
Lie Algbraic Methods for Treating

Lattice Parameter Errors in Particle Accelerators

by

Liam Michael Healy

Dissertation submitted to the Faculty of the Graduat e School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

1986 ; ·; i

(. . \ . -,·, \' i

'

.f1Jo rd

H(_>r , f J
! . I!.

r·· I

' I r fr j J .') ,

APPROVAL SHEET

Title of Dissertation: Lie Algebraic Methods for Treating Lattice
Parameter Errors in Particle Accelerators

Name of Candidate: Liam Michael Healy
Doctor of Philosophy, 1986

Dissertation and Abstract Approved: C[l~ £· J.J~
Alex J. Dragt
Professor
Department of Physics and Astronomy

Date Approved:

ABSTRACT

Title of Dissertation: Lie Algebraic Methods for Treating Lattice
Parameter Errors in Particle Accelerators

Liam Michael Healy, Doctor of Philosophy, 1986

Dissertation Directed By: Dr. Alex J. Dragt, Professor
Department of Physics and Astronomy
University of Maryland

Orbital dynamics in particle accelerators, and ray tracing in light

optics, are examples of Hamiltonian systems. The transformation from

initial to final phase space coordinates in such systems is a symplectic

map. Lie algebraic techniques have been used with great success in the

case of idealized systems to represent symplectic maps by Lie

transformations. These techniques allow rapid computation in tracking

particles while maintaining complete symplecticity, and easy extraction

of analytical quantities such as chromaticities and aberrations.

Real accelerators differ from ideal ones in a number of ways.

Magnetic or electric devices, designed to guide and focus the beam, may

be in the wrong place or have the wrong orientation, and they may not

have the intended field strengths. The purpose of this dissertation is

to extend the Lie algebraic techniques to treat these misplacement,

misalignment and mispowering errors.

Symplectic maps describing accelerators with errors typically have

first-order terms. There are two major aspects to creating a Lie

algebraic theory of accelerator errors: creation of appropriate maps

and their subs equent manipulation and use.

There are several aspects to the manipulation and use of symplectic

maps. A first aspect is particle tracking. That is, one must find how

particle positions are transformed by a map. A second is concatenation,

the combining of several maps into a single map including nonlinear

feed-down effects from high-order elements. A third aspect is the

computation of the fixed point of a map, and the expansion of a map

about its fixed point. For the case of a map representing a full turn

in a circular accelerator, the fixed point corresponds to the closed

orbit.

The creation of a map for an element with errors requires the

integration of a Hamiltonian with first-order terms to obtain the

corresponding Lie transformation. It also involves a procedure for the

complete specification of errors, and the generation of the map for an

element with errors from the map of an ideal element.

The methods described are expected to be applicable to other

electromagnetic systems such as electron microscopes, and also to light

optics systems.

Acknowledgments

There are many people who made this effort not only possible but

enjoyable as well. First, of course, is my advisor Alex Dragt, whose

understanding of physics and patience with me made the whole process

very rewarding. In addition, the people with whom I've worked at

Maryland have been invaluable in gaining an understanding of Lie

algebraic methods and of accelerator physics: David Douglas, who got me

interested in the subject in the first place, and whose name rightfully

appears in many places in this dissertation; Etienne Forest, who was of

great assistance in the difficult early stage of learning the subject

and who saved me from much embarassment by pointing out the gaps in my

half-baked understanding of many topics; Filippo Neri and Robert Ryne

with whom discussions on these methods and other topics were very

helpful. Lastly, Rachel Needle typed this whole manuscript from

illegible handwriting, with good-natured efficiency, and kept me on

schedule in the crucial final months.

Although a dissertation is about one very narrow topic within a

subfield, graduate education involves a wide range of physics and how to

go about doing it. In this regard, I have learned far more from my

fellow graduate students than all the courses and books that were part

of graduate school. It is impossible to name all these many friends but

I would in particular like to thank Fernando Pineda and Parney Albright

not only contributing to my knowledge but also for being good friends

and providing necessary diversions.

I would remiss if I did not acknowledge the finanical support in

this endeavor. A research assistantship under the U.S. Department of

-ii-

Energy contract DE-ASOS-SOER-10666 provided much of this support, with a

Graduate School Fellowship providing the balance. In addition, two

summers at the Los Alamos National Laboratory were not only of financial

benefit but more importantly gave me another view of accelerator physics

and interaction with knowledgeable people. For this I would like to

thank Richard Cooper and the others at Los Alamos.

Pat Francis deserves much gratitude for companionship, moral

support and many hours of proofreading. She knows more about

accelerator physics and Lie algebras than she cares to!

Finally, I would like to thank the people that started it all, my

parents Edward and Helen Healy who instilled in me a love of learning

and the dedication to complete a task. The other member of my family,

my sister Beth, taught me how to read, a skill which turned out to be

crucial in doing this dissertation.

-iii-

Table of Contents

Introduction •• 1

Part I: General Lie Algebraic and Group Theoretic Tools ••••••••••••• 2

1. Introduction••3

a. The Motion of Charged Particles in Accelerators ••••••••• 3

b. Hamiltonian Systems and Lie Groups •••••••••••••••••••••• 8

c. Lie Algebras and Operators ••••••••••••••••••••••••••••• 16

d. Lie Transformations •••.••••.••••••••••••.••..••.••••••• 22

e. Canonical Transformations to Convenient Coordinates •••• 29

f. The Relation between Lie Transformations and
Symplectic Maps .•••...........•......•............••..• 32

g. The Factorization Theorem •••••••••••••••••••••••••••••• 36

2. Ray Tracing •• 46

3. Ideal Structure of the Lie Algebra ••••••••••••••••••••••••• 51

a. First-Order Terms Absent ••••••••••••••••••••••••••••••• 52

b. With First-Order Transforrnations ••••••••••••••••••••••• 57

4. Concatenation of Factored Maps ••••••••••••••••••••••••••••• 61

a. Moving the First Order Term Left ••••••••••••••••••••••• 63

b. Concatenation of Terms Second-Order and Higher ••••••••• 79

c. Factorization in Descending Order and Inversion •••••••• 82

d. Relation to Ray Tracing •••••••••••••••••••••••••••••••• 83

e. Uniqueness of the Solution of ri••••••••••••••••·•••·•·88

5. Syrnplectification of Matrices •••••••••••••••••••••••••••••• 92

6. Determination of the Fixed Point ••••••••••••••••••••••••••• 98

7. The Euclidean Group •••••.••.••••••••.•••.••••••••••••••••• 103

-iv-

...

Part II: Computation of Symplectic Maps •••••••••••••••••••••••••••• 109

8. Computation of Factored Maps from a Hamiltonian ••••••••••• 111

a. H1 Small or Zero .•.......•.•..••.••.•.•.......•.••.•.• 114

b. Computation of the Linear Part N2 ••••••••••••••••••••• 126

c. H1 Arbitrary, and Geometric Considerations •••••••••••• 133

9. Mispowered Normal-Entry Bending Magnets ••••••••••••••••••• 135

a. Computation of the Map from the Hamiltonian ••••••••••• 135

b. Computation of the Map from Ideal Elements and
Coordinate Transformations •••••••••••••••••••••••••••• 161

10. Mispowered Parallel-Face Magnets and General
Bending Magnet •• 167

a. Parallel-Face Magnets •••••.....•.•..•...•.••...•..•••. 167

b. The Steering Magnet••...•••..•...••...•....•.•..•• 187

c. The Hard-Edge Fringe Field of a Mispowered Magnet ••••• 189

d. The General Bending Magnet •••••••••••••••••••••••••••• 192

11. Description of Alignment Errors ••••••••••••••••••••••••••• 194

12. Realization of the Euclidean Group by Symplectic Maps ••••• 201

a. Translations •• 203

b. Rotations .••.•.••.• ••·•••·••·•·•••••·•••·••······••·••208

c. Rotations with Propagation Unde r an
Arbitrary Hamiltonian •••••••••••••••••••••••••.••••••• 223

