a
partition to be roughly the size of the data cache or larger.
The choice of the number of nodes to collapse in each pass
is more tricky when you consider the quality of partitions.
Small collapsing rates yield quality partitions, but require
more passes. Large collapsing rates take fewer passes,
but produce poor quality partitions. Our results seem to
indicate collapsing eight nodes at a time yields reasonably
good locality while keeping the number of passes (and
overhead) low.

12

IRREG

0
2
4
6
8

10
12
14
16
18
20

foil sub auto mol1 mol2

N
or

m
al

iz
ed

 O
ve

rh
ea

d

RCB

METIS

GPART

CPACK

NBF

0
2
4
6
8

10
12
14
16
18
20

foil sub auto mol1 mol2

N
or

m
al

iz
ed

 O
ve

rh
ea

d

RCB

METIS

GPART

CPACK

21.6

MOLDYN

0
2
4
6
8

10
12
14
16
18
20

foil sub auto mol1 mol2

N
or

m
al

iz
ed

 O
ve

rh
ea

d

RCB

METIS

GPART

CPACK

31.8 46.1

Figure 15 Normalized Overhead of Data Reordering Algorithms (CPACK = 1)

IRREG

0%

5%

10%

15%

20%

25%

30%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

1)

ORIG

RCB

METIS

GPART

CPACK

NBF

0%

5%

10%

15%

20%

25%

30%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

1)
ORIG

RCB

METIS

GPART

CPACK

MOLDYN

0%

5%

10%

15%

20%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

1)

ORIG

RCB

METIS

GPART

CPACK

IRREG

0%

2%

4%

6%

8%

10%

12%

14%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

2)

ORIG

RCB

METIS

GPART

CPACK

NBF

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

2)

ORIG

RCB

METIS

GPART

CPACK

MOLDYN

0%

1%

2%

3%

4%

5%

6%

7%

8%

Foil Sub Auto Mol1 Mol2

C
ac

he
 M

is
s

R
at

e
(L

2)

ORIG

RCB

METIS

GPART

CPACK

Figure 16 L1 & L2 Cache Miss Rates (percentage of all memory references)

5.5 Optimizations

In our experiments, we evaluated several optimization
techniques for each application/mesh combination. The
different optimizations are as follows:� ORIG. The original program. Since input meshes are

presorted, it corresponds to the result of computation
reordering.� RCB. Recursive coordinate bisection is applied to
rearrange data layout, based on user-provided coor-
dinate information.� METIS. The multi-level graph partitioning algorithm
in the METIS library is used to compute data parti-
tions and rearrange data layout.� GPART. The graph is partitioned through successive
clustering passes. Initial partitions contain 4 nodes,
additional passes collapse up to 8 nodes. The se-
quence of passes thus produces partitions containing
4, 32, 256, 2K, 16K nodes through 5 passes.� CPACK. The data layout is rearrange by consecutive
packing based on the original access order.

BothRCBandMETISuse partition parameters described
in Section 5.3. The number of partitions selected is based

on the partition size for all data arrays accessed in the
computation is roughly the L1 cache size.

In GPART we start from a partition containing 4 nodes,
since each node in our applications contains an 8-byte
double-precision floating point number. Thus, 4 nodes
will fit into 32-byte cache line in DEC Alpha processors.
We merge 8 nodes on each pass, resulting in 5 passes.

As we mentioned early, computation reordering is ap-
plied after any data reordering algorithms are applied.

5.6 Overhead of optimizations

Figure 15 displays the costs of data reordering techniques
measured relative to the cost ofCPACK. The overhead
includes the cost to update edge structures and transform
other related data structures to avoid the extra indirect
accesses caused by the data reordering. The overhead also
includes the cost of computation reordering.

The least expensive data layout optimization isCPACK

which we use as the base for comparison. In comparison,
METIS is quite expensive when used for cache optimiza-
tions, on the order of 10–45 times higher thanCPACK. RCB
is less expensive thanMETIS, costing around 8–17 times
higher thanCPACK. The overhead ofGPART is 3–5 times
higher thanCPACK, but much less thanMETIS andRCB.

13

IRREG - foil

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

IRREG - sub

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

IRREG -auto

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

IRREG - mol1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

IRREG - mol2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

NBF - foil

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

NBF - sub

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations
N

or
m

al
iz

ed
 E

xe
c-

Ti
m

e

ORIG

RCB

METIS

GPART

CPACK

NBF - auto

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

NBF - mol1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

NBF - mol2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

MOLDYN - foil

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

MOLDYN - sub

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

MOLDYN - auto

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

MOLDYN - mol1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

MOLDYN - mol2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

10 20 40 80 160 320 infinity

Number of Iterations

N
or

m
al

iz
ed

 E
xe

c-
Ti

m
e

ORIG

RCB

METIS

GPART

CPACK

Figure 17 Normalized Execution Time for Optimizations (ORIG = 1, overhead included)

5.7 Impact on miss rates

We first look at simulated L1 cache miss rates for a 16K
cache, similar to the L1 (primary) cache for the DEC Al-
pha 21064. Miss rates are shown in the upper three graphs
of Figure 16. Miss rates of original, unoptimized pro-
grams are about 12%–28%. All partitioning techniques,
RCB, METIS, andGPART reduce miss rates to 6%–8%, out-
performingCPACKby 1%–6%.RCB andMETIS achieve the
best over all performance.GPART obtains nearly the same
performance.

We also look at simulated L2 cache miss rates for a
4M cache, similar to the L2 (secondary) cache for the DEC
Alpha 21064. The lower three graphs in Figure 16 show
miss rates for the L2 cache. Miss rates are calculated as the
percentages of all memory references, not the percentages
of L2 cache references. L2 miss rates are also reduced by

applying partitioning techniques, outperformingCPACK.
RCB and METIS show the best performance, butGPART

also achieves nearly the same performance. Partitioning
techniques achieve lower miss rates than original codes by
up to 7.5%.

