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Abstract 32 

Detection of Hadean isotopic signatures within modern ocean island basalts (OIB) has 33 

greatly influenced understanding of Earth’s earliest history and long-term dynamics. However, a 34 

relationship between two isotopic tools for studying early Earth processes, the short-lived 146Sm-35 

142Nd and 182Hf-182W systems, has not been established in this context. The differing chemical 36 

behavior of these two isotopic systems means that they are complementary tracers of a range of 37 

proposed early Earth events, including core formation, magma ocean processes, and late accretion. 38 

There is a negative trend between 142Nd/144Nd and 182W/184W ratios among Réunion OIB that is 39 

extended by Deccan continental flood basalts. This finding is contrary to expectations if both 40 

systems were affected by silicate differentiation during the lifetime of 182Hf. The observed isotopic 41 

compositions are attributed to interaction between magma ocean remnants and Earth’s core, 42 

coupled with later assimilation of recycled Hadean mafic crust. The effects of this scenario on the 43 

long-lived 143Nd-176Hf isotopic systematics mirror classical models invoking mixing of recycled 44 

trace-element enriched (sedimentary) and depleted (igneous) domains in OIB mantle sources.  45 

If the core provides a detectible contribution to the tungsten element budget of the silicate 46 

Earth, this represents a critical component to planetary-scale tungsten mass balance. A basic model 47 

is explored reconciles the W abundance and isotopic composition of the bulk silicate Earth 48 

resulting from both late accretion and core-mantle interaction. The veracity of core-mantle 49 

interaction as proposed here would have many implications for long-term thermochemical cycling. 50 

 51 
Keywords: siderophile elements; early Earth; Earth differentiation; core-mantle interaction; 52 

mantle heterogeneity; igneous geochemistry 53 

54 
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Plain language summary 55 

Radioactive elements with relatively short half-lives can be used as tools to study the 56 

geological processes that took place in the earliest part of Earth’s history. Two of these short-lived 57 

radioactive tools, the samarium-neodymium and hafnium-tungsten systems, are correlated in the 58 

Réunion hotspot source and it is suggested that this results from influences from Earth's metallic 59 

core and the preservation of four-billion-year old crust in the deep Earth. The idea that a 60 

geochemical fingerprint of Earth's core may make it to the surface has important consequences for 61 

broader understanding of Earth's thermal and chemical evolution and possibly changes previous 62 

assumptions about the role of late addition of meteorites in establishing Earth’s modern tungsten 63 

isotopic composition.   64 
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1. Introduction 65 

 The short-lived 146Sm-142Nd (t1/2 = 103 Ma; Friedman et al., 1966) and 182Hf-182W (t1/2 = 9 66 

Ma; Vockenhuber et al., 2004) radiogenic isotope systems have been used to probe planetary 67 

accretion and differentiation processes occurring within ~70 (182Hf-182W) to ~600 Ma (146Sm-68 

142Nd) following Solar System formation. The elements involved in these two systems have 69 

chemical properties that make them useful for studying processes occurring in the early Earth. 70 

Tungsten is a moderately siderophile element, but in the absence of metal it behaves as an 71 

incompatible trace element in the silicate Earth. Tungsten isotopic compositions different from 72 

those of modern rocks (‘anomalous’ compositions) have been discovered in early Earth rocks and 73 

were interpreted to reflect the nature and timing of late accretion (Willbold et al., 2011; Rizo et 74 

al., 2016a) as well as early differentiation processes (Touboul et al., 2012; Puchtel et al., 2016a). 75 

Despite the large number (>100) of Precambrian rocks now known to possess anomalous 76 

182W/184W, the processes responsible for the development of anomalous 182W/184W signatures 77 

remain debated. Similarly, the lithophile 146Sm-142Nd system has been applied in Archean-aged 78 

rocks to study Hadean mantle differentiation processes, including magma ocean crystallization 79 

(e.g., Caro et al., 2005) and the onset of subduction-type tectonics (e.g., Debaille et al., 2013; Saji 80 

et al., 2018).  81 

Some modern ocean island basalts (OIB) are characterized by well-resolved, negative 82 

anomalies in 182W/184W relative to laboratory standards and modern mid-ocean ridge basalts 83 

(MORB; e.g., Mundl et al., 2017; Rizo et al., 2019) that stand in contrast to the limited variability 84 

in 142Nd/144Nd observed in Phanerozoic-aged mantle-derived rocks (e.g., Cipriani et al., 2012; de 85 

Leeuw et al., 2017; Horan et al., 2018). Variability in 182W/184W appears to be negatively correlated 86 

with 3He/4He within individual OIB systems, but with several distinct slopes among global OIB 87 

(Mundl-Petermeier et al., 2020). This observation may provide a link between OIB sources and 88 
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the products of early Earth differentiation since high-3He/4He in OIB is commonly taken as 89 

evidence for the presence of early-formed, undegassed material in OIB sources. One possible 90 

explanation for the presence of negative 182W/184W anomalies and high 3He/4He in some OIB is 91 

the contribution of W and He from core-equilibrated deep mantle domains to mantle plumes that 92 

feed hotspot volcanism (Rizo et al., 2019; Mundl-Petermeier et al., 2020).  93 

 On the other hand, during silicate differentiation, both Nd and W are more geochemically 94 

incompatible than their respective parent elements, Sm and Hf (e.g., Righter & Shearer, 2003; 95 

Corgne et al., 2005; Adam & Green, 2006). This means that the Sm-Nd and Hf-W systems should 96 

display positive co-variations if they were affected by magmatic differentiation occurring in the 97 

silicate Earth before extinction of 182Hf (c.f., Brown et al., 2014). Utilization of these two systems 98 

in parallel, therefore, provides a potential means of investigating early processes in the silicate 99 

Earth. Despite this apparent complementarity, only one study of modern rocks has reported data 100 

for both isotopic systems obtained from the same samples and this study found no obvious 101 

correlation (Horan et al., 2018). A robust relationship between the two systems among modern 102 

rocks may be unlikely because tectonic recycling and mantle convection may have attenuated 103 

anomalous 142Nd/144Nd (Jackson et al., 2016) and 182W/184W ratios of mantle domains through 104 

time, but at different rates. In particular, the 142Nd/144Nd ratios of mantle domains may be 105 

preferentially overprinted by progressive incorporation of young (<2 Ga), relatively Nd-rich 106 

recycled crust into OIB sources, whereas 182W/184W may be little influenced by the same process 107 

because W can be efficiently removed from subducting oceanic crust (König et al., 2008). By 108 

contrast, input of core material into some OIB mantle sources could strongly affect the siderophile 109 

isotopic signatures of plume-derived OIB (Rizo et al., 2019; c.f., Brandon et al., 1998) while 110 

leaving Nd isotopic signatures unchanged. One or both of these processes may explain why Horan 111 
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et al. (2018) observed no correlation between the 142Nd/144Nd and 182W/184W compositions of OIB 112 

from Hawai’i and Samoa.  113 

 This contribution investigates the processes that contributed to the Nd-W isotopic 114 

compositions of Deccan Traps continental flood basalts (CFB) and Réunion Island OIB, which 115 

represent respectively the initial and modern phases of the Réunion hotspot. New and published 116 

trace element, 143Nd/144Nd and 176Hf/177Hf isotopic data are utilized to monitor processes that may 117 

have affected the 142Nd/144Nd and 182W/184W compositions of CFB and OIB, including crustal 118 

recycling and assimilation of shallow crustal and depleted mantle components. The Réunion 119 

hotspot is the first identified example of an OIB system characterized by significant variability in 120 

its 142Nd/144Nd composition (Peters et al., 2018). Consequently, it is an ideal location to search for 121 

a relationship between Hadean 142Nd/144Nd and 182W/184W isotopic signatures and explore the 122 

relationship of any observed heterogeneity in these systems compared to the long-lived 147Sm-123 

143Nd and 176Lu-176Hf radiogenic isotope systems. 124 

 125 

2. Samples & Methods 126 

 Basalt and cumulate xenolith samples from the island of La Réunion were examined for 127 

their 176Hf/177Hf (n = 19) and 182W/184W (n = 8) isotopic compositions. The Réunion samples 128 

include flows from both Piton des Neiges and Piton de la Fournaise and cover all mapped surficial 129 

volcanostratigraphic units (2.1 Ma – present; McDougall et al., 1971; Gillot et al., 1994; Table 1). 130 