-v-

Appendix A: Treatment of Random Distributions of Errors ••••••••••• 226

a. Statistical Distributions and Propagation of Errors ••• 228

b. Application of the Propagation of Errors Technique
to Accelerator Design ••••••••••••••••••••••••••••••••• 235

c. Results•••246

Appendix B: MARY LIE 3 .I ••• 253

a. Usage and Examples ••••••••••••..•••••••••••••••••••••• 253

b. Implementation and Testing •••••••••••••••••••••••••••• 271

c. Listings .•......•...•..••.•.•••••.•...••••••...•••.••. 2 7 7

Appendix C: The Symbolic Computation Code ANNALIE ••••••••••••••••• 305

Appendix D: Index Numbers for Monomial Coefficients
Used by MARYLIE ••••••••••••••••••••••••••••••••••••••• 319

References •• 3 2 5

-vi-

List of Tables

Table 9.1 Nonzero Coefficients of g~l) for the Mispowered
Normal-Entry Bending Magnet ••••••••••••••••••••••••••••• 151

Table 9.2 Coefficients of gil) for the Mispowered Normal-
Entry Bending Magnet •••••••••••••••••••••••••••••••••••. 152

Table 9.3 Nonzero Elements of JS(Z) for the Mispowered
Normal-Entry Bending Magnet•••·••••··•••••••••·•••••••••l54

Table 9.4 Nonzero Elements of N(Z) for the Mispowered
Normal-Entry Bending Magnet••••••·••••••••••••••••••••••l55

Table 9.5 Non-Identity Elements of M(Z) for the Mispowered
Normal-Entry Bending Magnet ••••••••••••••••••••••••••••• 156

Table 9.6 Coefficients of g~Z)' for the Mispowered Normal-
Entry Bending Magnet .••••..•....••..•...•....•.•••.•.... 158

Table 9.7 Coefficients of g~ 3) for the Mispowered Normal-
Entry Bending Magnet••••·•••••••••••••••••••••••••••••••l59

Table 9.8 Coefficients of g1 for the Mispowered Normal-
Entry Bending Magnet •••••••••••••••.•••••••••••••••••••• 160

Table 10.1 Expansion of the Hamiltonian K for the Parallel-
Face Magnets •• 178

Table 10.2 Limits of Integration for Parallel-Face Magnets ••••••••• 180

Table 10.3 Integrals for Evaluating Parallel-Face Magnet Maps •••••• 181

Table 10.4 Matrix and Polynomials for Mispowered Parallel-
Face Magnets •• 185

Table A.l Derivatives of the Tune as a Function of the Trace
of the Small Matrix ••••••••••••••••••••••••••••••••••••• 245

Table A.2 Comparison of Propagation of Errors with Random
and Regularly Generated Samples ••••••••••••••••••••••••• 252

Table B.l Example of MARYLIE: Misaligned Element •••••••••••••••••• 256

Table B.2 Example of MARYLIE: Concatenation with Misaligned
Element and Determination of the Fixed Point •••••••••••• 259

Table B.3 Example of Fitting and Orbit Correction: File FOURSIDE •• 268

Table B.4 Sample Run of Fitting and Correction •••••••••••••••••••• 270

Table B.5 Routines Not Listed ••••••••••••••••••••••••••••••••••••• 278

-vii-

Table B.6 Subroutine GlMOVE •••.••••••••.•.•.•••••••••.•••••••••••• 279

Table B.7 Subroutine MATIFY •••••••••••••.••••••••••••••••••••••••• 282

Table B.8 Subroutine FlPBKT.••••••••••••••••••••••••••••••••••••••282

Table B.9 Function TINDEP and Subroutine GET4X4 ••••••••••••••••••• 284

Table B.10 Routines for Exponentiation of Matrices ••••••••••••••••• 285

Table B.11 Subroutines for Matrix Symplectification by
Furman's Method ••• 287

Table B.12 Routines for Determining the Symplecticity of a Matrix •• 288

Table B.13 Subroutine CLORE •• 289

Table B.14 Subroutine SHIFT •• 291

Table B.15 Subroutine TPROT ••.•..•....••..•••••••.••.•.•.••...•••.• 292

Table B.16 Subroutine AROT .•..•••••...••••••••••••••••••••••.•••••• 294

Table B.17 Subroutine LATSHF ••••••••••••••••••••••••••••••••••••••• 295

Table B.18 Subroutine DRIFT.•••••••••••••••••••••••••••••••••••••••296

Table B.19 Subroutine SHIFID ••••••••••••••••••••••••••••••••••••••• 298

Table B.20 Subroutine EUCPR •.••..••.•..•••••••••.•.••...•••••.•.••• 299

Table B.21 Subroutine EULER •• 301

Table B.22 Subroutine INVEUC ••••••••••••••••••••••••••••••••••••••• 302

Table B .23 Subroutine KICKER ••••.••••••••••••••••••••.••••••••••••• 303

Table C. l Package GENL •• 309

Table C.2 Package SETUP ••• 312

Table C.3 Package POLYS ••• 313

Table C.4 Package CREATE •• 315

Table C.5 Package PB •• 316

Table c.6 Package LIE ••• 318

-viii-

Figure 1 .1

Figure 8.1

Figure 9.1

Figure 9.2

Figure 9.3

Figure 10 .1

Figure 10.2

List of Figures

Coordinates•••4

Flow Chart for Computation of a Factored Map •••••••••• 113

Geometry of a Mispowered Normal-Entry Bend,
Bactual > Bideal••••••••••·••••••••••••••••••••••••••• 136

Geometry of a Mispowered Normal-Entry Bend,
Bactual < Bideal•••••••••·••••••••••·•••••••••••••••••l3l

Geometric Quantities in a Mispowered Normal-Entry
Bending Magnet •••••••••••••.•••••••••••••••••••••••••. 163

The Parallel-Face Bending Magnet, and the Half
Parallel-Face Magnets•••••••••••••••••••••••••••••••••l69

Geometry of the Parallel-Face Magnets,
Ideally Powered•••••••••••••••••••••••••••••••••••••••l72

Figure 10.3 Determination of~ for Mispowered Parallel-Face
Magnets ••• 17 3

Figure 10.4 The Steering Magnet•••••••••••••••••••••••••••••••••••l88

Figure 10 .5 The General Bending Magnet••••••••••••••••••••••••••••l93

Figure 11.1 Geometry of a Misaligned Element •••••••••••••••••••••• 196

Figure 11.2 Euclidean Group Elements in a Misalignment •••••••••••• 198

Figure 11.3 Computation of the Euclidean Group Element Trans-
forming Coordinates from the Fiducial Point to a
Pole Face .• ..•...•...•••..••.•..••••.•.....•••...••.• . 199

Figure 12.1 The Coordinate Transformation Rz(}) Tx(6x) •••••••••••• 202

Figure 12.2 Translation in the Z Direction •••••••••••••••••••••••• 205

Figure 12.3 Drift of a Particle to Rotated Coordinates •••••••••••• 212

Figure 12.4 Leading and Trailing Midplane Rotations for a
Parallel-Face Magnet••••••••••••••••••••••••••••••••••217

Figure 12.5 Change in z for a Drift Rotation and for Rotation
with a Non-Zero Field•••••••••••••••••••••••••••••••••225

-ix-

Figure A. l The Tune Function •••..•.•....•..••••••.••••••••..••••• 243

Figure A.2 The Maximum Likelihood Ratio •••••••••••••••••••••••••• 247

Figure A.3 A Bending Cell •• 249

Figure A.4 Generation of a Regularly Distributed Sample
of a Gaussian•••250

Figure B .1 A Mythical Four-Sided Ring for Determination of
Closed Orbit Correction ••••••••••••••••••••••••••••••• 267

-x-

Introduction

The work presented here is part of an ongoing effort in the appli

cation of Lie algebraic techniques to particle accelerators and related

areas such as light optics (Dragt and Finn [1976], Dragt [1982], Douglas

[1982], Dragt and Forest [1983], Forest [1984]). In particular, I treat

the problem of lattice parameter errors, especially beam element align

ment, positioning and powering errors.

Such errors will generally introduce a first-order term into the

factorized Lie transformation, i.e., a particle on the design trajec

tory, once it passes through one of these erroneous beamline elements,

will no longer be on the des ign trajectory. There thus need to be the

mathematical tools available to work with these maps: concatenation,

tracking and finding the fixed point (closed orbit) in particular. Part

I covers these mathematical tools.

