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ABSTRACT
We study the convergence of GMRES/FOM and QMR/BiCG methods for
solving nonsymmetric Az = b. We prove that given the results of a

BiCG computation on Az = b, we can obtain a matrix B with the same
eigenvalues as A and a vector ¢ such that the residual norms generated
by a FOM computation on Bz = c¢ are identical to those generated by
the BiCG computations. Using a unitary equivalence for each of these
methods, we obtain test problems where we can easily vary certain spectral
properties of the matrices. We use these test problems to study the effects
of nonnormality on the convergence of GMRES and QMR, to study the
effects of eigenvalue outliers on the convergence of QMR, and to compare the
convergence of restarted GMRES and QMR across a family of normal and
nonnormal problems. Qur GMRES tests on nonnormal test matrices indicate
that nonnormality can have unexpected effects upon the residual norm
convergence, giving misleading indications of superior convergence when the
error norms for GMRES are not significantly different from those for QMR.
Our QMR tests indicate that the convergence of the QMR residual and error
norms is influenced predominantly by small and large eigenvalue outliers and
by the character, real, complex, or nearly real, of the outliers and the other
eigenvalues. In our comparison tests QMR outperformed GMRES(10) and
GMRES(20) on both the normal and nonnormal test matrices.
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1. Introduction

Computer simulation is an integral part of the analysis of physical phenomena and of the successful design
and implementation of many systems and structures. Simulations require realistic mathematical models
and practical numerical algorithms. Model complexity may be limited by the types of algorithms which are
available. Many computer simulations require the repeated solution of large systems of linear equations.

(1) Az =b.

Often these systems are too large for numerical methods which explicitly modify the problem, and it
becomes necessary to use iterative methods which obtain information about the problem through a sequence
of matrix-vector computations.

Much of the current research on iterative methods for solving nonsymmetric equations(1) focuses on
two sets of Krylov subspace methods and their variants [10]. Each set is based upon recursions which
map the matrix A into a family of projection matrices which are then used to obtain approximations to
a solution of Equation(1). The first set is based upon the Arnoldi recursion and includes the generalized
minimal residual method (GMRES), the full orthogonal method (FOM), and their variants such as restarted
GMRES(q) [17]. The second set of methods is based upon nonsymmetric Lanczos recursions, and includes
the bi-conjugate gradient method (BiCG), the quasi-minimal residual method (QMR), and their variants
such as BICGSTAB(q) [9, 12, 22, 13, 19].

In this paper we study the convergence behavior of these methods using the MATLAB [14] templates
discussed in [2]. In section 2 we review briefly the GMRES/FOM and the QMR/BiCG methods. In
section 3 we obtain a relationship between BiCG and FOM, and a weaker relationship between QMR and
GMRES. In section 4 we review unitary equivalences for each of these methods and how these equivalences
can be used to obtain test matrices where certain spectral properties of the matrices can be varied [7].
In section 5 we address the question of consistency when testing a given method across changes in the
nonnormality of the problem or in the eigenvalue distribution. In section 6 we use these test matrices in
numerical experiments designed to provide some insight into the effects of nonnormality on the convergence
of QMR/GMRES, on the effects of outliers on the convergence of QMR, and on the debate over which
method is best.

In [8] we considered similar questions for the eigenvalue problem Az = Az. We use the following
notation.

1.1. Notation.
A=(a;),1< 4,j <n,nXnreal or complex matrix
AT = (a;;) , 1 < 1,7 < n, transpose of A
A" = (a;;) ,1<1,7 <n, complex conjugate transpose of A
D = diag{d,,...,d,}, n X n diagonal matrix
Ai(A), 1< 7 <mn,eigenvalues of A
w(A4) = Dy(4),1 2 < n)
0;(A),1 < j < mn, singular values of A where 0; > ... > 0,
Y = diag {o1,...,0.}
K;(A,b) = span{b, Ab, ..., A77'b}, jth Krylov subspace generated by A and b
K(A) = Omax(A)/Omin(A4), condition number of A
[All2 = omax(A), [zl = /35,73
v;, jth vector in any sequence of vectors, V; = {vq,...,v;}
a;]G =, jth iterate for method G
6F =, #; — T4py. for method G
r; = —Az; + b= —Ab; + 1o, jth residual vector corresponding to z; and é;



R™, m—dimensional Euclidean space

e;, jth coordinate vector in R™ for some specified m
é;, jth coordinate vector in R™*! for some specified m
I;, 7 X 7 identity matrix

2. Krylov Subspace Methods: GMRES/FOM and QMR /BiCG

In this section we review briefly the GMRES/FOM and QMR/BiCG methods for solving Equation(1).
Without loss of generality we can consider the equivalent system

(2) Ab = 7o where rg = —Azg + b and 6 = z4py. — To-

For simplicity we assume A is a real matrix.

2.1. Arnoldi Methods: GMRES/FOM/GMRES(q)
The GMRES/FOM/GMRES(q) methods are based upon the Arnoldi recursion [17].

Arnoldi Recursion:

1. Given a vector v; with ||v1]| = 1, for k = 2,3, ..., compute: vy, = Avy.

2. For each k and for ¢t = 1,...,k compute:
hi, = ?JlH?Jk+1, Vig1 = Vry1 — haipv;.
3. For each k compute:
hk+1,k = ||?Jk+1||, and Ve+1 = vk+1/hk+1,k-

Theoretically, Vi, = {v1,...,v:} is an orthonormal basis of the Krylov subspace Ky(A,v;) and the
Hessenberg Arnoldi matrix Hy = (h,;) is a matrix representation of A on Kj(A4,v;) with respect to the
Vi. The preceding implementation is a modified Gram-Schmidt orthogonalization. Other implementations
exist [23]. In matrix form these recursions become

(3) AVk = Vka + hk+1,kvk+1e;‘: where Hk = (hl]), 1 S Z,j S k.

2.2. GMRES/FOM
In GMRES/FOM/GMRES(q), v1 = ro/||70o|| in (3). Theoretically, GMRES and FOM select their iterates,

6¢,6¢, from the same Krylov subspaces but subject to different constraints on the corresponding residual
vectors, ¢ and rf. At the k** iteration in GMRES the iterate is selected so that the norm of the
corresponding residual vector, r¢, is minimized over the k** Krylov subspace corresponding to A and 7y
[16]. For each k,
4 Gl = i — Aéb|| = — A8
(4) 1€ =, win llro — A8]| = |Iro — 46

Saad [16] proved that Equation(4) is equivalent to the Petrov-Galerkin condition
(5) e 1L AK(A,r°).

We can rewrite equation (3) as

e e H
(6) AV;, = Vi1 HY where HY = y
0---0 hk+1,k



is a k+ 1 by k matrix.
Using equation(6), constraint (4), and the orthonormality of the Arnoldi vectors, it is not difficult to
prove that the k* GMRES iterate

(7) 8¢ = Viyg where ||rf|| = min|| - Hy + |Irollés ]|

At the k' iteration in FOM the iterate is selected so that the residual vector, rf, is orthogonal to the
k** Krylov subspace corresponding to A and 7o, [18]. For each k,

(8) rF L KR(4, ).

Using equation(3), the constraint (8), and the orthonormality of the Arnoldi vectors, it is not difficult
to prove that the k** FOM iterate
(9) §F = Viyl where Hyyl = ||ro|les.