The samples represent a range of geochemical compositions and igneous textures from evolved 131 

and nearly aphyric (e.g., sample RU0707, MgO = 7 wt.%) to strongly olivine- and/or 132 

clinopyroxene-phyric basaltic lavas (e.g., sample RU0714, MgO = 35 wt.%). Many of these 133 

samples have been previously characterized for their 3He/4He (Füri et al., 2011), 142,143Nd/144Nd 134 
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(Peters et al., 2018) and 187Os/188Os isotopic compositions (Peters et al., 2016). One cumulate 135 

dunite xenolith from the Piton Chisny volcanic complex of Piton de la Fournaise was also analysed 136 

for its 182W/184W ratio in order to determine whether the isotopic compositions of pre-eruptive and 137 

post-eruptive igneous rocks are consistent. 138 

 Two relatively primitive basalts (MgO = 14-15 wt.%) from the Deccan Traps (ca. 65 Ma; 139 

Hofmann et al., 2000; Schoene et al., 2015) were also analysed for their 142,143Nd/144Nd-140 

176Hf/177Hf-182W/184W ratios and one basalt from the island of Mauritius (9 Ma-present; Moore et 141 

al., 2011) was analysed for its 142,143Nd/144Nd-176Hf/177Hf isotopic compositions. Because basaltic 142 

rocks in these localities are thought to represent earlier manifestations of the Réunion mantle 143 

plume (e.g., Duncan et al., 1989), analysis of these samples enables comparison of the short-lived 144 

radiogenic isotopic composition of the Réunion hotspot across its lifetime. The Deccan samples 145 

have previously been characterized for their 3He/4He-87Sr/86Sr-143Nd/144Nd-187Os/188Os (Peters & 146 

Day, 2017; Peters et al., 2017) isotopic compositions. The two Deccan samples selected for this 147 

study were among those that experienced the least crustal assimilation from the available sample 148 

set. 149 

 All samples were prepared by sawing with a diamond lap saw and subsequent removal of 150 

saw marks with Al2O3-paper, followed by crushing and then powdering using alumina ceramic 151 

plates and vessels. Care was taken to avoid metal exposure during sample preparation. Sample 152 

powders were digested in a ~3:1 HF:HNO3 solution for >48 hours, repeatedly equilibrated and 153 

dried in concentrated HNO3, then equilibrated in 6M HCl before introduction of the loading acid 154 

for the first separation protocol. For Nd and Hf isotopic measurements and for W ID 155 

measurements, approximately 100 mg of powder was digested. For W isotopic measurements, the 156 
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amount of digested rock powder was determined so that the total W load was 1-1.2 μg, typically 157 

resulting in the digestion of 3 to 8 grams of rock powder.  158 

Hafnium was separated from bulk samples using a protocol modified from Münker et al 159 

(2001). In brief, high field strength elements including Hf were eluted from the bulk sample 160 

fraction on BioradTM AG50-X8, 200-400 mesh resin in 1M HCl-0.1M HF, then Hf was separated 161 

using 100-150 μm EichromTM LN-Spec resin from Ti (in citric acid solution) and Zr (in 6M HCl-162 

0.05M HF). Hafnium isotopic compositions were measured on the Nu Plasma HR inductively 163 

coupled plasma mass spectrometer at the Carnegie Institution for Science, Earth and Planets 164 

Laboratory (EPL) and data were reduced using sample-standard bracketing with JMC475 as the 165 

bracketing standard.  166 

Tungsten was separated using the method of Peters et al. (2019) in a three-step procedure. 167 

First, high field strength elements (HFSE: e.g., Ti, Zr, Ta, Nb) were separated from matrix 168 

elements using 1M HCl-0.1M HF on BioradTM AG50-X8, 100-200 mesh cation exchange resin, 169 

analogous to the procedure used for Hf-matrix separation. Then, W was separated using BioradTM 170 

AG1-X8, 100-200 mesh anion exchange resin from Ti and other HFSE (in citric acid solution) and 171 

from Hf (in 6M HCl-0.05M HF). Finally, rhenium, tantalum, and other trace elements were 172 

removed using 1M HF on BioradTM AG50-X8, 100-200 mesh cation exchange resin. Measured 173 

yields for W were always >80%. Tungsten isotopic compositions were measured on a Thermo-174 

Fisher Triton thermal ionization mass spectrometer (TIMS) at the University of Maryland using a 175 

multi-static method. In the first measurement line, W isotopic compositions were measured as 176 

tungsten trioxides over an integration of 34 seconds. A per-integration oxygen fractionation 177 

correction was employed using oxygen isotopic compositions measured with two 1012 Ω amplifiers 178 

in a second measurement line with an integration lasting 8 seconds. Tungsten isotopic ratios were 179 
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also measured in this second line, and all corrected static 183W/184W and 182W/184W ratios were 180 

averaged across a single run. Signals of 184W were typically about 1 volt. All 1011 Ω amplifiers 181 

were rotated through the analysis routine over 28 blocks of 20 cycles each (i.e., four full rotations 182 

and 560 total cycles). Oxygen-corrected 182WO3/
184WO3 ratios were then normalized to 186W/183W 183 

= 0.92767 using the exponential law (c.f., Archer et al., 2017). The average per-session µ182W 184 

precision during this study (µ182W = (182W/184Wsample ÷ 182W/184Wstandard – 1) * 106) based on 185 

repeated measurements of Alfa Aesar W standard in each session was ±3.9 ppm (2σ s.d., n = 34) 186 

across seven sessions. When normalizing to normalizing to 186W/184W = 1.98594, deviations in 187 

183W/184W from the standard value (0.467143 ±0.000004) are not observed in sample 188 

measurements (average sample µ183W = 0.7 ±5.1, 2σ s.d., n = 20). Two powder batches of BHVO-189 

2 (#0631 and #1369) analysed over the course of this study (Peters et al., 2019) yielded a mean 190 

µ182W composition of -6.7 ±2.4 (2σ s.d., n = 4; see below for a discussion of statistics reporting), 191 

consistent with recent results (e.g., Mundl et al., 2017; Kruijer & Kleine, 2018; Mei et al., 2018; 192 

Rizo et al., 2019).  193 

Neodymium was separated from matrix and other rare earth elements utilizing the NaBrO3 194 

method of Garçon et al. (2018). In brief, light rare earth elements were first separated using 6M 195 

HCl on BioradTM AG50-X8, 200-400 mesh cation exchange resin. Then, Ce was separated from 196 

Nd using a 10M HNO3-20 mM NaBrO3 oxidizing solution on 50-100 μm EichromTM LN-Spec 197 

resin. Following a clean-up column procedure to remove residual Na introduced by the NaBrO3, 198 

Nd was again separated from Ce and additionally from La, Pr and Sm on a long-aspect (15-18 cm 199 

length x 0.4 cm ID) column containing 20-50 μm EichromTM LN-Spec resin using 0.2M HCl. Each 200 

column used in the final separation step was re-calibrated for each new batch of 0.2M eluant. 201 

Measured yields were typically >80%, except for two digestions of DC1447B: one at EPL (~60%) 202 
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and one digestion at ETH performed while the 142Nd separation method was being set up (~30%). 203 

The remaining three digestions of this sample had total procedural yields of >80%. There is no 204 

observed correlation between yield and stable isotope ratios, despite the possibility of a nuclear 205 

field shift effect arising from the use of fine-grained LN-Spec resin (Garçon et al., 2018; 206 

Supplementary Information). Neodymium isotope compositions were measured on the Thermo-207 

Fisher Triton TIMS instruments at EPL and ETH Zürich using a 4-line, multi-dynamic 208 

measurement with 143Nd, 144Nd, 145Nd, and 146Nd used sequentially as the center mass. 1011 Ω 209 

amplifiers were used for all cups and amplifiers were not rotated. Each line was integrated for 8 210 

seconds with a typical intensity of 142Nd ≈ 4-5V. Measured Nd isotopic ratios were normalized to 211 

146Nd/144Nd = 0.7219 using the exponential law. The average per-session µ142Nd precision during 212 

this study (µ142Nd = (142Nd/144Ndsample ÷ 142Nd/144Ndstandard – 1) * 106) based on measurements of 213 