5.8 Impact on sequential performance

Next we look at sequential execution times on the DEC
Alpha. Normalized execution times are presented in Fig-
ure 17, calculated relative to the execution time ofORIG.
These results include the overhead of data layout optimiza-
tions. Since optimizations are performed once at the be-
ginning, the benefits of the optimizations are accumulated
through the iterations. Thus, the performance becomes
better as the number of iterations increases.

Set of bars atinfinity in the Figure 17 are shown to

14

Normalized Cache miss rate Normalized
overhead L1 L2 sequential time

ORIG N/A 19.77% 5.15% 1.000
RCB 11.15 7.08% 2.25% 0.692

METIS 16.74 7.21% 2.25% 0.695
GPART 3.87 7.70% 2.37% 0.698
CPACK 1.00 10.04% 2.92% 0.799

Table 2 Averages of Experimental Results
(overhead excluded in sequential times)

compare quality of each optimization, ignoring its over-
head. Partitioning algorithms perform better thanCPACK

in quality of data reordering.RCB, METIS, and GPART

achieve 10%–60% improvements, whileCPACK improves
execution times about 5%–40%.

In real situations we should consider the overheads of
locality optimizations. Even thoughRCB andMETIS gen-
erate better quality ordering, they require hundreds of iter-
ations to be competitive withCPACK. Meanwhile,GPART

begins to outperformCPACKaround 40 iterations due to its
low overhead. Since some scientific applications repeat
the computation several hundreds of times without chang-
ing access patterns,RCB andMETIS will be most beneficial
for those applications. The overhead of data layout op-
timizations can be amortized, just as for inspectors used
to reduce communications in parallel codes.GPART and
CPACK will be more effective for applications with small
numbers of iterations due to their low overhead. Thus, se-
lecting a proper locality optimization algorithm is depen-
dent on the number of iterations expected, but all should
prove beneficial. Due to the low overheads ofGPART and
CPACK, they can be also effectively used in adaptive appli-
cations that occasionally change access patterns. We will
discuss adaptive computations in more detail later.

5.9 Summary of experimental results

Since we present many experimental results for different
applications and different input meshes, we try to sum-
marize the results by averaging all combinations. Table 2
shows the averages of the results for the original code and
the different optimization algorithms The second column
shows the average overhead of each optimization relative
to the average overhead ofCPACK. The third and forth
columns show average L1 and L2 cache miss rates, re-
spectively. The fifth column presents average sequential
execution times relative to the average sequential execu-
tion time of the original code. To summarize the results
again,RCB andMETIS produce the best quality data order-
ing, achieving 30% improvement in sequential execution
times, but require high overheads.GPART achieves nearly

the same performance with a third overhead ofRCB or
with a quarter overhead ofMETIS. CPACK is the least over-
head algorithm, but improves only 20% for the sequential
execution times.

6 Parallel Codes

6.1 Parallelizing irregular reductions

In addition to improving locality of irregular codes for se-
quential execution, locality can also be improved for paral-
lel execution. The core of irregular scientific applications
is frequently comprised ofreductions, associative com-
putations (e.g.,SUM, MAX) which may be reordered and
parallelized [41, 34, 48]. Compilers for shared-memory
multiprocessors generally parallelize irregular reductions
by having each processor compute a portion of the reduc-
tion, storing results in a localreplicated buffer. Results
from all replicated buffers are then combined with the orig-
inal global data, using synchronization to ensure mutual
exclusion [18, 41].

An example of the REPLICATEBUFStechnique is shown
in Figure 18. If large replicated buffers are to be combined,
the compiler can avoid serialization by directing the run-
time system to perform global accumulations in sections
using a pipelined, round-robbin algorithm [18]. REPLI-
CATEBUFS works well when the result of the reduction is
to a scalar value, but is less efficient when the reduction is
to an array, since the entire array is replicated and few of
its elements are effectively used.

Previously we introduced LOCALWRITE, a new com-
piler and run-time technique for parallelizing irregular re-
ductions [19]. LOCALWRITE avoids the overhead of repli-
cated buffers and mutual exclusion during global accumu-
lation by partitioning computation so that each processor
only computes new values for locally-owned data. It sim-
ply applies to irregular computations theowner-computes
rule used in distributed-memory compilers [22]. LOCAL-
WRITE is implemented by having the compiler insert in-
spectors to ensure each processor only executes loop it-
erations which write to the local portion of each variable.
Values of index arrays are examined at run time to build a
list of loop iterations which modifies local data.

An example of LOCALWRITE is shown in Figure 19.
Computation may be replicated whenever a loop itera-
tion assigns the result of a computation to data belong-
ing to multiple processors (cut edge). The overhead for
LOCALWRITE should be much less than classic inspec-
tor/executors, because the LOCALWRITE inspector does
not build communication schedules or perform address
translation. Besides, LOCALWRITE does not perform global
accumulation for the non-local data. Instead, LOCAL-
WRITE replicates computation, avoiding expensive com-
munications across processors.

15

global x[nodes],y[nodes]
local ybuf[nodes]
do t = // time-step loop
ybuf[] = 0 // init local buffer
do i = {my_edges} // local computation
n = idx1[i]
m = idx2[i]
force = f(x[m], x[n])
ybuf[n] += force // updates stored in
ybuf[m] += -force // replicated ybuf

reduce_sum(y, ybuf) // combine buffers

Figure 18 REPLICATEBUFSExample

global x[nodes],y[nodes]
inspect(idx1,idx2) // calc local_edges/cut_edges
do t = // time-step loop
do i = {local_edges} // both LHS’s are local
n = idx1[i]
m = idx2[i]
force = f(x[m], x[n])
y[n] += force
y[m] += -force

do i = {cut_edges} // one LHS is local
n = idx1[i]
m = idx2[i]
force = f(x[m], x[n]) // replicated compute
y[n] += force or y[m] += -force

Figure 19 LOCALWRITE Inspector Example

The LOCALWRITE algorithm inspired our techniques
for improving cache locality for irregular computations.
Conventional compiler analysis cannot analyze, much less
improves locality of irregular codes because the mem-
ory access patterns are unknown at compile time. The
lightweight inspector in LOCALWRITE, however, can re-
order the computations at run time to enforce local writes.
It is only a small modification to change the inspector to
reorder the computations for cache locality as well as local
writes. We can use all of the existing compiler analysis
for identifying irregular accesses and reductions (to ensure
reordering is legal).

