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This dissertation investigates communication and estimation over channels

whose transmission characteristics change with previous channel utilization and

transmissions. We define three classes of channels: 1) Use-dependent discrete switch-

ing channels, 2) Use-dependent packet-drop channels, and 3) Shared-resource mul-

tiple packet-drop channels. In each of these classes of channels, there is a channel

state that determines the channel’s transmission characteristics.

For use-dependent discrete switching and packet-drop channels, there is a

channel transmission policy that calculates the input to the channel state system.

There is also an encoding policy that calculates the data to transmit over the chan-

nel. For these channels, we explore the properties, structure, and calculation of

optimal channel transmission and encoding policies.

A discrete channel and a finite state machine, the channel state, form a use-

dependent discrete switching channel. For each channel state, the discrete channel

has different symbol transmission statistics. The transmission policy has access to



the output of the discrete channel. For a remote estimation problem with a condi-

tional entropy cost over these channels, we show a partial separation between the

design of transmission policies and encoding policies. Also, the optimal transmission

and encoding policy are calculated for a specific use-dependent discrete switching

channel.

A Bernoulli packet-drop link and a finite state machine, the channel state,

form a use-dependent packet-drop channel. The channel state influences transmis-

sion performance by adjusting the probability of a packet-drop on the Bernoulli

link. Each channel state corresponds to a specific drop probability. For a remote

estimation problem with an expected mean-squared error cost over these channels,

the structure of optimal transmission policies is explored.

For shared-resource multiple packet-drop channels, the channel has various

modes of operation for transmitting multiple sensor measurements to an estima-

tor over Bernoulli packet-drop links. Each mode of operation, or channel state,

prioritizes the transmission of some sensor measurements over others. The channel

state sets transmission priorities by adjusting the probability of packet-drop for each

Bernoulli packet-drop link. In a given channel state, one sensor’s drop probability is

low, while another sensor’s drop probability is high. For a remote estimation prob-

lem of transmitting the state of multiple systems over these channels, algorithms

are presented to design the transition between transmission prioritization, channel

states, to simultaneously stabilize the expected mean-squared estimation error of all

the systems.

A detailed application of these results to operator support system design and



a literature review of systematic design methods for decision support tools are pre-

sented.
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Chapter 1: Introduction

This chapter introduces and motivates the problem formulations addressed in

this dissertation. A motivating application for this research is the dynamic manage-

ment and interaction with human operators and the systematic design of decision

support systems. A literature review of relevant human operator phenomena is

supplied. Also, presented is a review of control system design techniques for hu-

man operator controlled systems. For each of the problem formulations, a literature

review specific to that formulation is presented in its corresponding chapter.

1.1 Motivation

The aim of this research is to improve the control and estimation of systems

that communicate over channels whose performance is impacted by previous chan-

nel usage. Control of systems over communication channels is a challenging prob-

lem: the control of systems over channels with memory that determines channel

performance even more so. This research focuses on remote estimation problems

over specific classes of channels with memory. The classes of channels under in-

vestigation are motivated by applications to communication systems with energy

harvesting capabilities and human operator support system design. These channels
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have an associated finite state machine (FSM) whose current state influences the

transmission characteristics of the channel. Both packet-drop and discrete channels

are considered in different problem formulations.

Often human operators are integral to the operation of engineered systems;

however, engineered systems are often not designed with explicit considerations for

the impact of a human operator. In specific scenarios, operators’ performance level

is well modeled by an FSM. For example, in [1] an FSM models the performance of

unmanned air vehicle operators performing a visual search of images. In this dis-

sertation, an operator’s response is modeled as the output of a channel. Operators’

performance is related to recent and current workload. Thus, the operator’s response

is modeled as a channel with memory that determines channel performance. By ex-

plicitly incorporating the impact of operator performance phenomena into control

system design, this research seeks to improve the performance of the entire system,

which includes both the human operator and the engineered system.

In battery-operated wireless communication systems with energy harvesting,

the decision of whether to attempt a transmission must be made time and again

at each time-step. The charge-level of the battery induces memory in the channel.

An attempted transmission affects the battery-level and consequently impacts the

current and future performance of the channel. In this dissertation, the battery dy-

namics are modeled using an FSM, which determines the instantaneous performance

of the channel. Transmission policies are designed with explicit considerations for

the energy harvesting capabilities and limitations of the communication system.

Guided by these primary motivating examples, the following problem formu-
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Figure 1.1: The general structure of the channels under investigation.

lations seek to improve the estimation of systems that communicate over channels

with usage dependent performance.

1.2 Overview of Problem Formulations

This dissertation investigates remote estimation problems over channels with

the general structure shown in Figure 1.1. This channel has a transmission com-

ponent whose instantaneous performance is determined by the current state of a

Markov chain. We refer to the Markov chain as the channel state. The channel has

a channel state input and an input for the data to be transmitted. The channel

output is the output of the transmission component. Many problems can be for-

mulated using this channel structure depending on the choice of objective function,

transmission component, Markov chain and channel state input. Guided by the mo-

tivating applications of channels with energy harvesting capabilities and operator

support system applications, several specific research problems using this channel

3



structure are discussed below.

The problem formulations presented are divided into two categories based on if

the Markov chain’s transition matrix is fixed or is one of the optimization variables.

With a fixed transition matrix, the optimization variables are the channel state

input and transmission variable input. If the Markov chain transition matrix is

not fixed, the optimization variables are the data used for transmission and the

transition matrix.

1.2.1 Problems with Fixed Markov Chain Dynamics

Two different problem formulations with fixed FSM dynamics are presented.

Chapter 2 discusses use-dependent switching channels where the transmission com-

ponent is a discrete channel, as shown in Figure 1.2. We formulate a problem where

the objective is to minimize the conditional entropy of a source random variable

given the channels output symbols. Chapter 3 discusses use-dependent packet-drop

channels where the transmission component is a Bernoulli packet-drop channel, as

shown in Figure 1.3. A problem is formulated where the objective is to minimize

the mean-squared estimation error.

In Chapter 2, we investigate transmitting the realization of a random variable

by multiple uses of a use-dependent switching channel, shown in Figure 1.2. The

channel state input represents a transmission attempt, and the FSM dynamics of the

channel state are fixed. The instantaneous statistics of the discrete channel depend

on the current channel state. With a finite number of channel uses the encoder,

4



Figure 1.2: The structure of use-dependent switching channels. The current state

of the finite state machine or channel state determines the statistics of the discrete

channel.

decoder and transmission policy are designed to minimize the conditional entropy

of the source random variable given the channel output symbols.

In Chapter 3, a remote estimation problem over a use-dependent packet-drop

channel, as shown in Figure 1.3, is explored. This channel has a Bernoulli packet-

drop transmission component and fixed channel state dynamics. The channel state

input represents a transmission attempt. The encoder, decoder, and transmission

policy are designed to track a random process by minimizing the mean square esti-

mation error.
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Figure 1.3: The structure of use-dependent packet-drop channels. The current state

of the finite state machine or channel state determines the probability that the

packet is dropped.

1.2.2 Designing the Transition Matrix of the Channel State Markov

Chain Dynamics

In Chapter 4, a remote estimation problem of tracking multiple random pro-

cesses by transmitting over a shared-state multiple packet-drop channel, as shown

in Figure 1.4, is considered. No channel state input is used and the channel state is

modeled as a homogeneous Markov chain. Each random process to be transmitted

is remotely estimated over a Bernoulli packet-drop link. The current channel state

determines the probability of a dropped packet for each link. This probability may

be different for each link. The channel state transition matrix is designed to stabilize

the mean-square estimation error of all systems.

6



Figure 1.4: The structure of the channels investigated in Chapter 4. Methods of

designing the Markov chain transition matrix to stabilize the mean square estimation

error of all l systems transmitted are explored.
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1.3 Dissertation Structure

Each subsequent chapter presents a detailed problem formulation, a literature

review, and a research contribution. Also, numerical examples and applications to

support system design and energy harvesting channels are presented where applica-

ble.

In Chapter 2, a remote estimation problem over a use-dependent switching

channel, see Figure 1.2, with an entropy cost, is investigated. Technical results

isolating the design of the transmission policy from encoding and decoding policies

is presented. Also, the optimal transmission policy for an average cost infinite

horizon problem with a specific class of channel state FSMs is found.

In Chapter 3, a remote estimation problem over a use-dependent packet-drop

channel, see Figure 1.3, with a mean-square error cost is presented. Under two

different sets of assumptions, structural results characterizing the optimal solutions

are presented.

In Chapter 4, a remote estimation problem over shared-state multiple packet-

drop channels, as shown in Figure 1.4, is studied. We present algorithms that design

the transition matrix of the channel state Markov channel to stabilize the estimation

error of all transmitted systems in the mean-square stability sense or certify that no

stabilizing transition matrix exists.
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1.4 Literature Review

This section is a general introduction and literature review of mixed-initiative

human-in-the-loop problems and applications. After further motivation and intro-

duction, a literature review of pertinent human operator traits and models is given.

This section is concluded by a literature review of systematic design techniques for

human operator support systems.

The following applications exhibit strong collaboration between control sys-

tems and human operators: nuclear power plant monitoring [2], command and con-

trol of multiple unmanned air vehicles (UAVs) [3] [4], manufacturing [5], architec-

tural design [6] [7], and a mobility augmenting jet-pack for low-gravity missions

(i.e. manned Mars exploration) [8]. Understanding how to design control systems

better suited for interaction with a human operator is desirable for different reasons

in each application. In nuclear power plant monitoring, improved control system

and operator collaboration lead to safer operation. In the command and control

of multiple UAVs, improved collaboration leads to a higher UAV to operator ratio

as well as improved mission performance. In architectural design, decision support

systems can ease the burden of recalling and locating applicable building codes and

material specifications; leading to faster and safer building designs.

The impact of control system interaction on operator performance is difficult

to predict; however, key operator traits have been identified and well studied. The

general framework and channel structures proposed in this dissertation have the

capability to model operator performance that is affected by workload, biasing,
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speed-accuracy tradeoff, among other human phenomena. These human phenomena

are discussed in Section 1.4.1. In the framework of this dissertation, as shown

in Figure 1.1, the channel state dynamics are used to model the desired human

phenomena. The channel’s output represents the operator’s responses or actions.

1.4.1 Literature Review - Human operator phenomena

The intent of this literature review is to highlight fundamental human phenom-

ena critical to short term performance. Long term phenomena, such as learning, are

not included. The problem formulations seek to design interaction during a single

operation lasting minutes or hours. This literature review is skewed toward well-

studied operator phenomena with mathematical models. Also, models of phenomena

on very short time scales, such as physiological models of visual attention [9], are not

included. The primary human phenomena motivating our problem formulations in

Section 1.2 are workload, situational awareness, speed-accuracy tradeoff, and bias.

Below these phenomena are discussed as separate independent mechanisms; how-

ever, they are connected. For example, situational awareness and bias are related:

also, situational awareness and workload are arguably different descriptions of the

same mechanism [10]. For this dissertation, the phenomena are considered separate

mechanisms.

Operator workload refers to the phenomena of operator performance degra-

dation under situations of high or low utilization. Simple discrete time models

of operator workload are given in [11] and [12]. Operator performance degrades at

10



Figure 1.5: The Yerkes-Dodson law states that operator performance suffers at low

and high workloads.

high workloads. Interestingly, operator performance also degrades at low workloads.

This is referred to as the Yerkes-Dodson law [13] and is shown in Figure 1.5. Differ-

ent experiments and applications use different interpretations of performance and

workload [10]. A common interpretation for workload is the utilization ratio, the

percentage of time the operator is busy. A common interpretation for decreasing

performance is increasing task completion times [14]. Variations of these common

interpretations are used in [1] and [15]. Alternatively, performance reduction can

take the form of decision errors, less precise decisions, and the omission of tasks or

subtasks [16] [17]. An alternative measure of workload is physiological metrics such

as pulse, pupil dilation, sweating, or electroencephalogram (EEG) [18] [19]. Another

common workload metric is the NASA multi-attribute task battery or the NASA

task load index, which are questionnaires gauging task difficulty. These question-

naires are completed by operators during an intermission in the experiment or at

its conclusion.
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Figure 1.6: The time-accuracy tradeoff in human decision making is commonly

modeled with a sigmoid function as highlighted by Pew’s modeled shown here.

Two alternative forced choice tasks (TAFCs), which are tasks that require the

operator to choose between two responses (i.e., Yes or No), are commonly used to

studied human decision making phenomena. The responses to general TAFCs are

arbitrarily referred to as ‘Yes’ and ‘No’. Experiments and models of TAFCs have

many variations. For example, the operator may be required to supply a response

within a fixed amount of time or the operator may be allowed an indefinite amount

of time to respond [20]. Two common models for TAFCs decisions, Pew’s model

and drift diffusion models (DDMs), are discussed below.

Operators often make better decisions when given more time for decision

making. This speed-accuracy tradeoff for TAFCs is explicitly modeled by Pew’s

model [21]. Pew’s model uses three parameters p0 ∈ [0, 1], a, b ∈ R to describe the

probability of a ‘Yes’ response given that ‘Yes’ is the correct response and t seconds

are used to make the decision,

P (Yes|Yes is correct, t) =
p0

1 + e−(at+b)
.

12



Figure 1.6 plots this probability versus the time taken for a decision. This probability

as a function of time is sigmoidal. In [21] and [22], a generalized speed-accuracy

model is employed that simply assumes this probability is a sigmoidal function.

Drift diffusion models (DDMs) also capture the speed-accuracy tradeoff in

TAFCs by modeling the accumulation of evidence for a ‘Yes’ response [23]. A basic

DDM uses two parameters, a drift rate a ∈ R and a diffusion rate σ ∈ R++, and the

evidence x ∈ R evolves according to a stochastic differential equation

dx(t) = adt+ σdW (t), x(0) = x0,

where W is the standard Wiener process and x0 ∈ R the initial condition. In an

untimed response setting a ‘Yes’ is declared if x grows larger than an upper threshold

and a ‘No’ is declared if x is smaller than a lower threshold. DDMs are used to model

a variety of phenomena from neuron activation in the retina to strategic decisions.

Although DDMs do not provide a simple closed-form expression for the probability

of a correct decision, they provide a model of response times as well as decisions.

There are many forms of bias. We focus on sequential bias in TAFCs that occur

due to the influence previous responses have on future responses [24]. An example

of sequential biasing is when all the previous responses to unrelated TAFCs have

all been ‘Yes’ by happen-stance. The operator is biased toward a future decision of

‘Yes’ and will also decide ‘Yes’ with a shorter response time. The model of sequential

bias for TAFCs used in Chapter 2 is detailed in [25] and [26].

Situational awareness is an important human operator trait well represented

in the literature. “[Situational Awareness is] the perception of elements in the en-

13



vironment, the comprehension of their meaning in terms of task goals, and the

projection of their status in the near future.” [27] Situational awareness is a descrip-

tive model of the operator’s understanding of the state of operations. Numerous

examples illustrate the potential for catastrophic failure of aircraft or process con-

trol systems when operators lack situational awareness. A taxonomy of different

operator-support system interactions, referred to as levels of autonomy, are com-

monly used in experiments to study the impact of support systems on operator

situational awareness [5] [28] [29]. In [30], a descriptive model of how operators fo-

cus attention to maintain situational awareness in complex settings is given. Human

operator limitations of finite working memory, limited attention and the impact of

stress induce the development of strategic behavior to overcome these limitations

such as operators creating mental models and goal-oriented behavior [31]. Also,

situational awareness explains why switching between disparate tasks has a perfor-

mance cost of accuracy and response time. This, as well as the performance benefits

of a period of preparation before task switching is discussed in [32].

Memory retention is a well-studied phenomenon and has a critical impact on

operator performance and situational awareness [33]. Two common experimental

procedures test either the operators recall or recognition. In a recognition experi-

ment, a sequence of words is presented to the operator who is tasked with identifying

if a word was previously shown. In a recall experiment, a sequence of word pairs is

presented to the operator who must later recall the second word when the first word

is shown. The lag refers to either the number of intervening words or the amount

of time between initial presentation and a recall or retention task. Common models

14



for the probability of recall or retention are the exponential model

P (Correct Recall) = Ae−bT

or the power model

P (Correct Recall) = AT−b,

where A and b are model parameters and T is the lag in either seconds or number

of intervening tasks. In [33], a multi-term model is proposed

P (Correct Recall) = a1e
−T/t1 + a2e

−T/T2 + a3,

where the first term represents short term memory and the other terms represent

long term memory. Similar models are available for memory retention’s impact

on response time. Interestingly, [34] argues that the environment often follows an

exponential decay similar to operators memory. In particular, the appearance of

words in the New York Times headlines, the chance of receiving an email from a

particular sender, and the frequency of words parents say to children, follows a

similar exponential decay in probability.

The primary motivating human phenomena for this research are workload,

speed-accuracy tradeoff, sequential bias and situational awareness; however, there

are numerous other human phenomena that impact the design of mixed-initiative

human-in-the-loop teams. Several of these other human phenomena are mentioned

below. Multiple resource theory models an operator’s ability to process different

types of information in parallel [35]. For example, an operator can process auditory

and visual information, listening to an audio book while driving, without significant

15



performance degradation; however, processing auditory and visual information that

both require symbol and logic processing, reading a book and listening to a different

audio book, induces a performance degradation. In [36], this ability to simultane-

ously process information in different modalities is utilized to alert an operator and

communicate the urgency and geographic location of the disturbance using either

visual or haptic cues. In TAFC tasks, operator performance and decision making

strategies vary depending on the precise nature of the TAFC structure. For ex-

ample, operators exhibit different decision making strategies if the task has sensor

uncertainty or outcome uncertainty [37]. Alertness cycles are another human phe-

nomena impacting performance [20]. Stress response can have an impact of operator

performance [38] [39]. The low-level physiological mechanisms governing operator

vision and image parsing can impact perception [9]. Lastly, a critical human phe-

nomena vital to consider in the design of support systems is the impact of personal

differences and expertise [40] [20]. Some models of the phenomena mentioned in

this paragraph may fit the general framework of the research presented.

Operator trust of the support system is vital but difficult to quantify. Trust is

discussed in much of the literature cited above, particularly the situational awareness

literature. In [41], an explicit simple linear system model of trust is presented.

1.4.2 Literature Review - Design of support systems

In this section, a literature review of systematic design for support systems

that explicitly incorporates models of operator traits discussed in Section 1.4.1 is
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given. Approaches to the systematic design of operator support systems are hugely

varied ranging from models predicting the number of UAVs an operator can man-

age [42] to fitting hidden Markov models of operator’s attention allocation [43] and

simulation based design [44]. The focus of this literature review is works that in-

vestigate fundamental design principles using simple operator models that address

workload, bias and attention allocation. These are the most related literature to the

contributions of this dissertation.

In a spirit similar to Chapter 2 and Chapter 3, the authors of [45], [11], and

[1] consider operator workload management; however, the objective and workload

models are different. In [45], [11], and [1] task release policies are designed to

guarantee the stability of incoming queued tasks and maximize throughput. The

utilization ratio, a ratio of the amount of time an operator has recently been busy,

quantifies the operator’s workload. With high utilization, the operator performs

tasks more slowly. This model was verified via an experiment where the operator

tasks were analogy questions. A task release policy that is a threshold function of

the operator’s utilization ratio can achieve the maximum throughput for tasks with

a constant amount of work. Surprisingly, tasks with a random amount of work only

increase the maximum throughput.

In [15] and [12], surveillance tasks are processed by a human operator who ex-

periences speed-accuracy tradeoffs and workload effects. These tasks are generated

by a support system which determines the region the operator should survey and for

how long. Several incremental problems are addressed building up to a solution for

this surveillance problem. In [22], a characterization of optimal time allotments for
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operator tasks that have a sigmoidal speed-accuracy trade-off model is developed.