Therefore, the k** FOM iterate is obtained by solving a system of equations defined by the Galerkin
iteration matrices Hy, and the k** GMRES iterate is obtained by solving a least squares problem defined
by H;. We cannot guarantee that the Galerkin equations are well-conditioned or even nonsingular. If Hy
is singular for some k, then the k** FOM iterate does not exist but in this situation the £** GMRES iterate
is identical to the (k — 1)*° GMRES iterate [4].

For any 1 < ¢ < n, GMRES(q) is GMRES restarted with the current residual vector, after each ¢
iterations [17].

2.3. Nonsymmetric Lanczos Methods: QMR /BiCG/BiCGSTAB(q)

QMR/BiCG and BiCGSTAB(q) are based upon nonsymmetric Lanczos recursions. Nonsymmetric Lanczos
recursions generate two sets of Lanczos vectors, and tridiagonal matrices. We consider a variant used by
[12].

Nonsymmetric Lanczos Recursion (Nonsymmetric Variant):
1. Given v; and wy with ||wi|| = ||v1|| = 1, set vo = wo = 0, and p; =1, &, =1, and §; = 0.
For each 7 = 1,...,k compute:
vj11 = Av; and w; 4 = ATw;
2. Foreach 7 =1,...,k compute:
o = Wi vy /w] vy,

Pj = Vi1 — oyv; — Biv;_q
8j = wiy1 — ayw; — (B;p; /&) wi—
pi+1 = pill, vi4r =pi/pina
G = llsslls wisn = 85/€511
Biv1 = &raw] 10541/ w] v;.

The Lanczos vectors are scaled to have unit norm. The coefficients in the recursions are chosen to make
the Lanczos vectors Vi, = {vy,...,v;} and W, = {wy,..., wy} bi-orthogonal. Theoretically, for each k, V}
is a basis for the Krylov subspace K;(A4,v;), and W}, is a basis for the subspace (AT, w;).

In matrix form the nonsymmetric Lanczos recursions can be written as



AV, = Vi Ty, + ’Yk+1?fk+1€;‘:

10 ~ .

(10) ATW;, = Wi T + wip1wiqa€r

where Tk = q’ngkq’k, ¢, = diag(¢17 .- '7¢k)7 $pr1=1, ¢ = ¢k—1,0k/fka and
oy 52
p2 Qz [

(11) Tk = Ps h K )

Op_1 ﬂk
Pk (03

Theoretically, T} is the matrix representation of the bi-orthogonal projection of A onto the Krylov subspaces
Ki(A, 7o) and K1 (AT, 7,) with respect to the bases generated by the nonsymmetric Lanczos recursions.

2.4. QMR /BiCG/BiCGSTAB(q)
In the QMR, BiCG, and BiCGSTAB(q) in [2], v1 = 7o/||7e|]| = w1 = 7o/||Po||. Theoretically, at each
iteration, QMR and BiCG select their iterates, 6,?,5,‘;3, from the same Krylov subspaces , Kiz(A4, 7o), as
GMRES and FOM but subject to different constraints on the residual vectors.

At the k' iteration in QMR the iterate is chosen so that the norm of an associated quasi-residual
vector, which we denote by z,?, is minimized. The construction parallels the construction for GMRES. We
can rewrite equation (10) as

(12) AV;, = Vi1 TS where Ty = T .
0 .. 0 Pk+1

For any k, we define quasi-residual vectors z as any k + 1 vector for which there is a k-vector y with

(13) 2= Ty + ||ro||és.

The k** QMR iterate 5,? = ka,? is chosen so that the norm of the associated quasi-residual vector is
minimized [12].

(14) 6¢ = Viyg, where [|27|| = || - TeVyf + ||rolléa]| = min || — Ty + [Irolléa -

The k" BiCG iterate 62 is chosen so that the k" residual vector, rfZ, is orthogonal to the £** Krylov

subspace associated with AT and 7,. Specifically,
(15) 2 1 Ki(AT, 7).

Using equation(12), the constraint equation(15), and the bi-orthogonality of the Lanczos vectors, it is
not difficult to prove that the £** BiCG iterate

(16) 67 = Viyp where Tyy2 = ||7olles.

Therefore, the k** BiCG iterate is obtained by solving a system of equations defined by the Galerkin
iteration matrices T}, and the k** QMR iterate is obtained by solving a least squares problem involving
T¢. We cannot guarantee that the Galerkin equations are well-conditioned or even nonsingular. However,
analogous to GMRES/FOM, if T} is singular for some k, then the k' BiCG iterate does not exist and
in this situation the k** QMR iterate is identical to the (k — 1) QMR iterate [12]. BiCGSTAB(q) are
variants of BiCG which do not require A7 and which incorporate GMRES polynomials to accelerate the
convergence. For details on their construction see [22, 19].



2.5. Comments on Both Types of Methods

In this paper we use superscripts @, B, G, F to denote respectively, quantities associated with a QMR, a
BiCG, a GMRES or a FOM computation.

For a given problem, QMR/BiCG and GMRES/FOM select their iterates from the same Krylov
subspaces but subject to different constraints on the residuals of the iterates. The methods also differ
in their storage requirements and the amount of work required at each iteration. QMR and BiCG require
matrix-vector multiplications by A and by AT but have minimal storage requirements, in addition to the
storage required by the A and AT computations. GMRES and FOM require only A but require access to
all of the previously-generated Arnoldi vectors at each iteration. BiCGSTAB(q) also requires only A but
since it is based upon BiCG and restarted GMRES, it also has small storage requirements. For details see
[22, 19].

Theoretically, the recursions underlying GMRES/FOM cannot break down. Theoretically, however,
the recursions underlying QMR /BiCG/BiCGSTAB(q) will break down if at some stage in the underlying
nonsymmetric Lanczos recursions, a bi-orthogonality term w”v = 0 for some w # 0 and v # 0. Within
these schemes this corresponds to 7ir, = 0 for some k but 7, # 0 and r, # 0. If this occurs then
the procedures cannot be continued. Exact breakdown is unlikely, near breakdowns can cause numerical
instabilities. To avoid such problems, various look-ahead strategies have been proposed, see for example,
[15, 11]. The discussions in this paper are equally applicable to the look-ahead variants of these methods.
We do not include look-ahead capabilities in our tests. In addition the Galerkin methods, BiCG, FOM, and
BiCGSTAB(q) can experience problems if the iteration matrices, T} or Hj, are nearly singular or singular.

Since the columns of the Lanczos vectors V;2; are not orthonormal, the norms of the true residuals in
QMR are not identical to those of the quasi-residuals. However, in exact arithmetic, for each k, [12, 11]

(17) 172l < VE+T[12]]-

In practice we observe that || || and ||27|| appear to track each other until the limits of convergence
are achieved. See section 5, figures 1-2 for examples of this behavior. We have the following lemma which
we will need in section 3. See for example, [6].

LemMmA 2.1. (Ezact Arithmetic). Apply either QMR/BiCG or GMRES/FOM to equation(1). For
QMR/BiCG let 298 = —T¢y + ||ro||é1 for some k-vector y denote a corresponding quasi-residual vector.
Similarly, for GMRES/FOM define z6¥ using H. Define z = zo + 6§95 %F where §98:4F = VkQ’B’G'Fy.
Then the corresponding residuals

(18) r=—Az@BOF L b= _AFRBGE | gy = QBGF QBGF

Recursions (3,10) can be used to obtain error estimates for the iterates generated. Assuming no
breakdowns at each iteration of QMR /BiCG, we obtain the following estimate of the norm of residuals at
iteration k.