Part II then treats a problem which perhaps conceptually comes be

fore Part I: how the maps of erroneous elements are computed in the

first place. What is described here is an extension of the methods

developed previously in the references given above for ideal elements,

together with some computation of actual elements.

Finally, the appendices cover various topics of related interest:

the beginnings of a method for treating random distributions of errors;

description, examples, testing and listing of MARYLIE 3.1, the computer

code that embodies the work here by extending the Lie algebraic particle

tracking code MARYLIE 3.0 (Dragt et. al. [1985]) to include errors; a

description of ANNALIE, the code written in the language SMP to assist

with the analytical computations needed to write MARYLIE.

-1-

Part I: General Lie Algebraic and Group Theoretical Tools

This part deals with the mathematics necessary to treat beamline

element errors, which produce first-order terms in the factored Lie

transformations. It is an extension of the methods without first-order

terms developed by Dragt and Finn [1976], Dragt [1982], and Douglas

[1982]. Chapter 1 is an introduction to the mathematics, showing how

Lie algebras play a role in Hamiltonian systems. Much of the informa

tion comes from the references above, but is repeated for the sake of

completeness. Chapter 2 deals with the tracking of particles through

the maps, and how a first-order term affects this process. Chapter 3

describes, in mathematical terms, the various Lie algebras implied by

possible approximation schemes, and shows a particular one as natural

for concatenation. Chapter 4 is a computation of the concatenation

rules. Chapter 5 shows how to handle the symplectification of matrices,

necessary when a first-order term is concatenated with higher order

terms. Chapter 6 is a description of a method for finding the fixed

point, or closed orbit, of a map, and the map around it. This is ex

tremely important because in the presence of machine errors, one almost

always wants to find the new fixed point and the map around it.

Finally, Chapter 7 deals with the Euclidean group, the group of rigid

body motions, which we shall need for description of element alignment

errors.

-2-

1. Introduction

a. The Motion of Charged Particles in Accelerators

A charged particle moving in an accelerator is subject to electro

magnetic forces of various origins. In most cases, the predominant

force is from the magnets, radio frequency cavities, and perhaps

electrostatic elements installed as part of the accelerator to guide and

accelerate the beam. Other possible sources include space-charge

forces, that is, the force of other charged particles in the bunch, and

wake-field forces, the electromagnetic force reflected off the walls of

a cavity from the earlier passage of particles. In addition,

synchrotron radiation plays a significiant role in some machines, and

minor effects may be caused by collision of the accelerated particles

with residual gas in the beam pipe.

A major task of accelerator physics is to simulate the motion of

particles in accelerators to insure proper behavior and to understand

what magnet arrangements and strengths - the lattice - will produce de

sirable behavior, and what arrangments will produce undesirable be

havior. If we are lucky, we may find some entity that represents the

lattice, and from which we may extract the potential for good or ill

behavior directly, or use this entity for simulation of particle motion.

For simplicity, I shall assume the only significant effects in beam

motion arise from the external magnetic or electric forces, that is,

those forces coming from fixed elements such as bending magnets,

focusing magnets (quadrupoles), and so on. We then choose a set of

coordinates: the z direction will be along the direction of a particle

-3-

~-
Outside
of Ring,
If in Ring

y
Midplane -------~-"'f#C----------

z

Design Trajectory

Figure 1.1 Coordinates

-4-

following the design trajectory ("design particle"), the x direction

will be in the midplane of the bending magnets, or horizontal and

perpendicular to z, y will be perpendicular to both, and twill be

flight time (see Figure 1.1). Both x and y are measured from the design

trajectory. Each of these has a conjugate momentum Px, Py, Pz, or Pt•

Six of these quantities (three pairs) form the phase space, and the

other pair become the independent variable and the negative of the

Hamiltonian. Given a particle's initial position in phase space,

one way to analyze particle dynamics is to study six dependent

variables, denoted by C, as a function of time, say

C(v0 ,t) - x(v0 ,t), px(v0 ,t), ••• pz(v0 ,t).

(1.1)

(1.2)

A simple representation of particle behavior would be to give these

functions for the whole time a particle would be in a machine.

Certainly, undesirable properties would become obvious - if a beam were

doomed to head for a wall, this would be indicated in the function.

Unfortunately, these functions are difficult to calculate in general,

due to non-linearities that arise from the kinematics and from the

lattice elements, and we would be mathematically unable to make use of

an obvious property of circular machines: as far as the forces are

concerned, one turn is like another.

We shall make an important change that remedies this problem: all

phase space variables will be measured as deviations from the design

-5-

values. This allows us to approximate the motion by Taylor expansion of

the functions:

v~ +
J

+ ••• (1.3)

where v0 are the coordinates at t = 0 and mij• tijk• ••• are real co

efficients. For convenience, we may take a fixed section of the

accelerator, say one turn, as implicit, and drop the t. This corres

ponds to a Poincare surface of section; we give the coordinates of a

particular particle only at a particular position on the ring at each

pass and do not care what happens to it elsewhere. These functions Ci

together form what is called a transfer map and shall usually be repre

sented with script letters M,N etc.

Generally, this is an effective method, because most accelerators

are quite linear. That is, each term in the expansion is much larger

than the next, so that truncation of the series after two or three turns

gives reasonable answers.

The quantities M = {mij}, T = {tijk}, ••• are determined solely by

the machine construction, and not at all by the initial (or any)

conditions of the particle. This is the representation of the lattice

we sought. We may track particles through a lattice by repeatedly

applying (1.2), or we may extract useful information directly from the

coefficients mij• tijk• ••• • Further, we may concatenate: determine

the matrices M, T, ••• for a section from two pieces M1 ,T1 , and M2 ,T2 ,

that make it up, e.g., obtaining the lattice matrices for two turns

from those for one. If the nonlinearities are not too great, the terms

that have been eliminated in truncation will not be significant.

-6-

So far, I have assumed that all elements are perfectly positioned

and powered: there are no constant terms in the expansion (1.3), so a

design particle, with coordinates (0,0,0,0,0,0), maintains those coordi

nates. This need not be the case, of course; magnets, as well as

particles, may fail to be in the design position.

The introduction of constant terms represents no major problem

until we try to combine maps. Suppose we have two maps, from time t
0

to

t +t
vl = M 1 o(vo) (1.4a)

and

(1.4b)

and we wish to combine these into a single map

t + t
v2 = M 2 o(vo). (1.5)

Then, with the truncation of the Taylor series at each step, we may

introduce "feed down" errors: a particular map's fourth-order term,

when concatenated with a first-order term, generates a third-, second

and first-order term. If the fourth-order term had been neglected, the

resultant third-order term would be wrong. The solution to this, which

I shall discuss in greater detail later, is to assume that the constant

terms are small in the sense that the phase space coordinates are small,

and may be similarly truncated.

-7-

b. Hamiltonian Systems and Lie Groups

i. Hamilton's Equations

The motion of a charged particle in an accelerator, assuming no

synchrotron radiation effects, is a Hamiltonian system. The description

is given with a set of 2n coordinates C, which form n groups of

canonical pairs, and there is a function H(C,t), the Hamiltonian, such

that Hamilton's equations hold,

Here the matrix J and the generalized gradient are defined by

J

and

B
0

0
B

B [_~ ~]

(1.6)

(1.7)

(1.8)

On the f ace of i t , t he r e is nothing special about a Hamiltonian

system as opposed to a non-Hamiltonian system . However , the motion

possible from a Hamiltonian system, a Hamiltonian flow, is more re

stri c ted than an a rbitrary flow. In essence, some of t he coefficients

M, T, ••• of Section l a are redundant. It will be possible to recast

the description of an accelerator section with fewe r numbers . This i s

-8-

done by means of a Lie transformation, a method describing a symplectic

map. All Hamiltonian flows give rise to symplectic transformations on

phase space, as I shall show later.

ii. Groups

To study Hamiltonian systems, we shall need the concept of a group.

A group is a set, together with a "multiplication" operation which will

be denoted by juxtaposition, satisfying the following four axioms:

1) Closure: if A and Bare in the group, so is AB;

2) Identity: there is an identity element I such that AI= IA= A;

3) Inversion: for every element A there is an inverse A-l such that

AA-l = A-lA = I;

4) Associativity: group multiplication obeys the relation A(BC) =

(AB)C.