Also, an order N2 algorithm, that is within a bound of optimal, is proposed that

produce time allotments for sequential tasks that have a sigmoidal time-accuracy

tradeoff penalty. In [15], a receding horizon solution to the optimal time allotment

problem where operator tasks that have both a sigmoidal speed-accuracy tradeoff

and the operator processes tasks slower with increased utilization ratio. A solu-

tion to the original surveillance problem includes a sequential probability ratio test

based region selection policy that minimizes an upper bound of the average time

to anomaly detection and the receding horizon solution from [15] to allocate time

for searching the generated tasks. In [46], a similar problem of designing time al-

lotments for operators with speed-accuracy trade-offs and workload considerations

is addressed with the additional capability of the support system to re-queue tasks

for additional analysis.

Task assignment problems are well studied in manufacturing and assembly line

design [47]. Recently in [48], a greedy task assignment algorithm was augmented

with operator workload and speed-accuracy trade-off models when assigning tasks

that required both the attention of an operator and use of an unmanned vehicle.

This algorithm was used to study the performance impact of different updating

frequencies for task assignment.

Simulation based approaches to support system design are common especially

in application areas where experiments are expensive, difficult or impractical, such

as military operations. This design procedure is iterative and involves: task analysis

and decomposition [44] [49], determination of models and parameters [50], discrete-
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event simulation [51] [52] and analysis of simulation results. A thorough example of

this design process for a military vehicle driving through hostile territory is detailed

in [52].

Numerous support system design techniques combine modeling, optimization,

and experimentation. In [14], operators are tasked with finding and removing objects

from a maze with 2,4,6 or 8 unmanned vehicles (UVs). The UVs operate in one of two

modes: manual (Idle unless assigned) or automatic (Search unexplored areas if idle).

This experiment was used to verify and fit a model of operator performance and

workload. This model was then used to predict operator workload and performance

while managing a more complex team of both manual and automatic UVs. In a

different experiment where operators utilize a team of UVs to search and destroy

targets, the impact of different levels of autonomy are explored [53]. Another aspect

of support system design is the impact of multiple operators using the support

system. In [54], the impact of two operators controlling the same pool of UVs is

experimentally explored.

Further related works are mentioned below. In [55], a task schedule for an oper-

ator with uncertain task completion times is obtained by generating a finite number

of task completion time realizations and solving an integer program constrained to

schedules feasible for these realizations. In [56], a switching linear quadratic reg-

ulator (SLQR) is used to determine when an underwater vehicle is autonomously

piloted or operator controlled. An algorithm for online trajectory planning for mul-

tiple UAVs and numerous targets are developed in [57] and [58] that guarantees

the operator a non-conflicting real-time video feed of each target for a pre-planned
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length of time. In [59] with multiple operators and multiple UAVs available, an

operator and UAV assignment policies are designed to minimize the expected time

to classify a target. A strategy for piloting multiple UAVs simultaneously by using

formations and dynamic leaders is implemented and tested in [60]. In [61], experi-

ments, modeling and analysis of human strategies for multi-armed bandit problems

is investigated. A mixed-initiative support system for air traffic control, proposed

in [62], determines the maximum flow rates between airspace sectors and frees the

operator to schedule within these rate bounds to achieve good overall network flow.

The problem formulation and results presented in this dissertation differ from

the related literature discussed above. Many of the results discussed are specific to a

given operator phenomena. One of the important contributions of this dissertation

is that the results apply to any operator phenomena model used as the channel’s

Markov chain dynamics in Figure 1.1. For example, the algorithm proposed in

Chapter 4 applies to designing operator attention allocation for any operator phe-

nomena or combination of phenomena that can be described by a controlled finite

state Markov chain.

20



Chapter 2: Optimal Remote Estimation over Use-Dependent Switch-

ing Channels

In this chapter, communication over channels with the structure shown in

Figure 2.1 is considered. More specifically, a remote estimation problem is formed

by a channel and an encoder that assesses a continuous random variable denoted

as the source. The internal structure of the channel has a finite state machine

(FSM) whose state dictates the transmission characteristics. Each state of the FSM

corresponds to a specific discrete memoryless channel (DMC). At each transmission,

information is transmitted from the encoder to the channel output according to the

DMC selected by the current FSM state. This class of channels is denoted as use-

dependent switching channels, or UDS. A transmission policy maps the channel’s

output into a decision to transmit across the channel at the next time step or not, this

decision is the channel state input to the FSM. This chapter investigates methods

to design optimal transmission and encoder policies that minimize the differential

entropy of the source conditioned on a finite number of channel outputs.

This chapter is organized as follows: Section 2.1 provides an introduction

and literature review, Section 2.2 introduces notation, defines UDS channels, and

formulates the problem, Section 2.3 develops a separation principle between trans-
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mission and encoding policies; Section 2.4 develops optimal transmission policies for

a specific UDS with a binary symmetric channel and a linearly saturating FSM, Sec-

tion 2.5 and Section 2.6 contain applications, Section 2.7 is the chapter conclusion,

and Section 2.8 contains several proofs.

The contributions of this chapter are listed below.

1. A partial separation principle between transmission policies and encoding poli-

cies is developed. Specifically, it is shown that there are optimal transmission

policies for which the input to the FSM is a sequence that does not depend

on the channel output. Thus, the jointly optimal transmission and encoding

policies are constructed by first calculating an optimal transmission policy

and then building an optimal encoding policy assuming the use of the optimal

transmission policy.

2. Optimal transmission and encoding policies are found for a specific UDS where

the FSM parametrizes the crossover probabilities of a Binary Symmetric Chan-

nels (BSC) and the FSM is a linear chain model that degrades the crossover

probabilities as a result of sequential transmissions and recovers when there

are no transmissions.

3. A novel formulation for human operator support system design is presented

and the technical results are used to investigate optimally querying an operator

who is affected by workload performance degradation and sequential biasing.
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2.1 Introduction

We seek to design remote estimation policies over a discrete channel whose

transmission characteristics depend on the state of a finite state machine (FSM).

Consider Figure 2.1, where X∗, Xn, Yn and Sn represent a source random variable,

the input to the channel, the channel output and the state of the FSM with input Un,

respectively. Each state of the FSM is associated with a discrete memoryless channel

(DMC) specified by p(Yn|Xn, Sn), which characterizes the transmission statistics

from the encoder to the channel output. The interconnection of the FSM and

switching DMC, represented in Figure 2.1, is denoted as a Use-Dependent Switching

(UDS) channel.

The goal is to minimize the differential entropy of the conditional distribution

of the source given N channel outputs, H(X∗|Y N), where output feedback is present.

The two design variables are the encoder En and the transmission policy Kn, which

assesses current and past channel outputs to produce the input symbol Xn and the

channel state input Un, respectively. The channel state input is the input to the

FSM of the channel. This input Un controls the evolution of the channel state,

which takes the form

Sn = Fn(Sn−1, Un), (2.1)

with known, deterministic initial condition s0.

For UDS channels, a partial separation occurs between the design of channel

state inputs and the design of encoders. In Section 2.3, Theorem 1 shows that there

23



Figure 2.1: Use-Dependent Switching (UDS) channels are represented by the dashed

box. UDS channels are comprised of a switching Discrete Memoryless Channel

(DMC) whose transition probabilities switch according to the state process which

is controlled by the channel state inputs Un. We seek to design the encoder EN

and transmission policy KN to minimize the entropy H(X∗|Y N) when feedback is

present.
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exists an optimal input sequence Un that can be designed without regard to the

encoding and does not depend on the channel output. Using this channel state input

sequence, an optimal encoding is any encoding that induces the capacity achieving

input distribution for the DMC determined by the current channel state. Thus, the

optimal encoding does depend on the optimal channel state input sequence.

A simple model of a battery-operated wireless channel with energy harvesting

is a compelling example of a UDS channel. Let the channel state be the energy

level of the battery and the channel state input the decision to transmit across the

channel. When an input to transmit occurs, the channel transmission characteristics

depend on the battery level, P (Yn|Xn, Sn), and the batteries energy level reduces,

Sn+1 = Fn+1(Sn, ‘Transmit′).

The transmission policy determines when to transmit and the encoding policy deter-

mines the symbol to transmit. Further details of this application are in Section 2.5.

This research builds upon the work reported in [63] and [64], which develop

optimal encoding strategies for transmission over a BSC with a fixed cross over

probability to minimize the conditional entropy of the source given the channel

outputs. The results here consider the larger class of UDS channels that require

jointly designing a transmission policy and encoding policy.

UDS channels are distinct from channels with action-dependent states defined

in [65]. The state Sn of channels with action-dependent states is the output of

a memoryless channel P (Sn|Un) with the action Un as input; whereas with UDS

channels, the channel state has memory, is deterministic given the actions UN and
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evolves according to eq. (2.1). An additional distinction is that, we have assumed

the input, output, and channel state alphabets, X, Y, and S, to be finite.

As the example above highlights, this research is related to communication

systems with energy harvesting capabilities, which have been formulated in numer-

ous ways [66]. For instance, [67] uses a distortion metric for the cost, whereas [68]

uses a throughput cost. The conditional entropy cost used here is related to the

throughput cost, see Section 2.6. The proposed problem is distinct from such for-

mulations and the related literature in two ways; first the partial separation result

holds for any FSM, no specific model is assumed, and second there is no noise as an

input to the FSM. So directly modeling stochastic energy harvesting is not possible.

2.2 Problem formulation

2.2.1 Notation

Double-bared fonts are used to denote sets, calligraphic fonts to denote func-

tions, capitals for random variables and lowercase for realization of random variables.

This chapter uses the following notation:
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S Channel State alphabet|S| <∞,

U Channel State Input,

Y Output alphabet, |Y| <∞,

X Input alphabet, |X| <∞,

Qn {Q1, Q2, . . . Qn},

H Differential Entropy,

U [a, b] Uniform distribution on [a, b].

Definition 1 (Use-dependent switching channels) Use-Dependent

Switching (UDS) channels are channels from X→ Y for which the probability of the

output conditioned on the input depends on the state of the channel Sn ∈ S. More

specifically, the output of the channel Yn is governed by p(Yn|Xn, Sn). The state is

governed by the finite state machine

Sn = Fn(Sn−1, Un), (2.2)

with known initial state s0.

2.2.2 Problem formulation

We seek to transmit a random variable X∗ taking values in Rd across a UDS

channel with feedback present. Our design problem consists of selecting the encoder

En and policies that determine Un from the available information yn−1. The encoding
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strategy En : Rd → X is an assignment of X∗ to channel symbols Xn. Let GN and

KN be the policies for selecting channels state input and encoding strategies as a

function of the channel output,

En = Gn(yn−1) and

un = Kn(yn−1).

The belief of X∗ after n transmissions is

pn
def
= P (X∗|Y n = yn).

Assume that the distribution of X∗ is known and denote it p0. The cost of policy

(GN , KN) is

JN(GN , KN)
def
=

1

N
H(X∗|Y N),

when (GN , KN) is used to generate un, En and consequently xn and yn. Using the

notation that H(f) is the differential entropy of the density function f , the cost is

written as

JN(GN , KN) =
1

N
E[H(X∗|Y N = yN)]

=
1

N
E[H(pN)],

where the expectation is taken with respect to Y N .

Problem 1 (Finite Time Horizon) Solve the following for finite N :

min
(GN ,KN )

JN(GN , KN).

The cost in the infinite horizon case is J(G, K)
def
= lim supN→∞

1
N
H(X∗|Y N),

with respect to policies G = {Gn}∞n=1 and K = {Kn}∞n=1.
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Problem 2 (Infinite Time Horizon) Solve the following:

min
(G,K)

J(G, K).

It will be convenient to define the following. Let sn(un) be the state that is

generated by the sequence of inputs un. Let C(un) be the capacity of the channel

p(Yn|Xn, Sn = sn(un)) that results from the sequence of inputs un.

2.3 Design separation principle

In this section, the optimal policy (GN ,KN) for the finite time horizon is char-

acterized. It is shown that the optimal transmission policy KN can be determined

independent of the optimal encoding policy and does not depend on the channel

output. This is accomplished through dynamic programming by finding the form of

the cost-to-go functions in Lemma 1. The optimal transmission policy is a function

of the FSM dynamics, Fn, and transition probabilities p(Yn|Xn, Sn) alone.

For finite N , the dynamic programming recursion for Problem 1 is written as

VN(uN , yN) = H(X∗|Y N = yN) = H(pN),

Vn(un, yn) = inf
En+1, un+1

E[Vn+1(un+1, yn+1)], (2.3)

for n = 0 . . . N − 1, where the expectation is over Yn+1|un, Y n = yn. The current

belief of X∗ and the previous actions (pn−1, U
n−1) form a sufficient statistic at

time n. This is because VN is a function of pN and there are no stage costs. The

previous actions Un−1 are necessary to calculate the channel transition probabilities

P (Yn|Xn, Sn) and thus to update pn via Bayes’ rule.
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Lemma 1 The cost-to-go-functions, eq. (2.3), associated with Problem 1 take the

form

Vn(un, pn) = min
uNn+1

H(pn)−
N∑

i=n+1

C(ui). (2.4)

Proof 1 See proof 6 in Section 2.8.

Theorem 1 The jointly optimal encoding and transmission policy is characterized

by the following two step process. First, calculate the optimal transmission policy by

solving

maximize
KN

N∑
i=1

C(ui) = maximize
uN

N∑
i=1

C(ui), (2.5)

where C(ui) is the channel capacity of the faulty channel at time i if the actions ui

have been used.

Second, the optimal encoding strategy EN achieves at each time step n the

channel capacity C(un). Let the input symbol distribution p∗n achieve the channel

capacity C(un) for the channel p(Yn|Xn, Sn = sn(un)). At time n the encoding policy

En is chosen such that for each input symbol x the following holds,

p(En(X∗) = x) = p ∗ (Xn = x).

Proof 2 See proof 7 in Section 2.8.

Interestingly, even with feedback present, the design of channel state input

does not utilize feedback information. Feedback information is used in the encoding

strategy, since the encoder En is selected to create the capacity achieving input

distribution based on pn−1.
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2.4 Binary symmetric channel with a linearly saturating finite state

machine

A specific UDS channel that degrades with use and recovers when not in use

is considered in this section. The channel state input Un specifies whether the

channel transmits. The channel state controls the crossover probability qn of a

binary symmetric channel (BSC), see [69] for the definition of a BSC. We adopt the

convention that the crossover probability qn increases (decreases) by a positive α if

a transmission is (not) sent. The crossover probability is one half when the channel

is not used to transmit, rendering the BSC useless.

Because the channel has memory previous query strategies for similar formu-

lations [64] and [63] do not immediately apply and can perform poorly.

2.4.1 Optimal encoding policy, GN1

The optimal encoding policy described below is denoted GN1 . The input distri-

bution that achieves the channel capacity for any BSC assigns equal probability to

both input symbols irrespective of the crossover probability qn. Thus, any encoding

En that produces

P (Xn = 1|Y n−1 = yn−1) = P (Xn = 0|Y n−1 = yn−1) =
1

2

is optimal.

Following [64] and [63], let the encoder En equal 1An where 1A(x) is the indi-
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Figure 2.2: The specific UDS channel under investigation in Section 2.4 has a bi-

nary symmetric channel (BSC) with a linearly saturating channel state model. The

switching discrete channel is a BSC whose crossover probability qn is determined

by the FSM as described in eq. (2.6) and eq. (2.7). The encoder En is chosen as

the indicator function of the set An, with An chosen to achieve the capacity of

P (Yn|Xn, Sn = sn(un)) which ensures optimality of the encoder En.

cator function of x ∈ A. The transmission symbol is now defined as

Xn
def
= 1An(X∗).

In order to be optimal, An is selected such that P (X∗ ∈ An|Y n−1 = yn−1) equals

one half.

For this particular UDS channel the design of transmission policy KN and

encoding policies GN have separated into two independent problems. Since the

capacity achieving input distribution for BSCs is agnostic to the crossover probabil-

ities qn, the design of the encoding policy GN does not depend on the transmission

policy KN . Also, the optimal transmission policy KN does not depend on GN by

Theorem 1.
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2.4.2 Linearly saturating channel state model

In this section, the linearly saturating FSM is defined. It is depicted in Fig-

ure 2.3. The channel state input Un takes values 1 or −1, depending on whether

the channel is used or not, respectively. The crossover probability qn and memory

to track the possible crossover probability zn form the state Sn as follows,

Sn =

 zn

qn

 .
When the channel is not used, un = −1, qn equals one half, rendering the BSC

useless. When there is a transmission, un = 1, qn equals the possible crossover

probability zn. The parameters ε and ε̄ take values in the interval [0, .5] with ε

less than ε̄. The maximum crossover probability is ε̄ and the minimum crossover

probability is ε. For a fixed parameter α, the dynamics of the channel state are

zn+1 = zn + unα, (2.6)

qn =


zn if un = 1

1
2

if un = −1,

(2.7)

where zn saturates at the endpoints of [ε, ε̄].

The following assumptions are made for ease of exposition.

Assumption 1 m
def
= ε̄−ε

α
∈ N.

Assumption 2 s0 = ε+ iα, for some i = 0, 1, . . . ,m.
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2.4.3 Optimal transmission policy, KN1

First, near optimal finite horizon policies for Problem 1 are presented. Second,

these policies are shown to be optimal in the infinite horizon case, Problem 2.

2.4.3.1 Finite horizon problem

The task is to find a uN ∈ {−1, 1}N that maximizes

N∑
i=1

C(ui). (2.8)

Dynamic programming can be used; however, the simple transmission policy KN1 ,

defined below, is near optimal for this linearly saturating channel state model. For

this channel state model the capacity C(un) reduces to the channel capacity of a

BSC and so we overload the notation and let C(qn) denote the channel capacity of

a BSC with cross-over probability qn.

Definition 2 The transmission policy KN1 is a deterministic policy that does not

depend on channel outputs. If 2C(ε̄) ≥ C(ε), define the transmission policy KN1 to

always transmit,

Un = 1, n = 1, 2, . . . N.

If 2C(ε̄) < C(ε), define the transmission policy KN1 to transmit only when zn = ε,

Un =


1 If zn = ε,

−1 otherwise.
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Figure 2.3: Graphical representation of eq. (2.6) and eq. (2.7) with saturation at

the endpoints.

To motivate this transmission policy a graph for the dynamics of zn is shown

in Figure 2.3. Node i represents zn = ε + iα and a transmission is sent. Node i′

represents zn = ε + iα and a transmission is not sent. The transitions in the figure

represent the choice to transmit or not at n+ 1, the following time step. In node i

since a transmission is sent at n, zn+1 = ε+ (i+ 1)α and the next node will be i+ 1

(if a transmission is sent at n+ 1) or (i+ 1)′ (if a transmission is not sent at n+ 1).

In node i′ since a transmission is not sent at n, zn+1 = ε + (i − 1)α and the next

node will be i− 1 (if a transmission is sent at n+ 1) or (i− 1)′ (if a transmission is

not sent at n+ 1).

The transmission policy in Definition 2 is motivated as follows. In all of the

primed nodes of Figure 2.3, the choice was made to not transmit and thus a reward

of C(.5) = 0 is gained. But, in the unprimed node i the choice was made to transmit

gaining a reward of C(ε+iα). On average, a reward higher than C(ε̄) is only possible

by previously not transmitting. The idea in Theorem 2’s proof is that to spend time

in a node besides node m, the policy must transmit about as much as it does not
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transmit. If this is the case, the best choice is to alternate transmissions such that

the transmission happens in node 0.

Theorem 2 There exists a constant w such that the policy (GN1 , KN1 ) is within a w
N

bound of optimal for Problem 1. More specifically,

|J∗N − J̃N | ≤
w

N

where J∗N is the optimal cost and J̃N is the cost when policy (GN1 , KN1 ) is used.

Proof 3 See proof 8 in Section 2.8.

2.4.3.2 Infinite horizon problem

Definition 3 The policy (G1, K1) is policy (GN1 , KN1 ) with N =∞. This is possible

because policy (GN1 , KN1 ) is the same policy for every time step n regardless of N .

Leveraging Theorem 2, in this section it is shown that policy (G1, K1) is opti-

mal for Problem 2. The cost of the infinite horizon problem under policy (G1, K1)

is also calculated.

