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Phagocytosis of bacteria by specialized blood cells, known as hemocytes, is a vital 

component of Drosophila cellular immunity. To identify novel genes that mediate the 

cellular response to bacteria, we conducted three separate genetic screens using the 

Drosophila Genetic Reference Panel (DGRP). Adult DGRP lines were tested for the 

ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus 

aureus or the Gram-negative bacteria Escherichia coli. The DGRP lines were also 

screened for the ability of their hemocytes to clear S. aureus infection through the process 

of phagosome maturation. Genome-wide association analyses were performed to identify 

potentially relevant single nucleotide polymorphisms (SNPs) associated with the cellular 

immune phenotypes. The S. aureus phagosome maturation screen identified SNPs near or 



	

in 528 candidate genes, many of which have no known role in immunity. Three genes, 

dpr10, fred, and CG42673, were identified whose loss-of-function in blood cells 

significantly impaired the innate immune response to S. aureus. The DGRP S. aureus 

screens identified variants in the gene, Ataxin 2 Binding Protein-1 (A2bp1) as important 

for the cellular immune response to S. aureus. A2bp1 belongs to the highly conserved 

Fox-1 family of RNA-binding proteins. Genetic studies revealed that A2bp1 transcript 

levels must be tightly controlled for hemocytes to successfully phagocytose S. aureus. 

The transcriptome of infected and uninfected hemocytes from wild type and A2bp1 

mutant flies was analyzed and it was found that A2bp1 negatively regulates the 

expression of the Immunoglobulin-superfamily member Down syndrome adhesion 

molecule 4 (Dscam4). Silencing of A2bp1 and Dscam4 in hemocytes rescues the fly’s 

immune response to S. aureus indicating that Dscam4 negatively regulates S. aureus 

phagocytosis. Overall, we present an examination of the cellular immune response to 

bacteria with the aim of identifying and characterizing roles for novel mediators of innate 

immunity in Drosophila.  By screening panel of lines in which all genetic variants are 

known, we successfully identified a large set of candidate genes that could provide a 

basis for future studies of Drosophila cellular immunity. Finally, we describe a novel, 

immune-specific role for the highly conserved Fox-1 family member, A2bp1.  
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Chapter 1  

	

Introduction 

I. Drosophila Innate Immunity 

 To combat infection, organisms rely on a multitude of immune defense 

mechanisms designed to recognize and eliminate invading microbes. The immune 

response can be functionally divided into two main classes: innate and adaptive immune 

responses. Adaptive immune responses are highly specific, take time to develop, and 

result in lifetime protective immunity to a particular pathogen. On the other hand, innate 

immune responses are available immediately to combat a wide array of pathogens. Innate 

and adaptive immune responses are complementary and both are necessary to produce 

robust immunity. Cells of the innate immune system serve as the initial line of defense 

against invading microbes. They express germline-encoded receptors that identify 

common pathogen associated molecular patterns (PAMPs) such as bacterial derived 

lipopolysaccharide (LPS), lipoteichoic acid (lipid anchored teichoic acids (LTA)), 

peptidoglycan, double-stranded RNA, and unmethylated CpG DNA or β-glucan of fungi. 

Innate immune cells eliminate most pathogenic microorganisms before they can cause 

disease. The importance of innate immunity is underscored by the fact that innate 

immune responses are found in nearly all animals, while adaptive immune responses are 

restricted to the jawed vertebrate group.  
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 Phagocytosis is a cell mediated immune response to foreign matter. The process 

of phagocytosis was first described over 100 years ago by Èlie Metchnikoff (Kaufmann, 

2008).  It is a receptor-mediated event that occurs when pattern recognition receptors 

(PRRs) on the surface of the cell recognize and bind to ligands on target molecules 

(Flannagan et al., 2012). Once bound to their cognate ligands, these receptors initiate 

signaling events that lead to the clearance of pathogens. Phagocytosis is the cornerstone 

of a robust and powerful innate immune response. In mammals, specialized blood cells, 

macrophages, neutrophils and dendritic cells, take up microbes and destroy them within 

the cell. Some innate immune cells also serve as professional antigen presenting cells, a 

role that is critical for the activation of adaptive immune effector cells such as B and T 

lymphocytes. 

 Investigators researching mammalian phagocytes have utilized ex vivo and in 

vitro cell biology and microscopy techniques to examine the molecular mechanisms 

underlying phagocytosis. Individual phagocytic components have been studied through 

the use of non-phagocytic cell lines that exogenously express phagocytic receptors or in 

primary cells isolated from mutant mice (Stuart and Ezekowitz, 2005). The most 

extensively studied mammalian phagocytic receptors are the Fc receptor (FcR) and the 

complement receptor, CR3 (Griffin et al., 1975; Odin et al., 1991).  These receptors are 

regarded as a general model for the cellular and molecular events that take place during 

phagocytosis. While these reductionist approaches have increased our understanding of 

the complex cell biology of phagocytosis, they do not address the relative importance of 

the cellular immune response in intact organisms. Genetically tractable model systems 

such as the nematode, Caenorhabditis elegans, and the fruit fly, Drosophila 



	 3	

melanogaster, have been successfully used to study host-pathogen interactions in vivo. In 

particular, work defining the components that mediate the cellular immune response has 

greatly enhanced our understanding of the significant immune and homeostatic roles 

played by phagocytic cells in vivo.  

 Drosophila melanogaster relies on innate immunity to defend against attacks by 

parasites, fungi, viruses and bacteria (Lemaitre and Hoffmann, 2007). Many Drosophila 

genes and signaling pathways are conserved in higher organisms and studies of fruit fly 

immunity have provided valuable insight into human innate immune responses. The 

defense reactions of Drosophila include potent humoral and cellular responses. Humoral 

immunity is characterized by the systemic production of antimicrobial peptides (AMPs) 

after immune cells of the blood and fat body detect bacteria or fungi in the hemolymph. 

The cellular immune response is specifically carried out by specialized blood cells known 

as hemocytes, which engulf and eliminate pathogens via phagocytosis.  

II. The Cellular Immune Response  

 There are three classes of hemocytes in the fly: plasmatocytes (90-95% of blood 

cells), crystal cells (5% of blood cells) and lamellocytes.  The plasmatocytes are 

professional phagocytes and are similar to the mammalian macrophages (Williams, 

2007). During development plasmatocytes, also called pupal macrophages, ingest 

apoptotic cells and larval tissues (Tepass et al., 1994). After metamorphosis, 

plasmatocytes are the only hemocyte lineage present, with an estimated 1000-2000 

plasmatocytes present at the adult stage (Lanot et al., 2001).  Many of these 

plasmatocytes adhere to the heart tissue in the dorsal vessel where they function as the 

primary effector of cellular immunity in adults (Elrod-Erickson et al., 2000). Survival 
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experiments carried out using flies where plasmatocytes were genetically ablated show 

that phagocytosis is critical in the clearance of the Gram-positive bacteria, Enterococcus 

faecalis and Staphylococcus aureus (Charroux and Royet, 2009; Defaye et al., 2009; 

Nehme et al., 2011). 

 Crystal cells make up 5% of circulating hemocytes in embroyos and larvae. These 

cells mediate melanization reactions by releasing the prophenoloxidases (PPOs), PPO2 

and PPO3, after injury (Dudzic et al., 2015; Kurucz et al., 2007b).  Phenoloxidase (PO) is 

a key enzyme in melanin biosynthesis and it is synthesized when its precursor, the 

zymogen PPO is cleaved to generate active PO (Tang, 2009). The lamellocytes can be 

induced upon pupariation, but also differentiate in larvae in response to parasitic wasp 

infections. Lamellocytes encapsulate parasitic wasp eggs deposited in the larval 

hemocoel and release PPO3 to melanize the eggs (Dudzic et al., 2015; Rizki and Rizki, 

1992).   

A. Phagocytosis 

 Phagocytosis is initiated when cell surface receptors recognize their target ligands 

and trigger engulfment of molecules into a nascent organelle, the phagosome. Phagocytic 

receptors can either directly bind to ligands expressed on the surface of target cells or 

recognize targets coated by opsonins, soluble host factors that bind to foreign bodies. 

Many phagocytic receptors are able to recognize multiple microbial and apoptotic cell-

associated ligands. Additionally, due to the inherent diversity of particles that are taken 

up by phagocytosis, multiple receptors are simultaneously engaged to ligands on the 

surface of target particles to facilitate uptake. The overlap and redundancy in receptor 

ligand specificities helps in the formation of strong interactions between the target 
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particle and the phagocyte. Receptor redundancy is also evolutionarily advantageous as it 

allows the host cell to combat pathogens that have developed mechanisms to evade 

detection by a particular receptor.  

 Phagocytosis is broadly defined as the ingestion of large particles (≥0.5 µM), such 

as microorganisms or apoptotic cells.  The cellular events that occur throughout the 

process can be separated into several stages: 1) particle recognition and binding 2) 

particle engulfment   3) phagosome maturation and pathogen degradation. The remainder 

of this section will discuss what is known and what is unknown about phagocytosis in 

Drosophila within the context of the schematic in Figure 1-1. 

 

Figure 1-1: Stages of phagocytosis and phagosome maturation during the innate 

immune response. 

Phagocytosis is initiated when pattern recognition receptors (PRRs) on the surface of 

phagocytic cells recognize and bind to pathogen associated molecular patterns (PAMPs) 

located on the surface of microbes. Once bound by cognate ligands, the receptors are 

activated, leading to the formation of signaling cascades that cause the actin cytoskeleton 

to rearrange, facilitating particle uptake into a de-novo organelle, the phagosome.  The 

phagosome undergoes a series of coordinated fusion-fission events with endosomal 

vesicles during the process of phagosome maturation.  Phagosome maturation culminates 

in the formation of the highly acidic and microbicidal phagolysosome.  
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Table 1: Cell surface recognition receptors and opsonins 

 
Receptor Family 

 
Receptor 

 
Ligands and References 

Related 
mammalian 
molecules 

Scavenger 
receptors 

Croquemort Apoptotic cells (Franc et al., 1999) 
Staphylococcus aureus (Stuart et al., 2005) 
 

CD36 

Peste Mycobacterium fortuitum (Agaisse et al., 2005; 
Philips et al., 2005) 
Mycobacterium smegmatis (Philips et al., 2005) 
Listeria monocytogenes (Agaisse et al., 2005) 
NOT Escherichia coli or S. aureus (Philips et al., 
2005) 
 

SCARB1 

SR-C1 E. coli (Ramet et al., 2001) 
S. aureus (Ramet et al., 2001) 
NOT Candida salvatica (Ramet et al., 2001) 
Double stranded RNA (Ulvila et al., 2006) 
 

None found 

Nimrod receptor 
superfamily 

Eater E. coli, Serratia marcescens, and S. aureus  
(Chung and Kocks, 2011; Kocks et al., 2005) 
Enterococcus faecalis (Chung and Kocks, 2011; 
Nehme et al., 2011) 
NOT Micrococcus luteus (Chung and Kocks, 2011; 
Nehme et al., 2011) 
Double stranded RNA (Ulvila et al., 2006) 
 

SREC; 
MEGF10; 
MEGF11;  
CD91;  
Stabilin 1 & 
Stabilin 2 
 
 
 
 
 
 
 

NimC1 E. coli (Kurucz et al., 2007a) 
S. aureus (Kurucz et al., 2007a) 
 

Draper Apoptotic cells (Freeman et al., 2003; Manaka et 
al., 2004) 
Axon pruning (Awasaki et al., 2006; MacDonald et 
al., 2006) 
S. aureus (Shiratsuchi et al., 2012) 
 

Peptidoglycan 
recognition 
proteins 

PGRP-LC E. coli (Bergeret et al., 2008; Ramet et al., 2002) 
NOT S. aureus (Ramet et al., 2002) 
NOT E. coli or S. aureus (Choe et al., 2002; 
Garver et al., 2006) 
 

Mammalian 
PGRPs 
 

PGRP-
SC1A/picky 
 
 
PGRP-SA 

S. aureus (Garver et al., 2006) 
NOT E. coli or Saccharomyces cerevisiae (Garver 
et al., 2006) 
 
S. aureus (Garver et al., 2006) 
NOT E. coli (Garver et al., 2006) 
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Table 1-1: Cell surface recognition receptors and opsonins. 

Drosophila phagocytic receptors and mammalian orthologs are grouped according 

functional properties and common features.  EGF-like-repeat containing protein orthologs 

were identified in Kocks et al, 2005.  All other mammalian orthologs, were identified 

using the Drosophila RNAi Screening Center (DRSC) Integrative Ortholog Prediction 

Tool (DIOPST) (Hu et al., 2011). CD36, CD36 (thrombospondin receptor); SCARB1, 

scavenger receptor class B, member 1; SR-C1, scavenger receptor class C, type 1; αPS3, 

integrin alpha PS3 subunit (encoded by scab); βν, integrin beta subunit (encoded by 

Itgbn); Ig-like, Immunoglobulin-like; Dscam, Down syndrome cell adhesion molecule; 

TEP, Thioester-containing protein.  

 

B. Particle Recognition: The Receptors  

 The fruit fly Drosophila melanogaster is a model organism that has been 

successfully utilized to identify several pattern recognition receptors via large-scale RNA 

interference screens and smaller, classical genetic screens. A brief description of the 

Integrins Integrins 
αPS3/βν 

Apoptotic cells (Nagaosa et al., 2011; Nonaka et 
al., 2013) 
S. aureus (Nonaka et al., 2013; Shiratsuchi et al., 
2012) 
 

ITGA4 (CD49D) 
ITGB1 

Ig-like Dscam E. coli (Dong et al., 2006; Watson et al., 2005) 
S. aureus (Dong et al., 2006) 
 

DSCAM 

TEPs Mcr 
(TEPVI) 

Candida albicans (Stroschein-Stevenson et al., 
2006) 
 

 
 
Complement 
components 
 
 

 TEP II E. coli (Stroschein-Stevenson et al., 2006) 
 

 TEP III S. aureus (Stroschein-Stevenson et al., 2006) 
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phagocytic receptors identified in Drosophila is given in Table 1-1 and in the 

accompanying text. 

Recognition of Apoptotic Cells: 

 Phagocytic cells target two main classes of particles: apoptotic cells and 

microorganisms.  Removal of apoptotic cells is key during embryogenesis and 

development (Arandjelovic and Ravichandran, 2015). Apoptotic cells display “eat me” 

signals.  The most extensively characterized eat me signal is phosphatidylserine (PtdSer), 

a membrane lipid found on the inner leaflet of the plasma membrane in healthy cells 

(Fadok et al., 1992). Receptor ligation with PtdSer triggers phagocytic uptake of 

apoptotic cells in mice, humans, Danio renio (Zebrafish), Caenorhabditis elegans 

(nematodes) and Drosophila (Fadok et al., 1992; Hong et al., 2004; Li et al., 2003; Tung 

et al., 2013; Wang et al., 2003).  

 In mammals, removal of apoptotic cells is important for maintenance of routine 

tissue homeostasis and phagocytosis of apoptotic cell corpses is associated anti-

inflammatory cellular responses (Poon et al., 2014). In Drosophila, three apoptotic cell 

receptors have been characterized: the CD36-related Scavenger receptor Croquemort 

(Crq), the EGF-like repeat-containing Nimrod family member Draper, and the integrin 

αPS3/βν (Franc et al., 1999; Manaka et al., 2004; Nagaosa et al., 2011) (Table 1). Of 

these three receptors, only Draper has been shown to directly bind PtdSer (Tung et al., 

2013). Interestingly, Draper is a multivalent receptor and can recognize apoptotic cells by 

binding to PtdSer and/or the endoplasmic reticulum protein Pretaporter (Kuraishi et al., 

2009) 
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Microbial receptors: Receptors that recognize PAMPs 

 Both professional phagocytic cells and non-professional phagocytic cells, such as 

endothelial and epidermal cells, are able to phagocytose invasive bacteria. Mammalian 

professional phagocytes are specialized blood cells: macrophages, neutrophils and 

dendritic cells. These cells respond to infection by migrating towards infected tissue. In 

Drosophila larvae, plasmatocytes are the primary phagocytic immune cells, and these 

cells also migrate to sites of infection.  In Drosophila adults, plasmatocytes do not freely 

circulate, but mostly adhere to adult tissues such as the dorsal vessel (Elrod-Erickson et 

al., 2000; Lanot et al., 2001).  

 Detection of PAMPs on the surface of microorganisms is the first step in 

phagocytosis of commensal and pathogenic microbes. Receptors present on the 

extracellular side of the plasma membrane of phagocytes directly bind to the microbes or 

to opsonins that are deposited on the microbes’ surface. Some of the receptors that 

participate in phagocytosis in Drosophila have mammalian orthologs with similar 

functions, while others are unique to insects.  There are six main classes of molecules 

involved in pathogen recognition in the fruit fly: scavenger receptors, EGF-like-repeat 

containing Nimrod proteins, peptidoglycan recognition proteins, integrins, 

immunoglobulin-like proteins, and thioester-containing proteins.  

Scavenger receptors:  

 Scavenger receptors are a group of structurally unrelated receptors with shared 

functional properties that bind multiple polyanionic ligands (Canton et al., 2013). The 
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receptors have heterogeneous structures and are subdivided into 9 classes (Class A-Class 

I) based on shared domain architecture.  

 A common feature of scavenger receptors is that they exhibit broad ligand 

specificity.  For example, the mammalian Class B scavenger receptor CD36 recognizes 

altered self-ligands, acetylated and/or oxidized low density lipoprotein (LDL) and 

phosphatidylserine, as well as conserved microbial PAMPs from Gram-negative and 

Gram-positive bacteria.   

 During insect embryogenesis, hemocytes differentiate into macrophages that are 

able to phagocytose apoptotic cells (Tepass et al., 1994).  Based on this observation, 

Ezekowitz and group (Franc et al., 1996) identified the Class B scavenger receptor, 

Croquemort.  Using immunohistochemistry, they found Croquemort was expressed on 

hemocytes in embryogenesis and that this expression coincided with the developmental 

stage 11, when embryonic hemocytes developed the ability to phagocytose apoptotic cell 

corpses. The group also observed that Croquemort-positive hemocytes contained 

apoptotic cell corpses.  Finally, transfecting non-phagocytic mammalian COS-7 cells 

transfected with Croquemort cDNA allowed these cells to bind to apoptotic cells in vitro.  

Genetic follow-up studies by the Ezekowitz group (Franc et al., 1999), using croquemort 

null flies, revealed that Croquemort is essential for phagocytosis of apoptotic cells in 

vivo. In 2005, Moore and colleagues (Stuart et al., 2005) found that Croquemort is also a 

receptor for S. aureus, but not E. coli, in a forward genetic screen using RNAi in S2 cells. 

Because Croquemort is a paralog of mammalian CD36, the group transfected human 

embryonic kidney (HEK) 293T cells with murine CD36 and assessed the ability of these 

cells to phagocytose heat-killed S. aureus and E. coli.  They found that crq transfected 
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HEK293T cells were able to bind and internalize S. aureus and E. coli, with a three-fold 

increase in binding of S. aureus versus a two-fold increase for E. coli indicating that 

Croquemort has a higher affinity for the Gram-positive bacteria.  Finally, macrophages 

from CD36 null mice showed impaired phagocytosis of S. aureus and LTA, and this 

defect was accompanied by a 60-70% reduction in the expression of the pro-

inflammatory cytokines Tumor necrosis factor alpha (TNFα) and interleukin-12 (IL-12). 

The authors suggested that in addition to mediating phagocytosis of S. aureus and LTA, 

CD36 works with Toll-like receptors (TLRs) to initiate the cytokine response. They 

found that carboxyl terminal cytoplasmic domain of CD36 is required to trigger 

internalization of S. aureus.  This domain also cooperates with TLR2/TLR6 to induce 

cytokine production through NFκB activation.  

 Class C scavenger receptors are only found in Drosophila species. One member, 

SR-CI, is an important phagocytic receptor in Drosophila melanogaster. In embryos, SR-

CI is expressed in macrophages and when expressed in mammalian CHO cells, SR-CI 

exhibited high binding affinity for low density lipoprotein (Pearson et al., 1995).  In 

2001, the Ezekowitz group (Ramet et al., 2001) identified SR-CI as a receptor for Gram-

negative and Gram-positive bacteria. Notably, the authors established an in vitro insect 

cell model to study phagocytosis.  They compared the phagocytic potential of hemocytes 

and S2 cells, a primary cell culture derived from late stage Drosophila embryos, and 

found that both cells types efficiently phagocytose bacteria and yeast. They also 

examined whether E. coli and S. aureus were recognized by the same or different S2 cell 

receptors by performing cross-competition experiments. To do so, the authors 

coincubated S2 cells with unlabeled and fluorescently-labeled bacteria.  Unlabeled E. coli 
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was able to decrease the amount of phagocytosed fluorescently-labeled S. aureus, and 

vice versa, suggesting the existence of common PRR(s) for S. aureus and E. coli.  

Interestingly, neither E. coli nor S. aureus inhibited the association of fluorescently-

labeled yeast, Candida silvatica, indicating that the receptors for C. silvatica do not 

overlap with those for E. coli or S. aureus. Acetylated LDL, LTA, and polyinosinic acid 

inhibited the binding of both E. coli and S. aureus in a dose-dependent manner.  The 

inhibition profile and bacteria phagocytosis profiles were similar to both the mammalian 

class A SRs and the binding characteristics for Drosophila SR-CI (Pearson et al., 1995).  

There are four members of the Class C SR family in Drosophila, dSR-CI, CII, CIII and 

CIV.  SR-CI and CII are membrane bound receptors while CIII and CIV are predicted to 

encode secreted proteins. RNAseq analysis shows that SR-CIII and SR-CIV are 

expressed at low levels in S2 cells (Graveley et al., 2011). Conditioned media from S2 

cells did not affect phagocytosis of bacteria, suggesting that neither CIII nor CIV played 

a role in the process of phagocytosis in this system.  Additionally, the tissue and temporal 

expression analysis showed that SR-CI is expressed in larval hemocytes and throughout 

the life of the fly whereas the other Class C SR are only expressed in the early stages of 

development. The expression analysis, coupled with binding profiles for SR-CI indicated 

that it was a potential PRR candidate. In vitro binding experiments with SR-CI 

transfected CHO cells, found that SR-C1 acted as a receptor for Gram-negative (E. coli) 

and Gram-positive (S. aureus) bacteria, but not yeast (Candida silvatica).  The authors 

also abolished the expression of SR-C1 using dsRNA in the macrophage-like insect S2 

cell line and observed a 20 and 30% reduction in the association of E. coli and S. aureus, 

respectively. This rather modest reduction in phagocytosis suggested that there must be 
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more than one receptor involved in the recognition of bacteria, and spurred future studies 

to identify additional PRRs in Drosophila. Finally, natural polymorphisms in SR-CI are 

associated with varying levels of resistance to the Gram-negative entomopathogen 

Serratia marcescens, indicating that SC-RI plays an important role in the immune 

response among wild fruit flies (Lazzaro, 2005; Lazzaro et al., 2004).   

 Mycobacterium marinum causes a lethal infection in Drosophila and during the 

early stages of infection the bacteria grows in phagocytes (Dionne et al., 2003).  To 

identify potential receptors for M. fortuitum, a human pathogen, the Perrimon group 

conducted a genome-wide RNAi screen in S2 cells and identified a CD36 homolog, class 

B scavenger receptor Peste (Philips et al., 2005). The group treated S2 cells with dsRNA 

to deplete specific host genes, and then infected the cells with M. fortuitum that expressed 

GFP under the control of the map24 promoter. The map24 is responsive to low pH, such 

as the pH the internalized bacteria encounter in the lumen of the phagosome. In the 

screen, diminished GFP signal could occur from altered bacteria uptake, intracellular 

growth, or induction from the map24 promoter.  Silencing of peste in S2 cells blocked 

infection by M. fortuitum, but did not affect uptake of S. aureus or E. coli. Peste was also 

required for the uptake of the non-pathogenic Mycobacterium smegmatis, suggesting that 

Peste is a PRR for Mycobacteria species. Human embryonic kidney (HEK) 293 cells, 

which are normally refractory to infection by M. fortuitum could be infected when peste 

was heterologously expressed. Interestingly, heterologous expression of Peste in HEK293 

cells caused a small increase in the uptake of S. aureus and E. coli. This result was not 

seen in experiments of silencing Peste in S2 cells.  The authors suggest that the 

discrepancy could be explained by genetic redundancy provided by the presence of 
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multiple receptors for S. aureus and E. coli on the surface of S2 cells.  Another S2 cell 

RNAi screen by the Perrimon group found that Peste is a receptor for another 

intracellular bacteria, Listeria monocytogenes (Agaisse et al., 2005). Both M. fortuitum 

and L. monocytogenes grow in Drosophila hemocytes (Dionne et al., 2003; Mansfield et 

al., 2003). It is possible that Peste has evolved to detect some component shared by 

Mycobacteria and Listeria. Both Mycobacteria and Listeria are lethal to the fly and both 

the bacteria replicate quickly within hemocytes and it is possible that these intracellular 

microbes enter hemocytes through interactions with Peste in order to establish a 

replicative niche within the phagosome of the cells.  

 Scavenger receptors are prominently expressed on the surface of mammalian 

macrophages and in Drosophila hemocytes. In both mammals and flies, SRs recognize 

altered self and microbial ligands and play essential roles in tissue homeostasis and 

immunity.  In the fruit fly, Class B and Class C scavenger receptors have been shown to 

bind multiple self and non-self ligands to mediate phagocytosis of target particles. The 

work described above provides insight into the evolutionarily conserved role for 

scavenger receptors as important PRR involved in the innate cellular immune response in 

metazoans. 

Nimrod receptor superfamily:  

 The Nimrod superfamily is a diverse class of proteins characterized by the 

presence of epidermal growth factor (EGF)-like repeats called NIM repeats (Kurucz et 

al., 2007a). Typical EGF repeats have roles in extracellular adhesion, coagulation and 

receptor-ligand interactions. The NIM repeat, also known as an EGF-like repeat, is a 

special type of the EGF domain that is shifted one cysteine unit compared to the typical 
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EGF repeat. All Nimrod superfamily proteins contain a signal peptide followed by N-

terminal motifs of various kinds. Based on shared structural characteristics, the family is 

divided into three types: (1) Draper-type genes (Drosophila nimrod A and Draper) and 

the proteins containing many NIM subgroups (poly-NIM proteins), (2) Nimrod B-types 

(Drosophila nimrod B 1-5) and (3) Nimrod C-types (Drosophila nimrod C 1-4 and eater) 

(Somogyi et al., 2008).  The Draper-type group have an EMI domain (which may 

facilitate protein:protein interactions) at the N-terminal and one copy of the NIM motif 

followed by several EGF domains. Members of this subfamily have a wide distribution 

and are found in C. elegans, humans, and Drosophila melanogaster.  Poly-NIM proteins 

have only been found in insects thus far.  Nimrod-C family genes such as eater are 

transmembrane proteins with a variable number of NIM repeats.  The Nimrod-B genes 

lack transmembrane domains and are most likely secreted proteins (Kurucz et al., 2007a). 

 The receptors for E. coli and S. aureus overlap in S2 cells. Silencing SR-CI only 

produces a modest reduction in phagocytosis of both types of bacteria, pointing to the 

existence of additional receptors for the bacteria.  The GATA transcription factor Serpent 

regulates bacterial surface binding and the Ezekowitz group performed a microarray to 

identify potential receptors whose expression was regulated by Serpent in S2 cells (Kocks 

et al., 2005; Ramet et al., 2002).  Forty-six of the genes down-regulated over 2-fold after 

serpent RNAi had signal sequences and transmembrane domains. They tested for effects 

on phagocytosis by silencing these candidates using RNAi in hemocytes and looking for 

binding of S. aureus and E. coli to the cells. One gene, which the researchers named 

eater, encodes a predicted cell-surface receptor and showed strong reduction in S. aureus 

and E. coli phagocytosis. The Eater protein contains an N-terminal signal peptide, 32 
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EGF-like domains, a transmembrane domain, and an intracellular C-terminal domain 

with a predicted tyrosine phosphorylation motif. The Eater protein has a low level 

homology (25% amino acid identity overall) to C. elegans CED-1, a receptor for 

apoptotic cells. The extracellular domain of CED-1 is homologous to a human scavenger 

receptor on endothelial cells, SREC. Analysis of eater expression showed that it is 

restricted to the plasmatocyte lineage. 

 The first four EGF-like repeats of Eater have a high level of amino acid diversity, 

suggesting that the N-terminal part of the protein may be important for binding to 

ligands.  Amino acids 1-199 strongly bind to the Gram-negative bacteria Serratia 

marcescens and the Gram-positive bacteria S. aureus. Larval hemocytes from eater null 

flies showed significantly impaired phagocytosis of both S. marcescens and S. aureus. 

Adult eater null hemocytes were significantly impaired for phagocytosis of both E. coli 

and S. aureus. The researchers tested survival phenotypes of eater null flies by feeding 

flies the entomopathogen S. marcescens, thereby assessing the effects of phagocytic 

defects in a natural infection model. eater null flies were more susceptible to                    

S. marcescens, and this increased susceptibility was accompanied by 10,000 fold higher 

levels of S. marcescens in the fly hemolymph. The antimicrobial peptides Drosomycin 

and Diptericin were induced normally in eater null mutants indicating that the 

susceptibility to S. marcescens was not attributed to defects in the humoral immune 

response but instead were likely caused by the impaired cellular immune response.  

 Follow-up studies utilizing a soluble Fc-tagged receptor variant of Eater 

comprised of the N-terminal 199 amino acids (Eater-Fc) revealed that Eater effectively 

binds to live or inactivated Gram-positive bacteria, S. aureus and Enterococcus faecalis 
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(Chung and Kocks, 2011). In contrast, Eater-Fc was unable to bind live or heat killed 

Gram-negative bacteria E. coli, S. marcescens and Pseudomonas aeruginosa. In order to 

recognize Gram-negative bacteria Eater-Fc required membrane-disrupting treatments.  

Accordingly, Eater-Fc bound Gram-negative ligands unmasked by treating the bacteria 

with the cationic AMP, Cecropin A. Thus, in vivo, Eater may efficiently target and 

phagocytose Gram-positive bacteria, but in order to recognize Gram-negative bacteria, 

AMP activity may be required to expose previously hidden Eater ligands. To assess the 

relative importance of Eater recognition and phagocytosis of Gram-positive pathogens, 

the group conducted in vitro binding assays and in vivo phagocytosis and survivals for 

three types of Gram-positive bacterial pathogens.  Eater is important for the phagocytosis 

of S. aureus and E. faecilis in vitro, but is not required for phagocytosis of Micrococcus 

luteus (Chung and Kocks, 2011; Nehme et al., 2011)). 

 Another Drosophila hemocyte cell line, Kc167, does not express eater but is still 

able to efficiently phagocytose M. luteus but not S. aureus (Nehme et al., 2011). The 

importance of Eater in the host defense against Gram-positive bacteria was assessed in 

flies infected with three different Gram-positive bacteria: S. aureus, E. faecalis, and 

Micrococcus luteus (Nehme et al., 2011). eater null flies were susceptible to S. aureus 

and E. faecalis but showed little to no susceptibility after M. luteus infection.  This 

finding is consistent with the phagocytic characteristics of Eater.  Additionally, 

augmenting the host response by blood-cell specific activation of the Toll signaling 

pathway protected eater null flies against E. faecilis but not against S. aureus. Thus, in 

addition to the cellular immune response, the humoral response is effective against some 

Gram-positive bacteria (E. faecilis) but not others (S. aureus). The redundancy in 
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receptors and the overlapping effector mechanisms of the humoral and cellular immune 

responses are essential for the fly to mount an effective immune response. However, 

these responses and the interactions between them are unique to each pathogen the fly 

encounters, highlighting the complexity of the innate immune response in Drosophila.  

 Recently a bioinformatics study of immune related genes in the mosquito 

Anopheles gambiae identified AgEater, a gene that is translated into a plasma membrane 

bound receptor with 21 NIM repeats (Midega et al., 2013). This study was the first to 

identify and characterize the only two known NIM-repeat containing proteins in the 

mosquito, AgNimB2 and AgEater. Surprisingly, injection of AgEater dsRNA into adult 

mosquitos, to specifically silence the expression of AgEater, did not affect phagocytosis 

of either S. aureus or E. coli.  This finding stands in contrast to what is known about the 

function of Drosophila Eater, suggesting that AgEater is not required, or plays a 

redundant role, in bacterial phagocytosis in the mosquito. 

 To identify hemocyte-specific molecules, the Hultmark group generated a set of 

monoclonal antibodies against hemocytes (Kurucz et al., 2003).  The research group used 

the antibodies to identify a plasmatocyte-specific EGF-domain containing transmembrane 

protein, Nimrod-C1 (NimC1) (Kurucz et al., 2007b). Specifically, two monoclonal 

antibodies, P1a and P1b, recognized different epitopes on NimC1 and 

immunofluorescence staining showed that both epitopes were found on the majority of 

larval hemocytes (with plasmatocyte morphology) but were absent on lamellocytes and 

crystal cells.  The P1 antigen was immunoprecipitated and analyzed with MALDI-TOF 

mass spectrometry.  The P1 target was identified as a 90-100 kDa single-pass 

transmembrane protein with ten NIM repeats, which the authors named Nimrod-C1. 
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Interestingly, the P1 antibodies did not recognize any antigens on S2 cells, indicating that 

nimC1is not expressed in this cell line, perhaps explaining why this receptor was not 

identified in the whole genome RNAi screens conducted by the Ezekowitz group. NimC1 

localizes to the plasma membrane of larval hemoctyes. FACS analysis of the levels of P1 

antigen on the surface of nimC1 RNAi-silenced hemocytes led to decreased NimC1 

protein on the surface of the cells. RNAi-mediated silencing of nimC1 in larval 

hemocytes decreased S. aureus uptake to one-third of the controls but had no effect on    

E. coli phagocytosis. However, overexpression of NimC1 in S2 cells stimulated uptake of 

S. aureus and E. coli by 2.5-fold and 2-fold respectively.  Thus, similar to Eater, NimC1 

is important for S. aureus phagocytosis in plasmatocytes, and may play a redundant role 

for E. coli phagocytosis. Interestingly, NimC1 overexpression did not change the amount 

bacteria that bound to S2 cells, but did lead to increased uptake.  Based on this result, it is 

unlikely that NimC1 directly bind to the microbe, but instead it may act a co-receptor, 

perhaps with Eater. Alternatively, NimC1 could be important for a later stage of the 

phagocytosis process, such as particle engulfment.  

 The importance of Eater and NimC1 for E. coli phagocytosis was recently 

assessed using an in vivo phagocytosis assay in eater or nimC1 RNAi flies (Horn et al., 

2014). QPCR analysis confirmed that hemocytes expressing the RNAi transgenes show 

reduced levels of nimC1 or eater mRNA. The researchers counted the number of bacteria 

in adult hemocytes by injecting fluorescently-labeled E. coli and imaging individual 

hemocytes in the dissected dorsal vessel. Downregulation of eater and nimC1 caused a 

modest but significant reduction in E. coli phagocytosis in adult hemocytes. In contrast, 

the Hultmark group’s larval phagocytosis assay showed that E. coli phagocytosis was not 
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significantly affected when nimC1 is downregulated via RNAi. One possible explanation 

for this discrepancy may be that NimC1 plays a more important role in E. coli 

phagocytosis at latter stages in development. The discrepancy between the function of 

NimC1 in larval hemocytes versus adult hemocytes could also be attributed to the nature 

of the experiments themselves.  The larval phagocytosis assay was carried out ex vivo 

while the adult phagocytosis assay was done in vivo. It is possible that to facilitate 

phagocytosis of E. coli, NimC1 may need to interact with host factors that are only 

present in vivo.  To more fully understand the function of NimC1, additional biochemical 

and genetic studies will be useful.  In particular, it will be helpful to repeat the larval E. 

coli phagocytosis assay of nimC1 RNAi by directly injecting the bacteria into the larvae 

and then quantifying the numbers of bacteria contained within the hemocytes.  These 

conditions are more physiologically relevant than the ex vivo phagocytosis assay utilized 

Kurucz and colleagues and may help to reveal the function of NimC1 in the animal.  

 The final Drosophila Nimrod family member characterized as a phagocytic 

receptor is Draper, which is expressed in two types of phagocytes, glial cells and 

hemocytes (Freeman et al., 2003).  During Drosophila neuronal development, selective 

pruning of axons is carried about by glia, cells that phagocytose apoptotic axons 

(Awasaki and Ito, 2004). Draper is the homolog of ced-1, a gene that encodes a receptor 

for apoptotic cells in C. elegans (Zhou et al., 2001).  Nakanishi and group showed that 

Draper is an important receptor involved in the phagocytosis of apoptotic cells by glia 

and hemocytes (Manaka et al., 2004).  The C. elegans homolog of Draper, CED-1, acts 

upstream CED-6, an adaptor protein that serves as a molecular scaffold for signaling 

complexes at the phagocytic cup (Zhou et al., 2001). CED-1 contains an intracellular 
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NPxY motif that is a binding site for proteins containing a phosphotyrosine binding 

(PTB) domain, an YxxL motif, a domain that is a potential binding site for proteins 

containing Src-homology-2 domains (SH2). In C. elegans, the phosphotyrosine binding 

domain (PTB) adaptor protein, CED-6 binds to the CED-1 NPxY motif to promote 

phagocytosis of cell corpses (Liu and Hengartner, 1998; Su et al., 2002) Drosophila Ced-

6 is an adaptor protein with an SH2 domain and a Pleckstrin-homology (PH) domain. The 

SH2 domain of Ced-6 binds to a phosphorylated tyrosine in the NPxY motif in the 

intracellular region of activated Draper, and the PDZ domain recruits downstream factors 

important for apoptotic cell clearance and phagocytosis of bacteria (Awasaki et al., 2006; 

Fujita, 2012; MacDonald et al., 2006; Ziegenfuss et al., 2008).   

 Franc and group confirmed the role for Draper and Ced-6 in phagocytosis of 

apoptotic cells and further examined the possibility of a role for Draper in phagocytosis 

of bacteria (Cuttell et al., 2008). The heat-killed bioparticles used by the authors were 

conjugated to the pH-sensitive dye pHrodo, which fluoresces at low pH (~4.5). After 

being engulfed by the cell, pHrodo-labeled particles will only fluoresce in the acidic 

environment of the phagolysosome. draper RNAi treated S2 cells showed significantly 

less fluorescence of pHrodo-labeled bacteria than untreated cells, with only 35% and 

40% of the cells showing fluorescence of pHrodo-labeled E. coli and S. aureus, 

respectively. Additionally, draper and ced-6 mutant flies injected with pHrodo-S. aureus 

and E. coli showed reduced fluorescence in their dorsal vessels. The lack of fluorescence 

could be indicative of a decreased uptake and/or impaired maturation of the phagosome.  

 The apoptotic cell ligand for Draper has been the subject of considerable research 

by the Nakanishi group.  The initial paper that characterized a role for Draper in 
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apoptosis determined that the receptor does not recognize the common “eat me” signal, 

phosphatidylserine (PS) (Manaka et al., 2004).  The same group later determined that the 

endosomal protein Pretaporter is exposed on the surface of apoptotic cells and serves as a 

ligand for Draper.  Additionally, the group extended their genetic studies and found that 

Rho-GTPases Rac1 and Rac2 are involved in the Draper/Ced-6 pathway to engulf 

apoptotic cells. Finally, they re-examined the possibility Draper binds PS using 

biochemical and genetic techniques. They first tested binding of Draper to PS using 

exogenously expressed Draper proteins and an ELISA-like activity assay and found that 

full length Draper efficiently binds to PS while truncated Draper proteins did not (Tung et 

al., 2013).  Finally, they performed an in vivo assay in embryos comparing apoptotic cell 

phagocytosis in draper null flies expressing either wildtype Draper or a truncated Draper 

protein, Draper-ΔEN (A construct that generated a Draper protein missing the N-terminal 

EMI and NIM domains). Expression of wildtype Draper protein led to increased uptake 

of apoptotic cells.  In contrast Draper-ΔEN did not lead to an increase in phagocytosis, 

and shared a phenotype similar to control draper null flies. Thus, Draper was unable to 

function as a phagocytic receptor when the region containing the EMI and NIM domains 

was deleted, indicating that N-terminal domain region of the protein is critical to Draper’s 

role as a receptor for apoptotic cells. 

 The S. aureus ligand for Draper was determined in a well-designed genetic study 

by Shiratsuchi and group (Hashimoto et al., 2009).  The group utilized S. aureus mutant 

strains with defects in the structure of the cell wall to screen for bacterial ligands whose 

loss impaired the recognition and uptake of the bacteria by larval hemocytes. About half 

of the tested strains were 30-60% less efficiently phagocytosed, and many of the genes 



	 24	

mutated in these strains were involved in the synthesis of teichoic acid. One of the strains 

less efficiently phagocytosed had a mutation in the gene ltaS, which encodes an enzyme 

necessary for the synthesis of polyglycerolphosphate of lipoteichoic acid (LTA). This 

phenotype was recapitulated in adult flies: FITC-labeled ΔltaS bacteria were 

phagocytosed less efficiently than the parental strain. The ΔltaS bacteria were also more 

virulent than the parent strain; causing higher bacteria loads 15-18 hours after injection 

into adult flies. The survival and bacteria load phenotypes were reversed by expression of 

wildtype ltaS in the ΔltaS background. The humoral immune response of flies infected 

with ΔltaS S. aureus was unaltered, indicating that the increased pathogenicity associated 

with the ΔltaS mutation could be attributed, in part, to decreased bacterial clearance by 

phagocytic cells.   This finding highlights the vital role of phagocytes in the immune 

response to S. aureus.   

 Importantly, the authors determined that Draper was a receptor for LTA on the 

surface of Drosophila hemocytes. To identify the hemocyte receptor for LTA, the authors 

tested all characterized Nimrod-superfamily receptors, Eater, NimC1 and Draper.  

Hemocytes lacking Eater phagocytosed the parental S. aureus strain less than efficiently 

controls, a finding that was consistent with work by the Stuart group (Kocks et al., 2005).  

However, Eater null hemocytes also phagocytosed ΔltaS S. aureus less efficiently, 

indicating that Eater is not required for ltaS-dependent phagocytosis of S. aureus. 

Additionally, NimC1 is not required for ltaS-dependent phagocytosis of S. aureus, as 

phagocytosis assays using l(2)mbn cells, a cell line derived from larval hemocytes, 

showed similar results.  However, larval and adult hemocytes from draper null mutants 

equally phagocytosed parental and ΔltaS S. aureus indicating that Draper is responsible 
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for ltaS-dependent phagocytosis.  Draper null hemocytes also showed decreased 

phagocytosis of Bacillus subtilis, another Gram-positive bacteria that expresses LTA 

containing polyglycerolphosphate. Thus Draper is important for the recognition of this 

component of the cell wall for more than one Gram-positive bacterial species (Hashimoto 

et al., 2009).  Finally, Franc and group previously demonstrated that Draper is important 

for E. coli phagocytosis in adult flies (Cuttell et al., 2008). Later, the Shiratsuchi group 

confirmed this finding using larval hemocytes from draper null mutants (Hashimoto et 

al., 2009). Together this data demonstrates the Draper is a receptor for multiple ligands.  