Currently data reordering is sequentially performed
since we do not have parallel version of those algorithms
yet. Once we parallelize the algorithms, we can expect
lower overhead in parallel executions.

6.2 Impact on parallel performance

Figure 20 displays 4-processor speedups for each mesh,
calculated versus the original, unoptimized program. We
exclude overheads to investigate the impact of the qual-
ities of locality optimizations. A cost model that will
be described in later sections should be used to decide
which optimization should be applied. There are two
parallelization options, the original program using REPLI-
CATEBUFS, and a transformed version using LOCALWRITE.
We present speedups for each version of the program. In
Figure 20, the bars only with input mesh names correspond
to the speedups for the REPLICATEBUFS versions and the

IRREG

0

1

2

3

4

5

6

7

Foil Foil-
LW

Sub Sub-
LW

Auto Auto-
LW

Mol1 Mol1-
LW

Mol2 Mol2-
LW

S
pe

ed
up

 (4
 p

ro
cs

)

ORIG

RCB

METIS

GPART

CPACK

NBF

0

1

2

3

4

5

Foil Foil-
LW

Sub Sub-
LW

Auto Auto-
LW

Mol1 Mol1-
LW

Mol2 Mol2-
LW

S
pe

ed
up

 (4
 p

ro
cs

)

ORIG

RCB

METIS

GPART

CPACK

MOLDYN

0

1

2

3

4

Foil Foil-
LW

Sub Sub-
LW

Auto Auto-
LW

Mol1 Mol1-
LW

Mol2 Mol2-
LW

S
pe

ed
up

 (4
 p

ro
cs

)

ORIG

RCB

METIS

GPART

CPACK

Figure 20 Parallel Speedups (based on
unoptimized sequential execution time,

overhead excluded)

bars with input mesh names and -LW correspond to the
speedups for the LOCALWRITE versions. We see that in all
cases, the versions optimized for locality achieved better
performance. Locality optimizations are thus carried over
to the parallel versions of each program. Table 3 summa-
rizes the parallel speedups by averaging all speedups for
different locality optimizations and different paralleliza-
tion options.

In addition, we found that with locality optimizations,
programs parallelized using LOCALWRITE achieved much
better speedups than the original programs using REPLI-
CATEBUFS, except forNBF with smaller meshes (FOIL and
MOL1). The LOCALWRITE algorithm tends to be ineffec-
tive with smaller graphs where duplicated computations
are relatively high compared to computations performed
locally. In general, however, the LOCALWRITE algorithm
benefited more from the enhanced locality. Intuitively
these results make sense, since the LOCALWRITE optimiza-
tion can avoid replicated computation and communication
better when the mesh displays greater locality.

16

MOLDYN - foil

15
16
17

18
19
20
21
22

23
24
25

20 40 60 80 100 120 140 160 180 200

Iterations

T
im

e
pe

r I
te

ra
tio

ns
 (s

ec
) ORIG

METIS

METIS-a

GPART

GPART-a

CPACK

CPACK-a

MOLDYN - foil

20
22
24
26
28
30
32
34
36
38
40

20 40 60 80 100 120 140 160 180 200

Iterations

T
im

e
pe

r I
te

ra
tio

ns
 (s

ec
) ORIG

RCB

RCB-a

GPART

GPART-a

CPACK

CPACk-a

MOLDYN - foil

50

55

60

65

70

75

80

85

90

95

20 40 60 80 100 120 140 160 180 200

Iterations

T
im

e
pe

r I
te

ra
tio

ns
 (s

ec
) ORIG

METIS

METIS-a

GPART

GPART-a

CPACK

CPACK-a

Figure 22 Impact of Adaptivity (-a : transformations are applied whenever access pattern changes,
overhead excluded)

Parallel speedups
REPLICATEBUFS LOCALWRITE

ORIG 1.18 1.48
RCB 2.69 3.40

METIS 2.67 3.36
GPART 2.63 3.10
CPACK 2.15 2.40

Table 3 Average Parallel Speedups (based on
unoptimized sequential execution time,

overhead excluded)

7 Adaptive Computations

A problem confronting locality optimizations for irreg-
ular codes is that many such applications areadaptive,
where the data access pattern may change over time as the
computation adapts to data. The example in Figure 21 is
adaptive because conditionchange may be satisfied on
some iterations of the time-step loop, modifying elements
of the index arraysidx1 and idx2, changing overall
data access patterns as a result. For adaptive codes, how
quickly the application mesh changes thus affects the lo-
cality improvements from data layout optimizations.

7.1 Impact of adaptivity on optimizations

When compiling adaptive irregular computations for dis-
tributed memory machines, the compiler must rerun the
inspector whenever the connection pattern changes, since
new communication may result [25, 19]. Performance

x[nodes],y[nodes] // data in nodes
do t = // time-step loop

if (change) // change accesses
idx1[] =
idx2[] =

do i = 1, edges // work on edges
n = idx1[i]
m = idx2[i]
force = f(x[m], x[n]) // computation
y[n] += force // update edge
y[m] += -force // endpoints

Figure 21 Example Adaptive Irregular Computation

suffers for highly adaptive computations with many fre-
quent changes in access patterns.

Fortunately, locality optimizations can be more re-
laxed. First, changes in the access pattern reduce locality
and degrade performance, but do not affect the legality of
locality transformations. Second, degradations in locality
is a function of the amount of change, not the frequency of
change. Locality transformations thus do not need to be
repeated each time the access pattern changes, only when
it is profitable.