Theorem 3 For Problem 2, policy (G1, K1) is optimal;

J(G1, K1) ≤ J(G, K) ∀ G, K.

Also,

J(G1, K1) = H(p0)−max

(
C(ε̄),

C(ε)

2

)
. (2.9)

Proof 4 See proof 9 in Section 2.8.
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Figure 2.4: Plot of different transmission policy regimes for the transmission policy

KN1 , in Definition 2, depending on the problem parameters. The light gray region

corresponds to a policy that transmits only in channel state 0, which leads to a

sequence of alternating decisions to transmit and not transmit. The region of vertical

lines denotes the parameter region for which the optimal policy is to alway transmit.

In Figure 2.4, a diagram shows when the optimal transmission strategy KN1 is

either to always transmit or alternate transmissions depending on the parameters ε

and ε̄.

2.5 Application: operator support system design

Human operators are interacting with and supervising increasingly complex

autonomous systems. Examples include: unmanned vehicles [70], medical treat-

ments [71], and crowd sourcing [72]. Incorporating human considerations into the
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design of the autonomy is important. Utilizing the framework of [63], two such prob-

lems are given in the following subsections. These applications use a UDS channel

to model human operator phenomena.

First, the tradeoff between operator workload and performance will be mod-

eled using the formulation of Section 2.4. Thus, Theorem 3 provides the optimal

policy for balancing workload and performance. Second, operator biasing and error

modeled as in [25] is shown to fit the framework of UDS channels. Thus, the optimal

encoding strategy is provided in Theorem 1.

In these applications, the operator’s response to queries are represented by

the UDS channel’s output. The channel state dynamics are used to model different

human operator phenomena. In the two examples below, the channel state dynamics

model either the impact of workload or biasing on operator accuracy in answering

yes-no questions.

2.5.1 Operator workload

Consider the channel’s output to be the operator’s responses to a sequence

of yes-no questions. If the operator’s workload becomes too high, the probability

of a mistake in answering the questions increases. Meaning that the cross-over

probability of the BSC increases. Operators under high workload tend to make more

mistakes. This is precisely the model in Section 2.4. By Theorem 3, the optimal

transmission policy is KN1 . Using the optimal transmission policy of Section 2.4

leads to the most informative operator inquiries.
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The framework of [63] is used in this application. The problem under con-

sideration in [63] is to localize a target X∗ by minimizing the conditional entropy

H(X∗|Y N) by asking the operator if the target is in the area An. The difference

in this application from [63] is that here the crossover probability is affected by the

channel’s transmission history. In other words, a UDS channel is used instead of a

BSC.

2.5.2 Operator sequential bias

An application to support system design for human operators that incorpo-

rates operator models of sequential bias is presented. Operator sequential bias is

illustrated in the following situation. When asking a human a sequence of yes-no

questions, the answers to the previous questions will bias the operator’s answers to

the questions that follow. For example, a human operator that is asked a series

of yes-no questions whose answers all happen to be yes will become biased toward

responding yes to future questions. A model is given in [26] and [25] for operator

sequential bias. This operator model fits into the framework of UDS channels as

shown in Figure 2.5. The optimal encoder En is provided by Theorem 1.

In this model, the operator’s responses to binary queries are the channels out-

put Yn. The choice to transmit (or not) Un is the choice to ask the operator a

question (or not). The channel state dynamics model the sequential biasing dynam-

ics. The optimal encoding policy G1 determines what questions to ask.

The model proposed in [25] for the human operator is called the Dynamic Belief
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Figure 2.5: The UDS channel modeling the sequential bias of human operators.

The operator biasing model used is proposed in [26] and [25]. The optimal encoding

policy is given in Theorem 1.

Model (DBM). DBM postulates that the operator believes that the question 1An is

Bernoulli distributed with parameter γn. The Bernoulli parameter γn+1 follows

dynamics such that it is unchanged with probability τ or is re-drawn from a given

distribution, p0
γ with probability 1− τ .

The operator’s belief that 1An is Bernoulli with parameter γn impacts the op-

erator’s answer to the next question given their pervious responses. This is denoted,

hn
def
= P (xn = 1|yn−1). The operator’s belief is updated by

hn+1 =
1

2
(1− τ) +

1

3
τyn +

2

3
τhn.

1 (2.10)

This bias affects the operator’s decision in the following manner. In [26], a

1A slight modification to the model in [25] is made. In [25], yn is replaced by xn in eq. (2.10).

Here instead of the correct answers, xn, updating the operator’s bias. It is the operator’s answers,

yn, that update their bias.
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Figure 2.6: A simulation of an operator’s bias with initial bias h0 = .9 and the

optimal encoding policy K1 which satisfies eq. (2.13).

drift diffusion model (DDM) is used with the upper, ν, and lower −ν thresholds

determined by the probability of type I error that is tolerated, ε. The threshold is

ν
def
= log(1− ε)− log(ε).

We can nicely approximate the probability of making errors in this DDM model

[73]. If the mass beyond the chosen thresholds is negligible, then the probability of

xn = 0 and the operator declaring yn = 1 is approximately

q−ν
def
=

e−ν − e−I(hn)

e−ν − eν
, (2.11)

where I(hn)
def
= log(hn)− log(1−hn). Similarly, the error of xn = 1 and the operator

declaring yn = 0 is

qν
def
=

eI(hn) − e−ν

eν − e−ν
. (2.12)

To summarize this model, the operator’s belief that the next answer will be 1

is hn and is governed by previous answers yn−1. This belief skews the probability of
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making an error, qν and q−ν .

This operator model is a UDS channel with a binary asymmetric faulty channel

and a FSM governed by eq. (2.10), eq. (2.11) and eq. (2.12). Per the model in [26]

and [25], the transmission policy is chosen to be the identity.

Using Theorem 1 and the capacity achieving distribution for Binary Asym-

metric Channels, the optimal encoding policy is given by choosing An such that

pn(xn = 0) =


1−q−ν(1+v1)

(1−qν−q−ν)(1+v1)
if q−ν ≤ qν

1−qν(1+v2)
(1−qν−q−ν)(1+v2)

if q−ν > qν ,

(2.13)

where v1
def
= 2

h(q−ν )−h(qν )
1−qν−q−ν and v2

def
= 2

h(qν )−h(q−ν )
1−qν−q−ν . Figure 2.6 is a typical example of

the operator’s bias hn through a sequence of binary queries.

2.6 Application: channels with energy harvesting capabilities

Consider remotely estimating a source over a battery-operated channel with

an energy harvesting device that deterministically charges the battery with k energy

units each time step. Transmitting consumes energy and the channel state input

determines how much energy to use. This, in turn, determines the statistics of the

transmission channel. Also, assume that the decoder decides when and at what

power to transmit. This occurs in practice when the encoder has no or limited

processing capabilities.

For a specific example consider a UDS channel comprised of a BSC and the

Markov chain structure shown in Figure 2.7 with the cross-over probabilities of the

BSC determined by the chart in Figure 2.8. The objective function for this applica-
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Figure 2.7: A Markov chain modeling the dynamics of a battery for an energy

harvesting communication channel. The battery has a capacity of 2 energy units

and the transmission policy determines when to charge the battery, state 1 and 2,

when to transmit with 1 unit of energy, states 4 and 5, and when to transmit with

2 units of energy, state 6.

Figure 2.8: Each state of the Markov chain in Figure 2.7 determines the cross-over

probability for the BSC as shown here. States 1, 2 and 3 correspond to charging the

battery. States 4 and 5 correspond to transmitting with 1 unit of energy and state

6 to transmitting with 2 units of energy.
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tion is the condition entropy H(X∗|Y N). From Theorem 1, minimizing H(X∗|Y N)

is equivalent to designing the transmission policy to maximize

N∑
i=1

Ci ,

where Ci is the capacity of the energy harvesting channel at time i. In [68], this

objective function is called the throughput cost.

By Theorem 1, the jointly optimal transmission policy and encoder is found

by solving the optimization problem in eq. (2.5) for the transmission policy that

maximizes the throughput cost and constructing an encoding policy to induce the

channel capacity achieving input distribution.

2.7 Conclusion

Use-Dependent Switching (UDS) channels are defined. UDS channels have

two inputs: a channel state input and a transmission symbol input. The current

channel state determines the which discrete channel is available for transmission at

the current time step. For this class of channels, a partial separation of the design

of transmission policies and encoding policies was shown for an entropy cost. For a

UDS channel composed of a linearly saturating FSM and BSC, an optimal encoding

policy and transmission policy was developed for the infinite horizon problem. The

application of the optimal policy to problems in the areas of human operator support

system design and communication over channels with energy harvesting capabilities

is presented.
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2.8 Proofs

Lemma 2 [Single Step Entropy Reduction] Using the notation of Problem 1,

min
En+1

EYn+1|un+1, pn, En+1 [H(pn+1)] = H(pn)− C(un+1).

Furthermore, any encoder En+1 that induces the input distribution that achieves the

capacity of the channel p(Yn+1|Xn+1, sn+1(un+1)) is optimal.

Proof 5 (Lemma 2) This proof is an extension of [64, Theorem 1] and follows the

structure of that proof. For ease of notation the conditioning of the expectation will

be dropped from the notation in the remainder of this proof. The actions un+1 in the

conditioning will also be dropped from the notation.

First, the capacity of the channel at time n + 1, C(un+1), will be written in

a convenient way. Let fi be the distribution of the output symbol yn+1 given the

channel state and an input symbol i, fi
def
= p(Yn+1|Xn+1 = i, sn+1(un+1)). The

capacity of the discrete channel at time n+ 1 is

C(un+1) = sup
p(Xn+1)

I(Xn+1; Yn+1|sn+1(un+1))

= sup
p(Xn+1)

H
(∑

fip(Xn+1 = i)
)

−
∑

H(fi)p(Xn+1 = i).
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Rewrite

E[H(pn+1)] = H(pn)− I(X∗; Yn+1|pn, En+1)

= H(pn)−H(YN+1|pn, En+1)

+H(YN+1|X∗, pn, En+1)

= H(pn)−H
(∑

fip
′(Xn+1 = i)

)
+
∑

H(fi)p
′(Xn+1 = i),

where p′ is the distribution of Xn+1. By choice of encoder En+1, p′ can be any

distribution on X. Minimizing over En+1 is the same as minimizing over p′. Thus,

minEn+1 E[H(pn+1)] = H(pn)− C(un+1).

Proof 6 (Lemma 1) The proof is by induction. Equation (2.4) holds for N since

VN(uN , pN) = min
uNN+1

H(pN)−
N∑

i=N+1

C(ui)

= H(pN).

Now assume eq. (2.4) holds for n+ 1. It must be shown that it holds for n which is

accomplished as follows.

Vn(un, pn) = min
En+1, un+1

E[Vn+1(un+1, pn+1)]

= min
En+1, un+1

E[min
uNn+2

H(pn+1)−
N∑

i=n+2

C(ui)]

= min
En+1, un+1

E[H(pn+1)]−max
uNn+2

N∑
i=n+2

C(ui).

where the expectation is with respect to Yn+1|un+1, pn, En+1 . From Lemma 2, we

have minEn+1 E[H(pn+1)] = H(pn)− C(un+1). The cost-to-go function now becomes

Vn(un, pn) = H(pn)−max
uNn+1

N∑
i=n+1

C(ui).
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Concluding the proof.

Proof 7 (Theorem 1) This is immediate. The optimal encoding strategy is shown

in Lemma 2. The optimal transmission policy is seen from Lemma 1.

Proof 8 (Theorem 2) Channel state inputs uN specify the states SN . Let Ni be

the number of times a transmission occurred with qn = ε+ iα (i.e. node i was visited

in Figure 2.3), and Nβ the number of times a transmission did not occur (i.e. a

primed node is visited in Figure 2.3). Let Nα =
∑m−1

i=1 Ni. Note Nα+Nβ+Nm = N .

Using Lemma 1, NJ∗N can be written

NJ∗N = inf
GN ,KN

E [H(pN)]

= inf
KN

H(p0)−
N∑
i=1

C(qn)

= inf
uN
H(p0)−N0C(ε)−N1C(ε+ α)− . . .

−NmC(ε+ (m)α)−NβC(.5)

= inf
{Ni}∈C

H(p0)−N0C(ε)−N1C(ε+ α)− . . .

−NmC(ε+ (m)α) (2.14)

Let W denote the set of all possible {Ni}mi=1, Nα, Nβ configurations that can

be generated by the dynamics in eq. (2.6) and eq. (2.7). In W, Nα can be upper and

lower bounded. This is accomplished by approximating Nα. It will be shown

w̄ +
N −Nm

2
≥ Nα ≥ w +

N −Nm

2
(2.15)

With this we can lower bound NJ∗N ≥ H(p0) − (w̄ + N−Nm
2

)C(ε̄) − NmC(ε̄). Since

N = Nα +Nβ +Nm and possible values for Nm are 0, 1, . . . N further lower bounds
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can be obtained by minimizing with respect to Nm. If C(ε)
2

> C(ε̄), then Nm = 0

minimizes and the lower bound becomes

NJ∗N ≥ H(p0)− (w̄ +
N

2
)C(ε) (2.16)

If C(ε)
2
≤ C(ε̄), then Nm = N minimizes and the lower bound becomes

NJ∗N ≥ H(p0)− w̄C(ε)−NC(ε̄) (2.17)

The variables with a tilde are the quantities defined above that are generated

by policy (GN1 , KN1 ). Under the transmission policy in Definition 2, if C(ε)
2

> C(ε̄),

transmission only occurs when qn = ε so Ñ0 = Ñα and Ñi = 0 for i = 1, . . . ,m. The

relationship between J̃N and Ñα is NJ̃N = H(p0)− ÑαC(ε). From the inequality in

eq. (2.16), we have

NJ∗N −NJ̃N ≥
(
Ñα − (w̄ +

N

2
)

)
C(ε)

≥ (w − w̄)C(ε).

Using this lower bound and the fact that the optimal cost J∗N is less than J̃N , we

arrive at

0 ≥ J∗N − J̃N ≥
1

N
[(w − w̄)C(ε)] . (2.18)

Under the transmission policy in Definition 2, if C(ε) ≤ 2C(ε̄) transmission

always occurs so Ñm ≥ N−m and Ñi = 0 or 1 for i = 1, . . . ,m depending on the ini-

tial condition. The relationship between J̃N and Ñα is NJ̃N ≥ H(p0)−mC(ε)−NC(ε̄).

From the inequality in eq. (2.17) we have

NJ∗N −NJ̃N ≥ (m− w̄)C(ε).
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Since J∗N ≤ J̃N , we arrive at

0 ≥ J∗N − J̃N ≥
1

N
(m− w̄)C(ε). (2.19)

Thus if the bounds on Nα hold, the proof is complete.

To prove the approximation of Nα, consider when transmission occurs and

qn = ε̄ (node m’s self loop), namely qn+1 = ε̄. This transmission does not affect Nα

which is the number of transmissions that cause a change in zn. Not transmitting

always affects zn. Thus, zN is the initial condition plus α times the number of trans-

missions affecting positive change minus α times the number of non-transmissions

zN = z0 +Nαα−Nβα. (2.20)

This together with the facts that zN ∈ [ε, ε̄], and N = Nα + Nβ + Nm yield the

following

ε̄− s0

2α
+
N −Nm

2
≥ Nα ≥

ε− s0

2α
+
N −Nm

2
.

Proof 9 (Theorem 3) The value of the cost for policy (G1, K1) is readily seen

from the proof of Theorem 2. Below we will show the policy (G1, K1) is optimal.

To begin, note that the lim sup is becomes a limit because for any fixed G and

K,

1

N
H(X∗|Y N) ≥ 1

K
H(X∗|Y K) K ≥ N.

Since J(G1, K1) <∞ we need only consider (G, K) pairs such that J(G, K) <∞.
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Consider the difference

J(G1, K1)− J(G, K) = lim
N→∞

JN(GN1 , KN1 )

−JN(GN , KN),

≤ lim
N→∞

J(GN1 , KN1 )− J∗N ,

≤ lim
N→∞

w

N
= 0.

The first inequality arises from J∗N ≤ JN(gN , uN) and the second from Theorem 2.
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Chapter 3: Optimal Remote Estimation over Use-Dependent Packet-

Drop Channels

In this chapter, a remote estimation problem over channels with the structure

shown in Figure 3.1 is considered. A discrete-time remote estimation system formed

by an encoder, a transmission policy, a channel, and a remote estimator is inves-

tigated. The encoder assesses a random process that the remote estimator seeks

to estimate based on information sent to it by the encoder via the channel. The

channel is affected by Bernoulli drops. The instantaneous probability of a drop is

governed by a finite state machine (FSM). The state of the FSM is denoted as the

channel state. At each time step, the encoder decides whether to attempt a trans-

mission through the packet-drop link. The sequence of transmission decisions is the

input to the FSM. This chapter seeks to design an encoder, transmission policy and

remote estimator that minimize a finite-horizon mean squared error cost.

This chapter is organized as follows: Section 3.1 introduces the problem and

has a literature review, Section 3.2 formulates the problem, Section 3.3 presents

two structural results, Section 3.4 presents applications, Section 3.5 is the chapter

conclusion, and Section 3.6 contains the proofs of the technical results.

The contributions of this chapter are listed below.
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1. Assume that the process to be estimated is white and Gaussian, we show that

there is an optimal transmission policy governed by a possibly asymmetric

threshold on the estimation error.

2. The optimal symmetric transmission policies are characterized for the case

when the measured process is the state of a scalar linear time-invariant plant

driven by white Gaussian noise under assumptions on the drop probabilities.

3. A novel application to human operator support system designed is detailed.

3.1 Introduction

Encoders often select varying channel modes to enhance transmission perfor-

mance in the presence of power and energy constraints. For example, in battery-

operated wireless communication systems with energy harvesting, the decision of

whether to attempt transmission must be made time and again at each time-step.

The charge-level of the battery induces memory in the channel. We define a class of

use-dependent packet-drop channels to model the effect of attempted transmissions

on current and future performance, which in our case is quantified by the proba-

bility that an attempted transmission is dropped. The memory in use-dependent

packet-drop channels is modeled by a finite state machine (FSM). The state of the

FSM, or channel state, determines the instantaneous probability of drop. In our

formulation the input to the FSM is the time-sequence of decisions of whether to

attempt a transmission.

We consider a system formed by a remote estimator, a transmission policy,
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a use-dependent packet-drop channel and an encoder. The estimator produces an

estimate of the state of a linear time-invariant plant that is accessible to the en-

coder. The estimate is based on information transmitted from the encoder to the

estimator via the channel. The encoder and transmission policy also have access

to past transmission decisions and channel feedback on the realization of current

and past drops. The encoder determines what to transmit over the channel and the

transmission policy determines when to attempt a transmission. The goal of this

chapter is to investigate encoders, transmission policies and remote estimators that

jointly minimize the mean squared state estimation error over a finite time-horizon.

3.1.1 Outline of the main results

The following are our two main results characterizing the structure of optimal

transmission policies for our problem. In both results, no restrictions are placed on

the dynamics or size of the FSM.

In the first result, we assume that the process to be estimated is white and

Gaussian. We show that the optimal transmission policy is of the threshold type,

meaning that the encoder chooses to attempt transmission when the process takes

values outside a certain interval [τ , τ̄ ]. The characteristics of the use-dependent

packet-drop channel determine the values of τ̄ and τ . In general, τ̄ may not equal

−τ , even when the process is zero-mean.

In the second result, the process to be estimated is the state of a scalar linear

time-invariant plant driven by white Gaussian noise, for which we seek to obtain
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Figure 3.1: The problem under investigation is a remote estimation problem over a

packet-drop channel, whose probability of drop Pn is governed by the Finite State

Machine M.

an optimal symmetric transmission policy. We show that if the channel performs

satisfactorily in all channel states, then there exists at least one symmetric threshold

that, when applied to the estimation error, leads to a transmission policy that is

optimal among all symmetric strategies.