(19) l72 20 = 1 = ASP 4 oll = [l prai® (k) vl
where y(k) denotes the k** component of the vector y. We have a similar recursion for GMRES/FOM
involving hyy1y. By construction for each k, ||vP, || = 1. Therefore, we can estimate the norms of

the residuals in GMRES/FOM or QMR/BiCG without computing the true residuals. In finite precision
arithmetic, this estimate will still be valid as long as the errors in the recursions are sufficiently small [1].
Typically, each of these methods is implemented using recursive factorizations of either the Hessenberg or
the tridiagonal matrices, and the preceding estimates of the norm of the residual are obtained recursively
and used to track convergence.

At each iteration in each of the tests we discuss in section 6, we computed these estimates and the
true residual norms. We used the true residual norms to track the convergence. Each residual norm plot
in section 6 is a plot of true residual norms. We make the following assumption.



7

Assumption 1.1: In any statement or theorem about the QMR /BiCG/BiCGSTAB(q) methods, we
will always assume that no breakdown has occurred and that all quantities are well-defined. Furthermore,
in any statement about FOM we will always assume that all quantities are well-defined.

3. A Relationship Between BiCG and FOM

We obtain a relationship between BiCG and FOM residual norm plots and a weaker relationship between
QMR quasi-residual and GMRES residual norm plots. In exact arithmetic we prove that given a BiCG
residual norm plot we can construct an identical FOM residual norm plot for a different problem with
the same eigenvalues. Furthermore, given a QMR quasi-residual norm plot, we can construct an identical
GMRES residual norm plot for a different problem with the same eigenvalues. From this we can conclude,
at least in exact arithmetic, that any type of residual norm convergence observed using BiCG can also be
observed using FOM on some other problem with the same eigenvalues.

In this section we use C' and C to denote two different matrices. In Theorem 3.1 we assume that
C' has n distinct eigenvalues, that the starting vectors have projections on each of the right and the left
eigenvectors of B, and that there is no breakdown in the nonsymmetric Lanczos recursions. If there were
fewer than n distinct eigenvalues, and the arithmetic were exact, the methods would terminate for some
m < n, and Theorem 3.1 would have to be expressed in terms of m.

THEOREM 3.1. : (Ezact Arithmetic): Let C be a real n X m matriz with distinct eigenvalues. Apply
BiCG/QMR to Cz =c. Fork=1,...,n,

(20) CVkB = VkB(Tlf)e

where V2 and (TZ)" denote respectively the Lanczos vectors and matrices generated with vZ = ro/||7o|.
Then there exists a n X n matrizc C with the same eigenvalues as C and a vector é such that an application

of the FOM/GMRES methods to Cx = & , yields

(21) I () = N1zl = 1122 (Ol = 7 (C)]| for 1 <k < m,

where z2(C) and zF (C) are the corresponding quasi-residual vectors. Furthermore, if 22(C) and 2¢(C)

are the corresponding quasi-residual vectors for QMR and GMRES, then
(22) 17 (O = 1128 (O] = [I=7 (O)]].

Proof. Let
(23) TP = Q.U.Qy
be any Schur decomposition of T2. Define V. = Q¥ then

(24) U.VE = VETE.

Define ¢ = U, and ¢ equal to the first column of V¥ scaled by ||ro||. Then V¥ are FOM vectors
corresponding to

(25) Cz = ¢, with HE (C) = TE(C).
Furthermore, from Lemma 2.1, and equation(25),

(26) Tf(é) = Vkilzlf(é) = VkF-l—lzlf(C) = —Pk+1yf(k)vf+1

where y£2 is the solution of the associated Galerkin equations

(27) Ty = |[rollex and 27 (C) = 2 (C) = ~(T7) v + [Iroléx

are the associated BCG and FOM quasi-residual vectors.



From equations(26,27) and the orthonormality of the columns of V;I' we have that

(28) 175 ()| = Il (O] = 1122 (O = |pwravi (K)].

Moreover, from recursion(12) and Lemma 2.1 we have that

(29) e (C) = Vigaz (C) = —puraviyaui (k)
By construction |[vf,,|| = 1. Therefore, from equations(28,29)
(30) I72 (O = 112 (O] = |praavi’ (B)].

Combining equations(28,30) we obtain equation(21).
A similar argument yields equation(22). For each k we have that

(31) i (C) = Vila2i (C) and (C) = 57(C)

where the associated quasi-residual vectors 2¢(C) = z2(C) is obtained from the solution y& = y? of the
associated least squares problem

(32) min || — (T,7)"y + [[rollea] by setting 27(C) = 27(C) = —(T)"y + IIrol &
Therefore, from equation(31),
(33) 72 (O = 1128 (O]l = [I1z2 (O)]]-

Theorem 3.1 tells us that any portions of the corresponding BiCG/FOM residual norms plots are
identical. If the errors in the BiCG recursions are sufficiently small, the BiCG residual norms are not too
small, and the BiCG Galerkin equations are well-behaved, then we can obtain a finite precision variant of
Theorem 3.1. In finite precision arithmetic the eigenvalues of €, will not usually equal the eigenvalues of

C.

4. Unitary Invariant Properties of QMR/BiCG and of GMRES/FOM

We want to study the convergence behavior of QMR/BiCG and GMRES/FOM as we vary spectral
properties of the test matrices. In practice users typically monitor estimates of the residual norms to
identify convergence and may use true residual norms to verify convergence. Error norms are not available
in practice. We obtain the following theorems in [7] which identify classes of matrices with identical residual
and error norms. From this we obtain a set of test matrices. Details are in [7]. In this section we use C to
denote a matrix and € to denote the matrix U¥CU where U is a unitary matrix.

THEOREM 4.1. (Ezact Arithmetic)(GMRES/FOM): Let U be any unitary matriz. Let C be a
nonsymmetric matriz and define C = UHCU. For k = 1,...,K, let HS , HS and VE, V¢ denote
respectively, FOM matrices and vectors obtained by applying GMRES/FOM to Cz = ¢ and to Ce = ¢
where ¢ = UHc and 7§ = U®rS. Then for each k, HS = HE, V€ = UVE. Furthermore, if all of the
iterates are defined for each method, corresponding iterates satisfy

(34) 23%(C) = Uzy¢(C) and rp¢(C) = Ury ¢ (C).
Therefore, for each method, the corresponding computations yield identical residual and error norms,

(35) I (Ol = [l (O and ||e" (O] = lleg"" (O
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THEOREM 4.2. (Erzact Arithmetic) (QMR/BiCG): Let U be any unitary matrizc. Let C be a
nonsymmetric matriz and define C = UHCU. Fork = 1,...,K, let TS , TS and V¢, WE, V¢, W€
denote respectively, BiCG matrices and vectors, obtained by applying QMR/BiCG to Cz = ¢ and to
Cy = ¢ with é = UHc, 1S = UHr§, and 7 = UTFS. Then for each k, TS, = TS, V¢ = UV,¢, and W€
=U ch"' , where U is the complex conjugate of U. Furthermore if all of the iterates are well-defined for
each method, corresponding iterates satisfy

(36) z.9(C) = Uz ?(0) and r°(C) = Ury?(0).
Therefore, for each method, the corresponding two computations yield identical residual and error norms,
(37) I 2 (O = 172 (O)]] and ||e (O] = llex 2 (C)]I-

Theorems 4.1 and 4.2 demonstrate that as measured by the behavior of both the residual norms and the
corresponding error norms, the GMRES/FOM methods and the QMR/BiCG methods for solving Az = b
are invariant under unitary similarity transformations of A and corresponding unitary transformations of
b, 7o, and 7y. Theorems 4.1 and 4.2 apply to complex or real versions of GMRES/FOM and QMR/BiCG.
If A is normal these theorems imply that in exact arithmetic we can study the behavior of any of these
procedures on normal matrices by studying their behavior on diagonal matrices. For arbitrary A we can
use the preceding unitary equivalences to obtain the following theorem, [7].