JNdi-1 Nd standards in each session was ±4.5 ppm (2σ s.d., n = 34) across six sessions. Two 214 

separate digestions of BHVO-2 were analysed at ETH during the course of this study and yielded 215 

a mean µ142Nd of +3.7 ±3.4 (2σ s.d.). 216 

The internal precision for each run is reported in Supplementary Tables 1-3. In Table 1, 217 

where the weighted average and 2σ weighted standard deviation for each sample are calculated 218 

using Isoplot (Ludwig, 2003), when n > 1. The per-run precision input into this calculation was 219 

the less precise of (1) the 2σ standard error for that run, or (2) the 2σ standard deviation of all 220 

standards run in the same analytical session. This approach more conservatively accounts for 221 

statistical uncertainty that may arise because of non-ideal or shorter runs (worse 2σ s.e.m. for that 222 

run) and/or greater instrument noise across an analytical session (worse 2σ s.d. for standards within 223 

that session). When n = 1 for a given sample, the precision reported in Table 1 is the per-run 224 

precision as described above. For samples with n > 1, the appropriateness of this method can be 225 
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evaluated using the MSWD of the resulting average, which reports the mean deviation of each 226 

sample measurement from the weighted average value. The highest MSWD occurs for sample 227 

DC1447B (MSWD = 3.3), which is perhaps predictable because this sample includes 228 

measurements from two different mass spectrometers. All other samples have MSWD < 3 for both 229 

µ142Nd and µ182W; many have MSWD < 1. Data from Peters et al. (2018) were re-calculated 230 

according to this standard. In many cases, replicate digestions were performed to ensure a better 231 

documentation of analytical reproducibility. The µ142Nd or µ182W composition of a sample is 232 

considered to be anomalous if the range of its precision does not overlap with the long-term 233 

average 2σ standard deviation of repeated measurements of laboratory standards, either in the same 234 

session (n = 1) or across all sessions in which that sample is measured (n > 1).  235 

 236 

3. Results 237 

Geochemical data are summarized in Table 1 and reported in full, including all per-barrel 238 

precision statistics and stable isotope ratios for TIMS measurements, in Supplementary Tables 239 

1-3. Consistent with previous studies of Réunion basalts (e.g., Albarède et al., 1997; Bosch et al., 240 

2008), our samples are characterized by relatively small range of 143Nd/144Nd and 176Hf/177Hf 241 

isotopic signatures (Figure 1). The range of ε176Hf (defined as (176Hf/177Hfsample / 
176Hf/177Hfstandard 242 

– 1) * 104) is +8.2 to +9.5 with all compositions lying between hotspots with strong influences 243 

from incompatible-element-depleted (higher ε143Nd and ε176Hf; e.g., Iceland; Stracke et al., 2003; 244 

Peate et al., 2010) and -enriched (lower ε143Nd and ε176Hf; e.g., Samoa; Salters et al., 2011) mantle 245 

domains (Figure 1). The Deccan samples have lower age-corrected ε143Nd and ε176Hf signatures 246 

compared to Réunion OIB (+0.2 to +1.2 and -1.0 to +5.5, respectively).  247 
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New measurements of µ142Nd in Réunion hotspot volcanic rocks are consistent with 248 

previous results (Peters et al., 2018). The Mauritius sample has a µ142Nd composition of +5.6 ±2.1 249 

(n = 3), near the upper range of Réunion samples (-7.9 to +6.2, Figure 2a; Peters et al., 2018). The 250 

two Deccan samples have µ142Nd compositions of +6.6 ±2.5 (n = 2) and +11.3 ±1.5 (n = 7). Slight 251 

variability was observed in the stable isotope compositions of some individual runs, although this 252 

did not affect the µ142Nd composition of any run (Supplementary Information). The µ142Nd 253 

compositions of studied Deccan CFB are consistent with the heterogeneous positive and negative 254 

µ142Nd compositions of Deccan basalts reported by Andreasen et al. (2008), although they did not 255 

report any samples that were statistically resolved from their standard. The µ182W compositions of 256 

Réunion samples range from -2.9 to -9.6 (Figure 2b), a range similar to other global OIB (Mundl 257 

et al., 2017; Mundl-Petermeier et al., 2019, 2020; Rizo et al., 2019) but do not include µ182W 258 

values as low as some reported for Réunion OIB in Rizo et al. (2019). Deccan Traps CFB have 259 

µ182W compositions that overlap those of the Réunion OIB (-4.7 to -6.9). Helium and W isotopic 260 

data from both locations overlap with observed He-W trends for Samoa and Hawai’i (Figure 3; 261 

c.f., Mundl et al., 2017), but show only minor variability in their μ182W signatures. Because 262 

Réunion OIB have a homogeneous 3He/4He signature (ca. 12-14 RA; Füri et al., 2011), it should 263 

be expected based on correlations between 3He/4He and μ182W in global OIB (Mundl et al., 2017) 264 

that the μ182W signature of Réunion OIB is more homogeneous than that of other global hotspots.  265 

The µ142Nd-µ182W composition of Réunion OIB define a negative trend with a slope that 266 

is statistically resolved from zero at the 95% confidence level (Figure 4). The statistics for this 267 

correlation were calculated using Isoplot (Ludwig, 2003) with a Model-1 slope of -0.29 ±0.21 268 

(95% c.i.), an MSWD of 1.3 and a probability of fit of 26%. After correcting for crustal 269 

assimilation (see Section 4.2), the µ142Nd-µ182W compositions of Deccan CFB effectively extend 270 
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this trend. The statistics of this combined OIB-CFB correlation (Model-1: MSWD = 1.6 and 271 

probability of fit = 14%) are somewhat worse than those for the Réunion OIB alone, which reflects 272 

the additional uncertainty introduced by the assimilation correction, however the slope is still 273 

resolved from zero (-0.33 ±0.31, 95% c.i.). Although this probability of fit is slightly lower than 274 

what Isoplot typically recommends for Model-1 fits (≥15%), the Model-2 fit would be 275 

inappropriate for these data because it would assume that the uncertainty on both the Réunion data 276 

(which represent measured data) and the Deccan data (which represent measured data subjected to 277 

a model correction) are the same. Modelled corrections like the one employed in this study for 278 

crustal assimilation inherently increase the uncertainty of the resulting data over the measured data 279 

because of the assumptions made in the model (see Table 1 for a comparison).  When the 280 

correction for crustal assimilation is excluded, the probability of fit for the combined Réunion and 281 

Deccan data is substantially higher (35%). However, the slope of the trend in this case is shallower 282 

because the uncorrected µ142Nd and µ182W compositions of the Deccan samples are closer to zero, 283 

and the slope is correspondingly not resolved from zero at the 95% confidence level. In the case 284 

of the Réunion OIB data, the resolved negative slope and low MSWD are consistent with a 285 

statistically significant correlation and imply that at least one Réunion mantle source component 286 

records a differentiation event that occurred within the lifetime of 182Hf.  287 

The primary statistical limitation on this dataset is its size: a small number of degrees of 288 

freedom (6, in the case of the Réunion data alone) in a sample population that is not exhaustive 289 

increases the probability that erroneous correlations are discovered. Such a result underscores the 290 

need for μ142Nd and μ182W measurements to be undertaken in the same samples, whereas 291 

historically different samples have been considered for each isotope system. Importantly, a 292 
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statistically significant correlation is not required for the modelling in the discussion to be 293 

evaluated as a possible explanation for the history of the Réunion hotspot mantle source. 294 

 295 

4. Discussion 296 

4.1 The long-lived radiogenic isotope composition of Réunion-Mauritius OIB 297 

Previous studies have highlighted the relatively homogeneous He-Sr-Nd-Hf-Os-Pb 298 

isotopic compositions of Réunion basalts compared to other global OIB that lie towards the center 299 

of the ‘mantle tetrahedron’ (e.g., Albarède et al., 1997; Luais, 2004; Bosch et al., 2008; Füri et al., 300 

2011; Schiano et al., 2012). These characteristics have led to the conclusion that the Réunion 301 

mantle source taps a relatively unprocessed mantle domain that was affected by only minor 302 

contributions from subducted crust and/or mantle lithosphere (Vlastélic et al., 2006; Bosch et al., 303 

2012; Schiano et al., 2012; Nauret et al., 2019). The new 143Nd/144Nd-176Hf/177Hf data for Réunion 304 

and Mauritius OIB also occupy a narrow range compared to other global hotspots (Figure 1a), 305 

with the sample from Mauritius having a 143Nd/144Nd-176Hf/177Hf composition that overlaps with 306 