3.1.2 Related literature

In [74] and [75], an estimation problem over a packet drop channel with com-

munication costs is considered. In contrast to [74] and [75], here we introduce a

channel state and do not consider explicit communication costs in the objective

function. In our formulation, the channel state, which depends on current and past

transmission decisions, and its impact on channel performance create an implicit

communication cost. For example, in the energy harvesting application discussed

in Section 3.4, there is no explicit cost for attempting a transmission. However,
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attempting a transmission reduces the energy available for future transmissions,

which causes performance degradation that can be viewed as an implicit cost for

attempting a transmission.

Considering costly measurements (or transmissions) in estimation and control

problems has a long history and has been modeled in many ways. In [76], one of sev-

eral possible measurements with different observation costs is selected to minimize

a combination of error and observation cost. In [77], a subset of the measurements

is selected in order to minimize the log-determinant of the error covariance. In [78],

the arrival of observations is a random process and the convergence of the error co-

variance is studied. In [79], the task is to locate a mobile agent and the observation

cost is the expected number of observations that must be made to do so.

In [65], the capacity of channels with action-dependent states is studied. Al-

though our problem formulation is similar to that of [65] in motivation, it differs

in several accounts. In contrast to [65], we consider finite time horizons, a mean-

squared error cost and a new class of packet-drop channels.

3.2 Problem formulation

3.2.1 Notation

We use calligraphic font (F) to denote deterministic functions, capital letters

(X) to represent random variables and lower case letters (x) to represent realizations

of the random variables. Let N (0, σ2) denote the Gaussian distribution with zero

mean and variance σ2. We use Qn to denote the finite sequence {Q1, Q2, . . . Qn}.
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The real line is denoted with R and a subset of R is denoted with double barred

font, such as A. The indicator function of a set A is defined as

1A(x)
def
=


1 x ∈ A,

0 Otherwise.

The expectation operator is denoted with E[·]. By limδ↓0F(δ) we mean the limit of

F(x) at 0 from the right.

3.2.2 Problem formulation

Consider the following scalar linear time-invariant system

Xn+1 = aXn +Wn, n ≥ 0, X0 = x0,

where Xn is the state, a is a real constant, Wn is independent and identically dis-

tributed Gaussian noise with zero mean and variance σ2. The initial state x0 ∈ R

is known.

Observations are made by the encoder and transmitted to the remote estimator

over a use-dependent packet-drop channel, which is defined below. In Figure 3.1,

the dotted box represents the use-dependent packet-drop channel.

Definition 4 (Use-dependent packet-drop channels) Let

Ms : Q × {0, 1} → Q and Mo : Q → [0, 1] be given, where Q = {1, . . . ,m} repre-

sents the state space for the finite state machine (FSM). The channel inputs are Zn

and Rn, which take values in R and {0, 1}, respectively. In this model Zn represents

the information to be transmitted, while the decision to attempt a transmission (or
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not) is represented by Rn = 1 (Rn = 0). The channel output Vn takes values in

R ∪ E and is determined as follows

Vn =


Zn if Ln = 1

E if Ln = 0,

where Ln
def
= RnCn. Here, Cn is a Bernoulli process characterized by

p(Cn = 0) =Mo(Qn), where Qn is the state of the FSM updated by

Qn+1 = Ms(Qn, Rn).

The FSM’s initial state q1 ∈ Q is known. Here, Ms and Mo model the effect of

the input on the transitions among channel states and the probability of drop as a

function of the channel state, respectively.

At time n, the transmission policy

Un : Rn × {0, 1}n−1 → {0, 1} determines whether a transmission is attempted,

Rn = Un(Xn, Cn−1),

based on the plant history Xn and drop history Cn−1. The remote estimator

Dn : Rn × {0, 1}n → R produces the state estimate,

X̂n = Dn(V n, Rn),

based on the channel output history V n and the transmission history Rn. The

encoder En : Rn × {0, 1}n−1 → R determines what is transmitted,

Zn = En(Xn, Cn−1),
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based on the plant history Xn and drop history Cn−1.

We seek to solve the following problem.

Problem 3 For finite N , solve

min
UN ,EN ,DN

N∑
n=1

E
[
(Xn − X̂n)2

]
.

Remark 1 For any encoder and transmission policy, the optimal remote estimator

is the conditional mean, Dn(V n, Rn) = E[Xn|V n, Rn]. Also, an optimal encoder

policy transmits only the current state, En(Xn, Cn−1) = Xn. This is evident from

the Markov nature of Xn and the information already available to the remote esti-

mator. The channel drops can be calculated from (V n−1, Rn−1); thus, the only new

information to send the remote estimator is Xn.

Because of Remark 1, Problem 3 is equivalent to the following problem.

Problem 4 (Main Problem) For finite N , solve

min
UN

N∑
n=1

E
[
(Xn − X̂n)2

]
,

where the optimal encoder, En(Xn, Cn−1) = Xn, and optimal remote estimator,

Dn(V n, Rn) = E[Xn|V n, Rn], are used.

3.3 Structural results

In this section, we present our technical results. We begin by defining threshold

transmission policies.
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3.3.1 Definitions

Estimation error is denoted as En
def
= Xn − X̂n.

Definition 5 A function G : R→ [0, 1] is a threshold function if there are constants

τ and τ̄ , such that:

G(e) =


1 if τ ≤ e ≤ τ̄

0 Otherwise.

Definition 6 A function G : R → [0, 1] is a symmetric threshold function if there

is a constant τ , such that:

G(e) =


1 if |e| ≤ τ

0 Otherwise.

Definition 7 A transmission policy T N is a threshold policy if the decision to trans-

mit depends only on the current error and channel state (en, qn) in the following

manner

Tn(xn, cn−1) =


1 if τn(qn) ≤ en ≤ τ̄n(qn)

0 Otherwise,

for some τn(qn), τ̄n(qn) ∈ R.

Notice that the current error and channel state (en, qn) are calculated from the

history (xn, cn−1) and previous policies T n−1.
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Definition 8 A transmission policy T N is a symmetric threshold policy if the deci-

sion to transmit depends only on the current error and channel state (en, qn) in the

following manner

Tn(xn, cn−1) =


1 if |en| ≤ τn(qn)

0 Otherwise,

for some τn(qn) ∈ R.

3.3.2 Optimal transmission policies are threshold when the process

is white and Gaussian (a = 0)

To investigate the structure of solutions to Problem 4, we start with the case

when a = 0. The system state becomes

Xn = Wn.

The estimation error is independent at each step, thus there are optimal transmission

policies that only depend on the current error and channel state.

With a = 0, we reformulate Problem 4 as a dynamic program to show that

there are optimal transmission policies of the threshold type, which may not be

symmetric. An optimal transmission policy that is not symmetric in the estimation

error is surprising since the objective function is symmetric in the error and the

random process is zero-mean and symmetric.

We utilize the results in [80]. In [80], a single stage estimation problem over a

collision channel with two transmitters is studied. If both transmit then the remote
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estimator receives a collision symbol and if neither transmits a no-transmission sym-

bol is received. The result in [80] states that the optimal policy for each transmitter

is of the threshold type.

Remark 2 At each time step the remote estimator can distinguish three cases: a

transmission is attempted but dropped (Vn = ∅, Rn = 1), no transmission is at-

tempted (Vn = ∅, Rn = 0) and a successful transmission (Vn = Xn, Rn = 1). The

remote estimator can glean 1-bit of information when Vn = ∅ by distinguishing be-

tween an attempt Rn = 1 and a non-attempt Rn = 0. This ability to transmit

information when Vn = ∅ causes the optimal policies to be asymmetric [80].

Remark 3 In Problem 4 with a 6= 0, the remote estimator’s ability to distinguish a

dropped transmission attempt and a non-attempt leads to belief densities of Xn given

V n, Rn that are possibly asymmetric and multi-modal. This greatly complicates the

problem when a 6= 0.

Problem 4 is a sequential problem; distinguishing it from [80], which is a

static problem. Notice that our problem cannot be converted into a sequence of

static problems because the transmission policies depend on the channel memory.

Following [80], the stage cost at time n can be written as

E[(Xn − X̂n)2] =E[(Xn − X̂n)2|Ln = 0]p(Ln = 0)

=E[(Xn − X̂0
n)2|Rn = 0]p(Rn = 0)

+ pnE[(Xn − X̂1
n)2|Rn = 1]p(Rn = 1) (3.1)

where pn
def
= Mo(qn), X̂0

n

def
= E[Xn|Rn = 0] and X̂1

n

def
= E[Xn|Rn = 1].
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Proposition 1 The stage cost at time n is a function of the current channel state

Qn and transmission policy Un.

Proof 10 See proof 17 in Section 3.6.

With a = 0, Problem 4 can be written as a Markov chain with Un as the input,

(Xn, Cn) as the noise, (Qn, X
n−1, Cn−1) as the state, and E[(Xn−X̂n)2] as the stage

cost. Note the input is not rn, the decision to transmit, as may have been expected.

The transmission policy Un is taken as the input because the density fXn|Rn depends

on the entire policy Un: not just the specific decision rn.

Using Proposition 1 and the independence of the system states over time, with-

out loss of performance, we consider only transmission policies that are functions of

the current system state and channel state, Un(Xn, Qn). Consequently, the Markov

decision process can be simplified with Un as the input, Xn as the noise, Qn as the

state, and E[(Xn − X̂n)2] as the stage cost. The associated dynamic programming

recursion is shown in eq. (3.2) and eq. (3.3) on the next page.

Theorem 4 Let Xn be independent and identically distributed N (0, σ2). The opti-

mal transmission policy for Problem 4 is of the threshold type.

Proof 11 See proof 18 in Section 3.6.

3.3.3 Optimal solutions within the class of symmetric policies

We now investigate the structure of the best symmetric transmission policies.

We seek conditions under which the optimal symmetric transmission policy is a

62



VN+1(qN+1) = 0, (3.2)

Vn(qn) = min
Un

E[(Xn − X̂0
n)2|Rn = 0]p(Rn = 0|qn)+

pnE[(Xn − X̂1
n)2|Rn = 1]p(Rn = 1|qn)+

E[Vn+1(qn+1)|qn], n ∈ {1, . . . , N}, (3.3)

Vn(a(c+ δ) + w, q)− Vn(ac+ w, q)

(c+ δ)2 − c2
≤ (a(c+ δ) + w)2 − (ac+ w)2

(c+ δ)2 − c2
+

hq
1

n+1(c+ δ + w/a)− hq
1

n+1(c+ w/a)

(c+ δ)2 − c2
, (3.4)

≤ 2a2 +
aω

x
+

hq
1

n+1(c+ δ + w/a)− hq
1

n+1(c+ w/a)

(c+ δ)2 − c2
. (3.5)

symmetric threshold policy. This is the case if the probability of drop is sufficiently

small for all channel states. Even if the drop probabilities are not sufficiently small,

symmetric threshold policies may still be optimal. This is highlighted by a numer-

ical example, which suggests that there are classes of channel dynamics for which

symmetric threshold policies are the best symmetric transmission policies.

Restricting to symmetric transmission policies, Problem 4 can be written as a

dynamic program. We first show that the cost-to-go functions are quasi-convex. In

order to accomplish this, we write the evolution of the error in a convenient manner.

Lemma 3 If UN is a symmetric transmission policy, then the estimation error
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evolves according to

En+1 =


aEn +Wn if Ln+1 = 0,

0 if Ln+1 = 1.

(3.6)

Proof 12 This is in principle equivalent to [74, Proposition 3.1]. In [74, Proposi-

tion 3.1], a symmetric threshold policy is assumed; however, the proof only relies on

the symmetric nature of the policy.

The convenient form of the error evolution in eq. (3.6) is possible due to the

symmetric assumption. For symmetric policies, when Ln = 0 the optimal estimate

X̂n is the same whether a transmission was attempted or not. The remote estima-

tor’s belief fXn|V n,Rn depends on the value of Rn; however, its mean, which is the

optimal estimate, does not.

The problem can be considered a Markov decision process with state (En−1, Qn),

input Rn, and noise (Wn−1, Cn). The cost to be minimized is

N∑
n=1

E[E2
n].

The associated dynamic programming recursion is given by

VN+1(eN , qN+1) = e2
N ,

Vn(en−1, qn) = min{C0
n(en−1, qn), C1

n(en−1, qn)}, (3.7)

for n = 1, . . . N with

C0
n(e, q)

def
= e2 + EW [Vn+1(ae+W, q0)],

C1
n(e, q)

def
= pqe

2 + pqEW [Vn+1(ae+W, q1)]

+(1− pq)EW [Vn+1(W, q1)],
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and q0 def
= Ms(q, 0), q1 def

= Ms(q, 1), pq
def
= Mo(q) and W distributed N (0, σ2).

Lemma 4 For n ∈ {1, . . . , N + 1} and q ∈ Q, the cost-to-go functions Vn(en−1, q)

are quasi-convex and symmetric in en−1. The minimum value is Vn(0, q).

Proof 13 See proof 19 in Section 3.6.

Theorem 5 There exists a v > 0 such that if for all q ∈ Q

pq <
1

1 + v
,

then the optimal symmetric transmission policy is a threshold policy.

Proof 14 See proof 20 in Section 3.6.

Several lemmata will be presented to aid in the proof of this theorem. Let

hqn(e)
def
= EW [Vn(ae+W, q)]. Also define,

On(e, q)
def
= lim

δ↓0

hqn(e+ δ)− hqn(e)

(e+ δ)2 − e2
.

Lemma 5 For e ≥ 0 and q ∈ Q, if

pqOn+1(e, q1) < (1− pq) +On+1(e, q0), (3.8)

then the optimal symmetric transmission policy for stage n is a threshold policy.

Proof 15 See proof 21 in Section 3.6.

Remark 4 The condition in Lemma 5, guarantees that C0
n increases more than

C1
n at every estimation error e. Clearly, this is a condition that leads to threshold

transmission policies.
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Figure 3.2: FSM model for an energy harvesting channel. State i represents the

energy currently stored in the battery. The arcs represent channel state transitions

which depend on whether a transmission is attempted.

Lemma 6 For all e ∈ R and q ∈ Q,

On(e, q) ≤ v′n,

with v′n
def
= 2a2(N + 1− n) + a2.

Proof 16 See proof 22 in Section 3.6.

3.4 Applications

3.4.1 Energy harvesting channel

In this section, a wireless communication channel with energy harvesting capa-

bilities is modeled as a use-dependent packet-drop channel. Many different problem

formulations addressing remote estimation over a battery powered channel have

been considered: see [66], [81] and [67].

Consider a battery operated channel with a capacity of 4 energy units. As-

sume energy is harvested deterministically, as in [81], at 1 energy unit per time
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Time

Step, n

Current Estimation Error, En

Figure 3.3: Optimal symmetric transmission policy while in channel state 2 of the

use-dependent packet-drop channel as shown in Figure 3.2. This transmission policy

was calculated using the values a = 1.1, σ = 1, and N = 20. For errors less than the

left black dots a transmission is attempted. For errors greater than the right black

dots a transmission is attempted. Inside the gray region, no transmission is sent.

step. Transmitting requires 2 units of energy and no energy is harvested during

transmission. At each time step, the decision of whether to transmit is made.

The FSM in Figure 3.2 models the battery dynamics. The channel states are

Q = {0, 1, 2, 3, 4}. Channel state q denotes that the battery has q energy units. If

a transmission is attempted Rn = 1, then the battery level is reduced by 2 energy

units. Thus the channel state state q transitions to state q − 2. If a transmission

is not attempted Rn = 0, then the battery level increases by 1 as long as the

battery is not already at capacity. Thus, the channel transitions from state q to

state min{q+ 1, 4}. In states 0 and 1, transmitting is not allowed due to insufficient

energy. The probability of drop for each state capable of transmitting is 0.3.

We assume that the encoder receives acknowledgments of the transmissions
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and that the remote estimator can distinguish between a drop and no transmission

attempt. Interestingly, from Theorem 4 we have that the optimal transmission policy

may not be symmetric in the estimation error even though the cost is symmetric in

the estimation error and the noise is zero-mean and symmetric.

3.4.1.1 Numerical example

We numerically calculated, via discretization and value-iteration, the optimal

symmetric transmission policies for this example when a = 1.1, σ = 1 and N = 20.

The optimal symmetric transmission policy for channel state 2 is shown in Figure 3.6.

Notice that the optimal symmetric transmission policy is a threshold pol-

icy, even though the conditions of Theorem 5 are not satisfied. In fact, every

p2, p3, p4 ∈ [0, 1] that we tested has an optimal symmetric transmission policy that

is a threshold policy. This suggests that for the channel dynamics of Figure 3.2,

threshold transmission policies are optimal among all symmetric strategies.

3.4.2 Operator task shedding

In this section, we seek to optimize a decision support system for human

operators tracking a dynamic target.

Consider a human operator managing multiple UAVs. Tracking a dynamic

target is one of the operator’s many tasks. A video feed is presented to the operator

(see Figure 3.4 for an example of the video feed). The white region is drawn on

the video feed by the decision support system. The operator’s task is to indicate
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Figure 3.4: Example of a display presented to an operator for the task shedding

application. The target is the black square. The visual search task consists of the

operator identifying if the target is inside the white region and optionally logging its

location if it is outside the region. We seek to design the white regions dynamically

to help the operator manage their time.

if the target is inside this region. If outside the region the operator is requested

to log the target’s current location; however, the operator is allowed to not log the

target’s location if other tasks seem more vital. In [82], experiments are performed

in a similar setting.

We seek to dynamically optimize the white regions in order to help the operator

manage their time appropriately. If the regions are large, the target’s location is

not well known. If the regions are small, then the target’s location is frequently

requested. This increases the operator’s workload and the likelihood the operator

will ignore the request. The channel state is used to model operator workload.

The optimal transmission policies define the optimal white regions and manage the

tradeoff between accuracy and workload.

Yerkes-Dodson’s law quantifies the tradeoff between operator performance and

workload, see [13]. Yerkes-Dodson’s law states that the operator performs poorly if
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Figure 3.5: FSM model for human operator workload. The workload is a function

of the average number of requests over the last 4 time steps. State i represents that

i requests have occurred in that last 4 time steps. The arcs represent transitions of

the channel state which depend on whether a transmission is requested.

the workload is very high or very low. Optimizing operator decision support systems

using Yerkes-Dodson’s law as an operator model is also investigated in [11] and [12].

In [11], the workload impacts the time to complete tasks such that under high

workload situations the operator completes tasks slowly. The authors find optimal

policies specifying when to present the operator with tasks in order to maximize

throughput. In [12], not all tasks must be completed and the questions of which

tasks to assign, for how long, and with how much rest in-between are addressed.

In contrast to [11] and [12] and motivated by [16], we assume that the op-

erator workload impacts the likelihood that the operator will ignore a request for

information.

We consider the operator’s workload a function of the average number of re-

quests over the last k time steps,

1

k

n∑
i=n−k

ri.

If the average is high, the operator is prone to shed tasks. This workload model has
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memory and can be envisioned as the finite state machine in Figure 3.5. State q

represents q requests occurring in the last k steps.

To formulate this as a use-dependent packet-drop channel we take the target’s

location to be the system state, Xn. The target being outside the white region

represents an attempted transmission Rn = 1. The transmission policy Un defines

the white region.

We have modeled this application as a use-dependent packet-drop channel. By

Theorem 5, if the operator is unlikely to ignore requests, pn < 1/(1 + v), then the

optimal symmetric white regions are threshold policies. This is desirable since non

threshold policies represent white regions that are not connected and may mislead

operators.

The numerical example below suggests that threshold policies are the best

symmetric policies even if the operator is likely to ignore requests. This is due to

the structure of the channel dynamics.

Note in this example Xn is two dimensional; however, in our formulation Xn

is scalar. For this two dimensional example, we assume independence between the

horizontal and vertical directions. Thus, Theorem 4 and Theorem 5 apply to each

direction.