To evaluate the effect of adaptivity on locality op-
timizations, we performed a number of experiments by
combining MOLDYN with different application meshes,
then periodically swapping the positions of molecules to
create an adaptive code. Results are shown in Figure 22.
The x-axis marks the passage of time in the computation
in groups of 20 iterations. 20% of the nodes are randomly
swapped after every 20 iterations. The y-axis measures the
execution time per 20 iterations of the kernel, excluding
the overhead of the locality transformations. By excluding
the overhead, we can better understand the role of locality
transformation in adaptive computations.

Each data series represents a different locality opti-
mization. ORIG is the original program. RCB, METIS,
GPART, andCPACKrepresent versions of the program where
locality optimizations are applied once at the beginning
of program execution. In comparison,RCB–a, METIS–a,
GPART–a, andCPACK–a represent adaptive versions of each
program where locality optimizations are applied when-
ever access patterns are changed.

Results show that without reapplying locality transfor-
mations, all optimized versions degrade in performance
and eventually match the performance of the unoptimized
program. In comparison, reapplying partitioning algo-
rithms after access pattern changes can preserve the per-
formance benefits of locality, if overhead is excluded. Per-
formance for the original version ofFOIL andAUTO also
degrades, because the initial data set has been presorted.

The difficult question is when data should be reordered,
if overhead of transformation must be taken into account.
Fortunately, it appears that the degradation in performance
is mostly proportional to the fraction of data changed. As
a result, it should be possible to predict the effectiveness

17

(b)

a

 b

iteration

tim
e

/ i
te

ra
tio

n

actual curve

simplified curve

G(n)

nn0

(c)

A
a

 b

tt
 n

b+mt
n

θ
m=tanθti

m
e

/ i
te

r a
ti

on

iteration
(a)

a : time/iteration for original code
b : time/iteration for optimized code
 right after transformation
n : number of transformations
 applied during t iterations
m : tangent for optimized code
t : total iterations

Figure 23 Analytical Model for Adaptive Computations

of locality optimizations, based on the rate at which the
underlying connection structure becomes disordered due
to changes. In the next section we attempt to estimate the
benefit using a cost model which takes into account the
overhead.

7.2 Adaptive optimization

To guide locality optimizations for adaptive codes, we
present a simple cost model for calculating the benefits of
locality optimizations for irregular computations. It can
also be used to predict how often locality optimizations
should be applied and which locality optimization should
be used.

To make a simple analytical model we assume input
graphs are randomly initialized so that there is almost no
locality between nodes. We also assume that a constant
amount of edges are randomly selected and changed, after
each iteration. We assume two analytical model programs,
original codeand optimized code. Figure 23 (a) plots
execution time per iteration for bothoriginal codeand
optimized codeexcluding the overhead. The upper straight
line corresponds to theoriginal codeand the lower saw-
tooth line corresponds to theoptimized code.

Since input graphs are already randomly initialized,
further changes to graphs do not increase the randomness
of graphs. Thus, execution times per iteration for the
original code stay constant. In theoptimized code, a
locality transformation is applied at the beginning of the
program and the transformation is periodically applied
as the program proceeds. So, the execution times per
iteration increase as input graphs change toward random
graphs, but periodically drop to the lowest point at the

iterations where the locality transformations are applied
again. Resulting execution times per iteration will plot
saw-tooth shape. Execution times per iteration do not
include the overhead of the locality transformation but we
will take into account the overhead in our cost model.

Note we are using a simplified model. In theoptimized
code, execution times per iteration approach the constant
line of theoriginal codewith a non-linear rate. However,
we approximate this behavior with a linear rate increase as
in Figure 23 (b) for the sake of simplicity. Since the per-
formance ofoptimized codeis changing at a constant rate
(r), we choose the tangent of the line (m) to ber(a � b).
For example, if a optimized graph randomly changes 20%
of edges at every iteration, thenr will be 0.2, becoming a
totally random graph after 5 iterations. With the tangent
value selected in our model, the execution time per itera-
tion will start from the lowest point (b) and reach the upper
constant point (a) after 5 iterations.

The performance gain (G(n)) from using periodic lo-
cality transformations can be calculated as in the following
equation (1). Since the area below the line is the total ex-
ecution time, the performance gain we can expect is the
area between two lines (A) minus the overhead (nOv).G(n) = A� nOv (n � 1) (1)where;A = (a� (b+ mt

2n))t = (a� b)t� mt2
2nOv = cost of transformationn = number of transformations applied

The performance gain graph is now a function ofn,
the number of transformations applied, as plotted in Figure

18

MOLDYN - mol1

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Transformations Applied
M

ea
su

re
d

G
ai

n
(%

)

RCB

METIS

GPART

CPACK

 (1 processor)

16%7% 20% 19%
MOLDYN - mol1

-30%

-20%

-10%

0%

10%

20%

30%

40%

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Transformations Appllied

M
ea

su
re

d
G

ai
n

(%
)

RCB

METIS

GPART

CPACK

 (4 processors)

27%-2% 31% 27%

Figure 24 Experimental Verification of Cost Model (vertical bars represent the numbers chosen by the cost model)

23 (c). Finding the point where the performance gain is
maximized is straight forward as derived in equation (2)
and (3). The maximal point can be determined using its
differential equation.n0 = �q m

2Ov� t (G0(n0) = 0) (2)where;G0(n) = ddnG(n) = mt2
2n2

�Ov
Then, maximum gain(Gmax) can be obtained accord-

ing to the value ofn0 as in the following equation (3).Gmax = � G(n0) = (a� b)t� (p2mOv)t (n0 � 1)G(1) = (a� b)t� mt2

2 � Ov (n0 < 1) (3)

Considering the equation (2),n0 can be less than 1
when the graphs change slowly (m is small) and the
overhead (Ov) is high under the given number of itera-
tions (t). In such case, we may apply the transformation
only at the beginning in order to get the maximum gain
(Gmax = G(1)). On the contrary, if graph changes rapidly
(m is large) then we can apply locality transformations
multiple times (n0 � 1) depending on their overhead. The
smaller overhead the more transformation we can apply in
order to get the maximum gain.