It recognizes LTA on the surface of Gram-positive bacteria, phosphatidylserine and 

Pretaporter on the surface of apoptotic cells, and undetermined ligands on the surface of 

Gram-negative bacteria.  

 Draper is a multifunctional receptor with wide-ranging ligand specificity, an 

important feature for a receptor found on the surface of invertebrate phagocytes.  Ligand-

dependent activation of Draper may initiate specific downstream signaling events that 

instruct the cell as to what type of particle is to be phagocytosed. Draper-mediated 

phagocytosis of apoptotic corpses requires phosphorylation of the immune receptor 

tyrosine-based activation motif (ITAM) in the Draper intracellular domain. Shark, the 

Drosophila counterpart of Syk and Zap70, is Src-family kinase that mediates Draper 

ITAM phosphorylation in glial cells, promoting apoptotic cell phagocytosis (Fujita, 2012; 

Ziegenfuss et al., 2008).  The relative importance of Draper ITAM phosphorylation has 

not been examined with respect to phagocytosis of bacteria.  The adaptor protein Ced-6 

interacts with Draper to mediate uptake of bacteria and this interaction is most likely 

dependent on the recognition of a phosphorylated tyrosine in Draper’s intracellular 
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region.  It is unknown, however, if Shark, or some other Drosophila tyrosine kinase, 

phosphorylates the Draper ITAM in response to bacteria.  Thus activation of Draper and 

the assembly of downstream signaling cascades may be ligand-dependent, a possibility 

that might add yet another layer of complexity to the function of Draper. 

Peptidoglycan-recognition receptors important for phagocytosis:  

 The peptidoglycan recognition proteins (PGRPs) are important microbial 

receptors that were first identified in the hemolymph of silkworms, Bombyx mori 

(Yoshida et al., 1996). PGRPs were also found and in Trichoplusia ni, moth, larvae 

immune challenged with the Gram-positive bacteria Enterobacter cloacae (Kang et al., 

1998). The report by Yoshida et al. demonstrated that PGRPs bind to peptidoglycan 

(PGN), a complex polymer consisting of sugars and amino acids that is restricted to the 

cell wall of Gram-positive and Gram-negative bacteria (Yoshida et al., 1996). 

Peptidoglycan is made up of alternating N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) residues that are cross-linked to each other by short 

peptide bridges of three to five amino acids. PGN of most Gram-positive bacteria 

contains a lysine residue as the third amino acid in the peptide chain and is known as 

Lys-PGN.  Gram-positive bacilli and Gram-negative bacteria have meso-diaminopimelic 

acid as the third amino acid (DAP-type PGN). Another feature that is unique to DAP-

type PGN is the presence of a monomer, known as tracheal cytotoxin (TCT), on the 

terminal PGN unit.  Finally, Gram-positive and Gram-negative bacteria PGN differ in 

their localization within the cell wall. DAP-type PGN forms a single layer that is hidden 

in the periplasmic space beneath the outer membrane and lipopolysaccharide (LPS) layer 

of the cell wall of Gram-negative bacteria. In Gram-positive bacteria, PGN is highly 
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abundant and can account for half of the mass of the cell wall.  Gram-positive bacteria 

PGN form a multilayer structure that is exposed on the surface (Royet and Dziarski, 

2007).  

 The Steiner group performed an elegant study to characterize the structure and 

relatedness of insect and mammalian PGRPs.  They cloned PGRP from moth, mouse, and 

human samples and found that transcripts corresponding to PGRP were highly expressed 

in organs of the immune system.  Comparison of the predicted amino acid sequences of 

PGRPs revealed that murine and human PGRPs share 43% sequence identity with T. ni 

PGRP. Additionally, mammalian PGRPs function in a manner analogous to insect 

PGRPs, as demonstrated by an experiment where recombinant murine PGRP bound to 

PGN in a manner similar to T. ni PGRP. Further examination of the structure of T. ni 

PGRP revealed that the protein shared 28% identity and 50% similarity with 

bacteriophage T7 lysosome, a zinc-dependent N-acetylmuramoyl-L-alanine amidase 

(Kang et al., 1998). N-acetylmuramoyl-L-alanine amidases cleave peptidoglycan at the 

lactylaminde bond, removing the peptidic bridge from the sugar backbone. Interestingly, 

recombinant T. ni PGRP showed no amidase activity on E. coli cell walls.  This observed 

lack of amidase activity could be explained by the fact that T. ni PGRP lacks the zinc-

binding residues present in the phage enzyme and suggests the primary function of the T. 

ni PGRP was recognition and binding of PGN.  

 There are 13 PGRP genes in Drosophila and studies in the fruit fly model system 

have provided the most comprehensive data on PGRPs.  Drosophila PGRPs recognize 

microbial ligands upstream of the Toll and IMD signaling pathways, the major signaling 

cascades regulating the humoral innate immune response.  Briefly, the Toll signaling 
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pathway is activated after infection with fungi, Gram-positive bacteria or Drosophila X 

virus, while the IMD pathway is activated by Gram-negative bacteria.  Activation of the 

Toll and IMD pathways leads to the production of systemic antimicrobial peptides and 

other immune responsive effectors. (The Toll and IMD pathways will be discussed in 

greater detail later in this review).  

 Six Drosophila PGRP genes code for long (L) forms, four of which are 

transmembrane proteins localized at the plasma membrane. The remaining seven PGRP 

genes are short (S) forms that are predicted to be secreted (Werner et al., 2000). 

Drosophila PGRPs can also be divided based on their recognition and/or catalytic 

properties. Members of the non-catalytic group (PGRP-SA, SD, LA, LC, LD, LE and LF) 

serve as microbial sensors and PRRs.  These PGRPs lack the critical cysteine residue in 

the enzymatic pocket of the PGRP domain and are unable to degrade PGN (Mellroth et 

al., 2003).  The second group, catalytic PGRPs have either been experimentally verified 

(PGRP-SC1, LB, SB1) or predicted (SC2 and SB2) to possess amidase activity needed to 

degrade PGN (Bischoff et al., 2006; Mellroth et al., 2003; Mellroth and Steiner, 2006; 

Zaidman-Remy et al., 2006; Zaidman-Remy et al., 2011).  

 Finally, recognition of PGN plays a critical role in host defense in Drosophila.  

Evidence supporting the importance of recognition of PGN by phagocytes recently came 

from adult and larval phagocytosis studies using an S. aureus strain with temperature 

sensitive UDP-N-acetylenolpyruvylglucosamine reductase (murB).  This mutant S. 

aureus strain produces reduced levels of peptidoglycan at non-permissive temperatures. 

Drosophila hemocytes phagocytosed MurB bacteria 50% less efficiently than wild type S. 
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aureus, and this phenotype could be rescued by complementation of the mutant strain 

with the wild type gene (Shiratsuchi et al., 2012). 

 An in vivo study using RNAi to deplete PGRP-SC1/2 revealed that PGRP-SC1 

and SC2 modulate the innate immune response by scavenging PGN, effectively 

controlling inflammation and damage to host tissues (Bischoff et al., 2006).  RNAi of 

PGRP-SC1/2 in flies led to over-activation of the IMD pathway following infection with 

Gram-negative bacteria.  Interestingly, activation of the Toll pathway was unaffected in 

PGRP-SC1/2 RNAi flies after Gram-positive bacterial challenge, indicating that PGRP-

SC1 and SC2 act upstream of the IMD signaling pathway. Coincidently, this finding 

contradicted an earlier study by the Wu laboratory, which found that PGRP-SC1a is a 

receptor for the Gram-positive bacteria, S. aureus, and not for Gram-negative bacteria 

(Garver et al., 2006).  Using an adult, in vivo phagocytosis assay, the Wu group screened 

a collection of ethylmethane sulfonate (EMS) mutated flies (Koundakjian et al., 2004).  

One mutant, picky eater (picky), was defective for S. aureus phagocytosis (25% of tested 

flies took up the fluorescein-labeled particles).  However picky flies were able to 

efficiently phagocytose E. coli and Saccharomyces cerevisiae zymosan particles as well 

as live, GFP expressing Bacillus subtilis (a Gram-positive bacteria possessing DAP-type 

PGN). The picky mutant was also impaired for survival after S. aureus infection. The 

picky mutation mapped to the catalytic PGRP gene, PGRP-SC1a. Both the impaired 

recognition of S. aureus and survival of picky mutants were rescued by transgenic 

expression of PGRP-SC1a.  The catalytic activity of PGRP-SC1a was required for 

phagocytosis and clearance of S. aureus since a non-catalytic PGRP-SC1a (in which the 

critical cysteine residue is replaced by a serine) was not sufficient to rescue phagocytosis 
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or survival after S. aureus infection.  This data provides strong evidence for the role of 

PGRP-SC1a as a PRR in the fruit fly.  Discrepancies in the findings presented in the 

Bischoff et al. and the Garver et al. papers may have arisen from the way PGRP-SC1a 

expression was altered in each study.  In particular, the RNAi transgene utilized in the 

Bischoff et al. paper targeted not only PGRP-SC1a but also PGRP-SC1b and PGRP-SC2, 

while the picky mutation specifically affected the expression of PGRP-SC1a. Thus the 

strong over-activation of the IMD pathway that was observed by this group may have 

been attributed to additional loss-of-function of PGRP-SC1b and/or PGRP-SC2.  

 Another PGRP that acts as a PRR in Drosophila is PGRP-SA. A screen to 

identify mutations that impair the production of the Toll pathway responsive 

antimicrobial peptide, Drosomycin, following Gram-positive infection identified the 

mutation semmelweis (seml) (Michel et al., 2001b). The seml mutation is caused by an 

amino acid change in the PGRP domain, cysteine 80 to tyrosine 80, and this change 

effectively inactivated the PGRP-SA gene. After infection with Gram-positive bacteria, 

but not fungi, seml flies are unable to produce Drosomycin due to impaired Toll 

activation (Michel et al., 2001b). In addition to its role in activating the Toll pathway, 

PGRP-SA may also be important for phagocytosis of Gram-positive bacteria. 

Specifically, Garver et al. tested seml mutants using the adult in vivo phagocytosis assay 

and found that 94% of seml mutants efficiently phagocytosed E. coli, while only 25% 

were able to phagocytose S. aureus (Garver et al., 2006). In contrast, a separate study 

looking at in vivo phagocytosis of S. aureus in seml mutants failed to observe an effect on 

S. aureus phagocytosis in adult flies (Nehme et al., 2011).  This experiment however, 

only tested phagocytosis in 10 wild type and 12 seml flies. The discrepancy observed 
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between the two papers could be addressed by additional experiments. In particular, the 

experiment should be performed in triplicate in order to draw reliable conclusions about 

the phagocytosis phenotype of the seml mutant. For that reason the Wu laboratory 

conducted additional, independent, in vivo S. aureus phagocytosis experiments using 

seml mutants. They found that seml flies did indeed show defective S. aureus 

phagocytosis (unpublished A. Nazario-Toole) as previously reported. 

 This Ezekowitz group established that Drosophila S2 cells are a valid in vitro 

system for studying phagocytosis and using this system, they found that dSR-CI is a 

receptor for bacteria (Ramet et al., 2001). This group carried out another RNAi screen in 

S2 cells and identified PGRP-LC as important for phagocytosis of Gram-negative (E. 

coli) but not Gram-positive (S. aureus) bacteria (Ramet et al., 2002). PGRP-LC is a non-

catalytic, membrane-bound PGRP in Drosophila. Decreased expression of PGRP-LC led 

to a 30% reduction in   E. coli phagocytosis and also affected binding of the bacteria to 

the cell surface. This modest decrease in phagocytosis observed in S2 cells was likely due 

to the fact that other receptors, such as Eater or dSR-CI, participate in recognition and 

uptake of Gram-negative bacteria.  The group was also interested in determining if 

PGRP-LC functions during the humoral immune response and, using oligonucleotide 

microarrays, they measured the induction of genes after 6 hours of exposure to E. coli. 

RNAi of PGRP-LC in S2 cells dramatically reduced the expression of genes regulated by 

the IMD pathway, such as the antimicrobial peptide Attacin. To test the role of PGRP-LC 

in vivo, the group generated PGRP-LC mutants: Δ5 is a null allele and N18 is a 

hypomorphic allele.  Both Δ5 and N18 flies were more susceptible to E. coli and this 

susceptibility was accompanied by a reduced expression of IMD-regulated AMPs (Ramet 
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et al., 2002). A paper published simultaneously by the Anderson group identified an EMS 

mutant, ird7, that was defective in the induction of AMPs by the IMD pathway (Choe et 

al., 2002). The defects observed in ird7 mutants were similar to those observed in imd 

mutants. The ird7 mutation mapped to the genomic locus containing PGRP-LC and 

PGRP-LA. Sequence analysis of ird7 mutants showed that the mutation would disrupt the 

function of PGRP-LC. Yet another group, the Royet group, published a paper in the same 

month that identified a P transposon insertion mutant with compromised induction of 

IMD responsive genes after Gram-negative infection (Gottar et al., 2002).  This mutant 

line, PGRP-LC7454, had a transposable element inserted in the first exon of the PGRP-LC 

gene, and these flies were more susceptible to Gram-negative infections but were similar 

to wild type flies after infection with Gram-positive or fungal pathogens. Together the 

work of these groups clearly established that PGRP-LC is the major receptor upstream of 

the IMD pathway in vivo and in vitro.  

 Although the data supporting a role for PGRP-LC during the humoral response to 

Gram-negative bacteria was in agreement, the importance PGRP-LC as a phagocytic 

receptor was less clear. The Ezekowitz group showed that PGRP-LC led to a modest 

decrease in  E. coli phagocytosis in vitro, they did not explore the of role of PGRP-LC as 

a phagocytic receptor in vivo (Ramet et al., 2002). Two separate groups reported that 

blood cells from the ird7 mutant are able to efficiently phagocytose Gram-positive and 

Gram-negative bacteria (Choe et al., 2002; Garver et al., 2006).  This discrepancy may be 

attributed to the fact that the Ezekowitz group studied phagocytosis in S2 cells after all 

splice forms of PGRP-LC were silenced.  Three isoforms are produced from PGRP-LC, -

LCa, -LCx, and –LCy (Werner et al., 2000).  The three transcribed proteins all share the 
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same intracellular, signaling, domains but have unique extracellular domains.  PGRP-

LCx recognizes PGN purified from E. coli as well as the TCT fragment of PGN. In 

contrast PGRP-LCa specifically recognizes TCT (Kaneko et al., 2004). The ird7 mutation 

caused an amino acid change in the PGRP domain of PGRP-LCx while RNAi treatment 

would cause decreased expression of all isoforms. It is possible that the unaltered 

expression of PGRP-LCa in the ird7 mutant is sufficient to allow for PGRP-LC mediated 

uptake of E. coli in vivo. Additionally, other E. coli pattern recognition receptors may 

participate in phagocytosis in vivo.  

 Recent work by the Fauvarque group may help support a role for PGRP-LC in the 

phagocytosis of Gram-negative bacteria (Bergeret et al., 2008; Perrin et al., 2015). Based 

on evolutionary and functional conservation of nonaspanins (TM9 protein family), 

proteins characterized by the presence of a large extracellular N-terminal domain and 

nine transmembrane domains, the Fauvarque group initiated a genetic and phenotypic 

analysis to characterize the function of TM9 proteins in Drosophila. There are three TM9 

genes in Drosophila, and the group created a mutant with a deletion of one TM9 gene, 

TM9SF4 (Bergeret et al., 2008). The TM9SF4 mutant was more susceptible to pathogenic 

Gram-negative infection (Klebsiella pneumoniae and Enterobacter cloacae) but showed 

normal resistance to non-pathogenic Gram-negative bacteria (E. coli) and Gram-positive 

bacteria.  Additionally, the Toll and IMD responsive genes were not affected in TM9SF4 

mutants.  However, TM9SF4 mutant adults showed less efficient phagocytosis of GFP-

labeled K. pneumoniae, with mutant flies showing higher levels of bacteria in 

hemolymph bled from infected flies.  Using an ex vivo phagocytosis assay, the authors 

also found that TM9SF4 mutant larval hemocytes phagocytosed E. coli two times less 
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efficiently than wild type hemocytes. The group explored the possibility that PGRP-LC 

and TM9SF4 interact in vivo due to the fact that TM9SF4 mutants and PGRP-LC RNAi 

of S2 cells both exhibit specific defects in the phagocytosis of Gram-negative bacteria 

(Perrin et al., 2015). In S2 cells, GFP-tagged TM9SF4 and V5 epitope-tagged PGRP-LC 

co-immunoprecipiate, indicating that the proteins do indeed interact.  Furthermore, in the 

fat body, the functional equivalent of the mammalian liver, GFP-tagged TM9SF4 and 

FLAG-tagged PGRP-LC co-localized at the plasma membrane. Importantly, in S2 cells, 

TM9SF4 is required for PGRP-LC localization to the plasma membrane and the observed 

reduced phagocytosis of Gram-negative bacteria in TM9SF4 null flies may be due to a 

loss of PGRP-LC at the plasma membrane.   

 To fully characterize the importance of PGRP-LC during the cellular immune 

response to Gram-negative bacteria in Drosophila, it may be necessary to carry out the 

adult and larval in vivo phagocytosis assays in TM9SF4 mutants, PGRP-LC7454 

transposon insertion mutants, PGRP-LC null mutants, or in flies with PGRP-LC silenced 

specifically in hemocytes with RNAi. Such a comprehensive study would serve to clarify 

the relative contributions of PGRP-LC alternatively spliced isoforms during the cellular 

immune response in the fly.  Finally, a study in adult Anopheles gambiae mosquitos 

showed that down-regulation of PGRP-LC by injecting dsRNA specifically affected 

phagocytosis of E. coli, providing additional evidence in another insect that PGRP-LC is 

a phagocytic receptor for Gram-negative bacteria (Moita et al., 2005).  

Integrin αPS3/βν:  

 The Nakanishi group, the group that found Draper is a phagocytic receptor, 

characterized a role for the integrin heterodimer, αPS3 and βν, in the phagocytosis of S. 
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aureus and apoptotic cells (Nagaosa et al., 2011; Nonaka et al., 2013; Shiratsuchi et al., 

2012). Using a procedure described in Kurucz et al., this group raised monoclonal 

antibodies against Drosophila hemocytes by immunizing mice with larval hemocytes 

(Nagaosa et al., 2011). The group then added each antibody to culture dishes containing 

the larval phagocytic cell line, l(2)mbn, co-incubated with chemically killed S2 cells and 

looked for effects on phagocytosis of S2 cells by the l(2)mbn cell line.  Treatment with an 

antibody that recognized an extracellular Perlecan-like protein, Trol, led to decreased 

uptake of the dead S2 cells.  The extracellular region of the Trol protein has 3 RGD 

domains, a motif this is found in the ligand for some groups of integrins. The binding of 

integrin to RGD ligands induces the phosphorylation of the tyrosine kinase, Focal 

adhesion kinase (FAK) (Shattil et al., 2010).  Treatment of l(2)mbn cells treated with 

recombinant Trol protein resulted in a 1.5 fold increase in the levels of phosphorylated 

FAK, indicating that Trol binds to integrin on the surface of l(2)mbn cells.   

 Integrin functions as a heterodimer of two transmembrane subunits, α and β 

integrin.  In the Drosophila genome, 5 genes code for the α subunit and 2 genes code for 

the β subunit (Brown et al., 2000). The Nakanishi group initially focused on the 

examining a role for the two β subunits. To do so, they examined phagocytosis of dead 

S2 cells by Croquemort-positive hemocytes derived from mutant flies lacking either 

integrin β subunit gene.  Cells derived from Integrin bena nu (Itgbn) mutant embryos 

displayed apoptotic cell phagocytosis defects. Antibody staining confirmed that the βν 

protein is found on the surface of embryonic hemocytes. To determine the relationship of 

integrin βν with the known apoptotic cell phagocytic receptor, Draper, the authors 

analyzed phagocytosis of S2 dead cells by embryonic hemocytes derived from Intbn and 
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drpr single and double mutants.  Simultaneous loss of both receptors decreased 

phagocytosis of dead S2 cells to half that of single mutants, indicating that Draper and 

integrin βν are independent receptors for apoptotic cells (Nagaosa et al., 2011). 

 The group then expanded their studies to examine a role for integrin βv in the 

phagocytosis of S. aureus. Similar to what was observed with apoptotic cells, adult Intbn 

and drpr double mutant flies phagocytosed S. aureus less efficiently than single mutant 

flies, indicating that Draper and integrin βν also act independently as receptors during S. 

aureus phagocytosis.  Importantly, integrin βν-deficient adult and larval hemocytes 

phagocytose S. aureus less efficiently than control flies, but are able to phagocytose E. 

coli and the DAP-type PGN-containing Gram-positive bacteria B. subtilis with the same 

efficiency as wild type flies.  Adult flies lacking the integrin βν subunit were more 

susceptible to septic S. aureus infection.  Additionally, these flies carried a higher 

bacterial load indicating that integrin βν mediated phagocytosis of S. aureus limits 

bacterial growth within the fly. Thus, integrin βν is a receptor for S. aureus (and possible 

for other Gram-positive bacteria) found on the surface of hemocytes that plays a critical 

role in the host cellular immune response.   

 The Nakanishi group then sought to determine which component of the cell wall 

of   S. aureus is recognized by integrin βν.  To do so, they carried out binding assays 

utilizing an S. aureus strain carrying a mutated murB gene. murB encodes UDP-N-

acetylenolpyruvylglucosamine reductase, a key enzyme in bacterial peptidoglycan 

synthesis, and murB mutant S. aureus contain significantly less peptidoglycan polymers 

in their cell wall than their wild type counterparts. The murB mutant S. aureus strain is a 

less efficient target for phagocytosis by normal hemocytes than the parental S. aureus 
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strain.  To examine the binding of integrin βν to S. aureus strains, the authors incubated 

either murB mutant or parental S. aureus bacteria with a GST-fused recombinant integrin 

βν protein.  Cell lysates were examined with anti-GST antibodies using western blotting 

to determine which strain of bacteria more efficiently bound to integrin βν.  The wildtype 

S. aureus bound to integrin βv more efficiently than the murB mutant strain.  Finally, 

GST-fused integrin βν bound to culture dishes was able to adhere to a solid phase 

preparation of S. aureus peptidoglycan in a dose dependent manner, but this was not the 

case with GST alone. Together, these binding assays show that integrin βν binds to S. 

aureus peptidoglycan and this physical association may be critical for integrin βν’s role 

as a phagocytic receptor.  

 Drosophila integrin functions as a heterodimer of β and α subunits.  The identity 

of the α subunit that forms a complex with integrin βν was determined in a recent paper 

from the Nakanishi lab (Nonaka et al., 2013).  Nonaka and colleagues utilized RNA-

interference to silence the expression of each of the five Drosophila α subunit genes 

specifically in hemocytes.  They assessed ability of the α integrin-depleted larval 

hemocytes to phagocytose apoptotic cells and identified one subunit, αPS3, whose loss 

impaired phagocytosis. αPS3 integrin protein is coded by scab (scb).  scb deficiency flies 

(mutant flies with a deletion in the chromosome region that includes scb) and flies with a 

P-element insertion that disrupts the coding region of scb, both show a reduction in the 

level of apoptotic cell clearance.  Forced expression of wildtype αPS3 in the scb 

deficiency mutant was sufficient to restore the phagocytosis of apoptotic cells, indicating 

that αPS3 is the Drosophila α integrin subunit required for the recognition and uptake of 

dead cells in vivo.  To assess a functional interaction between βν and αPS3, the authors 
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generated flies with hemocyte-specific RNAi- mediated silencing of the genes coding for 

βv (Itgbn), αPS3 (scb), or both βv and αPS3.   In all three types of embryos, only about 

20% of the hemocytes were able to phagocytose apoptotic cells.  Because phagocytosis of 

apoptotic cells occurred almost equally in the three fly lines, βν and αPS3 function in the 

same pathway during phagocytosis in embryonic hemocytes. A similar approach was 

taken to assess a functional interaction between αPS3 and βν during phagocytosis of S. 

aureus.  Embryonic hemocytes from flies with Itgbn and scb silenced together, or alone, 

showed equal levels of S. aureus phagocytosis.  These results indicate that αPS3 and βν 

form a heterodimer that serves as a phagocytic receptor for S. aureus. Importantly, the 

physical association of αPS3 and βν was confirmed through immunoprecipitation and 

western blotting of l(2)mbn cell lysates.  In conjunction, the genetic and biochemical 

analyses carried out by the Nakanishi group clearly establish that the αPS3/βν integrin 

heterodimer is a phagocytic receptor for apoptotic cells and S. aureus in Drosophila. 

Down-syndrome adhesion molecule 1 (Dscam 1):  

 The pattern recognition receptors of innate immunity are effective in recognizing 

a wide array of pathogen associated molecular patterns.  However, innate immune 

responses are constrained to structures that are common to pathogens and conserved 

during evolution.  In contrast, receptors of the adaptive immune response are able to 

recognize an almost infinite diversity of antigens through somatic rearrangements of 

genes.  Members of the Immunoglobulin superfamily (IgSF) of proteins, such as 

antibodies and the antigen receptors found on the surface of B and T lymphocytes, are an 

essential part of mammalian adaptive immune responses.  
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 One IgSF member is Drosophila Down-syndrome adhesion molecule 1 (Dscam1). 

The Drosophila genome contains four Dscam-like genes and the most extensively 

characterized of these is Dscam1 (Armitage et al., 2012; Vogel et al., 2003). The Dscam1 

gene is arranged into clusters of variable exons (exons 4, 6, 9 and 17) that are flanked by 

constant exons.  Mutually exclusive alternative splicing of the variable exons generates a 

large protein isoform repertoire that has the potential to recognize and bind diverse 

ligands (Schmucker et al., 2000). Dscam1 is critical for nervous system development and 

is essential for axon guidance and the formation of neural connections in Drosophila 

(Wojtowicz et al., 2004; Zhan et al., 2004).  

 To explore a potential role for the hypervariable Dscam1 receptor in the immune 

response to bacteria, the Schmucker group conducted a functional analysis of Dscam1 

expression in immune competent tissues of Drosophila (Watson et al., 2005). In situ 

hybridization of larval tissue revealed that Dscam1 is expressed in neural tissue, 

hemocytes and fat body tissue. cDNAs derived from all three tissues were hybridized to 

microarrays containing 50-mer oligos for all alternatively spliced exons. Based on the 

number of alternatively spliced exons detected, an estimated 18,000 Dscam1 receptor 

isoforms are expressed in hemocytes and the fat body. The Dscam1 protein is expressed 

in immune tissues; antibodies against the common Dscam cytoplasmic region recognized 

Dscam in S2 cells, larval hemocytes, and larval fat bodies. Western blots using the anti-

Dscam1 antibody revealed the presence of a soluble Dscam1 protein in S2 cell-

conditioned medium and larval hemolymph. Secreted Dscam1 proteins could act as 

opsonins or receptors that recognize microbes present in the hemolymph of the fly.  
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 GFP-positive hemocytes were purified from wild type larvae and from Dscam 

mutant larvae (with a transallelic combination of a hypomorphic and an amorphic 

Dscam1) and the amount of fluorescently-labeled E. coli phagocytosed by these 

hemocytes was determined using flow cytometry. Fifty-five percent of mutant hemocytes 

phagocytosed the bacteria while 90% of wild type hemocytes took up the bacteria. 

Silencing Dscam1 expression using a hemocyte-specific promoter led to a 60% reduction 

in the number of hemocytes that phagocytosed E. coli. Additionally, treating S2 cells 

with anti-Dscam1 antibody (to block Dscam1 function by binding to the extracellular 

domain) also reduced the number of cells that could phagocytose E. coli. Both loss of 

Dscam1 expression and blocking Dscam1 function with antibodies caused significant 

phagocytosis defects, indicating that Dscam1 functions as a receptor for E. coli. To 

determine if Dscam1 directly binds to E. coli, the authors carried out binding assays that 

tested the binding of certain Dscam1 isoforms to live DH5α E. coli. Two Dscam1 

isoforms, one containing all of the extracellular domain and another that contained only 

the N-terminal Ig-like domain and the first Fibronectin III domain were able to bind to 

the bacteria.  However, another Dscam1 isoform containing the complete extracellular 

domain was unable to bind to E. coli. The distinct binding properties of tested Dscam1 

isoforms hinted at the possibility that Dscam1 isoforms bind distinct microbial ligands, 

thus increasing the number of possible ligands recognized this receptor. 

 Data from the mosquito Anopheles gambiae clearly showed that Dscam1 isoforms 

show specificity for different microbes (Dong et al., 2006).  The immune competent 

mosquito cell line, Sua5B, was challenged with Gram-positive bacteria, Gram-negative 

bacteria and the malaria parasite Plasmodium berghei. Quantitative RT-PCR analysis of 
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transcripts from challenged cells revealed rapid and robust changes in AgDscam exon 

usage.  Each microbe induced distinctive splice isoform repertoires that would result in 

the production of AgDscam molecules with diverse binding properties. Importantly, 

splice isoforms elicited after a specific immune challenge showed higher binding affinity 

to the specific microorganism used during the challenge.  This result suggests that 

alternative splicing of AgDscam plays a role in the mosquito’s immune receptor diversity 

and specificity. The occurrence of pathogen induced AgDscam alternative splicing was 

also observed in vivo. Bacterial challenge of adult mosquitos triggered pathogen-specific 

alternative splicing of AgDscam, but it was unclear how hemocyte or fat body tissue 

splice repertoires differed in response to infection. Depletion of AgDscam via injection of 

double stranded RNA (dsRNA) targeting a non-alternatively spliced exon resulted in a 

50% reduction in the levels of AgDscam protein in adults and AgDscam dsRNA-treated 

mosquitos were significantly more susceptible to S. aureus and E. coli infection than 

control flies treated with GFP dsRNA.  

 The Schmucker group found that Drosophila Dscam1 mediates phagocytosis of 

E. coli (Watson et al., 2005).  As a follow-up to this finding, the Dimopoulos group 

assessed bacterial phagocytosis by A. gambiae immune competent Sua5B cells treated 

with GFP dsRNA or AgDscam dsRNA (Dong et al., 2006).  Silencing AgDscam resulted 

in a 50% reduction in phagocytosis of both E. coli and S. aureus indicating that Dscam is 

an evolutionarily conserved phagocytic receptor.  Studies of the immune function of the 

Dscam1 homolog in the crayfish, Pacifastacus leniusculus, also showed that bacterial 

infection induced the alternative splicing of isoforms with specific affinity to the bacteria 

used to infect the animal. Furthermore, as with the fruit fly and the mosquito, crayfish 
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Dscam was shown to mediate bacteria clearance and phagocytosis (Watthanasurorot et 

al., 2011). Hence, Dscam1 is a phagocytic receptor for bacteria and this function is 

conserved in invertebrates. It will be interesting to determine if Dscam1 pathogen-

specific isoforms persist in the animal after an infection is cleared and if they serve as to 

prime the immune response to subsequent infections.  Finally, if cells that produce 

alternatively spliced forms of Dscam in response to infection are able to persist and 

respond quickly to secondary infections with the same pathogen, it may be an example of 

convergent evolution of the immune system.  

Opsonins in Drosophila phagocytosis:   

 Opsonization is the process by which soluble host molecules bind to and alter the 

surface of a pathogen or particle so that it can be ingested more efficiently by phagocytes. 

In mammals, antibody and complement factors act as opsonins.  Insect TEPs (thioester-

containing proteins) share sequence similarities with the vertebrate complement factors 

C3/C4/C4 and the α2-macroglobulin family of serine proteases.  In vertebrate immunity, 

activated complement proteins, such as iC3b, form covalent bonds with molecules on the 

surfaces of pathogens or altered self.  Complement attachment to the surface of target 

particles marks these cells for opsonization.  

 In Drosophila the TEP family is made up of six genes, TEPI – TEPVI, of which 

one, TEPV, does not seem to be expressed (Lagueux et al., 2000). All genes of this family 

possess a signal peptide, indicating that they are secreted proteins. TEPI – TEPIV are 

most closely related to complement factors, as they share a common CGEQ amino acid 

motif that is critical to the formation of thioester-bonds with target surfaces.  TEPVI is 

also known as macroglobulin complement related (Mcr), and the Mcr protein differs 
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from the other TEPs in that it lacks the critical cysteine residue in the thioester-binding 

site (Stroschein-Stevenson et al., 2006).  Phylogenetic analysis reveals that TEP proteins 

are found in nematodes, insects, mollusks, fish, birds, and mammals (Nonaka, 2000). A 

population genetic analysis of TEPI - TEPIV proteins in Drosophila showed that TEPI is 

under positive selection and is one of the most rapidly evolving genes in the Drosophila 

genome. Thus, it is possible that TEPI is evolving to adapt to new pathogens encountered 

in the wild. In addition to TEPI, the authors also found evidence of less intense positive 

selection acting on TEPII. In contrast, there was no evidence that TEPIII or TEPIV are 

evolving under positive selection.  

 In Drosophila larvae, TEPI, TEPII, TEPIII, TEPIV and Mcr are expressed in 

plasmatocytes and TEPI, TEPII, and TEPIV are expressed in the fat body, consistent with 

a role for theses genes in innate immunity. Several studies have shown that TEPI-IV and 

Mcr expression is upregulated after bacterial infection in larval hemocytes, larval fat 

body, and whole adult flies (Bou Aoun et al., 2011; Dionne et al., 2006; Irving et al., 

2005; Lagueux et al., 2000). Additionally, transcriptome and QPCR analysis of gene 

expression in fly larvae following parasitoid wasp infection showed that TEPI is 

massively upregulated and may be important for the encapsulation and melanization of 

wasp eggs (Salazar-Jaramillo et al., 2014; Wertheim et al., 2005)  

 A large-scale RNAi screen in S2 cells found that Mcr is required for phagocytosis 

of the fungus Candida albicans (Stroschein-Stevenson et al., 2006).  Interestingly, Mcr 

RNAi treatment of S2 cells did not affect phagocytosis of E. coli or S. aureus. Despite the 

lack of an active thioester motif, Mcr specifically binds to the surface of C. albicans. It 

does not, however, bind to another fungal pathogen, S. cerevisiae, indicating that Mcr 
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recognizes some feature unique to the C. albicans cell wall. The addition of conditioned 

media from untreated S2 cells to Mcr RNAi treated S2 cells is sufficient to rescue the C. 

albicans phagocytosis defect caused by the loss of Mcr. Hence, secreted Mcr is required 

to facilitate C. albicans phagocytosis in S2 cells. The same study also looked at role of 

TEPII and TEPIII in phagocytosis.  TEPII RNAi led to a modest (about 25%) decrease in 

phagocytosis of E. coli. TEPIII RNAi had a similar effect on S. aureus phagocytosis.   

 More recently, a study was carried out to investigate the function of TEPs in the 

defense against pathogens.  In brief, TEPI - TEPIV mutants were challenged with septic 

infections of Gram-positive bacteria (S. pyogenes, S. aureus, E. faecalis, and L. 

monocytogenes), Gram-negative bacteria (E. coli and E. cloacae), Mycobacterium 

marinum, or a fungal pathogen (B. bassiana) (Bou Aoun et al., 2011).  Surprisingly, the 

TEPI, TEPII, TEPIII, TEPIV deficient flies were not more susceptible to the bacterial or 

fungal infections than wild type flies. A similar phenotype was observed in TEPII/TEPIII 

null double mutants and TEPII/TEPIII/TEPIV mutants (obtained by crossing the 

TEPII/TEPIII null double to a P-element insertion mutant).  Finally, a modified in vivo 

adult phagocytosis conducted in triple TEPII-IV mutants showed that adult hemocytes of 

these flies were capable of phagocytosis E. coli pHrodo-labeled bioparticles. Based on 

these results, the importance of TEPs in adult flies immunity is uncertain (Bou Aoun et 

al., 2011). At this point, the relative contribution of TEPs and their role during 

opsonization of bacteria is still in question.  The immune function of TEPs may be 

difficult to decipher in vivo if the effects of loss-of-function mutations are masked by 

other opsonins in Drosophila. To fully ascertain the role TEPs play in the cellular 

immune response, it would be instructive to assess phagocytosis of multiple microbes in 
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TEP mutants or in animals expressing TEP RNAi in hemocytes, fat body, or other 

tissues. 

 The best evidence that TEPs act as opsonins comes from studies in the mosquito, 

Anopheles gambiae. A family of 19 TEP genes has been identified in the genome of              

A. gambiae (Christophides et al., 2002).  The most extensively studied TEP in mosquitos 

is A. gambiae TEP1 (aTEPI). Similar to what was observed in Drosophila, expression of 

aTEPI increased after septic infection with a mixture of E. coli and M. luteus (Levashina 

et al., 2001).  Importantly, western blotting analysis showed that aTEPI is detected at 

high levels in mosquito hemolymph and in conditioned media from a mosquito hemocyte 

cell line, 5.1.  In vivo, the secreted aTEPI originates from mosquito hemocytes as 

immunofluorescence studies with an anti-aTEPI antibody found that the protein is 

selectively expressed in hemocytes throughout the body cavity.  To assess the binding of 

aTEPI to bacteria, E. coli or S. aureus were incubated with 5.1 conditioned media, 

precipitated, and probed with the anti-aTEP1 antibody.  aTEPI bound to both bacteria, 

and this binding was dramatically reduced when the aTEPI was chemically inactivated 

indicating that the aTEPI binds to bacteria in a thioester-dependent manner. Phagocytosis 

of E. coli by mosquito 5.1 cells was dramatically enhanced after the addition of 

conditioned media. This effect was lost when the added media was either pre-treated to 

chemically inactive thioester-containing proteins or when it was obtained from 5.1 cells 

treated with dsRNA that inhibited the expression of aTEPI in the cells. Similar effects 

were also observed in experiments carried out using two additional Gram-negative 

bacteria (Serratia marcescens and Salmonella typhimurium), but not in experiments 

testing the phagocytosis of Gram-positive bacteria (Bacillus subtilis, M. luteus, and S. 
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aureus) Thus, secreted aTEPI opsonizes and enhances the phagocytosis of Gram-negative 

bacteria by mosquito 5.1 cells. However, the authors noted that 5.1 cells showed only low 

levels of phagocytosis of Gram-positive bacteria. It is possible that 5.1 cells may simply 

be less capable of phagocytosis of Gram-positive bacteria. 

 The role of aTEPI in mosquitos was confirmed in a small-scale in vivo dsRNA 

screen (Moita et al., 2005).  Down-regulation of aTEPI in adult mosquitos led to a 60% 

reduction in E. coli phagocytosis and a nearly 40% decrease in phagocytosis of S. aureus. 

Furthermore, aTEPIII down-regulation decreased E. coli phagocytosis by about 50%.  

aTEPIV dsRNA treatment had the most dramatic effect on phagocytosis, with a 60% 

reduction in phagocytosis of both pathogens. While in vitro studies from this group failed 

to detect the effect of silencing aTEPI on S. aureus phagocytosis, the studies described in 

Moita et al. found that silencing aTEPI in vivo decreased the uptake of the bacteria by 

adult hemocytes.  These findings underscore the importance of in vivo experiments 

testing the function of immune genes. 

 An opsonin-like role has also been described for Dscam1, and soluble Dscam1 

protein is present in S2 cell-conditioned medium and larval hemolymph. Thus, in 

addition to TEPs, Dscam1 may also function to opsonize microbes present in the 

hemolymph of the insect. However, the identity of receptors for specific isoforms of 

Dscam1 or TEPs on the surface of phagocytes has yet to be determined and could be an 

area for future study. 

 Additional work has found a role for several opsonin-like PRRs in mosquitos. The 

mosquito homolog of Drosophila Nimrod B2, AgNimB2, was shown to mediate 

phagocytosis of S. aureus in vivo (Midega et al., 2013).  AgNimB2 has 7 NIM repeats 
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and is predicted to be secreted. Interestingly, biochemical analysis revealed that 

AgNimB2 does not directly bind to the surface of S. aureus. The authors suggest that 

AgNimB2 binds to opsonins like aTEP1 on the surface of bacteria and mediates the 

phagocytosis of opsonized bacteria by then binding to membrane-bound receptors on 

phagocytes. 

 

C. Phagocytic Engulfment of Particles  

 Much of what is known about invertebrate innate immune signaling cascades has 

been acquired from studies of the humoral immune response. In comparison, relatively 

less is known about the signaling pathways that mediate phagocytosis in insect blood 

cells. Based on characterizations and observations of phagocytosis in mammalian 

systems, it is believed that ingestion of receptor-bound particles proceeds either through 

zipper-like movements of the plasma membrane around the particle, sinking of the 

particle into the cytoplasm, or through macropinocytosis (Figure 1-2) (Reviewed in 

(Swanson, 2008).  
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Figure 1-2: Models of plasma membrane movements and particle internalization 

during phagocytosis. 

A. Zipper Model of phagocytosis; plasma membrane extensions form tight, receptor-

mediated interactions with the particle. B. Sinking model of phagocytosis; the phagosome 

forms when the particle appears to sink into the cytoplasm. C. Triggered phagocytosis; 

bacteria are internalized by when they bind to receptors on the cell surface, triggering 

macropinosomes closure. Below each model is a transmission electron micrograph of           

S. aureus phagocytosis by a Drosophila larval hemocyte that matches the model of 

particle internalization depicted above. Figure adapted from (Swanson, 2008) and 

(Pearson et al., 2003) 
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 In mammals, Fcγ-receptor mediated phagocytosis occurs in a zippering fashion 

(Griffin et al., 1975; Griffin et al., 1976). After binding to antibody-opsonized particles, 

Fcγ receptors cluster together and this triggers the activation of Src-family tyrosine 

kinases, which in turn phosphorylate and activate the antibody-bound receptor. 

Phosphorylation of tyrosine residues in the receptor leads to the recruitment of additional 

cytoplasmic proteins (lipid kinases, phosphatases, and adaptor molecules) to form a 

signaling complex that ultimately results in the stimulation of actin polymerization near 

the plasma membrane to create protrusions that extend over the particle. These 

protrusions, known as lamellipodium, are sheet-like extensions of the plasma membrane 

that contain branched actin networks. Lamellipodium spread over the opsonized particle 

in a receptor-guided, zipper-like fashion to form a tight phagocytic cup that, once closed, 

engulfs the particle into a nascent organelle called a phagosome.  

 Phagocytosis by receptors for complement-opsonized particles is morphologically 

distinct from Fcγ-receptor mediated phagocytosis. The complement receptor, CR3, is an 

αM/β2 integrin heterodimer that binds to iC3b-opsonized particles.  Scanning electron 

microscopy of mammalian macrophages revealed that complement-opsonized particles 

appear to sink into phagosomes during C3R-mediated phagocytosis (Kaplan, 1977).   

 In contrast, engulfment of bacteria via macropinocytosis is not directly guided by 

close interactions of the membrane and target particle.  Instead, macropinosomes form 

spontaneously at the cell surface or in response to stimulation of growth-factor receptors.  

Membrane ruffles, sheet-like extensions of the plasma membrane that form via actin 

filament assembly, sometimes curve into cavernous, open cups at the cell surface.  Ruffle 

closure creates a large fluid-filled vesicle that is delivered to the endosomal pathway in 
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the cytoplasm.  Pathogens, such as Salmonella typhimurium, Legionella pneumophila, 

and Vaccinia virus, and apoptotic cells bind to receptors found on the cell surface within 

the open macropinosome cup; stimulating cup closure and particle uptake (Alpuche-

Aranda et al., 1994; Hoffmann et al., 2001; Mercer and Helenius, 2008; Watarai et al., 

2001). Phagocytosis via macropinosomes is also called triggered phagocytosis. 