Réunion OIB. Despite this relatively homogeneous isotopic signature, there is a notable trend in 307 

the ε143Nd and ε176Hf compositions that lies parallel to and above the mantle array (Chauvel et al., 308 

2008), similar to the trends of many other OIB (Figure 1b). The 143Nd/144Nd-176Hf/177Hf mantle 309 

array is likely not a unique linear trend, but it functions to qualitatively link the compositions of 310 

recycled domains that contribute to OIB mantle sources with bulk depleted mantle with 311 

compositions similar to DMM. In Réunion, the lack of a strong trend towards either a DMM or a 312 

recycled endmember implies that the geochemical influence of these domains on the Réunion 313 

mantle source is relatively minor compared to other global hotspots. 314 

 315 

4.2 Post-emplacement alteration and crustal assimilation in Deccan CFB 316 
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 Continental flood basalts commonly have geochemical compositions that have been 317 

strongly modified by crustal assimilation and, to a lesser extent, post-emplacement alteration. 318 

Although the two Deccan CFB studied here are relatively fresh picritic lavas, there are still clear 319 

differences between their Sr-Nd-Os isotopic compositions and those of Réunion or Mauritius OIB 320 

(Peters & Day, 2017) that may have been generated by one or both of these processes. Fluid-321 

mediated flood basalt alteration may progressively leach fluid-mobile elements from proximal 322 

basalts or country rock and deliver these elements to other basalts; thus, the net effect of alteration 323 

may be to deplete or enrich a CFB sample in fluid-mobile elements. To examine possible effects 324 

of post-emplacement alteration on W concentrations, ratios of W to elements that are highly fluid-325 

mobile (e.g., Rb), more moderately fluid-mobile (e.g., U), and fluid-immobile elements (e.g., Th) 326 

during crustal weathering are shown in Figure 5. Such evaluation is generally not necessary for 327 

Nd because it is typically fluid-immobile during flood basalt alteration (e.g., Sheth et al., 2013). 328 

In nearly all cases, Deccan basalts show strong depletions in W/Rb, W/U, and W/Th ratios relative 329 

to canonical primitive mantle values (McDonough & Sun, 1995) without any apparent trend 330 

toward crustal endmembers (Rudnick & Gao, 2003). This implies that fluids that had previously 331 

been geochemically influenced by crust did not significantly contribute to the W budget of these 332 

samples and thus did not affect their W isotopic compositions. 333 

 On the other hand, crustal assimilation has strongly influenced the Sr-Nd-Pb isotopic 334 

compositions of many Deccan CFB (e.g., Devey & Lightfoot, 1986; Peng et al., 1994), and this 335 

process needs to be considered in order to constrain the Nd-W isotopic compositions of Deccan 336 

parental magmas. Assimilation of continental lithospheric mantle (CLM) may also alter the 337 

incompatible element budget of ascending CFB magmas, particularly if regional CLM is strongly 338 

metasomatized. However, CLM abundances of trace elements are unlikely to be greater than those 339 
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of bulk crust, meaning that a model for crustal assimilation would produce a stronger data 340 

correction than one for CLM assimilation. Additionally, the effect of CLM assimilation would 341 

mimic the effects of crustal assimilation if both crust and CLM are assumed to have µ142Nd and 342 

µ182W compositions near zero (c.f., Roth et al., 2014; see Supplementary Information for details). 343 

By making these assumptions, the following model for crustal assimilation effectively captures the 344 

effects of CLM assimilation. 345 

In order to quantitatively account for crustal assimilation effects, the 143Nd/144Nd-346 

176Hf/177Hf isotopic data of the studied Deccan CFB are corrected to an average Réunion OIB 347 

composition of ε143Nd = +4.2 and ε176Hf = +8.8. The Deccan parental magma is assumed to have 348 

had trace element abundances identical to the Réunion parental magma, which are calculated 349 

according to the MgO-trace element correlations present in our samples (Peters et al., 2016; MgO 350 

= 13 wt.%, Nd = 18 ppm, Hf = 3.0 ppm, W = 0.18 ppm). This assumption is made based on the 351 

shared heritage of Deccan and Réunion lavas inferred from Sr-Nd-Os isotopic systematics (Peters 352 

& Day, 2017). Bulk Indian continental crust, through which Deccan CFB erupted, is further 353 

assumed to have an average 143Nd/144Nd-176Hf/177Hf composition identical to the Indian 354 

Paleoproterozoic metasediments reported in Richards et al. (2005). An initial mixing model was 355 

constructed using the trace element abundances calculated by Rudnick & Gao (2003) and then the 356 

assumed crustal Nd and Hf abundances were proportionally adjusted in order to produce mixing 357 

curves that intersect the studied samples (Figure 1; see Supplementary Table 4 for all model 358 

parameters); the assumed crustal W abundance was analogously adjusted for later calculations.  359 

The inferred crustal component is ~16% for sample DC1405 and ~8% for sample 360 

DC1447B, similar to the range of inferred upper crust assimilation (ca. 10%) found by Peters & 361 

Day (2017) on the basis of the 87Sr/86Sr-143Nd/144Nd compositions of the same samples. The µ142Nd 362 
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and µ182W compositions of the studied samples were then corrected using the same parameters 363 

and the assumption that local Neoproterozoic bulk Indian crust has µ142Nd = µ182W = 0. These 364 

calculations resulted in a 1.0 to 1.2 ppm correction for µ142Nd and a 2.2 to 7.1 ppm correction for 365 

µ182W. These results reflect the fact that while the Nd abundances of low-degree mantle partial 366 

melts (here 18 ppm) and crust (20 ppm; Rudnick & Gao, 2003) are similar, the W abundances of 367 

the two (0.18 and 1 ppm, respectively) are vastly different since W is more incompatible than Nd. 368 

Combined with the fact that many Archean crustal terranes have positive µ182W (Figure 2), the 369 

correction to the W isotopic compositions of Deccan samples should probably be regarded as a 370 

minimum correction. On the other hand, sample DC1447B has a W concentration of 163 ppb, 371 

which is similar to the concentrations of Réunion OIB, implying that the effect of crustal 372 

assimilation on the W isotopic compositions of some CFB may be relatively small. Further, this 373 

model also reveals that because the correction for µ142Nd is relatively small, CFB may be an 374 

untapped source of information about the Nd isotopic compositions of primitive mantle sources, 375 

given current standards for µ142Nd analytical precision. 376 

Because the impact of crustal assimilation on the µ142Nd-µ182W compositions of Deccan 377 

CFB can be quantitatively constrained, this information can be used to assess the geochemical 378 

relationship between Deccan CFB and Réunion OIB. Together, both groups of samples define a 379 

negative correlation (Figure 4), however, in detail there are differences in the compositions of the 380 

two localities. Both studied Deccan CFB have negative µ182W compositions that overlap with 381 

those of Réunion OIB. Both Deccan samples also have positive µ142Nd compositions (defined by 382 

the 2σ standard deviation of sample measurements versus that of standard measurements), and 383 

sample DC1447B has a positive µ142Nd anomaly that is the highest among published data for 384 

Phanerozoic-aged rocks (see also additional discussion of stable isotope compositions in the 385 
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Supplementary Information). By contrast, Réunion OIB display only minor µ142Nd variability 386 

(Peters et al., 2018). The following section explores a model that can account for the origins of 387 

these plume components and give rise to the observed µ142Nd-µ182W trend. 388 

 389 

4.3 Hadean components of the Réunion hotspot mantle source 390 

 Archean cratonic rocks preserve both positive and negative µ142Nd compositions (Figure 391 

2 and references cited therein), which argues for the existence of at least two isotopically distinct 392 

Archean domains resulting from silicate differentiation during the lifetime of 146Sm. The existence 393 

of small-scale μ142Nd heterogeneity among Réunion (Peters et al., 2018) and Samoan (Horan et 394 

al., 2018) OIB demonstrates that geochemical relics of Hadean silicate differentiation have been 395 

at least partially preserved through Earth’s history in OIB mantle sources. Many Archean crustal 396 

rocks have similar, positive µ182W compositions (Figure 2), suggesting that the bulk Archean 397 

mantle may have been predominantly characterized by a higher µ182W composition than the 398 

present-day mantle. In this context, the negative µ182W compositions found in Schapenburg 399 

komatiites (Puchtel et al., 2016) and proximal diamictites (Mundl et al., 2018) may represent a 400 

relatively isolated mantle domain. Mantle domains with negative µ182W anomalies may have been 401 

formed independently from those with heterogeneous µ142Nd compositions, for example by early 402 