In practice, graphs often change periodically, not every
iteration, trading off precision for execution time. Even
in such cases, we can directly apply our model, assuming
one iteration in our model corresponds to a set of iterations
that do not change graphs except for the last iteration.
Another consideration in practice is picking number of
transformations based onn0 that is generated by the cost
model. Since our cost model produces a real number forn0, we may pick a closest integer number for actual uses.
However, ifn0 falls in around the midpoint of two integers,
the system may pick either. Experimental result showed
both choices produce nearly same performance. Our cost

model can be also applied to non-adaptive computations.
Using the equation 1 and setting the graph change rate (m)
to zero, you may directly get an expected performance
gain. Since the transformation will be applied once only
at the beginning, the gain function will become much
simpler. Based on the calculated gain, the system can
decide which locality transformation should be used.

To experimentally verify our cost model, we ran a
programMOLDYN with a input graphMOL1 on both 1 pro-
cessor and 4 processors. The input graph randomly swaps
20% of edges every 20 iterations, and the application iter-
ates 240 time steps. Results are shown in the Figure 24.
The first graph shows the measured performance gain on
1 processor and the second graph shows the gain on 4
processors, parallelizing with LOCALWRITE. The y-axis
represents the percentage of performance gain over orig-
inal execution time. The x-axis represents the number
of transformations applied throughout the 240 time steps.
Different curves correspond to the measured performance
gains for different locality transformations, varying num-
bers of transformation applied. The vertical bars represent
the numbers of transformation chosen by our cost model.
The percentage numbers under the vertical bars represent
the calculated performance gain by our cost model. Re-
sults show our cost model selects quite precise numbers
to decide how often locality transformations should be ap-
plied to get the maximum performance gain. Our cost
model also predicts relatively precise performance gains.

8 Related Work

8.1 Irregular computations

In scientific applications, significant amount of computa-
tions are reductions (e.g., SUM, MAX , etc.). Suppose the
numerical errors caused by changing computation orders
are negligible, reductions can be efficiently parallelized.
The techniques of identifying and parallelizing reductions

19

are well established in several researches [23, 34, 41, 48].
In irregular applications, reductions are also core parts of
computations, taking up dominant portions of execution
times. Researches in irregular computations have focused
on general techniques supporting irregular computation
including irregular reductions. Researches are catego-
rized in two classes depending on their target systems;
message-passing systems and software DSM systems.

8.1.1 Message-passing systems

Efficient run-time primitives are first developed in CHAOS
library [13]. The CHAOS library provides primitives
that efficiently move data between processors and manage
copies of remote data. Using CHAOS primitives, inspec-
tor/executor paradigm is applied to parallelize irregular
computations. CHAOS primitives are inserted as inspec-
tors before irregular computations begin. The inspectors
gather non-local data that will be used later in irregular
computations, storing them in local buffer. Then, irreg-
ular computations are executed, accessing only locally
owned data and locally stored remote data. After the ex-
ecution, other CHAOS primitives are inserted to scatter
the values of non-local data to appropriate owners. For
adaptive computations where access patterns change dur-
ing the whole execution, inspectors need to rerun when-
ever the access patterns change to get new communication
schedules. Even for adaptive applications, the CHAOS
system has been shown to scale well on Intel iPSC/860
machines [25]. Furthermore, researchers investigate au-
tomatically inserting CHAOS primitives using compiler
analysis [25, 20, 21]. Based on the compiler analysis of
producer/consumer of data, communication schedules are
generated between processors. Appropriate primitives are
then inserted in proper places, aggregating necessary com-
munications.

Another implementation of run-time library is found in
the PILAR system, where non-local data accesses are rep-
resented asintervals instead of individual elements [32].
Using more compact representation, PILAR reduces the
amount of communications and improves performance.
PILAR also unifies communication schedules for regu-
lar computations and irregular computations, exploiting
a possible communication aggregation across regular and
irregular computations [7].

8.1.2 Software DSM systems

Irregular computations are as easily executed as regular
computations on software DSM systems. However, effi-
ciently executing irregular computations requires similar
techniques used in message-passing systems. With the
knowledge of data access patterns, shared-memory com-
pilers recognize and prefetch non-local data before actual

irregular computations use them [8, 35]. Furthermore,
communication for non-local data is aggregated to reduce
overheads. The performance of irregular applications on
software DSM systems shows nearly the same as message-
passing systems, but with simpler compiler support.

Several researches also investigated combining soft-
ware DSMs and explicit message passing aided by com-
pilers in order to enhance general performance of software
DSM systems [8, 16, 11]. This hybrid approach improves
the performance of regular computations as well as irregu-
lar computations, making software DSMs more attractive
on message-passing machines. Without compiler support,
software DSMs also exploit iterative nature of scientific
applications by prefetching the same non-local data used
in the previous iteration to eliminate access misses [30,
49].

8.2 Locality optimizations for irregular codes

Data locality has been recognized as a significant perfor-
mance issue for modern processor architectures. Most re-
searchers have focused on loop transformations on dense-
matrix codes [37, 47, 43, 50], though recent work has fo-
cused on data layout transformations for both arrays [26,
42] and pointer-based data structures [10].

Recent researches show several different approaches to
optimize the locality of codes. One approach is improving
data locality with hardware support. Using smart mem-
ory controllers, irregular accesses to memory are merged
and passed to caches. Another approach is rearranging
data structures in application level, improving data local-
ity from the source of locality problems. Data locality
directly affects the performance, since data accesses with
poor locality pollute cache blocks and waste memory bus
bandwidth. In the following sections, we will look at
different approaches that improve data locality.