 A seminal study by the Ezekowitz group performed an ultrastructural examination 

of phagocytosis in S2 cells, mbn-2 cells, and larval plasmatocytes (Figure 2) (Pearson et 

al., 2003). Phagocytosis of FITC-labeled S. aureus primarily occurs through the zippering 

of the plasma membrane around the bacteria.  Interestingly, the study also found evidence 

that S. aureus phagocytosis also occurs via macropinocytic-type engulfment as well as by 

sinking into the cell, like macrophage complement-mediated phagocytosis. The 

observation of zippering-type phagocytosis indicates that receptor clustering and 

activation may be of primary importance for S. aureus phagocytosis in the fruit fly.  

Additionally, the observation of macropinocyte-like phagocytosis, indicates that receptors 

within macropinosomes are capable of triggering phagocytosis without the formation of a 

tight phagocytic cup. Opsonized S. aureus particles may sink into the cell in a manner 

akin to mammalian CR3-mediated phagocytosis. The study provided valuable insight into 

the dynamics of plasma membrane changes as well as the underlying cytoskeletal 

alterations that accompany phagocytosis in Drosophila. Overall, the morphology of 

phagocytosis in Drosophila hemocytes is reminiscent of mammalian phagocytes and this 

study was key to establishing Drosophila hemocytes as a model to study phagocytosis in 

vivo.  
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 Signaling from bound phagocytic receptors triggers coordinated rearrangements 

of the actin cytoskeleton.  Small GTPases of the Ras superfamily, such as the Rho-

GTPases Cdc42, Rac1, and Rac2 are recruited to the plasma membrane, where they 

associate with membrane phospholipids and proteins. Rho-GTPases function as 

molecular switches that alternate between active (GTP-bound) and inactive (GDP-bound) 

states. They are activated by guanine nucleotide exchange factors (GEFs), which 

facilitate the binding of GTP, and are inhibited by the hydrolysis of GTP, which is carried 

out by guanine nucleotide dissociation inhibitors (GDIs). The Drosophila gene Ziziman-

related (Zir) is a Rho-GEF that interacts genetically with Cdc42 and Rac2 to mediate 

larval hemocyte phagocytosis of E. coli and S. aureus (Sampson et al., 2012). The 

primary function of Rho-GTPases during phagocytosis is the regulation and activation of 

cytoskeletal remodeling enzymes. Rac1 activates WAVE, a member of the Wiskott-

Aldrich syndrome protein (WASP) family. WAVE then activates the Arp 2/3 complex, 

which stimulates actin nucleation, the initial step required for the formation of new actin 

filament structures.  Cdc42 activates WAS(p), the founding member of the WASP 

family, which in turn activates the Arp 2/3 complex. Cofilin and cofilin-like proteins 

control the debranching and disassembly of actin filaments to facilitate recycling of actin 

monomers and structural changes necessary for cytoskeletal reorganization (Chan et al., 

2009). Cdc42, Rac1, Rac2 and the Arp 2/3 complex were all identified in RNAi screens 

and genetic studies to find factors that mediate phagocytosis in S2 cells (Agaisse et al., 

2005; Philips et al., 2005; Stroschein-Stevenson et al., 2006; Stuart et al., 2005).  

 To understand how Rho-GTPases control phagocytosis of bacterial pathogens in 

Drosophila hemocytes, the Faurvaque group generated transgenic Drosophila mutants 



	 52	

that expressed the Gram-negative pathogen Pseudomonas aeruginosa exotoxin, ExoS, 

specifically in hemocytes (Avet-Rochex et al., 2005).  ExoS contains an N-terminal 

GTPase activating (GAP) domain that inactivates Rho-GTPases and Rho-dependent 

signaling. Expressing ExoSGAP in blood cells led to significantly reduced E. coli uptake 

by both adult and larval hemocytes.  It is interesting to note, that the ExoS may inhibit the 

fly cellular response, preventing phagocytosis of P. aeruginosa by hemocytes. The same 

group also explored potential immune contribution of individual Rho-GTPases, Rho1, 

Rac1, Rac2, and Cdc42 by testing mutant fly resistance to P. aeruginosa (Avet-Rochex et 

al., 2007). The only mutants to show significant susceptibility to P. aeruginosa were the 

Rac2-deficient flies. Furthermore Rac-2 mutants were also more susceptible to infection 

with other Gram-negative (such as E. coli) and Gram-positive (E. faecilis and S. aureus) 

bacterial pathogens. Larval hemocytes from Rac2 mutants showed a 35% decrease in 

uptake of E. coli and a 55% decrease in S. aureus phagocytosis.   

 Studies of Draper-mediated phagocytosis have provided the most complete 

picture of intracellular signaling cascades that take place during Drosophila 

phagocytosis. During  S. aureus phagocytosis, Draper signals through Rho-GTPases, 

Rac1 or Rac2 (Hashimoto et al., 2009).  Larval hemocytes from flies with loss of one 

copy of draper, Rac1, or Rac 2 show no phagocytosis defects.  However, hemocytes from 

flies with simultaneous heterozygous loss of draper, Rac1, or Rac 2 were dramatically 

impaired for bacterial phagocytosis.  Thus, after Draper binds S. aureus ligands, Rac 1 

and/or Rac2 are required for the engulfment of the microbe. The cytoplasmic signaling 

complex that controls Draper-mediated phagocytosis of apoptotic cells has been 

examined using classical genetic approaches (Ziegenfuss et al., 2008). In Drosophila glial 



	 53	

cells, Draper physically interacts with Shark, an SH2 domain containing non-receptor 

tyrosine kinase that is similar to mammalian Zap-70, and this interaction is dependent 

upon the Src-family kinase member, Src42A.  Based on genetic and biochemical studies, 

Ziegenfuss and colleagues proposed the following model of signaling during Draper-

mediated apoptotic cell clearance: Draper binds to target ligands on cell corpses, Src42A 

phosphorylates tyrosines located in the intracellular ITAM motif of Draper, SH2 domain 

of Shark associates with the Draper’s phosphorylated ITAM domain, Shark activates 

further downstream signaling events required for apoptotic cell uptake. To determine if 

Shark plays a role in Draper-mediated uptake of S. aureus, Hashimoto and colleagues 

generated a fly line with one copy of mutated alleles for both genes (Hashimoto et al., 

2009).  Larval hemocytes from single- and double-heterozygous flies showed no 

difference in the uptake of S. aureus, indicating that Shark does not act downstream of 

Draper to mediate uptake of S. aureus.   

 A number of genetic screens and RNAi screens have been conducted to identify 

proteins that regulate actin cytoskeleton reorganization during phagocytosis in the fruit 

fly. A forward genetic screen identified the Drosophila homolog of WAVE, D-SCAR, as 

an important regulator of E. coli and S. aureus phagocytosis in Drosophila larval 

hemoctyes (Pearson et al., 2003). The study also analyzed the role of the Drosophila 

WAS(p) (D-WAS(p)) homolog. D-WAS(p) RNAi specifically led to decreased S. aureus 

uptake by S2 cells. The differences observed after loss of D-SCAR or D-WAS(p) may 

indicate that these proteins function in independent pathways, perhaps downstream of  

receptors with distinct ligand specificity.  An increase in E. coli and S. aureus 

phagocytosis was observed in larval hemocytes obtained from a line with a P-element 
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insertion in chickadee, the gene encoding the Drosophila homolog of profilin.  Profilin 

sequesters free actin, and loss of profilin in chic mutants may lead to increased 

phagocytosis due to the higher availability of free actin and increased spontaneous actin 

nucleation.  Loss of profilin also leads to decreased phagocytosis of M. fortuitum, 

demonstrating that profilin is a host factor required for general phagocytosis in 

Drosophila (Philips et al., 2005).  

D. Phagosome Maturation 

 The process of particle internalization culminates in the formation of a membrane 

bound vesicle - the phagosome -which contains the microbe or cell corpse.  Phagosome 

formation is followed by rapid series of biochemical and cellular changes that convert the 

nascent phagosome into a potent microbicidal and acidic organelle (Desjardins et al., 

1994). Almost immediately, newly formed phagosomes undergo a series of highly 

ordered fusion and fission events with components of the endosomal pathway. This 

process, termed phagosome maturation, produces a highly acidic and hydrolytic 

phagolysosome designed to destroy the cargo (Kinchen and Ravichandran, 2008). The 

maturation of phagosomes involves interactions with other cellular organelles, including 

early endosomes, recycling endosomes, late endosomes and lysosomes (Vieira et al., 

2002). The stages of phagosomal maturation in mammalian cells are illustrated in     

Figure 1-3. A general overview of the topic is discussed below, with specific details 

regarding Drosophila homologs of the following components: Rab GTPases, 

phosphatidylinositol 3-kinase, Vacuolar H+-ATPase, the Endosomal sorting complex 

required for transport (ESCRT) complex, the Vacuolar protein sorting-C complex. 
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Figure 1-3: The stages of phagosome maturation. 

The phagosome travels along microtubules towards the center of the cell.  Along the way, 

it interacts with compartments of the endocytic pathway, undergoing a progressive 

acidification that culminates in the formation of a phagolysosome.  Figure taken from 

(Flannagan et al., 2009). 

  

 Phagosomes formed by receptor-mediated particle internalization quickly fuse 

with early endosomal vesicles (Mayorga et al., 1991).  The small Rab GTPase, Rab5, 

coordinates early endosomal targeting, tethering and fusion with the nascent phagosome 

(Bucci et al., 1992). Rab5 is recruited to newly formed phagosomes by the GTPase 

Dynamin (Kinchen et al., 2008). Overexpression of Rab5 in Drosophila hemoctyes leads 

to an accumulation of E. coli-containing vesicles in larval hemocytes (Horn et al., 2014). 

Thus, altered levels of Rab5 inhibit the process of phagosome maturation in Drosophila 

hemocytes. Rab5 recruits multiple effectors to the early endosomal/phagosomal 

membrane, including the early endosome antigen 1 (EEA1), SNARE proteins (which are 
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required for membrane fusion), and Vps34 and its regulatory subunit, Vps15 (also known 

as p150).  

 Vps15 is a serine-threonine kinase that recruits Vps34 to the early phagosome.   

Vps34 is a class III phosphatidylinositol-3 kinase (PI3-kinase) that generates 

phosphatidylinositol-3-phosphate (PI(3)P) on the early phagosomal membrane (Vieira et 

al., 2001).  PI(3)P interacts with proteins containing FYVE (for conserved in Fab1, 

YOTB, Vac1, and EEA1) domains. The Drosophila homolog of mammalian Vps34, 

Phosphotidylinositol 3 kinase 59F (Pi3K59F) functions during the cellular immune 

response to bacterial and fungal pathogens (Qin et al., 2011; Qin et al., 2008).  Similar to 

its counterpart in mammals, Drosophila homolog of EEA1, Rabenosyn-5, is a FYVE 

domain-containing protein that binds to PI(3)P and Rab5 on the surface of the 

phagosome, where it is required for fusion of endocytic vesicles and early endosomes 

(Morrison et al., 2008; Simonsen et al., 1998).  The generation of PI(3)P is essential for 

the progression of phagosome maturation.  In mouse fibroblasts, PI(3)P stabilizes the 

interaction of EEA1 on the early phagosome. Loss of PI3-kinase activity leads to 

decreased association of EEA1 and blockage of phagosome maturation (Vieira et al., 

2001) 

 In eukaryotes, Vps15 is known for its role in endocytosis and phagocytosis as part 

of the PI3-kinase complex with Vps34. In an effort to identify genes that regulate 

activation of the Imd pathway after E. coli infection, the Wu group conducted a forward 

genetic screen of EMS mutant flies. This screen identified a Drosophila Vps15 mutant, 

ird, as important for IMD pathway activation (Wu et al., 2007).  ird1 mutants were 

shown to be more susceptible to infection with E. coli or M. luteus, and had impaired 
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antimicrobial peptide synthesis in the mutant which may account for this effect. It is also 

possible that ird1 mutants are defective for phagosome maturation of bacteria, but this 

has not been experimentally verified. The Drosophila Vps34/Vps15 complex was 

recently implicated in vesicle trafficking during stress-induced autophagy, a process that, 

like phagosome maturation, requires coordinated vesicle-trafficking pathways (Anding 

and Baehrecke, 2015).  Analysis of phagosome maturation phenotypes of ird1 mutants 

may provide evidence of a role for Vps15 in the cellular immune response in the fruit fly.  

 The vacuolar H+-ATPase (V-ATPase) complex is found on the phagosome 

membrane at very early stages and is required to acidify the phagosomal lumen during 

phagosome maturation (Beyenbach and Wieczorek, 2006). In Drosophila, the V-ATPase 

complex is made up of multiple subunits.  Several V-ATPase subunits have been 

implicated in the immune response in the fruit fly. The Perrimon group identified three 

components of the V-ATPase in a genome-wide RNAi screen looking for genes that 

altered the expression of GFP from the map24 promoter of M. fortuitum (Philips et al., 

2005). The map24 promoter is responsive at low pH, silencing of V-ATPase components 

increases the pH of the lumen of the phagosome, thereby decreasing GFP expression 

under the map24 promoter. Additionally, eight V-ATPase subunits were identified in a 

genome-wide S2 cell RNAi screen for genes that are important for the pathogenesis of 

the facultative intracellular Gram-positive bacteria, Listeria monocytogenes (Cheng et al., 

2005). RNAi of individual V-ATPase subunits led to fewer infected cells at 7.5 hours 

post infection.  Listeria exits the phagosome to replicate in the host cell cytosol using the 

pore forming toxin listeriolysin O (LLO) and phospholipase C.  LLO functions at low pH 

(~5.5) and loss of the V-ATPase subunits effectively halted the acidification of the 
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phagosome, impairing the function of LLO and the vacuolar escape mechanism of the 

bacteria.  It has also been proposed that the V-ATPase complex promotes fusion between 

Zebrafish phagosomes and lysosomes but a similar role has yet to be uncovered in 

Drosophila hemocytes (Peri and Nusslein-Volhard, 2008). 

 During the transition from the early to the late phagosome stage, multivesicular 

bodies (MVB) begin to appear within the phagosome. MVBs are luminal vesicles that 

arise from inward budding and scission of portions of the limiting membrane of 

endosomes and phagosomes. In the endosomal pathway, transmembrane proteins that are 

destined for degradation are ubiquitinated and then sorted into MVBs (Lee et al., 2005).  

The ubiquitin tags are recognized by the ESCRT complex, which then sorts the tagged 

proteins into MVBs. Late phagosomes and endosomes also contain lysobisphosphatidic 

acid (LBPA)(Kobayashi et al., 1999). LBPA is a unique lipid found in MVBs . 

 Work from the Perrimon group illustrated a role for the ESCRT complex in the 

restricting the intracellular growth of Mycobacterium species in the fruit fly. Double-

stranded RNAs targeting ESCRT factors Vps28, CG8055, Tsg101 and Vps4 led to a 

decreased induction of GFP expression under the pH responsive map24 promoter in M. 

fortuitum. Unlike peste RNAi, which led to decreased M. fortuitum uptake, dsRNA 

targeting ESCRT impaired the formation of MVBs and effectively halted the phagosome 

maturation process at a stage that was not permissive for the induction of map24 (Philips 

et al., 2008; Philips et al., 2005). The group then examined how silencing of ESCRT 

factors affects bacterial growth of the non-pathogenic M. smegmatis (Philips et al., 2008). 

S2 cells normally restrict the growth of M. smegmatis, but silencing of the ESCRT factors 

led to an increase in bacterial growth. These results indicate that the knockdown created a 
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permissive phagosome environment allowing M. smegmatis to survive, grow, and 

disseminate to other cells. ESCRT mediated sorting of ubiquitinated proteins is nearly 

absent when S2 cells are treated with dsRNA targeting ESCRT components Tsg101, 

Vps28, CG8055, or Vps4, as is evidenced by an accumulation of ubiquitin in the vesicular 

compartments in treated cells.  In ESCRT depleted S2 cells, M. smegmatis colocalized 

with vesicles containing access ubiquitin, revealing that the ESCRT complex normally 

functions within phagosomes that contain bacteria. The ESCRT machinery works in an 

analogous manner in mammalian cells.  RNAi depletion of Tg101 and Vps28 in the 

mammalian macrophage cell line, RAW267.7, led to significantly higher M. smegmatis 

growth and increased ubiquitin in bacteria containing phagosomes.  

 Four components of the ESCRT complex were identified in a genome-wide S2 

cell RNAi screen looking for genes that are important for Listeria pathogenesis (Cheng et 

al., 2005). As previously stated, the pore forming toxin listeriolysin O (LLO) and 

phospholipase C are required for Listeria to escape the phagosome.  To identify host 

genes that bypass the need for LLO in vacuolar escape, RNAi-treated S2 cells were 

infected with Listeria mutants lacking LLO (LLO-minus). LLO-minus mutant Listeria 

cannot normally escape from the phagosome. RNAi of ESCRT components Tgs101, 

SNF7, Vps4, and Bro1 allowed LLO-minus bacteria to escape from the phagosome. 

However Listeria mutants lacking both LLO and PLC were not able to escape the 

phagosome of ESCRT-depleted cells.  In wild type Listeria, LLO-mediated escape occurs 

during the MVBs/late endosome stage, when the pH of the phagosomal lumen is slightly 

acidic (~5.5).  Absence of ESCRT components prevents the formation of MVBs, and 

may allow LLO-minus mutants to escape from early phagosome using PLC alone. 
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 After the formation of MVBs the phagosome transitions to the late stage, which is 

characterized by a more acidic lumenal pH.  The late phagosome is characterized by the 

presence of several molecules including lysosomal-associated membrane proteins 

(LAMPs) and hydrolases. In mammalian cells, LAMP proteins are required for the last 

stage of phagosome maturation, the fusion of the phagosome with the lysosome (Huynh 

et al., 2007).  A recent study in Drosophila to identify host factors that are required for 

phagocytosis and intracellular maintenance of the protozoan parasite Leishmania 

donovani found that L. donavani amastigotes colocalize with vesicles that are positive for 

Drosophila Lamp1 (DmLamp1 formerly known as CG3305) within S2 cells (Peltan et 

al., 2012). As proof of concept that L. donovani can infect S2 cells, the authors carried 

out immunofluorescence studies of infected S2 cells expressing a DmLamp1-GFP fusion 

protein.  Late-stage L. donovani-containing phagosomes are positive for DmLamp1 

indicating that vesicles containing the protozoan are trafficked undergo phagosome 

maturation within S2 cells. The relative importance of DmLamp1during the cellular 

immune response to bacterial pathogens should be assessed in DmLamp1 loss-of-function 

mutant flies to more fully characterize for the importance of Lamp1 during the process of 

phagocytosis and phagosome maturation in vivo.  

 In addition to the acquisition of LAMPs, additional V-ATPases are acquired by 

the late phagosomes. Furthermore, the vesicles acquire the small Rab-GTPase Rab7, 

which is a characteristic marker of late phagosomes (Desjardins et al., 1994). Rab7 is key 

to membrane trafficking between phagosomes and late endosomes or lysosomes and it 

recruits effectors such as Rab-interacting lysosomal protein (RILP), which tethers the 

vesicle to the dynein-dynactin motor, facilitating the movement of the phagosome 
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towards the center of the cell (Harrison et al., 2003; Jordens et al., 2001). Vacuolar 

protein sorting-C (VPS-C) complexes are vital players that interact with SNAREs and 

Rabs during the phagosome maturation process. There are two distinct vacuolar protein 

sorting C complexes: CORVET (class C core vacuole/endosome tethering) and HOPS 

(homotypic fusion and vacuole protein sorting) (Reviewed in (Balderhaar and 

Ungermann, 2013; Solinger and Spang, 2013). The CORVET complex interacts with 

Rab5-GTP and promotes early endosome/phagosome fusion. The HOPS complex 

interacts with Rab7-GTP on late endosomes/MVBs to facilitate their fusion with 

lysosomes. Additionally, live cell imaging studies in a human cell line indicates that the 

HOPS complex exchanges Rab5 for Rab7 to facilitate the transition from early to late 

phagosomes (Rink et al., 2005). Much of the early work defining the composition of each 

complex was carried out in yeast. Both complexes are heterohexameric: they are 

composed of four shared class C subunits (Vps11, Vps16, Vps18, and Vps33) and two 

Rab-specific subunits. In Drosophila, both Vps33 and Vps16 have two homologs (car 

and Vps33B, Vps16A and Vps16B, respectively) (Li and Blissard, 2015; Pulipparacharuvil 

et al., 2005). Vps16A and Vps16B are predicted to associate with different HOPS 

complexes, and this association may dictate the function of the complex 

(Pulipparacharuvil et al., 2005).  Vps16A-mutant Drosophila larvae are unable to clear 

autophagosomes following starvation-induced autophagy, indicating that the Vps16A 

subunit of HOPS is essential for the fusion of autophagosomes with lysosomes (Takats et 

al., 2015). The other Drosophila Vps16 homolog, Vps16B, has been implicated in 

phagosome maturation (Akbar et al., 2011). Vps16 mutants, full of bacteria (fob), are 

highly susceptible to non-pathogenic E. coli and, survival of fob-null flies can be rescued 
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by specifically expressing wild type fob in hemocytes. fob adult and larval hemocytes are 

able to engulf E. coli but show defects in phagosome acidification. fob mutant hemocytes 

show no defects in the acquisition of early endosome markers such as Rab5 and Rbsn-5, 

but have significantly higher numbers of Rab-7-positive phagosomes, suggesting that 

phagosome maturation is stalled at this stage.  To test if fob mutant hemocytes have 

defective fusion phagosome/lysosome fusion, wild type and mutant hemocytes were 

treated with Alexa-488 labeled dextrans, which, when internalized by fluid-phase 

endocytosis, labels lysosomes. The hemocytes were then challenged with fluorescein-

labeled E. coli and co-localization of dextran and bacteria was examined using 

immunofluorescence. Approximately 30% of bacteria-positive phagosomes co-localized 

with dextran-labeled lysosomes in wild type hemocytes.  Fewer, only 9%, of bacteria-

containing phagosomes co-localize with lysosomes in fob mutant hemocytes. These 

results confirm that Vps16B mediates phagosome to lysosome fusion in Drosophila. 

 The final step in the maturation process is the formation of the phagolysosome 

(pH~4.5).  Phagolysosomes are highly effective microbicidal organelles that are equipped 

with host factors that impede microbial growth while simultaneously attacking and 

degrading the pathogen. Key cofactors of bacterial housekeeping enzymes (such as free 

iron or divalent metal ions (Fe2+, Zn2+, and Mn2+)) are removed from the phagosomal 

lumen to prevent bacterial growth.  Free iron is sequestered by lactoferrin, a glycoprotein 

found in the phagosome lumen while divalent metal ions are actively removed from the 

phagosome by NRAMP, an integral membrane protein that extrudes the ions from the 

phagosomal lumen. Reactive oxygen and nitrogen species attack bacterial DNA, proteins, 

and lipids to destroy the pathogen. Reactive oxygen species (ROS) are generated through 
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the action of the membrane bound NOX2 NADPH oxidase, which transfers electrons 

from cytosolic NADPH to molecular oxygen (O2
-) and releases the O2

- into the 

phagosomal lumen. Superoxide dismutase (SOD) catalyzes the dismutation of O2
- into 

H2O2, which in turn can be converted into additional toxic ROS species (hypochlorous 

acid and chloramines) that kill microoganisms. Reactive nitrogen species (RNS) are also 

important antimicrobial factors. The enzyme inducible nitric oxide synthase, iNOS, 

catalyzes the formation of nitric oxide on the cytoplasmic side of the phagosome. Nitric 

oxide diffuses across the bilayer into the phagosome, where it encounters ROS and 

converts to various RNS that are highly toxic to the microorganism.  Phagolysosomes are 

also equipped with an assortment of bactericidal elements: antimicrobial peptides (such 

as membrane permeablizing defensins), peptidases (such as cysteine protease, aspartate 

proteases, serine proteases), lipases and hydrolases.  Overall, the phagosome is a very 

dynamic structure that changes by acquiring different proteins during maturation, 

ultimately becoming a highly microbicidal and degradative organelle. Studies in cell lines 

and model organisms have identified proteins that participate in the maturation process as 

well as antimicrobial effectors that destroy the cargo within the organelle. Proteomic 

studies to elucidate the protein composition of the phagosome have provided insight into 

the structure and function of the organelle.  In particular, proteomic analyses of latex 

bead containing phagosomes in humans and S2 cells, have highlighted the complexity of 

the phagosome, generating large-scale interaction networks that have provided the basis 

for functional studies (Garin et al., 2001; Stuart et al., 2007). 
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The Phagosome Proteome 

 Using SDS gel electrophoresis followed by tandem mass spectrometry, the 

Ezekowitz group identified 617 proteins associated with latex-bead-containing S2 cell 

phagosomes (Stuart et al., 2007). Among the proteins identified in phagosome were 

components of the exocyst, a octameric protein complex involved in tethering vesicles to 

the plasma membrane prior to exocytosis. The exocyst is made up of eight components 

(Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84), six of which were identified 

in the S2 cell phagosome. Prior to this study, the exocyst was not known to play a role in 

phagocytosis. The authors examined how RNAi-mediated silencing of exocyst 

components affected phagocytosis of     E. coli and S. aureus. Silencing of Sec8, Sec10, 

and Sec18 decreased uptake of both microbes. Exo70 RNAi impaired the uptake of E. 

coli while Sec3 affected uptake of S. aureus. As part of the secretory pathway, Sec3 and 

Exo70 localize to target membranes and provide docking sites for other exocysts 

components. The authors hypothesized that depending on the microbes encountered and 

the receptors engaged, receptor-specific Rho-GTPases recruit either Exo70 or Sec3. 

Exo70 or Sec3 then provide docking site for the Sec8, Sec10, and Sec15 exocyst 

components, thus facilitating the delivery of endosomes to the phagocytic cup.  

 The Ezekowitz group also identified several Rab-GTPases within the S2 cell 

phagosome proteome. To understand how these Rab-GTPases function during the 

process of phagosome maturation, the Wu group conducted a phagosome maturation 

screen of adult flies expressing dominant negative forms of each of the Rabs identified in 

S2 cell phagosomes (Garg and Wu, 2014). They found that hemocytes expressing a 

dominant negative form of Rab14 showed significantly impaired S. aureus phagosome 
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maturation. Rab14 is found on early endosome containing Rab5 and late endosomes 

containing Rab7 and could work in conjunction with both Rab5 and Rab7 to modulate 

phagosome maturation. Importantly, Rab14-null mutant flies do not show defects in 

uptake of E. coli or S. aureus heat-killed bioparticles labeled with fluorescein.  However, 

the maturation of S. aureus or E. coli-containing phagosomes was impaired in Rab14-null 

mutants and this effect could be rescued by expressing wild type Rab14 isoforms 

specifically in hemocytes.    

 The authors also found that Rab14 mutant cells showed significantly less 

recruitment of Rab7 and the lysosomal marker Spinster onto S. aureus-containing 

phagosomes.  Interestingly, they also found that Rab14 mutants were not susceptible to E. 

coli infection but were extremely susceptible to S. aureus infection and this defect was 

associated with a higher bacterial load in S. aureus infected Rab14 mutant flies. Thus, 

Rab14 is important during the S. aureus phagosome maturation process in Drosophila. In 

the absence of Rab14, S. aureus phagosome maturation is not completely abolished, but 

instead shows delayed kinetics.  This defect could be attributed to impaired or delayed 

recruitment of Rab7 to phagosomes in Rab14 mutant cells.  This work demonstrates the 

importance of the functional characterization of phagosome components in relation to the 

immune response in vivo. 

 

 

 

 

 



	 66	

III. The Humoral Immune Response 

A. Humoral immune signaling cascades 

 Drosophila combats pathogens through both cellular and humoral immune 

responses. The humoral, or systemic, immune responses is well characterized in 

Drosophila. The hallmark of humoral immunity is the synthesis and secretion of 

antimicrobial peptides (AMPs), small peptides that exhibit a broad spectrum of 

antimicrobial activity against bacteria and other pathogens (Bulet et al., 1999; Izadpanah 

and Gallo, 2005).Two Nuclear Factor-κB (NF-κB) signaling pathways, the Toll and IMD 

pathways, regulate the induction of AMPs.  NF-κB/Rel proteins are a class of 

transcription factors that are related through the highly conserved N-terminal Rel 

homology domain (RHD). The RHD contains sequences that mediate DNA binding, 

dimerization, and nuclear localization. The Drosophila genome contains three genes that 

encode NF-κB factors: Dorsal, Dif (Dorsal-related immunity factor), and Relish. These 

NF-κB factors are the master regulators of the humoral immune response. Gram-positive 

bacteria, fungal pathogens, and Drosophila X virus activate the Toll pathway, which in 

turn activates Dif and Dorsal, resulting in the induction of target genes such as the AMP 

Drosomycin (Lemaitre et al., 1996; Michel et al., 2001a; Zambon et al., 2005) The IMD 

signaling pathway responds to DAP-type PGN from Gram-negative bacteria, leading to 

the activation of Relish, which induces the production of immune responsive genes such 

as the AMPs Diptericin, Attacin and Cecropin (Hedengren et al., 1999; Lemaitre et al., 

1995; Leulier et al., 2000).  
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The Toll Pathway 

 The Toll pathway was first described for its role regulating dorsal-ventral polarity 

during Drosophila embryonic development (Belvin and Anderson, 1996; Nusslein-

Volhard and Wieschaus, 1980). Subsequent studies found that the Toll pathway is a 

conserved component of the innate immune response in both insects and humans 

(Lemaitre et al., 1996; Medzhitov et al., 1997). The structure and function of mammalian 

TLRs has been extensively studie and is reviewed in (Izadpanah and Gallo, 2005) The 

Drosophila Toll signaling pathway is similar to the mammalian TLR/IL-1R signaling 

pathway. 

 The Toll pathway is initiated when Lys-type PGNs from the cell walls of Gram-

positive bacteria are sensed by PGRP-SA and PGRP-SD (Bischoff et al., 2004; Gottar et 

al., 2002; Michel et al., 2001b). Lys-type PGN is also recognized by a third secreted 

protein, Gram-negative binding protein (GNBP1) (Gobert et al., 2003; Pili-Floury et al., 

2004). Fungi also induce Toll signaling when the receptor GNBP3 recognizes β-(1, 3)-

glucan from the fungal cell wall (Gottar et al., 2006). Thus Lys-type PGN recognition by 

a complex of PGRP-SA/SD/GNBP1 and β-glucan recognition by GNBP3 activate the 

Toll signaling pathway.  Unlike its mammalian counterpart, the Toll receptor in 

Drosophila does not directly bind microbial ligands. Instead, once microbial ligands are 

recognized by PGRP-SA/SD/GNBP1 or GNBP3, a serine protease cascade is 

immediately activated that culminates in the activation of the Toll receptor ligand 

Spätzle. After PGN recognition by PGRP-SA/SD/GNBP1 the receptor complex is bound 

by the serine protease, Modular Serine Protease (ModSP) ((Buchon et al., 2009; Kim et 

al., 2008). ModSP initiates a protease cascade that activates the serine proteases Grass 
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and Spätzle processing enzyme (SPE) (El Chamy et al., 2008; Kambris et al., 2006). SPE 

directly cleaves the protein pro-Spätzle into activated Spätzle, the direct ligand for the 

Toll receptor (Jang et al., 2006; Schneider et al., 1994; Shia et al., 2009; Weber et al., 

2003).  Additionally, virulence factors released by some fungi, such as the PR1 protease 

of entomopathogenic fungi, trigger the Toll pathway by activating the serine protease 

Persephone (El Chamy et al., 2008; Gottar et al., 2006; Ligoxygakis et al., 2002; St Leger 

et al., 1992). Persephone activates the same SPE used by the PGRP/GNBP pathways.  

 Once Spätzle binds to the Toll receptor, the receptor homodimerizes and activates 

intracellular signaling (Hu et al., 2004; Mizuguchi et al., 1998; Weber et al., 2003). 

Activated Toll signals through its TIR domain to recruit the adaptor protein, MyD88, 

which then forms a heterotrimeric complex with the adaptor protein Tube and the kinase 

Pelle (Horng and Medzhitov, 2001; Sun et al., 2002; Tauszig-Delamasure et al., 2002). 

Once recruited to the complex, Pelle is activated and phosphorylates Cactus, an IκB-like 

protein that sequesters Dif and Dorsal in the cytoplasm (Sun et al., 2004). Cactus is 

subsequently degraded and Dif and Dorsal translocate into the nucleus, where they 

activate the transcription of AMP genes (Wu and Anderson, 1998). 

The IMD Pathway 

 The IMD pathway is homologous to the mammalian Tumor necrosis factor-α      

(TNF-α) receptor signaling pathway. The IMD signaling pathway is triggered by the 

detection of DAP-type PGN by PGRP-LC or PGRP-LE (Gottar et al., 2002; Takehana et 

al., 2002). PGRP-LC is a membrane bound receptor and PGRP-LE is a cytosolic PGRP 

receptor that recognizes microbial ligands found within the cytoplasm (Kaneko et al., 

2006; Yano et al., 2008). Once PGRP-LC or PGRP-LE detect DAP-type PGN, they 
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recruit the adaptor protein, IMD to their N-terminal RHIM-like (receptor-interacting 

protein homotypic interaction motif) domain (Choe et al., 2005; Georgel et al., 2001; 

Kaneko et al., 2006). IMD has a central role in the pathway as it functions as a scaffold 

for the initiation of the signaling cascade that culminates in the phosphorylation and 

activation of the NF-κB transcription factor Relish. 

 IMD recruits the adaptor protein, FADD (Fas-associated death domain), via a 

homotypic death domain interaction (Naitza et al., 2002). FADD then interacts with the 

caspase DREDD (Death-related ced-3/Nedd2-like protein) and this interaction is critical 

for downstream signaling events (Hu and Yang, 2000; Leulier et al., 2000). IMD is 

cleaved in a DREDD-dependent manner, exposing a highly conserved IAP-binding motif 

(IBM) (Paquette et al., 2010).  The IBM motif allows IMD to associate with Drosophila 

inhibitor of apoptosis 2 (DIAP2). DIAP2 contains a C-terminal RING domain that is 

essential for the robust ubiquitination of IMD that occurs after DIAP2 and IMD associate 

(Huh et al., 2007). Polyubiquinated IMD serves as a scaffold for TAK1 (transforming 

growth factor-β-activated kinase 1), which in turn activates the IκB kinase (IKK) 

complex (Kleino et al., 2005; Silverman et al., 2003; Vidal et al., 2001). The IKK 

signaling complex is made up of the catalytic subunit of IRD5 (immune-response 

deficient 5; the Drosophila homolog of mammalian IKKβ) and a regulatory subunit 

Kenny (the fly homolog of mammalian IKKγ) (Lu et al., 2001). The IKK complex then 

phosphorylates several sites of the N-terminal portion of Relish (Silverman et al., 2000). 

Phosphorylated Relish is then cleaved to release the inhibitory C-terminal domain (Rel-

49), thus allowing the N-terminal Rel domain (Rel-68) to translocate into the nucleus to 

activate the transcription of AMP genes, such as Diptericin and Cecropin. Cleavage of 
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IMD is a caspase-mediated process, and it has been proposed that DREDD might directly 

cleave phosphorylated IMD (Stoven et al., 2000; Stoven et al., 2003). 

IV. Interactions between the Cellular and Humoral Responses 

 Several studies have demonstrated that humoral and cellular immune responses 

work together to combat bacterial infections in the fruit fly (Braun et al., 1998b; Brennan 

et al., 2007; Matova and Anderson, 2006; Nehme et al., 2011; Pham et al., 2007). In one 

study, imd mutant flies succumbed to an otherwise harmless Gram-negative Escherichia 

coli infection only when the cellular immune response is ablated by pre-injection with 

latex beads (Elrod-Erickson et al., 2000). Loss of Psidin, a lysosomal protein, impairs 

phagosome maturation of Gram-positive and Gram-negative bacteria in hemocytes, but 

also leads to deficient induction of the AMP gene Defensin in the fat body (Brennan et 

al., 2007). This type of crosstalk is critical for an effective host response against a 

multitude of bacterial pathogens.  However, experiments in fruit flies as well as in 

another insect model, the beetle Tenebrio molitor, indicate that hemocyte-mediated 

defenses, and not the humoral immune response, are the most immediate and critical 

component of the immune response to S. aureus (Haine et al., 2008; Nehme et al., 2011).  

In Tenebrio molitor, hemocytes effectively clear 99.5% of S. aureus within an hour of 

infection. The humoral immune response is induced after the majority of the bacteria are 

eliminated by hemocytes, and AMPs control the growth and dissemination of remaining 

pathogens (Haine et al., 2008). Thus, in both insects and humans, blood cell recognition 

and lysosomal degradation of internalized microbes is essential to combat Staphylococcus 

aureus infections. 
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V. New resources to study phagocytosis in Drosophila 

A. The Drosophila Genetic Reference Panel 

In 2012, a collection of 200 wild-derived inbred lines called the Drosophila 

melanogaster Genetic Reference Panel (DGRP) was made available by the Mackay 

laboratory (Mackay et al., 2012). These lines were derived from single mated females 

from a natural population in Raleigh, North Carolina. As proof of concept of the utility of 

using the DGRP to conduction phenotype-genotype studies, a subset of 40 lines were 

sequenced and assessed for a variety of quantitative traits such as chill coma recovery, 

starvation resistance, fitness, and lifespan. The genomes of the full suite of lines were 

fully sequenced using a combination of Illumina and 454 sequencing platforms. The 

sequencing identified polymorphisms, such as single nucleotide polymorphisms (SNPs) 

and microsatellites.  With this resource, it is possible to measure traits of individual lines 

and carry out genome wide association (GWA) analyses to identify polymorphisms that 

are significantly associated with the tested phenotype.  

Several studies have successfully utilized the DGRP to explore the genetic basis 

of the innate immune response. These studies have identified novel variants that affect 

response to oxidative stress, lifespan and fitness, as well as age and diet-related resistance 

to bacterial infections (Durham et al., 2014; Felix et al., 2012; Jordan et al., 2012; 

Magwire et al., 2012; Unckless et al., 2015). For example, a GWAS to identify 

polymorphisms that are associated with resistance to Drosophila C Virus (DCV) in the 

DGRP identified 6 highly significant SNPs in the gene pastrel (Magwire et al., 2012). 

This gene had not been previously associated with anti-viral immunity and it encodes a 

protein of unknown function. Flies expressing pastrel-RNAi ubiquitously are more 
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susceptible to DCV infection compared to control flies of the same genetic background. 

The role of pastrel as an important host factor for DCV infection was independently 

verified in a study that examined the genetics of fly adaptation to DCV (Martins et al., 

2014; Martins et al., 2013).  An outbred population of Drosophila was exposed to 

recurrent DCV infections over the course of several generations. Comparison of allele 

frequencies across those generations revealed five highly polymorphic loci, the most 

significant of which were associated with pastrel. Thus, two independent GWAS 

approaches successfully identified pastrel as a central player in the host response to 

DCV. Together, these findings demonstrate the utility of GWAS in Drosophila innate 

immune research. In conclusion, there is still much to discover about the genes and 

signaling pathways that regulate the cellular immune response to bacteria in Drosophila.  

In an effort to identify new genes associated with phagocytosis and phagosome 

maturation in the fly, we carried out three separate GWAS studies: S. aureus phagosome 

maturation (to potentially identify genes that control uptake and maturation), E. coli 

phagocytosis, and S. aureus phagocytosis.  Together, these studies identified over 500 

candidate genes than may be important for the cellular immune response in Drosophila.  

We also carried out an in depth analysis of one S. aureus phagocytosis candidate gene, 

the RNA-binding protein Ataxin-2 binding-protein 1 (A2bp1).  

B. Immunoselection and RNAseq to examine the adult hemocyte transcriptome 

Several published microarray and mass spectrometry experiments have 

documented changes in the expression of a number of transcripts after bacterial infection 

in the fruit fly (Boutros et al., 2004; De Gregorio et al., 2001; De Gregorio et al., 2002; 

Handke et al., 2013; Irving et al., 2005; Levy et al., 2004; Uttenweiler-Joseph et al., 
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1998). In general, gene expression changes have been examined using samples that are 

comprised of whole animals, potentially masking hemocyte-specific transcriptional 

changes. None of these previous studies has analyzed the changes in gene expression in 

adult hemocytes after infection. Genetic ablation studies have established that hemocytes 

synthesize humoral immune effector molecules in response to infection (Agaisse et al., 

2005; Avet-Rochex et al., 2005; Braun et al., 1998b; Matova and Anderson, 2006).  

Drosophila hemocytes secrete cytokine-like molecules after bacterial infection.  One 

cytokine, Upd3, is released into the hemolymph after the hemocyte senses E. coli or M. 

luteus (Agaisse et al., 2005). Upd3 is the ligand for the cytokine receptor, Domeless, 

which is found on fat body cells. Upd3 binds to Domeless, which triggers the initiation of 

the JAK/STAT signaling cascade, leading to the production of stress genes such as 

TurandotA. Expression of the Toll ligand, Spatzle is also increased in hemocytes after 

infection (Irving et al., 2005). In larvae, genetic ablation of hemocytes impairs the 

expression of the AMP genes Diptericin and Drosomycin from the fat body (Shia et al., 

2009). Blood cell-specific spz-RNAi also led to impaired AMP expression but this defect 

was not observed when spz was silenced specifically in the fat body.  Finally, hemocyte-

specific expression of wild type spz in a spz-null background is sufficient to rescue the 

impaired AMP induction. These findings indicate that the hemocytes secrete Spatzle after 

sensing bacteria, and this secretion is necessary for Toll-dependent AMP production by 

the fat body.  However, the existence of cross-talk between hemocytes and the fat body is 

a subject of debate in the literature.  In adults, genetic ablation of blood cells does not 

appear to affect the induction of AMP gene expression after Gram-positive or Gram-

negative bacterial infections (Charroux and Royet, 2009; Defaye et al., 2009).  
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Furthermore, rendering hemocytes unable to phagocytose bacteria by pre-injecting flies 

with latex beads also did not impair the immune response in the same flies after bacteria 

infection (Nehme et al., 2011).  

Based on the work outlined above, several questions remain: Do adult or larval 

hemocytes secrete effectors that induce the humoral immune response in fat body cells? 

Does gene expression robustly change in hemocytes after recognition and phagocytosis 

of microbes? If so, how do different pathogens differentially affect gene expression in 

blood cells? Overall, the transcriptional response of adult Drosophila hemocytes 

following microbial challenge has been relatively unexplored. Using immunoselection 

and RNAseq, we generated a list of genes that are differentially expressed in adult 

hemocytes after wounding and after S. aureus or Drosophila X Virus infection. Our list 

may provide the foundation for future studies that elucidate the role of hemocyte-specific 

gene expression changes in the immune response in the fly.  In conclusion, there is still 

much to discover about the genes and signaling pathways that regulate the cellular 

immune response to bacteria in Drosophila. In an effort to identify new genes associated 

with phagocytosis and phagosome maturation in the fly, we carried out three separate 

GWAS studies: S. aureus phagosome maturation (to potentially identify genes that 

control uptake and maturation), S. aureus phagocytosis, and E. coli phagocytosis.  