All the groups that will be introduced are Lie groups. Lie groups

are groups that are also manifolds (have a differentiable structure)

such that the group operation and inversion are both(; (infinitely

differentiable).

A mapping p: G + H from a group G to a group His a group

homomorphism if the group operation is preserved,

(1.9)

If pis injective (one-to-one) and surjective (onto), i.e., is a one-to

one correspondence, then it is an isomorphism and the groups are

-9-

isomorphic.

Groups of transformations frequently appear in physics and are of

particular importance to Hamiltonian dynamics. For example, the set of

all possible rotations of a rigid body in space (or transformation of

the coordinate axes) forms a group. A particular kind of transforma

tion, the linear transformation, acts on a vector space V. A

transformation T : V ~Vis linear if

(1.10)

where v1 ,v2 EV and a1 ,a2 ER. If a set of basis vectors has been picked

for V, there is a 1-1 correspondence between the set of linear transfor

mations on V and the set of n by n matrices, where n is the dimension of

V. For this reason, the distinction between these will be blurred.

A homomorphism from a group to a group of transformations is called

a realization of the first group. We shall see that a particular

realization is useful for computing the effects of misalignments (see

Chapter 12). If the homomorphism maps to a group of linear transforma

tions, the realization is called a representation. If a realization or

a representation is an isomorphism it is called faithful.

A subgroup is a subset of a group that is also a group in itself,

under the same operation. An invariant or normal subgroup Hof G is one

where for all h EH, g E G, ghg-l EH.

iii. The Symplectic Group and the Group of Symplectic Maps

A linear transformation or matrix Mis symplectic if it satisfies

-10-

the property

~ MJM = J, (1.11)

~ where M denotes the transpose of M. These transformations or matrices

form a group under matrix multipliation called the symplectic group,

designated Sp(2n).

A map M from R2n to R2n, C =MC, is symplectic if its Jacobian

matrix defined by

~,.
1 ~,.
J

(1.12)

is symplectic for all C. These maps form a group under composition, the

group of symplectic maps. The symplectic group is a subgroup of it.

iv. The Poisson Bracket and Canonical Transformations

The Hamiltonian evolution

(1.13)

can be used to study an arbitrary function on phase space f(C,t). Then

the time dependence is

df
dt

• Hamilton's equations allows us to substitute for C:

-11-

(1.14)

df
-=
dt V~f • J • V H + £!.

"' C ot (1.15)

It is useful to define the Poisson Bracket for two functions on phase

space

so that

df
-=
dt

[f ,H] + £!. ot

If there is no explicit time dependence in the function f, then

df
dt

(1.16)

(1.17)

(1.18)

Closely related to the concept of a Poisson Bracket is the impor

tant concept of a canonical transformation. A canonical transformation

is a set of functions C(C,t) which preserve the Poisson Bracket:

(1.19)

I have used the subscript C to indicate the derivative VC to be used,

because we now have another set of coordinates C that could also be used

as canonical coordinates. In fact, if we invert the transformation C

~ C locally around the image C to form C(C,t), we find

(1.20)

-12-

so it too is canonical.

Suppose we make two canonical transformations in succession C ~

C ~ C • Then

oci ocj
= I - . J • oC mn oC

m,n m n

[i:. ,e". 1 = JiJ" •
1 J -

C

So the composition of two canonical transformations C ~ C is

canonical. Therefore, the composition of an arbitrary number of

canonical transformations is canonical.

(1.21)

(1.22)

Finally, canonical transformations are associative because all

transformations are. For these reasons, canonical transformations on

phase space form a group under composition.

One may ask what the connection is between this group and the group

of symplectic maps. Specifically, are they the same? The answer is

yes, if canonical transformations are defined, as above, as those trans

formations that preserve the Poisson bracket. However, it is possible

to define them as transformations that preserve the Hamiltonian. Then

-13-

the symplectic group is a subgroup of the canonical group. What is not

included are the scaling transformations: if we allow transformations

with Jacobian M such that

~ MJM = AJ (1.23)

then this extended group is the canonical group •

Proof vr,.
1

• J . vc.
J

(1.24)

because MJM AJ - MJM = AJ •

v. Hamiltonian Flows and Symplectic Maps

Now that we have the canonical group and the symplectic maps

identified, we would like to relate Hamiltonian flows to them. Thus we

have

Theorem: A Hamiltonian flow that takes the coordinates r, 0 at time Oto

r, at time t gives rise to a symplectic transformation from r, to r, 0
•

Proof: The Jacobian matrix Mis defined by

(1.25)

-14-

Then

so

where

• 0 •
M .. =-C.

iJ oC~ i

J

•

I
k,1

M = JSM

(1.26)

(1.27)

(1.28)

Now suppose tis divided up into N equal intervals of length E. If Mis

the Jacobian matrix at the end and Mis the Jacobian matrix at the

beginning of one of these intervals

(1.29)

If we assume M is symplecti.c to order E

(1. 30)

-15-

we may check the symplecticity of M

MJM = (M + EJSM + 0(£ 2)) J(M + EJSM + 0(£2)) (1.31)

At time 0, Mis the identity, which is symplectic. Each of the N trans

formations is symplectic through order£. By letting£+ 0, we get

exact symplecticity at the end; since N = t/£, the remainder term 0(£ 2)

goes to zero faster than the number of intervals increases.

c. Lie Algebras and Operators

We have seen the symplectic mapping that governs particle behavior

in an accelerator can be viewed as an element of a Lie group. We now

wish to look at this Lie group from a differential view: if a particle

is at a particular set of coordinates at a particular time, what are its

coordinates a short time later? This information is given by the Lie

algebra.

An algebra over the reals is a vector space S, with a multiplica

tion rule A:S x S + S satisfying the bilinearity properties:

1) A(as,t) = A(s,at) = aA(s,t) where a£ R; s,t £ S;

-16-

2) A(s,t + v)

A(s + t,v)

A(s,t) + A(s,v)

A(s,v) + A(t,v).

The algebra will be called associative if A(s,A(t,v)) =

A(A(s,t),v). The algebra is a Lie algebra if the multiplication

satisfies antisymmetry and the Jacobi identity:

3) A(s,t) = -A(t,s)

4) A(s,A(t,u)) + A(t,A(u,s)) + A(u,A(s,t)) = 0

A Lie algebra multiplication is usually indicated with brackets [,].

A linear operator u on a vector space Sis a mapping from the

vector space to itself, u:S ~ s. Call the space of all linear operators

S*. It has a vector space structure adopted from S. If u,v ES*, a,~

scalars, ands ES, then

(au+ ~v) s = au(s) + ~v(s).

The composition of operators makes S* into an associative algebra.

Repeated composition of operators shall be indicated with a super

script, by analogy with real numbers:

uu , u3 = uuu , etc. (1.32)

An operator with the superscript O is the identity.

A derivation D of an algebra Sis a linear operator that satisfies

-17-

DA(s,t) A(Ds,t) + A(s,Dt).

One may verify by induction that

n
DnA(s,t) = J.'.

m=O

Where (n) __ n! 1.·s m m!(n-m)! the binomial coefficient.

(l • 33)

(1.34)

An associative algebra can be made into a Lie algebra by defining

the Lie product via the operation

[s,t] = st - ts, (1 .35)

which the reader may verify gives a Lie algebraic structure. It is

called the commutator Ll.e algebra.

The de rivations do not form a subalgebra of S* under composition.

That is, the composition of two derivations is not in general a

derivation. However, by forming the commutator Lie algebra

(l • 36)

we can make the space of derivations a subalgebra, because [D 1 ,D2] will

always be a derivation if n1 and D2 are, as may be easily verified.

A useful concept when dealing with Lie algebras is that of the

adjoint map. An adjoint map of S gives, for each element of S, a linear

operator on S,

-18-

(1.37)

in the following way:

(1.38)

That is, multiplication by a fixed element of the algebra gives an

operator , and the map AdA promotes that fixed element to that operator.

Since S* is an associative algebra, it can be made into a commuta

tor Ll.e algebra.