8.2.1 Locality optimization with hardware support

Using smart memory systems, irregular memory accesses
can be avoided. In such systems, irregular data are remapped
to another contiguous space, making data accesses rather
regular.

Carteret al. proposed a memory controller that can
remap scattered data into contiguous space inshadow
memory, unused physical memory address space [6]. When
programs access data in shadow memory, memory con-
troller gathers data from actual locations using a separate
address table in memory controller. Gathered data are then
passed in compact forms through memory bus. Effectively
using their memory controller requires compiler or user
assistance. Compilers or users should insert remapping
system calls for the data with scattered accesses so that
the data are remapped to shadow pages with contiguous

20

placement. Computation parts also need modifications to
use different data remapped in shadow pages. Using hard-
ware simulation, they show improvement in sparse matrix
applications.

Luk and Mowry provided a hardware mechanism that
automatically fetches reordered data, using aforward bit
that is added to each address [36]. If the forward bit is
set for an address, the actual value is fetched from an-
other address pointed by the value in the current address.
Using this mechanism, data can be freely reordered with-
out changing the rest of the codes. Memory forwarding
mechanism will make data reordering easy to use.

Both hardware supports, however, introduce additional
level of indirection in hardware, which means we need to
pay extra cost whenever we access irregular data from
memory. In comparison, source level modifications do
not need extra cost, once modifications are done with more
cost and effort. In the following section we will take a look
at other researches that directly modify data structures in
source level.

8.2.2 Locality optimization for array data

Locality optimizations for irregular applications mainly
focus on rearranging data layout for improved locality.
Computation reordering is also used along with data re-
ordering to further improve performance.

Al-Furaih and Ranka studied usingMETIS and breadth-
first-search (BFS) to reorder data in irregular computations
and improve locality [1]. BFS and its variances have been
successfully used in sparse matrix computations to reorder
the sparse matrices [12, 33]. They extended the applica-
bility of BFS and graph partitioning algorithms to irregular
graph orderings, but did not combine computation reorder-
ing or compare against other types of techniques.

Ding and Kennedy explored applying dynamic copy-
ing (packing) of data elements based on loop traversal or-
der, and show major improvements in performance [14].
They were able to automate most of their transformations
in a compiler using user provided information. Their tech-
nique has low overhead, but the quality of rearrangement
can be further improved, which motivates us to develop
high quality but low overhead algorithms. Ding and
Kennedy also discussed reorganization of single arrays
into multi-dimensional arrays depending on how closely
they are accessed in computation, and found that their
technique improves the performance of irregular applica-
tions [15]. They also showed their technique does not hurt
the performance of regular applications if back-end com-
pilers are smart enough to extract the existing instruction
level parallelism in transformed codes.

Mellor-Crummeyet al. used a geometric ordering al-
gorithm based on space-filling curves to map multidimen-
sional data to memory [38]. They showed significant im-

provement for large randomly generated data sets. How-
ever, space-filling curves cannot guarantee evenly bal-
anced partition when data is unevenly distributed, which
may cause significant performance degradation in paral-
lel execution. They also used computation blocking by
restructuring computations with multiple loop nests such
as tiling in regular codes. A block of computations is fin-
ished before the next block of computations begins. They
could improve performance by computation blocking, but
the performance was somewhat less than that of sorting
computation according to space-filling curves. The best
performance comes when data is ordered with space-filling
curves and computation is ordered according to the data
ordering. Since irregular codes usually deal sparse data
structures, there are not many benefits for computation
blocking. A simple lexicographical sort according to the
data ordering will do better for computation ordering.

Mitchell et al. used a bucket sorting to reorder irreg-
ular computations [39]. They improved the performance
of two NAS applications (CG, and IS) and a medical sim-
ulation of heart. Their technique, however, works only
when a single irregular access pattern exists for a given
data array. In comparison, we investigate more complex
cases where two or more irregular access patterns exist.
In applications we use, two access patterns typically exist,
letting our algorithms recognize them as edges between
two data elements accessed in the same iteration.

8.2.3 Locality optimization for heap objects

In modern programming languages, data objects are dy-
namically allocated from heap, a free memory space. Such
objects are often linked with pointers if they are logically
related. The placements of the objects in memory, how-
ever, do not reflect their logical affinity. Thus, accessing
logically related objects could show poor memory access
behavior. Researchers try to rearrange objects by putting
them together if they have temporal and spatial locality.

Calderet al. proposedcache conscious data place-
ment[5]. They use profiled information to find temporal
locality between data, then rearrange data placement for
improved locality. For static data, executable files are
directly modified to rearrange the static data. For dy-
namically allocated data, a special heap allocation routine
is used to allocate heap data in proper places guided by
profiled information. They reduced miss rates for SPEC
integer programs and two SPEC floating point programs.
However, their data placement technique does not handle
rearranging data elements within an array or a heap object.

Chilimbi et al. developed a technique to rearrange
pointer-based data by clustering data elements into a cache
block [10]. They focused on tree data structures including
linked lists. Putting a parent node and its child nodes near
in memory, they improved tree maintenance/search appli-

21

cations. Usingccmorph, a run-time tree optimization
routine, a tree structure is converted to an optimized tree
structure for locality. They also present an alternative heap
allocation routine,ccmalloc, that allocates a memory
space close to a user specified heap location. The new al-
location routine constructs data structures with improved
locality. Chilimbi et al. also suggest internally reorga-
nizing the fields of data structures with assistant of profil-
ing [9]. They distinguish frequently used fields from other
fields, split them out, and pack them into a cache block.
When structures are too large to fit in cache block, they
reorder the fields inside the structures according to tem-
poral affinity. Using field reorganization, they improved
applications programmed in object-oriented languages.

