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Abstract

We propose a method to compute the spectral norm distance from a given matrix A
to the set of matrices having at least an eigenvalue on the imaginary axis. It is shown that
the distance is one of the roots of a suitably constructed polynomial in one variable. Our
method can be easily generalized to compute the distance from A to the set of matrices
having at least an eigenvalue on any straight line or circle. Thus, it can be applied to com-
pute the distance from a stable matrix to the set of unstable matrices in either continuous

or discrete sense.

1. Introduction

Let W C C™*" be the set of matrices with at least one eigenvalue on the imaginary

axis. For any A € C"*", the distance from A to W is defined by [1]

B(A)= min {||AA||:A+AAe W}, (1)
AAeCnxn
where || - || denotes the spectral norm. If A is stable in the sense that all its eigenvalues

have negative real part, then (A) is the distance to the set of unstable matrices [1]. 3(4)

is a measure of how “nearly unstable” the stable matrix A is. It can be shown that

F(4) = min o(4 — ju)

_ 1 @
max o ((jwl — A)~1) "’
max ((JwI—A4)"1)

t Also with the Electrical Engineering Department, University of Maryland.
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where g(-) and (-) are the smallest and largest singular values, respectively, j the square
root of —1, and I the n X n identity matrix. Therefore, #(A) is also the reciprocal of the
Loo-norm (see, e.g., [2]) of the linear dynamic system

T =Az 4+ u

y==zx .

Applying direct local optimization to the function a(w) = g(A — jwI) is not suitable
for computing §(A), since a(w) may have local minima which are not global. In [1}], Van
Loan proposed a very simple algorithm to compute S(A) which relies on a conjecture
about the location of the eigenvalues of A. Demmel [3] later invalidated it by providing
a counterexample to the conjecture. The most reliable method currently available for
computing B(A) may be the bisection method proposed by Byers [4] and Boyd et. al [5].
The bisection method iteratively gives upper and lower bounds on §(A4) and it is not
affected by the number of local solutions a(w) may have, nor does it require any starting

value. However, it converges too slowly if high accuracy for the solution is desired.

In this paper, we propose a new method for computing #(A). The method is based on
the result (Theorem 1) that a certain necessary condition satisfied by the global minimizer
of the optimization problem in (2) has only a finite number of solutions. Therefore, the set
IR in (2) could be replaced by a finite set in R without affecting the solution; and thus the
computation of S(A) becomes trivial. We will further show that this set needs not even

be identified explicitly. The result in this paper borrows some ideas from [6].

The organization of the paper is as follows. In Section 2, we present the main results
and summarize the section by giving an implementable procedure for computing B(A)
with a few remarks. The generalization of the method for applying to stability defined in
different sense is discussed in Section 3. Finally, several numerical examples are provided

in Section 4.



2. Main results

Let A € €**". In view of (2), 82(A) is the smallest possible eigenvalue the positive
semidefinite matrix (A4 — jwI)?(A — jwI) may have, while w varies in IR. Here, the
superscript “H” denotes the complex conjugate and transpose. Therefore, $%2(A) is also
the smallest possible real value of o that satisfies det({(A — jwI)H#(A — jwI) — aI) = 0 for
some w € R. As will be shown in Theorem 1, this optimality of 3(A) allows us to establish
some simple necessary conditions on B(A). Notice that det((A — jwI)?(A — jwI) — al)
is an element in R]a,w], the ring of all polynomials in & and w with real coefficients. If
every element of A has real and imaginary parts in the set Q of all rational numbers, then
det((A — jwI)H(A — jwI) — al) is also an element of the ring Q[a,w] of polynomials in «
and w with coefficients in Q. For simplicity, let D denote IR or Q. A nonconstant element
f in D[a,w] is said to be irreducible over D if f = gh for some ¢, h € D], w] implies either

g or h is a constant (see, e.g., [7]). Any f(a,w) € D[a,w] can be written as
fla,w) = apw™ + a1w™ 1 + -+ + ap,

for some nonnegative integer m, where a;’s are polynomials in a with coeflicients in D.