THEOREM 4.3. (Ezact Arithmetic). For either GMRES, FOM, QMR or BiCG, all possible residual
norm plots and all possible error norm plots can be generated by considering matrices of the form

(38) A=xVvHjVyx-t

where Y. 1s a diagonal matriz with positive diagonal entries, V is a unitary matric and J is the Jordan
canonical form of A. If A is diagonalizable, then J is a diagonal matriz A of the eigenvalues of A. If A 1s
real and diagonalizable, we can replace complex V. and A in equation(38) by a real orthogonal matriz and
a real block diagonal matriz with 1 X 1 and 2 X 2 blocks.

Therefore, to study the behavior of any of these Krylov subspace methods on diagonalizable matrices it
is sufficient to consider matrices with eigenvector matrices of the form V¥ where ¥ is a positive diagonal
matrix and V is a unitary matrix. We can use equations(38) to specify various eigenvalue distributions
and eigenvector spaces. For any unitary V and diagonal A, B = VZAV is normal so that we have the
following lemma.

LEMMA 4.1. Let A be diagonalizable and defined by equation(38) for some choice of % , unitary V,
and A, then A is a positive diagonal similarity transformation of the normal matriz

(39) B =VHAV.

If all of the eigenvalues of A are real, then A is a positive diagonal similarity transformation of a Hermitian
matriz.

5. Numerical Comparisons

We are interested in studying the convergence behavior of GMRES/FOM, QMR/BiCG, BiCGSTAB,
GMRES(10) and GMRES(20) as we vary the spectral properties of the test matrices. We have constructed
MATLAB [14] codes which allow the user to generate and regenerate test matrices of the form given in
equation(40). The user can also call any of the MATLAB Template codes [2] for solving equation(1). See
[7] for more details. We note that in QMR/BiCG in [2], 7o = 7.

If all of the iterates are well-defined, the lower envelopes of the residual norm plots generated by
applying GMRES and FOM to any problem track each other [6]. Whenever the residual norms in a
FOM plot begin to increase the residual norms in the corresponding GMRES plot must flatten and neither
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residual norm can improve until the FOM residual norm plot finishes its excursion. Furthermore, whenever
there is a strongly monotone decreasing segment in a GMRES residual norm plot there must be a strongly
monotone decreasing segment in the corresponding FOM plot. Therefore, we do not need to run tests on
FOM. A similar relationship exists for the BiCG residual norms and the corresponding QMR quasi-residual
norms [6]. In practice we observe that until the finite precision errors become dominant, the true QMR
residual norms and the QMR quasi-residual norms track each other. Serious deviations between these two
norms could be used as a heuristic for estimating when the finite precision limits of convergence have been
exceeded. Figures 1-2 illustrate this behavior on three nonnormal problems. In such situations we would
not need to run BiCG tests.

In section 6 we examine the behavior of GMRES(10), GMRES(20), QMR, and BiCGSTAB. We restrict
our tests to diagonalizable test matrices, only because including general Jordan forms would add to the
number of cases to consider. Each test matrix is of the form

(40) A = S, VEAVE?!

where A; is real and block diagonal with 1 X 1 and 2 X 2 blocks and, V; is a real orthogonal matrix.

Many different factors may influence the convergence rates, the choice of %, of the eigenvalue
distribution, of V, and of b or #44.. In addition we should consider possible effects from reordering
the eigenvalues in A, or the singular values in ¥. It is conceivable that if we constructed an example
where the most dependent parts of the eigenspace corresponded to very small outlier eigenvalues, that
the convergence of one or more of these procedures on that example could differ from its convergence on
an example where the outliers corresponded to well-behaved eigenvectors. If we modify b in accordance
with the permutation, then permuting either the singular values or the eigenvalues corresponds to some
permutation of the columns of V' [7]. In section 6 we fix V', generating it randomly, using the random
number generator RAND and the ORTH routine in MATLAB [14], and we vary ¥ and A,.

In each test it is necessary to select either ;.. or b. It is not sufficient to either simply fix b or fix
Ty for all tests. We need to make choices which isolate the property we are varying, and are consistent
across the set of problems being considered. We want to be able to look at each test problem individually
and be able to compare results of tests across certain subsets of test problems.

In particular we want to trace the convergence of a method as we vary the nonnormality of the test
problem while keeping the eigenvalue distribution fixed. We also want to trace the convergence of a method
as we vary the eigenvalue distribution while keeping the eigenvectors fixed.

Theorems 4.1 and 4.2 indicate that if the test matrices differed by unitary similarity transformations,
then we should select b so that the sizes of the projections of these vectors on corresponding right
eigenvectors are preserved across the problems. Our test matrices do not differ by unitary similarity
transformations. However, it still seems appropriate to maintain the sizes of the projections of & on the
right eigenvectors across sets of test problems. Moreover, if A models some physical system and if the model
is correct, then any ... should live comfortably in the eigenspace of A. Therefore, for the nonnormality
tests we fix the eigenvalue distribution and set z¢_, = X*y where 7 is generated randomly, X* = ;V.# D¢,
and D' is chosen as in Lemma 5.1 below. Lemma 5.1 states that this choice preserves the sizes of the
projections of the right-hand sides on corresponding right eigenvectors, if the eigenvalue matrix is fixed.

In tests where we vary the eigenvalue distribution we cannot use equation(41). For those tests we fix
the eigenvector matrix and set b = X+ where v is generated randomly and X is the specified eigenvector
matrix, scaled as in Lemma 5.1.

We order the eigenvalues by algebraically-smallest real part to algebraically-largest real part, construct-

ing any 2 x 2 blocks in A, in the form
a b
b a

where \; = a+ b2, A\j;1 =a—bi,and b > 0.
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LeEMMA 5.1. Let A;, 1 <14 < g, be real n X n matrices defined by equation(40). Let Y* = %,V.H. Define
D* = diag{ds, ..., d}} as follows. If X: is real, set d; equal to the reciprocal of the norm of the j** column
of Y*. If X and X;,, are a conjugate pair of eigenvalues, set d; = d:, equal to the reciprocal of the square
root of the sum of the norms of the j** and the (7 + 1)th columns of Y'. Define X* = Y'D'. Let v be

generated randomly and define
(41) :Z:i'rue = XZ’Y'

Then for all A;, z%.,, is the same combination of corresponding unit right eigenvectors, and for any subset
of matrices with A} = Ay, both z¢_ , and the corresponding right-hand sides

(42) b = X'Ayy

are the same combinations of corresponding unit right eigenvectors.