Hadean silicate differentiation (e.g., Brown et al., 2014; Puchtel et al., 2016a), heterogeneous 403 

assimilation of late-accreted impactors (e.g., Marchi et al., 2018; Archer et al., 2019; Puchtel et 404 

al., 2020), or through contributions from Earth’s metallic core (e.g., Rizo et al., 2019).  405 

 Notwithstanding, the existence of coupled, positive (Rizo et al., 2016a) or negative 406 

(Puchtel et al., 2016a) µ142Nd-µ182W signatures in some Archean rocks supports the idea that in 407 

some cases µ142Nd and µ182W heterogeneity was produced by a common process.  The 408 
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geochemical properties of the 146Sm-142Nd and 182Hf-182W systems predict that such coupled 409 

isotopic signatures could be produced during silicate differentiation processes that occurred during 410 

the lifetime of 182Hf (Brown et al., 2014). However, the negative µ142Nd-µ182W trend among 411 

Réunion OIB and Deccan CFB (Figure 4) argues against the idea that heterogeneous µ142Nd and 412 

µ182W compositions were formed in a Hadean silicate differentiation event that is preserved in 413 

OIB sources, unless the relative incompatibility of parent and daughter elements is different than 414 

what is expected from experimental and observational data.  415 

One process that may instead lead to a negative correlation between the µ142Nd and µ182W 416 

compositions of Réunion hotspot lavas is interaction between a deep mantle domain and the outer 417 

core, combined with later additions of Hadean mafic crust. The core has the potential to strongly 418 

affect W isotopic compositions in the silicate Earth because of its high W abundance (ca. 500 ppb; 419 

Arevalo & McDonough, 2008) and highly negative µ182W (ca. -220; c.f., Scherstén et al., 2004), 420 

whereas the modern BSE has a much lower W abundance of ~13 ppb (Arevalo & McDonough, 421 

2008) and µ182W ≈ 0. Likewise, Earth’s core could affect the He isotopic compositions of mantle 422 

domains if it is rich in He and has a high 3He/4He composition (Bouhifd et al., 2020). The overlap 423 

of Réunion OIB 3He/4He-µ182W with the trends of other global hotspots interpreted to be affected 424 

by core-mantle interaction (Mundl-Petermeier et al., 2020; Figure 3) is consistent with the notion 425 

that such a process may also have affected the Réunion mantle source. Direct transfer of core metal 426 

into deep mantle domains appears to be unlikely in most OIB systems because the core also has 427 

high abundances of highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Direct core-mantle 428 

exchange would thus lead to high HSE abundances in OIB sources compared to OIB sources that 429 

lack a core component. However, the lack of correlations between µ182W and measured or inferred 430 
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source abundances of HSE for OIB (Mundl et al., 2017) argues against OIB sources being affected 431 

by direct assimilation of core metal into the mantle.  432 

Some models exist to explain how W isotopic equilibration between outer core metal and 433 

the lowermost mantle can occur without major consequences for HSE abundances. For example, 434 

W equilibration may occur through diffusion between liquid metal and liquid silicate (e.g. Mundl-435 

Petermeier et al., 2020), or between solid metal and solid silicate (Yoshino et al., 2020). However, 436 

the latter requires relatively oxidizing conditions at the core-mantle boundary, which contrasts 437 

with the predicted slow diffusion rates in the lower mantle at modern oxygen fugacity (Holzapfel 438 

et al., 2005). Alternatively, Rizo et al. (2019) suggested that exchange of Si-Mg-Fe oxides between 439 

the outer core and a deep mantle silicate liquid could also potentially introduce negative µ182W 440 

compositions into OIB sources without strongly elevating their HSE abundances (c.f., Humayun, 441 

2011). If the equilibrated mantle domain resulting from core-mantle interaction under these 442 

circumstances is also interpreted as an early-formed domain with a fractionated (i.e., non-443 

chondritic) lithophile trace element signature, this scenario could explain both the µ142Nd and 444 

µ182W compositions of Réunion hotspot lavas.  445 

The negative trend of µ142Nd and µ182W compositions in Réunion hotspot lavas spans from 446 

zero to negative µ182W compositions but positive to negative µ142Nd compositions (Figure 4), 447 

requiring that it was derived from a minimum of two mantle domains: one with positive µ142Nd 448 

and negative µ182W, and one with negative µ142Nd and zero-to-positive µ182W. Complementary 449 

positive and negative µ142Nd compositions without systematic changes in mantle µ182W 450 

compositions may arise from magma ocean crystallization after the extinction of 182Hf. For 451 

example, residual liquids from magma ocean crystallization may be trapped at the base of the 452 

mantle (e.g., Labrosse et al., 2007) and would possess enriched incompatible trace element 453 
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signatures, including low Sm/Nd ratios. This domain would subsequently evolve a strongly 454 

negative µ142Nd composition if it formed within the lifetime of 146Sm. Evidence from seismic 455 

tomography indicates that such residual liquids may be present in the roots of modern mantle 456 

plumes as ultra-low velocity zones (ULVZ; Yuan & Romanowicz, 2017), although their 457 

participation in mantle plume upwelling remains uncertain. Interaction between such a silicate 458 

domain and the liquid outer core would likely impart a strongly negative µ182W composition 459 

(component 1 in Figure 6a). In contrast to magma ocean residual melts, deep-mantle structures 460 

such as bridgmanite-enriched ancient mantle structures (BEAMS, Ballmer et al., 2017), formed in 461 

the intermediate stages of magma ocean crystallization would possess an incompatible trace-462 

element depleted signature that would evolve a positive µ142Nd composition (component 2). 463 

Mixing a small amount of core-equilibrated material into this depleted domain would result in a 464 

mixed domain with positive µ142Nd and negative µ182W (component 2a), which is one endmember 465 

composition required by the negative correlation. The apparent stability of deep mantle structures 466 

in geodynamical models, including BEAMS (Ballmer et al., 2017) and ULVZ (McNamara et al., 467 

2010), means that mantle structures observed by seismic tomography may represent ancient 468 

domains that preserve some aspects of their original Hadean geochemical signatures. 469 

One candidate for the second domain in the Réunion source would be a mixture of the 470 

enriched and depleted endmembers of a crystallizing magma ocean (i.e., components 1 and 2 in 471 

Figure 6a). If the W abundances and μ182W compositions of both components were identical, 472 

mixing between these two domains would be linear and parallel to the μ142Nd axis. However, this 473 

scenario is not consistent with geodynamic models that predict the last liquids of magma ocean 474 

crystallization to remain in the deepest mantle (Labrosse et al., 2007), while intermediate solids 475 

such as BEAMS would be stable at shallower depths (Ballmer et al., 2017).  Further, it is unlikely 476 
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that enriched and depleted silicate domains with the same primitive origin would have identical W 477 

abundances, although they could have the same μ182W composition if they formed after the 478 

extinction of 182Hf. 479 

A potentially more likely candidate for the second required component would be mafic 480 

crust that formed during the lifetime of the 146Sm-142Nd radiogenic system (component 3 in Figure 481 

6a). Early mafic crust has been evaluated as an explanation for a variety of trace element and 482 

isotopic features of ancient crustal rocks (e.g., Reimink et al., 2014; O’Neil & Carlson, 2017; Rosas 483 

& Korenaga, 2018; Carlson et al., 2019). Mafic crust with an incompatible trace-element enriched 484 

signature would evolve to negative µ142Nd compositions and could also have inherited a positive 485 

µ182W composition from a mantle domain similar to the source of Archean tonalite-trondhjemite-486 

granodiorite (TTG) progenitors. Examples of such materials are provided by the mafic supracrustal 487 

rocks of the Nuvvuagittuq province (O’Neil et al., 2012; Touboul et al., 2014). Physical 488 

mechanisms for returning early crust to the deep mantle without subduction-type tectonics, such 489 

as drip-type recycling, have been envisaged (e.g., Moyen & van Hunen, 2012).  A small addition 490 

of recycled, incompatible trace-element enriched materials is consistent with the conclusions of 491 