The partial derivative of f(a,w) with respect to w is of a similar form:

df(a,w)
Ow

=maew™ ! +(m - Dagw™ 2 4+ 4 amy -

If m > 1, the Sylvester resultant (see, e.g., [7]) of f(o,w) and %“Q, denoted here by
I't(a), is the determinant of the (2m — 1) x (2m — 1) Sylvester matrix, namely, (shown for

m = 3)
a a ay az O
0 ap a3y az dag
I'f(a) = det 3ag 2a1 as 0 0
0 3a0 2&1 as 0
0 0 3a0 2a1 ag
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When m = 1, we use the convention that I'f(«) = ag. Thus I'y(«) is a polynomial in o

with coefficients in D. We are now ready to present the main theorem of this paper.

Theorem 1. Let A € C"*" and define
fa,w) = det ((A — jw)"(A ~ jwl) — o) .
Suppose that f(a,w) € D[a,w] (D =R or Q) is factored as

k
f(a,w):cHg?‘(a,w) ’ (3)

where ¢ € D, g;’s are nonconstant and irreducible over D, and k and n;’s positive integers.
Then the following statements hold.
(a) Forevery : =1,...,k,
(i) gi(a,w) has degree at least one in w,
(i1) the system of polynomial equations ¢;(«,w) = 0 and —‘?gf—ég—’w—) = 0 has only a finite
number of (possibly complex) solutions, and
(iii) the Sylvester resultant I'g,(«) is not identically zero.

(b) There exist | € {1,...,k} and w* € R such that (82(A),w*) solves the system of

polynomial equations ¢;(e,w) = 0 and W = 0. For any such w*,
B(A) = g(A — jw™I) .

Furthermore, let

A—juI=USVH

be a singular value decomposition of A — jw*I. Then the matrix

AA = —B(AU ["(1)0 (1)] vH (4)
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satisfies

|AA]l = B(A) (5)

and

det(A + AA — jw*I) =0 (6)

for any Ag € C(r-Dx(n=1) with | 40|l < 1.
(¢) Suppose (a1,w;1) € R? solves the system of polynomial equations gi(a,w) = 0 and

agiéz’—w) = 0 for some ¢ € {1,...,k}. Then ay > %(4). O

We will employ the following facts in proving Theorem 1.

Fact 1. [7] Any nonconstant element f(a,w) € D[a,w] can be factored as

k
f(aaw) = cHg?i(O‘)w) ’
=1

where ¢ € D, ¢;’s are nonconstant and irreducible over D, and k and n;’s positive integers.

The constant term, ¢, can be dropped when D = R. [

Fact 2. [7] Let g(a,w) € Dl[a,w] have degree at least one in w. Then the following

statements hold.

(a) For any a; € €, I'y(a1) = 0 if, and only if, (a1,w;) solves the system of polynomial
equations g(a,w) = 0 and W = 0 for some w; € C.

(b) If, in addition, g(a,w) is irreducible over D, then the Sylvester resultant I'y(a) is not

identically zero, and the system of polynomial equations g(a,w) = 0 and Qig—a“—]’i"l =0

has only a finite number of (possibly complex) solutions. []

Implicit Function Theorem. (see, e.g., [8]) Let S C R™ x R" be an open set, and
f: S5 — R" a differentiable function on S. Suppose (2o, y0) € S is such that f(zo,y0) =0

and

o (2o,
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where %{; denotes the Jacobian of f with respect to the variable y. Then there exist an

open neighborhood  of zg in R™ and a continuous function ¢ : & — R"™ which satisfy

#(z0) = yo and f(z,4(z)) =0forall z € Q.