Furthermore, the transcriptional response of adult Drosophila hemocytes following 

microbial challenge has been relatively unexplored. Using immunoselection and 

RNAseq, we generated a list of genes that are differentially expressed in adult hemocytes 

after wounding and after S. aureus or Drosophila X Virus infection.   
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Chapter 2  

 

Genome Wide Association Analysis in a Natural Population of Drosophila Reveals 

Novel Mediators of the Cellular Response to Staphylococcus aureus 

I. Abstract  

 In all animals, the innate immune response is the first line of defense against 

microorganisms. Phagocytosis, the recognition and uptake of particles greater than 0.5 

µm, is a vital component of innate immunity and is particularly important for protection 

against the Gram-positive bacterium Staphylococcus aureus. S. aureus, which is often 

found as a commensal in human flora, causes a multitude of illnesses in humans if left 

unchecked. To identify genes affecting phagosome maturation in vivo, we tested a subset 

of the Drosophila Genetic Reference Panel (DGRP) for the ability of their hemocytes 

(phagocytic blood cells) to uptake and degrade S. aureus. The phagosome maturation 

phenotypes were sexually dimorphic and highly variable within individual lines. We then 

performed genome-wide association analyses to identify candidate genes associated with 

male, female, and pooled phagosome maturation phenotypes. We identified potentially 

relevant single nucleotide polymorphisms (SNPs) near or in hundreds of genes, many of 

which have no known role in the cellular immune response to bacteria. Gene Ontology 

analyses revealed that our list was enriched for plasma membrane associated proteins and 

proteins with Ig-like motifs. Thirty-eight candidate genes were selected for further 

analysis and sex-specific effects on phagosome maturation were assessed using RNA 

interference in hemocytes. We identified three genes, dpr10, fred, and CG42673, whose 
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loss-of-function in blood cells impaired the innate immune response to S. aureus. Finally, 

many of the candidate genes identified in the screen have human orthologs.  Owing to the 

high degree of genetic conservation between humans and Drosophila, our findings may 

facilitate future studies that could shed light on the human innate immune response to S. 

aureus.   
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II. Introduction 

 The cellular immune response is an immediate and crucial component of host 

defense.  Recognition and clearance of invasive bacteria by phagocytic cells is essential 

for an effective immune response. Phagocytes target two main classes of molecules: 

apoptotic cells and microorganisms.  Throughout development, removal of apoptotic cells 

is key for tissue remodeling.  However, during the innate immune response, phagocytic 

cells recognize, engulf and kill invading microbes (Akira et al., 2006; Blander and 

Sander, 2012; Flannagan et al., 2012; Jiravanichpaisal et al., 2006; Stuart and Ezekowitz, 

2008).  Phagocytosis is particularly vital for protection against extracellular bacteria, such 

as the Gram-positive bacterium Staphylococcus aureus (S. aureus). S. aureus can live as 

a commensal in human flora, where it is controlled by neutrophils and macrophages (Ip et 

al., 2010; Miller and Cho, 2011; Spaan et al., 2013). Defects in these cells can lead to 

severe immunodeficiency resulting in recurring and persistent bacterial infections. If left 

unchecked, S. aureus can cause a myriad of illnesses such as skin infections, respiratory 

disease, toxic shock, bacteremia, and sepsis (van Kessel et al., 2014).  

 Drosophila melanogaster is a genetically tractable organism well suited for 

studying the cellular immune response. Many of the genes and signaling pathways of 

innate immunity are conserved between fruit flies and humans. This genetic conservation, 

coupled with the ability to rapidly phenotype a large number of individuals, makes 

Drosophila a powerful model for the study of innate immunity. (Buchon et al., 2014; 

Cherry and Silverman, 2006; Dionne and Schneider, 2008; Ferrandon et al., 2007; 

Ganesan et al., 2011; Lemaitre and Hoffmann, 2007).  
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 The fruit fly lacks an adaptive immune response, but possesses a multifaceted and 

highly effective innate immune response that can be divided into two branches: the 

humoral and cellular responses. Humoral immunity is a systemic response mediated 

mainly by the fat body, a functional equivalent of the mammalian liver. Upon infection, 

immune responsive genes such as Turandots, Teps and antimicrobial peptides (AMPs), 

are transcriptionally activated via the Toll and Imd pathways. The Toll pathway is 

triggered by detection of fungi, Drosophila X Virus, and Lys-type peptidoglycan of 

Gram-positive bacteria (Lemaitre et al., 1996; Leulier et al., 2003; Michel et al., 2001a; 

Zambon et al., 2005). Toll signaling results in the induction of AMP genes, such as 

Drosomycin, following the nuclear translocation of dorsal-related immune factor (DIF) 

(Ip et al., 1993; Lemaitre et al., 1996). The Imd pathway is activated by detection of 

DAP-type peptidoglycan of Gram-negative bacteria, leading to the nuclear translocation 

of the NF-κB-like transcription factor, Relish, which upregulates the transcription of 

AMP genes such as Diptericin. (Hedengren et al., 1999; Kaneko et al., 2004; Lemaitre et 

al., 1995; Leulier et al., 2003; Leulier et al., 2000).  

 Insect hemocytes, blood cells that are the functional equivalent of the mammalian 

macrophage, mediate the cellular immune responses of phagocytosis, nodulation, 

encapsulation and melanization (Fauvarque and Williams, 2011; Jiravanichpaisal et al., 

2006; Meister and Lagueux, 2003). Phagocytosis is initiated when pattern recognition 

receptors (PRRs) on the surface of phagocytic cells identify and bind to pathogen 

associated molecular patterns (PAMPs) on the surface of microbes. Bound receptors 

activate signaling pathways that lead to internalization of particles in an actin-dependent 

manner. The organelle that forms around the engulfed material, the phagosome, 
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undergoes the process of phagosome maturation, a series of fusion events with 

endosomes and lysosomes that results in a highly acidic and hydrolytic phagolysosome 

where antimicrobial proteins and peptides digest microbes. Phagocytosis and phagosome 

maturation are reviewed in (Flannagan et al., 2012; Kinchen and Ravichandran, 2008; 

Sarantis and Grinstein, 2012; Swanson, 2008; Underhill and Goodridge, 2012). 

 Several studies have demonstrated that humoral and cellular immune responses 

work together to combat bacterial infections in the fruit fly (Braun et al., 1998a; Brennan 

et al., 2007; Matova and Anderson, 2006; Nehme et al., 2011; Pham et al., 2007). In one 

study, Imd mutant flies succumbed to an otherwise harmless Gram-negative Escherichia 

coli infection only when the cellular immune response is ablated by pre-injection with 

latex beads (Elrod-Erickson et al., 2000). Alternatively, loss of Psidin, a lysosomal 

protein, impairs phagosome maturation of Gram-positive and Gram-negative bacteria in 

hemocytes, but also leads to deficient induction of the AMP gene Defensin in the fat body 

(Brennan et al., 2007). This type of crosstalk is critical for an effective host response 

against a multitude of bacterial pathogens.  However, experiments in fruit flies as well as 

in another insect model, the beetle Tenebrio molitor, indicate that hemocyte-mediated 

defenses, and not the humoral immune response, are the most immediate and critical 

component of the immune response to S. aureus (Haine et al., 2008; Nehme et al., 2011).  

In Tenebrio molitor, hemocytes effectively clear 99.5% of S. aureus within an hour of 

infection. The humoral immune response is induced after the majority of the bacteria are 

eliminated by hemocytes, and AMPs control the growth and dissemination of remaining 

pathogens (Haine et al., 2008). Thus, in both insects and humans, blood cell recognition 
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and lysosomal degradation of internalized microbes is essential to combat Staphylococcus 

aureus infections. 

 Phagocytosis processes and post-engulfment events are evolutionarily conserved: 

several characterized fruit fly and human germline encoded pattern recognition receptors 

are homologous and pathogen recognition leads to activation of similar signaling 

cascades(Lemaitre and Hoffmann, 2007; Stuart and Ezekowitz, 2005). Biochemical and 

genetic analyses in Drosophila have yielded valuable insights into the biological 

complexity of phagocytosis. Cell-based RNA interference in the macrophage-like S2 cell 

line and classical genetic screening strategies have successfully identified a number of 

Drosophila phagocytic receptors (reviewed in (Marmaras and Lampropoulou, 2009; 

Ulvila et al., 2011)) including: the CD36 family scavenger receptors Peste (Philips et al., 

2005) and Croquemort (Stuart et al., 2005), Scavenger receptor class C, type I (Sr-CI) 

(Ramet et al., 2001), peptidoglycan recognition protein LC (PGRP-LC) (Ramet et al., 

2002), the Ig-like protein Down syndrome cell adhesion molecule (Dscam) (Watson et 

al., 2005), and three EGF-like repeats containing proteins Nimrod C1 (Kurucz et al., 

2007a), Eater (Kocks et al., 2005), and Draper (Cuttell et al., 2008; Manaka et al., 2004). 

The binding specificities of Drosophila phagocytic receptors often overlap, suggesting a 

level of redundancy that is similar to mammalian cells. Because multiple receptors target 

common ligands, knockdown of individual receptors and downstream signaling 

molecules may not lead to complete loss of phagocytic capacity. Additionally, screens 

that target single genes using loss-of-function or gain-of-function mutants may not 

identify novel candidates with subtle effects or genes that have epistatic effects on one 

another.  
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 In this study, we undertook a complementary approach to mutagenesis screens 

with the aim of identifying novel genes that play a role in the cellular immune response to 

S. aureus. We conducted a genome wide association study (GWAS) using a fully 

sequenced panel of inbred lines, the Drosophila Genetic Reference Panel (DGRP) 

(Mackay et al., 2012) (Figure 2-1).  The DGRP has been utilized to identify novel 

variants that affect viral immunity, response to oxidative stress, lifespan and fitness, as 

well as age and diet-related resistance to bacterial infections (Durham et al., 2014; Felix 

et al., 2012; Jordan et al., 2012; Magwire et al., 2012; Unckless et al., 2015). Alleles with 

more subtle effects segregate in natural populations such as the DGRP (Mackay et al., 

2012). We hypothesized that a GWA analysis of DGRP lines using an in vivo S. aureus 

phagosome maturation assay would identify novel polymorphisms with subtle and 

synergistic effects.  

 We tested DGRP lines for the ability of their hemocytes to phagocytose and 

degrade S. aureus bioparticles labeled with a pH-sensitive fluorochrome and we 

performed GWA analyses for the median phagosome maturation phenotypes using a 

mixed effect analysis of variance (ANOVA) model. At p-values less than 1x10-4 we 

identified 985 single nucleotide polymorphisms (SNPs) near (< 5000 bp away from) or 

within 528 genes. Eighty-two candidate genes are predicted to localize to the plasma 

membrane and 21 encode proteins with immunoglobulin-like domains. Several SNPs 

were located in or near genes that play a role in the Drosophila innate immune response, 

cytoskeletal organization, vesicle trafficking or lysosomal function. Twenty-seven of the 

identified genes have human orthologs implicated in the immune response.  
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 We then performed follow-up studies to assess the role of candidate genes of 

interest, including 15 genes encoding proteins that localize to the plasma membrane and 

12 genes that encode proteins with Immunoglobulin-like domains. We reasoned that 

focusing on proteins potentially found at the periphery of the hemocyte might facilitate 

the identification of novel pathogen recognition receptors or downstream signaling 

molecules that mediate internalization of S. aureus. We selected forty candidate genes, 

used RNA-interference to silence expression specifically in hemocytes, and screened 

adults using the in vivo phagosome maturation assay (Duffy, 2002; Ni et al., 2008). RNAi 

knockdown of three candidates: defective proboscis extension response 10 (dpr10), friend 

of echinoid (fred), and CG42673 significantly impaired S. aureus phagosome maturation.  

This cellular immune defect also led to increased susceptibility to S. aureus infection.  

Susceptibility to bacterial infection may be attributed to decreased resistance (inability to 

curb bacterial growth) or decreased tolerance (inability to mitigate the harmful effects of 

the immune response). Quantification of S. aureus bacteria load 24 and 48 hours post 

infection revealed that loss of candidate genes in hemocytes led to changes in resistance 

and tolerance in a sex specific manner. Thus, using a combined approach of GWAS and 

RNA interference to silence candidate genes in hemocytes, we have identified novel 

regulators of S. aureus phagocytosis.   
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Figure 2-1: Overview of the S. aureus phagosome maturation screen. 

The flow-chart is a summary of the design and results of the genome-wide association 

study to identify single nucleotide polymorphisms and genes that are associated with S. 

aureus phagocytosis and phagosome maturation in the DGRP.  
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III. Results  

A. An in vivo phagosome maturation screen  

 To identify novel genes or signaling pathways that regulate S. aureus 

phagocytosis and phagosome maturation, adult DGRP flies were assessed for the ability 

of their hemocytes to phagocytose pHrodo-conjugated S. aureus. The pHrodo dye is pH-

sensitive: it is non-fluorescent at neutral pH but is bright red in acidic compartments with 

low pH. Following uptake by hemocytes, the microbe-containing phagosome matures 

through a series of fusion events with increasingly acidic endosomal compartments. The 

pHrodo-conjugated S. aureus will fluoresce brightly as maturation progresses. Sessile 

hemocytes along the dorsal vessel phagocytose dye-conjugated microbes and can be 

visualized through the cuticle (Figure 2-2) (Elrod-Erickson et al., 2000). The absence of 

pHrodo fluorescence could be attributed to defects in particle uptake (phagocytosis) or to 

defects in trafficking and/or acidification of the phagosome (phagosome maturation).  

Thus, use of pHrodo-conjugated S. aureus provided a way to simultaneously assess 

phagocytosis and downstream maturation processes in the DGRP lines.  
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Figure 2-2: Schematic of the in vivo phagosome maturation assay. 

Adult male and female flies were injected with heat-killed S. aureus labeled with pHrodo, 

a fluorescent dye that only fluoresces at low pH (~pH 4.5). Flies were allowed to rest one 

hour to allow the hemocytes time for the steps of phagocytosis and phagosome 

maturation to occur: i.e. particle recognition by hemocytes, particle uptake, formation of 

the phagosome, and maturation of S. aureus-pHrodo containing phagosomes.  After 1 

hour, flies were mounted on electrical tape and the dorsal vessel, an area where a large 

number of sessile hemocytes congregate, was images on in inverted fluorescence 

microscope. The fluorescence intensity of the dorsal vessel and an adjacent, non-

fluorescent area on the fly cuticle, was manual measured for each fly. The fluorescence 

intensity ratio of each fly was calculated by normalizing the fluorescence of the dorsal 

vessel by the fluorescence of the adjacent area. 



	 86	

 Seven males and seven females were tested from 100 randomly selected DGRP 

lines.  We also included an isogenic laboratory strain, cnbw, to control for experimental 

variability. The fluorescence intensity ratio was calculated for each fly, and median 

phagosome maturation phenotypic value was determined per line (Table 2-1 and Figure 

2-3). Lines for which the phenotypic variability exceeded a standard deviation of 0.5 

were removed from the GWA analysis. An additional 5 lines were eliminated, as they 

were no longer supported by the DGRP Bioinformatics pipeline (Table 2-1 and Figure 2-

3). We utilized the remaining 83 lines for all further analysis. Finally, we normalized the 

raw phenotypic data of each line by dividing DGRP phagosome maturation phenotypes 

by the cnbw phagosome maturation value for the date tested (Figure 2-4). Phagosome 

maturation in the DGRP was sexually dimorphic: the average value for males (0.8534) 

was significantly lower than for females (1.004) (p < 0.0001) (Figure 2-4 and 2-5). There 

was considerable genetic variation in the sexual dimorphism, due to the fact that 

differences in phagosome maturation between males and females varied among lines 

(Figure 2-5). This observation is consistent with observations in other immune and 

complex trait studies (Harbison et al., 2013; Spitzer, 1999; Taylor and Kimbrell, 2014).  
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Table 2-1: Summary of the DGRP S. aureus phagosome maturation screen. 

DGRP 
Strain 

Phagosome 
Maturation 
AVERAGE / 
MEDIAN 

# of flies 
tested 

Standard 
Deviation 

Included in GWA 

cnbw 1.579 / 1.535 78 0.3604 
 

(-) Laboratory control 
argus 1.072 / 1.070 32 0.1480 

 
(-) Laboratory control 

21 1.523 / 1.335 13 0.5023 (-) STD > 0.5 
26 1.609 / 1.585 14 0.3025 + 
38 1.486 / 1.502 14 0.2170 + 
40 1.719 / 1.664 14 0.3675 + 
41 1.227 / 1.178 14 0.2357 + 
42 1.665 / 1.694 14 0.4842 + 
45 1.403 / 1.357 14 0.3471 + 
57 1.812 / 1.636 14 0.7516 (-) STD > 0.5 
59 1.635 / 1.536 14 0.4295 + 
69 1.491 / 1.416 13 0.2829 + 
73 1.197 / 1.171 14 0.1309 + 
75 1.240 / 1.203 14 0.2421 + 
83 1.197 / 1.095 14 0.2416 + 
85 1.674 / 1.567 14 0.3611 + 
91 1.689 / 1.721 13 0.4201 + 
93 1.158 / 1.159 13 0.1385 + 
101 1.675 / 1.626 14 0.3251 + 
105 1.699 / 1.626 15 0.4618 + 
109 1.368 / 1.322 14 0.3421 + 
129 1.579 / 1.565 14 0.5032 (-) STD > 0.5 
136 1.519 / 1.555 13 0.2393 + 
138 1.389 / 1.298 14 0.2472 + 
142 1.416 / 1.361 14 0.3394 + 
149 1.250 / 1.116 14 0.3036 + 
158 1.421 / 1.463 14 0.2368 + 
161 1.483 / 1.463 13 0.3453 + 
176 1.478 / 1.442 14 0.3362 + 
177 1.303 / 1.270 14 0.2670 + 
195 1.647 / 1.490 14 0.4759 + 
208 1.741 / 1.567 15 0.3832 + 
217 1.649 / 1.286 13 0.6016 (-) STD > 0.5 
223 1.277 / 1.313 14 0.1562 (-) No longer curated by DGRP 
227 1.479 / 1.348 13 0.4401 + 
228 1.551 / 1.496 14 0.2177 + 
235 1.438 / 1.497 15 0.3927 + 
239 1.441 / 1.346 13 0.4558 + 
280 1.406 / 1.272 15 0.4880 + 
301 1.208 / 1.159 14 0.2305 + 
303 1.504 / 1.379 14 0.3035 + 
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304 1.415 / 1.424 14 0.2702 + 
306 1.619 / 1.466 15 0.6536 (-) STD > 0.5 
307 1.264 / 1.228 14 0.2226 + 
309 1.829 / 1.925 14 0.6109 (-) STD > 0.5 
310 1.427 / 1.309 15 0.4957 + 
313 1.340 / 1.367 14 0.2234 + 
315 1.538 / 1.386 14 0.4527 + 
317 1.594 / 1.526 14 0.3491 + 
318 1.727 / 1.675 14 0.4444 + 
320 1.565 / 1.331 14 0.5965 (-) STD > 0.5 
324 1.430 / 1.403 13 0.2668 + 
335 1.652 / 1.619 15 0.29 + 
340 1.633 / 1.564 14 0.4583 (-) No longer curated by DGRP 
350 1.612 / 1.471 14 0.6263 (-) STD > 0.5 
357 1.469 / 1.414 12 0.2860 + 
358 1.274 / 1.331 14 0.1607 + 
360 1.617 / 1.703 14 0.3082 + 
362 1.390 / 1.277 13 0.3088 + 
365 1.521 / 1.497 14 0.3687 + 
370 1.837 / 1.710 13 0.4291 + 
373 1.614 / 1.419 14 0.5861 (-) STD > 0.5 
374 1.341 / 1.360 14 0.2548 + 
375 1.656 / 1.617 14 0.2226 + 
379 1.895 / 1.693 13 0.5005 (-) STD > 0.5 
380 1.427 / 1.387 13 0.3306 + 
392 1.206 / 1.163 14 0.2465 + 
399 1.547 / 1.496 14 0.2415 + 
427 1.364 / 1.309 14 0.2193 + 
437 1.307 / 1.300 13 0.1940 + 
439 1.443 / 1.357 14 0.3320 + 
440 2.034 / 1.907 14 0.5867 (-) STD > 0.5 
441 1.196 / 1.058 12 0.4310 + 
486 1.584 / 1.499 14 0.3158 + 
508 1.405 / 1.234 14 0.3718 + 
514 1.889 / 1.895 14 0.5122 (-) STD > 0.5 
517 1.829 / 1.851 12 0.3761 + 
555 1.504 / 1.406 14 0.2384 + 
639 1.376 / 1.353 13 0.2928 + 
     
707 1.386 / 1.412 13 0.1980 + 
712 1.557 / 1.406 14 0.2513 + 
714 1.397 / 1.323 13 0.2120 + 
705 1.474 / 1.366 14 0.4239 + 
730 1.406 / 1.393 13 0.2070 + 
732 1.467 / 1.502 14 0.2477 + 
761 1.434 / 1.386 15 0.4297 + 
765 1.694 / 1.546 13 0.4048 + 
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774 1.597 / 1.581 14 0.3557 + 
787 1.611 / 1.597 15 0.2544 + 
799 1.689 / 1.740 13 0.3610 + 
804 1.798 / 1.849 14 0.5627 (-) STD > 0.5 
810 1.780 / 1.760 14 0.4562 + 
820 1.340 / 1.306 14 0.2591 + 
822 1.742 / 1.835 13 0.2891 + 
843 1.650 / 1.742 15 0.3276 (-) No longer curated by DGRP 
852 1.675 / 1.680 15 0.3389 + 
859 1.843 / 1.742 14 0.5773 (-) STD > 0.5 
884 1.595 / 1.601 13 0.2842 + 
892 1.466 / 1.395 13 0.1912 + 
900 1.623 / 1.449 12 0.4101 (-) No longer curated by DGRP 
911 1.282 / 1.218 12 0.3090 + 

Table 2-1: Summary of DGRP S. aureus phagosome maturation screen raw data. 

One hundred randomly selected DGRP strains were tested for the ability of their 

hemocytes to phagocytose and eliminate pHrodo-labeled, heat-killed S. aureus 

bioparticles.  Three to 5 day old male and female flies were tested (n =12-15 flies per 

strain). Median phagosome maturation for each strain is given in column 2. Standard 

deviation within each strain was calculated and lines were removed from the GWA 

analysis if STD was > 0.5 or if the line was no longer curated by the DGRP 

bioinformatics pipeline. 
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Figure 2-3: S. aureus phagosome maturation phenotypes of 100 DGRP lines. 

DGRP line means for all 100 tested lines are shown. The shaded grey box indicates the 

lines that were removed from the GWA analysis (See Table 1-1 for further explanation) 
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Figure 2-4: S. aureus phagosome maturation phenotypes in 83 DGRP lines. 

The median pHrodo-S. aureus fluorescence intensity for each DGRP line is shown for 

(A) males, (B) females, and (C) pooled sexes. The mean across all lines is indicated with 

a black line. Representative images of pHrodo-fluorescing hemocytes from controls and 

DGRP lines with reduced, average, or increased S. aureus phagosome maturation are 

shown. 
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Figure 2-5: Sexual dimorphism in S. aureus phagosome maturation in the DGRP. 

 (A) Bar graph representation the average phagosome maturation value for DGRP males 

(0.8534) and females (1.004) (p < 0.0001). Representative images of S. aureus 

phagosome maturation in male (left) and female (right) flies. 
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B. Genome-wide association mapping 

 The genomes of all the DGRP lines have been sequenced, enabling us to carry out 

genome-wide genotype-phenotype association mapping for S. aureus phagosome 

maturation phenotypes (Mackay et al., 2012). The DGRP analysis pipeline 

(http://dgrp2.gnets.ncsu.edu) utilizes Flybase release 5.49 to annotate 2.49 million single 

nucleotide polymorphisms (SNPs) in the DGRP for which the minor allele is present in at 

least 4 lines.  To identify SNPs significantly associated with our phenotypic 

measurements, we performed GWA analyses for the median phagosome maturation 

values of males and females using the DGRP analysis pipeline (Mackay et al., 2012). 

 As suggested by Mackay et al., we adopted a p-value threshold of less than 10-5 

for our initial GWA analysis. At this significance threshold, we anticipate a false 

discovery rate (FDR) of 0.6 (see methods). In an effort to uncover additional genes or 

signaling pathways that might play a role in S. aureus phagosome maturation in 

Drosophila, we subsequently relaxed our threshold to include SNPs with p-values < 10-4, 

anticipating a false discovery rate of 0.7.  We tolerated these lenient false positive rates 

due to the fact that we can test the functional significance of candidate genes within 

hemocytes in vivo.  

  At a significance threshold of p-value < 1x10-5 we identified 34 SNPs within or 

near (< 5000 bp away from) 27 candidate genes in males and 41 SNPs in or near 19 

candidate genes in females (Table 2-2 and Online Supplemental Table 1). There was no 

overlap between the genes identified in the male GWA compared to the female GWA, 

providing further evidence that genetic factors contribute to the sexually dimorphic 

phenotypic difference between the sexes. To identify SNPs with similar effects in both 
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males and females, we ran a GWA analysis for the median phagosome maturation 

phenotype from each individual line (pooled across sexes). We found 36 SNPs (p-value < 

10-5) in or near 20 genes associated with the pooled sex phenotypes (Table 1-2 and 

Online Supplemental Table 1).  Interestingly, 6 SNPs were found in both males and 

pooled GWA analysis, revealing that the male phenotypic measurements dominated the 

screen. For each associated SNP with p-value < 10-5 the following GWA analysis results 

were obtained from the Mackay lab bioinformatics analysis: p-values, identities of minor 

and major alleles, minor allele frequency (MAF) and estimates of effect size (calculated 

as the average difference in trait mean between lines carrying the major and minor 

alleles). Additionally, analyses of linkage disequilibrium among significant markers were 

reported (Fig 2-6). To visualize loci with multiple significant SNPs on a genome-wide 

scale, Manhattan plots of the negative log10p-value of the 2.5 million SNPs of the DGRP 

were generated (Fig 2-7). Quantile-quantile (Q-Q) plots of our GWAS results show that 

our observed p-values do not deviate significantly from the expected p-values for a 

screen of this size (Fig 2-7).  
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Gene ontology 
enrichment 
category 

Median 
# 
SNPs 

# 
Genes 

Associated genes 

Males 
 

34 27 ATP7, stet, CR34701, snoRNA:Psi28S-2622, CG11498, Ca-
beta, CG14280, CG42694, CG5987, CG5984, CR43838, 
shakB, PPYR1, CR43960, CG1950, CG6145, bbc, cdc14, 
Obp58c, Obp58d, Obp58b, CG15803, nrv1, CG32791, 
CG30096, CG8060, Ser 

Female  
 

41 19 CG42673, Dl, loco, mRpL45, Shab, Dhc16F, CG7536, dik, 
Ndae1, CG34351, Sh, rdx, Btd, chas, spri, CG5191, CG31952, 
pgant2, CG15161 

Pooled 
 

36 22 bbc, CG42732, CG11498, elk, kst, CG10732, CG10133, Egfr, 
CG13285, Ser, stet, CR43701, snoRNAi:Psi28S-2622, 
X11Lbeta, unc-104, Sod2, Pde1c, CanA-14F, Pkc98E, 
CG3264, lmd, stau 

Antagonistic 47 30 bif, fas, CG18368, yps, dpr8, Xrp1, lr68b, Pvf3, CG34201, dpr, 
SNF4gamma, CaBP1, CG4455, CG17364, Dhc16F, CG6983, 
GluRIB, Ror, CG5676, CG45002, goe, CG32572, Roc2, Tret1-
1, Sh, ncm, CG12782, Ndae1, loco, cdc14 

Table 2-2: Results of the genome-wide association of S. aureus phagosome 

maturation and SNPs at p-value<10-5 

GWAS results for median S. aureus phagosome maturation from 83 lines of the DGRP 

(s.d.<0.5). Median phagosome maturation is the middle value for each sex (male or 

female) or individual DGRP lines (pooled). Antagonistic SNPs were associated with 

significant differences between the sexes (femalephagosome maturation – malephagosome maturation). 

The number of significant SNPs (p-value<10-5) and associated genes are given.  Gene 

names are given are listed in order of increasing p-value. 
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Figure 2-6: Genome-wide association analysis for S. aureus phagosome maturation. 
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Figure 2-6: Genome-wide association analysis for S. aureus phagosome maturation. 

All SNPs with minimum p-values < 1x10-5 from single-phenotype GWA for (A) males, 

(B) females, and (C) pooled sexes are shown. (D) All SNPs with minimum p-values < 

1x10-5 from two-sex GWA to identify SNPs that exert antagonistic effects in males and 

females are shown. For the antagonistic SNPs red dots represent females, blue dots 

represent males, and black dots represent the difference between females and males. The 

lower triangle illustrates the degree of linkage disequilibrium (LD) between SNPs, 

measured by r2. The R2 heatmap indicates the degree of LD: red corresponds to high 

degrees of LD and blue to the absence of LD.  The upper panels show the significance 

value (-log10p-value), the effect size (a), and the minor allele frequency (MAF) of each 

significant variant.  
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Figure 2-7: Quantile-Quantile and Manhattan plots of S. aureus phagosome 

maturation GWAS results. 
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Figure 2-7: Quantile-Quantile and Manhattan plots of S. aureus phagosome 

maturation GWAS results. 

QQ plots show the differences between the observed and expected -log10 (p-value) of the 

study results. The red line indicates the expected distributions under the null hypothesis. 

The gray shaded region represents the 95% confidence interval. (B) Manhattan plot of 

single nucleotide polymorphisms for the study data. X-axis represents chromosomes. Y-

axis represents -log10 (p-values) obtained by genome-wide association analysis. The red 

line indicates the suggested threshold for genome-wide significance (p < 1 × 10-5). Q-Q 

plots map the observed negative-log10 of each SNP p-value (–log10(p)) against the 

expected –log10(p). Male (A), Female (C), Pooled (E) and Antagonistic effects (G) Q-Q 

plots are shown. Manhattan plots depict the GWAS results on a genomic scale: SNP p-

values are plotted by genomic position and chromosome arm on the x-axis and the y-axis 

is the –log10(p) of the p-value. Male (B), Female (D), Pooled (F) and Mixed effects (H) 

Manhattan plots are shown.  SNPs with p-values < 10-5 are plotted above the blue 

horizontal line at –log10(p) =5. Three highly significant SNPs with p-values < 5.0e-08 are 

plotted above the horizontal red line showing –log10(p) = 7.3.  
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 In an effort to detect signaling pathways that play a role in phagocytosis, we 

lowered our significance threshold to include SNPs with p-values less than 1x10-4 for 

each single phenotype GWA analysis.  We identified an additional 201 SNPs in or near 

124 genes associated with pooled sex median phagosome maturation; 186 SNPs in or 

near 150 genes for males and 185 additional SNPs in or near 85 genes associated with 

female phagosome maturation (Online Supplemental Table 2 – Table 4).  

 To identify candidate polymorphisms with sexually dimorphic effects in the 

DGRP, we carried out an additional GWA to identify SNPs that were significantly 

associated with the phenotypic difference between the sexes, calculated as: femalephagosome 

maturation – malephagosome maturation. We termed such SNPs as antagonistic and hypothesized 

that the polymorphisms would exert different effects on males and females during the 

cellular immune response to S. aureus. We identified 47 SNPs with p-value <10-5 and 30 

associated genes (Online Supplemental Table 5). We also relaxed the significance 

threshold for mixed effects antagonistic SNPs to include all SNPs with p-values < 10-4.  

We found an additional 258 SNPs in or near 163 candidate genes that exerted opposite 

effects in males and females (Online Supplemental Table 6). Overall, we obtained a list 

of 528 candidate genes, 18 of which are non-protein coding genes (Online Supplemental 

Table 7). Based on our false discovery rate estimates, about 90 genes are true 

associations. 

C. Candidate genes implicated in immunity 

 Of the 528 candidate genes, six have been shown to clearly play a role in the 

immune response in Drosophila. One known phagocytic receptor, Scab (scb) was 

identified in our screen. scb encodes an integrin alpha chain (αPS3) that partners with 
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Integrin βv to form a heterodimer that serves as a receptor for apoptotic cells and S. 

aureus (Nonaka et al., 2013). Rac2, a Rho-GTPase, was also identified and has been 

proposed to act downstream of croquemort to mediate phagocytosis of S. aureus (Stuart 

et al., 2005). Peridoxin 5 (Prx5) and Calcineurin A at 14F (CanA-14F), two genes that 

modulate immune-regulated signaling cascades in response to septic injury, were also 

identified in our screen. Prx5 inhibits c-Jun N-terminal kinase (JNK) signaling after 

Gram-positive and Gram-negative bacterial infections (Radyuk et al., 2010a). CanA-14F 

regulates Toll signaling by inducing nuclear localization of Dorsal in response to Gram-

positive bacterial infection (Li and Dijkers, 2015; Radyuk et al., 2010a). Two key 

regulators of the Toll signaling cascade, Dorsal-related immunity factor (Dif) and spatzle 

(spz), were also found in our gene list. This result was surprising in light of experimental 

evidence that indicates the humoral and cellular responses do not genetically interact 

during the Drosophila response to S. aureus (Nehme et al., 2011).   

 Nineteen of the candidate genes (CG11208, karst, regucalcin, mbt, Cht2, cindr, 

spg, CG31249, Pax, Act5C, Hsp23, CaBP1, Exo70, LKR, scb, Fim, Sod2, 26-29-p, and 

nrv1) were previously identified in a proteomic analysis of the Drosophila phagosome, 

providing further evidence of their potential roles in phagocytosis and phagosome 

maturation in hemocytes (Stuart et al., 2007).  Of the 528 genes associated with one or 

more GWAS trait, 27 have human orthologs that have been associated with the immune 

response in humans (Table 2-3).  
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Table 2-3: Notable candidate genes with human orthologs implicated in immunity. 
Human 
Trait 

D. mel. 
gene 

Human 
gene 

% 
Identity 

S. aureus 
phagosome 
maturation 
trait and 
smallest 
associated  
p-value 

Drosophila 
experimental 
evidence 

Human 
experimental 
evidence  

Reference 

Immune 
response 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dif RELA 29% -Pooled 
(8.25e-05) 

Toll pathway 
effector.  
Hemocyte 
differentiation. 

Innate immune 
response. 
Hematopoesis 

(Ip et al., 1993) 
(Huang et al., 
2005)  
(Brown et al., 
2009)  
(Hayden and 
Ghosh, 2011) 
(Anrather et al., 
2006)  

Sod2 SOD2 62% -Pooled 
(4.48e-06) 

Mitochondrial 
superoxide 
dismutase. 
Mediates  
hematopoiesis. 
S2 cell 
phagosome 
proteome. 

Respiratory 
burst in 
neutrophils. 

(Sinenko et al., 
2011) 
(Sinenko et al., 
2010) 
(Lim et al., 
2014) 
(Stuart et al., 
2007) 
(Olsson et al., 
2011) 

Prx5 PRDX5 57% -Pooled 
(5.27e-05) 

Antioxidant 
enzyme. 
Negatively 
regulates the 
JNK signaling 
pathway. 
 

Implicated in 
Inflammatory 
diseases: 
Crohns, 
Alopecia 
areata, 
Sarcoidosis 

(Radyuk et al., 
2010a) 
(Radyuk et al., 
2010b)  
(Franke et al., 
2010) 
(Petukhova et 
al., 2010) 
(Fischer et al., 
2012)  
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Immune 
response 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CG42339 SBSPO
N 

22% -Pooled 
(3.91e-05) 
 

Thrombospon
din, type 1 
repeat 
(IPR000884) 
& 
Somatomedin 
B domain 
(IPR001212) 
 

IEA – 
polysaccharide 
binding, 
immune 
response, 
scavenger 
receptor 
activity, 
receptor-
mediated 
endocytosis 

(Kenny et al., 
2012) 

CanA-
14F 

PPP3CA 78% -Pooled 
(5.5e-06) 

Phosphatase. 
Mediates Toll-
signaling by 
inducing 
nuclear 
localization of 
Dorsal in 
response to 
Gram+ 
bacteria. 
  

Innate immune 
response.  
NFAT 
dephosphory-
lation. 

(Dijkers and 
O'Farrell, 2007)  
(Li and Dijkers, 
2015)  
(Bengoechea-
Alonso et al., 
2003) 

scb ITGA4 25% Antagonistic 
(2.35e-05) 

Phagocytosis, 
Immune 
response to S. 
aureus. 
Heart 
development. 
S2 cell 
phagosome 
proteome. 

Integrin, alpha 
4 (antigen 
CD49D, alpha 
4 subunit of 
VLA-4 
receptor). 

(Stroschein-
Stevenson et 
al., 2006) 
(Nonaka et al., 
2013) 
(Stuart et al., 
2007) 
(Vanderploeg et 
al., 2012) 
 

Fim LCP1 54% -Females 
(9.93e-05) 

Actin binding. 
Calcium 
binding.   
S2 cell 
phagosome 
proteome. 

Lymphocyte 
cytosolic 
protein 1 (L-
plastin). Actin 
crosslinking at 
immune 
phagocytic 
cup. 

(Stuart et al., 
2007) 
(Janji et al., 
2006) 

Rac2 RAC1 
RAC2 

82% 
88% 

-Males 
(3.42e-05) 

Phagocytosis 
of  
S. aureus, 
E.coli, & 
Pseudomonas 
aeruginosa.  
S2 cell 
phagosome 
proteome. 
 

Regulates Fc 
receptor 
mediated 
phagocytosis 
in 
macrophages 
and 
neutrophils. 
Neutrophil 
immune-
deficiency 
syndrome.  

(Stuart et al., 
2005) 
(Stuart et al., 
2007) 
(Avet-Rochex 
et al., 2007) 
(Sampson et al., 
2012)  
(Castellano et 
al., 2000) 
(Forsberg et al., 
2003) 
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Lectin-
galC1 

CLEC4
D 

28% -Males 
(8.57e-05) 

E. coli 
agglutination. 
 

Monocyte/ 
Macrophage 
endocytic 
receptor. 

(Tanji et al., 
2006) 
(Arce et al., 
2004) 

CG6145 NADK 51% -Males  
(5.06e-06) 

Ortholog of 
human NAD 
kinase. 
 

NAD kinase. 
Key enzyme 
regulating 
cellular 
NADPH levels 

(Pollak et al., 
2007) 

Cytoskeletal 
organization 

sif TIAM1 31% -Pooled 
(1.82e-05) 
-Females 
(2.91e-05) 

Rac/Rho-
Guanyl-
nucleotide 
exchange 
factor activity. 
Mediates 
Rac/SCAR/Ar
p2/3 actin 
nucleation. 

Macrophage 
and Dendritic 
Cell actin 
dynamics. 

(Sone et al., 
1997) 
(Georgiou and 
Baum, 2010) 
(Bohdanowicz 
et al., 2013) 

CG32082 BAIAP 28% Antagonistic 
(3.76e-05) -
Pooled 
(3.82e-05) 
-Males  
(6.81e-05) 
 

BAR-domain 
protein 
(IPR027681) 

Actin 
cytoskeletal 
dynamics and 
formation of 
membrane 
protrusions. 

(Scita et al., 
2008) 

Pkc98E PRKCE 58% -Pooled 
(5.92e-06) 
 

Protein kinase 
C family 
member. 

Recruited to 
phagosome by 
DAG. IgG-
dependent 
phagocytosis. 
Important for 
LPS-mediated 
signaling in 
activated 
macrophages. 

(Castrillo et al., 
2001)  
(Cheeseman et 
al., 2006) 
 

Ziz DOCK9 39% -Males 
(4.57e-05) 

Rho-GEF. Zizimin1, 
CDC42 
activator. 

(Meller et al., 
2002) 
(Meller et al., 
2005)  

mbt PAK4 
PAK7 

50% 
47% 

-Pooled 
(7.06e-05) 
 

Regulates 
actin 
cytoskeletal 
dynamics. 
PAK family of 
Ser/Thr 
protein kinase. 
 

Regulates 
actin 
cytoskeletal 
dynamics. 
Effector of 
Rac and 
CDC42.  

(Schneeberger, 
2003) 
(Wells and 
Jones, 2010) 
(Stuart et al., 
2007) 
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Vesicle 
trafficking 

CG15087 VPS51/
ANG2 

42% -Males 
(9.71e-05) 
 

 Vesicle-
recycling. 
Member of 
Golgi-
associated 
retrograde 
protein 
(GARP) 
complex. 

(Pérez-Victoria 
et al., 2010)  

rg LRBA 40% -Pooled 
(7.93e-05) 
 

Protein kinase 
A anchor 
protein. 
Interacts with 
Notch and 
EGFR 
signaling 
pathways. 
 

Vesicle 
trafficking in 
response to 
LPS 
stimulation in 
murine and 
human 
macrophages.  

(Shamloula et 
al., 2002) 
(Wang et al., 
2001) 
(Alangari et al., 
2012) 

kst SPTBN5 32% -Pooled 
(7.34e-07) 
-Males 
(8.01e-05) 

Endocytosis 
and 
endosomal 
transport. S2 
cell 
phagosome 
proteome 

 (Phillips and 
Thomas, 2006)  
(Tjota et al., 
2011)  
(Stuart et al., 
2007) 

Exo70 EXOC7 31% Antagonistic 
(1.48e-05) 

Exocyst 
complex. 
Phagocytosis 
of bacteria. S2 
cell 
phagosome 
proteome. 
 

Vesicle 
trafficking. 
Interacts with 
Cdc42 to 
regulate 
phagosome 
formation 
during 
phagocytosis 

(Stuart and 
Ezekowitz, 
2005) 
(Stuart et al., 
2007)  
(Mohammadi 
and Isberg, 
2013) 
(Guichard et al., 
2014) 
 Syt12 SYT12 32% -Males    

(8.3e-07) 
-Pooled 
(3.32e-06) 
-Females 
(1.02e-05) 

Synaptic 
vesicle 
release. 

Membrane 
trafficking. 

(Adolfsen and 
Littleton, 2001) 
(Adolfsen et al., 
2004)  
(Maximov et 
al., 2007) 
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Lysosomes  CG8596 MFSD8 35% -Pooled 
(7.73e-05) 
-Males 
(8.85e-05) 
 

Major 
Facilitator 
Superfamily 
Protein. 
 

Localizes to 
lysosomal 
membrane. 
Lysosomal 
storage 
disorder. 

(Mole et al., 
2005) 

Lip4 LIPA 38% - Females 
(4.78e-05) 
Antagonistic 
(2.28e-05)  
 

Acid Lipase. 
Triglyceride 
lipase activity. 
 

Lipase A, 
lysosomal 
acid, 
cholesterol 
esterase. 
Lysosomal 
enzyme.  
 

(Vihervaara and 
Puig, 2008) 
(Anderson and 
Sando, 1991)  
(Garin et al., 
2001) 
 

CG14291 SGSH 55% Antagonistic 
(9.82e-07) 

N-
sulfoglucosam
ine 
sulfohydrolase 
activity. 
 

Enzyme 
involved in 
lysosomal 
degradation of 
heparan 
sulfate.  

(Scott et al., 
1991) 
 

LManIII/ 
CG9463 

MAN2B
1 

39% -Males  
(8.66e-05) 

Alpha-
mannosidase 
activity, 
carbohydrate 
binding. 
 