3.4.2.1 Numerical example

We numerically find optimal symmetric transmission policies for this example

when a = 1.1, σ = 1 and N = 20. The channel dynamics and drop probabilities are
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B) Channel State 1, p1 = 0.3

A) Channel State 0, p0 = 0.1

Time

Step, n

Time

Step, n

Current Estimation Error, En

Current Estimation Error, En

Figure 3.6: Optimal symmetric policies for the use-dependent packet-drop channel

with dynamics as shown in Figure 3.5. This transmission policy was calculated using

the values a = 1.1, σ = 1, and N = 20. Part A of the figure plots the transmission

policy for channel state 0. Part B plots the policy for channel state 1. For errors

less than the left black dots a transmission is attempted. For errors greater than the

right black dots a transmission is attempted. Inside the gray region, no transmission

is sent.

shown in Figure 3.5. The optimal symmetric transmission policies are calculated by

approximating the value functions in eq. (3.7). In Figure 3.6, the optimal policies for

channel sstates 0 and 1 are shown. It can be seen that the policies are symmetric.

In fact, for all drop probabilities p0, p1, p2, p3, p4 ∈ [0, 1] that were simulated, the

optimal transmission policies were threshold policies.
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3.5 Conclusion

We investigated optimal transmission policies for a remote estimation prob-

lem over a use-dependent packet-drop channel. We presented structural results for

the optimal transmission policies under two different assumptions. Also, two ex-

ample applications were presented with numerical calculations. An application to

energy harvesting channels and an application to mixed initiative teams with human

operator’s performing visual search tasks were discussed.

3.6 Proofs and background on quasi-convex functions

Proof 17 (Proposition 1) From eq. (3.1), note that E[(Xn−X̂n)2] is a determin-

istic function of the channel state qn, the probability that Rn = 1 and the density

fXn|Rn. This density can be written as

fXn|Rn(xn|rn) =
pRn|Xn(rn|xn)fXn(xn)

pRn(rn)
,

where pRn|Xn(rn|xn)
def
= p(Rn = rn|Xn = xn) and pRn(rn)

def
= p(Rn = rn). Thus,

eq. (3.1) is a function of qn and the probability mass function pRn|Xn=xn. The trans-

mission policy Un determines the distribution pRn|Xn=xn. Therefore, the stage cost

is a function of only qn and Un.

Proof 18 (Theorem 4) For an arbitrary transmission policy UN , we construct

a threshold transmission policy T N , using [80], which outperforms the policy UN .

Note, all quantities associated with the policy T N have a superscript T . Also, all

quantities associated with policy UN have a superscript U .
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We expand our search for a policy T N to include randomized transmission poli-

cies. For n ∈ {1, . . . , N} and q ∈ Q, let T qn : R→ [0, 1] be the probability of transmit-

ting, T qn (x)
def
= pT (Rn = 1|Xn = x, Qn = q). Also, E[T qn (Xn)] = pT (Rn = 1|Qn = q).

For a specific n, consider a policy Tn that matches the policy Un’s probability

of transmitting,

pT (Rn = 1|Qn = qn) = pU(Rn = 1|Qn = qn). (3.9)

Also, let policy Tn be such that it produces estimates that match those of policy Un,

T X̂0
n = UX̂0

n (3.10)

T X̂1
n = UX̂1

n. (3.11)

Since pT (Rn = 1|Qn = q) = pU(Rn = 1|Qn = q), we have

pT (Qn+1|Qn = q) = pU(Qn+1|Qn = q). All the quantities in eq. (3.3) are the same

for both policies with the exception of E[(Xn − X̂ i
n)2|Rn = i], for i = 1, 2. We will

choose T qn to reduce E[(Xn − X̂ i
n)2|Rn = i], for i = 1, 2.

In [80], minimizing E[(Xn−X̂ i
n)2|Rn = i] for i = 1, 2 subject to the constraints

eq. (3.9), eq. (3.10) and eq. (3.11) was cleverly rewritten as a constrained moment

matching problem. It was shown that the optimal T qn was a threshold function of

Xn. Using this result, we have constructed a threshold policy T qn that outperforms

U qn.

Thus, for every q ∈ Q and n ∈ {1, . . . , N}, we can construct a threshold policy

T qn that out forms U qn. This threshold policy T N outperforms UN .

Proof 19 (Lemma 4) We show that Vn(en−1, q) is a symmetric and non-decreasing

function in |en−1|. This implies Vn(en−1, q) is quasi-convex by Lemma 7. The proof
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is by induction. The claim holds for the initial case, VN+1(eN , qN+1) = e2
N . Assume

Vn+1(en, qn+1) is symmetric and non-decreasing in |en|. Vn(en−1, qn) is the mini-

mum between C0
n(en−1, qn) and C1

n(en−1, qn). By Lemma 9, EW [Vn+1(aen−1 +W, qin)]

is symmetric and non-decreasing in |en−1| for i = 0, 1. C0
n(en−1, qn) and C1

n(en−1, qn)

are symmetric and non-decreasing in |en−1| because they are the sum of two such

functions. Thus by Lemma 8, Vn(en−1, qn) is symmetric and non-decreasing in

|en−1|.

Proof 20 (Theorem 5) Using the bound v = v′1 from Lemma 6, we proceed by con-

tradiction. We show that any non-threshold, symmetric transmission policy violates

the assumption pq <
1

1+v
.

Following identical arguments as in Lemma 5, we have from eq. (3.12)

pqOn(e, q1) ≥ (1− pq) +On(e, q0)

≥ 1− pq,

since On(e, q) ≥ 0 by Lemma 4. Rearanging and using the bound on On(e, q1) gives

pq ≥
1

1 +On(e, q1)
≥ 1

1 + v
.

Contradicting the assumption. Thus, the optimal policy is a threshold policy.

Proof 21 (Lemma 5) We show that if eq. (3.8) holds, any non-threshold, sym-

metric policy is not the optimal symmetric transmission policy.

For a non-threshold, symmetric policy Sn there exists a q ∈ Q and c ≥ 0

such that Sn(c, q) = 1 but Sn(c + δ, q) = 0 for small δ > 0. Since Sn(c, q) = 1

from eq. (3.7) we have C0
n(c, q) ≥ C1

n(c, q). Also, since Sn(c + δ, q) = 0 we have
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C0
n(c+ δ, q) ≤ C1

n(c+ δ, q). By subtracting these equations we have

C0
n(c+ δ, q)− C0

n(c, q) ≤ C1
n(c+ δ, q)− C1

n(c, q). By rearranging terms this becomes

pq[h
q1

n+1(c+ δ)− hq
1

n+1(c)] ≥ (1− pq)[(c+ δ)2 − c2]

+hq
0

n+1(c+ δ)− hq
0

n+1(c).

Dividing by (c+ δ)2 − c2 and taking the limit δ ↓ 0 yields

pqOn+1(c, q1) ≥ (1− pq) +On+1(c, q0). (3.12)

Contradicting the assumption. Thus, the optimal policy is a threshold policy.

Proof 22 (Lemma 6) We show inductively that for all e ∈ R and q ∈ Q, there

exists a v′n such that On+i(e, q) ≤ v′n, for i = 1 . . . (N + 1− n).

This property holds for N + 1, since hqN+1 = a2e2 + σ2 and ON+1(e, q) = a2.

Thus, v′N+1 = a2.

Assume the property holds for n + 1 with v′n+1. We will show the property

holds for n. For a specific e and ω, there are two cases Vn(ae + ω, q) = C0

or Vn(ae + ω, q) = C1, see eq. (3.7). We prove the statement for the case when

Vn(ae+ ω, q) = C0. The other case yields the same result and is analogous.

Equation (3.4), on the previous page, is obtained for the case using

Vn(ae+ ω, q) = C0 and using the bound

Vn(a(x+ δ) + ω, q) ≤ (a(x+ δ) + ω)2

+ E[Vn+1(a(x+ δ) + ω, q1)].

The right hand side of eq. (3.4) is comprised of two terms. The first term is upper

bounded by a 2a2 + aω
x

.
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Next, we take the expectation of eq. (3.5) with respect to ω and then the limit

with respect to δ. Using the inductive hypothesis to bound the second term by v′n+1,

this yields

On(e, q) ≤ 2a2 + v′n+1.

Thus, with v′n = 2a2 + v′n+1 the induction is complete. We see that for all n,

v′n = 2a2(N + 1− n) + a2 is an adequate bound.

3.6.1 Quasi-convex functions

In this section, definitions and results related to quasi-convex functions are

presented.

Definition 9 A function f : R→ R is quasi-convex if for x, y ∈ R and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

Definition 10 A function f : R→ R is symmetric and non-decreasing in |x| if for

0 ≤ x < y,

f(x) = f(−x) and

f(x) ≤ f(y).

Lemma 7 If f : R → R is symmetric and non-decreasing in |x| then f is quasi-

convex.

Proof 23 For x, y ∈ R, without loss of generality let |y| > |x|. Note f(y) ≥ f(x).

For λ ∈ [0, 1], since |λx+ (1− λ)y| ≤ |y|, we have f(λx+ (1− λ)y) ≤ f(y).
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Lemma 8 Let f, g be symmetric and non-decreasing in |x|. The function

h(x) = min{f(x), g(x)} is symmetric and non-decreasing in |x|.

Proof 24 First, we show h is symmetric. For x ∈ R,

h(−x) = min{f(−x), g(−x)}

= min{f(x), g(x)}

= h(x).

We now show h is non-decreasing. For 0 ≤ x < y,

h(x) = min{f(x), g(x)}

≤ min{f(y), g(y)}

= h(y).

Lemma 9 Let f be a symmetric and non-decreasing in |x|, W a random variable

distributed N (0, σ2) and a ∈ R. The function h(x) = EW [f(ax+W )] is symmetric

and non-decreasing in |x|.

Proof 25 First, we show h is symmetric. For x ∈ R,

h(−x) =

∫ ∞
−∞

f(−ax+ w)ηe
−w2

2σ2 dw

=

∫ ∞
−∞

f(−ax− w′)ηe
−w′2
2σ2 dw′

= h(x)

where η = 1√
2πσ2

. The second equality holds by change of variables w′ = w.
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We now show h is non-decreasing. Let 0 ≤ x < y. Using the symmetry of f ,

with η
def
= 1√

2πσ2
, h(x) can be written,

h(x) =

∫ ∞
0

f(w)η[e
−(w−ax)2

2σ2 + e
−(−w−ax)2

2σ2 ]dw.

Consider

h(y)− h(x) =

∫ ∞
0

f(w)ηg(w)dw,

with

g(w)
def
= e

−(w−ay)2

2σ2 + e
−(−w−ay)2

2σ2

−
[
e
−(w−ax)2

2σ2 + e
−(−w−ax)2

2σ2

]
.

There exists a w̄ > 0 such that g(w) < 0 for 0 < w < w̄ and g(w) ≥ 0 for w ≥ w̄.

So

h(y)− h(x) =

∫ w̄

0

f(w)ηg(w)dw +

∫ ∞
w̄

f(w)ηg(w)dw

≥ f(w̄)

∫ w̄

0

ηg(w)dw + f(w̄)

∫ ∞
w̄

ηg(w)dw

= f(w̄)[1− 1] = 0.

Thus, h(y) ≥ h(x).
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Chapter 4: Remote Estimation of Multiple Systems Over Shared-

State Multiple Packet-Drop Channels

A discrete-time remote estimation problem formed by a transmission system

transmitting sensor measurements of l different systems to an estimator is inves-

tigated. The transmission system has different operating modes. Each mode of

operation prioritizes transmitting the l sensor measurements differently. For non-

trivial problems, no mode of operation simultaneously prioritizes transmitting all

measurements. The transmission system is formed by a homogeneous Markov chain

and a Bernoulli packet-drop communication link for each of the l sensors. The mode

of operation is the current Markov chain state and determines each sensor’s trans-

mission priority. The probability of a packet-drop for a sensor quantifies that sensors

priority. If a sensor has a low priority in a given mode of operation, the probability

of a drop on its transmission link is high. We seek to design the transition probabil-

ities between modes of operation, Markov chain states, to stabilize the estimation

error for all l systems. For specific cases of this problem, algorithmic solutions are

presented that will design a stabilizing transition matrix if one exists and certify

infeasibility if one does not. For the general problem formulation, an algorithm is

proposed to design a stabilizing transition matrix. If this algorithm converges, it
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converges to a solution. Also, this algorithm scales well with problem size, makes

efficient updates, and in certain settings is guaranteed to find a stabilizing transition

matrix if one exists. For several example applications, a numerical study compares

the proposed algorithms to a branch and bound method.

This chapter is organized as follows. Section 4.1 provides an introduction. Sec-

tion 4.2 formulates the problem and discusses related technical results. Section 4.3

considers the case of stabilizing the estimation error of one linear system, l is 1.

Section 4.4 discusses an important characterization of the problem that is utilized

to develop the algorithms. For a transmission system with only two modes of oper-

ation, Section 4.5 presents an algorithm to design the transition matrix between the

modes of operation. Section 4.6 considers a transmission system with an arbitrary

number of operating modes as well as restrictions on transitioning between certain

modes of operation; an algorithmic solution is proposed. Section 4.7 contains a

numerical comparison of the proposed algorithms.

The contributions of this chapter are listed below.

1. A semidefinite program (SDP) to design the operating modes transition prob-

abilities when the transmission system has a single Bernoulli link, l equals

1.

2. An algorithm to design the operating modes transition probabilities when the

transmission system has two modes of operation, m equals 2, and two Bernoulli

links, l equals 2.

3. A proposed algorithm for the general case of designing the operating modes
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transition probabilities when the transmission system has an arbitrary number

of modes m and an arbitrary number of Bernoulli links l.

4. Several desirable properties of the algorithm proposed for the general case,

including a correctness proof for this algorithm in the case when l equal 1.

5. Applications of these algorithms to operator support system design and a

numerical comparison are provided.

4.1 Introduction

An estimator receives measurements of l linear systems over a transmission

system that has multiple modes of operation, see Figure 4.1. The estimator produces

state estimates for each linear system that minimizes the expected mean-squared

estimation error.

At each time step, a sensor measures the state of each linear system. These

sensor measurements are the input to the transmission system. Each of the l linear

systems is driven by noise.

The transmission system has multiple modes of operation. Each mode priori-

tizes the transmission of some sensor measurements over the other sensor measure-

ments. A different Bernoulli packet-drop link transmits each measurement to the

estimator. The transmission priority level for a sensor measurement as specified by

the current mode of operation determines the probability of packet-drop for that

sensor measurement. For example, an operating mode with a high priority level

for a given measurement designates a low drop probability for that measurement.
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Figure 4.1: The structure of the transmission system that has multiple modes of

operation and transmits the measurements of l system’s states to the estimator.

A homogeneous Markov chain models the modes of operation and the probability

of transitioning to a new operating mode. The Markov chain, transmission drop

processes and noise driving the linear systems are assumed mutually independent.

We seek to design the transition probabilities between operating modes and

thus transitions between transmission priorities to simultaneously stabilize the ex-

pected mean-squared estimation error for all l linear systems. A simple concrete

example of the problem formulation is given in Section 4.2.3.

4.2 Problem Formulation

4.2.1 Notation

In this chapter, bold capital letters represent matrices such as A, bolded lower-

case letters represent vectors such as f, and lower-case letters represent scalar quan-

tities such as l. The entry in the ith row and jth column of matrix A is denoted
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A(i, j). The ith entry of the vector f is denoted f(i). The set of real numbers is

represented by R. The set of non-negative real numbers is represented by R≥0. The

set of positive real numbers is denoted R+. Vector and matrix inequalities are de-

fined entry-wise. For instance, for A and B in Rm×l, A ≥ B, holds when A − B

is in Rm×l
≥0 . Strict inequalities are defined similarly. Positive definite matrices are

denoted by A � 0. For a sequence of scalars dn indexed by n, we use d1:n to denote

the set {d1, . . . , dn}. The set {1, . . . , l} is denoted by L and similarly M denotes

the set {1, . . . ,m}. The following table summarizes this notation:

A(i, j) the entry in the ith row and jth column

of matrix A,

f(i) the ith entry of the vector f,

A ≥ B if A−B ∈ Rm×l
≥0 ,

A � 0 matrix A is positive definite,

ρ(A) spectral radius of matrix A,

d1:n {d1, . . . , dn},

L {1, . . . , l},

M {1, . . . ,m}.

The kth canonical basis vector of Rn is denoted ek. A column vector of di-

mension k whose entries are all one (zero) is denoted 1k (0k). The identity matrix

is denoted as I. The set of m ×m matrices with entries in {0, 1} is denoted with

{0, 1}m×m. The diagonal matrix constructed from a k dimensional vector f by plac-

ing f(i) in the (i, i)th position is denoted with diag(f) or diag(f(1), . . . , f(k)). The

variable n is reserved as an iteration and time index.
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Throughout the chapter we frequently refer to the individual rows and columns

of a matrix. To accommodate this, the following notation is used. For H in Rm×l,

H =

[
h1 h2 . . . hl

]
=



h(1)

h(2)

...

h(m)


,

where h(i) in R1×l is the ith row of the matrix H and hi in Rm×1 is the ith column.

We reserve the variable X to denote the linear systems’ state, W to denote

the process noise, B for the transmission systems state, F for the Bernoulli drop

processes, and V for the conditional expectation of estimation error. The quantities,

X, W , B, F , and V are random variables and use a slightly different notation from

deterministic quantities. For random variables, a capital letter such as X refers to

a scalar random variable while a lower-case letter such as x refers to its realization.

Also for random variables, bolded capital letters such as X refer to a vector random

variable while bolded lower-case letters such as x refer to its realization.

4.2.2 Formulation

Consider l scalar linear time invariant systems with dynamics given by

X i
n+1 = aiX

i
n +W i

n, (4.1)

where i is in L, X i
n is the state of system i at time n, ai is a real-valued constant, W i

n is

independent and identically distributed Gaussian noise with zero mean and variance

σ2. The initial state of system i is a random variable X i
0 with known distribution.
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Scalar systems are used for convenience, see Section 4.2.4 for an extension to non-

scalar linear-time invariant systems.

A transmission system with different modes of operation attempts to transmit

the states of these l systems to an estimator, at each time step. A homogenous

Markov chain Bn with m states and transition matrix Q, defined for i and j in M

by

Q(i, j)
def
= P (Bn+1 = j|Bn = i),

models the transmission system’s current mode of operation and transitions to new

modes of operation. At each time step n, system i’s state X i
n is measured and sent

over a Bernoulli drop link to the estimator. Bernoulli link i successfully transmits

the state X i
n to the estimator if the drop process F i

n is 1. It drops the transmission

and does not transmit the state X i
n to the estimator if the drop process F i

n is 0.

The current mode of operation Bn determines the probability of dropping system

i’s measurement

P (F i
n = 0)

def
= pi(Bn),

where the probability of drop pi(Bn) specifies measurement i’s transmission priority

while in operating mode Bn. For interesting problem formulations, there is no single

mode of operation Bn for which drop probabilities pi(Bn) are low for all i in L.

As indicated in Figure 4.1, at time n for each i in L the estimator receives X i
n

if F i
n is 1 and a drop symbol if F i

n is 0. We assume that the operating mode Markov

chain, the drop processes, and the noise are mutually independent. The estimator is

chosen to be the minimum mean-square error estimator for each system. Due to the
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independence between random variables the conditional mean of the mean-square

estimator becomes

X̂ i
n =


X i
n if F i

n = 1,

aiX̂
i
n−1 if F i

n = 0.

Let the initial state estimate x̂i0 equal the mean E[X i
0]. The estimation error for

each system at time n is

X̃ i
n

def
= X i

n − X̂ i
n.

Definition 11 (Expected Mean-square Error Stability) For i in L, the esti-

mation error for system i is expected mean-square stable, if the following holds for

every initial error X̃ i
0 and mode of operation B0,

lim sup
n→∞

E
[
(X̃ i

n)2
]
<∞. (4.2)

For many applications, it is important to restrict certain transitions between

operating modes. It may not be physically possible to transition between all operat-

ing modes. Let S in {0, 1}m×m specify the allowable state transitions of the Markov

chain. Transitioning from Markov chain state i to j is allowable if S(i, j) equals 1.