Proof of Theorem 1. (a) Notice that the factorization of f(a,w) in (3) is guaranteed by
Fact 1. Let 2 € {1,...,k}. Suppose g; has degree zero in w. Then, since g; is nonconstant,
there is some (possibly complex) a; which satisfies gi(as,w) = 0 for all w € R. Hence
flai,w) = 0 for all w € R. This implies that the matrix (4 — jwI)?(A — jwI) has the
cigenvalue a; for all w € R, which is clearly impossible. Therefore (i) holds. Then (i) and
(iii) follow from Fact 2.

(b) Let w* satisfy B(A) = ¢(A — jw*I). Then f(B%(A),w*) = 0. Therefore
gi(B*(A),w*) = 0 for some i € {1,...,k}. Suppose 2L 4 o Then by the
Implicit Function Theorem, there is a neighborhood Q of 8%(A) in R and a function
é : @ — R such that g;(z,é(z)) = 0 for all + € Q. This implies f(z,¢(z)) = 0 for all

z € Q. In particular, there exists z € IR such that z < 8%(4) and
det((A — jwI)H(A — jwI) —2l) =0

for some real w. This contradicts to the fact that 82(A) is the smallest possible value of
such z’s. Hence %(—ﬂ—;%‘ﬂ—*—) = 0. Then it is straightforward to check that AA defined in
(4) satisfies (5) and (6) for any Ao € C*~ D=1 with || 4, < 1.

(¢) If gi(ay,wy) = 0 for some aj,wy € R and ! € {1,...,k}, then f(aj,w;) = 0.
Again, by the fact that 32(A) is the smallest real value a that makes f(a,w) = 0 for some

w € R, we have the result. []

The following Procedure for computing S(A) is based on Theorem 1.
Procedure 1. (Computation of 3(A))
Step 0. Set a* = 0o and f(a,w) = det ((4 — jwIl)H(A - jwI) - al).
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Step 1. Factor f(a,w) as

k
f(a,w) = ngp;(aaw) ’
=1

where g;’s are nonconstant and irreducible in R[a, w], k and n;’s positive integers.

Step 2. For each successive 1 = 1,...,k, set a; to be the smallest nonnegative real root
of I'y;(a) = 0 for which g;(a;,w) and g—g"—%%’—‘i’l (as functions of w) have at least
one common real root, if any. If no such root exists, set a; = oco. Then, set

a* = min(a*, ;) and go back to the loop.

Step 3. B(A) = V. [

Remark 1. It can be easily checked that each nonconstant factor, g;(a,w), of f(a,w)

must have degree at least one in « as well. []

Remark 2. Let

k
g(aaw) = H gi(aaw)a

where g;’s are the irreducible factors of f(a,w). Since ¢g(a,w) does not contain a square
of any nonconstant irreducible factor, I'j(«) is not identically zero and the system of
polynomial equations ¢g(a,w) = W = 0 has only a finite number of solutions [7].
Hence, instead of considering each g¢;(«,w) separately, one may apply Step 2 of Procedure

1 directly on g(a,w) to obtain a*. However, this approach may require more computations

because the system of polynomial equations ¢g(a,w) = Ma(i—’wl = 0 may have more solutions

than those obtained from each of the systems of equations ¢;(e,w) = Qgilw) _ g for

Sw
i=1,...k [

Remark 3. The factorization of f{a,w) in Step 1 is not necessary in most cases, since
f(o,w) is often irreducible. One can simply assume so and go ahead to perform Step 2.

Factorization of f(a,w) is necessary only if I'f(a) is found to be identically zero. [7]
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Remark 4. The factorization of f(a,w) may be difficult if any coefficient of f(a,w) is
not rational. We may approximate A by A for which all its elements have rational real

and imaginary parts, thus this would imply that the polynomial
Fla,w) = det ((A — jwD)H(A = jwI) - aI)

has only real rational coefficients. Effective software for factorizing f(a,w) into irreducible
factors over rational numbers can be found in, e.g., MACSYMA [9]. Theorem 1 then
asserts that any irreducible factor over Q and its partial derivative with respect to w may
only have a finite number of common (possibly complex) roots. Hence, Steps 2 and 3 can

be followed and yield 8(A). Finally, an upper bound of the error |3(4) — B(A)| can be

obtained by using the following result due to Van Loan [1].