The map Ad from the underlying Ll.e algebra S to S* is a (Lie

algebra) homomorphism, that is, it preserves the Lie structure:

[Ads, Ad t] = Ad[s,t] , (1 . 39)

which may easily be verified from the Jacobi identity and the anti

symmetry property:

[Ads, Ad t] =Ads Ad t - Ad t Ads

= [s, [t, •]] - [t, [s,•]]

= (s [t, •]] + [t, [• ,s]]

= -[•, [s,t]]

= [[s , t] , •] = Ad [s , t l ,

-19-

(1.40)

where • indicates an unspecified arbitrary argument of S upon which the

operators are to act.

An operator in the image of Ad is called a Lie operator. If the

Lie algebra is a commutator Lie algebra, such an operator is a deriva

tion on the associative algebra:

(Ads) tu= [s,tu] stu - tus (1.41)

stu - tsu + tsu - tus

= [s,t] u + t[s,u]

((ads) t) u + (t(ad s) u).

Also, the Jacobi identity, together with the antisymmetry condition,

means that a Lie operator is a derivation on the underlying Lie algebra,

whether or not it is a commutator Lie algebra

(Ad s) [t ,u] [s,[t,u]] - [u, [s,t]] - [t, [u,s]] (1.42)

[(Ad s) t , u] + [t , (Ad s) u] •

Lie operators are sometimes called inner derivations.

Now we may apply these results. Let S be the space of continuous

functions on phase space with at least one derivative,

s = { f :R6 + R I f E c1} • (1.43)

-20-

Consider the algebra given by pointwise multiplication on this space

A(f ,g) - fg - {h / fh(x) =f(x) g(x) Vx e: Rn}. (1.44)

Consider another multiplication operation [,] that makes this space a

Lie algebra, whose adjoint is a derivation in A

ff,gh] = ff,g]h + gff,h] (1.45)

Furthermore, let the values on the phase space coordinates be

(1 • 46)

where we are considering the phase space variables C as functions.

These rules uniquely define the Poisson Bracket Lie Algebra multi

plication, which we indicate by f,]. The reader should convince himself

that the rules imply the relation given before:

f, g e: s. (1.47)

In the Poisson Bracket Lie Algebra we indicate the adjoint with a pair

of colons

:f:g = [f,g]. (1.48)

Because Ad is not a bijection (one-to-one and onto map), however, it is

not an isomorphism. For example :f + c: = :f:, where c = constant, be-

-21-

cause :c: = O. The kernel of the adjoint, that is the set of all points

that map to zero, is called the center of the algebra; clearly, then, in

this Lie algebra, the functions constant on phase space are the center.

The time evolution of phase space functions in a Hamiltonian system

is governed by this Lie algebra:

e = -[H,C] (1.49a)

or

e = - :H:C. (1.49b)

Obviously, the Lie operator :H: is very important in Hamiltonian

systems, and one may reasonably expect that Lie algebras can play a

significant role in analyzing these systems. Despite its importance, it

is not practical in exactly this form. In accelerator physics, we

usually want to find the coordinates after a finite time (or axial

position) rather than the instantaneous rate of change. In other words,

we need the integral rather than the differential form of the dynamical

equations. In this case, Lie transformations are more useful.

d. Lie Transformations

We have thus far seen that Hamiltonian flows give rise to

symplectic maps or canonical transformations which form a Lie group; we

also have seen that the differential form of a Hamiltonian flow is

governed by Lie operators which form a Lie algebra. One may conclude

that Lie got his name on everything. One may also wonder what the

-22-

relation is between the two; it is given by the exponential of a Lie

operator, called a (yes) Lie transformation.

As motivation for the use of a Lie transformation, consider the

dynamical differential equation

-:H(t) :C

This reminds one of the ordinary differential equation

f I (x) g(x) f(x).

The solution to this, of course, is

f(x)
fx g(x') dx'

b e a

(1.50)

(1.51)

(1.52)

where b = f(a) is the initial condition. Thus we might propose that the

solution of (1.50) is, if :H(t): commutes with itself at different

times,

= e
- ft :H(t I): dt'

0 C(O). (1.53)

Here we must define the exponential of a Lie operator suitably. If we

define it with the Taylor expansion that the ordinary exponential has,

00 n
e:f: = I : f:

n=O n!
(1.54)

then it can be shown that (1.53) solves the differential equation

-23-

(l. 50).

These exponentials of Lie operators give elements of the Lie group

of symplectic maps and are called Lie transformations. We say that the

Lie algebra generates the Lie transformation (group). The Lie transfor

mations have the remarkable property

(1.55)

This may be shown as follows. Using the derivation property (1.34)

co

= I
n=O

co

e:f: [g,h] l. -f:fn:[g,h]
n=O n.

n
1 I n! [(: f : mg ,) , (: f : n -mh)]

n! m=O m! (n-m) !

co n m n-~
I I [: f: g : f:

= (n-m)!] m!
,

n=O m=O

co co m l
I I [: f: g :f: h] , l!

m=O l=O m!

[e:f:g,e:f:h].

An identical calculation also based on the derivation rule yields

(1.56)

(1.57)

This means that the transformation of a polynomial may be done on the

coordinates. A polynomial is just a sum of monomials of the form

-24-

m C 2n
2n (1.58)

Then because of the relation (1.57) the Lie transformation may be

distributed across the product,

m m
e:f(C): (a C 11; 2

1 2

and by linearity for any polynomial,

(: f (C) : ,. m2 n)
• • • e \-,

2n

(1 .59)

It is clear by the above relations that transformations of the form

e:f: are canonical for any f: if C = e:f:i; then

(1 • 60)

The converse is more interesting: given a canonical transformation, C +

C is there an f such that C = e:f:1;? In general the answer is no.

However, as we saw at the beginning of the section, the canonical trans

formation occurring under the flow of a Hamiltonian that commutes with

itself at different times can be represented this way. Note that real

accelerators have time-dependent Hamiltonians that do not commute with

themselves, because the electromagnetic field seen by a given particle

-25-

depends on the time. In general it will not be possible to make a

single Lie transformation representing the Hamiltonian flow. However,

we can approximate the transformation by a finite series of transforma

tions I shall discuss in section f.

From the Poisson bracket Lie algebra A of functions on phase space

S, we used the map Ad to induce the adjoint Lie Algebra A*, or Commuta

tor Lie Algebra S*. Since this is itself a Lie Algebra, it is possible

to get its adjoint. Define

AdA*: S* 7 S** (1.61)

where S**:S* 7 S* is the space of operators on S*. We denote the map

AdA* by surrounding with '#', that is

It : f : It : g: [:f:,:g:] :f::g: - :g::f:. (1.62)

Douglas [1982] uses '"' as an abbreviation for It: :It, e.g. f - lt:f:lt.

The Lie Algebra in S** is a commutator, as in S*

[f,g] = fg - gf (1.63)

The following theorem is useful for exchanging the order of two Lie

transformations

Theorem (Douglas [1982], Dragt and Finn [1976]). If f,g E F with

n E Z, then

-26-

(a)

(b)

(c)

Here
f

e is defined as

Proof

(a)
f

e :g:

---·-- -·--------------

f
e :g: (l . 64)

(l .65)

exp(ef:g:) = exp(:e=f=g:). (1.66)

=

f
e

00

I
n=O

0:,

I

00

= I
n=O

fn

n! :g:

:f:n

n=O
--,- g: = n.

(1.67)

00

I 1
: : f: ng: (1.68) ;r

n=O

·e=f=g· . . .

To show (b) start with n=l. Let~ be a real parameter, and define

:h(~): e ~ : f : : f : e -~ : f : •

Differentiation gives

d:h:
d~

:f::h: - :h::f: = f:h:,

which has the solution

~f
e :g: •

-27-

(1 • 69)

(1 • 70)

(1. 71)

Setting ~=l yields

f
e :g: •

For n > 1, note e-:f:e:f: is the identity so

e : f : : g : ne - : f :

£ (e :g:)n ·e:f:g.n . . .

Finally, we have

ex, n
e :f: (I ~)

n!

ex,

z:
n=O

n=O

1 ·f· n -•f· -, e· ·:g: e · ·
n.