If S(i, j) equals 0, then transitions from state i to j are not allowed and Q(i, j) is

0. These conditions can be imposed using the following sparsity constraint:

Q ≤ S. (4.3)

Problem 5 Let S be a given matrix in {0, 1}m×m. Find a stochastic matrix Q

satisfying eq. (4.3) for which the stability condition in eq. (4.2) holds for all i in L.
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The minimum mean-squared error for each system is a function of the Markov

chain history. Taking the expectation with respect to the noise and packet-drop

process conditioned on the Markov chain state history we define,

V i
n(B1:n)

def
= E[(X̃ i

n)2|B1:n].

Using standard conditional expectation arguments, we arrive at the following recur-

sion for i in L,

V i
n+1(B1:n+1) = a2

ip
i(Bn+1)V i

n(B1:n) + σ2. (4.4)

Similar to the approach taken in the jump Markov linear systems literature

[83], we use the following identity:

EB[V i
n(B1:n)] =

m∑
j=1

EB[V i
n(B1:n)χ{Bn=j}],

where χ{Bn=j} is the indicator function of the event Bn equals j. Define the vector

of expectations as

rin
def
=


EB[V i

n(B1:n)χBn=1]

...

EB[V i
n(B1:n)χBn=m]]

 .

Using eq. (4.4) and standard transformations, the following recursion holds for i in

L,

rin+1 = QTDir
i
n + σ21m,

where Di
def
= a2

i diag([pi(1), . . . , pi(m)]). Thus, the expected estimation error of

system i is mean-square stable if and only if ρ(QTDi) is less than 1. This implies
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the estimation error is mean square stable for all systems if and only if the following

inequalities are satisfied,

ρ(QTDi) < 1, i ∈ L.

Using our analysis so far, we can restate Problem 5 in more precise terms as

follows:

Problem 6 (Main Problem) Let S in {0, 1}m×m and positive constants γi, with

i in L be given. Find a stochastic matrix Q that satisfies the following inequalities

i in L,

Q ≤ S,

ρ(QTDi) ≤ γi, i ∈ L, (4.5)

where Di are diagonal matrices defined as

Di
def
= a2

i diag([pi(1), . . . , pi(m)]).

Remark 5 The γi parameters are introduced to generalize the problem formulation.

A parameter choice of γi less than 1 implies stability for the mean-squared estimation

error of system i. Also, this parameter provides a new design mechanism. Choice of

γi sets the slowest possible rate of the mean estimation error’s convergence. Selecting

a smaller γi will force the design of a transition matrix Q with a smaller slowest

possible convergence rate for the error of system i. Also, γi may be different from

γj for i not equal j, leading to different slowest possible convergence rates of the

errors for different systems. Setting these parameters with differing values allows

for prioritization of different system’s estimation error.
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4.2.3 Motivating Examples

To clarify the formulation, consider an illustrative example of monitoring two

systems whose states are separately measured and transmitted over a transmission

system with two Bernoulli drop channels. The transmission system for this example

has two operating modes. In the first operating mode, the transmission of the first

system’s state is prioritized and the second system’s state is not transmitted, mean-

ing that the first system’s state is transmitted with a low probability of drop p1(1)

and the second system’s state is transmitted with a drop probability p2(1) of 1. In

the second operating mode, the second system’s state is prioritized for transmission,

meaning its drop probability p2(2) is low and the first system is transmitted with a

drop probability p1(2) of 1. We seek a Markov chain transition matrix Q between

these modes of operation that leads to mean square stability for the error estimate

of both systems.

Sensor dynamics are added to this example by jointly operating the Bernoulli

drop links on a battery with a charge capacity of a single measurement. The battery

is recharged during periods without sensor use by energy harvesting. The probability

of recharging the battery during a single time-step is r. The Markov chain in

Figure 4.3 jointly describes both the operating modes and battery dynamics. State

3 represents that the battery is charged. State 4 represents that the battery is

depleted. When the battery is charged, we seek to design a randomized policy of

when to transmit system 1’s state, or system 2’s state or wait to take a measurement

and preserve the battery. Equivalently, we seek to design a transition matrix with
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Figure 4.2: An example of a two operating mode chain determining the transmission

of two sensors monitoring independent systems is shown. In state 1, system 1’s state

is successfully transmitted with probability 1 − p1(1) and system 2’s state is not

transmitted, p2(1) equals 0. In state 2, system 2’s state is successfully transmitted

with probability 1− p2(2) and system 1’s is not transmitted, p1(2) equals 0.

the graph structure of the Markov chain in Figure 4.3,

Q =



0 0 0 1

0 0 0 1

Q(3, 1) Q(3, 2) Q(3, 3) 0

0 0 1− r r


,

and leads to mean square stability for both systems’ estimation error.

This example demonstrates how the Markov chain’s states are used to model

transmission operating modes and the allowable structures of the transition matrix

is used to model the allowable dynamics of the operating modes. In general, we

investigate problems with l systems to monitor, a Markov chain with m modes of

operation, and arbitrary restrictions on the allowable transitions between operating

modes.

91



Figure 4.3: An example Markov chain is shown of operating the example in Fig-

ure 4.2 on battery power. The battery has capacity for only a single transmission.

In state 1 (2), system 1 (2) is transmitted successfully with probability 1 − p1(1)

(1−p2(2)) and system 2 (1) is not transmitted, respectively. In state 4, the battery

is depleted. The battery recharges with probability r. In state 3, the battery is

charged.
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In Section 4.7, the examples used for numerical testing the algorithms demon-

strate the formulations used in human operator attention allocation problems. An

additional possible application is that of monitoring mammalian cell cultures. This

requires both costly equipment and methods of processing large amounts of real-

time data [84]. Guiding the dynamic allocation of both physical and computational

resources can increase the efficacy and efficiency of monitoring such cell cultures.

The algorithms presented systematically design the dynamic prioritization of trans-

missions.

4.2.4 Non-scalar linear-time invariant systems

Instead of scalar systems, we can also consider systems, as follows:

Xi
n+1 = AiX

i
n + Wi

n, (4.6)

where Xi
n may have dimension greater than one and i is in L and the noise Wi

n is

independently and identically distributed zero-mean Gaussian with positive definite

covariance matrix Σ. The remainder of this section shows that Problem 5 with the

the systems of eq. (4.6) instead of eq. (4.1) can be restated as follows.

Problem 7 (Non-scalar Problem) Let S in {0, 1}m×m and γi greater than 0 for

each i in L be given. Find a stochastic matrix Q that satisfies the following inequal-

ities for each i in L,

Q ≤ S,

ρ(QTDi) ≤ γi,
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where Di
def
= ρ2(Ai)diag([pi(1), . . . , pi(m)]) are parameter matrices.

Note the only difference between Problem 6 and Problem 7 are the parameter ma-

trices.

The arguments leading from Problem 5 with the systems of eq. (4.6) to a

restatement as Problem 7 are very similar to the arguments used in the scalar case

of Section 4.2.2. However, instead of analyzing the dynamics of the mean-squared

error conditioned on the operating mode history, now defined as

V i
n(B1:n)

def
= E

[
(Xi

n − X̂
i

n)T (Xi
n − X̂

i

n)|B1:n

]
, (4.7)

for i in L, we define a more convenient system Y i
n. Define the scalar systems

Y i
n+1(B1:n+1) = ρ2(Ai)p

i(Bn+1)Y i
n(B1:n) + trace(Σ), (4.8)

for i in L. This system Y i
n is different from the mean-squared error conditioned on

the operating mode history V i
n. However, we show that the two systems V i

n and Y i
n

have the same asymptotic behavior. We require the following assumption.

Assumption 3 For each i in L, assume that for each eigenvector of Ai there exists

an eigenvector of Σ that is not orthogonal to it. In other words, for each i in L,

assume that the noise excites all of the modes of Ai.

Lemma 10 Under Assumption 3, for system i in eq. (4.6), the expected mean-

squared error V i
n remains bounded

lim
n→∞

EB[V i
n(B1:n)] <∞,
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if and only if the system Y i
n remains bounded

lim
k→∞

EB[Y i
n(B1:n)] <∞.

Proof 26 See proof 38 in Section 4.9.

Now, following the arguments of Section 4.2.2 leads to Problem 7 if the systems

in eq. (4.8) are used instead of the scalar mean-squared error systems in eq. (4.4).

4.2.5 Literature Review

The problem formulation is related to the sensor selection, control over noisy

channels, jump Markov linear systems (JMLS), and generalized bilinear program-

ming literatures. The algorithms proposed as a solution to this problem utilize

results and analysis from the positive systems literature, Bender’s decomposition

techniques, and fixed-point iteration results. The connections to these works is

discussed below.

Accounting for costly sensor measurements has a long history. In [76], one

of several different sensors is selected, each with a different cost, to minimize a

combination of error and sensor costs. In [78] and [85], sensor measurements are

made over Bernoulli drop channels and the relationship between the estimation

error covariance and Bernoulli channel throughput is studied via upper and lower

bounds on the error covariance. A problem similar to our proposed problem is

considered in [86] [87], where an algorithm is proposed to design a distribution for

randomly selecting one of several sensors at each time step. The algorithm in [86] is

based upon minimizing an upper bound of the estimation error covariance. In [88],
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the next measurement of a nonlinear system is scheduled to guarantee stability of

the closed loop system based on the current measurement. In [89], a measurement

criterion is proposed that preserves the Gaussian property of the innovations process.

Both [90] and [91] analyze estimating processes over multiple event-trigged channels

under different measurement or triggering policies. Our proposed problem differs

from those in the literature in the following ways: our formulation can account for

partially utilizing multiple faulty sensors with varying prioritization levels allocated

to each sensor, and our formulation accounts for dynamics, such as a battery, in the

sensor apparatus.

Control of systems over noisy channels [92] or packet-drop channels [93] [94] has

been investigated and fundamental stability characterizations discovered. In [95],

estimation over a Bernoulli drop channel with fixed drop probability is considered

and optimal transmission policies developed. A related finite time horizon problem is

considered in [96]. A connection between noisy channels and packet-drop channels is

made in [97]. The work presented in this chapter differs in that here the packet-drop

probabilities have dynamics and we seek to design the transition between operating

modes that determine the packet-drop probabilities.

When monitoring a single scalar system, l equals 1, a direct connection be-

tween Problem 6 and JMLS [83] [98] is made by creating a stacked state of each

systems’ estimation error and expanding the Markov chain state space to explicitly

enumerate all measurement drop possibilities in each original state. This constructed

JMLS is quite large and highly structured, even for modestly sized problems. How-

ever, when monitoring multiple systems, l greater than 1, such a direct connection
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is not possible as is highlighted in the non-scalar case where mean-squared error

stability is characterized in terms of the spectral radii of the system matrices Ai,

see Section 4.2.4.

The proposed algorithms are developed by formulating the problem as a fea-

sibility problem with bilinear inequality constraints and linear equality constraints.

We then exploit the specific structure of the problem to develop the solution al-

gorithms. In the literature, approaches have been discussed for optimization prob-

lems with non-convex quadratic objective functions over polygonal feasible regions

[99] [100], and problems with bilinear objective functions over polygonal feasible

regions [101] [102], as well as non-convex quadratically constrained quadratic prob-

lems (QCQP) [103]. Also, solution methods for problems with a bilinear cost and

separable polygonal feasibility regions have been developed [104] [105]. These are

very general and difficult problems. Solution techniques commonly include relax-

ation techniques [106], decomposition methods [107], and branch and bound/cut

algorithms [108]. These solutions methods tailored to a specific example in farm

management is presented in [109]. A framework is presented in [110], [111], and [112]

for a branch and bound algorithm specifically designed for an optimization problem

with a bilinear objective function and bilinear inequality constraints. The branch

and bound algorithm used for comparison to our proposed algorithm in Section 4.7

was developed from these works. In contrast to these general approaches we utilized

the structure of our problem and developed an iterative algorithm that scales well

with problem size and the number of constraints or problem partitions does not

grow with each iteration.
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We leverage results from the positive systems literature characterizing the

spectral radius of entry-wise nonnegative matrices [113] [114]. A related result in

this literature that was not used, states that certain general quadratic optimization

problems defined by entry-wise nonnegative quadratic terms are equivalent to a

semidefinite program [115]. Our problem does not satisfy the conditions of this

result, or the slightly generalized version [116], due to the row stochastic constraint

and zero pattern constraint on the transition matrix.

Bender’s decomposition methods decompose an optimization problem into a

master problem and numerous decomposed sub-problems [117] [118] [119]. It is

commonly used for mixed-integar problems [120] [121]. Directly applying Bender’s

decomposition to a problem may not yield a solution [122] and feasibility at each

iteration must be considered [123]. In fact, Bender decomposition produces an

algorithm with a non-convex optimization problem to solve at each iteration for

Problem 6. However, inspired by this method’s use of Farkas lemma to partition

the problem, we use Farkas lemma and the specific structure of our bilinear feasibility

problem to derive a equivalent feasibility problem in terms of a subset of the original

variables.

As highlighted by the example in the introduction, problems involving com-

munication over energy harvesting sensors have related problem formulations and

solution techniques [66]. In [124], similar to our formulation a linear system driven

by noise is remotely estimated over a Bernouli drop channel operating on battery

power. The decision of the transmission power level, which determines the drop

probability, is formulated as a Markov decision process and an approximate optimal

98



solution by investigating the form of the value function. In [125], a transmission pol-

icy is proposed that attempts to balance the transmission rate, battery level, and

estimation performance. Objective functions other than mean square estimation er-

ror have also been explored: [67] uses a distortion metric and [68] uses a throughput

cost.

4.3 Semidefinite Program To Design Q For a Single System (l = 1)

In this section, Problem 6 with a single system, l equals 1, is rewritten as a

semi-definite program (SDP) [115]. Even with only a single system, designing the

transition matrix Q between operating modes can be an important and interesting

problem. For example, the operating mode structure of a battery-operated com-

munication link shown in Figure 4.3 demonstrates the use of designing operating

mode transitions even when only one Bernoulli link is present. The battery in that

example only had a charge capacity of a single transmission. With a larger charge

capacity or a more refined model of battery dynamics, the problem can become

quite complex. In general, with a large number of operating modes and depending

on the restrictions placed on the transition matrix, Problem 6 with a single system

can be nontrivial.

With l equals 1, Problem 6 simplifies to the following: Let S in {0, 1}m×m

and D be a diagonal matrix with strictly positive diagonal entries be given. Find a
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transition matrix Q that satisfies

Q ≤ S,

ρ
(
QTD

)
< 1.

The following proposition allows us to cast the spectral radius condition as an SDP.

Proposition 2 Let S in {0, 1}m×m and a positive definite diagonal matrix D be

given. There exists a stochastic matrix Q that satisfies

Q ≤ S,

ρ(QTD) < 1, (4.9)

if and only if there exists Q̃ and diagonal P such that P Q̃D

DQ̃
T

P

 � 0, (4.10)

Q̃1m = P1m,

Q̃ ≤ PS,

Q̃ ≥ 0.

Moreover, if such a Q̃ and P exist, then eq. (4.9) is satisfied by Q equals P−1Q̃.

Proof 27 Since all the entries of Q and D are nonnegative, the following are equiv-

alent:

• ρ(QTD) < 1,

• ρ(DQT ) < 1,
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• ρ(QD) < 1,

• ∃ξ ∈ Rm s.t ξ ≥ 0, QDξ < ξ, and

• ∃ diagonal P � 0 s.t.

[QD]T P QD ≺ P.

Defining Q̃
def
= PQ, the last inequality, DQTP QD ≺ P, is re-written as:

DQ̃
T
P−1Q̃D−P ≺ 0.

Using Schur’s complement this becomes P Q̃D

DQ̃
T

P

 � 0.

The above is a linear matrix inequality (LMI) in P and Q̃. However, Q must

be a transition matrix and satisfy the sparsity constraint in eq. (4.3), Q ≤ S. Since

P is diagonal and positive definite, adding the following constraints enforces these

requirements.

1. Q is row stochastic, if the following constraint is added

Q̃1m = P1m.

2. The sparsity constraint in eq. (4.3), Q ≤ S, is enforced by adding the constraint

Q̃ ≤ PS.

Because eq. (4.3) is an entry-wise inequality, it is vital that P is diagonal to

establish the equivalent constraint stated above.
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3. The entries of Q must be nonnegative, Q in Rm×m
≥ . This is enforced by

Q̃ ≥ 0.

This concludes the proof.

4.4 Preliminary Problem Characterization For Monitoring Multiple

Systems (l > 1)

This section presents a critical result used to develop solution algorithms for

the case when l is larger than 1. Before we present this characterization of the

problem, three observations highlight the challenge and need to search in the entire

space of stochastic matrices for Problem 6.

First: Proposition 2 cannot be extended to multiple systems. The variable

transformation enabling Proposition 2,

Q̃
def
= PQ,

does not immediately lead to a solution for l larger than 1. The analysis in proof 27

leading from the spectral radius condition ρ(QTD) less than 1 to an LMI in Q̃ and

P can be repeated for each Di, leading to l LMI’s in

Q̃i

def
= PiQ

and Pi. However with l greater than 1, the variable transformation requires the

additional constraints

P−1
i Q̃i = P−1

j Q̃j,
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for i and j in L, in the feasibility problem of eq. (4.10). With these constraints,

the problem is no longer an SDP and standard transformations cannot alleviate this

complication.

Second: Solutions to Problem 6 cannot be characterized by their stationary

probability mass functions, as demonstrated by the following example.

Example 1 Consider that l is 2 and that D1 and D2 are given, as follows:

D1 =

.45 0

0 2

 , D2 =

2 0

0 .45

 .
Although alternative Q1 and Q2 given below have the same stationary probability

mass function, the first solves Problem 6, with γ1 and γ2 equal to 1, while the latter

does not. The two transition matrices are:

Q1 =

0 1

1 0

 , Q2 =

.5 .5

.5 .5

 .
Indeed, the stationary distribution of Q1 and Q2 is [.5 .5]. For Q1, the spectral

radii are less than 1,

ρ(D1Q1) = ρ(D2Q1) = .9487.

For Q2, the spectral radii are greater than 1,

ρ(D1Q2) = ρ(D2Q2) = 1.225.

Third: Randomization may be necessary. A transition matrix in {0, 1}m×m

defines a Markov chain that makes deterministic state transitions. A transition

matrix with some entries that are not identically 0 or 1 defines a Markov chain that
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makes randomized state transitions while in some states. The following example

demonstrates that randomization may be necessary.

Example 2 Consider that l is 2 and that D1 and D2 are given, as follows:

D1 =

.1 0

0 2

 , D2 =

2 0

0 .6

 .
Below a randomized transition matrix Q1 that solves Problem 6, with γ1 and γ2 equal

to 1, and a transition matrix Q2 in {0, 1}2×2 are given.

Q1 =

 0 1

.66 .33

 , Q2 =

0 1

1 0

 .
For Q1, the spectral radii conditions are:

ρ(D1Q1) = .8286, ρ(D2Q1) = .9998.

For Q2, the spectral radii conditions are:

ρ(D1Q2) = .4472, ρ(D2Q2) = 1.0954.

Thus, Q2 does not stabilize the estimation error of system 2. Also, all other matrices

in {0, 1}2×2 do not simultaneously stabilize both estimation errors.

4.4.1 A Re-characterization of Problem 6

In light of the challenges posed by Problem 6, we seek algorithmic solu-

tions, presented in Section 4.5 and Section 4.6, which leverage the preliminary re-

characterization of Problem 6 detailed in Theorem 6 below. Before Theorem 6 is

presented, we introduce a supporting lemma and some necessary notion.
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First, without loss of generality, let γi equal 1 for i in L in the remainder of

this chapter. By dividing by γi, eq. (4.5) becomes

ρ

(
QT 1

γi
Di

)
≤ 1,

for i in L. By redefining the diagonal parameter matrices Di as

1

γi
Di,

without loss of generality, for i in L we let γi equal 1 in Problem 6.

The following lemma transforms the spectral radii conditions into a system of

inequalities.

Lemma 11 A stochastic matrix Q satisfies eq. (4.5) if and only if there exists H

in Rm×l
+ that satisfies

DiQhi ≤ hi, (4.11)

for i in L. Recall, hi is the ith column of H.