Fact 3. Suppose Ay, Ay € €**". Then
|B(A1) — B(A2)] < [|[A1 — Ao .

O

Remark 5. Roots of I'y;(a) = 0 in Step 2 can be equivalently determined by finding the
eigenvalues of the companion matrix of I'y; (o). Reliable software for calculating eigenvalues

can be found in, e.g., Eispack [10]. []

dgi (dyw)
le]

Remark 6. In Step 2, for any nonnegative root & of T'y,(a), whether ¢;(&,w) and 5=

(as functions of w) have at least one common real root can be determined in a finite number
of steps without actually computing their roots. First we apply the Euclidean Algorithm to
find the greatest common divisor of g;(&,w) and M"a?l, say, h(w). Then a Sturm method
can be used to test whether h(w) has real roots (see, e.g., [11]). Define the polynomial

sequence consisting of h(w), it’s derivative d};(:), and the successive remainder (with their
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sign changed) in the process of finding the greatest common divisor of h(w) and d’;&") , 1.e.,

apply the Euclidean algorithm to h(w) and %:’) : Let py = h, po = % and recursively

divide
P1 = qip2 —Ps3
P2 = @p3 —Pa

until, for some [, p; is the greatest common divisor of A and %. Then the difference
between the number of sign changes in the sequence {p1,...,pi} when co is substituted for
w (i.e., the number of sign changes in the leading coefficients of the sequence {p1,...,p})
and the number when —oo is substituted for w expresses exactly the number of distinct

real roots of the equation h(w) = 0. [

3. Generalization

Our method can be extended easily to compute the distance from A to the set of
matrices having at least an eigenvalue on the unit circle, namely, to compute y(A) defined
by

v(A)= min {|AA]:A+AAEW),
AAEG”X"I

where W here denotes the set of matrices having at least one eigenvalue on the unit circle.
Thus v(A) is a measure of how “nearly unstable” A is, if A is stable in the sense that all
its eigenvalues lie inside the unit circle. By applying the method to simple modifications
of A, it should be obvious that the unit circle can be replaced by an arbitrary circle and

the imaginary axis by an arbitrary straight line.

It can be easily shown that

. 1+ jw
A) = inf A— —1I | .
7(4) J&Rg( 1—Jw>
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Therefore, v2(A) is the smallest possible real value of a that satisfies

. H .
det ((A— 1“.‘"1) (A— 1“.“’1) -a.r> =0
1 —jw l—jw

for some w € R U {oo}. Then we claim that one can perform Procedure 1 with f(o,w)

replaced by

. H .
Fla,w) = (1 + w?)™ det ((A—- 1+JwI) (A— 1iji[) —al)

_.jw

= det (1~ jw)4 — (1 + jw)D)" (1 — jw)A — (1+ jw)D) — (1 + w?)aI)

and yield

v(A) = min{g (A~— ijj:I) \/a_}
:min{g(A-’r—I),\/a_*} ,
where a* is obtained at the end of Step 2 in Procedure 1. However, unlike the case of
fla,w), f(a,w) may have some nonconstant irreducible factor, say g;(a,w), which has
degree zero in « or w (e.g., if A = 0, then f(a,w) = (1 + w?)*(1 — @)?). Recall that

in Step 2 of Procedure 1, a; is set to be the smallest nonnegative real value of a that

8gi(x,w)

s = 0 for some w € R, if there exists such . Otherwise, we

satisfies ¢;(a,w) =
set a; = 0o. Hence, if g;(a,w) = gi(a) does not contain any w terms, then «; in Step 2
of Procedure 1 is set to be the smallest nonnegative real root of g;(a) = 0, if it exists;
otherwise we set a; = co. On the other hand, if ¢;(a,w) = ¢:(w) does not contain any «
terms, then, since g;(a,w) is irreducible, the Sylvester resultant I'y, (@) must be a nonzero
constant. Therefore, no o will satisfy I'y,(«) = 0, and the system of polynomial equations
gi(a,w) =0 and M"a%l = 0 has no solutions. Hence, in such case, a; is always set to be

co. Finally, Step 2 is followed without modification when g¢;(a,w) contains both « and w

terms.
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4. Numerical examples

We present four examples to illustrate the use of our method for computing S(A) or
7(4).