8.3 Contribution of our research

Our research is one of efforts to improve irregular ap-
plications by directly transforming applications in source
level. We currently focus on the applications that use
array data, but will extend to the applications that use
pointer-based data. For locality transformation, we adapt
partitioning algorithms that are originally developed for
other purposes, such as load balancing and interprocessor
communication reduction in parallel programs, VLSI de-
sign, and database storage [29, 40, 46]. We adaptRCB [4]
andMETIS [28] for our partitioning algorithms. We also
developed a new partitioning algorithm (GPART) based on
hierarchical graph clustering.GPARThas low overhead but
produces nearly the same quality ordering as other precise
algorithms. Compared to existing researches on locality
optimizations for irregular codes, we propose a suite of
algorithms that differ in precision and overhead.

Low overhead algorithms are vital for adaptive com-
putations, where transformations are repeatedly applied
whenever profitable. Unlike other inspectors in irregu-
lar computations, locality transformations are not neces-
sary after access pattern changes, since the transformations
only affect the performance, not the legality of codes. To
maximize performance, we use a cost model to guide how
often locality transformations to rerun and which trans-
formation to use. We test effects on both randomized
graphs and meshes from real applications for a number of
computation kernels.

9 Conclusions

In this paper, we present some techniques to improve the
locality of irregular computations using a combination of
compile and run-time techniques. We establish that parti-
tioning algorithms can yield data layouts better than con-
secutive packing for both sequential and parallel codes,
and develop a new algorithm with lower overheads which

approaches the quality of more precise algorithms. We ex-
perimentally evaluate how to choose parameters such as
the number of partitions and graph clustering factor. We
also investigate how locality optimizations may be used
for adaptive codes, using a cost model to select how often
to reorder data and which optimization to be applied.

As processors speed up relative to memory systems,
using graph partitioning to improve data layout should
increase in importance, since processing costs go down
while benefits increase. For very large graphs, we should
also obtain benefits by reducing TLB misses and paging
in the virtual memory system. By improving compiler
support for irregular codes, we are contributing to our
long-term goal: making it easier for scientists and engi-
neers to take advantage of the benefits of high-performance
computing.

10 Acknowledgments

We are very grateful to Prof. George Karypis at the Uni-
versity of Minnesota for providing the application meshes
in our experiments.

References
[1] I. Al-Furaih and S. Ranka. Memory hierarchy management

for iterative graph structures. InProceedings of the 12th
International Parallel Processing Symposium, Orlando,
FL, Apr. 1998.

[2] C. Alpert and A. Kahng. Recent directions in netlist par-
titioning. Integration, the VLSI Journal, 19(1–2):1–81,
1995.

[3] M. Berger and S. Bokhari. A partitioning strategy for pdes
across multiprocessors. InProceedings of the 1985 Inter-
national Conference on Parallel Processing, Aug. 1985.

[4] M. Berger and S. Bokhari. A partitioning strategy for non-
uniform problems on multiprocessors.IEEE Transactions
on Computers, 37(12):570–580, 1987.

[5] B. Calder, C. Krintz, S. John, and T. Austin. Cache-
conscious data placement. InProceedings of the Eighth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-
VIII) , San Jose, CA, Oct. 1998.

[6] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang,
E. Brunvand, A. Davis, C. Kuo, R. Kuramkote, M. Parker,
L. Schaelicke, and T. Tateyama. Impulse: Building a
smarter memory controller. InProceedings of the 5th IEEE
International Symposium on High Performance Computer
Architecture, Jan. 1999.

[7] D. Chakrabarti, N. Shenoy, A. Choudhary, and P. Banerjee.
An efficient uniform run-time scheme for mixed regular-
irregular applications. InProceedings of the 1998 ACM
International Conference on Supercomputing, Melbourne,
Australia, July 1998.

[8] S. Chandra and J. Larus. Optimizing communication in
HPF programs for fine-grain distributed shared memory.

22

In Proceedings of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Las
Vegas, NV, June 1997.

[9] T. Chilimbi, B. Davidson, and J. Larus. Cache-conscious
structure definition. InProceedings of the SIGPLAN ’99
Conference on Programming Language Design and Im-
plementation, Atlanta, GA, May 1999.

[10] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious struc-
ture layout. InProceedings of the SIGPLAN ’99 Confer-
ence on Programming Language Design and Implementa-
tion, Atlanta, GA, May 1999.

[11] A. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel. Evalu-
ating the performance of software distributed shared mem-
ory as a target for parallelizing compilers. InProceedings
of the 11th International Parallel Processing Symposium,
Geneva, Switzerland, Apr. 1997.

[12] E. Cuthill and J. McKee. Reducing the bandwidth of sparse
symmetric matrices. InProceedings of the 24th National
Conference of the ACM, ACM Publication P-69, Associa-
tion for Computing Machinery, NY, 1969.

[13] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communica-
tion optimizations for irregular scientific computations on
distributed memory architectures.Journal of Parallel and
Distributed Computing, 22(3):462–479, Sept. 1994.

[14] C. Ding and K. Kennedy. Improving cache performance
of dynamic applications with computation and data lay-
out transformations. InProceedings of the SIGPLAN ’99
Conference on Programming Language Design and Im-
plementation, Atlanta, GA, May 1999.

[15] C. Ding and K. Kennedy. Inter-array data regrouping. In
Proceedings of the Twelveth Workshop on Languages and
Compilers for Parallel Computing, San Diego, Aug. 1999.

[16] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An inte-
grated compile-time/run-time software distributed shared
memory system. InProceedings of the Seventh Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VII),
Boston, MA, Oct. 1996.

[17] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: An analytical representation of cache misses. In
Proceedings of the 1997 ACM International Conference
on Supercomputing, Vienna, Austria, July 1997.

[18] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam.
Detecting coarse-grain parallelism using an interprocedu-
ral parallelizing compiler. InProceedings of Supercom-
puting ’95, San Diego, CA, Dec. 1995.

[19] H. Han and C.-W. Tseng. Improving compiler and run-
time support for adaptive irregular codes. InProceedings
of the International Conference on Parallel Architectures
and Compilation Techniques, Paris, France, Oct. 1998.