Mannosidase 
enzyme 
involved in 
lysosomal 
glycoprotein 
turnover.  

(Rosenbaum et 
al., 2014) 

ATP7 ATP7B 
ATP7A 

47% 
46% 
 

-Males  
(6.83e-07) 
-Pooled 
(1.18e-05) 
 

Copper 
efflux/transpor
t in S2 cells. 
 

Wilson’s 
Disease.  Co-
localizes with 
Rab7 and late 
endosomes.  
Transport 
copper from 
cytosol to late 
endosomal 
lumen. 

(Southon et al., 
2004) 
(Harada et al., 
2005)  

Cht2 CHIT1 35% -Pooled  
(4.52e-05) 
 

Carbohydrate 
metabolic 
process, 
chitinase 
activity. 
 

Lysosomal 
storage 
disease. 

(Stuart et al., 
2007)  
(Boot et al., 
1998) 

Table 2-3: Notable candidate genes with human orthologs implicated in immunity. 

Candidate genes associated with immunity, cytoskeletal organization, vesicle trafficking 

and lysosome dynamics in Drosophila or humans. 
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D. Gene Ontology Analysis 

 To evaluate whether genes implicated in S. aureus phagosome maturation are 

functionally related, we completed gene ontology (GO) enrichment analysis using 

FlyMine v40.1 (Lyne et al., 2007). All GO analyses were carried out using the Holm-

Bonferroni multiple testing correction, and GO terms with corrected p-values < 0.05 are 

reported. No GO categories were overrepresented for the 185 candidate genes (SNP p-

values < 1x10-4) associated with phagosome maturation in males, but several GO 

categories were found for female, pooled and antagonistic associated genes.  GO analysis 

of the 103 female phagosome maturation associated genes (SNP p-values < 1x10-4) 

showed overrepresentation of two biological process GO terms: cell fate commitment (p-

value 0.019) and anatomical structure morphogenesis (p-value 0.022). The female 

associated gene list was also enriched for two cellular component GO terms: cell 

periphery (p-value 0.0126) and plasma membrane associated proteins (p-value 0.024). 

The list of 145 candidate genes identified in the pooled GWA was enriched for 21 

biological process GO terms, including biological regulation (p-value 1.56e-05), 

signaling (p-value 0.0017), cell projection organization (p-value 0.0046), and cell surface 

receptor signaling pathway (p-value 0.023). One additional molecular function category 

was enriched in pooled candidate genes: sequence-specific DNA binding (p-value 0.023).  

Like the female GO analysis, the cellular component GO terms for pooled candidate 

genes, included plasma membrane (p-value 3.22e-06) and cell periphery (p-value 6.64e-

05). Biological process GO enrichment analysis for 194 candidate genes (SNP p-values < 

10-4) associated with antagonistic phagosome maturation effects revealed 

overrepresentation of two GO terms: locomotion (p-value 0.02) and movement of cell or 
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subcellular component (p-value 0.045). Proteins with IgG-like folds were also found to 

be overrepresented in the antagonistic GWA candidate gene list (p-value 0.001).   

 We also carried out GO analysis using our complete list of 528 candidate genes 

and uncovered enrichment of 82 biological process GO terms (Online Supplemental 8).  

Among the most significantly enriched categories were generation of neurons (p-value 

3.99e -10), cell projection organization (p-value 1.00e -06), and locomotion (p-value 

5.29e -06).  These results suggest that a large subset of candidate genes associated with  

S. aureus phagosome maturation may play dual roles in regulating hemocyte and 

neuronal cytoskeletal dynamics. Additional terms of interest included potassium ion 

transport (p-value 0.01) and signaling (p-value 0.05).  Furthermore, eight candidate genes 

have been previously characterized as important mediators related to lymph gland 

development (p-value 0.04): zfh1, lz, Pvf3, Ser, Dif, tin, Rac2 and dpp. This finding 

indicates that the functional read-out of the screen, pHrodo-S. aureus intensity of the 

hemocytes along the dorsal vessel, also results in the identification of SNPs affecting 

hemocyte development and dorsal vessel morphology.  The molecular process 

enrichment analysis identified eleven candidate genes important for potassium ion 

transmembrane transporter activity (p-value 0.003): slo, SK, CG42732, Nckx30C, Sh, 

Shab, Ork1, Elk, Task6, Nha2, and nrv1, suggesting that phagocytic membrane potential 

and ion flow may be important factors during phagosome maturation in Drosophila 

hemocytes. Finally, cellular component GO terms for plasma membrane associated 

proteins were overrepresented (smallest p-value 1.92e -09) and protein domain 

enrichment analysis revealed that our candidates were enriched for immunoglobulin-like 

(IgG-like) proteins (p-value 2.9e-05).  
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E. Candidate genes associated with Oxidative Stress Resistance  

 Fifty-four genes in the S. aureus phagosome maturation candidate list were also 

identified as associated with oxidative stress resistance in another DGRP study (Weber et 

al., 2012) (p-value 4.28e-09). The oxidative stress resistance GWAS was enriched for 

processes associated with neuronal development, genes associated with ion transport, and 

genes encoding proteins with IgG-like domains.  The high degree of similarity between 

the two studies may indicate that many of the factors that govern resistance to oxidative 

stress at the level of the whole organism also mediate the oxidative burst in hemocytes. 

Reactive oxygen species (ROS) are integral to bacterial killing within the 

phagolysosome.  Conversely, overproduction of ROS within phagocytic cells causes 

immune dysfunction and flies with defective antioxidant production show impaired 

cellular immune responses. For example, hemocytes of flies with a disrupted polyph gene 

(a glutamate transporter) exhibit overproduction of ROS in response to S. aureus and 

polyph mutant blood cells show a decreased ability to phagocytose S. aureus (Gonzalez et 

al., 2013).  Thus, it is possible that some of the fifty-four genes identified in our screen 

and the oxidative stress GWA may be participate in the oxidative burst process during 

phagocytosis in hemocytes. 

F. Functional tests to validate candidate genes   

  To confirm the effects of a subset of our candidate genes on S. aureus phagosome 

maturation, we repeated the in vivo S. aureus phagosome maturation assay using adults 

expressing RNAi knockdown constructs to silence genes specifically in hemocytes. We 

chose to validate 38 of the 528 genes related to SNPs with p-values less than 1x10-4 based 
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on the availability of TRiP (http://www.flyrnai.org) and VDRC 

(http://www.stockcenter.vdrc.at) RNAi stocks.  We tested the effects of three candidate 

genes whose corresponding SNPs had high statistical significance (p-value < 5.0e-08): 

bif, bbc, and CG42673. In addition, we selected 15 genes that encoded proteins predicted 

to have IgG-like domains, 12 genes that encode proteins predicted to be at the plasma 

membrane, and 8 proteins previously found in the proteomic analysis of the Drosophila 

phagosome (Stuart et al., 2007). 

 The results for the secondary RNAi screen are presented in Table 2-4. For 28 

candidate genes, mRNA knockdown in hemocytes did not affect phagocytosis of              

S. aureus. We speculate that due to the high false discovery rate of our GWA, many of 

the genes we tested are false positive hits.  Genes that truly play a role in phagosome 

maturation in the DGRP may not validate using RNAi due to the fact that hemocyte-

specific RNAi may not recapitulate the effect of the associated SNPs in the DGRP.  

Within the natural population, SNPs may not confer loss of function phenotypes or SNPs 

may alter function of associated genes in other tissues.  Ten candidate genes did influence 

S. aureus phagosome maturation during the initial tests. Two follow-up in vivo S. aureus 

phagosome maturation assays were then performed. Ultimately, three of the candidate 

genes tested with RNAi showed significantly decreased S. aureus phagosome maturation 

phenotypes: defective in proboscis extension response 10 (dpr10), friend of echinoid 

(fred), and CG42673. Our studies were then expanded to ascertain the extent of immune-

related dysfunction conferred by loss of each of the 3 genes.  
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Table 2-4: Candidate genes tested in secondary screen using RNA interference in  
 
hemocytes. 
Category Gene 

Symbol 
GWAS parameter and smallest 
p-value 

Protein features Hemocyte-specific 
RNAi phenotype 

Follow-up (n= 3 
experiments) & 
results 
 

Top p-
value 
 

bif Antagonistic effects: 9.4e-09 -Cytoskeleton 
binding protein 

No phenotype.  

bbc Pooled: 2.44e-08 
Males: 5.69e-06 

-CDP-alcohol 
phosphatidyl-
transferase 

No phenotype.  

CG42673 Female: 9.66e-08 
Male: 9.07e-05 

-Pleckstrin 
homology-like 
domain 

M & F decreased 
phagosome 
maturation 

M and F 
decreased 
phagosome 
maturation IgG-like 

domain 
fas Pooled: 4.5e-05 

Males: 9.44e-05 
Females: 1.45e-05 
Antagonistic effects:3.4e-08 

-IgG-like 
domain  

M & F Reduced 
phagosome 
maturation 

No phenotype. 

dpr1 Pooled: 3.95e-05 
Females: 8.87e-06 
Antagonistic effects:1.96e-06 

-IgG-like 
domain 

No phenotype.  

dpr8 Male: 4.87e-05 
Antagonistic effects: 5.6e-07 

-IgG-like 
domain 

No phenotype.  

DIP-α 
CG32791 

Male: 7.642e-06 -IgG-like 
domain 
-DPR interacting 
protein 

No phenotype.  

CG5984 Male: 2.7e-06 -IgG-like 
domain 
-Actin binding 
Filamin-B 

No phenotype.  

CG12484 Female: 4.68e-05 -IgG-like 
domain 

No phenotype.  

CG34113 Female: 1.01e-05 -IgG-like 
domain 

No phenotype.  

fred Female: 7.48e-05 -IgG-like 
domain 

F decreased 
phagosome 
maturation 

F decreased 
phagosome 
maturation 
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 side Male: 5.67e-05 
Female: 3.77e-05 

-IgG-like 
domain 

No phenotype.  

     dpr10 Antagonistic effects: 2.43e-05 -IgG-like 
domain 

F Reduced 
phagosome 
maturation 

F Reduced 
phagosome 
maturation 

CG31814 Antagonistic effects: 4.96e-05 -IgG-like 
domain 

No phenotype.  

dpr10 Antagonistic effects: 2.3e-05 -IgG-like 
domain 

F decreased 
phagosome 
maturation 

F decreased 
phagosome 
maturation 

robo3 Antagonistic effects: 6.15e-05 -IgG-like 
domain 
 

No phenotype.  

kirre Male: 5.65e-05 
Antagonistic effects: 2.28e-05 

-IgG-like 
domain 

No phenotype.  

beat-VII Antagonistic effects: 7.12e-05 -IgG-like 
domain 

F Increased 
phagosome 
maturation 

No phenotype. 

CG34353 Antagonistic effects: 8.36e-06 -IgG-like 
domain 

No phenotype.  

ATP7 Pooled: 1.18e-05 
Males: 6.82e-07 

-Copper 
transport 

No phenotype.  

Predicted 
to localize 
to plasma 
membrane 

FMRFaR Female: 1.8e-05 
Antagonistic effects: 3.65e-05 

-G protein 
coupled receptor, 
rhodopsin-like  

No phenotype.  

loco Female: 2.48e-07 
Antagonistic effects: 1.97e-05 

-G-protein 
alpha-subunit 
binding 

No phenotype.  

Sh Female: 2.98e-06 
Antagonistic effects: 8.93e-06 

-Potassium 
channel 

No phenotype.  

GluRIB Pooled: 3.95e-05 
Males: 4.09e-05 
Antagonistic effects: 7.44e-06 

-Glutamate 
receptor 

No phenotype.  

CG31760 Antagonistic effects: 7.62e-05 -GPCR 
 

No phenotype.  

Ork1 Antagonistic effects: 4.09e-05 -Potassium 
Channel activity 

No phenotype.  

Con Antagonistic effects: 1.04e-05 -Leucine-rich 
repeats 

No phenotype.  

foi Antagonistic effects: 3.28e-05 -Zinc/iron 
permease 

No phenotype.  

Toll-6 Antagonistic effects: 4.77e-05 -TIR domain M Reduced 
phagosome 
maturation 

No phenotype 

rk Antagonistic effects: 2.97e-05 -GPCR receptor 
activity  

M & F Reduced 
phagosome 
maturation 

No phenotype. 

Sema-1b Antagonistic effects: 1.66e-05 -Semaphorin M & F Reduced 
phagosome 
maturation 

 No phenotype. 

kst Pooled: 7.34e-07 
Males: 8.01e-05 

-Cytoskeleton 
binding protein 

No phenotype.  
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Table 2-4: Candidate genes tested in secondary screen using RNA interference to 

silence expression in hemocytes. 

Genes were selected if they met one of the following criteria: Top p-value for a given 

GWA parameter, encode a protein with IgG-like domain, encode for a protein predicted 

to localize to the plasma membrane, protein found in the Stuart et al. 2007 S2 cell 

phagosome proteome.  Male and female adult flies with the candidate genes silenced in 

hemocytes were tested for S. aureus phagosome maturation.  

  

S2 cell 
phagosome 
proteome 

 

nrv1 Pooled: 5.6e-05 
Males: 7.6e-06 

-Na+/K+ 
ATPase subunit 

No phenotype.  

regucalcin Pooled: 5.47e-05 
Males: 3.95e-05 

-Intracellular 
signaling 

No phenotype.  

LKR Male: 6.9e-05 
Antagonistic effects: 5.77e-05 

 M Reduced 
phagosome 
maturation 

No phenotype. 

Pax Male: 8.57e-05  No phenotype.  

Fim Female: 9.3e-05 -Actin binding No phenotype.  

Exo70 Antagonistic effects: 1.48e-05 -Exocyst 
complex protein 

No phenotype.  

Hsp23 Antagonistic effects: 9.77e-05 -Heat shock 
protein 

No phenotype.  
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G. Dpr-family member dpr10 affects S. aureus phagosome maturation  

 Dpr1 is the founding member of a family of 20 paralogous IgG-like proteins in 

Drosophila (Nakamura et al., 2002).  Nakamura et al. characterized a role for dpr1 in the 

behavioral response to salty foods.  The absence of dpr1 in a subset of neurons in the 

gustatory organs causes dpr1 mutant flies to exhibit defects in the salt aversion, 

indicating a role for the extracellular IgG-like domains of dpr in the perception of small 

chemical stimuli. Our study found 4 members of the Dpr-family, dpr1, dpr6, dpr8, and 

dpr10, are associated with S. aureus phagosome maturation (Table 2-5). Of theses genes, 

dpr6 and dpr10 are the most closely related. Dpr6 and Dpr10 share 67% identity at the 

amino acid level.  Furthermore, dpr6 and dpr10 are clustered on the 3rd chromosome, but 

are transcribed in opposite orientations. The SNPs associated with each of these genes are 

located within introns and it is unclear how the expression of the genes is affected by the 

presence of the minor allele variants. Recently, a study characterizing the extracellular 

domains of cell surface receptors and ligands showed direct interactions between the Dpr-

family members and several previously novel IgG-like domain-containing proteins 

(Ozkan et al., 2013).  An additional gene identified in our screen, CG32791, also known 

as Dpr-interacting protein α (DIP-α), was shown to physically interact with dpr6 and 

dpr10 (Ozkan et al., 2013). Owing to the availability of RNAi lines, we were able to 

assess the effects of dpr1, dpr8, dpr10 and DIP-α but not dpr6. Of these genes, only 

dpr10 hemocyte-specific knockdown led to decreased pHrodo-S. aureus fluorescence in 

adult hemocytes (Figure 2-8). 
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Dpr family gene and 
genomic location 

GWAS 
parameter 

SNP ID P-value Minor 
Allele 

Major 
Allele 

Minor 
Allele 
Frequency 

dpr1 
2R:16,585,988…16,637,94
7 [+] 

Pooled 2R_16694360 3.95E-05 C T 0.06098 

Sex 
difference 

2R_16638854 1.96e-06 T A 0.2892 

Females 
2R_16647300 1.61E-05 A G 0.2716 

2R_16647718 8.87E-06 G A 0.2099 

dpr6 
3L:9,967,751…10,132,460    
[+] 

Pooled 
3L_9992040 2.18E-05 A G 0.1519 

3L_9992510 2.25E-05 G A 0.2143 

dpr8 
X:14,216,259…14356,384 
[+] 

 
Males 
 

X_14204940 4.87E-05 C A 0.3676 
X_14206158 8.30E-05 G A 0.4416 
X_14207330 6.13E-05 C A 0.4878 

Sex 
difference 
 

X_14225948 1.45e-05 G A 0.3429 
X_14225998 5.6e-07 A T 0.3065 
X_14226122 3.9e-05 C A 0.338 
X_14226134 6.9e-05 C T 0.4359 

dpr10 
3L:10,140,554…10,179,20
8 [-] 

Sex 
difference 

3L_10165573 2.4e-05 A T 0.3171 

Table 2-5: List of Dpr-family genes associated with S. aureus phagosome maturation 

in the DGRP. 

There are 20 paralogous Dpr-family genes in Drosophila melanogaster. Four members of 

the family were identified in the S. aureus phagosome maturation GWAS.  Dpr-family 

genes exhibit sexually dimorphic effects on the cellular immune response. 
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Figure 2-8: dpr10 RNAi affects S. aureus phagosome maturation in adult hemocytes 

and leads to decreased resistance to S. aureus septic infection. 
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Figure 2-8: dpr10 RNAi affects S. aureus phagosome maturation in adult hemocytes 

and leads to decreased resistance to S. aureus septic infection.  

(A) Quantification of the phagosome maturation of pHrodo-labeled S. aureus bioparticles 

in female WT/dpr10 RNAi and hml>dpr10 RNAi flies. (B) Quantification of the 

phagosome maturation of pHrodo-labeled S. aureus bioparticles in male WT/dpr10 RNAi 

and hml>dpr10 RNAi flies. Six to eight flies per genotype were tested in each 

experiment. Experiments were performed at least 3 times. (C) Representative survival 

curve of female WT/dpr10 RNAi and hml>dpr10 RNAi flies after injection of S. aureus 

(OD 0.5). n=24-30 flies.  Experiments were performed in triplicate. (D) S. aureus (OD 

0.5) bacterial load in female WT/dpr10 RNAi and hml>dpr10 RNAi flies at 0, 24, and 48 

hours post-infection.  Bacterial load was measured in 4-6 individual flies per genotype at 

each time point and the experiment was performed in triplicate.  (E) Representative 

survival curve of male WT/dpr10 RNAi and hml>dpr10 RNAi flies after injection of S. 

aureus (OD 0.5). n=24-30 flies.  Experiments were performed in triplicate. (F) S. aureus 

(OD 0.5) bacteria load in female WT/dpr10 RNAi and hml>dpr10 RNAi flies at 0, 24, 

and 48 hours post-infection.  Bacterial load was measured in 4-6 individual flies per 

genotype at each time point and the experiment was performed in triplicate. Error bars, 

±SE. * p-value <0.05, ns = not significantly different. 
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 One dpr10 associated SNP (p-value of 2.43e-05) was identified to have 

antagonistic effects on S. aureus phagosome maturation and was located at genomic 

position 3L_10165573, in the longest intron of all 4 dpr10 isoforms (based on Flybase 

release 5.57). Knockdown of dpr10 in hemocytes inhibited S. aureus phagosome 

maturation specifically in females (Figure 2-8A and B) but led to increased susceptibility 

to S. aureus septic injury in both female and male flies (Figure 2-8C and E).  At 24 hours 

post infection, we did not see differences in S. aureus bacteria load in females or males.  

However, we did observe increased bacteria loads at 48 hours post infection in males, but 

not in females – although female flies did exhibit a trend toward higher bacteria loads at 

48 hours.  These results indicate dpr10 modulates the immune response to S. aureus in a 

sex-specific manner, causing reduced tolerance infection in females but leading to 

decreased resistance in males (Figure 2-8D and F).   

 To differentiate between pathogen recognition and downstream phagosome 

maturation processes, we also performed an in vivo S. aureus phagocytosis assay. We 

observed no differences between hml>dpr10 RNAi and WT/dpr10 RNAi males or female 

flies (Figure 2-9). Additionally, we saw no defects in phagocytosis of 1µm latex beads or 

phagosome maturation of pHrodo-conjugated E. coli bioparticles (Figure 2-9). Together, 

these results establish a functional role for dpr10 in regulating the phagosome maturation 

of S. aureus in Drosophila. 
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Figure 2-9: dpr10 RNAi does not affect phagocytosis of E. coli or latex beads. 

 (A) Quantification of the phagocytosis of S. aureus bioparticles in WT/dpr10 RNAi and 

hml>dpr10 RNAi flies. (B) Quantification of the phagocytosis of 1µM latex beads in   

WT/dpr10 RNAi and hml>dpr10 RNAi flies. Six to eight flies per genotype were tested 

in each experiment. Experiments were performed at least 3 times. Error bars, ±SE. * p-

value <0.05, ns = not significantly different. 
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H. Friend of echinoid RNAi leads to decreased S. aureus phagosome maturation  

 The cell adhesion molecule (CAM), friend of echinoid (fred), was found to be 

associated with S. aureus phagosome maturation in the female GWAS. fred encodes a 

plasma membrane-associated protein with seven immunoglobulin-C2 type domains, two 

Fibronectin type-III domains, a transmembrane domain and an intracellular region 

(Chandra et al., 2003). fred and its paralog, echinoid (ed), are located on chromosome 

arm 2L, proximal to one another, but in opposite orientations (Chandra et al., 2003). ed 

and fred genetically interact with the Notch signaling pathway as well as the epidermal 

growth factor (Egfr) signaling pathway (Chandra et al., 2003; Fetting et al., 2009). fred 

was shown to coordinate cellular movement during ommatidial rotation and during wing 

disc sensory organ development. 

 Silencing fred expression in hemocytes led to reduced S. aureus phagosome 

maturation in female flies (Figure 2-10A and B).  As was observed with dpr10 RNAi 

flies, both female and male hml > fred RNAi flies were more susceptible to S. aureus 

infections than control flies (Figure 1-10C and E). However, in contrast to the tolerance 

phenotype observed in dpr10 RNAi flies, fred RNAi led to decreased resistance to S. 

aureus infection (as both male and female flies carried higher bacteria loads at 24 hours 

post infection) (Figure 2-10D and F). To determine the extent of cellular immune defects 

caused by fred RNAi loss-of-function, we tested for phagocytosis of fluorescein labeled 

S. aureus bioparticles, 1µm latex beads, and fluorescein-conjugated E. coli bioparticles.  

We saw no differences in any of these assays between control and fred RNAi flies 

(Figure 2-11). Together, these results demonstrate that fred plays a more specific role in 

S. aureus phagosome maturation.   
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Figure 2-10: fred RNAi affects S. aureus phagosome maturation in adult hemocytes 

and leads to reduced resistance to S. aureus. 
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Figure 2-10: fred RNAi affects S. aureus phagosome maturation in adult hemocytes 

and leads to reduced resistance to S. aureus. (A) Phagosome maturation of pHrodo-

labeled S. aureus bioparticles in female WT/fred RNAi and hml>fred RNAi flies. (B) 

Phagosome maturation of pHrodo-labeled S. aureus bioparticles in male WT/fred RNAi 

and hml>fred RNAi flies. (C) Survival of female WT/fred RNAi and hml>fred RNAi 

flies after injection of S. aureus (OD 0.5). n=24-30 flies. (D) S. aureus (OD 0.5) bacterial 

load in female WT/fred RNAi and hml>fred RNAi flies at 0, 24 and 48 hours post-

infection. (E) Survival of male WT/fred RNAi and hml>fred RNAi flies after injection of 

S. aureus (OD 0.5). n=24-30 flies. (F) S. aureus (OD 0.5) bacterial load in male WT/fred 

RNAi and hml>fred RNAi flies at 0, 24, and 48 hours post-infection.  All experiments 

were performed at least 3 times. Bacterial load was measured in 6 individual flies per 

genotype at each time point.. Error bars, ±SE. * p-value <0.05, ns = not significantly 

different. 
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Figure 2-11: fred RNAi does not affect phagocytosis of E. coli or latex beads. 

 (A) Quantification of the phagocytosis of S. aureus bioparticles in WT/fred RNAi and 

hml>fred RNAi flies. (B) Quantification of the phagocytosis of 1µM latex beads in   

WT/fred RNAi and hml>fred RNAi flies. Six to eight flies per genotype were tested in 

each experiment. Experiments were performed at least 3 times. Error bars, ±SE. * p-value 

<0.05, ns = not significantly different. 
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I. CG42673 RNAi in hemocytes impairs S. aureus phagocytosis 

 SNPs associated with the gene CG42673 were identified in the female (p-value 

9.66e-08) and male (p-value 9.07e-05) GWAS analyses. CG42673 is located on 

chromosome arm 3L, and is one of 7 Drosophila proteins in the Disabled/Numb related 

adaptor family (PTHR11232). The gene is conserved in Drosophila species and three 

isoforms are generated via alternative splicing in Drosophila melanogaster. Two 

isoforms, CG42673-RB and CG42763-RD, contain a Capon-like N-terminal 

phosphotyrosine-binding domain (PTB_Capon-like: NCBI cd10270) from amino acids 1-

180 – a conserved domain commonly found in signaling proteins.  The PTB_Capon-like 

domain of CG42673 is a member of the Dab-like phosphotyrosine interaction domain 

family (Dab-like PID: IPR006020).  Proteins with Dab-like PID domains often mediate 

endocytosis/processing or exocytosis and PTB domain-containing proteins function as 

adaptor proteins (Yaffe, 2002).  These domains have a common eukaryotic pleckstrin-

homology fold (PH-fold) that binds to phosphatidylinositide head groups and peptides. 

The third isoform, CG42673-RC, has a small pleckstrin-homology binding domain (PH-1 

domain: NCBI cl17171) from amino acids 352-386, but this isoform lacks the full-length 

Dab-like PID domain found in the CG42673-PA and –PD (Figure 2-12F).  

 The founding member of the PTB_Capon-like domain family is the human 

protein CAPON, also known as Nitric oxide synthase adaptor protein-1 (NOSAP1). 

CAPON has a C-terminal PDZ-domain that binds to neuronal nitric oxide synthase 

(nNOS). The N-terminal PTB domain of CAPON binds to a small monomeric GTPase, 

Dexras1 (also called RASD1) (Fang et al., 2000). CG42673 lacks a C-terminal PDZ 

domain but has the PTB and pleckstrin homology domains common to 
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phosphatidylinositide binding proteins. The N-terminal PTB domains of human CAPON 

and CG42673-PB/-PD share 45% identity and the N-terminal domains CAPON and 

CG42673-PC are 33% identical over the PH-like fold (Figure 2-12F).  Thus, CG42673 is 

a putative adaptor protein that may function as a molecular scaffold during phagocytosis 

of S. aureus. 

 RNAi silencing of CG42673 in hemocytes impaired phagocytosis and phagosome 

maturation of S. aureus but did not affect fluorescein-labeled E. coli phagocytosis or 

pHrodo-E. coli phagosome maturation (Fig 2-12 and data not shown). The effects were 

similar in male and female flies, and flies of both sexes were also more susceptible to S. 

aureus infection than controls.  The susceptibility to S. aureus infection was accompanied 

by an increase in bacteria load at 48 hours, suggesting that loss of CG42673 results in 

decreased resistance to infection. Further work will be required to determine the 

importance of each specific isoform during the innate immune response to S. aureus.  
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Figure 2-12: RNAi-mediated silencing of CG42673 in hemocytes causes phagocytosis 

defects and decreased resistance to S. aureus infection. 

  



	 127	

Figure 2-12:  RNAi-mediated silencing of CG42673 in hemocytes causes 

phagocytosis defects in and decreased resistance to S. aureus infection.  (A) 

Phagosome maturation of pHrodo-labeled S. aureus bioparticles in WT/CG42673 RNAi 

and hml>CG42673 RNAi flies. (B) Phagocytosis of fluorescein-labeled S. aureus 

bioparticles in WT/CG42673 RNAi and hml>CG42673 RNAi flies. (C) Phagocytosis of 

fluorescein-labeled E. coli bioparticles in WT/CG42673 RNAi and hml>CG42673 RNAi 

flies. (D) Representative survival curve of WT/CG42673 RNAi and hml>CG42673 

RNAi flies after injection of S. aureus (OD 0.5). n=24-30 flies. (E) S. aureus (OD 0.5) 

bacteria load in WT/CG42673 RNAi and hml>CG42673 RNAi flies. (F) The three 

isoforms of CG42673 are translated into proteins of varying length and composition: 

CG42673-PB (698 amino acids), CG42673-PD (438 amino acids), and CG42673-PC 

(904 amino acids).  Two isoforms, CG42673-PB and –PD, have a full-length N-terminal 

phosphotyrosine-binding domain (PTB) and CG42673-PC has a short, central pleckstrin-

homology binding domain. Error bars, ±SE. * p-value <0.05, ns = not significantly 

different 
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IV. Discussion 

 We have taken advantage of the natural variation within the Drosophila Genetic 

Reference Panel to identify polymorphisms that affect S. aureus recognition and uptake 

by hemocytes. Previous mutant and RNA interference screens have found mutations in 

several genes that serve as phagocytic receptors. We identified a total of 528 candidate 

genes, many of which are novel. Given that the DGRP is a living library of 

polymorphisms across the entire genome, we present this in vivo S. aureus phagosome 

maturation DGRP screen as a complementary approach to previous RNAi and 

mutagenesis screens.  

 We find that the cellular immune response to S. aureus is sexually dimorphic and 

that several lines of the DGRP exhibit a high degree (STD > 0.5) of phenotypic variation. 

These observations are in agreement with other GWA studies that looked at behavioral 

and physiological traits in the DGRP (Harbison et al., 2013; Swarup et al., 2013; Weber 

et al., 2012).  Additionally, sexual dimorphism of the immune response is well 

documented and has been linked to the mating and fitness status of animals (Nystrand 

and Dowling, 2014; Short et al., 2012; Taylor and Kimbrell, 2014; Vincent and Sharp, 

2014).  Previous studies have assessed sexual dimorphism in the context of survival, 

resistance, tolerance, and induction of humoral responses following infection.  Here we 

present compelling evidence that sexual dimorphism in Drosophila immunity extends to 

the cellular immune response as well. The observed sexual dimorphism in phagocytosis 

may underlie differences between males and females in survival and resistance to 

microbial infections.   
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 Within the DGRP lines, natural polymorphisms associated with single candidate 

genes had the ability to affect the S. aureus phagosome maturation phenotype in opposite 

directions – either conferring an increase or decrease in phagosome maturation relative to 

the median for all DGRP lines. The antagonistic GWAS analysis identified multiple 

SNPs within single genes that conferred opposite effects within the DGRP lines.  In one 

such instance, 10 individual intronic SNPs were identified within the gene ypsilon 

schachtel (yps) which encodes a translational regulator of mRNA localization in oocytes. 

Two SNPs in yps (3L_12116828 and 3L_12116878) were associated with increased 

phagosome maturation in females and decreased phagosome maturation in males 

(smallest p-value 2.61e-06).  However, the eight remaining SNPs in yps were associated 

with decreased phagosome maturation in females and an increase in males (smallest p-

value 3.23e-07).  The sexually dimorphic effects of the SNPs in yps could be due to 

altered expression of yps in males versus females – with individual SNPs affecting 

transcription or splicing of yps in a sex-specific manner. Recently, a study to identify 

expression quantitative trait loci (eQTLs) in 192 DGRP lines found widespread sexual 

dimorphism in the gene expression patterns (Huang et al., 2015). These results lend 

credence to our observation of sex-specific SNP effects within the DGRP.  

 Interestingly, our RNAi experiments found that silencing genes in hemocytes did 

not always correspond to the effects of the DGRP SNPs within those loci. For example, 

an intronic SNP in bifocal was the most significant p-value from our screen (antagonistic 

p-value 9.4e-09). No difference in S. aureus phagosome maturation was observed when 

bif was silenced in hemocytes. Durham et al. reported similar findings after conducting a 

GWA using the DGRP to identify loci associated with age-related senescence and female 
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reproductive fitness (Durham et al., 2014). They found that the effects of SNPs within the 

DGRP and the effect of RNAi-mediated silencing the associated candidate genes were 

not always in agreement. We propose several factors that could explain the difference in 

results.  First, the RNAi constructs used to test the effects of candidates were generated in 

different genetic backgrounds than the DGRP lines. Epistatic interactions between 

genetic variants have been implicated in starvation resistance, chill coma recovery, and 

startle response phenotypes within the DGRP (Huang et al., 2012). Linkage between 

polymorphisms in the DGRP could affect the observed S. aureus phagosome maturation 

phenotypes. The absence of the same epistatic interactions in the RNAi lines may result 

in the associated genes showing phenotypes different from the DGRP. Second, we used a 

hemocyte-specific promoter to silence the gene only in blood cells. We specifically 

targeted candidate genes within these cells because we were focused on how the genes 

affect phagocytosis and phagosome maturation of S. aureus within this important 

immune cell type. However, the SNPs identified in our GWA may have effects in other 

cell types and by focusing on hemocytes, we may miss these effects. By using RNAi, we 

only tested for loss-of-function effects and were able to characterize several novel genes 

whose loss-of-function in hemocytes led to phagosome maturation defects. Gain-of-

function studies, particularly within hemocytes, may lead to validation of additional 

candidate genes from our screen. 

 Of the 528 candidate genes identified in our screen, 212 were novel, 

uncharacterized protein-coding genes and 15 were novel pseudogenes/non-protein-coding 

genes. We did detect variants in several genes that had previously been implicated in the 

immune response in the fruit fly. Genetic variants were found in scb, a gene that encodes 
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Integrin-αPS3, which, together with Integrin-βv, functions as a S. aureus phagocytic 

receptor. Variants affecting spätzle (spz), a gene encoding the Toll ligand, and Dif, an 

NFκB protein activated by the Toll receptor were also found. The Toll pathway is also 

important for hemocyte proliferation and density (Qiu et al., 1998; Sorrentino et al., 

2002). In this capacity, the NFκB protein Dorsal (Dl), and not Dif, is the target of Toll 

signaling (Meister, 2004). On the other hand, during the humoral immune response, Dif 

is the main effector of Toll signaling and, upon infection, Dif translocates to the nucleus 

and induces the expression of immune-responsive transcripts such as Drosomycin. 

Drosomycin mRNA levels peak around 24 hours post infection (Tanji et al., 2007). 

However, our screen tested cellular immune responses that occur at a much earlier time 

point, one hour post-infection. The identification of variants in spz and Dif affecting the 

response at this early time point suggest an additional role for Toll signaling during 

phagocytosis. Thus, Toll signaling may play a role in the ability of the hemocyte to 

mount both cellular and humoral immune responses, an intriguing possibility that 

warrants further investigation.  

 Drosophila is a useful model to study human innate immune responses and we 

found orthologs of human genes associated with immunity, vesicle trafficking, 

cytoskeletal organization and lysosomal dynamics (Table 2). Specifically, we identified 

several genes with orthologs implicated in phagocytosis and the respiratory burst in 

neutrophils. These include Superoxide dismutase 2 (SOD2), which converts superoxide 

ions to hydrogen peroxide to promote pathogen killing, and Rac2 (RAC2), a GTPase 

required for activation of NOX2, the NADPH oxidase (reviewed in (Flannagan et al., 
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2009)). Additionally, we identified CG6145, the ortholog of NADK (NAD kinase), a 

principal enzyme regulating cellular levels of NADPH (Lerner et al., 2001).  

 The screen also identified fly orthologs of human genes that mediate cytoskeletal 

reorganization during phagocytosis. In addition to its role during the oxidative burst, 

Rac2 is an evolutionarily conserved component of the signaling cascade that controls 

cytoskeletal remodeling following phagocytic receptor ligation.  RAC2 and Cell Division 

Control Protein 42 (CDC42), a Rho guanosine triphosphatase protein, are necessary for 

actin polymerization and pseudopod extension at the phagocytic cup (Flannagan et al., 

2012). A SNP in Zizman (Ziz), the ortholog of DOCK9 (dedicator of cytokinesis 9) was 

also identified.  DOCK9 is a guanine nucleotide exchange factor that activates CDC42 to 

facilitate the formation of filopodia (Meller et al., 2002). A SNP in the protein kinase 

Mushroom bodies tiny (mbt) was associated with S. aureus phagosome maturation in both 

males and females. The human ortholog of mbt, PAK2 (P21- Protein (Cdc42/Rac) 

Activated Kinase 4), is activated by Cdc42. In mouse macrophages, DOCK9 

phosphorylates the myosin light chain 9 during Fcγ receptor-mediated phagocytosis 

(Bright and Frankel, 2011).   

 Furthermore, a significant SNP was identified in Exo70, the fly counterpart of  

human exocyst complex component 7 (EXOC7). In Drosophila S2 cells, Exo70 promotes 

phagosome biogenesis and plays a role in E. coli uptake (Stuart et al., 2007). In murine 

fibroblast cells Exo70 interacts with Cdc42 to promote phagocytosis of latex beads 

(Mohammadi and Isberg, 2013). Finally, EXOC7 is recruited to Salmonella typhimurium 

invasion foci in HeLa cells and this recruitment facilitates bacterial invasion into the host 

cells (Nichols and Casanova, 2010).  
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 During phagosome maturation the nascent, microbe-containing phagosome 

undergoes a series of regulated fusion events with the lysosomal compartments.  Such 

fusion events are highly regulated and we identified SNPs in loci with human 

counterparts that mediate intracellular vesicle trafficking – Vacuolar protein sorting 51 

(Vps51), rugose (rg), karst (kst), Exo70, and Synaptotagmin12 (Syt12). An acidic pH 

(~pH 4.5) in the lumen of the phagolysosome is crucial for microbial killing.  At low pH, 

hydrolytic enzymes are activated and these enzymes digest the pathogens or particles 

contained within the phagolysosome. In humans, lysosomal storage disorders are caused 

by inherited deficiency of lysosomal enzymes that lead to lysosome malfunction.  We 

found SNPs in loci with human counterparts implicated in lysosomal storage disorders: 

CG8596, Lipase 4 (Lip4), CG14291, Lysosomal α-mannosidase III (LManIII), ATP7, and 

Chitinase 2 (Cht2).  

 Candidate genes associated with S. aureus phagosome maturation are over-

represented in Gene Ontology categories for neuronal development, ion channel activity, 

plasma membrane associated proteins, and proteins with IgG-like domains.  

Neurogenesis involves cytoskeletal remodeling and actin polymerization to facilitate 

cellular movement.  Additionally, filopodia and lamellipodia outgrowths underlie the 

formation of axons and dendrites. In phagocytes, filopodia act as phagocytic tentacles 

and, lamellipodia form the basis of the phagocytic cup, extending over particles to form 

the nascent phagosome with the particle inside (Kress et al., 2007; Swanson, 2008). 

Eighty-three of the genes identified in our screen are associated with the generation of 

neurons, indicating that similar mechanisms mediate the formation and dynamics of 

neuronal and hemocyte outgrowths. Eleven genes implicated in potassium ion transport 
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across cellular membranes were also found in our screen. The role of potassium ion 

channels in phagocytosis has not been established and the physiological relevance of K+ 

during phagocytosis has been a subject of debate. Lysosomes require an acidic pH to 

effectively degrade internalized pathogens. While the vacuolar-type H+ ATPase pumps 

protons into the lumen, a secondary movement of ions from the lysosomal lumen into the 

cytosol is needed to dissipate the membrane potential.  It has been proposed that sodium 

and/or potassium ions may serve as counter-ions that enable acidification (Steinberg et 

al., 2010). Our findings support a role for potassium ion channels; perhaps to maintain 

the phagosome membrane potential and ion flow during phagolysosome acidification.  

 Our goal was to identify novel players important for phagocytosis of S. aureus so 

we focused on potential receptors and looked for genes with loss-of-function phenotypes. 

Of the 38 genes tested in our RNAi experiments, three affected S. aureus phagosome 

maturation when silenced in hemocytes. There is a great deal of redundancy within the 

receptor repertoire for S. aureus in Drosophila hemocytes, and the effects of candidate 

genes silenced using RNAi may be masked by processes working in parallel to control 

the infection. The three genes verified in the RNAi screen, dpr10, fred, and CG42673, 

have not previously been shown to be involved in the immune system. Both dpr10 and 

fred are required for phagosome maturation events after S. aureus uptake. In contrast, the 

third gene, CG42673, is necessary for engulfment (phagocytosis) of S. aureus by the 

hemocyte.   

 Based on sequence similarity with the human adaptor protein, CAPON, CG42673 

is also known as Capon-like protein. Silencing of CG42673 in hemocytes leads to 

decreased uptake of S. aureus-fluorescein labeled bioparticles, indicating that CG42673 
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is important for pathogen recognition or formation of the nascent phagosome. It is 

unlikely that CG42673 acts as a direct S. aureus receptor, as it lacks extracellular and 

transmembrane domains.  Instead, the N-terminal phosphotyrosine-binding domain of 

CG42673 may be acting as a molecular scaffold to mediate the interaction between 

putative S. aureus receptors and downstream signaling molecules at the phagocytic cup. 

Future work to identify CG42673 binding partners in hemocytes should give insight into 

how CG42673 regulates S. aureus-specific uptake.   Based on CG42673’s role as a 

cytosolic adaptor protein required for uptake of S. aureus, we propose the name 

Staphylococcus aureus-Receptor Adaptor Protein (StaRAP). 

 In Drosophila, the fred paralog, echinoid (Ed), is an extensively studied nectin 

ortholog required for the formation of epithelial cell adherens junctions (Wei et al., 

2005). Ed regulates endocytosis of Flamingo during ommatidial development through its 

interaction with the adaptor protein AP-2; and, during this process, Ed localizes to Rab5 

and Rab7-positive endocytic vesicles (Ho et al., 2010). Additionally, Ed and fred 

coordinate cellular movement during eye and wing disc sensory organ development 

through interactions with the Notch and EGFr signaling pathways (Chandra et al., 2003; 

Fetting et al., 2009). The extracellular regions of Ed and Fred share 69% identity overall, 

whereas the intracellular domains exhibit less similarity (30% identity) (Chandra et al., 

2003). Because Ed and fred work in tandem to coordinate cellular movement during 

development, characterizing the phagocytosis phenotypes of fred and ed double mutants 

may useful.  It will be interesting to see if loss of both genes confers a stronger defect in 

phagocytosis of S. aureus.  
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 An important question concerns the mechanism by which fred and dpr10 are able 

to modulate the maturation of S. aureus-containing phagosomes. Because fred and dpr10 

are predicted to localize to the plasma membrane, they may recognize ligands on the 

bacterial surface. Alternatively, fred and dpr10 may be recruited to the phagocytic cup 

via interaction with other receptors that bind to S. aureus. The loss of these proteins does 

not alter uptake of S. aureus, E. coli, or 1µm latex beads, indicating that neither gene 

generically affects the cellular process of engulfment. We also found that loss of fred and 

dpr10 affected the maturation of S. aureus-containing phagosome but did not alter the 

maturation of E. coli-containing phagosomes.  This evidence suggests that fred and dpr10 

are not required for the initial uptake of S. aureus.  Instead, their presence is required for 

proper intracellular trafficking or acidification of S. aureus-containing phagosomes. One 

possibility is that fred and dpr10 are needed for the recruitment of endocytic machinery, 

such as Rab-GTPases, to the phagosome membrane.  Alternatively, fred and dpr10 may 

be required for the formation of signaling complexes that mediate the attachment of the 

nascent S. aureus-containing phagosome to microtubules.  