Example 1. Let

| -2 2 +7
A= [3 -3 —4 ] )
Then
flw,a) =det (A - jol)?(A - jwI) — o)
=w? —2aw? +34w? — 12w+ a? — 35a + 2
and

T'f(a) = 256a* + 101120a° + 1786547202 — 758496000c + 20384000 .

I'f(e) = 0 has real roots at & = 0.0269, 34.9. The greatest common divisor of f(0.0269,w)
and %ﬁfg’% is h(w) = (w — 0.176). Thus h(w) has a real root. This implies
B(A) = /0.0269 = 0.164, and any nearest unstable matrix from A must have 70.176 as an

eigenvalue. Let A — j0.176] = ULV ¥ be a singular value decomposition of A — j0.1761,

where i
U — | —0-5050 — j0.0466 0.8618 + j0.0110
~ | 0.8172-350.2739  0.4666 — j0.1988 | ’
5 _ [59190 0
~| 0 0.1640] °

V= 0.6325 —0.7746
| —0.7226 + j0.2789 —0.5900 + j0.2278

Then the matrix

A+AA=A—BAUVH = [—~1.8381 +30.0062  2.0253 + j1.0046 }

2.9745 — 70.9968 —3.8381 + 70.0031

is a nearest unstable matrix from A.
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Example 2. Let
-1 1 9 12
1 0 -1 12 16
25 |-16 -12 -1 0
12 9 0 -1

Then
fla,w) = det (A — jwI)H(A - jwI) — aI)
= (w4 —2aw? + 20?2 + 0% - 3a + 1)2
= g*(a,w)
and

T,(a) = 256a* — 768a°® + 256a°

(T'f(a) is identically zero). T'y(a) = 0 has roots at a = 0, (3 —+/5)/2 and (3 ++/5)/2. The
greatest common divisor of ¢(0,w) and ag(o “) s hi(w) = (w? + 1), thus h;(w) has no real

root. The greatest common divisor of ¢((3 — v/5)/2,w) and M{;{s)/zﬂ is ha(w) = w2
Thus hy(w) has real roots, and we conclude that 3(A4) = 1/(3 — /5)/2.
Example 3. Let

A=

0
0 0 —V3

and, for the purpose of computing S(A4), we approximate A by

o [-14 1 1
A= 0 -14 -1

-2 1 1
—/2 _1}

0 0 —1.7

Following Procedure 1 we have #(A4) = 0.9661. In view of Fact 3, we have
1B(A) — B(A)| < |A— A|| = 0.0321 ,

ie.,
0.9340 < B(A) < 0.9982 .

12



Example 4. We compute y(A) for

1 3 -2
0l 2 g 4

Then
Flayw) = det (1 - jw)d — (14 jw)D" (1 = jw)A = (1 + j)T) — (1 +w?)al )
= g1(a,w)g2(a, w)gs(a,w) ,

where

gi(a,w) =1~ a,

ga(a,w) = w? +1,

g3(a,w) = §16(80aw — 396aw + 405w + 160a’w? — 472aw? 4+ 90w? + 80a® — 76a + 5)
are irreducible factors. Apply Procedure 1 and follow the discussion in Section 3, we have

a; =1, ag = oo and asz = 0.8789. Thus o* = min{ay, as, a3} = 0.8789 and we have
v(A) = min {Q(A + 1), \/a*}
= min {0.5024, 0.9375}

= 0.5024 .
We also conclude that any nearest unstable matrix from A will have at least an eigenvalue

at —1.
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