Proof. For any i, let X} denote the j** column of X*. If )} is real, then X7 is a unit right eigenvector
of A;. If )\j and >‘§'+1 are a conjugate pair, define zf = X;f and zI' = X;_I_l. Then z; = 2B + izl and
Zi,, = 2% — iz" are unit right eigenvectors for A} and A%, . Let Z° denote the matrix whose columns are
z;, 1 < j < n. It is straightforward to prove that z3,,, = X'y = Z'y where ¥; = ; if A} is real, and ; =
B(v; —ivj41) and F;41 = B5(7y; +ivj41) if A% and i, are a conjugate pair. Therefore, b* = X*Ajy = Z° A%y
where A} is the diagonal matrix of eigenvalues corresponding to A}.

Equation(38) is invariant under a scalar scaling of ¥. We scale each X so that the diagonal elements
and the inverses of the diagonal elements are in the same subinterval of the real axis. We also order the

singular values from largest to smallest.

6. Numerical Experiments and Observations

We ran a series of numerical experiments in attempts to gain some insight into the following issues.
1. How does nonnormality affect the convergence rates of GMRES and QMR as measured by the residual
norms and the error norms?

2. How does the convergence rate of QMR vary with changes in the eigenvalue distribution? In
particular, what role do outliers play in the convergence?

3. Which method is best for a given problem? Can we identify a method which is superior to the other
methods in terms of both its residual norm and error norm convergence?

Our tests were limited and can only suggest possibly interesting types of behavior to explore
theoretically and numerically. Answers to Question 2 may provide some insight into characterizations
of effective preconditioners.

In section 6.1 we define the eigenvalue and the singular value distributions used in the test problems.

In section 6.2 we compare the observed behavior of QMR and GMRES across several nonnormal
problems with variations in both the eigenvalue distribution and the singular value distribution of the
eigenvector matrix in attempts to determine the sensitivity of these methods to nonnormality.

In section 6.3 we compare the behavior of QMR across a family of normal matrices and a corresponding
family of nonnormal matrices where we systematically adjusted the eigenvalue distribution to determine
the effects of outliers and of real versus complex eigenvalues on the convergence rate.

In section 6.4 we make some comments about the comparative behavior of GMRES(10), GMRES(20),
QMR, and BiCGSTAB across a variety of normal and nonnormal test problems.

6.1. Test Matrices Used

Each test matrix is defined by equation(40) for different choices of ¥ and A;. V' is generated randomly and
fixed. All test problems are of size n = 48. In [8] we observed that small but nonzero entries in strategic
positions in V can affect the convergence of eigenvalue computations based upon either the Arnoldi or
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nonsymmetric Lanczos recursions. In section 6.3 we observe, as others have observed, that the convergence
rate of QMR appears to be correlated with the ability of the procedure to recognize small outliers [21]. If
V has a nefarious structure which correlates with small outliers, we might expect similar effects upon the
convergence of the QMR/GMRES procedures for Az = b. We do not, however, consider such effects in
this paper. Also we do not use any form of preconditioning.

In each test case all of the eigenvalues have positive real parts. The eigenvalue distributions considered
were as follows. In each test, the corresponding real block diagonal form was used.

1.

10.

Ag.ag: All of the eigenvalues are complex. There are no outliers. Ag,45 is the eigenvalue distribution
of the Gerar matrix, n = 48 [20]. For a picture of this distribution see [8].

. Agspot The eigenvalues are real and complex. There are both small and large complex pairs of

outliers, two pairs with magnitude 10~* and 1072, and three pairs with magnitudes 25, 55, and 100.
The real parts of the other eigenvalues are in [1,10] and the imaginary parts are in [—10,10], all
generated randomly in several boxes in the plane.

. Ay pot The eigenvalues are real and complex. There is a small complex pair of outliers of magnitude

1072. There are 3 complex pairs of large outliers. This distribution is obtained from A,,; by replacing
the small complex pairs of eigenvalues of magnitude 10~* and 102 by almost purely imaginary pairs
of magnitude 1072 and .96.

. Mgzt The eigenvalues are real and complex. There are no small outliers. There are 3 large complex

pairs of outliers. This distribution is obtained from A,,;» by replacing the small complex pairs of
eigenvalues of magnitude 10~* and 10=2 by almost purely imaginary pairs of magnitude .99 and .96.

. A2t The eigenvalues are real and complex. There are two complex pairs of small outliers of

magnitude 10™* and 1072, There are no large outliers. This distribution is obtained from A,,;; by
replacing the large complex pairs by complex pairs of the same size as the rest of the eigenvalues in
the distribution.

. Asspo: The eigenvalues are real and complex. There are no small or large outliers. This distribution

is obtained from A,,;; by replacing the small complex pairs of eigenvalues of magnitude 10=* and
1072 by almost purely imaginary pairs of magnitude .99 and .96, and replacing the large complex
pairs by complex pairs of the same size as the rest of the eigenvalues in the distribution.

. A2t The eigenvalues are real and complex. The small outliers are nearly real, the big outliers

are complex pairs. This distribution is obtained from A,;» by replacing the small complex pairs of
magnitude 10~* and 102 by nearly real complex pairs with the same magnitudes.

. A, .2t The eigenvalues are real and complex. Both the small and the large outliers are nearly real.

This distribution is obtained from A,,;; by replacing the small complex pairs of magnitude 10~* and
10~? by nearly real complex pairs with the same magnitudes, and replacing the large complex pairs
by nearly real complex pairs.

. Aozt The eigenvalues are all nearly real. There are small outliers of magnitude 10~* and 1072, and

large outliers of magnitudes 21,23 and 28. This distribution is obtained from A,,;» by replacing all of
the complex pairs by nearly real complex pairs obtained by multiplying all of the nonzero imaginary
parts by 10712,

A,sp2: The eigenvalues are all nearly real. There are no small outliers. There are large outliers with
magnitudes 21,23 and 28. This distribution is obtained from A,,;» by replacing all of the complex
pairs by nearly real complex pairs obtained by multiplying all of the nonzero imaginary parts by
107*?, and replacing the small eigenvalues of magnitude 10™* and 1072 by eigenvalues of magnitude
.26 and .265.
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11. Aot The eigenvalues are all nearly real. There are no small or large outliers. This distribution is
obtained from A,,;» by replacing all of the complex pairs by nearly real complex pairs obtained by
multiplying all nonzero imaginary parts by 107!, replacing the small eigenvalues of magnitude 10~*
and 1072 by eigenvalues of magnitude .26 and .265. and reducing the large nearly real outliers to
2.1,2.3, and 2.8.

The three singular value distributions considered were as follows.
1. ¥ : The identity matrix. Used to generate normal problems.

2. X250t Obtained by computing the equally spaced points t; , ¢ = 1,...,48, in the interval [—2,0]
and setting the singular values o; = 107%",

3. X,ras: Obtained from the Gerar matrix of size 48 by applying the MATLAB function EIG to this
matrix and then applying the MATLAB function SVD to the eigenvector matrix obtained from EIG.

In each test we track the true residual norms, the estimates of the residual norms, and the true
error norms. True residual norms are used to determine convergence, and unless specifically indicated

otherwise, each residual norm plot contains the true residual norms. Each procedure is terminated when
[[7ll/llmol] < 10—-12.

6.2. Effects of Nonnormality on Convergence

We compare the convergence of QMR and GMRES residual and error norms for ¥;_, ¥,2,250, and Xg,4s,
and A, corresponding to

(43) Agr487 Aasb27 Afsb27 Amsb27 Aosb27 and Aqsb2-

In each figure in this section we plot at most the first 150 iterations of each test.