·e·f·g· ef·g· e · · = e · ·

This relation is useful if we have, say,

(1.72)

(1. 73)

(1.74)

and want the trans.formation e:.f: on the right. Then, using e-:f:e:f:

identity, we have the result

-28-

(1.76)

·e :f =g • •f · = e · ·e · ·
·gT. •f.

e · ·e · ·

where

(1.77)

This will be called the transformation rule.

e. Canonical Transformations to Convenient Coordinates

In this section, following Douglas [1982] and Dragt [1981], I shall

make certain coordinate changes to facilitate the use of Lie algebraic

methods in particle accelerator physics.

The first step is to make a canonical transformation so that the

independent variable is no longer flight time t, but distance along the

flight path z. Generally speaking, a dependent variable Qi in a

Hamiltonian system may be made into the independent variable if

Qi= ~H * O.
uPi

(1. 78)

Formally, the theorem is (Douglas [1982], p. 94, Dragt [1981], p. 151)

Theorem Let H(z,t) be the Hamiltonian for a system with n degrees of

Qi= oH * 0
oPi

-29-

(1.79)

in some region of state space. Then within this region, Qi can be

introduced as the independent variable replacing the time t. Moreover,

the equations of motion with Qi as independent variable may be obtained

by using K = -P 1 as an effective Hamiltonian.

For a proof, which is based on the implicit function theorem, the

reader is urged to consult the references given above.

It should be clear that for any reasonable motion of particles in

an accelerator, this condition holds for z:

• z :f. 0 (1.80)

since z(t) is, we hope, a monotonically increasing function of time.

Thus we may take as the Hamiltonian the quantity

(1.81)

The second step is to make a canonical transformation measuring

time and its momentum as deviations from the design trajectory

t*(z)

p*(z)
t

= t(z) - t 0 (z) (1.82a)

(1.82b)

where the superscript o indicates the value of the quantity on the de

sign trajectory, and the superscript* indicates the new coordinates.

This is a canonical transformation. We may use a generating function of

type 2 (Goldstein [1950], p. 240)

-30-

F(t,p~;z) (t - t 0 (z)) (p~ + p~(z)). (1 .83)

Then the new Hamiltonian is

(1 • 84)

In this system of coordinates, the design trajectory has the value

(0,0,0,0,0,0) and particles "near" the design trajectory will be des

cribed by "small" values of the phase space variables. Thus the motion

is amenable to a perturbation description, and the Taylor series des-

cribed in section a will have validity.

The notions of smallness and nearness can be given precision by

scaling these variables so that the result is dimensionless. This

scaling preserves the Hamiltonian form of the equations of motion.

Choose an arbitrary scale length 1; it could be, for instance, the

bending radius of the machine. Choose as the scale momentum p
0

the

design momentum. Then

X
X (1.85a) = I

Px
PX

(1.85b)
po

y y_ (1.85c)
1

Py = 2 (1.85d)
Po

T t* (l.8Se) = (1/c)

-31-

(l.85f)

These imply that the Hamiltonian must be scaled

(1.85g)

f. The Relation Between Lie Transformations and Symplectic Maps

Lie operators and transformations are more general than the

corresponding map and symplectic maps on phase space. A symplectic map

is a map M: S + S, that is, M maps phase space into itself. A Lie

transformation, e:f:, or series of the form e:f:e:g: •••• on the other

-hand, acts on real functions of phase space S: S + R.

e :f: :s + s , (l.86)

-m or sets of them, S : S + R,

·f. ::m -m
e • • :S + S • (l.87)

In particular, we may consider the set of 2n functions C which give each

of the 2n canonical coordinates X, Px, etc., in succession. If we apply

a Lie transformation or series, then substitute specific values v
0

for

C, we will have a symplectic map:

(1.88)

-32-

We then say e:f:e:g: ••• corresponds to M, and vice versa.

At this point a brief explanation of the notation and terminology

used in this thesis is in order. As I have used the symbols above, the

Greek letters C, ~ •••• will stand for the dependent phase space

variables

C = (X 'p X, •••) , (1 .89)

either as abstract symbols or as functions on phase space where now the

new variables are used. For example,

(1.90)

means to apply the transformation formed from the homogeneous second

order polynomial f 2 of the phase space variables to each of the phase

space variables separately, i.e.

- :f2(0:
(1.91) X = e X,

- :f2 CO:
PX = e Px,

etc.

To indicate specific values of these variables - i.e., a point in

R6 phase space, I shall use lower case Latin letters v,w, •..• For

example,

-33-

:£2(0:
v = e C I C=v

0
(I .92)

means to make the transformation above, then substitute the values X =

vox, Px = v0 p , etc., in order to get 6 values corresponding to a new
X

point in R6.

A convenient shortcut will be to leave off the symbol C for the

phase space variables. Where its presence will be missed, a bullet (•)

Will be used. For example, the equation (1.92) above can be written as

:tz:. I
V = e V (1 . 93)

0

The distinction made above between the Lie transformations and

symplectic maps based on the objects on which they act may seem like an

irrelevant technicality until one considers a series of Lie

transformations.

Consider just two Lie transformations, and their effect on phase

Phase: let Mt= e:f:, and Mg= e:g: . Suppose we look at their

successive effect on phase space,

(I. 94)

= e:£(1;):e:g(C):e-:f(C):e:f(/;): C

= e
:g(e :£ =c) =e :f(C): C

-34-

= e:g(~): ~,where~= e:f(C): c

or

I :f:
e • I

V

(1.95)

We see that the corresponding symplectic transformations must be applied

in reverse order:

(l .96)

In the future, I shall occasionally abuse notation and write v for

M • / v, when doing so will not cause confusion.

Now that we have a correspondence between the Lie transformations

and symplectic maps, we shall take a look at the subgroup of linear

transformations and their Lie algebras.

For a homogeneous second-order polynomial, f2, the Lie transforma-

tion

(l .97)

is a linear transformation, because each application of the operator

:f2: leaves the order of its argument unchanged. Thus, the corres

ponding symplectic map is linear and we may represent it with the

symplectic matrix M,

(l.98)

-35-

In this case, Sis a symmetric matrix obtained from the coefficients of

fz. Thus we have a mapping of the set of Lie transformations of the

•f • form e· z· into Sp(6). It is an injective but not surjective mapping;
:f2:

there are symplectic matrices to which no e corresponds (see Dragt

and Finn [1976]).

This mapping has a corresponding homomorphism in the Lie algebra,

which is easily computed. If cciCj is the coefficent of CiCj in f 2 ,

then the matrix JS is given by

g.

2cxx

-exp y

cxy

-exp
T

cxr

-2Cp p
XX

CXP X

-c PxPy

Cp y
X

-c PxPr

Cp T
X

-cp Y
X

CXY

-cyp y

2cyy

-cyp
T

cyr

The Factorization TheorE:E!.

exp y

-2cp p y y

Cyp y

-Cp p y T

Cp T y

-cp T
X

cxr

-cp T y

cyr

-cTP
T

2crr

CXP T

-c PyPr

Cyp
T

-2cp p
T T

cTP
T

- fz :H(z'): dz'
0

(1. 99)

the Hamil tonian flo~ as e
is awkward

Representing

f
rom a computational standpoint because the

for combining and tracking

ge
neral never terminate, and there will be no

exponential series ~ill in

-36-

reasonable basis for truncating it.

For this reason, the factorization theorem is very powerful. It

allows us to split up any analytic symplectic map, order by order, and

stop at any point.

Before giving the theorem, let us take a look at the effect of the

Poisson bracket operation on the order of polynomials in Lie

operators. Let a subscript non a polynomial indicate that it is

homogeneous in nth order in the phase space variables; e.g. f 3 = 5X2Py

2
YPT is homogeneous third-order. In a Poisson bracket of homogeneous

polynomials, the resultant order is two less than the sum of the orders:

hn+m-2 (n+m) 2) (1.100)

because there are two derivatives, and a multiplication. Thus, a Lie

operator :fn: raises the order of its argument by n-2. In particular,

:f1 : lowers it by 1, :f2 : does not change the order, :f3: increases it

by one, etc.

·f · :f3:
As Lie transformations, e· 2 ' corresponds to a linear map, e in

general corresponds to quadratic and all higher orders, e
:f4:

corresponds to only higher even orders, and so on. I shall refer to

:fn:
e as an nth-order transformation.