 Phagosome autonomous maturation is the concept that the fate of an individual 

phagosome is dependent on the cargo within it. This idea was first proposed to describe 

the observation that within the same phagocyte, distinct rates of phagosome maturation 

can be observed – slow maturation for phagosomes containing self-ligands (i.e. apoptotic 

cells) versus rapid maturation of phagosomes containing Toll-like Receptor ligands (like 

lipid polysaccharide) (Blander and Medzhitov, 2004). Studies describing phagosome 

autonomous maturation have looked at self versus non-self cargo within phagosomes 

(reviewed in (Blander and Medzhitov, 2006)).  A more recent study demonstrated a role 
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for JAK-STAT signaling phagosome maturation of heat-inactivated S. aureus in mouse 

macrophages (Zhu et al., 2015). In contrast to our work, this study utilized an in vitro cell 

culture system to characterize S. aureus phagosome maturation. Here we use an in vivo 

system to describe mutants for phagosome maturation that are specific to S. aureus. Our 

evidence supports findings that the cellular response is tailored to specific pathogens at 

two levels: 1) Pathogen recognition by cell surface pathogen recognition receptors. 2) 

Pathogen-specific phagosome maturation. In the future, it will be interesting to determine 

what stage of the process of phagosome maturation is altered by loss of fred or dpr10 and 

how each of these genes drives the S. aureus-specific immune response.  

 The data presented here includes a list of over 500 candidate genes that could 

potentially play a role in the cellular immune response to the Gram-positive bacteria 

Staphylococcus aureus.  Many of the genes are novel, and to our knowledge, have yet to 

be associated with the immune response in Drosophila melanogaster. We have found 3 

new genes important for the cellular immune response. Within hemocytes, fred, dpr10, 

and CG42673 (StaRAP) are required to coordinate a phagocytic response that is tailored 

to S. aureus. To our knowledge, this report is the first to show microbe-specific 

regulation of phagosome maturation in vivo. Loss of these genes perturbs the overall 

immune response and renders the fly less resistant to S. aureus infection. These findings 

underscore the value of Drosophila as an in vivo system to study the multifaceted 

recognition and signaling events that control the cellular immune response to S. aureus.  

 In both humans and insects, phagocytic blood cells act as the initial line of 

defense against S. aureus infections. S. aureus is a significant human pathogen and 

community-associated methicillin-resistant S. aureus strains pose a serious threat to 
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human health.  A more in-depth understanding of the scope of the Drosophila cellular 

response to S. aureus may provide insight into the human response to S. aureus. The 

genes identified in our study provide new insight into the functional mechanisms that 

underlie the cellular immune response to S. aureus in Drosophila melanogaster and may 

provide a foundation for future work studying host-pathogen interactions and innate 

immunity. 

V. Materials and methods  

Flies and fly husbandry: DGRP stocks were generated by Dr. Trudy Mackay’s 

laboratory at North Carolina State University.  The core 40 DGRP stocks (Ayroles et al., 

2009) were provided by Dr. Jeff Leips’ laboratory at the University of Maryland, 

Baltimore County. The remaining DGRP stocks were obtained from the Bloomington 

Stock Center at Indiana University. w1118 and the blood cell-specific driver w1118; 

hmlΔGAL4 were from Bloomington. TRiP (http://www.flyrnai.org) RNAi lines were 

obtained from Bloomington and VDRC (http://www.stockcenter.vdrc.at). The argus 

mutant, and isogenic parental strain cnbw, were obtained from the EMS collection of 

Zuker lines (Koundakjian et al., 2004).  Flies were reared at 25°C with 60% humidity 

under a 12 hour light-dark cycle and were fed a standard molasses/cornmeal/agar 

medium.  Experiments were conducted at the same time each day. 

S. aureus in vivo phagosome maturation screen: We measured 12-15 three-five day-

old individual flies per DGRP line using an in vivo S. aureus phagosome maturation 

assay. Female and male flies were kept in the same vial prior to being using for the 

experiments.  To control for variability between experimental dates and conditions, we 

included two additional laboratory lines with each experiment: 1) cnbw: An isogenic 
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laboratory strain that is able to phagocytose S. aureus. 2) argus: A cnbw EMS mutant line 

that is unable to phagocytose S. aureus (unpublished). For experimental feasibility, 

DGRP lines were tested over the course of several days, in sets of 4-16 DGRP lines and 

age-matched control flies. Using a Pneumatic PicoPump PV820 (World Precision 

Instruments), flies were injected with pHrodo-conjugated S. aureus resuspended in PBS 

(Invitrogen: A10010, 8mg/ml). Resuspended pHrodo-S. aureus bioparticles were stored 

in small aliquots at -20°C and single aliquots were used for each set.  Images of the 

dorsal vessel were obtained at 1 hour after injection using a Zeiss stereomicroscope 

(Discovery V8) with an AxioCam Hc camera. Fluorescence intensity of the area around 

the dorsal vessel was quantified using Axiovision 4.7 and the background fluorescence of 

an adjacent area was also quantified.  The ratio of dorsal vessel fluorescence intensity 

was calculated as: [fluorescence]dorsal vessel area ÷ [fluorescence]adjacent background area. One-

tailed t-tests were used to calculate p-values.  We normalized our data by dividing the 

phagosome maturation phenotypes of each line and sex by the corresponding values for 

cnbw from that day. 

To conduct the secondary RNA interference screen, we compared the phagosome 

maturation phenotypes of progeny from UAS-RNAi lines crossed to a control line w1118  

(WT/RNAi) to the progeny of the UAS-RNAi line crossed to a Hemolectin-ΔGal4 line 

(hml>RNAi). For each genotype, we tested 12-16 control flies and 12-16 knockdown 

flies. A Two-tailed t-test was used to determine if the candidate significantly affected S. 

aureus phagosome maturation.  For candidate genes that showed significant differences 

between control and knockdown flies during the first test, we conducted at least 2 follow-

up experiments to validate the observed phenotype.  
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Genome-wide association analyses: To identify candidate SNPs that contribute to 

differences in our S. aureus phagosome maturation phenotype, we submitted the median 

fluorescence intensity phenotypes to the DGRP Freeze 2 Release 5.49 analysis pipeline 

(http://dgrp2.gnets.ncsu.edu/) and GWA was run using 83 of the 100 lines assayed as 

described in Mackay et al. 2012 (Mackay et al., 2012). SNPs were previously identified 

by whole-genome sequencing of the DGRP lines (Mackay et al., 2012). R packages 

qqman and ggplot2 were utilized to generate Quantile-Quantile (Q-Q) plot and 

Manhattan plot (Barrett et al., 2005). We initially used p-value threshold of p < 10−5 for 

declaring SNPs to be significantly associated with the trait, but to facilitate Gene 

Ontology enrichment and candidate gene identification we relaxed this to p < 10−4. False 

discovery rates of 0.6 (SNPs with p < 10−5) and 0.7 (SNPs with p < 10−4) were calculated 

by Dr. Lipika Ray using Bonferroni multiple testing correction. After multiple testing 

correction, SNPs with p-values < 0.05 were considered significant.  

Gene Ontology analyses: Gene ontology analyses of all genes associated with SNPs in 

the phagosome maturation of S. aureus was carried out using FlyMine v41.0 

(www.flymine.org) (Lyne et al., 2007).  

In vivo phagocytosis: To assay S. aureus and E. coli phagocytosis, approximately 6-8, 3-

5 days old adults flies per genotype per experiment were injected with either fluorescein-

conjugated S. aureus resuspended in PBS (Invitrogen: S2851, 1.6 mg/ml) or fluorescein-

conjugated E. coli resuspended in PBS (Invitrogen: E2861, 1.6 mg/ml). Injections were 

performed using a Pneumatic PicoPump PV820 (World Precision Instruments).  After 30 

min, flies were injected again with Trypan Blue to quench extracellular fluorescence, 

mounted ventral side down, and images of the dorsal vessel were taken using a Zeiss 
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stereomicroscope (Discovery V8) with an AxioCam Hc camera.  Fluorescence intensity 

ratios were quantified as described above.  

To assay phagocytosis of beads, flies were injected with approximately 1.0µm Red 

Fluorescent Carboxylate Modified FluoSpheres diluted 1:20 in PBS.  After 30 min, flies 

were injected with Trypan blue and then mounted and visualized as described above.  

Survival after S. aureus infection: 24-30 adult flies, 5-7 days old, were injected with 

equal quantities of logarithmic phase culture of S. aureus (final OD = 0.5). Flies injected 

with PBS served as a wounding control.  Flies were kept at 25°C, transferred regularly to 

new food, and death was assessed every 24 hours. The experiments were repeated at least 

2 more times.  Log-rank tests were used to determine if survival curves were significantly 

different and p-values <0.05 were deemed significant. 

 Bacteria load assays: Thirty to 50 adult flies per genotype were injected with equal 

quantities of logarithmic phase culture of S. aureus (final OD = 0.5). At 0 and 24 hours 

post injection, 6-8 flies from each group were immediately washed in 70% EtOH, rinsed 

in PBS, and homogenized in Luria-Berani media containing 1% Trition X-100.  

Homogenates were serially diluted and plated on Luria-Bertani agar plates.  Plates were 

stored at 37°C overnight and colony-forming units per fly were calculated.  One-tailed t-

tests were performed and p-values < 0.05 were determined to be statistically significant.  

Experiments were done at least 3 times. 
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Chapter 3  

 

A screen to identify natural polymorphisms that affect Escherichia coli phagocytosis 

in Drosophila hemocytes. 

I. Abstract 

 Through the coordinated efforts of the cellular and humoral arms of innate 

immunity, the fruit fly is able to survive septic infections of the Gram-negative bacteria 

Escherichia coli. A subset of the Drosophila Genetic Reference Panel (DGRP) was 

screened for the ability of their hemocytes to recognize and phagocytose heat-killed, 

fluorescently labeled E. coli. The aim of the screen was to identify genes and signaling 

pathways that play a role in adult hemocyte phagocytosis of E. coli. A Genome-Wide 

Association Analysis (GWA) identified natural variants that were significantly associated 

with phagocytosis of E. coli within the DGRP. Overall, 18 single nucleotide 

polymorphisms (SNPs) were found to be significantly associated with increased 

phagocytosis of E. coli. These SNPs were located in or near ten genes.  Five candidate 

genes were silenced using RNAi-mediated silencing in hemocytes and E. coli 

phagocytosis was assessed. RNAi of these genes in blood cells did not affect 

phagocytosis of E. coli in vivo, indicating that the SNPs may alter the function of these 

candidate genes in other cell types within the DGRP. An analysis of this preliminary data 

as well as future directions will be discussed. 
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II. Introduction 

 Escherichia coli (E. coli), a Gram-negative extracellular bacterium, is not 

generally pathogenic to the fruit fly, Drosophila melanogaster. However, wild type flies 

will succumb to infection within a few days after infection with an extremely high dose 

of bacteria (over 2x106 bacteria cells per fly) (Shiratsuchi et al., 2014). When injected 

into the hemocoel of adult flies, E. coli Gram-negative peptidoglycan is sensed by PGRP 

molecules upstream of the IMD signaling pathway, inducing the activation of the NFκB 

transcription factor Relish (Dushay et al., 1996; Lemaitre et al., 1995).  

 The initial study that characterized the importance of the IMD pathway in defense 

against E. coli also made an interesting observation about a potential interaction between 

cellular and humoral defenses (Lemaitre et al., 1995).  imd mutants are sensitive to E. coli 

infection, in part due to the impaired synthesis of antimicrobial peptides (AMPs) from 

hemocytes and fat body cells.  The authors noted that imd/Black cell double mutant flies 

were twice as susceptible to E. coli than imd mutants alone.  Black cell mutant larvae 

display a high frequency of melanotic tumors and a higher than normal hemocyte count, 

indicating that the Black cell mutation disrupts the normal development and function of 

crystal cells. This disrupted hemocyte niche, in conjunction with the loss of IMD 

signaling, was sufficient to further impair the flies ability to survive an otherwise non-

lethal infection. 

 An elegant genetic study to define the relative roles of the humoral and cellular 

defense reactions during E. coli infections was carried out by the Schneider group (Elrod-

Erickson et al., 2000). The authors carried out infection studies using a high dose of E. 

coli in imd/imd homozygous mutant flies. Sixty percent of imd/imd mutants died within 
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96 hours, but the flies that remained alive after 3 days were able to clear the infection. To 

assess the interaction between the cellular and humoral immune responses the authors 

demonstrated that co-injection of latex beads and bacteria inhibited the hemocytes ability 

to phagocytose and eliminate microbes. Co-injection of beads and E. coli caused 95% of 

imd homozygous mutant flies to die within the first 24 hours after infection, indicating 

that impairment of phagocytosis severely immunocompromised the fly. 

 Hemocyte genetic ablation studies have provided further lines of evidence that 

phagocytosis by blood cells is crucial for the Drosophila immune response to   E. coli. 

Hemocyte-specific expression of pro-apoptotic genes, such as the murine gene bax or the 

Drosophila gene reaper, promotes hemocyte cell death via apoptosis (Defaye et al., 

2009; Shiratsuchi et al., 2014). These flies die more quickly than their wild type 

counterparts after being injected with relatively low doses of E. coli (1 x 104 cells per 

animal). Thus, when phagocytosis has been eliminated via latex bead injections or when 

hemocytes have been genetically ablated, the fly becomes extremely susceptible to what 

would normally be a harmless E. coli infection. These observations indicate that 

microbial elimination by phagocytosis is a key component of the Drosophila immune 

response to E. coli.  

 Several phagocytic receptors for E. coli have been identified in cell culture studies 

as well as in in vivo genetic studies using mutant flies.  To date, the known E. coli 

phagocytic PRRs are: the scavenger receptor SR-CI, the NIM-family receptors Eater and 

NimC1, and PGRP-LC.  Dscam1 and TepII are E. coli opsonic receptors, but their in vivo 

immune roles, as well as the identity of their cognate receptors on the surface of 
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hemocytes, have yet to be defined. Additionally, the intracellular signaling complexes 

that form downstream from E. coli cell surface receptors are still unknown.   

 In an effort to identify genes and signaling pathways that mediate phagocytosis of 

E. coli by adult hemocytes, we carried out a small phagocytosis screen using 30 lines of 

the DGRP. This pilot screen identified 18 single nucleotide polymorphisms (SNPs) in or 

near 10 candidate genes that were significantly associated (P-value < 10-5) with increased 

phagocytosis of E. coli. RNAi lines that were available at the time of our study were 

utilized to silence the expression of 5 candidate genes in hemocytes (Gγ30a, CG5022, 

kuzbanian, iab-8, and CG16791) and E. coli phagocytosis was assessed in these lines.  

Interestingly, hemocyte mediated silencing of the candidate genes did not affect the 

uptake of E. coli. Possible explanations for these results as well as potential future 

experiments will be discussed in more detail below.   

III. Results and Discussion 

A. An in vivo phagocytosis screen identifies single nucleotide polymorphisms 

correlated with E. coli phagocytosis in Drosophila 

 The E.coli phagocytosis assay was performed as previously described (Elrod-

Erickson et al., 2000; Garg and Wu, 2014; Gonzalez et al., 2013). DGRP lines were 

tested over the course of several days and the mean E. coli phagocytosis phenotype of 

each line was normalized by the phenotype of an isogenic laboratory control, cn bw. A 

mutant line that shows impaired E. coli phagocytosis, called argus, was used as a 

negative control. The median phagocytosis value across all 30 DGRP lines was 0.904 

(Figure 3.1). Student’s two-tailed t-tests were conducted to determine if line means were 
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significantly different than the average for all lines.  Line 324 had significantly less 

uptake of E. coli (p-value = 0.03) and line 315 showed significantly higher uptake of E. 

coli (p-value = 0.01).  

 DGRP mean phagocytosis phenotypes were uploaded to the Mackay laboratory’s 

bioinformatics pipeline and GWA analyses were carried out as described in Mackay et al. 

2012 (Mackay et al., 2012). The Mackay group utilizes phenotype data to run ANOVAs 

using the model: phenotype = mean + M, where M is the Marker (SNP). A total of 18 

SNPs were significantly (p-value < 10-5) associated with E. coli phagocytosis in the 

DGRP (Table 3.1). Interestingly, all significant associations were correlated with 

increased E. coli phagocytosis.  Thus, lines carrying the minor allele for a given SNP, 

showed higher E. coli phagocytosis than lines carrying the major allele. SNP positions 

were determined using Flybase genome release 5.13.  Significantly correlated SNPs were 

located in or near ten genes.  
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Figure 3-1: An in vivo phagocytosis screen to identify SNPs that affect phagocytosis 

of the Gram-negative bacteria E. coli. 

 (A) Phagocytosis of fluorescein-labeled E. coli in 30 lines of the DGRP. The average 

phagocytosis of each tested DGRP line was normalized to the laboratory control, cn bw. 

argus, an EMS mutant line that was previously shown to have impaired E. coli 

phagocytosis was used as a negative control. Student’s two-tailed t-tests compared 

individual DGRP line means to the average across all lines.  Line 324 had significantly 

less uptake of E. coli (* p-value = 0.03) and line 315 showed significantly higher uptake 

of E. coli (* p-value = 0.01).  (B) Representative images from the E. coli in vivo 

phagocytosis screen. E. coli phagocytosis of line 427 was 0.907, and this line is 

representative of what the average uptake of E. coli within the DGRP. 
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SNP Gene 
 SNP Site 
Class 

p-value 
Major 
allele 
mean  

Minor 
allele 
mean  

Major 
allele 

Minor 
allele 

Ref. 
allele 

2L:9289970 Gγ30A INTRON 5.21E-06 0.8481 0.98603 G A G 
                  
2L:10345609 CG5022 INTRON 9.42E-06 0.8740 1.02635 C G C 
2L:10345624 CG5022 INTRON 9.42E-06 0.8740 1.02635 G T G 
                  
2L:13632604 kuz INTRON 8.84E-06 0.8717 1.02465 A C A 
2L:13632616 kuz INTRON 8.84E-06 0.8717 1.02465 T G T 
                  
2L:16630083 CG42389 INTRON 7.35E-06 0.8670 1.01123 T G T 
                  
2R:12314225 Sema-2b Synonymou

s coding  
8.66E-08 0.8412 0.9980 C T C 

              
3L:17926686  Eip75B  18,377 bp 

downstrea
m  

3.45E-07 0.8535 1.0167 C T T 
3L:17926728  Eip75B  18,337 bp 

downstrea
m 

7.92E-07 0.8593 1.0167 C T T 
3L:17926737  Eip75B  18,326 bp 

downstrea
m 

7.92E-07 0.8593 1.0167 G A A 
3L:17926835  Eip75B  18,228 bp 

downstrea
m 

7.92E-07 0.8593 1.0167 C A C 
                  
3R:12626858 abd-A  6,491 bp 

downstrea
m 

4.09E-06 0.8479 0.9913 T C C 
3R:12626859 abd-A  6,490 bp 

downstrea
m 

4.09E-06 0.8479 0.9913 T C C 
              
3R:12683030 iab-8 INTRON 2.45E-06 0.8700 1.0291 C A C 
3R:12684561 iab-8 INTRON 4.78E-06 0.8683 1.0272 C G C 
3R:12685741 iab-8 INTRON 5.80E-07 0.8698 1.0452 G A G 
                  
3R:17148323 CG16791 INTRON 9.69E-06 0.8753 1.0347 T G T 
              
3R:26586116  zfh1  5,532 bp 

upstream 
4.57E-06 0.8521 0.9914 A C C 

Table 3-1: List of SNPs that are significantly (p-value<10-5) associated with E. coli 

phagocytosis in the DGRP. 

Single nucleotide polymorphism positions are given as Chromosome:Nucleotide position 

(Flybase release 5.13). MAF = Minor allele frequency of variant. Major allele mean = 

average E. coli phagocytosis phenotype of lines carrying the major allele. Minor allele 

mean = Average E. coli phagocytosis of lines carrying the minor allele. Reference allele 

called from the Berkeley Drosophila Genome Project reference strain y1 cn1 bw1 sp1.  
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B. Genes associated with E. coli phagocytosis in the DGRP 

 Table 3-1 gives the genomic positions, site class, minor allele frequency, and 

ANOVA derived p-values of the 18 top SNPs (p-value <10-5) identified in the GWA 

analysis. Additionally, the mean E. coli phagocytosis phenotypes of lines carrying the 

major and minor alleles are given for each SNP as well as the nearest candidate genes are 

shown. 

 A SNP in CG16791 (p-value = 9.69E-06) was significantly associated with E. coli 

phagocytosis in our screen.  CG16791 was previously identified as important for 

phagocytosis of Candida albicans and E. coli in a genome-wide S2 cell RNAi screen 

(Stroschein-Stevenson et al., 2006). Silencing CG16791 in S2 cells resulted in a 50% 

reduction of E. coli and latex bead uptake and a 64% reduction of phagocytosis of C. 

albicans. Very little is known about CG16791 and the protein contains no predicted 

domains. However, CG16791 was recently identified as potential member of the Draper-

mediated signaling pathway during phagocytosis of apoptotic cells (Fullard and Baker, 

2015).  Overexpression of drpr suppresses the development of the posterior crossvein in 

the wing, a phenotype that may be caused by excess apoptotic cell clearance during wing 

development. A chromosomal deficiency that uncovered CG16791 as well as a CG16791 

Minos-element insertion mutant suppressed the drpr overexpression phenotype. Thus, 

CG16791 participates in a signaling pathway downstream of Draper during apoptotic cell 

phagocytosis. 

 Draper has also been implicated in phagocytosis of E. coli in vitro. RNAi of 

Draper in S2 cells causes a 65% reduction in the phagosome maturation of heat-killed E. 

coli bioparticles (Cuttell et al., 2008). However, due to the fact the E. coli particles used 
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in this study were labeled with the pH sensitive dye pHrodo, it is unclear if the defect 

caused by loss of CG16791 was due to decreased uptake of E. coli or impaired 

phagosome maturation of E. coli containing phagosomes. We hypothesize that CG16791 

mediates E. coli uptake due to the fact that a SNP in CG16791 was significantly 

associated with increased uptake of E. coli in the DGRP lines.  Thus, it is likely that 

CG16791 plays a role during signaling that controls  internalization of the E. coli, rather 

than the maturation of E. coli-containing phagosomes.  

 Two SNPs in kuzbanian (smallest p-value = 8.84E-06) were significantly 

associated with E. coli phagocytosis in the DGRP. Like CG16791, kuzbanian was 

identified in a whole genome S2 cell RNAi screen as important for the phagocytosis of E. 

coli and C. albicans (Stroschein-Stevenson et al., 2006). Kuz is a metalloprotease-

disintegrin (ADAM) transmembrane protein.  ADAM proteins are membrane-anchored 

proteases that are critical for the proteolytic cleavage and release of soluble forms of 

target membrane bound proteins. Kuzbanian was first described as important for nervous 

system development, where it functions to both promote and inhibit neural cell 

differentiation (Rooke et al., 1996). Kuz targets the receptor, Notch, and its ligand, Delta 

(Pan and Rubin, 1997; Qi et al., 1999). As a component of the Notch signaling pathway, 

Kuzbanian cleaves Notch to generate a functional receptor during imaginal disc 

development (Sotillos et al., 1997). Additionally, a screen of a collection of EMS 

mutagenized flies to identify genes that are important for cardiogenesis identified 5 

separate EMS-induced kuz alleles that caused an overproliferation of cardioblast cells in 

the Drosophila heart (Albrecht et al., 2006). Hemocytes develop in larval lymph glands 

and the EMS-induced kuz mutations led to a markedly reduced number of lymph gland 
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cells (Albrecht et al., 2006; Jung et al., 2005). This phenotype was attributed to the fact 

that the loss of kuzbanian function led to abrogation of Notch signaling that would 

normally regulate development of the lymph gland. Twelve hours after pupariation, the 

larval lymph gland ruptures and releases differentiated hemocytes into circulation that 

constitute the majority of hemocytes present at the adult stage (Grigorian et al., 2011). 

The reduced number of lymph gland cells in kuzbanian mutant larvae could translate to a 

reduced number of hemocytes in adult flies.  

 A related study by the Mandal group found clusters of actively dividing 

hemocytes located on the dorsal side of the abdomen in Drosophila adults (Ghosh et al., 

2015).  These cells differentiate into plasmatocytes in the absence of Notch signaling or 

into crystal cells in the presence of Notch signaling. RNAi-mediated silencing of Notch in 

dividing adult hemocytes causes an overproliferation of phagocytic plasmatocytes. 

Because kuzbanian regulates Notch signaling in the larval lymph gland, it is possible that 

it may also function in a similar capacity in adult hemocyte precursor cells. Together, 

these studies raise the possibility that kuzbanian may regulate Notch signaling during 

hemocyte development, differentiation, or proliferation in the fly.  

 Our study used the in vivo phagocytosis assay to directly quantify fluorescence of 

E. coli bioparticles that were phagocytosed by hemocytes associated with the adult heart. 

If the SNPs in kuzbanian cause loss of function, it could lead to aberrant development of 

larval lymph gland cells or increased proliferation of adult plasmatocytes.  The latter 

scenario may explain the increased E. coli phagocytosis observed in DGRP lines carrying 

the minor alleles of variants significantly associated with E. coli phagocytosis.  Over 
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abundance of adult plasmatocytes in the absence of Notch signaling in adults could 

translate to higher levels of E. coli phagocytosis in the DGRP. 

 Another intronic SNP (p-value 5.21E-06) was found in the gene Ggamma30A 

(Gγ30A).  Gγ30A codes the guanine nucleotide binding protein (G-protein) gamma 

subunit of the heterotrimeric G-protein complex which functions downstream of the G-

protein coupled receptor (GPCR) rhodopsin during the phototransduction signaling 

cascade in the Drosophila eye (Schulz et al., 1999). Gγ30A is highly expressed in the 

adult head and retina but is also moderately expressed in the adult heart.  Activation of 

Ras-signaling in hemocytes leads to sustained cell proliferation and altered gene 

expression (Asha et al., 2003). In Ras-activated hemocytes, Gγ30A expression was 

shown to increase by 6-fold.  However, neither Gγ30A or alpha and beta subunits that 

make up the functional G-protein signaling complex, have been previously implicated in 

the immune response to bacteria in the fly. In mammalian macrophages, a GPCR, Brain 

anigiogenesis inhibitor 1 (BAI1), was recently identified as a PRR for apoptotic cells and 

Gram-negative, but not Gram-positive bacteria (Billings et al., 2016; Das et al., 2011). 

 Another SNP (p-value 7.35E-06) associated with E. coli phagocytosis in the 

DGRP is located in CG42389. CG42389 is a membrane associated protein with 

Fibronectin type III-like (FN3) and immunoglobulin-like (Ig-like) domains.  

Interestingly, many proteins that play essential roles in pathogen recognition and the 

immune response contain FN3 and Ig-like domains.  CG42389 is an uncharacterized 

protein that has been shown to physically interact with falafel (flfl), a plasma membrane 

associated serine/threonine-protein phosphatase 4 (Lipinszki et al., 2015; Sousa-Nunes et 

al., 2009). RNAi of Flfl in S2 cells leads to a 50% reduction in the phagocytosis of E. coli 
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(Stroschein-Stevenson et al., 2006).  It is possible that CG42389 acts as a cell surface 

PRR for E. coli on the surface of hemocytes and that it signals downstream through flfl to 

phagocytose the bacteria.  

 Two SNPs (p-value 9.42E-06) in the gene CG5022 were associated with E. coli 

phagocytosis in the DGRP. The CG5022 protein features multiple FERM (F for 4.1 

protein, E for ezrin, R for radixin and M for moesin) domains, a 3-helical bundle, and a 

Pleckstrin homology-like domain.  FERM domain containing proteins are often involved 

in the localization and linkage of cytoplasmic proteins to the membrane (Chishti et al., 

1998). As SNPs in CG5022 were associated with E. coli phagocytosis in our screen, it 

may possible that CG5022 serves as a scaffolding protein for the cytoplasmic signaling 

molecules that mediate actin cytoskeletal organization during particle uptake.   

 Iab-8 is a long non-coding RNA (lncRNA) that is located in the Bithorax complex 

between the HOX genes abd-A and abd-B (Graveley et al., 2011).  Five SNPs located in 

or near the Bithorax complex were identified in the E. coli phagocytosis screen: 2 SNPs 

(p-value 4.09E-06) located ~6.5Kb downstream from abd-A and three SNPs (smallest p-

value 4.09E-06) found within iab-8. Iab-8 produces a microRNA (mir-iab-8) and a 92 Kb 

long non-coding RNA that both repress the expression of the homeotic gene abd-A 

during nervous system development (Gummalla et al., 2012). Abd-A plays a role in 

Drosophila heart development by establishing anterior-posterior polarity in the dorsal 

vessel (Lo and Frasch, 2003).  It is possible that the SNPs in the Bithorax region affect 

the function of abd-A, which in turn alters the dorsal vessel morphology in the DGRP 

lines that display increased E. coli phagocytosis. 
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 The most significantly associated SNP identified in the screen (p-value = 8.66E-

08) was a synonymous coding mutation located in exon 13 of Semaphorin-2A (Sema-2A). 

Although extensively studied for their role in mediating axonal migration, a number of 

semaphorins have been implicated in the immune response in vertebrates (Roney et al., 

2013). Sema-2A, is a secreted semaphorin protein with an N-terminal Sema domain and 

C-terminal immunoglobulin domain that mediates axon guidance in the developing brain 

(Bates and Whitington, 2007). The Sema domain of Sema-2A binds to the surface bound 

receptor, Plexin B, to regulate axon guidance in the Drosophila central nervous system. 

Interestingly, Plexin B was found in the S2 cell latex bead phagosome proteome (Stuart 

et al., 2007).  

 A single SNP (P-value 4.57E-06) was almost 5.5 Kb upstream from Zn finger 

homeodomain 1 (zfh1), a transcription factor that plays an essential role in the 

development of plasmatocytes (Frandsen et al., 2008). zfh1 also downregulates the IMD 

signaling cascade at a transcriptional level upon Gram-negative bacterial infection 

(Myllymaki and Ramet, 2013).  Thus, the SNP upstream of zfh1 could potentially alter 

the development of plasmatocytes or lead to hyperactive IMD signaling.  It will be 

interesting to explore the effects of the SNP upstream of zfh1 in the DGRP lines and how 

this relates to plasmatocyte development or IMD signaling during the immune response.  

 A cluster of 4 SNPs (smallest p-value 3.45E-07) were located ~18Kb downstream 

from Ecdysone-induced protein 75B (Eip75B).  Eip75B is a transcriptional target of the 

Ecdysone nuclear receptor (EcR) and its partner Ultraspiracle (USP) (Thummel, 2001).  

Ecdysone is a steroid hormone that regulates developmental transitions in the fly by 

binding to EcR/USP dimer, which then activates the expression of primary response 
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genes such as the transcription factor Eip75B. Eip75B and other primary targets of the 

EcR signaling complex go on to transcriptionally activate additional genes.  

Several lines of evidence indicate ecdysone signaling is important for the expression of 

molecules that that govern the immune response in the fly. The hemocyte derived S2 and 

l(2)mbn cell lines differentiate into macrophage-like phagocytic cells after treatment with 

ecdysone (Dimarcq et al., 1997). In adults, ecdysone signaling controls the expression of 

antimicrobial peptide genes by regulating genes that are part of the IMD pathway 

(Kaneko et al., 2006). In larval hemocytes, EcR signaling regulates the expression of 

several genes involved in phagocytosis, including the pattern recognition receptors 

Nimrod, Dscam and PGRP-LC (Regan et al., 2013).  

 Eip75B is a nuclear receptor that heterodimerizes with another ecdysone-induced 

nuclear receptor, DHR3, during fly metamorphosis (White et al., 1997). Eip75B null 

mutants are viable and fertile with no detectable developmental phenotypes (Bialecki et 

al., 2002). RNAi-mediated silencing of Eip75B in S2 cells and in adult flies causes a 

robust increase in the expression of the IMD responsive AMP genes Attacin, Diptericin 

and Cecropin following E. coli infection (Kleino et al., 2005; Rus et al., 2013). 

Importantly, in cell cultures and live animals, silencing of Eip75B causes a dramatic 

increase in the expression of the E. coli receptor, PGRP-LC (Kleino et al., 2005; Rus et 

al., 2013).  If the SNPs downstream of Eip75B exert a loss-of-function effect on Eip75B, 

it is feasible that this could be associated with increased expression of PGRP-LC in 

DGRP lines carrying the SNPs. It will be necessary to experimentally assess the levels of 

PGRP-LC in hemocytes carrying the SNPs downstream of Eip75B. 
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C. Effects of RNAi-mediated silencing of select candidate genes in hemocytes 

 We obtained transgenic RNAi lines that were available through the Bloomington 

Stock Center to test the effects silencing candidate genes had on phagocytosis of E. coli.  

Only five of the ten candidate genes identified in our screen were available at the time of 

this study. We were able to test the effect silencing the following genes have on E. coli 

phagocytosis: Gγ30A, kuz, abd-A, CG16791, and CG5022 (Figure 3.2). We did not 

observe any differences in E. coli phagocytosis between control flies or flies with genes 

of interest silenced in hemocytes. 
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Figure 3-2: In vivo phagocytosis assays to test the effects of hemocyte-specific 

silencing of genes associated with E. coli phagocytosis in the DGRP. 

SNPs associated with E. coli phagocytosis in the DGRP were located within the 

following candidate genes: Gγ30a, kuzbanian, CG61791 and CG5022. Abdominal-A 

RNAi was tested due to the fact that three SNPs were located within the long-non-coding 

RNA, iab-8, which in turn regulates abdominal-A. To silence genes in hemocytes, gene-

specific TRiP RNAi lines were crossed to the hemocyte-driver, hmlΔGAL4. As a control, 

TRiP lines were crossed to the hmlΔGAL4 background line, w1118 (WT). Ten-to-12 

progeny from each cross were tested once: (A) Gγ30a, (B) kuzbanian, (C) abd-A, (D) 

CG16791 or three times: (E) CG5022. Statistical analysis: Two-tailed t-tests. Error bars = 

SEM. 
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 Phagocytosis is a highly complex process that involves simultaneous pathogen 

recognition by multiple different receptors to initiate signaling cascades that lead to 

particle internalization. Before going any further with the genetic analyses of the cellular 

immune roles of genes identified in this screen, an analysis how SNPs affect gene 

expression is in order. Prior to carrying out any additional screens, qPCR should be used 

to compare the expression levels of genes of interest in DGRP lines carrying the minor 

alleles versus those carrying the major alleles.  This analysis could also determine if the 

SNPs lead to increased or decreased mRNA expression of candidate genes or if the 

effects of the SNPs occur at the level of post-transcriptional regulation. 

 It is possible that the candidate genes identified in our screen participate in 

parallel signaling cascades initiated from different E. coli phagocytosis receptors. Thus, 

the combined effects of multiple SNPs in the DGRP would be required to bring about the 

increased level of E. coli phagocytosis that several lines of the DGRP displayed. To 

address this possibility, it will be helpful to create transheterozygote flies that express 2 

or more RNAi transgenes against genes of interest in hemocytes.  An alternative 

approach may be to simultaneously inject dsRNA constructs targeting multiple genes to 

silence the expression of several genes of interest at once.  

 Finally, it will be worthwhile to test all genes associated with the SNPs identified 

in this GWA. A literature search of the candidates showed that the genes could be 

potentially affect the immune response through several mechanisms: (A) Mediate heart 

development (kuz, iab-8, and abd-A); (B) Mediate hemocyte development  (kuz, Eip75B 

or zfh1); (C) Regulate the expression of genes that play a role in E. coli recognition (zfh1 

or Eip75B); (D) Regulate actin cytoskeletal dynamics at the phagocytic cup (CG5022) or 
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(E) Be directly involve in pathogen recognition or signaling from E. coli cell surface 

receptors (CG16791, CG42389, Sema-2A, or Gγ30A).   

The work described herein may lay the foundation of future projects to study 

novel interactions between Drosophila hemocytes and E. coli.  Hemocytes are vital to 

protect the fruit fly from septic infections with E. coli. Mutant flies lacking the capacity 

to mount humoral defenses succumb to E. coli infections about 50% of the time.  This 

susceptibility dramatically increases when phagocytic capacity of these same flies is 

inhibited, illustrating the importance of cooperation between hemocytes and 

antimicrobial peptides during infection in the fly. Hemocyte recognition, phagocytosis, 

and degradation of E. coli are needed to control the growth of E. coli within the fly. 

IV. Materials and Methods 

Flies and fly husbandry: DGRP stocks were generated by Dr. Trudy Mackay’s 

laboratory at North Carolina State University.  The core 40 DGRP stocks (Ayroles et al., 

2009) were provided by Dr. Jeff Leips’ laboratory at the University of Maryland, 

Baltimore County. The remaining DGRP stocks were obtained from the Bloomington 

Stock Center at Indiana University. w1118 and the blood cell-specific driver w1118; 

hmlΔGAL4 were from Bloomington. TRiP (http://www.flyrnai.org) RNAi lines were 

obtained from Bloomington. To test the effects of silencing candidate genes in 

hemocytes, RNAi lines were crossed to hmlΔGAL4 flies or to w1118 as a control The argus 

mutant, and isogenic parental strain cnbw, were obtained from the EMS collection of 

Zuker lines (Koundakjian et al., 2004).  Flies were reared at 25°C with 60% humidity 

under a 12 hour light-dark cycle and were fed a standard molasses/cornmeal/agar 

medium.  Experiments were conducted at the same time each day. 
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In vivo phagocytosis: To assay E. coli phagocytosis, approximately 6-8, 3-5 days old 

adults flies per genotype per experiment were injected with fluorescein-conjugated E. coli 

resuspended in PBS (Invitrogen: E2861, 1.6 mg/ml). Injections were performed using a 

Pneumatic PicoPump PV820 (World Precision Instruments).  After 30 min, flies were 

injected again with Trypan Blue to quench extracellular fluorescence, mounted ventral 

side down, and images of the dorsal vessel were taken using a Zeiss stereomicroscope 

(Discovery V8) with an AxioCam Hc camera.  Fluorescence intensity ratios were 

quantified as described above. Experiments were performed at least three times for each 

genotype tested. 

Genome-wide association analysis: To identify candidate SNPs that contribute to 

differences in S. aureus phagocytosis, we tested 30 lines of the DGRP using the in vivo         

E. coli phagocytosis assay.  We submitted the median fluorescence intensity phenotypes 

to the DGRP Freeze 1 Release 5.49 analysis pipeline (http://dgrp.gnets.ncsu.edu/) and 

GWA was performed as described in Mackay et al. 2012 (Mackay et al., 2012). SNPs 

were previously identified by whole-genome sequencing of the DGRP lines (Mackay et 

al., 2012) and SNP positions were annotated according to Flybase Release 5.49.  
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Chapter 4  

 

The RNA splicing factor Ataxin-2 binding protein 1 is required for the cellular 

immune response in Drosophila phagocytes. 

I. Abstract  

 To identify novel genes and signaling pathways involved in phagocytosis of 

bacteria, we screened a subset of the Drosophila Genetic Reference Panel (DGRP) for the 

ability of their hemocytes to phagocytose the Gram-positive bacteria Staphylococcus 

aureus, a major human pathogen (Mackay et al., 2012; Miller and Cho, 2011; van Kessel 

et al., 2014). One of the genes identified by our screen was Ataxin 2 Binding Protein-1 

(A2bp1). A2bp1 is a member of the highly conserved Fox-1 family of RNA-binding 

proteins (Bajpai et al., 2004; Kuroyanagi, 2009; Shibata et al., 2000). Fox-1 family 

members regulate tissue-specific alternative splicing by binding to a (U)GCAUG element 

in regulated exons or flanking introns of mRNA precursors (Auweter et al., 2006; 

Fukumura et al., 2007; Jin et al., 2003; Ponthier et al., 2006; Underwood et al., 2005). 

Human A2bp1 orthologs, also known as RBFOX 1, 2, and 3 have been linked to brain 

development, cardiac function, and Autism Spectrum Disorders (Bhalla et al., 2004; Bill 

et al., 2013; Gao et al., 2015; Lovci et al., 2013; Martin et al., 2007; Shibata et al., 2000; 

Voineagu et al., 2011; Weyn-Vanhentenryck et al., 2014; Zhang et al., 2008). In 

Drosophila, A2bp1 mediates a diverse range of developmental and cellular processes 

(Bajpai et al., 2004; Jordan et al., 2012; Tastan et al., 2010; Usha and Shashidhara, 2010). 

A number of RNA-binding proteins regulate mRNA stability, splicing and post-
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transcriptional responses during mammalian and insect immune responses (Dong et al., 

2012; Kafasla et al., 2014; Riddell et al., 2014).  Flies with A2bp1 silenced or 

overexpressed in phagocytic blood cells (hemocytes) are specifically impaired in 

phagocytosis and survival following S. aureus infection. To identify A2bp1 targets, we 

performed transcriptome analysis in isolated adult hemocytes. Twenty genes were 

differentially expressed in hemocytes when A2bp1 expression was silenced via RNAi. An 

additional 25 genes were differentially expressed after S. aureus infection. One of the 

genes negatively regulated by A2bp1 in adult blood cells is the Immunoglobulin-

superfamily member Down syndrome adhesion molecule 4 (Dscam4). RNAi-mediated 

silencing of A2bp1 and Dscam4 in blood cells rescued the fly’s immune response to S. 

aureus indicating that Dscam4 negatively regulates S. aureus phagocytosis.  

II. Results and Discussion 

A. A SNP in A2bp1 is associated with reduced phagocytosis of Staphylococcus aureus  

 In order to characterize natural genetic variation in the innate immune response of 

Drosophila to Gram-positive (S. aureus) bacteria, we screened 30 lines of the DGRP 

using a in vivo adult phagocytosis assay (Figure 4-1A) (Elrod-Erickson et al., 2000). To 

control for experimental variability, the data was normalized to an isogenic laboratory 

strain, cn bw. A previously characterized line known to have defects in S. aureus 

phagocytosis (argus), served as a negative control.  The median phagocytosis for all 30 

DGRP lines was 0.99. Phagocytosis images are shown for line 365 (showing median 

phagocytosis), line 307 (with significantly reduced phagocytosis) and line 786 (with 

significantly higher phagocytosis) (Figure 4-1A). A schematic of how the fly is imaged in 
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the phagocytosis assay is shown in Figure 4-1B. Genotype-phenotype association 

analyses revealed that a SNP in the second intron of A2bp1 (minor allele (A) at position 

3L:10538501, p-value 6.67 E-06) was a natural polymorphism found in lines with 

reduced phagocytosis of S. aureus bioparticles, such as line 307 (Figure 4-1A and C).  

 Eight splice forms are produced from A2bp1 (Figure 4-1C).  The transcription of 

two isoforms, A2bp1-RL and A2bp1-RH, is initiated 34.5kB upstream of the remaining 

six isoforms. The 5’UTR and first and second exons included in A2bp1-RL and A2bp1-

RH are unique to these transcripts. A2bp1-RE, -RF, -RJ, -RI, -RK, and –RM share the 

same transcription start site and a common 5’UTR sequence.  However, all of the 

isoforms contain common exons that are translated into the highly conserved Fox 1-

family RNA-recognition motif.   