In Figures 3 — 14 we plot the residual norms and the corresponding error norms obtained by applying
GMRES and QMR to each of the 18 problems obtained by combining each of the above eigenvalue
distributions with each of the three singular value distributions. In each of these figures the eigenvalue
distribution is fixed and we have applied GMRES and QMR to the test problems defined by that eigenvalue
distribution, the prespecified V and 7, and each of the three ¥ distributions, ¥, ¥,2,250, and ¥,,4s. In
each of these tests we define ;. according to Equations(41). Other tests using a different distribution
for generating V' and +y yielded similar results.

We make several observations. First, the residual norm plots in figures (25 — 1) for 2 < 7 < 7, indicate
that for each of the two nonnormal problems corresponding to each eigenvalue distribution, GMRES is
converging significantly more rapidly than QMR. These indications, however, are incorrect, as is clearly
illustrated in the corresponding error norm plots, figures 25, 2 < 57 < 7. The initial portions of the error
curves for corresponding GMRES and QMR plots do not exhibit any large deviations which might be
expected from the large deviations between the corresponding residual norm plots.

Second, in each of these figures the GMRES residual norm plot for the normal problem is essentially
an upper envelope to the GMRES plots for the two nonnormal problems whereas the QMR residual norm
plot for the normal problem is either a lower envelope to the QMR plots for the two nonnormal problems or
intersects with those curves. Theoretically, GMRES and QMR are identical when A is real and symmetric,
and we observe that in the tests on normal problems with nearly real eigenvalues, the corresponding
GMRES and QMR residual norm curves track each other, at least initially.

Third, in these tests, as we increase the nonnormality, the GMRES residual norm curves decrease more
rapidly. These misleading decreases in the GMRES residual norm plots for the nonnormal problems caused
premature termination of the GMRES procedure on several nonnormal test problems. See for example,
figures 9-12.

Fourth, for problems without outliers, see figures 3-4,7-8,13-14, the differences in the number of
iterations required for QMR residual norm convergence as we vary the nonnormality, are small. In the
problems with outliers, figures 5-6,9-10,11-12, these differences are larger but the corresponding differences
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in the QMR error norm plots are still reasonably small for most but not all iterations. The effects of
outliers on GMRES can be seen most clearly in the error norm plots. Whenever small outliers are present,
all of the significant error reductions in the GMRES error norms occur on the last few iterations.

In these tests we also observe significant changes in the number of iterations required by QMR as
we vary both the outliers and whether or not the eigenvalues and the outliers are real or complex. The
number of QMR iterations required appears to be more sensitive to changes in outliers than to the changes
in nonnormality which we use. For additional discussions of the effects of nonnormality on iterative methods
for equation(1), see for example [3, 5, 20].

6.3. Outliers and Their Effect on the Convergence of QMR

We want to study the effect of different eigenvalue distributions upon the convergence rate of QMR. We
consider both normal and nonnormal test matrices. For each set of tests in this section we fix the eigenvector
matrix X as defined in Lemma 5.1. Beginning with a general eigenvalue distribution with both real
and complex eigenvalues and both small and large complex pairs of outlier eigenvalues, we systematically
modify the eigenvalue distribution to attempt to identify properties of the distribution which have the most
significant effects upon the observed convergence rate. Since we are varying the eigenvalue distribution,
setting z* . = X'y does not preserve the sizes of the projections of 4° on corresponding right eigenvectors.
In fact that choice of 2%, yields b* with small projections on any right eigenvectors corresponding to small
eigenvalues, and this might cause QMR to take longer to converge.

Therefore, for each set of test problems in this section, we set 5° = X for all 4. This choice fixes the
size of the projection of & on each unit right eigenvector of A* but can yield distorted z%,.,,. However, this
choice avoids any artificial effects due to changes in the starting residual as we go from one problem to
another.

We consider two sets of eigenvalue distributions. The first set

(44) Aasb27Absb27Adsb27Aesb27 and Afsb27

consists of eigenvalue distributions which contain both real and complex pairs of eigenvalues, and are
obtained from A,,;» by modifying the outliers. A,,;» contains two small complex pairs of outliers with
magnitudes 107* and 1072 and three large complex pairs of outliers with magnitudes 25,55, and 100. A2
has no outliers. In figures 15-16 we consider normal problems with these eigenvalue distributions. In figures
19-20 we consider nonnormal problems with these eigenvalue distributions.

The second set

(45) Aasb27 Amsb27 Ansb27 Aosb27 Apsb27 and Aqsb27

consists of eigenvalue distributions which contain complex, real or nearly real pairs of eigenvalues, and
are obtained from A,,;2 by modifying the outliers and the imaginary parts of the other complex pairs of
eigenvalues. In figures 17-18 we consider normal problems with these eigenvalue distributions. In figures
21-22 we consider nonnormal problems with these eigenvalue distributions.

Figures 15-22 clearly illustrate the significant decreases in numbers of iterations achieved by systemat-
ically simplifying the eigenvalue distribution, independent of the nonnormality. We observe that for both
the normal and the nonnormal problems and for both sets of eigenvalues, QMR takes much longer to
converge when the problem has outliers . In particular note the reductions achieved by modifying A,z
which is a mixed real and complex distribution with both small and large complex pairs of outliers to Ay,
where the magnitudes of the two smallest complex pairs of outliers of A,,;» have been increased or to A,
where the magnitudes of the large complex outliers have been reduced. Also note the significant reductions
obtained by modifying A2 to Agpe which has the large complex pairs of outliers but no small outliers
and then to A, with no large or small outliers.

The tests on the second sequence of eigenvalue distributions, indicate continuous significant reductions
in the numbers of iterations required as we simplify the mixed complex and real distribution A, to the
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nearly real distribution with no outliers A,;,. Comparing figures 15-16 and 19-20 with figures 17-18 and
21-22 we also observe significant improvements in the convergence for each of the nearly real distributions
over the corresponding mixed real and complex distributions.

In particular note the reductions obtained by systematically changing the distribution for A,. to
A,..p2 where the small complex outliers have been made nearly real and then to A, where both the small
and the large outliers in A,,;2 have been made nearly real. Also note the additional significant reductions
achieved by further modifying A, 2 to Aoz, by making all of the eigenvalues nearly real, to A3, where
all of the eigenvalues are nearly real and there are no small outliers, and then to A2, where all of the
eigenvalues are nearly and there are no outliers.

For a preconditioning to be successful it should modify the problem to elminate significant outliers,
large or small, and make the modified eigenvalue distribution as nearly real as possible.

In several cases the QMR iterations continued beyond the finite precision limits of convergence. We
could have avoided that problem if we had incorporated the heuristic check on the relative magnitudes of
the quasi-residuals and true residuals which we mentioned in section 5.

6.4. Comparisons of Methods

We want to compare the performance of these methods. Forlarge problems it is not feasible to use GMRES,
so in this section we consider restarted GMRES. Moreover, in almost all cases, the lower envelopes of the
QMR and BiCG residual norms are very close together [6]. Because of these similarities we do not include
BiCG norms in any of the plots in this section. In this section we consider only GMRES(10), GMRES(20),
QMR, and BiCGSTAB.

We applied each of these methods to the test problems obtained using the eigenvalue distributions
listed in section 5 and the two singular value distributions ¥; and ¥,,4s. In figures 23-32 we use the tests
on the following eigenvalue distributions

(46) Absb27 Adsb27 Afsb27 Aosb27 Apsb27 and Aqsb27

to summarize these tests. In figures 23-26 we consider GMRES(10) and GMRES(20) in the normal cases,
Y = ¥;,. In figures 27-28 we consider GMRES(20) in the nonnormal cases, £ = X,45.