Nauret et al. (2019) for Piton des Neiges lavas.  492 

Within this framework, a Monte Carlo simulation is used to quantitatively predict the 493 

results of a two-stage mixing process for the Réunion source. First, the core-equilibrated silicate 494 

domain (component 1a in Figure 6a, or ‘ULVZ’) is mixed with the incompatible element-depleted 495 

magma ocean relic (component 2, or ‘BEAMS’) to produce an array of compositions representing 496 

component 2a. The degree of mixing required is small (on average, 0.03% of component 1a) in 497 

order to generate a mixed domain with a µ182W composition of -10 to -30, whereas other hotspots 498 

may require slightly greater contributions from the core-equilibrated domain (c.f., Mundl-499 



23 
 

Petermeier et al., 2020). The exact amount of mixing depends strongly on the W concentration of 500 

the core-equilibrated domain, which is not well-constrained. A relatively small degree of core 501 

involvement in the Réunion source is supported by the relatively low HSE abundances inferred for 502 

the Réunion mantle source (ca. 30% that of other OIB; Peters et al., 2016). This domain is then 503 

mixed with 5-15% recycled mafic crust possessing a modestly negative µ142Nd composition 504 

(average: -15) and positive µ182W compositions (median: +15). Mixing curves for this second stage 505 

overlap with measured Nd-W isotopic compositions for Réunion hotspot lavas (Figure 6b). 506 

Notably, the µ142Nd -µ182W trends predicted by the model near the Réunion and Deccan data are 507 

relatively flat. Such a finding comports with the overall finding of a negative trend in the data that 508 

is most probably resolved from zero (see the end of the Results section for detail). A discussion of 509 

the handling of uncertainties in this simulation is provided in the Supplementary Information. 510 

The same two-stage mixing scenario can also reproduce the ε143Nd and ε176Hf composition 511 

of Réunion OIB (Figure 6c-d). The mixing lines predicted by the model for ε143Nd and ε176Hf 512 

closely mirror those predicted by Chauvel et al. (2008) for interaction between ancient 513 

incompatible-element-enriched and -depleted materials. These materials are commonly interpreted 514 

as recycled sedimentary and crustal materials, respectively, however our model permits 515 

reinterpretation of these recycled domains in a primordial context. Additional, later assimilation 516 

of depleted, DMM-like material as the Réunion mantle plume ascends to the surface may elevate 517 

the ε143Nd-ε176Hf compositions above the modelled mixing line, as observed in Figure 6c-d.  518 

 519 

4.4 Preservation of Hadean components in global OIB magmas 520 

The degree of µ142Nd heterogeneity observed in Réunion OIB and Deccan CFB has not yet 521 

been observed in other global hotspots. For example, Hawai’i and Samoa OIB show strong µ182W 522 
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heterogeneity (Mundl et al., 2017) but only Samoan lavas are characterized by possible minor 523 

µ142Nd variability (Horan et al., 2018). Changes in the magnitude of µ142Nd variability may arise 524 

if a hotspot source reservoir like that of Réunion is exposed to continuous assimilation of younger 525 

material with µ142Nd and µ182W near zero (Figure 7a; c.f., Jackson et al., 2016). If this younger 526 

material represents recycled oceanic crust and lithosphere, it may additionally contain a low W 527 

abundance because W can be efficiently removed by fluids during subduction (König et al., 2008). 528 

This would potentially result in preferential overprinting of Hadean µ142Nd compositions while 529 

leaving Hadean µ182W compositions relatively unchanged. Similarly, a mantle assimilant with a 530 

high intrinsic Nd/W ratio, such as depleted MORB mantle or an ancient, W-depleted reservoir, 531 

could also efficiently overprint µ142Nd while leaving µ182W unchanged (c.f., Jackson et al., 2020).  532 

To further examine these possible assimilation effects, the effect of assimilating young 533 

material with average µ142Nd and µ182W of 0 and Nd/W ≈ 3000 is modelled. This Nd/W ratio is 534 

somewhat higher than what is inferred for modern MORB mantle (Workman & Hart, 2005; 535 

Arevalo & McDonough, 2008), however one may expect that the Nd/W ratio of DMM has 536 

decreased through time because W is more incompatible than Nd. Time-integrated assimilation of 537 

30-50% of this younger domain into one possessing a Réunion-like µ142Nd-µ182W trend 538 

reproduces the µ142Nd-µ182W composition of Hawai’i and Samoa OIB (Figure 7b). These 539 

proportions would be smaller if the younger domain were more trace-element enriched than 540 

modern MORB. The strong ε143Nd-ε176Hf isotopic heterogeneity within Hawaiian and Samoan 541 

OIB attests to influence from this younger material (Figure 1a). By contrast, the relatively 542 

restricted composition of Réunion OIB (Figure 1b) corroborates the notion that they escaped 543 

substantial assimilation of geologically young material and thus better preserved their original 544 

µ142Nd-µ182W trend. 545 
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 546 

4.5 Time-integrated role of core-mantle interaction in the composition of the BSE 547 

 Late accretion of materials with broadly chondritic bulk compositions has commonly been 548 

proposed as the cause of roughly chondritic relative abundances of HSE and chondritic 187Os/188Os 549 

ratios in the mantle (e.g., Chou, 1978; Walker, 2009). If late accretion was responsible for the 550 

majority of the HSE present in the BSE, mass balance requires that at least 0.5 wt.% of Earth’s 551 

silicate mass was added by this process (e.g., Morgan et al., 2001). Late accretion would similarly 552 

replenish the BSE in other siderophile elements, such as W, although at a lesser magnitude (e.g., 553 

Dauphas, 2017). Late accretion is commonly envisioned to have occurred during or after the final 554 

stages of core formation in Earth (~30 Ma after Solar System formation). If late accreted materials 555 

were initially unevenly distributed in Earth’s mantle and not well-mixed in the BSE (so-called 556 

‘grainy’ late accretion), this may provide one explanation for the positive µ182W present in most 557 

Eoarchean rocks (e.g., Willbold et al., 2011). Hence, the timescale over which the isotopic 558 

consequences of late accretion would manifest in mantle-derived rocks, leading to a lowering of 559 

µ182W, is unclear (e.g., Willbold et al., 2015). This poses some challenges in the interpretation of 560 

μ142Nd-μ182W data. 561 

 The apparent diminishment in µ142Nd anomalies of mantle-derived rocks between 3.8 and 562 

2.7 Ga (e.g., Rizo et al., 2012; Saji et al., 2018; Figure 2a) suggests that the Archean mantle was 563 

effective at homogenizing diverse µ142Nd compositions over approximately 1 Ga timescales. 564 

However, over the same time interval the same rock types show a relatively constant range in 565 

positive µ182W compositions, with some notable exceptions (Figure 2b). For example, 3-8-3.7 Ga 566 

mafic rocks from Isua are characterized by coupled positive µ142Nd and µ182W anomalies (Caro et 567 

al., 2006; Willbold et al., 2011; Rizo et al., 2016a), whereas 3.3 Ga rocks from the same region 568 
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display no µ142Nd anomalies but possess positive µ182W anomalies with magnitudes similar to the 569 

3.8 Ga rocks (Rizo et al., 2016a). Although the existence of positive µ182W anomalies is not 570 

ubiquitous among Archean mantle-derived rocks (e.g., Komati: Touboul et al., 2012; 571 

Schapenburg: Puchtel et al., 2016a), the persistence of anomalous µ182W compositions into the 572 

Neoarchean in any lithology contrasts with the temporal trends hypothesized to exist in the μ142Nd 573 

record (e.g., Rizo et al., 2012; Saji et al., 2018). Thus, if the µ182W composition of Earth’s Archean 574 

mantle was controlled primarily by grainy late accretion, it would require that the timescale of W 575 

isotopic homogenization operated independently of the timescale of 142Nd homogenization. 576 

Another possible explanation for the common appearance of positive µ182W anomalies in 577 

Archean rocks is that core-mantle interaction, which may have generated the negative µ182W 578 

signatures in modern OIB, has lowered the µ182W composition of the BSE from a positive value 579 

following late accretion to its current value of zero (c.f., Rizo et al., 2019; Reimink et al., 2020). 580 

One attractive aspect of such a hypothesis is that the core-equilibrated silicate domain would likely 581 

not become substantially enriched in HSE (Rizo et al., 2019; Mundl-Petermeier et al., 2020), thus 582 

allowing the BSE to retain the chondritic relative abundances of these elements imparted on it by 583 

late accretion (c.f., Bennett et al., 2002). Thus, core-mantle interaction could have modified the 584 