 We verified that A2bp1 is expressed in adult hemocytes by quantifying the mRNA 

levels of A2bp1 in GFP-positive adult hemocytes sorted by fluorescence-activated cell 

sorting (Figure 4-2A). We then compared the expression levels of A2bp1 in DGRP lines 

with the major allele (T) at 3L:10538501 to lines with the minor allele (A) at position 

3L:10538501. A2bp1 mRNA levels were significantly reduced in larval hemocytes from 

line 307 compared to hemocytes from line 365 (Figure 4-2B).  In adult flies, expression 

of two isoforms of A2bp1 (A2bp1-RL and A2bp1-RH) was significantly reduced in lines 

carrying the (A) at 3L:10538501 (Figure 3-2C).  These results indicate that (A) at 

3L:10538501 correlates with decreased expression of specific isoforms of A2bp1 in the 

affected DGRP lines.     
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Figure 4-1: An in vivo phagocytosis screen identifies a SNP in A2bp1 that affects the 

uptake of S. aureus. 

 (A) Phagocytosis of fluorescein-labeled S. aureus in 30 lines of the DGRP. (B) 

Depiction of how the fly is visualized during the adult phagocytosis assay. (C) Schematic 

showing the genomic region of A2bp1 (black bars) and the 8 isoforms expressed from the 

gene (red bars). Location of SNP 3L:10538501 indicated with black arrow. The blue, 

inverted triangle shows where the Minos transposon M101918 is located within A2bp1.  

The TRiP short hairpin RNA construct HMS00478 targets a 21 base pair sequence in the 

3’UTR of all isoforms; depicted by the green triangle. Error bars, ± SEM. * p-

value<0.05, ** p-value<0.01, ns = not significantly different. 
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Figure 4-2: Quantitative PCR analysis of the expression of A2bp1 in Drosophila. 

 (A) Expression of Hemolectin (hml), A2bp1, and A2bp1 isoforms –RL and –RH in FACs 

sorted GFP- positive adult hemocytes. (B) Expression of A2bp1 in larval hemocytes and 

carcasses from lines 365 and 307. Hemocytes were collected from 40 larvae. (C) 

Expression of A2bp1 and of A2bp1 isoforms –RL and –RH in DGRP lines.  Six flies were 

pooled from each DGRP line.  n= 6 DGRP lines with the major allele (T) (787, 208, 365, 

437, 315, and 555) and n=6 DGRP lines with the minor allele (A) (239, 307, 320, 149, 

158, and 362) at position 3L:10538501. Transcript levels were measured via qPCR and 

rp49 was used as an endogenous control.  Experiments were performed in triplicate. 

Error bars, ± SEM. * p-value<0.05, ns = not significantly different.   
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Figure 4-3: Deficiency and Transposon insertion complementation tests confirm 

that a SNP in A2bp1 leads to impaired S. aureus phagocytosis. 

(A) Phagocytosis of fluorescein-labeled S. aureus in lines 365 and 307 crossed to a 

chromosomal deletion line (3L(ED4457)) that uncovers the genomic region of A2bp1. 

(B) Phagocytosis of fluorescein-labeled S. aureus in lines 365 and 307 crossed to a line 

carrying a transposon insertion that disrupts the expression of A2bp1, 

Mi[MIC]A2bp1M101918. For adult phagocytosis assays, 6-8 flies per genotype were used in 

each experiment.  Experiments were performed in triplicate. Error bars, ± SEM. * p-

value<0.05, ** p-value<0.01, ns = not significantly different.  
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 To see if (A) at 3L:10538501 exerts its effect through a loss-of-function, we 

performed deficiency and transposon complementation tests. A deficiency 

(Df(3L)ED4457) uncovering the genomic region of A2bp1 (Chromosomal deletion from 

67E2 to 68A7) failed to complement DGRP line 307. Progeny from this cross exhibited 

impaired S. aureus phagocytosis compared to control files, DGRP line 365/ 

Df(3L)ED4457 (Figure 4-3A).  Additionally, a transposon insertion line 

Mi[MIC]A2bp1M101918  also failed to complement line 307, when compared to control 

flies (Figure 4-3B).  These results indicate that the SNP in A2bp1 causes a loss-of-

function defect.   

A transposon insertion in A2bp1 impairs the cellular immune response to S. aureus 

 Phenotypic analysis of homozygous A2bp1M101918 mutants revealed that these flies 

showed S. aureus-specific phagocytosis defects and altered the expression of A2bp1 

transcripts (Figure 4-4A-C). The A2bp1M101918 insertion caused an increase in expression 

of the first and second exons common to all isoforms, but a decrease in expression of 

A2bp1-RL and A2bp1-RH in blood cells (Figure 4-4D). To examine if the transposon 

insertion in A2bp1 impairs the flies ability to fight an infection with S. aureus, we 

injected log-phase S. aureus (OD 0.2) into the abdomen of adult flies. A2bp1M101918 flies 

were more susceptible to S. aureus infection than the background control, w1118 (Figure 4-

4E). Because the A2bp1M101918 insertion differential altered the expression of A2bp1 

isoforms, it was unclear whether decrease or increase of A2bp1 isoform expression led to 

the immune dysfunction.  
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Figure 4-4: A transposon insertion in A2bp1 impairs the immune response to S. 

aureus. 

 (A) Phagocytosis of fluorescein-labeled S. aureus bioparticles in w1118 and A2bp1M101918 

flies. (B) Phagocytosis of fluorescein-labeled S. aureus by hemocytes from w1118 and 

A2bp1M101918 larvae. (C) Phagocytosis of fluorescein-labeled E.coli bioparticles in w1118 

and A2bp1M101918 flies. (D) Expression of A2bp1 in hemocytes from w1118 and 

A2bp1M101918 larvae. (E) Representative survival curve of w1118, A2bp1M101918, 

A2bp1M101918/Df(3L)ED4457 flies after injection with S. aureus (OD 0.5) n = 28-30 flies. 

Log-rank (Mantel-cox) tests were used to determine of survival after infection was 

significantly different between the tested lines. All experiments were performed at least 

in triplicate. Error bars, ± SEM. * p-value<0.05, ** p-value<0.01, ns = not significantly 

different. 
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B. Altering the expression of A2bp1 in blood cells specifically alters the immune 

response to S. aureus. 

 To determine whether increased or decreased expression of A2bp1 led to impaired 

S. aureus uptake, we directly manipulated A2bp1 levels in hemocytes. We expressed two 

separate A2bp1 RNAi constructs specifically in blood cells using the hmlΔGAL4 driver. 

Phagocytosis of S. aureus bioparticles was significantly decreased in hmlΔ>A2bp1 RNAi 

larval and adult hemocytes as compared to control flies (Figure 4-5A and B).  

Phagocytosis of live, GFP-expressing S. aureus was also significantly decreased in 

hmlΔ>A2bp1 RNAi flies (Figure 4-5C). The A2bp1 RNAi construct HMS00478 is a 

short hairpin RNA that targets a 21 base pair sequence in the 3’UTR of all isoforms and 

all additional RNAi experiments were carried out using this line.  

 Expression of a transgenic A2bp1-RE in the A2bp1 RNAi flies was sufficient to 

rescue the S. aureus phagocytosis phenotype (Figure 4-5A and B).  However, 

overexpression of A2bp1-RE in a wildtype background led to dramatically reduced 

phagocytosis of S. aureus (Figure 4-5D). Of note, hmlΔ>A2pb1 RNAi  and 

hmlΔ>A2bp1-RE flies do not have fewer blood cells and show no changes in the 

phagocytosis of E. coli and latex beads (Figure 4-6).  This indicates that the blood cells of 

these flies develop normally, posess functional phagocytic machinery, but are specifically 

unable to phagocytose S. aureus. Based on these results, we concluded that the 

expression level of A2bp1 must be tightly regulated in hemocytes for an effective cellular 

immune response to S. aureus. 



	 170	

 

Figure 4-5: S. aureus phagocytosis is affected when A2bp1 expression is either 

increased or decreased in hemocytes. 

(A) Quantification and representative images of phagocytosis of fluorescein-labeled S. 

aureus by larval hemocytes from in WT/A2bp1 RNAi, hmlΔ>A2bp1 RNAi and 

hmlΔ>A2bp1-RE/A2bp1 RNAi flies.  For each experiment, ten larvae were injected with 

equal amounts of fluorescein-labeled S. aureus. Approximately 10 cells per larvae were 

imaged and individual bioparticles per cell were counted. Blue = DAPI, Green = 

fluorescein-labeled S. aureus, DIC to visualize cell boundary. (B) Adult phagocytosis of 

fluorescein-labeled S. aureus in WT/A2bp1 RNAi, hmlΔ>A2bp1 RNAi and 

hmlΔ>A2bp1-RE/A2bp1 RNAi flies. (C) Quantification of phagocytosis of live S. aureus 

expressing GFP (OD 5.0) in WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi flies. (D) Adult 

phagocytosis of fluorescein-labeled S. aureus in WT/A2bp1-RE and hmlΔ>A2b1-RE 

flies. For adult phagocytosis assays, 6-8 flies were tested in each experiment.  All 

experiments were performed at least three times. Error bars, ± SEM. * p-value<0.05, ** 

p-value<0.01, *** value<0.001, *** value<0.0001, ns = not significantly different. 
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Figure 4-6: Altered A2bp1 expression in hemocytes has no effect on hemocyte 

development or phagocytosis of latex beads or E. coli. 
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Figure 4-6: Altered A2bp1 expression in hemocytes has no effect on hemocyte 

development or phagocytosis of latex beads and E. coli.  

(A) Phagocytosis of fluorescein-labeled E. coli in WT/A2bp1 RNAi and hmlΔ>A2bp1 

RNAi flies. (B) Quantification of phagocytosis of 1µM red fluorescent latex beads 

WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi flies. The experiment was performed three 

times. (C) Comparison of A2bp1 mRNA levels in hemocytes and carcasses from 

WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi flies. 40 larvae of each genotype were pooled 

for each experiment. (D) Comparison of the in WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi 

larvae.  Hemocytes bled into PBS and counted using a hemocytometer. Ten larvae per 

genotype were used. (E) Phagocytosis of 1µM red fluorescent latex beads WT/A2bp1-RE 

and hmlΔ>A2bp1-RE flies. (F) Phagocytosis of fluorescein-labeled E. coli in WT/A2bp1-

RE and hmlΔ>A2bp1-RE flies. Approximately six flies per genotype were used in each 

adult in vivo phagocytosis experiment and all experiments were performed in triplicate. 

Error bars, ± SEM. * p-value<0.05, ns = not significantly different. 
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 Blood-cell specific silencing or overexpression of A2bp1 also caused increased 

susceptibility to S. aureus infection (Figure 4-7A and B).  Hence, we were unable to 

rescue the susceptiblity phenotype of A2bp1 RNAi flies by co-expressing A2bp1-RE in 

hemocytes (Figure 4-7A).  It is possible that in addition to its role during the immediate 

phagocytic response, A2bp1 may regulate post-transcriptional splicing events at later 

time points during S. aureus infections. Both hmlΔ>A2bp1 RNAi and hmlΔ>A2bp1-RE 

flies showed an increased bacteria load following S. aureus infection (Figure 4-7C and 

D).  Thus, altered A2bp1 expression directly affects the fly’s ability to limit the growth of 

bacteria, and this may be due to misregulated expression of A2bp1 targets.  

 The impaired immune response of the A2bp1M101918 mutant was specific to S. 

aureus. Therefore, we assessed if silencing or overexpressing A2bp1 in hemocytes also 

altered the the cellular immune response in a S. aureus specific manner. RNAi mediated 

silencing of A2bp1 in hemocytes did not affect the uptake of fluorescein-labeled E. coli 

or latex beads (Figure 4-6A and B). Additionally, when A2bp1 was silenced in larval 

hemocytes, it did not affect hemocyte development of blood cells (Figure 4-6C and D). 

Similarly, hemocyte- specific overexpression of UAS-A2bp1-RE did not affect 

phagocytosis of E. coli or latex beads.  Together, these findings reveal that altered 

expression of A2bp1 does not cause general defects in the phagocytic machinery of fly 

hemocytes.   

C. Loss of A2bp1 does not change the immune response to the Gram-positive 

bacteria Listeria monocytogenes 

 Wild-type fruit flies will succumb to infections of low doses of the intracellular 

bacteria Listeria monocytogenes within a week of infection (Mansfield et al., 2003). 
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Homozygous A2bp1M101918 flies and flies expressing A2bp1-RNAi in hemocytes were not 

more susceptible to infection with L. monocytogenes (Figure 4-8A-B). Thus, the loss of 

A2bp1 does lead to general defects in survival against Gram-positive pathogens.  Rather, 

our evidence suggests that loss of A2bp1 specifically alters the immune response to S. 

aureus. Due to the specificity of the impaired immune response, we reasoned that A2bp1 

may be important the post-translational processing of genes that are important for S. 

aureus recognition or uptake.  

  



	 175	

 

Figure 4-7: Adult fly survival and resistance after S. aureus infection are affected 

when A2bp1 is either increased or decreased in hemocytes. 

 (A) Representative survival curve of WT/A2bp1 RNAi, hmlΔ>A2bp1 RNAi and 

hmlΔ>A2bp1-RE/A2bp1 RNAi flies after injection with S. aureus (OD 0.1) n = 24-30 

flies. (B) Representative survival curve of WT/A2bp1-RE and hmlΔ>A2b1-RE flies after 

injection with S. aureus (OD 0.1) n = 24-30 flies. (C) S. aureus (OD 0.5) in WT/A2bp1 

RNAi and hmlΔ>A2bp1 RNAi at 0, 24, and 48 hours post infection. (D) Comparison of 

S. aureus (OD 0.5) recovered in WT/A2bp1-RE and hmlΔ>A2bp1-RE at 0, 24, and 48 

hours post infection. Bacteria load was measured in six to eight individual flies per 

genotype at each time point in each experiment. Experiments were performed at least 3 

times and the mean bacteria load is shown for each experiment. For adult phagocytosis 

assays, 6-8 flies were tested in each experiment.  All experiments were performed at least 

three times. Error bars, ± SEM. * p-value<0.05, ** p-value<0.01, *** value<0.001, *** 

value<0.0001, ns = not significantly different. 
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Figure 4-8: A2bp1 mutant and RNAi flies are not more susceptible to L. 

monocytogenes infection than control flies. 

 (A) Representative survival curve of w1118 and A2bp1M101918  flies after injection with           

L. monocytogenes (OD 0.1) n = 24-30 flies. (B) Representative survival curve of 

WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi flies after injection with L. monocytogenes 

(OD 0.1) n = 24-30 flies. All experiments were performed at least three times. ns = not 

significantly different. 
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D. Transcriptome analysis of wild-type and A2bp1-RNAi adult hemocytes 

 We reasoned that A2bp1, as a splicing factor, is likely to be regulating post-

transcriptional processing of mRNAs that are important for managing the host response 

against S. aureus. To identify transcripts that are affected in adult hemocytes after loss of 

A2bp1, we utilized RNA sequencing. Hemocytes that expressed wildtype levels of A2bp1 

were used as a control (WT hemocytes) while hemocytes expressing a single A2bp1 

RNAi construct were used to test for the effects of loss of A2bp1 (A2bp1 RNAi 

hemocytes). Groups of 60 adult female flies were uninfected, mock infected with PBS, or 

infected with live Drosophila X Virus or S. aureus (OD 5.0) for 3 hrs. Hemocytes were 

then isolated using immunoselection and cDNA was sequenced using 50-nucleotide, 

single-end reads on an Illumina platform (Figure 4-9A). It is important to note that 

Drosophila X Virus was included because 2 SNPs in A2bp1 were identified in an 

unpublished DXV survival screen of the DGRP. However, A2bp1-silenced flies were not 

more susceptible to DXV infection nor did they show higher levels of DXV proteins after 

infection than control flies (Data not shown). Therefore, although the DXV samples were 

taken into account during the principal component analyses of the RNAseq experiment, 

the results of the DXV DE analysis will not be presented here.  

 Principal component analysis of all samples showed that the samples clustered 

according to genotype and treatment (Figure 4-9B). We began our analysis by examining 

gene expression changes in wild-type hemocytes after that occur after infection with S. 

aureus in wild-type hemocytes. Differential expression (DE) analysis was carried out to 

identify genes that were significantly (Benjamini and Hochberg (BH) -log10 adjusted p-

value < 0.1) up or down regulated after S. aureus infection in wild-type hemocytes.  To 
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obtain the list of highly differentially expressed genes, we compared the expression of 

mock infected and S. aureus infected hemocytes (Figure 4-10 and Tables 4.1 and 4.2). 

 

Figure 4-9: RNAseq and principal component analysis. 

 (A) Schematic of the workflow of the RNAseq experiment. (B) Left panel shows the 

correlation between gene expression profiles of RNAseq samples. Top right panel = PCA 

plot: PC1 vs PC2. Bottom right panel = PCA plot of PC1 vs PC3. See also Appendix B.  
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Figure 4-10: Genes differentially expressed in wild type hemocytes 3 hours after            

S. aureus infection. 

 (A) The differential expression between mock (PBS) infected and S. aureus infected 

wild-type hemocytes.  The volcano plot depicts the magnitude of differential expression 

between WT and A2bp1 hemocytes.  Each dot represents a single gene (n= 8858) that is 

expressed in hemocytes. The horizontal line marks the threshold (Benjamini and 

Hochberg (BH) -log10 adjusted P-value < 0.1) for genes considered to be differentially 

expressed between samples. Genes with decreased expression in S. aureus infected 

hemoctyes have a positive log Fold Change (logFC) and genes with increased expression 

in S. aureus infected hemocytes have a negative logFC.  
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 Table 4-1: Genes up-regulated after S. aureus infection in wild-type hemocytes. 

Gene 
Symbol logFC 

FDR 
Adj. 
p-value 

Flybase Gene Annotation 

CG10814 -3.644 0.012 
Gamma-butyrobetaine dioxygenase activity. Key enzyme in biosynthesis of 
L-Carnitine, a key molecule in long fatty acid chain metabolism. 

CG4757 -3.383 0.026 Carboxylesterase, type B 
CecB -2.695 0.031 Cecropin B; Antimicrobial peptide; Humoral immune response 
CG11459 -2.666 0.086 Cathepsin propeptide inhibitor domain (I29); Cysteine peptidase 
IM1 -2.51 0.048 Immune induced molecule 1 
CG16772 -2.5 0.001 Unknown 
IM23 -2.29 0.074 Immune induced molecule 23; Bomanin Family Protein 
CG43202 -2.25 0.042 Unknown; Bomanin Family Protein 
IMPPP -2.20 0.085 Immune induced molecule prepropeptide, Toll mediated defense against 

Gram+ bacteria CG13965 -2.16 0.036 Unknown 
CG7778 -2.10 0.0104 Unknown; Upregulated in larval hemocytes after Gram - infection; 
CecA1 -2.04 0.019 Cecropin A1; Antimicrobial peptide; Humoral immune response 
IM3 -2.01 0.054 Immune induced molecule 3; Bomanin Family Protein 
AttB -1.97 0.096 Attacin-B;  Antimicrobial peptide; Humoral immune response 
CG30002 -1.94 0.013 Peptidase S1, PA clan; serine-type endopeptidase activity 
CG15046 -1.844 0.013 Peptidase S1, PA clan; serine-type endopeptidase activity 
CecA2 -1.833 0.024 Cecropin A2; Antimicrobial peptide; Humoral immune response 
Ser7 -1.815 0.019 Peptidase S1, PA clan; serine-type endopeptidase activity 
Spn88Eb -1.79 0.0396 Serpin family; serine-type endopeptidase inhibitor activity 
CG42259 -1.787 0.0127 Hemolymph coagulation; Trypsin Inhibitor-like, cysteine rich domain 
CG17167 -1.67 0.026 Transmembrane transport;calcium, potassium:sodium antiporter activity 
CG15065 -1.661 0.069 Immune induced protein; Bomanin Family Protein 
CG11842 -1.628 0.038 Peptidase S1, PA clan; serine-type endopeptidase activity 
CG5791 -1.626 0.0723 Unknown; Bomanin Family Protein 
IM4 -1.56 0.0369 Immune induced molecule 4 
Unc-13-4B -1.521 0.0369 Neurotransmitter secretion; synaptic vesicle priming 
CG31769 -1.517 0.0127 Unknown; Found in hemolymph proteome 
Vm34Ca -1.511 0.0364 Structural constituent of vitelline membrane 
Vm26Aa -1.489 0.0449 Structural constituent of vitelline membrane 
PGRP-SC2 -1.483 0.046 Negative regulation of the IMD pathway 
CG13360 -1.452 0.048 Unknown; CHK kinase-like; Protein kinase-like domain 
IM14 -1.427 0.085 Immune induced molecule 14 
Hayan -1.406 0.087 Regulation of melanization defense response; serine-type endopeptidase 

activity AdoR -1.377 0.032 Adenosine receptor; G-protein coupled receptor signaling pathway 
Vm26Ac -1.263 0.075 Structural constituent of vitelline membrane 
dec-1 -1.205 0.096 Structural constituent of chorion 
CG18067 -1.186 0.0218 Unknown; multicellular organism reproduction 
NijA -1.107 0.0264 Ninjurin A; Cell adhesion; Embryonic/larval lymph gland development 
SPE -1.075 0.054 Spatzle-Processing Enzyme 
Ddc -1.036 0.096 Dopa decarboxylase: cuticle pigmentation; response to wounding 
Gadd45 -1.006 0.054  Growth arrest and DNA damage-inducible protein GADD45; JNK cascade 
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CG6967 -0.913 0.066 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 
capu -0.891 0.0713 capuccino; Formin; actin binding; microtubule binding 
Vml -0.856 0.0543 Structural constituent of vitelline membrane 
cact -0.823 0.0126 cactus; Toll signaling cascade; Ankryin Repeat containing protein; Sequesters 

Dif and Dorsal NFKappa B factors in cytosol CG8177 -0.811 0.0363 Inorganic anion exchanger activity 
PGRP-LA -0.798 0.0631 Peptidoglycan recognition protein LA; Positive regulation of IMD signaling 

in the gut and trachea Bgb -0.782 0.0545 Reluator of hemocyte proliferation; transcription coactivator activity 
fend -0.707 0.045 Fork end; motor neuron axon guidance 
Ady43A -0.690 0.053 Adenosine kinase activity; Catalysis of the reaction: ATP + adenosine = ADP 

+ AMP. Rab19 -0.688 0.073 Vesicle-mediated transport; Rab protein signal transduction 
CG12207 -0.615 0.0395 Unknown; LysM domain found in many proteins involved in bacterial cell 

wall degradation. CG3165 -0.613 0.075 Nucleic acid binding; Ribonuclease H-like domain 
sog -0.605 0.0631 Short gastrulation; Growth factor activity; BMP and torso signaling 

pathways; collagen binding Fas3 -0.591 0.0497 Fasciclin 3; Immunoglobulin-like domain; cell-cell adhesion via plasma-
membrane adhesion molecules S2P -0.572 0.049 Site-2 protease; sterol regulatory element binding protein cleavage; 
proteolysis tamo -0.567 0.0191 tamo; Negative regulation of protein import into nucleus 

spz -0.529 0.063 spatzle; Toll receptor ligand 
rogdi -0.511 0.054 RAVE subunit 2/Rogdi; behavioral response to ethanol 
loco -0.506 0.035 G-protein signaling cascade; G-protein alpha-subunit binding 
CG7115 -0.485 0.046 Cell adhesion; cation binding; protein serine/threonine phosphatase activity. 
MICAL-like -0.45 0.036 Calponin homology domain; actin binding 
CG6923 -0.394 0.0428 Zinc ion binding; Zinc finger, RING-type 

 

Table 4-1: A list of genes up-regulated after S. aureus infection in wild type 

hemocytes. 

8859 Drosophila melanogaster genes were analyzed for differential expression (DE) 

between mock (PBS) infected and S. aureus infected wildtype hemocytes. False 

discovery rate (FDR) control was calculated using the Benjamini and Hochberg method.  

A cut-off of FDR adjusted p-value < 0.1 was used to obtain the list of 63 genes that are 

up-regulated in S. aureus infected hemocytes. logFC = log-Fold Change. Protein features 

were modified from Flybase.    
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Table 4-2: Genes down-regulated after S. aureus infection in wild-type hemocytes. 

Gene 
Symbol logFC FDR Adj. 

p-value Flybase Gene Annotation 

ND-49 0.305 0.0955 NADH dehydrogenase (ubiquinone) 49 kDa subunit; mitochondrial electron 
transport FoxK 0.337 0.0898 Forkhead box K; defense response to virus; positive regulation of gene 
expression Jheh2 0.378 0.0821 Juvenile hormone epoxide hydrolase 2 

alpha-
Man-Ia 

0.4 0.066 α-Mannosidase class I a; encapusulatin of a foreign target 
CG6891 0.403 0.095 Actin-depolymerising factor homology domain 
Samuel 0.46 0.054 SAM-motif ubiquitously expressed punctatedly localized protein; Regulation 

of chromatin silencing P5cr 0.499 0.031 Pyrroline 5-carboyxlate reductase; Proline biosynthesis  
bbg 0.519 0.0658 Big bang; PDZ domain; innate immune response in mucosa 
foi 0.585 0.0424 Fear-of-intimacy; Zinc ion transmembrane transport 
Sema-2a 0.595 0.0545 Semaphorin-2A; Sema domain and IgG-like domain; Secreted semaphorin; 

axon guidance rgn 0.605 0.0469 Regeneration; C-type lectin-like; carbohydrate binding 
CG6084 0.606 0.0218 NADP-dependent oxidoreductase domain. 
Obp99a 0.619 0.0315 Odorant-binding protein 99a 
uzip 0.629 0.0264 Unzipped; axon guidance 
CG15236 0.718 0.0751 Unknown 
se 0.775 0.0443 Sepia; Glutathione S-transferase 
Inos 0.803 0.0264 Inos; inositol-3-phosphate synthase activity 
Nep1 0.89 0.077 Neprilysin 1; metalloendopeptidase 
nord 0.926 0.0853 Fibronectin type III; Protein of unknown function DUF2369 
Nlg2 0.927 0.0798 Neuroligin 2; Neuronal receptor activity 
Gasp 0.972 0.0264 Structural constituent of peritrophic membrane; chitin binding 
CG13071 0.994 0.0127 Unknown 
CG31051 1.056 0.0749 Unknown 
beat-VII 1.097 0.0786 IgG-like domain; heterophilic cell-cell adhesion via plasma membrane cell 

adhesion molecules CG34355 1.113 0.0955 DM13 domain; extracellular adhesion domain 
CG31205 1.188 0.017 Peptidase S1, PA clan; serine-type endopeptidase activity 
CG33110 1.354 0.0497 ELO family; very long-chain fatty acid synthesis 
CG6910 1.916 0.0264 Inositol oxygenase 
CG16898 2.12 0.044 CHK kinase-like; Choline kinase-like domain 
fit 2.75 0.03 female-specific independent of transformer 

Table 4-2: A list of genes down-regulated after S. aureus infection in wild type 

hemocytes. 

8859 Drosophila melanogaster genes were analyzed for differential expression (DE) 

between mock (PBS) infected and S. aureus infected wildtype hemocytes. A FDR 

adjusted p-value < 0.1 was used to obtain the list of genes that are down in S. aureus 

infected hemocytes. logFC = log-Fold Change. Protein features were modified from 

Flybase.    
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Figure 4-11: RNAseq and differential expression analysis reveal A2bp1 targets in 

adult hemocytes. 

 (A) The differential expression (DE) between WT and A2bp1 RNAi uninfected 

hemocytes. Genes with decreased expression in A2bp1 RNAi hemoctyes are red and 

those with increased expression in A2bp1 RNAi samples are blue. (B) DE between WT 

and A2bp1 hemocytes 3 hours after PBS infection. (C) DE between WT and A2bp1 

hemocytes 3 hours after S. aureus infection. (D-E) Overlap of genes differentially 

expressed in each condition.   
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 Sixty-three genes were up-regulated (FDR adusted p-value < 0.1) in adult 

hemocytes after S. aureus infection. These genes were significantly enriched for the Gene 

Ontology categories defense response [GO:0006952] (p-value 1.098e-10) and 

antibacterial humoral response [GO:0009607] (p-value 1.001e-07). Among the genes 

found enriched in these gene ontology categories were seven genes that encode proteins 

containing the Immune-induced protein Dim domain (p-value 3.46e-06): IM1, IM3, 

IM14, IMPPP, IM23 and IM4.  Additionally, we identified 4 antimicrobial peptide genes: 

CecB, CecA1, AttB, and CecA2 and the Toll ligand spatzle as well as Spatzle Processing 

Enzyme.   

 Differential expression (DE) analysis was carried out to identify genes that were 

significantly (Benjamini and Hochberg (BH) -log10 adjusted p-value < 0.05) up or down 

regulated in A2bp1 RNAi hemocytes compared to control hemocytes (Figure 4-11 and      

Table 4-3). If a gene’s expression was down in A2bp1 RNAi hemocytes, we concluded 

that splicing by A2bp1 is required to maintain the stability of mRNA expressed from that 

gene. Conversely, if A2bp1 mediates the decay or instability of a target mRNA, then we 

would expect to see higher levels in A2bp1 RNAi hemocytes compared to controls.  
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Table 4-3. Putative A2bp1 targets in Drosophila hemocytes. 

Gene Symbol logFC FDR Adj. 
P-value Flybase Gene Annotation 

    
Up in A2bp1-RNAi hemocytes 
CG10936 -0.627 0.0357 SEA domain 
caps -0.648 0.0195 Leucine-rich repeat. Axon guidance. 
CG4666 -0.676 0.0472 Belongs to the THEM6 family.  
Dbi -0.911 0.0073 ACB (acyl-CoA-binding) domain 
BoYb -0.921 0.0195 Helicase ATP-binding domain. ATP binding. DNA binding. 
CG6432 -1.005 0.0195 AMP-binding enzyme C-terminal domain; AMP-dependent 

synthetase/ligase. CG17562 -1.027 0.0488 Fatty-acyl-CoA reductase (alcohol-forming) activity 
CR12628 -1.142 5.88E-05 Microsomal glutathione S-transferase-like pseudogene. 
CG44438 -1.489 0.0336 Unknown 
CR44922 -1.684 0.0237 Non-protein-coding gene, Unknown Function 
tut -2.298 0.0027 RNA recognition motif domain 
Dscam4 -2.409 5.88E-05 Fibronectin type III; Immunoglobulin I-set 
Peritrophin-A -3.054 0.00272 Chitin binding domain 
Tektin-C -4.628 8.59E-04 Microtubule binding 
    
Down in A2bp1-RNAi hemocytes 
CR45605 4.082 0.0195 Non-protein-coding gene. Unknown Function.  
Obp99d 1.827 0.0357 Pheromone/general odorant binding protein. 
cpo 0.726 0.0021 RNA recognition motif domain. 
cyc 0.631 0.0096 DNA binding. Nuclear translocator. 
CG32039 0.603 0.0472 Unknown 
CG6454 0.475 0.0472 C2 domain 

 

Table 4-3: A list of putative A2bp1 targets in Drosophila hemocytes. 

8859 Drosophila melanogaster genes were analyzed for differential expression (DE) 

between WT and A2pb1-RNAi hemocytes. A FDR adjusted p-value < 0.05 was used to 

obtain the list of genes that are down in S. aureus infected hemocytes. logFC = log-Fold 

Change. Protein features were modified from Flybase.  



	 186	

 We were primarily interested in how A2bp1 regulates gene expression and 

splicing after S. aureus infection (Table 4-4). Twenty-two genes were down in A2bp1 

RNAi hemocytes after S. aureus infection, including all the genes whose basal expression 

was down in uninfected A2bp1 RNAi hemocytes. In contrast, only 7 genes were down 

after PBS treatment. Five genes (cpo, cyc, Obp99d, CR45605 and CG32039) were found 

significantly down in A2bp1 RNAi hemocytes in all conditions, indicating that these five 

genes are the primary targets for A2bp1.    

 CR45605 was the most highly down-regulated transcript after S. aureus infection 

(log2 fold change of 4.281) and it encodes a computationally predicted long non-coding 

RNA (lncRNA) of unknown function. As an lncRNA, CR45605 may play a role in blood 

cells by regulating the expression of genes important for phagocytosis of S. aureus. 

Tollo/Toll-8, Peptidoglycan recognition protein LE (PGRP-LE), and tamo are immune 

responsive genes that were among those that were significantly down in A2bp1 mutant 

hemocytes after S. aureus infection (Akhouayri et al., 2011; Leulier and Lemaitre, 2008; 

Minakhina et al., 2003; Takehana et al., 2002). Tamo regulates the nuclear import of 

Dorsal in fat body cells after infection (Minakhina et al., 2003). Tollo/Toll-8 and PGRP-

LE, which both play a role during the humoral immune response to Gram-negative 

bacteria, are also up-regulated by A2bp1 in wildtype hemocytes after S. aureus infection. 

Thus, these genes may also function during the cellular response to Gram-positive 

bacteria. 

 Thirty genes were upregulated in A2bp1 mutant hemocytes after PBS injection 

(Table 4-5). Within this group were six genes involved in the long-chain fatty acyl-CoA 

pathway: four members of the IPR002076 ELO family (eloF, CG16904, CG9458, and 
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CG9459), CG1444, and Sc2 (Holm-Bonferroni corrected p-value = 6.76e-09). These 

results indicate that A2bp1 acts to down regulate fatty acid synthesis in hemocytes after 

wounding. Mammalian macrophages metabolize fatty acids to fulfill the energy needs 

necessary for activation and phagocytosis (Biswas and Mantovani, 2012).  It is likely 

A2bp1 regulates hemocytes metabolic activity in response to wounding by diverting 

energy and resources from lipid metabolism. Furthermore, seven genes were up in A2bp1 

RNAi hemocyte samples in all conditions: CG6432, CR12628, Diazepam-binding 

inhibitor (Dbi), Peritrophin-A, tumorous testis (tut), and Dscam4. Two of these genes, 

CG6432 and Dbi, are also involved in synthesis and oxidation of fatty acids (Flybase 

annotations). Peritrophin-A is a constituent of the peritrophic membrane, tut is an RNA-

binding protein, CR12628 is a non-protein-coding RNA, and Dscam4 is an 

immunoglobulin-like cell surface protein. This diverse group of genes are likely to be 

primary targets of A2bp1 in wildtype adult blood cells, and A2bp1 negatively regulates 

their expression.  
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Table 4-4. Genes differentially expressed in A2bp1 RNAi hemocytes 3 hours after            
S. aureus injections. 

Gene Symbol logFC FDR Adj. 
p-value Flybase Gene Annotation 

    Up in A2bp1-RNAi hemocytes 
CG14103 -0.5024  0.0156 Unknown 
Nmt -0.525 0.0464 Glycylpeptide N-tetradecanoyltransferase activity 
ade5 -0.613 0.0326 Phosphoribosylaminoimidazolesuccinocarboxamide synthase activity 
BoYb -0.704 0.0352 DEAD/DEAH box helicase domain;  negative regulation of transposition, 

RNA-mediated Obp99a -0.831 0.0027 Pheromone/general odorant binding protein 
gwl -0.862 0.0209 14-3-3 protein binding; protein binding; protein serine/threonine kinase 

activity CR12628 -0.910 5.528E-04 Microsomal glutathione S-transferase-like pseudogene 
CG6432 -0.934 0.02234 Acetate-CoA ligase activity 
Dbi -1.220 2.892E-04 ACB (acyl-CoA-binding) domain 
v -1.329 0.04089 Compound eye pigmentation, tryptophan 2,3-dioxygenase activity; heme 

binding. CR32205 -1.487 0.0317 Unknown 
Dscam4 -2.714 2.00E-05 Immunoglobulin subtype 2,Fibronectin type III 
tut -2.791 5.005E-04 RNA recognition motif domain; Nucleotide-binding alpha-beta plait domain 
Peritrophin-A -2.819 5.451E-03 Chitin binding domain 
Tektin-C -5.155 1.688E-04 Microtubule binding 
    
Down in A2bp1-RNAi hemocytes 
CR45605 4.281 0.0101 Unknown 
CR43482 2.808 0.0305 Unknown 
Osi24 2.292 0.0352 Unknown 
Obp99d 1.463 0.0422 Pheromone/general odorant binding protein 
ZnT77C 1.446 0.0072 Cation efflux protein transmembrane domain 
AdoR 1.354 0.0305 G-protein coupled adenosine receptor activity 
CG32444 1.196 0.0195 Aldose 1-epimerase activity; carbohydrate binding 
scpr-C 1.168 0.0072 CAP domain; Cysteine-rich secretory protein, allergen V5/Tpx-1-related 

cpo 1.028 2.00E-05 
May play a role in the development of the peripheral nervous system by 
regulating the processing of nervous system-specific transcripts.  

NijA 1.007 0.0415 Cell adhesion; tissue regeneration; embryonic/larval hemocyte 
PGRP-LE 0.982 0.0072 Defense against gram negative bacteria 
CG32039 0.912 6.364E-04 Unknown 
Sytβ 0.909 0.03738 Calcium-dependent phospholipid binding; synaptic vesicle exocytosis; 

neurotransmitter secretion. sog 0.891 0.00567 von Willebrand factor, type C 
CG9743 0.840 0.04223 Lipid metabolic process; oxidation-reduction process 

Tollo 0.664 0.02239 
Negatively regulates antimicrobial response in the Drosophila respiratory 
epithelium 

RhoGAP18B 0.607 0.03523 GTPase activator activity 
cyc 0.595 0.0101 Transcription factor involved in the generation of biological rhythms.  
tamo 0.587 0.0101 Negatively regulates nuclear import of dl and controls the accumulation of dl 

in the nucleus after immune challenge.  CG6454 0.485 0.0305 C2 domain, unknown function 
CG11791 0.413 0.0192 Unknown 
Cdep 0.320 0.0477 Rac protein signal transduction; regulation of Rho protein signal transduction 

Table 4-4: List of genes DE in A2bp1 RNAi hemocytes 3 hours after S. aureus 

infection. 
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Table 4-5. Genes differentially expressed in A2bp1 RNAi hemocytes 3 hours after 

PBS injections. 

Gene 
Symbol logFC FDR Adj. 

p-value Flybase Gene Annotation 

    
Up in A2bp1-RNAi hemocytes 
Cyt-b5 -0.454 0.0345 Cytochrome b5, heme-binding site; Regulation of hemocyte differentiation. 
Sc2 -0.568 0.0119 Lipid metabolism; oxidoreductase activity 
CG1444 -0.588 0.0388 Short-chain dehydrogenase/reductase SDR 
Alas -0.661 0.0121 Chitin-based cuticle development; heme biosynthetic process; Aminotransferase, 

class I/classII caps -0.667 0.0112 Leucine-rich repeat. Axon guidance. 
CG6746 -0.694 0.0169 Protein-tyrosine phosphatase-like, PTPLA 
CG2765 -0.770 0.0140 Myosin binding; Spot 14 family 
CG15531 -0.838 0.0388 Fatty acid desaturase, type 1; Fatty acid desaturase, type 1, core 
CG4666 -0.856 0.0070 Belongs to the THEM6 family.  

FASN2 -0.942 0.0198  3-oxoacyl-[acyl-carrier-protein] synthase activity; fatty acid synthase activity; zinc 
ion binding; Oxidoreductase activity 

CG6432 -0.959 0.0151 Acetate-CoA ligase activity 
CG16904 -1.031 0.0388 ELO family; Fatty acid elongase activity 
CG15358 -1.041 0.0112 C-type lectin; carbohydrate binding 
CG13707 -1.075 0.0247 Unknown 
CR12628 -1.079 0.0001 Microsomal glutathione S-transferase-like pseudogene 
CG31157 -1.089 0.0371 Unknown 
eloF -1.098 0.0121 ELO family; Fatty acid elongase activity. 
CG7910 -1.105 0.0111 Fatty acid amide hydrolase activity; carbon-nitrogen ligase activity, with glutamine 

as amido-N-donor. CG17562 -1.125 0.0110 Fatty-acyl-CoA reductase (alcohol-forming) activity. 
CG14615 -1.199 0.0243 Transferase activity, Transferring acyl groups other than amino-acyl groups. 
CG9458 -1.255 0.0070 Fatty acid elongase activity 
CG9459 -1.314 0.0252 ELO family; fatty acid elongase activity 
Dbi -1.333 1.39E-04 ACB (acyl-CoA-binding) domain 
CR44922 -1.559 0.0208 Unknown 
tut -1.801 0.0112 RNA recognition motif domain 
CG14456 -1.939 0.0345 Unknown 
CG18258 -2.413 0.0112 Carboxylic ester hydrolase activity 
Dscam4 -2.517 6.38E-05 Immunoglobulin subtype 2; Immunoglobulin subtype; Fibronectin type III. 
Peritrophin-A -3.141 0.0011 Chitin binding domain 
Tektin-C -5.068 1.61E-04  Microtubule binding 
    
Down in A2bp1-RNAi hemocytes 

CR45605 4.527 0.0111 Non-protein-coding gene, Unknown Function 
Npc2d 2.231 0.0247 MD-2-related lipid-recognition domain; Immunoglobulin E-set 
Obp99d 1.785 0.0034 Pheromone/general odorant binding protein 
ZnT77C 1.082 0.0345 Zinc efflux transmembrane transporter activity 
cpo 0.717 0.0018 RNA recognition motif. 
CG32039 0.605 0.0279 Unknown 
cyc 0.536 0.0223 Regulation of circadian rhythm. DNA binding. Nuclear translocator 

 

Table 4-5: List of genes DE in A2bp1 RNAi hemocytes 3 hours after PBS infection. 

  



	 190	

E. RNAi of Dscam4 rescues the impaired S. aureus phagocytosis of A2bp1-RNAi 

cells 

 Phagocytosis of microbes by immune surveillance cells is an immediate response 

that occurs within minutes of the initial infection. We hypothesized that A2bp1 regulates 

the expression of cell surface receptors or co-receptors that may be important for S. 

aureus recognition and uptake. Thus, we focused our remaining studies on Dscam4, 

which encodes a plasma membrane transmembrane protein with Immunoglobulin-like 

(Ig-like) and Fibronectin type III (FN3) domains. There are four Dscam-like proteins in 

the Drosophila genome and the most extensively characterized of these is Dscam1 

(Armitage et al., 2012; Vogel et al., 2003). Dscam1 has the potential to express over 

18,000 alternative splice isoforms and is essential for axon guidance and the formation of 

neural connections in Drosophila (Graveley, 2005; Schmucker et al., 2000; Wojtowicz et 

al., 2004). An RNAi screen in the phagocytic S2 cell line identified 36 RNA-binding 

proteins that regulate alternative splicing of Dscam1 but found that A2bp1 had no effect 

on alternative splicing of Dscam1 (Park et al., 2004), consistent with our finding that 

A2bp1 RNAi in hemocytes does not alter Dscam1 expression. Dscam1 also has a role in 

the innate immune response, and is important for phagocytosis of E. coli in Drosophila, 

and for phagocytosis of E. coli and S. aureus in the Anopheles gambiae immune 

competent cell line, Sua5B (Dong et al., 2006; Watson et al., 2005). Additionally, RNAi 

depletion of AgDscam decreased survival and increased bacteria loads in mosquitos 

infected with S. aureus and E. coli. Based on our RNAseq data we hypothesized that 

Dscam4, and not Dscam1, is the Dscam family member regulated by A2bp1 in 
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Drosophila hemocytes and, that this regulation is important for phagocytosis of S. 

aureus. 