Now we are ready for the factorization theorem, an extension of the

theorem and proof in Dragt and Finn [1976], Dragt [1981].

Theorem (Factorization) Let M be an analytic symplectic map. That is,

suppose the relation

-37-

z = Mz

can be . written as a Taylor series in the form

where a is a collection of exponents cr1 , cr2, ••• cr2n and

2n
I a I = I cri

1

(I.IOI)

(1. 102)

Then there exist homogeneous polynomials f1, f~, f;, f3, •••• of degree

1 , 2, 2, 3, •••• such that the map (I.IOI) can be written in the form

z =
f c fa ·e • 3 . . 2· . 2·

fe e e

:f 1 :

••• e 1 • lz• (1.103)

These polynomials are unique.

~ First, split off the constant terms ci

(1 .104)

and put them aside.

Let M(z) be the Jacobian matrix of the functions F*(z). Then

M(O) = L (1.105)

Where the matrix 1 is defined as being the coefficients of the linear

-38-

part of F(z):

(1.106)

where Pj is a collection of 2n integers, the jth integer being 1 and the

rest O.

Since M(z) is symplectic for all values of z, so is L. Thus, by a

theorem of Dragt [1982], it can be written in the form

(1.107)

where Sa is a symmetric matrix that anticommutes with J and sc is a

symmetric matrix that commutes with J. Because of the Lie algebra iso

morphism between the matrix Lie algebra and the polynomial Poisson

bracket Lie algebra, we may find the second-order polynomials that are

the image under Sa and sc. a C We shall call them f 2 and f 2 • The iso-

morphism between the corresponding Lie groups therefore gives the appro-
a C . c. ,fa• :f2: :f2:

priate maps e and e , and their product
.f2. ' 2'

e e for L.

Now we note that the action of the linear transformations on zf is

a C
-:f2: -:f2:

e e • I z*
i

(1.108)

where r() 1) is a generic symbol for a polynomial of the phase space

variables consisting of terms higher than first degree . To show this,

use the expansion for F* written as

-39-

(1.109)

-·fa· -·fc· . 2. . 2 ·
apply e e to both sides to get

-:f;: -:f~:
e e I • z* ==

i

(1.110)

Which can be written

a C

- ·fa. - ·fc. . 2 . ' 2 .
e e • I z*

-=f2: -:fz:
== l LiJ' e e • I + r(> 1). (1.111)

j zj
i

C a
:f2= :fz:

The correspondence between L and e e gives

a C
-:f2: -:fz: 1

e e • I z = l (1 -) j k 2 k •

Thus we obtain the desired result

a C
-:fz: -:fz:

e e •

j k

I = zi + r(> 1).
z~

1

(1.112)

(1.113)

Next, we assume the series (1.103) exists to order n, and extend it

to order n+l. Assuming the series

C a f fz, f2, ••• , n
(n ;;, 2)

is known, so that F* may be written

F*(z)

f
c ,fa.

: 2: ' 2 .
== e e

:fn:
••• e z + r(> n-1),

-40-

(1.114)

(1.115)

a term fn+l may be obtained such that the remainder term is of order n:

:fn: :fn+l:
••• e e • / z + r() n). 0.116)

Because we have assumed that the series (l .114) has been carried through

order n, there is some homogeneous polynomial of order n, gn, such that

e

-·f . . n. i = zi + g
0

(z) + r (> n). 0 .117)

By forming the Poisson Bracket of this with j replacing i in it, we

obtain

(l.118)

Looking at the terms of order n-1 in z, we see

0 .119)

This implies there exists a function fn+l

(I. 120)

wh· i that (1.119) may be rephrased as
ich may be concluded by not ng

0. 121)

-41-

Thus I gn dzr is an exact differential, so

i

is the function desired.

Now

e

so

-·f . . n· ...
C

-:fz=
e • j_

-:fn+l: -:fn:
e e ...

zi

C
-:fz:

e • I z* = zi + r () n) •
i

(1.122)

(1.123)

(1.124)

Inverting the ,naps on left-hand side, and applying them to both sides
,

••• e

:fn+l: • I + r () n) •
zi

(1.125)

This gives us an inductive rule for carrYin& the series to any order.

The one task that remain• is to account for the constant term; this

is now easy to do. Recall

z = F(z) = c + F*(z~
(1.126)

wher h i h been left off.
e t e component notat on as

Find an f 1 such that

(1.128)

-42-

This is solved by

(1.129)

Finally, we have a complete factorization,

F(z)
C a

:f2: :f2:
= e e ••· e

:fl :

e • /z + r(> n-1), (l .130)

~hich may be verified by applying the map to a specific point in phase

space. By applying the transformations as in (l.95), we have

F(z)

C a
:f2: :f2:

= e e • • • e

:fn: :f1:
e •/z + r(> n-1) (l .131)

+ r(>n-1) •
C a

:f2: :f2:
e e • • •

Then observe that e :fl: evaluated at z is juat z + c,

and so

•fc . •fa.
_ ·2· ·2· F(z) - e e ...

(l.132)

= z + ffuCl

= z + c,

e:fn: . lz + c + r() n-1) = F*(z) + c + r(> n-1)

(l.133)

-43-

as desired.

In practice we would want to cut off any of these series after a

certain number of terms, say four:

(1.134)

Although this would be symplectic and in general would give terms of all

orders, it would be accurate only through third order. Thus, as with a

Taylor expansion, we are using a perturbation method. Therefore, we

must know that the remaining terms are insignificant. This will be true

if the dimensionless momenta are small, and if the coordinates are small

With respect to the scale of non-linearities in the system.

It will be more useful for our purposes to factorize with the

first-order term on the left

: f I : : f ~ : : f; : : f 3 : : f 4 :
M=e e e e e ••• • (1.135)

This is a much more difficult problem. If, however, we keep terms in

the Taylor series (I.IOI) only through order n, which we have to do in

practice anyway, we may use the factorization theorem to write this as

:f~: :f;: : f3 :
z = e e e

:fn+l: :fl:
••• e e • / z + r(> n). (l.136)

The techniques of Chapter 4 will show us how to rewrite concatenation

this with the first-order term on the left,

• C. •ga .• :g3 : :g1: .g2. '2
z = e e e e

:gn+l:
••• e •/ z + rc,z(> n).

-44-

(1.137)

Notice h h 1 · 1 · f ow t e remainder po ynomia rc,z is now a unction of both z and

c, the constants in F. Thus, this factorization is only accurate

th rough a set order in the constant terms. This restriction shall be no

great burden, as we shall assume the machine errors (misalignment,

mispowering, etc.) which give rise to the constant terms are small.

The form (1.137) in ascending order shall be the standard

f actorization we shall use. However, we shall occasionally need the

descending-order factorization

·f · •f · ·fc · •fa· :fl: •4· •3· ·2· ·2·
Af= ••• e e e e e (l .138)

It is possible to write this from the form (1.135) given truncation at a

certain order.

-45-

2. Ray Tracing

In tracing rays we are given a set of phase space variable values

vo at a particular time (or axial position z) and ask what the values v

are after having been transformed by the map M:

V = Afv
0

• (2.1)

In a circular accelerator, for instance, M could be the map for one turn

around the machine. Then if v is the phase space position of a
0

Particle at a particular turn, v will be the position at the next

turn. By applying M to v, the position at a subsequent turn will be

obtained. This process may be repeated for any number of turns to find

the long-term behavior of the machine .

With the Lie transformations the relation (2 . 1) woul d be written as

:f (C): :fz(C): :f3(C): :f4(C) :
1 e e • • • C v = e e (2.2)

These Lie t f t· may be rearranged using the transformation rans orma ions

rule:

:fl(C): :fl(C) :
l') • : f

4
(e C) :

:f3 (e "' •
e e

(2 .3)

I d r transformation of phase space
n this equation, the f irst-ore

-46-

:f1(C):
e C (2.4)

occurs often, so let us call it!;. Then (2.3) can be shortened to

:f2: :f3: :f4:
v = e e e !; I • • • . f •

. 1 .
!;=e C I

:f2: :f3: :f4:
= e e e

C=v
0

If we call the coordinates shifted by the operator :f1 : w,

then v becomes

:f2: :f3: :f4:
v = e e e • • • lw•

: f 2:
A similar process with the transformation e gives

:f3: :f4:
v = e e ••• I ·f .