µ182W composition of the bulk mantle while preserving the mantle HSE signatures that represent 585 

the classical evidence for late accretion. 586 

To assess the effect of W equilibration at the core-mantle boundary, a simple model was 587 

constructed to illustrate the evolution of W abundances and µ182W compositions in the mantle as 588 

a consequence of integrated contributions from mantle plumes (Figure 8). First, the integrated 589 

plume flux into the mantle was estimated according to Davies (1992) for the cross-sectional area 590 

of the Hawaiian hotspot swell. It is assumed that, on average, 20% of a plume’s mass is directly 591 
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returned to the mantle without incorporation into hotspot swells (i.e., that the cross-sections 592 

calculated by Davies, 1992, represent 80% of the plume volume), and that the Hawaiian plume 593 

represents 10% of the global plume flux at any time in Earth’s history. It is approximated that, on 594 

average, plumes have µ182W = -25 and ~35 ppb W before they assimilate ambient mantle material. 595 

5% equilibrium melting of such a plume when DW = 0.1 yields a primary OIB magma with 280 596 

ppb W, a value similar to Hawaiian and Samoan OIB at 12 wt.% MgO (Mundl et al., 2017). Using 597 

these parameters, the integrated effect of mantle plumes on the BSE would be to lower its µ182W 598 

composition by ~13 ppm and raise its W abundance by ~35%. Thus, the model predicts that 599 

following late accretion, the BSE had µ182W ≈ +13, similar to many Archean rocks (Figure 2b). 600 

Late accretion is expected to have decreased the µ182W composition of the BSE by 10-30 ppm, 601 

and increased its W abundance by ~8% (Touboul et al., 2015). The combined effects of late 602 

accretion and plume additions implies that the BSE had µ182W ≈ +23 to +43 following core 603 

formation, a range that overlaps the µ182W compositions of lunar basalts (Touboul et al., 2015; 604 

Kruijer et al., 2015). Lunar basalts may not be a direct proxy for the W isotopic composition of 605 

the pre-late veneer terrestrial mantle (Thiemens et al., 2019), but there are no other independent 606 

constraints on this value. In this way, late accretion and core-mantle interaction may have worked 607 

together to set the µ182W composition of the bulk mantle. 608 

The timescale of putative core-mantle interactions after late accretion is not specified in 609 

the model, but may have been long-lived. For example, if core-mantle equilibration via plumes 610 

began at 4.2 Ga and continued into modern times, the 13 ppm shift in µ182W compositions 611 

predicted by the model would have a rate of ~3 ppm/Ga, assuming that the modern BSE has µ182W 612 

≈ 0. Such changes would not currently be analytically detectible on 1-2 Ga timescales, and thus 613 

may provide an alternative explanation as to why there is no apparent secular trend in the µ182W 614 
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composition of mantle-derived rocks through the Archean. Alternatively, an Archean plume flux 615 

that is more vigorous than what is observed in the modern mantle may have rapidly altered the 616 

bulk mantle µ182W after core-mantle interactions began. Differentiating between these two 617 

scenarios is difficult given existing data. For example, recent data for crustal rocks from the North 618 

China Craton have been interpreted to reflect a rapid µ182W shift at 3.6 Ga corresponding to a 619 

major global event, such as the onset of modern-type plate tectonics (Mei et al., 2020). On the 620 

other hand, 2.9 Ga granitic rocks from the Slave Craton record positive µ182W anomalies, implying 621 

that mantle homogenization processes were more sluggish. Additional µ182W data highlighting 622 

rocks of Meso-Neoarchean age will be key to resolving this distinction. 623 

 624 

5. Summary and Conclusion 625 

 New Nd-Hf-W isotopic data are presented for Réunion hotspot basalts that record evidence 626 

for a persistent Hadean mantle domain within the Réunion plume source reservoir. Combining Nd 627 

and W isotopic data provides a powerful means to interrogate Hadean processes that were critical 628 

to the development of the modern Earth, such as core segregation and early crust formation. 629 

Réunion and Deccan lavas preserve negative µ182W compositions, some of which are resolved 630 

from the terrestrial standard. Combined with the heterogeneous µ142Nd composition of the lavas, 631 

these data preserve a possible negative trend between the two systems. A model is constructed that 632 

invokes core interaction with a trace-element enriched remnant of a Hadean magma ocean. This 633 

material is then assimilated into a trace-element depleted magma ocean relic (possibly analogous 634 

to BEAMS; Ballmer et al. 2017) and the combined domain subsequently incorporates a small 635 

amount of recycled Hadean mafic crust. The results of this model permit interpretation of Nd-Hf 636 

long-lived radiogenic isotope signatures along the mantle array (Chauvel et al., 2008) in an early 637 
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Earth context. These results are consistent with recent interpretations of the Sr-Nd-Pb isotopic 638 

signature of Réunion lavas (Nauret et al., 2019) and recent models of the He-W isotopic signatures 639 

of global OIB (Mundl-Petermeier et al., 2020). This study highlights the importance of including 640 

core contributions to Earth’s mantle when considering the global budget of siderophile elements 641 

and other core constituents relative to contributions from late accretion. Further work is needed to 642 

independently confirm the veracity of core-mantle interaction over geological timescales, as well 643 

as to establish a better sense of the global Nd-W isotopic relationship and its implications for early 644 

Earth processes. 645 

  646 
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Table 1. Geochemical data for Réunion and Deccan igneous rocks. Samples prefixed CH and RU are from Réunion, those prefixed DC 660 
are Deccan CFB, and the sample prefixed MR is from Mauritius. “Assim. Corr.” refers to assimilation-corrected values (Section 4.2). 661 

Data in bold are new contributions from this study. 662 
 663 

664 

Sample Description* 3He/4He (R/RA) μ142Nd 6 2σ s.d. 6 ε143NdCHUR(T) 6 2σ s.d. 6 n (nd) 7 ε176HfCHUR(T) 6 2σ s.d. 6 n (nd) 7 ppb W  8 μ182W 6 2σ s.d. 6 n (nd) 7

CH0702 1,2 Cumulate dunite, PDLF 3 13.7 169 -4.3 4.3 1 (1)

CH0704CL 3 PDLF 3 3.7 3.3 3.89 0.07 2 (1) 9.51 0.22 4 (1)

RU0702 2,3 PDLF 4, AD 1931 12.9 1.5 3.1 4.24 0.01 2 (1) 8.80 0.19 6 (1) 167 -4.9 4.1 2 (2)

RU0703 2,3 PDLF 4, AD 1998 12.5 -2.9 1.9 4.34 0.02 4 (1) 9.22 0.19 6 (2) 315 -4.1 2.6 2 (2)

RU0705 2,3 PDLF 4, AD 2007 13.7 4.7 2.5 4.37 0.27 2 (2) 8.79 0.37 3 (1) 114 -4.8 3.1 1 (1)

RU0706 3 PDLF 4, AD 2007 2.4 3.1 4.52 0.13 2 (1) 9.15 0.27 4 (2)

RU0707 3 PDLF 4, AD 2001 3.8 5.3 4.32 0.01 1 (1) 8.61 0.14 10 (2)

RU0708 2,3 PDLF 4, AD 1937 12.6 5.4 2.2 4.46 0.02 3 (1) 8.77 0.18 6 (2) 253 -7.5 1.7 3 (2)

RU0709 3 PDLF 4 6.2 2.8 4.32 0.08 3 (1) 8.92 0.18 7 (2) 290 -6.4 2.4 1 (1)

RU0710 2,3 PDN 1 12.5 -2.1 2.5 4.28 0.16 2 (2) 8.56 0.22 4 (1)

RU0711 2,3 PDN 1 12.0 -7.9 2.9 4.05 0.05 3 (2) 8.86 0.15 8 (2) 167 -2.9 3.0 1 (1)

RU0712 2,3 PDN 1 12.8 0.0 3.1 3.85 0.01 2 (1) 8.35 0.16 7 (2) 130 -9.6 4.2 1 (1)

RU0714 3 PDN 1 5.1 2.8 4.01 0.29 2 (1) 9.34 0.49 1 (1)

RU0715 3 PDN 3 -1.0 3.1 4.41 0.01 2 (1) 9.01 0.17 7 (2)