 Dscam4 expresses 5 transcripts with variable 5’ UTR sequences and alternatively 

spliced exons 21, 29, 31, and 32. Each isoform contains 9 extracellular Ig-like domains 

and 6 Fibronectin type III domains. The extracellular regions of the Dscam4 proteins are 

nearly identical (98 – 100% identity among isoforms). The main source of variability 

between Dscam4 isoforms is found in the cytoplasmic tail, after the transmembrane 

domain.  

 Dscam4 transcripts showed a 2.4 log-fold increase (FDR adjusted p-value 5.88E-

05) in uninfected A2bp1 RNAi hemocytes. Quantitative PCR analyses of larval and adult 

hemocytes confirmed that loss of A2bp1 led to significantly increased levels of Dscam4 

mRNA (Figure 4-12A and B).  If Dscam4 overexpression contributes to the impaired 

cellular immune response of A2bp1 mutant hemocytes, then decreasing the levels of 

Dscam4 mRNA should rescue the phenotypes seen in A2bp1 RNAi flies.  Indeed, co-

expression of RNAi constructs against A2bp1 and Dscam4 in the hemocytes, was 

sufficient to normalize Dscam4 mRNA levels relative to control hemocytes (Figure 4-

12C). There was a strong rescue of the phagocytosis phenotype in hmlΔ>A2bp1 RNAi / 

Dscam4 RNAi flies (Figure 4-12D). This data indicates that Dscam4 expression is 

regulated by A2bp1 and that reduction in Dscam4 expression in A2bp1 RNAi hemocytes 

facilitates phagocytosis of S. aureus. The increased level of Dscam4 transcripts in A2bp1 

RNAi hemocytes may cause Dscam4 to be overly abundant on the surface of hemocytes. 

If Dscam4 is functioning as a negative regulator of phagocytosis, then an overabundance 

of the protein could lead to reduced uptake of S. aureus. A2bp1 RNAi flies show 
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increased susceptibility and microbial growth after S. aureus infection and these 

phenotypes were partially rescued by co-expression of Dscam4 RNAi (Figures 4-12E and 

F).  During early time points, hmlΔ>A2bp1 RNAi flies died significantly faster than 

hmlΔ>A2bp1 RNAi/Dscam4 RNAi flies, but both groups of flies succumbed to the 

infection at the same time (Figure 4-12E).  
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Figure 4-12: The immunoglobulin superfamily member Dscam4 affects S. aureus 

phagocytosis. 
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Figure 4-12. The immunoglobulin superfamily member Dscam4 affects S. aureus 

phagocytosis. 

(A) Expression of Dscam4 in larval hemocytes from WT/A2bp1 RNAi and hmlΔ>A2bp1 

RNAi via qPCR. Hemocytes from 40 larvae were pooled for each experiment. The 

experiment was done 3 times. (B) Dscam4 mRNA levels in adult hemocytes from 

WT/A2bp1 RNAi and hmlΔ>A2bp1 RNAi measured using qPCR. Relative expression 

was calculated using rp49 as an endogenous control. All RNAseq samples were assessed: 

n=12 WT and n=12 A2bp1 RNAi. (C) Expression of A2bp1 (blue bars) and Dscam4 (red 

bars) in larval hemocytes.  Hemocytes from 10 larvae were pooled for each experiment.  

The experiment was performed in triplicate. (D) Quantification and representative images 

of phagocytosis of fluorescein-labeled S. aureus in WT/A2bp1 RNAi, hmlΔ>A2bp1 

RNAi and hmlΔ>Dscam4 RNAi / A2bp1 RNAi flies.  Six-to-eight flies were used in each 

experiment. (E) Representative survival curve of hmlΔ>A2bp1 RNAi and hmlΔ>Dscam4 

RNAi / A2bp1 RNAi flies after injection with S. aureus (OD 0.5) n = 28-30 flies. (F) 

Bacteria load in adult WT/A2bp1 RNAi, hmlΔ>A2bp1 RNAi and hmlΔ>Dscam4 RNAi / 

A2bp1 RNAi flies 0, 24 and 48 hours after S. aureus expressing GFP (OD 1.0) injections.  

For each fly, the fluorescence intensity of the first two segments of the dorsal side of the 

abdomen was measured. Approximately 16 flies per genotype per time point were used in 

each experiment. Error bars, ± SEM. * p-value<0.05, ** p-value<0.01, ns = not 

significantly different. 
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 Similarly, blood cell specific co-expression of A2bp1 RNAi and Dscam4 RNAi 

rescued bacterial growth at 24 hours indicating that Dscam4 is important to control 

bacteria growth at this time point. However, by 48 hours bacteria levels were similar in 

flies of both genotypes, revealing that Dscam4 RNAi was not sufficient to control the 

growth of bacteria at the later stages of infection (Figure 4-12F).  It appears that 

normalizing the levels of Dscam4 in the A2bp1 RNAi background is sufficient to protect 

the fly at early time points.  Upon exposure to S. aureus, A2bp1 also regulates the 

expression of numerous other genes, including several immune-related transcripts known 

to play a role in the humoral immune response. Thus, other target genes of A2bp1 may 

play additional protective roles at later stages during a pathogenic infection and this 

cannot be rescued by normalizing the expression of Dscam4 alone.  

III. Conclusion 

 We have presented a novel role for the RNA splicing factor, A2bp1, in the 

maintenance of phagocyte function and immunocompetence. RNA-binding proteins 

regulate immunological responses by altering the post-transcriptional processes of 

splicing, editing, decay and translation (reviewed in (Kafasla et al., 2014)). Either 

overexpression or silencing of A2bp1 cause immune dysfunction, hinting that a delicate 

balance of A2bp1 expression must be maintained to support hemocyte functions. 

Importantly, A2bp1 is required to regulated post-transcriptional responses within S. 

aureus infected hemocytes.   

 Both mouse and human homologs of A2bp1 negatively auto-regulate to maintain 

cellular homeostasis. This auto-regulation is achieved through an alternative splicing 

mechanism producing dominant negative isoforms that lack the RNA recognition motif 
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(RRM) (Damianov and Black, 2010). We observed a small reduction, approximately 

20%, in A2bp1 mRNA levels in hmlΔ>A2bp1 RNAi hemocytes during our RNAseq 

experiment. This modest reduction may be due to Drosophila A2bp1 auto-regulating its 

own expression. It is possible that A2bp1 RNAi results in the splicing of isoforms that are 

not important for the immune response in hemocytes, thus causing the differential 

expression of A2bp1 target genes.   

 Ultimately, A2bp1 mutant flies are unable to control bacteria growth due to a 

reduced capacity to phagocytose S. aureus. This reduced phagocytosis is caused by an 

overabundance of Dscam4 in mutant hemocytes. We propose that Dscam4 may function 

as a negative regulator of S. aureus phagocytosis by serving as a receptor or co-receptor 

that inhibits the induction of signaling pathways that mediate uptake of the microbe.  

 In the fly, A2bp1-mediated splicing events are necessary to maintain hemocyte 

function in response to S. aureus infection. However, the immune-specific role for 

Drosophila A2bp1 may also be relevant to human disease.  RBFOX1 is expressed in 

human peripheral blood cells and RRM of Drosophila A2bp1 and human RBFOX1, 2, 

and 3 are 94% identical (Bhalla et al., 2004; Kuroyanagi, 2009; Martin et al., 2007). 

Many immune genes and signaling pathways are conserved between humans and flies, 

raising the possibility that RBFOX proteins may also mediate the cellular immune 

response to S. aureus in human phagocytes. 
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IV. Materials and methods 

Flies and fly husbandry: DGRP stocks were generated by Dr. Trudy Mackay’s 

laboratory at North Carolina State University.  The core 40 DGRP stocks (Ayroles et al., 

2009) were provided by Dr. Jeff Leips’ laboratory at the University of Maryland, 

Baltimore County. The UAS-A2bp1-RE flies were provided by Dr. L.S. Shashidhara 

from the Indian Institute of Science Education and Research in Pune, India (Usha and 

Shashidhara, 2010). The following stocks were obtained from the Bloomington Stock 

Center:  w1118, the blood cell-specific driver w1118; hmlΔGAL4, y1w*; w1118 ; 

P[HemolectinΔGAL4]2, P[UAS-2xEGFP]AH2, P[UAS-mCD8::GFP.L]LL5 (Stock 

#5137), y1w*; Mi[MIC]A2bp1M101918  (#44669), w1118; Df(3L)ED4457 (#9355), y1sc*v1; 

P[TRiP.HMS00478]attP2 (#32476) and y1v1; P[TRiP.JF02600]attP2 (#27286). The argus 

mutant, and isogenic parental strain cn bw, were obtained from the EMS collection of 

Zuker lines (Koundakjian et al., 2004).  UAS-A2bp1-RE and A2bp1 RNAi lines were 

crossed to hmlΔGAL4 flies or to w1118 as a control.  Flies were reared at 25°C with 60% 

humidity under a 12 hour light-dark cycle and were fed a standard 

molasses/cornmeal/agar medium.  Experiments were conducted at the same time each 

day. 

In vivo phagocytosis: To assay S. aureus and E. coli phagocytosis, approximately 6-8, 3-

5 days old adults flies per genotype per experiment were injected with either fluorescein-

conjugated S. aureus resuspended in PBS (Invitrogen: S2851, 1.6 mg/ml) or fluorescein-

conjugated E. coli resuspended in PBS (Invitrogen: E2861, 1.6 mg/ml). Injections were 

performed using a Pneumatic PicoPump PV820 (World Precision Instruments).  After 30 

min, flies were injected again with Trypan Blue to quench extracellular fluorescence, 
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mounted ventral side down, and images of the dorsal vessel were taken using a Zeiss 

stereomicroscope (Discovery V8) with an AxioCam Hc camera.  Fluorescence intensity 

of the area around the dorsal vessel was quantified using Axiovision 4.7 and the 

background fluorescence of an adjacent area was also quantified.  The ratio of dorsal 

vessel fluorescence intensity was calculated as: [fluorescence]dorsal vessel area ÷ 

[fluorescence]adjacent background area. Two-tailed t-tests were used to calculate p-values.    

To assay phagocytosis of beads, flies were injected with approximately 1.0µm Red 

Fluorescent Carboxylate Modified FluoSpheres diluted 1:20 in PBS.  After 30 min, flies 

were injected with Trypan blue and then mounted and visualized as described above.  

Genome-wide association analysis: To identify candidate SNPs that contribute to 

differences in S. aureus phagocytosis, we tested 30 lines of the DGRP using the in vivo S. 

aureus phagocytosis assay.  We submitted the median fluorescence intensity phenotypes 

to the DGRP Freeze 1 Release 5.49 analysis pipeline (http://dgrp.gnets.ncsu.edu/) and 

GWA was performed as described in Mackay et al. 2012 (Mackay et al., 2012). SNPs 

were previously identified by whole-genome sequencing of the DGRP lines (Mackay et 

al., 2012) and SNP positions were annotated according to Flybase Release 5.49.  We 

updated the position of the SNP in A2bp1 to reflect the most current genome release, 

Flybase 6.07. 

Larval phagocytosis assay: For each experiment, ten 3rd-instar, wandering larvae were 

washed in PBS, dried, and placed onto apple juice agar plates.  Larvae were then injected 

with equal volumes of fluorescein-labeled S. aureus (resuspended to 1.6 mg/ml in sterile 

PBS with 5% green dye). After 30 minutes, larvae were bled directly onto polylysine 

coverslips by gently nicking the cuticle and bleeding hemolymph directly onto coverslips.  
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After 2 minutes, carcasses were removed and the cells were fixed with cold 4% 

Paraformaldehyde in PBS.  The fluorescence of bioparticles not taken up by the cells was 

quenched by briefly washing fixed hemocytes with 5% Trypan Blue in PBS. The cells 

were then washed in PBS and the slides were mounted with Prolong® with DAPI.  

Hemocytes were imaged using a 63X oil immersion lens on a Ziess LSM700 Confocal 

Microscope and DIC was used to visualize the cell boundary.  Approximately 10 cells per 

larvae were imaged and individual bioparticles were counted. Experiments were 

performed in triplicate. 

Survival after S. aureus infection: Groups of 24-30 adult flies, 5-7 days old, were 

injected with equal quantities of logarithmic phase culture of S. aureus (final OD =  0.1 

or 0.5). Flies injected with PBS served as a wounding control.  Flies were kept at 25°C, 

transferred regularly to new food, and death was assessed every 24 hours. The 

experiments were repeated at least 2 more times.  Log-rank tests were used to determine 

if survival curves were significantly different and p-values <0.05 were deemed 

significant. 

Bacteria load assays: Thirty to 50 adult flies per genotype were injected with equal 

quantities of logarithmic phase culture of S. aureus (final OD = 0.5). At 0 and 24 hours 

post injection, 6-8 flies from each group were immediately washed in 70% EtOH, rinsed 

in PBS, and homogenized in Luria-Berani media containing 1% Trition X-100.  

Homogenates were serially diluted and plated on Luria-Bertani agar plates.  Plates were 

stored at 37°C overnight and colony-forming units per fly were calculated.  One-tailed t-

tests were performed and p-values < 0.05 were determined to be statistically significant.  

Experiments were done at least 3 times. 
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For S. aureus-GFP bacteria load experiments, flies were infected with S. aureus 

expressing GFP (OD 1.0). Flies were then kept at 25°C and images were taken at 0, 24, 

and 48 hours post-injection using a Zeiss stereomicroscope (Discovery V8) with an 

AxioCam Hc camera. For each fly, the fluorescence intensity of the first two segments of 

the dorsal side of the abdomen was measured.  At least 16 flies per genotype per time 

point were used in each experiment.  Experiments were performed 3 times. 

Fluorescence-Activated Cell Sorting (FACS) of Adult hemocytes 

One hundred w1118 ; P[HemolectinΔGAL4]2, P[UAS-2xEGFP]AH2 flies (50 male and 50 

female) were ground for 45 seconds in ice-cold PBS with 2mM EDTA. Cells were 

filtered through a 70µm cell sorter and centrifuged at low speed to pellet intact cells. 

Cells were then resuspended in ice-cold PBS/EDTA and filtered through a 40µm strainer.  

Cells were pelleted again and resuspended in PBS/EDTA.  GFP-positive cells were 

sorted once using a FACSAria cell sorter with a 100µM nozzle and 20psi pressure.  Cells 

were then re-sorted into the RLT buffer of the Qiagen RNEasy Mini Kit plus 3.75% Beta-

mercaptoethanol. RNA was isolated according to the RNEasy Mini Kit protocol. 

RNA isolation and Quantitative PCR  

Adult RNA samples were obtained by homogenizing 6 flies (3 males and 3 females) in 

Trizol®.  To obtain RNA from larval hemocytes and carcasses, 10 or 40 3rd-instar, 

wandering larvae were washed in PBS and bled by gently nicking the cuticle and 

bleeding hemolymph directly into PBS and Trizol® was immediately added.  RNA was 

extracted from the adult and larval samples using Chloroform and Ethanol precipitation 

and loaded onto RNEasy Mini Columns. RNA was subsequently purified using the 

Qiagen RNEasy Mini Kit manufacturer’s protocol.  The RNA was digested with DNAse 
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(Thermo Fisher DNAse I, RNAse-free, EN05021) and cDNA was synthesized using 

reverse transcription (Thermo Fisher RevertAid First Strand cDNA Synthesis Kit, 

K1621). Quantitative real-time PCR was carried out using iQ SYBR Green Supermix 

(Bio-Rad) on an ABI 7300 following the manufacturers protocols. 

Gene Primer Sequence 
A2bp1-RL, -RH, -RE, -RF, -RJ, -RI, -
RK, and -RM 

Forward: 5’GTCTCCAACATACCGTTCCG3’ 
Reverse: 5’CATCGTTGCTGTTAGCGAATG3’ 

A2bp1-RL and -RH Forward: 5’TTCACAAGAGCACGTCGATC3’ 
Reverse: 5’GTGGGCGTTTATAGAGTGGG3’ 

Hemolectin Forward: 5’GAGGACTAACAGCTTGGCAG3’ 
Reverse: 5’CGGCATGAGACGTCTTTATC3’ 

Dscam4 Forward 5’GGCATTTCTGGCTCTGATTTG3’ 
Reverse: 5’CGATTTATGGGCAGCGTTTG3’ 

RP49 Forward: 5’GCAAGCCCAAGGGTATCGA3’ 
Reverse: 5’ TAACCGATGTTGGGCATCAG3’ 

 

RNA-sequencing 

Control flies (w1118; P[UAS-mCD8::GFP.L]LL5, hmlΔGAL4; attP2) expressed the 

mCD8:GFP fusion protein on the surface of hemocytes and expressed normal levels of 

A2bp1 in hemocytes.  A2bp1 RNAi flies were generated with the following genotype:  

w1118;  P[UAS-mCD8::GFP.L]LL5, hmlΔGAL4; P[HMS0048]attP2. A2bp1 RNAi flies 

expressed both the mCD8:GFP fusion protein and the 21 bp short RNAi hairpin against 

A2bp1 in hemocytes. Groups of 60 female flies were injected with equal volumes of S. 

aureus (OD 5.0) in sterile PBS or PBS (wounding control).  Uninjected flies served as a 

control. Flies were incubated at 25°C for 3 hours and then homogenized in Cell 

Dissociation Solution (Sigma, C1544-100) in an RNAse/DNAse-free 1.5 ml tube with an 

RNAse-free mini-pestle for 45 sec.  Supplemented Schneider’s (0.1% BSA and 2mM 
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EDTA) was added to the homogenate and cells were filtered through a 70µm cell sorter 

and centrifuged at low speed to pellet intact cells.  The cell pellet was resuspended in 

Supplemented Schneider’s and incubated with Dynabeads Mouse CD8 (Lyt2) 

(Invitrogen, 11447D) for 30 minutes at 4°C. mCD8-positive cells were isolated using a 

magnetic stand and resuspended in RLT Buffer from the Qiagen RNeasy Mini Kit.  Total 

RNA was then isolated according to the manufacturers protocols. Following cDNA 

library preparation, Illumina adaptors and indexes were added. Sequencing was carried 

out using an 50 base pair single-end reads on an Illumina HiSeq1000 system. 

Differential Expression Analyses 

I. Alignment and counting 

Raw reads (51 nucleotides each) were trimmed 13 nucleotides from the 5-prime 

end using trimmomatic 3 (Bolger et al., 2014).  Trimmed reads were aligned to 

the Flybase D. melanogaster genome (dmel-all-aligned-r6.03.fasta.gz) using 

Rsubread version 1.18.0 (Liao et al., 2013) allowing a total of 3 mismatches. The 

portion of total reads mapped for each sample is found in Supplemental Figure 3. 

Quantification was performed based on the Flybase annotation file (dmel-all-no-

analysis-r6.03.gff.gz) using the featureCount (Liao et al., 2014) utility of 

Rsubread with default parameters to obtain a matrix of raw counts. 

II. Normalization and differential expression 

Genes with at least one count per million (cpm) in 3 (minimum number of 

biological replicates within a group) or more samples were kept and quantile 

normalized (Bolstad et al., 2003) for library size. Differential expression analysis 
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was performed using the voom-limma (Law et al., 2014) R package. In particular, 

the linear model gene exprs = factor 1 + factor 2 was fit.  Factor 1 has two levels: 

mutant and wild type; and factor 2 has 3 levels: PBS, S. aureus, and uninjected. 

Contrasts were used to assess comparisons of interest.  All p-values were adjusted 

using the Benjamini and Hochberg (BH) method (Benjamini and Hochberg, 

1996). 
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Chapter 5  

 
Discussion 

  

 The initial line of defense in all animals is the innate immune response and 

phagocytosis of bacteria by specialized blood cells is a vital component of immunity. 

Several receptors have been implicated in microbial recognition and phagocytosis in 

Drosophila, but the study of phagocytosis is complicated by the redundancy of ligand 

binding specificities and overlapping functions of components of the phagocytic 

machinery.  

 To uncover novel genes in the cellular immune response, we conducted three 

genetic screens using the Drosophila Genetic Reference Panel (DGRP). The DGRP is a 

living library of polymorphisms across the entire genome and we conducted our screens 

as a complementary approach to previous RNAi and mutagenesis screens. The genetic 

polymorphisms within the DGRP are derived from naturally segregating genetic 

variation. Thus, the genetic variants within the DGRP may have more subtle effects than 

those found in mutagenized flies, where genomes have been altered by artificially 

induced mutations. RNA interference silences the expression of genes in target tissues 

and the phenotypes associated with RNAi reflect cell-autonomous loss-of-function 

effects.  In contrast to RNAi, the variants within the DGRP may alter the function of 

genes in an assortment of ways; either by altering the expression of associated genes (by 

increasing or decreasing gene expression) or by changing the coding sequence of 

associated genes, resulting in the expression of proteins with altered amino acid 
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sequence. Thus, the DGRP allows us to identify effects of genes that may be undetected 

in traditional genetic screens.  

 We carried out two pilot screens using a subset of 30 DGRP lines, testing the 

ability of their hemocytes to recognize and phagocytose the Gram-positive bacteria         

Staphylococcus aureus or the Gram-negative bacteria Escherichia coli. We also screened 

100 lines of the DGRP for the ability of their hemocytes to phagocytose and then clear 

infection of the Gram-positive bacteria S. aureus through phagosome maturation. We 

then performed genome-wide association analyses to identify potentially relevant single 

nucleotide polymorphisms (SNPs) that were significantly associated with the cellular 

immune response to S. aureus or E. coli within the DGRP.  

 To date, quantitative trait studies using the DGRP have tested morphological 

(sensory bristle number and cuticle pigmentation) (Dembeck et al., 2015), behavioral 

(olfactory response, locomotion, aggression, sleep, and alcohol sensitivity) (Arya et al., 

2015; Harbison et al., 2013; Jordan et al., 2012; Morozova et al., 2015; Shorter et al., 

2015; Swarup et al., 2013), and physiological (longevity, fitness, and resistance to 

oxidative stress, radiation, and starvation) (Durham et al., 2014; Ivanov et al., 2015; 

Vaisnav et al., 2014; Weber et al., 2012) traits in whole organisms.  

 Several studies have utilized the DGRP to identify polymorphisms that are 

associated with the immune response in whole flies.  One study evaluated the genetic 

basis of variability in the immune response to viruses that naturally infect insects by 

measuring survival after viral infection (Magwire et al., 2012). This study identified 

several polymorphisms with large effects on resistance in the DGRP, including a non-

synonymous SNP the gene pastrel. Pastrel is a gene that had not previously been 
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implicated in the immune response and it encodes a cytosolic protein that may be 

involved in constitutive protein secretion (Bard et al., 2006). Ubiquitous RNAi knock 

down of pastrel caused flies to become more susceptible to Drosophila C Virus, 

indicating that pastrel is important for antiviral immunity to DCV. 

 Another study used the DGRP to identify polymorphisms associated with the 

effects of nutrition on immunity to a natural bacterial pathogen (Unckless et al., 2015). 

The authors identified polymorphisms in the AMP gene diptericin and defective 

proboscis extension response-6 (dpr6), a secreted Ig-like domain containing protein, that 

were associated with decreased resistance to the bacteria. We were intrigued that 

polymorphisms in dpr6 were identified as important for the resistance to natural bacterial 

pathogens. We also identified two SNPs (smallest p-value = 2.18E-05) in dpr6 that were 

important for the maturation of S. aureus containing phagosomes. In fact, dpr6, dpr10, 

dpr1, dpr8, and a protein that physically interacts with several members of the DPR-

family (Dpr-interacting protein α (DIP-α)) were independently identified in our S. aureus 

phagosome maturation GWA.  We suspect that the DPR-family, and DPR-interacting 

proteins, make up a group of immunoglobulin-like proteins that mediate the insect 

immune response to bacterial pathogens; a possibility that warrants further investigation. 

 More recently, a study to identify variants that affect survival to the Gram-

negative entomopathogenic bacterium Pseudomonas entomophilia found that one 

extremely susceptible DGRP line, line 714, had a null mutation in dredd (Bou Sleiman et 

al., 2015). The loss of Dredd, the key caspase of the IMD pathway, caused line 714 to be 

highly susceptible to oral infection with multiple Gram-negative bacterial pathogens. It is 

possible that the null mutation in dredd may exist as rare heterozygous recessive allele in 
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the wild. However, due to the fact that DGRP lines are reared in a controlled laboratory 

environment, the homozygous null mutation in dredd was found in line 714. The 

genome-wide association analysis to identify SNPs that were associated survival to                        

P. entomophilia found two SNPs in Gyc76C, a gene that encodes a membrane receptor 

that is highly expressed in Malpighian tubules and the midgut. Gcy76C is a receptor 

guanylate cyclase (rGC) that activates the IMD transcription factor Relish in response to 

stress, leading to the increased the expression of Diptericin (Overend et al., 2012).  

 Each of the studies mentioned above successfully identified known immune 

regulators as well as novel genes that play roles in the immune response in Drosophila. 

These studies demonstrate that the DGRP is a useful tool to identify genetic variants that 

affect Drosophila’s immune response at the level of the whole organism. In contrast, we 

utilized the DGRP to conduct studies looking for genetic variants that affect a cellular 

process in one specific cell type, hemocytes. Our GWA yielded many new genes and 

pathways that give an overview into how hemocytes and phagocytosis are regulated in 

natural populations.  

 The S. aureus phagosome maturation screen identified over five hundred 

candidate genes whose predicted effects range from mediating hemocyte development to 

controlling pathogen recognition, uptake and degradation within hemocytes. The list of 

528 S. aureus phagosome maturation associated genes was enriched for plasma 

membrane associated proteins and proteins with Ig-like motifs. We then tested the effects 

of 38 candidate genes: three associated with the most significant SNPs (p-value < 10-8) 

identified in the S. aureus phagosome maturation screen, as well as a handful of genes 

that are predicted to localize to the plasma membrane or that encode proteins with Ig-like 
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domains. We tested genes associated with SNPs with p-value < 10-8 because these SNPs 

passed the significance threshold determined by Bonferroni multiple testing correction 

(p-value <0.05 after MTC).  We also tested plasma membrane associated proteins 

because we were interested in characterizing proteins that can directly interact with         

S. aureus at the hemocyte cell surface.  Finally, we tested proteins with IgG-like domains 

because many members of the Immunoglobulin superfamily play vital roles in microbial 

recognition, and this role is evolutionarily conserved. We used RNA interference to 

silence the expression of these select candidate genes in hemocytes, and we found three 

novel genes, dpr10, fred, and CG42673, whose loss-of-function in blood cells impaired 

the innate immune response to S. aureus.  

 Interestingly, our evidence suggests that fred and dpr10 are not required for the 

initial uptake of S. aureus, but are instead required for the process of phagosome 

maturation to proceed after S. aureus is engulfed by the cell. This process seems to be 

specific to S. aureus as the loss of fred and dpr10 affected the maturation of S. aureus-

containing phagosomes but did not alter the maturation of E. coli-containing 

phagosomes. We hypothesize that fred or dpr10 may be required for the proper 

intracellular trafficking or acidification of S. aureus-containing phagosomes, but the 

cellular mechanisms that mediate this specificity have yet to be determined. These 

findings support previous work that has shown cargo-specific phagosome maturation in 

mouse and human cell lines (Blander and Medzhitov, 2006; Zhu et al., 2015).  

 Future studies to examine the role of fred and dpr10 should be conducted to verify 

the observed RNAi phenotypes.  Immunofluorescence studies to assess S. aureus 

phagocytosis and phagosome maturation in purified larval or adult hemocytes expressing 
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RNAi against fred or dpr10 will be necessary to confirm the phenotype observed in the 

adult in vivo phagocytosis and phagosome maturation assays. This study could also be 

carried out separately in male and females. We expect that hemocytes isolated from each 

sex will display phagocytosis phenotypes that mirror those observed in the adult in vivo 

phagocytosis assay.  Analyzing phagocytosis in isolated hemocytes is a crucial 

experiment that allows us to visualize and quantify the effects of silencing candidate 

genes in single cells. Additionally, it may be useful to analyze the cellular immune 

phenotypes of null mutants or mutants with transposon insertions that affect the 

expression of fred or dpr10. These experiments will provide useful information about 

how gene disruptions that alter the expression of fred or dpr10 affect S. aureus 

phagocytosis. We anticipate that lines in which the fred or dpr10 loci have transposon 

insertions may display loss of function phenotypes that are similar or stronger than those 

observed when fred or dpr10 are silenced in hemocytes via RNAi. Furthermore, rescue 

experiments in which wild type forms of fred and dpr10 are expressed in mutant 

backgrounds should be carried out to confirm that wild type fred or dpr10 are sufficient 

to restore the impaired immune response of mutant flies. Finally, to ascertain how Fred 

and Dpr10 mediate phagosome maturation it will be useful to generate tagged forms of 

each protein. Tagged Fred or Dpr10 can be used for both immunofluorescence and 

biochemical studies that will facilitate the functional characterization of each protein in 

hemocytes. Tagged forms of Fred and Dpr10 can be immunoprecipitated in order to 

identify their binding partners in S. aureus infected hemocytes. This study could yield 

valuable information about the dynamics of the phagosome and may assist in the 
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assembly of a model that supports a regulatory role for Fred and Dpr10 during maturation 

of S. aureus-containing phagosomes. 

 dpr6 and dpr10 are the most closely related Dpr-family members identified in our 

S. aureus phagosome maturation screen. However, we did not test the effects of dpr6 

because an RNAi line for dpr6 was not readily available when we conducted our 

secondary RNAi screen. We feel that it will be useful generate a line that expresses a 

short interfering RNA against dpr6. This line can be used to test for the immune effects 

of silencing dpr6 in hemocytes. Owing to the high degree of similarity between dpr6 and 

dpr10, it will be interesting to determine if these genes share a common role in the 

cellular immune response. Furthermore, another valuable study would be to examine a 

role for Dpr-family members in the cellular immune response to S. aureus.  Multiple   

Dpr-family members were identified in our screen and the DGRP GWA to examining the 

immune response to natural pathogens (Unckless et al., 2015). We hypothesize that     

Dpr-family members may be important for microbial recognition in the fly. This project 

should begin with a small screen to assess the cellular immune effects of silencing the 

other Dpr-family members using RNAi in hemocytes. Additionally, because many      

Dpr-family members are predicted to be secreted from the cell, tagged Dpr proteins can 

be expressed and used in binding assays to determine if members of this family bind to 

bacteria in vitro. If this study reveals a clear physical interaction between the Dpr-family 

members and bacteria, it could signify that this family of genes is a class of antibody-like 

proteins that recognize microbes in insects. 

 CG42673 appears to play a role in the uptake of S. aureus by adult hemocytes. 

RNAi-mediated silencing of CG42673 in hemocytes causes a decrease in the uptake of   
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S. aureus-fluorescein labeled bioparticles. CG42673 is not predicted to localize to the 

plasma membrane, but instead is predicted to be found in the cytosol. We hypothesize 

that the N-terminal phosphotyrosine-binding domain of CG42673 may be acting as a 

molecular scaffold to mediate the interaction between putative S. aureus receptors and 

downstream signaling molecules at the phagocytic cup. Experiments that are similar to 

those described above for fred and dpr10 should be carried out to fully examine the 

cellular mechanisms by which CG42673 mediates the uptake of S. aureus. In particular, 

immunofluorescence studies to determine the localization of CG42673 in hemocytes, 

before and after S. aureus infection, should be carried out to confirm if CG42673 is 

acting at the phagocytic cup. Additionally, identification of CG42673 binding partners in 

hemocytes may reveal how it regulates S. aureus uptake.  We suspect that CG42673 is 

acting downstream of either known or novel PRRs. CG42673 may interact with 

unidentified S. aureus receptors, and determining the cell-surface proteins CG42673 

physically interacts with could potentially identify multiple new receptors for S. aureus.  

Additionally, it is possible that CG42673 recruits cytosolic signaling molecules to the 

phagocytic cup. By identifying the cytosolic binding partners of CG42673 we could 

potentially uncover signaling complexes that mediate uptake of bacteria. Finally, when 

CG42673 is silenced in hemocytes, we observe a partial but significant decrease in S. 

aureus phagocytosis. Hemoctyes use multiple receptors to recognize S. aureus. If we find 

that CG42673 interacts with only a single S. aureus PRR, it would help explain why we 

only see a partial decrease in uptake of S. aureus when CG42673 is silence in hemocytes. 

 The E. coli phagocytosis screen identified ten candidate genes that may be 

important for recognition or uptake by hemocytes. Based on the availability of transgenic 
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RNAi lines, we only tested the effects of 5 of these candidate genes using RNAi-

mediated silencing in hemocytes: Gγ30A, kuz, abd-A, CG16791, and CG5022. We chose 

to silence the expression of candidate genes in hemocytes due to the fact that the trait we 

tested in our screen was specific to hemocytes located in the dorsal vessel of DGRP lines. 

We did not observe a difference in E. coli phagocytosis between control and knock down 

flies.  However, it is possible that the genes we tested may be functioning in other tissues 

within the flies. Such a role would not be uncovered by targeting gene expression solely 

in hemocytes. In the future, it will be useful to test additional DGRP lines carrying the 

minor allele variant of SNPs associated with E. coli phagocytosis to see if these lines also 

exhibit altered E. coli phagocytosis phenotypes. These studies could confirm that the 

SNPs identified in our pilot screen are causal polymorphisms that must be present in 

order for DGRP lines to exhibit altered E. coli phagocytosis. This result would strengthen 

the results of our E. coli screen. 

 The small pilot GWA studies conducted by our lab used the same DRGP lines to 

test phagocytosis of E. coli and S. aureus. However, there was no overlap in the SNPs or 

genes associated with these phenotypes. Eighteen SNPs and 10 associated genes were 

identified in the E. coli GWA while only 3 SNPs and 3 associated genes were identified 

in the S. aureus phagocytosis GWA. It is feasible that the small sample size did not yield 

enough power to identify additional genes that affected phagocytosis of both types of 

bacteria. Eater is the only Drosophila receptor shown to affect phagocytosis of both        

E. coli and S. aureus in adult hemocytes (Kocks et al., 2005). It is possible that the DGRP 

lines we tested did not contain sufficient diversity at the eater locus for polymorphisms in 

this gene to be significantly associated with our phenotypes. Indeed, in order to be 
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included in the GWA analysis, the minor allele of each variant needed to be present in at 

least 4 of the lines exhibiting altered phenotypes.  

 Two genes identified in the S. aureus phagosome screen were also identified in 

the E. coli screen: kuzbanian and CG42389. Thus it is possible, that these two genes may 

be important for phagocytosis of both Gram-negative and Gram-positive bacteria.  Two 

SNPs in kuzbanian (2L_13632604 and 2L_13632616 / smallest p-value = 8.84E-06) were 

associated with E. coli phagocytosis and another SNP in kuz (2L_13633995 / p-value = 

8.23E-05) was associated with antagonistic S. aureus phagosome maturation within the 

DGRP. kuzbanian was identified as important for the phagocytosis of E. coli and the 

yeast C. albicans in an S2 cell RNAi screen (Stroschein-Stevenson et al., 2006). 

Kuzbanian cleaves Notch to generate a functional receptor during imaginal disc 

development (Sotillos et al., 1997). In larvae, Notch regulates the development of crystal 

cells but does not appear to affect the development of the phagocytic plasmatocyte 

lineage (Duvic et al., 2002). In contrast, during the adult stage, Notch signaling regulates 

the proliferation of dorsal vessel associated plasmatocytes.  Thus, Notch affects the 

hemocyte niche in a distinct manner depending on the stage of development of the fly. 

The SNPs associated with kuz may alter Notch signaling and hemocyte development. 

Alternatively, kuz may be required for the activation of a transmembrane receptor that is 

important for phagocytosis of multiple types of bacterial cells. We carried out one 

experiment to test the effect of kuz on E. coli phagocytosis in adult hemocytes and saw no 

effect. However, due to the fact that multiple lines of evidence point to a potential role for 

kuz during phagocytosis, follow up experiments should be carried out to fully assess if 

there is a function for Kuzbanian during the cellular immune response.  
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 Additionally, SNPs associated with the gene CG42389 were identified in the       

E. coli phagocytosis GWA (2L_16630083 / p-value = 7.35E-06) and the antagonistic S. 

aureus phagosome maturation GWA (2L_16576978 / p-value = 4.21E-05). CG42389 

encodes a protein with Fibronectin III and Immunoglobulin-like domains.  Very little is 

known about the function of CG42389 in Drosophila but a recent study using 

fluorescently tagged CG42389 reported that the protein localizes to the plasma membrane 

of ventral cells in the developing embryo (Lye et al., 2014). CG42389 was also reported 

to physically interact with Falafel, a regulatory subunit of Drosophila phosphoprotein 

phosphatase 4 (PP4) that has ben implicated in Rac1 signal transduction and phagocytosis 

of C. albicans (Lipinszki et al., 2015; Stroschein-Stevenson et al., 2006). Follow up work 

using RNAi to silence the expression of CG42389 in hemocytes should be carried out to 

assess if there is an immune-specific role for this gene.  

 Two of our DGRP screens, the S. aureus phagosome maturation screen and the    

S. aureus phagocytosis screen, identified variants in A2bp1 as important for the cellular 

immune response to S. aureus. A2bp1 is a member of the highly conserved Fox-1 family 

of RNA-binding proteins. Members of the Fox-1 family bind to a consensus sequence, a 

(U)GCAUG element, in target RNAs and regulate tissue-specific alternative splicing 

(Auweter et al., 2006; Fukumura et al., 2007; Jin et al., 2003; Ponthier et al., 2006; 

Underwood et al., 2005). In Drosophila, A2bp1 i several developmental processes, 

including imaginal wing disc specification, female germline development, and nervous 

system development. Our study is the first report to describe a role for A2bp1 in the 

innate immune response. 
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 A2bp1 is expressed in larval and adult hemocytes. Studies using flies in which 

A2bp1 was either silenced or overexpressed in blood cells indicate that the expression of 

A2bp1 must be tightly controlled in these cells for proper function in these cells. 

Specifically, we observed strong defects in S. aureus phagocytosis both when A2bp1 was 

silenced in hemocytes using RNAi or when A2bp1-RE was overexpressed in hemocytes.  

We suspect that as an RNA splicing factor, any alteration in the levels of A2bp1 exerts 

deleterious effects on target mRNAs, thus leading to defects in the immunocompetence 

of the hemocyte. Perturbation of A2bp1 expression in hemocytes led to decreased 

phagocytosis of S. aureus and increased susceptibility to S. aureus infection. Using 

immunoselection and RNA sequencing, we analyzed the transcriptome of infected and 

uninfected hemocytes from wildtype flies and flies in which A2bp1 was specifically 

silenced in hemocytes using RNA interference. We identified over 100 candidate genes 

that are differentially expressed in wild type hemocytes after S. aureus infection, many of 

which overlap with genes identified in previous hemocyte and whole animal 

transcriptome studies after bacterial infection (Boutros et al., 2002; De Gregorio et al., 

2001; Irving et al., 2005).  

 Our transcriptome analysis generated a list of 20 genes that are likely the primary 

targets of A2bp1 in hemocytes. The cellular immune response is activated quickly in 

response to infection. As an RNA splicing factor, A2bp1 may control the expression of 

one or more proteins that mediate pathogen recognition and/or uptake. Indeed, one of the 

genes negatively regulated by A2bp1 in adult blood cells is the Immunoglobulin-

superfamily member Down syndrome adhesion molecule 4 (Dscam4). Dscam4 levels are 

almost 4-fold higher in A2bp1-silenced hemocytes than control hemocytes.  We stabilized 
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the level of Dscam4 in A2bp1-RNAi hemocytes by simultaneously silencing of A2bp1 

and Dscam4 in blood cells.  By returning the levels of Dscam4 to a normal range, we 

were able to rescue the fly’s immune response to S. aureus. Thus, A2bp1 controls the 

level of Dscam4 in adult hemocytes and functional loss of A2bp1 leads to an over-

expression of Dscam4, which in turn negatively regulates S. aureus phagocytosis.  

 The work we present demonstrates the utility of screening a wild population of 

flies to identify novel genes that play a role in the innate immune response to bacterial 

pathogens. Moreover, the genes identified in our study provide new insight into the 

functional mechanisms that underlie the cellular immune response to bacteria in 

Drosophila melanogaster.  The S. aureus phagosome maturation GWAS found that many 

of the genes important for phagocytosis and neuronal development overlap. This overlap 

may be attributed to the existence of common cellular mechanisms that underlie 

phagocytosis and the outgrowth of neurons. We also observed that the cellular immune 

response is sexually dimorphic; with female DGRP lines showing higher levels of 

phagosome maturation and male lines showing lower levels of phagosome maturation.  

Studies of sexual dimorphism in the immune response of the fly have documented post-

mating immunosuppression in both male and female flies (McKean and Nunney, 2001; 

Short and Lazzaro, 2010; Short et al., 2012; Vincent and Sharp, 2014). Humoral immune-

related genes are upregulated in mated female flies compared to virgin flies (Lawniczak 

and Begun, 2004; McGraw et al., 2004). Studies reporting post-mating immune 

depression in female flies have noted that this trade-off is only seen after infection with 

certain bacterial pathogens (Short and Lazzaro, 2010; Short et al., 2012; Vincent and 

Sharp, 2014). Post mating immune depression was observed only after the flies were 
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infected Gram-negative Providencia species and not after infection with Enterococcus 

faecilis or Pseudomonas aerurginosa.  Both E. faecilis and P. aeruginosa are recognized 

and phagocytosed by Drosophila hemocytes (Avet-Rochex et al., 2007; Nehme et al., 

2011). It is unknown if the fly relies on the cellular immune response to defend against 

Providencia species infection, but Providencia are internalized by S2 cells indicating that 

these bacteria could be phagocytosed by hemocytes in vivo (Galac and Lazzaro, 2011). 

Thus, sexually dimorphic effects in the cellular immune response are observed after 

infection with some pathogens and not after infection with others. Survival outcomes or 

transcriptional responses after bacterial infections have been used to analyze the extent of 

sexual dimorphic immunity in Drosophila. Our S. aureus phagosome maturation GWA 

analyzed the genetic basis of sexual dimorphism in the cellular immune response to         

S. aureus. We report candidate SNPs and genes with sex specific effects on S. aureus 

phagosome maturation, and this list of genes may provide insight into the mechanisms 

governing sexually dimorphic responses to infection in Drosophila. 

  In conclusion, we have carried out multiple, interconnected projects in order to 

further our understanding of the molecules and signaling pathways that mediate the 

Drosophila cellular immune response to Gram-positive and Gram-negative bacteria. We 

have conducted genome-wide association screens to identify genetic variants that affect 

the cellular immune response in adult flies. We have also characterized roles for four new 

genes during phagocytosis of S. aureus. Finally, we successfully isolated adult hemocytes 

and analyzed gene expression patterns in immune challenged and unchallenged cells. We 

present our lists of GWAS candidate genes, the characterization of fred, dpr10, CG42673 

and A2bp1, and our hemocyte transcriptome analysis as a foundation for future work 
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studying the cellular immune response in Drosophila melanogaster. In both humans and 

insects, phagocytic blood cells act as the initial line of defense against bacterial 

infections. Characterizing the scope of the Drosophila cellular response to bacterial 

pathogens may provide insight into the functional mechanisms that underlie phagocytosis 

in humans. 
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