Proof 28 A direct consequence of Lemma 18 in Section 4.9.

The following notation is required. The parameters matrices Di for i in L are

re-stacked by the mode of operation k in M,

D(k) def= diag ([D1(k, k), . . .Dl(k, k)]) .

Note D(k) comprises the parameter weights associated with the Markov state k.

Di comprises the parameter weights associated with system i. Let ON(k), defined
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below, denote the set of states to which the Markov chain may transition away from

state k,

ON(k)
def
= { i | S(k, i) = 1 }.

Theorem 6 Let S in {0, 1}m×m be given. There exists H in Rm×l
+ and a (row)

stochastic matrix Q that satisfy,

Q ≤ S,

DiQhi ≤ hi, (4.12)

for i in L if and only if there exists H in Rm×l
+ such that the following inequalities

are satisfied for all Z in Rl×m
≥0 ,

h(k)zk ≥ min
i∈ON(k)

h(i)D(k)zk, (4.13)

for k in M. Recall that zk is the kth column of Z and h(k) is the kth row of H.

Proof 29 See proof 42 in Section 4.9.

Note that the condition in eq. (4.13) does not involve Q. Theorem 6 provides

conditions solely in terms of H that are equivalent to the conditions in eq. (4.12) and

therefore, by Lemma 11, equivalent to Problem 6. The remainder of this chapter

uses the conditions in eq. (4.13) to develop iterative algorithms for Problem 6.

4.5 Algorithm to Design Q for l = 2 and m = 2

This section presents an algorithm to design the transitions between two modes

of operation, l equals 2, that prioritize between the transmission of two different sys-
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tem’s state, m equals 2, see Figure 4.2. No restrictions are placed on the transitions

between modes of operation,

S =

1 1

1 1

 . (4.14)

For this case, Problem 6 is solved by finding a feasible solution to the conditions

in eq. (4.13). The conditions in eq. (4.13) become the feasibility problem that there

exists an H in R2×2
+ such that the following inequalities hold for all Z in R2×2

≥0 ,

h(1)z1 ≥ min
(
h(1)D(1)z1, h(2)D(1)z1

)
, (4.15)

h(2)z2 ≥ min
(
h(1)D(2)z2, h(2)D(2)z2

)
. (4.16)

We solve Problem 6 by identifying parameter matrices, D(1) and D(2), ranges that

lead to trivial solutions and provide an algorithm that tests eq. (4.13) feasibility for

the non-trivial cases.

4.5.1 Trivial cases

The following problem parameter cases lead to trivial solutions:

• D1 ≤ I,

• D1 > I,

• D(1) ≤ I,

• D(1) > I.
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Similarly, trivial solutions are available when the D2 or D(2) parameter matrices

satisfy one of these cases. These trivial cases correspond to a single mode of op-

eration adequately transmitting all systems measurements simultaneously or one

of the system’s state not being adequately transmitting in any mode of operation.

Equation (4.15) and eq. (4.16) are analyzed for each of the cases:

D1 ≤ I: For both Markov chain states the parameters for system 1, a2
1p1(1)

and a2
1p1(2) are less than or equal to 1. Thus, any stochastic matrix Q satisfies

ρ(QTD1) less than or equal to 1. The estimation error for system 1 is mean square

stable for any Q.

D1 > I: For both Markov chain states the parameters for system 1, a2
1p1(1)

and a2
1p1(2) are greater then 1. Thus, ρ(QTD1) is greater than 1 for any stochastic

matrix Q. Problem 6 is feasible. The estimation error for system 1 is not mean

square stable for any Q.

D(1) ≤ I: In Markov chain state 1, the parameters for both systems, a2
1p1(1)

and a2
2p2(1) are less than or equal to 1. Both systems are mean-square stable by

choosing to always stay in Markov chain state 1, Q(1, 1) equals 1 and Q(2, 2) equals

0.

D(1) > I: In Markov chain state 1, the parameters for both systems, a2
1p1(1)

and a2
2p2(1) are greater than 1. Thus, Markov chain state 1 does not help stabilize

either system and without loss of generality the only remaining hope of solving

Problem 6 is the transition matrix Q with Q(1, 1) equals 0 and Q(2, 2) equals 1.
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The only remaining cases are

D1(1, 1) > 1, D1(2, 2) ≤ 1,

D2(1, 1) ≤ 1, D2(2, 2) > 1,

and

D1(1, 1) ≤ 1, D1(2, 2) > 1,

D2(1, 1) > 1, D2(2, 2) ≤ 1.

By a relabeling of the states these two cases are equivalent. Furthermore, Problem 6

is not feasible if D1(1, 1) or D2(1, 1) equals 1. If D1(1, 1) equals 1, since D2(2, 2)

is greater than 1, the transition matrix that stabilizes system 1’s estimation error

always remains in state 1, Q(1, 1) equals 1 and Q(2, 2) equals 0; however, since

D2(1, 1) is greater than 1, this transition matrix does not stabilize system 2’s error.

Identical arguments hold if D2(1, 1) equals 1.

4.5.2 Algorithm to Solve Non-trivial Cases

The only non-trivial case is

D1(1, 1) < 1, D1(2, 2) > 1, (4.17)

D2(1, 1) > 1, D2(2, 2) < 1. (4.18)

This case corresponds to each operating mode adequately transmitting one of the

system’s state, but not the other. In this section, we present an algorithm to test the

feasibility of the conditions in eq. (4.15) and eq. (4.16) assuming that the parameter

109



matrices satisfy eq. (4.17) and eq. (4.18). This section’s structure is as follows:

first, preliminary notation and definitions are presented, second, the algorithm is

presented, and third, properties of the algorithm are discussed culminating in a

theorem that the algorithm accurately characterizes the feasibility of the conditions

in eq. (4.15) and eq. (4.16).

The algorithm below requires only the parameter matrices D1 and D2 as input

to test the feasibility of Problem 6. The algorithm uses the following functions,

defined on the domain d greater than 0 and not equal to 1 and k greater than 0,

L(d, k)
def
=

d

(d− 1)k
− d+ 1

d− 1
and

R(d, k)
def
=

d

(d− 1)(1− k)
− d+ 1

d− 1
.

To save space in the following iterative algorithm, the iteration index n is suppressed.

The variable values at the current time step n, for example k1(n), are denoted

without the iteration index k1. Variable values at the next time n+ 1, for example

k1(n+ 1), are denoted with a superscript plus sign k+
1 .
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Algorithm 1: Interval Iteration for l = 2 and m = 2

Initialize k̄1 = 1
D1(2,2)+1

, k1 = 0, k̄2 = 1
D2(1,1)+1

, k1 = 0.

while true do

1. Find new (k+
1 , k̄

+
1 ) bounds.

Solve L(D1(1, 1), k1) = R(D2(1, 1), k2) for k1. k+
1 = max{k1, k1}

Solve L(D2(2, 2), k̄2) = R(D1(2, 2), k1) for k1. k̄+
1 = min{k1, k̄1}

2. Find new (k+
2 , k̄

+
2 ) bounds.

Solve L(D1(1, 1), k̄1) = R(D2(1, 1), k2) for k2. k̄+
2 = min{k2, k̄2}

Solve L(D2(2, 2), k2) = R(D1(2, 2), k1) for k1. k+
2 = max{k2, k2}

3. If k1 ≥ k̄1 or k2 ≥ k̄2, then return infeasible.

4. Let k∗∗1 =
k̄1+k1

2
. If ∃k∗∗2 such that (k∗∗1 , k

∗∗
2 )

satisfies the feasibility problem in eq. (4.19),

then return (k∗∗1 , k
∗∗
2 ) .
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Algorithm 1 characterizes the feasibility of the conditions in eq. (4.15) and

eq. (4.16) as two intervals on R. The algorithm initially over approximates these

intervals and iteratively reduces them as needed. If eventually no reduction is possi-

ble, the conditions in eq. (4.15) and eq. (4.16) are feasible. If one of the two intervals

becomes empty then the conditions are not feasible. The theorem below provides

the result that allows two intervals on R to describe the conditions in eq. (4.15) and

eq. (4.16).

Theorem 7 For l equals 2, m equals 2, and parameter matrices satisfying eq. (4.17)

and eq. (4.18), H in R2×2
+ satisfies the condition in eq. (4.13) if and only if the

following inequalities hold:

k1 ≤
1

D1(2, 2) + 1
, (4.19)

k2 ≤
1

D2(1, 1) + 1
,

L(D1(1, 1), k1) ≥ R(D2(1, 1), k2),

L(D2(2, 2), k2) ≥ R(D1(2, 2), k1),

where

k1
def
=

H(1, 1)

H(1, 1) + H(2, 1)
,

k2
def
=

H(2, 2)

H(1, 2) + H(2, 2)
.

Proof 30 See proof 43 in Section 4.9.

Theorem 7 determines the feasibility of an H by two scalar quantities k1 and

k2. Algorithm 1 searches for feasible intervals for k1 and k2. By definition k1 and k2
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only take positive values. Several properties of the functions L and R are needed

in the proof that Algorithm 1 accurately reports the feasibility of eq. (4.15) and

eq. (4.16).

Lemma 12 For given d less than 1, L(d, k) is monotonically increasing and concave

on k in (0, 1).

Proof 31 See proof 44 in Section 4.9.

Lemma 13 For given d greater than 1, R(d, k) is monotonically increasing and

convex on k in (0, 1).

Proof 32 See proof 45 in Section 4.9.

Theorem 8 For l equals 2, m equals 2, S given by eq. (4.14), and parameter ma-

trices satisfying eq. (4.17) and eq. (4.18), Algorithm 1 returns a feasible point to the

conditions in eq. (4.19) or gives a certificate of infeasibility.

Proof 33 First, we show if the algorithm returns ‘infeasible’, then eq. (4.19) is in-

feasible and by Theorem 7 the conditions in eq. (4.13) are infeasible. We show this

by proving that there is no feasible choice for k1 outside the set (k1(n), k̄1(n)). We

proceed to show that there is no feasible choice for k2 outside the set (k2(n), k̄2(n)).

These claims are proven recursively. By eq. (4.19) and the definition of initial condi-

tions, there is no feasible k1 outside the initial interval (k1(0), k̄1(0)) and no feasible

k2 outside the initial interval (k2(0), k̄2(0)). Now to prove the inductive step, as-

sume the claim holds for n. In Algorithm 1, Step 1 removes k1 for which there is
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no feasible k2. Step 2 removes k2 for which there is no feasible k1. Thus the claim

holds for n+ 1.

Second, we show that if the condition in eq. (4.19) is feasible then the algorithm

returns a feasible point H to the conditions in eq. (4.13). This statement is proven

by contradiction. Assume that both the infeasibility criterion in Step 3 and the cri-

terion in Step 4 are never met. By the monotone convergence theorem, k1(n)→ k∗1,

k̄1(n)→ k̄∗1, k2(n)→ k∗2 and k̄2(n)→ k̄∗2. From steps 1 and 2,

L(D1(1, 1), k̄∗1) = R(D2(1, 1), k̄∗2),

L(D1(1, 1), k∗1) = R(D2(1, 1), k∗2),

L(D2(2, 2), k̄∗2) = R(D1(2, 2), k̄∗1),

L(D2(2, 2), k∗2) = R(D1(2, 2), k∗1).

Assume k∗1 = k∗2 and k̄∗1 = k̄∗2. The case for k∗1 6= k∗2 and/or k̄∗1 6= k̄∗2 uses the

same principle arguments.

Since L is concave and R is convex

L(D1(1, 1), k) > R(D2(1, 1), k),

L(D2(2, 2), k) > R(D1(2, 2), k).

Let k∗∗1 =
k̄∗1−k

∗
1

2
and k∗∗2 = k∗∗1 . Thus, by the above set of inequalities (k∗∗1 , k

∗∗
2 )

is a feasible point of eq. (4.19). Thus, eventually the criterion in Step 4 is met,

contradicting our assumption that it was never met.
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4.6 Algorithm For Problem 6 With Arbitrary l and m

In this Section, we present an algorithm to find a transition matrix Q between

m modes of operation that prioritize the transmissions of l system’s state. This

algorithm iteratively searches for a feasible H that satisfies eq. (4.13) by updating

a previously infeasible one. In the algorithm and analysis that follow, the updated

iterate is denoted by +H. The sequence of iterates generated by the algorithm is de-

noted Hn. Also, the algorithm generates the sequence Z∗n, which are the minimizing

arguments to the optimizations in Step 2 of the below algorithm.

All steps of the algorithm are readily solvable. Step 1 is a linear program and

Step 2 can be written as m convex programs with a linear objective, at most 2m

linear inequality constraints, and a normalization constraint.

Algorithm 2 and Algorithm 1 are very different algorithms. Unfortunately,

Algorithm 1 does not extend to the general case. Algorithm 1 is an iterative al-

gorithm that reduces the initially over-estimated feasibility intervals that cover the

true feasibility intervals. Algorithm 2 is similar to fixed point algorithms, in that it

iteratively updates an initial guess at a feasible solution.

Problem 6 is a difficult non-convex problem. In numerical studies, Algorithm 2

finds an H that satisfies eq. (4.13) if the condition is feasible. If eq. (4.13) is not

feasible, Hn diverges to infinity. We have not found a case of this algorithm failing

to find a solution, if it is known that Problem 6 has a solution. This algorithm does

not have a formal guarantee of correctness; however, Algorithm 2 has the following

desirable properties discussed in the Sections below:
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Algorithm 2: General Algorithm for Problem 6

Initialize H > 0.

while true do

1. With H fixed, solve the feasibility problem in Q,

Q ≤ S,

DiQhi − hi ≤ 0, i ∈ L.

If feasible, exit.

2. For k ∈M, solve

βk = min
zk

h(k)zk − min
i∈ON(k)

h(i)D(k)zk,

subject to zk ≥ 0,

||zk|| ≤ 1.

3. Set βk = max(−βk, 0), for k ∈M.

4. +h(k) = βkz
∗
k + h(k), for k ∈M,

where z∗k achieves βk in the optimization

problem in Step 2.
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• If Algorithm 2 converges, it converges to a solution of eq. (4.13) (Section 4.6.1),

• Algorithm 2 is provably correct for l equals 1 (Section 4.6.3),

• Algorithm 2 makes the minimum 2-norm update of Hn (Section 4.6.2),

• Algorithm 2 scales well with problem size (Above),

• Algorithm 2 can guarantee infeasibility of Problem 6 in specific scenarios (Sec-

tion 4.6.1).

4.6.1 Convergence and Feasibility

Lemma 14 If the iterates Hn converge to a H∗, then H∗ satisfies the conditions in

eq. (4.13).

Proof 34 Since Hn → H∗, for k ∈ M, βk(Hn) → 0, where the notation βk(H) is

used to highlight that βk is a function of H. Note, βk(H) is a continuous function,

the proof of this relies on the facts that for each zk the objective function in Step 2

is Lipschitz continuous in H with a Lipschitz constant that depends on zk linearly

and that the feasible set of zk is bounded. So, βk(Hn)→ βk(H
∗) = 0, which implies

H∗ satisfies the conditions in Equation (4.13).

Remark 6 Often, if Hn converges to H∗, there is a neighborhood around H∗ that

also satisfies the conditions in eq. (4.13). Step 1 returns with the first satisfying Hn

without waiting for convergence.
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The following lemma identifies a scenario, where Hn diverging implies the

condition in eq. (4.13) is not feasible. This scenario has occurred repeatedly in

numerical experimentation.

Definition 12 The variable Z∗n enters a limit cycle of matrices in {0, 1}l×m, if there

exists a k′ and N such that for n greater than or equal to N , Z∗n is in {0, 1}l×m and

Z∗n+k′ = Z∗n.

Lemma 15 If Z∗n enters a limit cycle of permutation matrices, then the condition

in eq. (4.13) is infeasible.

Proof 35 The condition in eq. (4.13) is for all Z ≥ 0. So, eq. (4.13) must hold for

Z∗N , . . . , Z
∗
N+k′−1. Consider the system of inequalities created by these k′ choices

of Z. Because these Z are in {0, 1}l×m, this system of inequalities takes a form

similar to eq. (4.13) when l = 1, as seen in eq. (4.20). Thus, by following arguments

analogous to those presented in Section 4.6.3, we conclude that Hn converges if and

only if the condition in eq. (4.13) is feasible. By assumption, Hn diverges since Z∗n

has entered a limit cycle. Therefore, the condition in eq. (4.13) is infeasible.

4.6.2 Algorithm 2 Updates Hn in the Minimum Two Norm Direction

The iterate update rule in Step 4 of Algorithm 2 is the minimum potentially

feasible +H , defined below, that is also larger than the current H. Observe that

replacing hi with a positively scaled version αhi, for α greater than 0, does not

change the inequalities in eq. (4.12). So, if the problem in eq. (4.12) is feasible then
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for any H in Rm×l
+ , there exists a feasible H′ such that

H′ ≥ H.

Thus with out loss of generality, for any iterate Hn, the search for a feasible H′ is

restricted to H ≥ Hn.

For each, βk less than 0, a known z∗k certifies Hn is infeasible. Therefore, if

the new iterate +h(k) is feasible, it satisfies

+h(k)z∗k ≥ min
i∈ON(k)

+h(i)D(k)z∗k ≥ min
i∈ON(k)

h(i)D(k)z∗k.

The iterate update rule is the solution to the following problem

min
+hk
||+hk||2

+hk > hk,

+hkz∗k ≥ min
i∈ON(k)

h(i)D(k)z∗k,

which has the solution

+hk = βkz
∗
k + hk.

The minimum two norm update is a good update policy and direction because

it increases hk towards feasibility with the minimum possible over-shoot. An update

in the direction of z∗n that overshoots the minimum 2-norm update can cause Hn to

diverge, even if eq. (4.13) has a feasible solution.

Remark 7 We could have chosen to update hk in a direction other than z∗n. For all

other iterate update policies tested an example was constructed where the condition
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in eq. (4.13) is feasible but the iterates Hn diverged. No such example is known

for the minimum two-norm update policy. In applications of Bender’s decomposi-

tion techniques, selecting different cuts, which is analogous to selecting an update

direction, has an impact on both convergence [123] and convergence rate [126].

Remark 8 A minimum step size parameter α can be introduced by replacing Step

3 with the logic:

βk =


max(−βk, α) if βk < 0,

0 otherwise.

The minimum step size parameter α has an impact on the speed of convergence.

In numerical experimentation, a minimum step size of .1 was much smaller than

minimum step sizes that had an impact whether or not the algorithm converged. A

minimum step size of .1 is used for the numerical examples presented.

4.6.3 For l = 1, Algorithm 2 Converges if and only if Problem 6 is

Feasible

In Section 4.3, Problem 6 for l equals 1 is re-written as a SDP. Although,

this case is solved by that SDP, it is important that the algorithm for the general,

non-convex Problem 6 reduces to a provably correct algorithm for this case. With

l equal to 1, the condition in eq. (4.13) is equivalent to the statement that there

exists an H in Rm×1
+ such that the following inequality holds,

H(k, 1) ≥ D(k, k) min
i∈ON(k)

H(i, 1), (4.20)
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for k in M. Step 2 of Algorithm 2 simplifies to

zk =


0 H(k, 1) ≥ D(k, k) mini∈ON(k) H(i, 1),

1 Otherwise,

(4.21)

for k in M. Step 4 simplifies to

H(k, 1) = max

(
H(k, 1),D(k, k) min

i∈ON(k)
H(i, 1)

)
(4.22)

for k in M.

Lemma 16 For l equals 1, if

H′ ≥ H

then

+H′ ≥ +H.

Proof 36 If H′ ≥ H, then for k in M

D(k, k) min
i∈ON(k)

H′(i, 1) ≥ D(k, k) min
i∈ON(k)

H(i, 1).

This along with H′(k, 1) > H(k, 1), yields

+H′(k, 1) ≥ +H(k, 1)

for k in M.

Theorem 9 For l equals 1, Hn converges if and only if the condition in eq. (4.13)

is feasible.
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Proof 37 By Lemma 14, if Hn converges then the condition in eq. (4.13) is feasible.