Number of Iterations to Convergence, ||74||/||7o| < 10712

Method GMRES (10) GMRES (20) QMR BICGSTAB

Problem
psb2id2 91 70 35 33
psb2gr2 87 59 35 43
qsb2id2 56 48 31 23
qsb2gr2 56 47 31 28

True Error Norm at Convergence

Method GMRES (10) GMRES (20) QMR  BICGSTAB

Problem

psb2id2 2 x 10712 5x 10713 1x107*® gx107*
psb2gr2 2x 10711 3 x10°10 3x 107  6x10°13
qsb2id2 4 x 10712 9 x 10713 1x107® 9x10712
gsb2gr2 4 x 10712 2 x 10~10 2x 107 3 x 10712

Table 6.1. Comparison Across Methods: Residual and Error Norm Convergence. Eigenvalue
Distributions: A, and Ag.ye. Singular Value Distributions: 3, = id and X8 = g7.

In the tests run, GMRES(10) converged only when A = A, ;5 or Ayo. In both of these distributions the
eigenvalues are real or nearly real and there are no small outliers. Convergence occurs in both the normal
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and the nonnormal cases. See figures 23-24 where we have plotted the results of applying GMRES(10) to
the normal problems corresponding to the six eigenvalue distributions in equation(46). In the corresponding
plots for the nonnormal cases, the residual and error norm curves for the four nonconvergent eigenvalue
distributions are flatter and closer together.

GMRES(20) achieves some measure of convergence for all of the distributions in equation(46) except
for Ay.ps, the only distribution with small outliers which are complex pairs. For A,,;4,,which contains two
pairs of nearly real outliers of magnitude 10=* and 10~2, convergence occurs only in the normal case. See
figures 25-26, 27-28.

For the two nearly real eigenvalue distributions with no small outliers, A, ;2 and Ag;, the differences in
the convergence rates of the GMRES(20) residual and error norm plots between the normal and nonnormal
cases are not large. For the other distributions there are significant differences, and the error reductions
in the nonnormal cases are less than in the normal cases.

In figures 29-32 we consider similar tests on BiCGSTAB. We observe that the convergence is less
predictable for this method. BiCGSTAB converges well for the two eigenvalue distributions which are nearly
real and have no small outliers, A, ;2 and Ay . See Table 6.1. However, it has trouble with Agpa, Afseo,
and A2 in the normal case, and with Ay and A 2 in the nonnormal case. The difficulties with Ay s
and A, may occur because in real arithmetic BICGSTAB cannot handle complex eigenvalues very well.
It fits linear GMRES polynomials at each iteration. These tests should be rerun using BICGSTAB(2) which
fits second order GMRES polynomials which can model pairs of complex eigenvalues in real arithmetic
[13]. BiCGSTAB(2) was not available in the MATLAB Templates [2].

Finally we consider QMR on each of these test problems. See figures 33-36. On these tests, to within
error norms of size 107° there were no significant differences between the convergence in the normal and
the nonnormal cases. The decrease in the number of iterations required as we simplify the eigenvalue
distribution is depicted clearly in these figures.

If we compare the number of iterations required by GMRES(20), BiCGSTAB, and QMR on
corresponding test problems, we see that with the exception of the nearly real distributions. A,;;; and
Agsp2 with no small outliers, that QMR converged more quickly and more reliably than the other two
procedures. For Ay, BICGSTAB converged significantly more quickly than QMR in the normal case and
was 10% faster in the nonnormal case. For Ay, BICGSTAB converged slightly more quickly than QMR
in the normal case. See Table 6.1.

In these tests as well as in the tests in section 6.3, the number of iterations required for convergence of
the QMR residual norms seems to be more strongly influenced by the choice of the eigenvalue distribution
than by the choice of singular value distribution. We note however that changing ¥ is only one way to alter
the nonnormality of a test problem. In these tests we have not considered general variations in V. We only
generated V randomly, using either a uniform or a normal distribution. It may be possible to construct
other unitary V such that 3 and V interact to make the problem more difficult than the 3 matrix alone
might indicate. Moreover, we note again that these tests should be rerun using BiCGSTAB(2) which was
not available in the MATLAB Templates [2].

7. Summary

We derived a relationship between residual norms generated by the BiCG method and residual norms
generated by the FOM method. This relationship states that any residual norm plots seen in a BiCG
computation can also be seen in a FOM computation on a different problem but with the same eigenvalues.

Using unitary equivalences for each of the methods GMRES/FOM/QMR/BiCG, we defined sets of test
problems where we can easily vary certain spectral properties of the test matrices. Within the context of
these test matrices, we discussed the question of consistency across test problems. We used test problems
of this type to explore three questions. First, we considered the effect of nonnormality on the convergence
of GMRES and QMR for different eigenvalue distributions. Second, we traced the behavior of QMR as we
varied the eigenvalue distribution in test problems with the eigenvector matrix fixed. Finally, we compared
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the convergence of QMR, GMRES(10), GMRES(20), and BiCGSTAB over a set of normal and nonnormal
test problems with different eigenvalue distributions.

Our GMRES tests on nonnormal test matrices indicate that nonnormality can have unexpected effects
upon the residual norm convergence, giving misleading indications of superior convergence over QMR when
the error norms for GMRES are not significantly different from those for QMR. This behavior can lead to
premature termination of the GMRES procedure.

Our tests on QMR indicate that the convergence of the QMR residual and error norms is strongly
controlled by both small and large eigenvalue outliers and by the character, real, complex or nearly real, of
the outliers and the other eigenvalues. This behavior is not evident in our GMRES residual norm plots but
is exhibited clearly in the corresponding GMRES error norm plots. In our comparison tests, we considered
complex, mixed, and nearly real eigenvalue distributions with and without small and large outliers. Overall
QMR was more robust and reliable and outperformed GMRES(10) and GMRES(20) on both the normal
and nonnormal test matrices. Comparisons with BICGSTAB should be made only after similar tests are

made using BiCGSTAB(2).
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Fic. 4. GMRES vs. QMR: Error Norms versus Iteration Number. Figenvalue Distribution: Agas. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:
big dots, dashes, +.



22

size=48asb2grl:-,asb2grl:.,ash2a21:-.,asb2a21:--,asb2idl::,asb2id1+
107 it T T

-10

Log Norm of Scaled Residual

-15 ] |

0 50 100 150
Iteration Number

10

Fic. b. GMRES vs. QMR: Residual Norms versus Iteration Number. Figenvalue Distribution: Agsp2. Singular
Values Distributions: Ygpag = g7, Dazr2e0 = a2, X5, = id, Residual Norms: GMRES: solid, dot-dash, small dots.
QMR: big dots, dashes, +.
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Fic. 6. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: Agspo. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:
big dots, dashes, +.
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Fic. 7. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: Afpy. Singular
Values Distributions: Ygpag = g7, Dazr2e0 = a2, X5, = id, Residual Norms: GMRES: solid, dot-dash, small dots.
QMR: big dots, dashes, +.
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Fic. 8. GMRES vs. QMR: Error Norms versus Iteration Number. Figenvalue Distribution: Az.py. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:
big dots, dashes, +.
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FiGc. 9. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: Ay, sp2. Singular
Values Distributions: Ygpag = g7, Dazr2e0 = a2, X5, = id, Residual Norms: GMRES: solid, dot-dash, small dots.
QMR: big dots, dashes, +.
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Ficg. 10. GMRES vs. QMR: Error Norms versus Iteration Number. Figenvalue Distribution: Ay, sp2. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:

big dots, dashes, +.
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Ficg. 11. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: Aysp2. Singular
Values Distributions: Ygpag = g7, Dazr2e0 = a2, X5, = id, Residual Norms: GMRES: solid, dot-dash, small dots.
QMR: big dots, dashes, +.
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Ficg. 12. GMRES vs. QMR: Error Norms versus Iteration Number. Eigenvalue Distribution: Ayspz2. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:
big dots, dashes, +.
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Fic. 13. GMRES vs. QMR: Residual Norms versus Iteration Number. Eigenvalue Distribution: Agopp. Singular
Values Distributions: Ygpag = g7, Dazr2e0 = a2, X5, = id, Residual Norms: GMRES: solid, dot-dash, small dots.
QMR: big dots, dashes, +.
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Fic. 14. GMRES vs. QMR: Error Norms versus Iteration Number. Figenvalue Distribution: Agspo. Singular
Values Distributions: Xgra8 = g7, Daaraso = a2, X1, = id, Error Norms: GMRES: solid, dot-dash, small dots. QMR:
big dots, dashes, +.
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Fic. 15. QMR: Residual Norms versus Iteration Number: Normal Case: Mized Real and Complex Eigenvalue
Distributions: Agspa, Apspa, Adsva, Nessa, Apspa. Singular Value Distribution: g .
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QMR: Error Norms versus Iteration Number: Normal Case: Mized Real and Complez Eigenvalue
Aasva, Apsva, Aasva, Aessa, Afspa. Singular Value Distribution: Xy, .
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Fic. 17. @QMR: Residual Norms versus Iteration Number: Normal Case: Mized to Nearly Real Eigenvalue
Distributions: Agspa, Amssa, Anss2, Aosva, Apsvz, Agspa. Singular Value Distribution: g .
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QMR: Error Norms versus [teration Number: Normal Case: Mized to Nearly Real Eigenvalue

Distributions: Agspa, Amssa, Anss2, Aosva, Apsvz, Agspa. Singular Value Distribution: g .



36

size=48asb2gr2:-,bsb2gr2:.,dsb2gr2:-.,esb2gr2:--,fsb2gr2::
107 1 T T

=
o
T

=
o|
[e2)
T
~
1

o
o|
(o]
T
s
(
|

Log Norm of Scaled Residual

=
o|
T
1

12 \

-14 | |

0 50 100 150
Iteration Number

10

Fic. 19. @QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mized Real and Complex
Eigenvalue Distributions: Agspa, Apsez, Mdsva, Aespa, Afspa. Singular Value Distribution: Xgpas.
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Fic. 20. QMR: Error Norms versus Iteration Number: Nonnormal Case: Mized Real and Complex Eigenvalue

Distributions: Agspa, Apspa, Adspa, Aessa, Apspa. Singular Value Distribution: Yypas.
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Fic. 21. QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mized to Nearly Real Eigenvalue
Distributions: Agspa, Amssa, Anss2, Aosva, Apsva, Agspa.. Singular Value Distribution: Yypas.
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Fic. 22. QMR: Error Norms versus Iteration Number: Nonnormal Case: Mized to Nearly Real Eigenvalue
Distributions: Agspa, Amssa, Anss2, Aosva, Apsva, Agspa.. Singular Value Distribution: Yypas.
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GMRES(10): Residual Norms versus Iteration Number: Normal Case: Mized Real and Complex to

Nearly Real Eigenvalue Distributions: Apspa, Adsva, Afsvz, Mosva, Apsva, Agsva. Singular Value Distribution: Xj .
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Fic. 24. GMRES(10): Error Norms versus Iteration Number: Normal Case: Mized Real and Complez to

Nearly Real Eigenvalues Distributions: Apspz, Adspa, Afsva, Moss2, Apsa, Mgspz. Stingular Value Distribution: Xy, .
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Fic. 25. GMRES(20): Residual Norms versus Iteration Number: Normal Case: Mized Real and Complex to
Nearly Real Eigenvalue Distributions: Apspa, Adsva, Afsvz, Mosva, Apsva, Agsva. Singular Value Distribution: Xj .
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Fic. 26. GMRES(20): Error Norms versus Iteration Number: Normal Case: Mized Real and Complez to
Nearly Real Eigenvalue Distributions: Apspa, Adsva, Afsvz, Mosva, Apsva, Agsva. Singular Value Distribution: Xj .
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Fic. 27. GMRES(20): Residual Norms versus Iteration Number: Nonnormal Case: Mized Real and Complex
to Nearly Real Eigenvalue Distributions: Apspa, Agsva, Afsva, Nosva, Apswa, Agspa. Singular Value Distribution: Ygpas.
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Fic. 28. GMRES(20): Error Norms versus Iteration Number: Nonnormal Case: Mized Real and Complez to
Nearly Real Eigenvalue Distributions: Apspa, Adspa, Afsv2, Nosv2, Apspa, Agspa. Singular Value Distribution: Yypas.
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Fic. 29. BiCGSTAB: Residual Norms versus [teration Number: Normal Case: Mized Real and Complex to
Nearly Real Eigenvalue Distributions: Apspa, Adsva, Afsvz, Mosva, Apsva, Agsva. Singular Value Distribution: Xj .
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Fic. 30. BiCGSTAB: Error Norms versus Iteration Number: Normal Case: Mized Real and Complez to Nearly

Real Eigenvalue Distributions: Apspa, Agspa, Apspa, Mospa, Apspa, Agspa. Singular Value Distribution: Xy, .
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Fic. 31. BiCGSTAB: Residual Norms versus Iteration Number: Nonnormal Case: Mized Real and Complex to
Nearly Real Eigenvalue Distributions: Apspa, Adspa, Afsv2, Nosv2, Apspa, Agspa. Singular Value Distribution: Yypas.
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32. BiCGSTAB: Error Norms versus Iteration Number: Nonnormal Case: Mized Real and Complez to
Nearly Real Eigenvalue Distributions: Apspa, Adspa, Afsv2, Nosv2, Apspa, Agspa. Singular Value Distribution: Yypas.
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Fic. 33. QMR: Restdual Norms versus Iteration Number: Normal Case: Mized Real and Complex to Nearly
Real Eigenvalue Distributions: Apspa, Agspa, Apspa, Mospa, Apspa, Agspa. Singular Value Distribution: Xy, .
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Fic. 34. QMR: Error Norms versus Iteration Number: Normal Case: Mized Real and Complez to Nearly Real
Eigenvalue Distributions: Aypspz, Aasva, Afsva, Moss2, Mpssa, Agspa. Stingular Value Distribution: Xy, .
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Fic. 3b. QMR: Residual Norms versus Iteration Number: Nonnormal Case: Mized Real and Complez to Nearly
Real Eigenvalue Distributions: Apepa, Agspa, Apspa, Nosva, Apspa, Agspa. Singular Value Distribution: Mgpas.
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QMR: Error Norms versus Iteration Number: Nonnormal Case: Mized Real and Complex to Nearly

Real Eigenvalue Distributions: Apepa, Agspa, Apspa, Nosva, Apspa, Agspa. Singular Value Distribution: Mgpas.