RU0716 3 PDN 2 5.8 2.3 4.73 0.02 4 (1) 9.28 0.15 8 (2)

RU0717 3 PDLF 1 -2.5 3.2 3.93 0.01 1 (1) 8.46 0.19 5 (1)

RU0718 3 PDLF 2 5.4 3.6 4.37 0.01 1 (1) 8.87 0.16 7 (2)

RU0719 3 PDLF 4, AD 1977 4.2 2.2 4.11 0.04 3 (1) 8.66 0.20 5 (2)

RU1515 3 PDLF 3 2.7 3.2 3.87 0.01 7 (6)

RU1516B 3 PDLF 3 1.2 3.5 3.85 0.10 2 (1) 8.17 0.44 1 (1)

RU1517 3 PDLF 3 -1.5 2.1 3.86 0.04 3 (1) 8.33 0.21 4 (2)

MR0709 2 Older Series 10.36 5.6 2.1 4.48 0.01 3 (1) 9.42 0.12 7 (2)

DC1405 4 Deccan Traps, Kutch 4.2 6.6 2.5 0.17 0.01 2 (1) -1.00 0.14 6 (2) -7.0 3.0 2 (2)

Assim. Corr. 7.6 2.8 -14.1 6.0

DC1447B 4, 11 Deccan Traps, Pavagadh 10.7 11.3 1.5 1.16 0.03 7 (5) 5.54 0.14 7 (2) 163 -4.7 6.6 1 (1)

Assim. Corr. 12.5 1.7 -6.8 9.7

BHVO-2 5, 10, 11 USGS Reference Material 3.7 3.4 6.66 0.03 2 (2) 11.27 0.10 12 (4) 251 -6.7 2.4 4 (2)

μ142Nd Avg. RSD 9 Avg. RSD 9 Avg. RSD 9 μ182W Avg. RSD 9

JNdi 0 4.5 JNdi 0.04 JMC475 0.44 Alfa Aesar 0 3.9

Notes

1: Dunite cumulate xenolith 6: Weighted averages and precision calculated using Isoplot, if n > 1. See text for details.

2: He isotopic data from Furi et al (2011) 7: n - number of runs; nd - numer of digestions

3: Nd isotopic data from Peters et al. (2018) 8: Determined by isotope dilution

4: He isotopic data from Peters et al. (2017) 9: Average 2σ s.d. of internal standards for each analytical session. See Supplementary Tables for details.

5: W concentration from Mundl et al. (2017) 10: W isotopic data from Peters et al. (2019)

11: Some (DC1447B) or all (BHVO-2) Nd isotopic measurements performed at ETH

*Descriptions refer to the stratigraphy of McDougall (1971) for Réunion (PDN: Piton des Neiges; PDLF: Piton de la Fournaise) and Baxter (1975) for Mauritius

Standard reference material
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 665 

Figure 1. Neodymium-hafnium isotopic compositions of Réunion hotspot lavas with other OIB 666 

plotted for reference. Red lines model assimilation of bulk continental crust with trace element 667 

abundances from Rudnick & Gao (2003) or fitted to the Deccan samples. Circles along the model 668 

lines represent 5% increments of mixing in panel (a). Model parameters are listed in Table S4. 669 

Data sources: Stracke et al. (2003), Kitagawa et al. (2008), Yamasaki et al. (2009), Hanano et al. 670 

(2010), Hanyu et al. (2010), Peate et al. (2010), Chekol et al. (2011), Salters et al. (2011), Weis et 671 

al. (2011), Koorneef et al. (2012), Nobre Silva et al. (2013), Sims et al. (2013). MORB field is 672 

after Salters & Stracke (2004).673 
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  674 

Figure 2. Short-lived radiogenic isotope composition of Réunion hotspot lavas with crustal and intraplate samples plotted for 675 

reference. Transparent symbols for Deccan CFB represent measured values uncorrected for crustal assimilation; solid symbols 676 

represent corrected values. The precision window depicted by the gray field is set to the average external precision reported in this 677 

study. Data sources, panel (a): Caro et al. (2003, 2017), Bennett et al. (2007), Andreasen et al. (2008), O’Neil et al. (2008, 2016), 678 

Murphy et al. (2010), Rizo et al., (2011, 2012, 2013, 2016a, 2016b, 2019), Cipriani et al. (2012), Jackson & Carlson (2012), Debaille 679 

et al. (2013), Puchtel et al. (2016a), Morino et al. (2017), O’Neil & Carlson (2017), Horan et al. (2018), Peters et al. (2018), Reimink 680 

et al. (2018, 2020), Saji et al. (2018), Schneider et al. (2018), Wainwright et al. (2019), Archer et al. (2019); panel (b): Willbold et al. 681 

(2011, 2015), Touboul et al. (2012, 2014), Liu et al. (2016), Puchtel et al. (2016a, 2016b, 2020), Rizo et al. (2016a, 2016b, 2019), 682 

Dale et al. (2017), Mundl et al. (2017), Kruijer & Kleine (2018), Mei et al. (2018, 2020), Mundl-Petermeier et al. (2018, 2019, 2020), 683 

Reimink et al. (2018, 2020), Archer et al. (2019), Tusch et al. (2019). 684 
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 685 

Figure 3. Helium and W isotopic compositions of Réunion hotspot lavas (Füri et al., 2011; Peters 686 

& Day, 2017, this study) compared to the systematics of Hawai’i and Samoa OIB (Mundl et al., 687 

2017 and references therein). Symbols are as in Figure 2. The right-pointing arrows on the Deccan 688 

samples reflect the likelihood that their 3He/4He has also been modified by crustal assimilation, 689 

but to an unconstrained extent. The horizontal shaded region reflects the average precision of W 690 

standard measurements during this study. The vertical shaded region reflects an approximate 691 

MORB 3He/4He composition of 8 ±1.5 RA (Graham, 2002).  692 

  693 
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 694 

Figure 4. μ182W versus μ142Nd compositions for Réunion hotspot lavas. Black regression line and 695 

blue uncertainty envelope (95% confidence interval) are calculated for Réunion OIB only (blue 696 

circles). Solid green regression line is calculated for Réunion OIB plus crustal assimilation-697 

corrected Deccan CFB (solid green diamonds). Dashed green regression line is calculated for 698 

Réunion OIB plus Deccan CFB that are not corrected for crustal assimilation (transparent green 699 

diamonds). For a discussion of regression statistics, see Results. 700 

  701 
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 702 

Figure 5. Plots of correlations between W/U and W/Zr, W/Th (less fluid-mobile elements), and 703 

W/Rb (more fluid-mobile) ratios. Arrows show the direction of predicted net loss of W by post-704 

emplacement alteration (i.e., leaching of W). Small gray circles are Deccan CFB data from 705 

Peters & Day (2017), otherwise symbols are as in Figure 2. PM: primitive mantle (McDonough 706 

& Sun, 1995), CC: bulk continental crust (Rudnick & Gao, 2003). 707 

708 
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 709 

Figure 6. (a) Qualitative model for the μ182W and μ142Nd compositions of Réunion hotspot lavas. 710 

(b) Probability density (darker: more probable), n = 10000 of results of a Monte Carlo simulation 711 

predicting mixing trends along an example mixing line c with an example mixing line (green) for 712 

reference. (c) The result of the same model for 143Nd-176Hf compositions, enlarged around the 713 

Réunion data in (d). DMM: depleted MORB mantle; GLOSS: global subducted sediment (Plank 714 

& Langmuir, 1998; Chauvel et al., 2008); CC: continental crust (Himalayan sediments from 715 

Richards et al., 2005 as used in the crustal assimilation correction). See text for model details; 716 

model parameters are listed in Table S5. 717 

  718 
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Figure 7. Qualitative (a) and quantitative (b) model of the effects of assimilating young geologic 719 

material into mantle domains with Hadean Nd-W isotopic signatures. Mixing line c is identical to 720 

the one in Figure 6. Example mixing lines simulating the effects of assimilating 0-50% 721 

assimilation of post-Hadean recycled material with μ182W = μ142Nd = 0 and Nd/W = 3500. See 722 

text for model details. 723 

  724 
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 725 

Figure 8. Model of the W abundance and W isotopic composition of the mantle accounting for 726 

late accretion and mantle plume contributions to the silicate Earth.  See Section 4.5 for model 727 

details, model parameters are listed in Table S6.728 

729 
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