If there exists an H∗ that satisfies the conditions in eq. (4.13) then for any

initialization point H(0), we select an α such that αH∗ ≥ H(0). Consider an

execution of Algorithm 2 with the alternative initialization point H′(0) = αH∗. By

the monotone property of Lemma 16 at iteration n,

H′n ≥ Hn.

Since H′(0) satisfies the conditions in eq. (4.13), H′n = αH∗ for all n. Hn is a

nondecreasing sequence that is bounded above, αH∗ ≥ Hn. Thus we conclude Hn

converges.

4.7 Examples

Two numerical examples are given that demonstrate the problem formulation

and we detail a typical execution time of Algorithm 1, Algorithm 2, and for com-

parison a branch and bound approach. The numerical tests were performed on a

2015 Macbook Air and the algorithms are implemented in Matlab.
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4.7.1 Example monitoring two systems (l = 2) and a two state

Markov chain (m = 2)

The example shown in Figure 4.2 is used for this numerical example. The zero

pattern structure of this Markov chain is

S =

1 1

1 1

 .
The diagonal parameter matrices are

D1 =

.2 0

0 2

 and D2 =

2 0

0 .55

 .
The chart in Table 4.1 lists each algorithms execution time for this example. A

stabilizing transition matrix exists for these parameter matrices: an illustrative

stabilizing transition matrix is

Q =

.027 .973

.663 .337

 .

4.7.2 Example monitoring 6 systems (l = 6) and a 38 state Markov

chain (m = 38)

Systematically designing human operator interaction and support systems is

an emerging application area [20]. Human phenomena impacting an operator’s

performance such as performance degradation with low or high workloads [13] or
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Execution Time (seconds)

Algorithm 1 2.6

Algorithm 2 6.6

Branch and bound 14.2

Grid refine 23.6

Uniform random search 381.9

Table 4.1: Execution times of each algorithm for the example discussed in the

Section 4.2.3 of monitoring two systems, l equals 2, by a transmission system with

two states, m equals 2. For the random algorithm the average execution time over

ten executions is shown.

Figure 4.4: An example of monitoring 6 geographically dispersed systems. Systems

1, 2, and 3 are closely located. Systems 4 and 5 are also closely located. See

Section 4.7.2 for details of the operating mode Markov chain that models a human

operator monitoring these systems.

124



Execution Time

Algorithm 2 477.8 secs

Branch and bound > 3hrs

Grid refine > 3hrs

Uniform random search > 3hrs

Table 4.2: Execution times of each algorithm for a human operator attention alloca-

tion problem with a model for situational awareness and workload. Given the large

dimensions of the problem, the branch and bound, grid refine, and uniform random

search algorithms were terminated after 3 hours of execution. These calculations

were performed on a 2015 Macbook Air.

situational awareness [31] can be modeled using a Markov chain with a specific

allowable graph structure [43].

A human operator attention allocation design problem is considered for this

numerical example. A human operator is tasked with monitoring the location of 6

targets by performing visual search tasks. Target’s 1, 2, and 3 are near each other.

Target’s 4 and 5 are near each other but distant from other targets, see Figure 4.4.

Due to proximity and terrain changes, if the operator focuses on locating target 1

there is a modest probability that the operator will also locate target 2 or 3. If the

operator focuses on locating target 5, there is a modest probability that the operator

will also locate target 4. Similarly, if the operator focuses attention on locating one

of the other targets.

The sensor state Markov chain is constructed to model human operator char-
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acteristics. A sensor Markov chain state exists for each target representing the

operator’s attention is focused on locating that target. Due to operator situational

awareness, operator performance temporarily degrades as attention changes focus.

This is modeled by a sensor state with higher drop probabilities when transitioning

away from focusing on a target. Operator workload also affects performance. Sensor

states are added that model a low, medium and high workload. Each workload level

increases the sensor drop probability. These workload states are added to each of

the states associated with focusing on a target as well as the situational awareness

states. This example has 38 sensor Markov chain states and a moderately sparse S

in Rn×n.

Table 4.2 lists the execution time of each algorithm for this example. Note

that the branch and bound algorithm is searching in a thirty eight dimensioned

hypercube.

Remark 9 Although a framework is presented in [110], [111], and [112] for a branch

and bound algorithm specifically designed for an optimization problem with a bilin-

ear objective function and bilinear inequality constraints; substantial analysis and

algorithm development were required to produce a viable branch and bound algo-

rithm for comparison. These works have two critical shortcomings: 1) the suggested

manner to produce an upper-bound does not account for the feasibility of that pro-

posed upper-bound, 2) the suggested branching method does not properly account for

product spaces. In the branch and bound algorithm developed for comparison, these

shortcomings are overcome by the following. 1) Problem 6 can be written as a pro-
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gram with a linear objective and bilinear inequality constraints with slack variables,

exploiting these slack variables, we can produce an upper-bound in the feasible set.

2) A branching method that properly traverses the regions for product spaces is used.

4.8 Conclusions

In this chapter, we considered the problem of designing a Markov chain tran-

sition matrix that governs the transmission mode of operation used to monitor

multiple systems. Algorithmic solutions were presented for several cases that de-

sign stabilizing transition matrices if possible and certify infeasibility of the problem

otherwise. An algorithm for the general problem is presented that scales well with

problem size, and make efficient updates. These algorithms are compared to a

branch and bound method in two example problems.

4.9 Proofs

Proof 38 (Lemma 10) The recursion of system i in eq. (4.8) is re-written

Y i
n(B1:n) = trace(Σ)

n−1∑
j=0

ρ2j(Ai)
n−1∏
v=n−j

pi(Bv).

Also, the expected estimation error for system i conditioned on the operating mode

history can be written as

V i
n(B1:n) = trace(E[(Xi

n − X̂
i

n)(Xi
n − X̂

i

n)T |B1:n]).

By Lemma 17, the limit of the expected estimation error is bounded

lim
n→∞

EB[V i
n(B1:n)] <∞
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if and only if the following limit is bounded

lim
n→∞

1

trace(Σ)
EB[Y i

n(B1:n)] <∞.

Let the error covariance conditioned on the operating mode history be denoted

as

Φi
n(B1:n)

def
= E[(Xi

n − X̂
i

n)(Xi
n − X̂

i

n)T |B1:n].

Lemma 17 The expected mean-squared error limit is bounded

lim
n→∞

EB[trace(Φi
n(B1:n))] <∞

if and only if the following limit is bounded

lim
n→∞

EB

[
n−1∑
j=0

ρ2j(Ai)
n−1∏
v=n−j

pi(Bv)

]
<∞.

Proof 39 The error covariance matrix for the non-scalar system i follows the re-

cursive dynamics

Φi
n+1(B1:n+1) = pi(Bn+1)AiΦ

i
n(B1:n)AT

i + Σ

which are re-written as

Φi
n(B1:n) =

n−1∑
j=0

[
Aj
iΣ(AT

i )j
n−1∏
v=n−j

pi(Bv)

]
.

Taking the trace of both sides yields

trace(Φi
n(B1:n)) =

n−1∑
j=0

[
trace(Aj

iΣ(AT
i )j)

n−1∏
v=n−j

pi(Bv)

]
.
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Since Σ is symmetric and positive definite there exists a U with orthonormal columns

and a positive definite diagonal matrix Λ such that Σ = UΛUT . The kth column

of U is written in the basis of orthonormal eigenvectors vt of Ai as
∑

t αt,kvt for

appropriate αt,k. In this notation,

trace(Aj
iΣ(AT

i )j) =
∑
k

Λ(k, k)
∑
t

λ2j
t α

2
t,k,

where λt is the eigenvalue of Ai associated with eigenvector vt. So by rearranging

the finite summations the trace of the conditional error covariance trace(Φi
n(B1:n))

equals,

∑
k

Λ(k, k)
∑
t

α2
t,k

[
n−1∑
j=0

λ2j
t

n−1∏
v=n−j

pi(Bv)

]
.

Assumption 3 implies that for each t there exists a k such that αt,k is not zero.

Thus, the limit of the expected estimation error is bounded

lim
n→∞

EB[trace(Φi
n(B1:n))] <∞

if and only if for each t, the following limits are bounded

lim
n→∞

EB

[
n−1∑
j=0

λ2j
t

n−1∏
v=n−j

pi(Bv)

]
<∞.

The proof is completed by noting that for some t′, λt′ = ρ(Ai) and thus

EB

[
n−1∑
j=0

ρ2j(Ai)
n−1∏
v=n−j

pi(Bv)

]

is an upper bound for EB[
∑n−1

j=0 λ
2j
t

∏n−1
v=n−j p

i(Bv)] with any other t 6= t′.

Lemma 18 For an entry-wise non-negative matrix A ≥ 0, ρ(A) ≤ 1 if and only if

an entry-wise positive vector h > 0 exists such that Ah ≤ h.
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Proof 40 If ρ(A) ≤ 1 then Ah ≤ h for all h. So clearly, Ah ≤ h for h > 0 holds.

The other direction is [127, Theorem 2.1.11].

Farkas Lemma is stated for reference.

Lemma 19 (Farkas Lemma)

Ax ≤ b Cx = d

and

z ≥ 0, ATz + CTy = 0

and bTz + dTy < 0

are strong alternatives, meaning one system of equations is feasible and the other is

not feasible.

Proof 41 See [128, Section 4.7]. This specific form of Farkas lemma is found in

[129, Page 5-5].

Proof 42 (Theorem 6) Write the transition matrix in terms of its allowable non-

zero entries using the following notation: Q =
∑nq

v=1 q(v)Qv, where nq is the number

of possible non-zero entries of Q, q is a vector and Qv = eje
T
t for appropriate j and

t such that Z(j, t) > 0. The system of eq. (4.11) is written as

∑
v

q(v)DiQvhi ≤ hi, i ∈ L,

or separating each row of this entry-wise inequality yields

∑
v

q(v)eTkDiQvhi ≤ eTk hi, i ∈ L, k ∈M.
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This system of equations is stacked as follows

qT


eTkDiQ1

...

eTkDiQnq

hi ≤ eTk hi, i ∈ L, k ∈M.

By the appropriate definition of Vi,k this is written as the bilinear system,

qTVi,khi − eTk hi ≤ 0, i ∈ L, k ∈M.

With the hi fixed, apply Farkas lemma to the following feasibility problem: does

there exist q such that

qTVi,khi ≤ eTk hi, i ∈ L, k ∈M, (4.23)

q ≥ 0,

fTj q = 1, j ∈M,

where

fj
def
=



0n1

...

1nj

...

0nm


,

and nj is the number of parameters on the jth row of Q. So nq =
∑m

1 nj. The strong

alternative to this system of equations is the following feasibility problem: does there
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exist Z,λ,γ such that

Z ≥ 0, (4.24)

λ ≥ 0, (4.25)∑
i,k

(Vi,khi)Z(i, k)− λ +
∑
j

fjγ(j) = 0, (4.26)

∑
i,k

hi(k)Z(i, k) + 0Tλ +
∑
j

γ(j) < 0. (4.27)

This feasibility problem is infeasible if and only if ∀Z ≥ 0, ∀λ ≥ 0, and ∀γ

that satisfy

∑
i,k

(Vi,khi)Z(i, k)− λ +
∑
j

fjγ(j) = 0,

also satisfy

∑
i,k

hi(k)Z(i, k) +
∑
j

γ(j) ≥ 0.

Note that the feasibility problem restricted to eq. (4.24), eq. (4.25), and eq. (4.26) is

always feasible by an appropriate choice of λ. The above condition is equivalent to

the condition that ∀Z ≥ 0, and ∀γ that satisfy

∑
i,k

(Vi,khi)Z(i, k) +
∑
j

fjγ(j) ≥ 0,

also satisfy

∑
i,k

hi(k)Z(i, k) +
∑
j

γ(j) ≥ 0. (4.28)

Thus by Farkas lemma the system of eq. (4.23) is feasible if and only if the

system of eq. (4.24) is not feasible. The system of eq. (4.24) is not feasible if and
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only if the conditions in eq. (4.28) hold. So the system of eq. (4.23) is feasible if and

only if the conditions in eq. (4.28) hold.

Define the optimization problem

Γ(H)
def
= min

Z,γ

∑
i,k

hi(k)Z(i, k) +
∑
j

γ(j), (4.29)

subject to Z ≥ 0,∑
i,k

(Vi,khi)Z(i, k) +
∑
j

fjγ(j) ≥ 0. (4.30)

If the condition in eq. (4.28) holds, then Γ(H) = 0. If the condition in eq. (4.28)

does not hold, Γ(H) = −∞.

By using the structure of Vi,k and fj, the constraint in eq. (4.30) is written as

the m separate constraints

γ(k) ≥ max
t∈ON(k)

−h{t}D{i}zk, (4.31)

for k ∈M, where ON(k) denotes the columns of the non-zero entries in the kth row

of Z or equivalently the Markov chain states with an incoming arc that originated

from state k, out neighbors. The above statement is justified by recalling each w

parameter of Q corresponds to specific j and t such that Qw = eje
T
t . If j 6= k then

the jth row of Vi,k is

eTkDiQw = 0Tm.

If j = k then the jth row of Vi,k is

eTkDieke
T
t = Di(k, k)eTt .
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Additionally, if fj(w) = 0 then Qw = eve
T
t with v 6= j. If fj(w) = 1 then Qw = eje

T
t

with some t. Thus, the constraint in Equation (4.30) becomes m separate constraints

fkγ(k) ≥ −
∑
i

(Vi,khi)Z(i, k), k ∈M.

Writing this entry-wise vector inequality as a scalar inequalities and removing the

zeros, leaves the following set of inequalities: for each k ∈M and t ∈ ON(k)

γ(k) ≥ −
∑
i

Di(k, k)hi(t)Z(i, k), k ∈M.

Since hi(t) = H(t, i), the summation on the right hand side of the above equation

equals

∑
i

Di(k, k)hi(t)Z(i, k) = h{t}D{i}zk.

Thus Equation (4.31) follows from the structure of Vi,k and fj.

In problem Γ(H), given the constraints in eq. (4.31), minimizing γ(k) for fixed

Z leads to an optimal γ∗(k),

γ(k)∗ = − min
t∈ON(k)

h{t}D{i}zk

Note that since hi(k) = H(k, i), the following summation equals

∑
i

hi(k)Z(i, k) = h{k}zk.

Thus the optimization problem Γ(H) becomes

min
Z≥0

m∑
k=1

[
h{k}zk − min

t∈ON(k)
h{t}D{i}zk

]
.

The optimization problem Γ(H) can be separated into the sum of m separate

optimizations as Γ(H) =
∑

k Γk(H) where for k ∈M these optimizations are defined
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by

Γk(H)
def
= min

zk≥0

[
h{k}zk − min

t∈ON(k)
h{t}D{i}zk

]
.

Since the objective function of Γk(H) is linear in zk, either Γk(H) = 0 or −∞.

The condition in Equation (4.28) holds and hence the system of Equation (4.23)

is feasible if and only if Γ(H) = 0 or equivalently for k ∈M

Γk(H) = 0.

Proof 43 (Theorem 7) For the condition in Equation (4.13) without loss of gen-

erality, assume the column’s of H and Z sum to 1. Note k1 and k2 are the entries

H(1, 1) and H(2, 2), respectively, after the column’s of the matrix H has been nor-

malized. This is without loss of generality since in Equation (4.13) the column’s of Z

can be multiplied by any positive number without affecting the inequality. Similarly

in Equation (4.12) the column’s of H can be arbitrarily scaled and by Theorem 6

this scaled H satisfies Equation (4.13) if and only if the original H satisfied Equa-

tion (4.12). We use the convention that the diagonal matrix entry is used to define

the column. For example,

z1 =

 Z(1, 1)

1− Z(1, 1)

 .
Under the assumption that D1(1, 1) < 1 and D2(1, 1) ≥ 1, we show that

h(1)z1 ≥ min
(
h(1)D(1)z1,h

(2)D(1)z1

)
, (4.32)
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for all z1 ≥ 0 if and only if

k2 ≤
1

D2(1, 1) + 1
,

L(D1(1, 1), k1) ≥ R(D2(1, 1), k2).

Note eq. (4.32) holds for all z1 ≥ 0 if and only if

h(1)z1 ≥ h(2)D(1)z1,

when h(1)z1 < h(1)D(1)z1. The conditional

h(1)z1 < h(1)D(1)z1

is equivalent to

Z(1, 1) <
H(1, 2)[D2(1, 1)− 1]

H(1, 1)[1−D1(1, 1)] + H(1, 2)[D2(1, 1)− 1]
. (4.33)

So, eq. (4.32) holds for all z1 ≥ 0 if and only if

h(1)z1 ≥ h(2)D(1)z1, (4.34)

for Z(1, 1) in the range from 0 to this upper bound. Since both sides of Equa-

tion (4.34) are linear in Z(1, 1), this inequality holds on the specific Z(1, 1) range

if and only if the inequality holds at the both end points of the range. Evaluating

eq. (4.34) at Z(1, 1) = 0 yields

k2 ≤
1

D2(1, 1) + 1
.

Evaluating eq. (4.34) at the right-hand side of equation eq. (4.33) yields

L(D1(1, 1), k1) ≥ R(D2(1, 1), k2).

Analogous arguments hold for the inequality in eq. (4.16).
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Proof 44 (Lemma 12) Since the derivative

d

dk
L(d, k) =

−d
(d− 1)k2

> 0,

L(d, ·) is monotonically increasing. Also, the second derivative

d2

d2k
L(d, k) =

2d

(d− 1)k3
< 0

on k ∈ (0, 1) implying that L(d, ·) is concave.

Proof 45 (Lemma 13) Since the derivative

d

dk
R(d, k) =

d

(d− 1)(1− k)2
> 0,

R(d, ·) is monotonically increasing. Also, the second derivative

d2

d2k
R(d, k) =

2d

(d− 1)(1− k)3
> 0

on k ∈ (0, 1) implying that R(d, ·) is convex.
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Chapter 5: Conclusion

The application of the results in this disseration to the design of operator

support systems that account for human performance factors such as workload,

speed-accuracy tradeoffs, biasing, and situational awareness are detailed. Maturing

communication, sensing, and computing technologies have enabled the development

of systems and tools that have expanded human capabilities. A human opera-

tor is now capable of piloting an air-craft from thousands of miles away, precisely

controlling a nuclear reactor, or monitoring activity across vast regions. Optimal

performance of the system depends on a well-constructed relationship with the hu-

man operator. The systematic design of this relationship is an important area of

research sometimes known as human-in-the-loop. Techniques used in optimization,

control, and communications can be of great value to the design of human operator

support systems; however, traditional assumptions underpinning these theories may

not hold for operator support system design, leading to new areas of research.

This dissertation investigates remote estimation problems over a channel where

channel performance is determined by previous channel usage. Specifically, the

channel’s performance is determined by the state of a controlled Markov chain whose

input is the channel usage. Two research directions are presented. The first includes
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the design of transmission and encoding policies to minimize estimation error when

the channel state dynamics are fixed. The second research direction involves a

problem where the channel’s Markov chain structure is fixed but the transition

probabilities are not and are designed to stabilize the estimation error. In the

operator support system design application, the operator’s decisions are modeled

by the ouput of the faulty channel. The operator’s state and its impact on operator

performance is modeled by the channel state dynamics and the channels state’s

impact on channel performance.

For the first research direction, two specific problems formulations are pre-

sented: 1) Find optimal channel policies that minimize the mean squared error for

use-dependent packet-drop channels, and 2) Characterize the information maximiz-

ing channel policies for a use-dependent discrete switching channel whose statistics

switch in accordance with the channel state.

For the second research direction the problem of remotely estimating the state

of multiple systems transmitted over separate packet-drop channels where a central

channel state, evolving according to a Markov chain, determines the individual

drop probabilities for all the packet-drop channels is investigated. An algorithm

is presented that designs the transition matrix of the channel’s Markov chain to

stabilize the estimation error. This problem has application to operator attention

allocation where the central Markov chain state determines the current focus of the

operator’s attention and the transition probabilities determine where the operator

should focus next.
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