[20] R. v. Hanxleden. Handling irregular problems with Fortran
D — A preliminary report. InProceedings of the Fourth
Workshop on Compilers for Parallel Computers, Delft,
The Netherlands, Dec. 1993.

[21] R. v. Hanxleden and K. Kennedy. Give-N-Take — A
balanced code placement framework. InProceedings of
the SIGPLAN ’94 Conference on Programming Language
Design and Implementation, Orlando, FL, June 1994.

[22] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compil-
ing Fortran D for MIMD distributed-memory machines.

Communications of the ACM, 35(8):66–80, Aug. 1992.

[23] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Preliminary
experiences with the Fortran D compiler. InProceedings
of Supercomputing ’93, Portland, OR, Nov. 1993.

[24] Y. Hu, S. L. Johnsson, and S.-H. Teng. High Performance
Fortran for highly irregular problems. InProceedings of
the Sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Las Vegas, NV, June
1997.

[25] Y.-S. Hwang, B. Moon, S. Sharma, R. Ponnusamy, R. Das,
and J. Saltz. Runtime and language support for compiling
adaptive irregular programs on distributed memory ma-
chines. Software—Practice and Experience, 25(6):597–
621, June 1995.

[26] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Baner-
jee. Improving locality using loop and data transforma-
tions in an integrated framework. InProceedings of the
31th IEEE/ACM International Symposium on Microarchi-
tecture, Dallas, TX, Nov. 1998.

[27] G. Karypis and V. Kumar. Analysis of multilevel graph
partitioning. InProceedings of Supercomputing ’95, San
Diego, CA, Nov. 1995.

[28] G. Karypis and V. Kumar. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. InPro-
ceedings of the 24th International Conference on Parallel
Processing, Oconomowoc, WI, Aug. 1995.

[29] G. Karypis and V. Kumar. Multi-level k-way hypergraph
partitioning. InProceedings of SC’98, Orlando, FL, Nov.
1998.

[30] P. Keleher and C.-W. Tseng. Enhancing software DSM
for compiler-parallelized applications. InProceedings of
the 11th International Parallel Processing Symposium,
Geneva, Switzerland, Apr. 1997.

[31] K. Kennedy and U. Kremer. Automatic data layout for
High Performance Fortran. InProceedings of Supercom-
puting ’95, San Diego, CA, Nov. 1995.

[32] A. Lain and P. Banerjee. Exploiting spatial regularityin
irregular iterative applications. InProceedings of the 9th
International Parallel Processing Symposium, Santa Bar-
bara, CA, Apr. 1995.

[33] W. Liu and A. Sherman. Comparative analysis of the
cuthill-mckee and the reverse cuthill-mckee ordering al-
gorithms for sparse matrices.SIAM Journal on Numerical
Analysis, 13(2):198–213, Apr. 1976.

[34] B. Lu and J. Mellor-Crummey. Compiler optimization of
implicit reductions for distributed memory multiproces-
sors. InProceedings of the 12th International Parallel
Processing Symposium, Orlando, FL, Apr. 1998.

[35] H. Lu, A. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and software distributed shared
memory support for irregular applications. InProceedings
of the Sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Las Vegas, NV, June
1997.

[36] C. Luk and T. Mowry. Memory forwarding: Enabling
aggressive layout optimizations by guaranteeing the safety
of data relocation. InProceedings of the 26th International
Symposium on Computer Architecture, Atlanta, GA, May
1999.

[37] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving

23

data locality with loop transformations.ACM Transactions
on Programming Languages and Systems, 18(4):424–453,
July 1996.

[38] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improv-
ing memory hierarchy performance for irregular applica-
tions. InProceedings of the 1999 ACM International Con-
ference on Supercomputing, Rhodes, Greece, June 1999.

[39] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-
affine array references. InProceedings of the Interna-
tional Conference on Parallel Architectures and Compila-
tion Techniques, Newport Beach , LA, Oct. 1999.

[40] C. Ou et al. Fast and parallel mapping algorithms for irreg-
ular and adaptive problems. InJournal of Supercomputing,
1994.

[41] W. Pottenger. The role of associativity and commuta-
tivity in the detection and transformation of loop level
parallelism. InProceedings of the 1998 ACM Interna-
tional Conference on Supercomputing, Melbourne, Aus-
tralia, July 1998.

[42] G. Rivera and C.-W. Tseng. Data transformations for elim-
inating conflict misses. InProceedings of the SIGPLAN
’98 Conference on Programming Language Design and
Implementation, Montreal, Canada, June 1998.

[43] V. Sarkar. Automatic selection of higher order transforma-
tions in the IBM XL Fortran compilers.IBM Journal of
Research and Development, 41(3):233–264, May 1997.

[44] S. Shekhar and D.-R. Liu. Partitioning similarity graphs:
A framework for declustering problems.Information Sys-
tems Journal, 21(4), 1996.

[45] H. Simon. Partitioning of unstructured mesh problems for
parallel processing. InProceedings of the Conference on
Parallel Methods on Large Scale Structural Analysis and
Physics Applications. Permagon Press, 1991.

[46] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy.
Load balancing and data locality in adaptive hierarchical
n-body methods: Barnes-hut, fast multipole, and radiosity.
Journal of Parallel and Distributed Computing, June 1995.

[47] Y. Song and Z. Li. New tiling techniques to improve
cache temporal locality. InProceedings of the SIGPLAN
’99 Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999.

[48] T. Suganuma, H. Komatsu, and T. Nakatani. Detection and
global optimization of reductions operations for distributed
parallel machines. InProceedings of the 1996 ACM In-
ternational Conference on Supercomputing, Philadelphia,
PA, May 1996.

[49] G. Viswanathan and J. Larus. Compiler-directed shared-
memory communication for iterative parallel computa-
tions. InProceedings of Supercomputing ’96, Pittsburgh,
PA, Nov. 1996.

[50] M. E. Wolf and M. Lam. A data locality optimizing al-
gorithm. InProceedings of the SIGPLAN ’91 Conference
on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

24