• 2 •
e • lw

: f 2:
It is more convenient from a practical standpoint to keep e as

simply the matrix of the linear transformation M. In this case,

(2.5)

(2.6)

(2.7)

(2.8)

:f3: :f4: I <2.9) v=e e ••• Mw

To compute the effect of the remaining terms we use a different tactic,

-47-

making use of the higher orders of the polynomials which increase the

order with each term in the Taylor case.

The point at which the exponential series are truncated determines

the order of the transformation. Since each homogeneous Lie operator

:fn: of order n changes the order of its operand by n-2, and we wish to

keep terms through order p, we may truncate the exponential of the Lie

: fn: n-1
transformation e after[~] terms, where [x] means greatest integer

less than x, and the identity is the zeroth term.

For example, if the terms in the ellipses are disregarded,

will be accurate through order 3. The end result can be given as a

transfer map for each phase space variable

(2.11)

Once the terms in the exponential are truncated, the map is no longer

symplectic. MARYLIE (Dragt et. al. [1985]) has an alternative method of

tracking that symplectifies the truncated series, but I shall not go

into it here, except to say that it may be applied tow to include the

effects of f1•

When factorized in the reverse order, the process is similar, but

the linear and higher-order parts of the transformation do not act on

the constant term

-48-

-- -------------

V =
(2.12)

Mw + C

W-here now

:g3: I
W = ••• e • V

0 (2. 13)

The truncation point of the exponential series was determined above

by the highest final order desired. This is a reasonable criterion for

Phase space variables small, so that the truncated series is close to

the limit value. It assumed, however, that the function on which the

transformation acted was just a single phase space variable. This would

not be true if we had more than one map in succession.

Suppose the final value z is related to the initial z
0

by two

successive transformations~ and~ where Mt is represented by
:f1: :f2· •f · •f ·

e e ·e · 3·e · 4· and M by a similar series in g1,g2 , ••• Then
g

(2.14)

The g transformations yield the result above. However, we may no longer

cut off the exponential series at any point, even if in the end we only

desi d This is because the succeeding re a transformation of or er P•

transformation e :fl: decreases the order of its operand by one for each

term in the exponential . Thus, even if we need only third-order terms,

-49-

.....

: fl :
we would have to keep higher terms in the g, because thee would

bring it back below 3 in the end.

The resolution of this problem is to assume the first-order trans

formations are small in the same way the phase space variables are.

Then we are supplied with a natural guide for truncation again. This is

discussed in more detail in Chapters 3 and 4.

-50-

3. Ideal Structure of the Lie Algebra

The truncation of the Lie transformation series (l.135) or (1. 137)

bo th with and without a first-order term deserves closer

investigation . It is of particular interest in concatenation.

two maps in the standard factorization

I
What

Where

are the polynomials~ such that

Mt Mg = Mii,

• • • ?

Given

(3 .la)

(3.Ib)

(3 .le)

0.ld)

If we truncate each series t?!, M~ at a fixed value of n, say n = 4, then

it is also reasonable to truncate the Mh series at that value of n. In

combining the polynomials, however, higher-order terms will be produced,

as we shall see in Chapter 4. The question we need to answer is: by

What standard are we permitted to ignore or choose arbitrarily the

Poisson bracket of two polynomials ffn,gnJ? The answer is divided into

two parts: without a first-order term present, as is computed in

MARYLIE 3.0 (Douglas [1982], Dragt et. al. {1985]), and with first-order

-51-

terms present, as we will need to handle misalignment and other machine

errors.

a. First-Order Terms Absent

The presumption of the Lie transformation series (1.135) or (1.137)

is that the correspondng Taylor series is convergent (see Chapter 1).

Since we are truncating this series, we want the remainder term that is

left off to be so small that it can be safely dropped. In order to do

this, we take the values of each of the phase space variables C to be

small so that sufficiently high orders may be ignored. Specifically,

let each of the phase space variables carry the small factor o, so that

powers of o count the order of these variables. Polynomials homogeneous

of order n, fn have a factor on, and will be said to have o-rank n.

The behavior of the o-rank of polynomials in a Poisson bracket has

been explored (1.100) in a slightly different guise; the o-rank of the

Poisson bracket is 2 less than the sum of the participants' o-rank,

provided each was at least 1.

Since o is small we may, when taking Poisson brackets, neglect

terms of a given order or higher. Thus, for example, if we choose to

neglect terms of fourth order and higher, the Poisson bracket [f3 ,g4]

may be ignored.

We now give this process some rigor; before doing this however, it

is necessary to introduce some new definitions.

A subset S'S'.; Sis a subalgebra if A(S',S') C S', where A(S',S') is

the image of the multiplication restricted to S'. A subset S' ~Sis an

ideal if A(S' ,S) £. S', that is, for s' € S', s e S, A(s',s) e S'. (For

-52-

a Lie algebra this is equivalent to if A(S,S') f; S' .) Clearly, an ideal

is also a subalgebra.

An algebra Sis graded if Sis the direct sum of subspaces si (i =

O • I , ••• , 00
) and A(Si, Sj) C Si +j • An algebra S is filtered if for each

non-negative integer i, there is a subspace s(i) such that

I) s(i)c s(j) for i < j;

2) u s(i) = S;

3) A(sCi>,s(j))csCi+j)_

If Sis graded, then it is filtered by the rule

(3.2)

Similarly, an algebra Sis complementary filtered* if for each non

(i)
negative integer i, there is a subspace S such that

l) s(i) ::> s(j) for i < j;

2) U sCi) = s;

3) A(sCi>,sU>)csCi+J).

If i mplementary filtered by the rule Sis graded, then it s co

(3 .3)

*This is my own terminology.

-53-

It is clear from the above definition that each of the members s(i)

of a complementary filter is an ideal. Let s(i) e s(i), s es. There

fore, there is a j such thats e s(j). Then A(s,s(i)) e s(i+j)C s(i),

and also A(s(i) ,s) e s(i+j) C s<i). Since s and s(i) were arbitrary

within their respective sets, s(i) is an ideal ins.

Let S be a (Lie) algebra, I an ideal in S. Define S/I to be the

set of equivalence classes given by the equivalence relation: s 1 = s 2

if s 1 = s 2 + i, for some i e I. We denote these classes bys+ I, where

s e S. Since an ideal is a subalgebra, S/I is a (Lie) algebra with the

rules

(s 1 +I)+ (sz +I)= (s 1 + s2) + I,

c(sl +I)= cs1 + I, c e R,

These rules are easily seen to be consistent. If i 1 , i 2 e I are

arbitrary, the left side of (3.4a) is

E (sl + sz) + I,

since I is a vector subspace of S. A similar argument holds for

(3.4b). The left side of (3.4c) is

-54-

(3 .4a)

(3 .4b)

(3 .4c)

(3.5)

(3 .6)

s ree erms on the right side
From the definition of an ideal, the lat th t

are in I, thus upholding (3.4c) .

Let us now apply this to our particular problem: let S be the

unct ons on phase space tat have power series expansions with
space off i h
no first-order terms (note the more restricted definition than befo)

re •

t with subspaces of polynomials homogeneous in a particular order
Grade i

of the phase space variables: let

So= {constants)U {homogeneous polynomials of order 2) ,

Si= {homogeneous polynomials of order i+2) for i > O.

(3.6a)

(3 . 6b)

One may easily verify that this is a grading on Sunder the Poisson

Bracket . (Note that the constants are not relevant; they could have

been included with any Si) . If a particular polynomial (or Lie

operator) belongs to the subspace Si (or Sf), then I will say it has 6-

rank i .

Given this grading Si by polynomial order, we have the corres

ponding complementary filter given by (J . J) . This gives us a series of
/

(i) (i)

ideals s<i l , and a series of quotient algebras S S • The ideals

consists of all i ~ith coefficients zero for the terms of
power seres (i) - / (i+l)

order I through i+l . The quotient algebra Q - S s is a rigorous

way of describing the algebra s but "neglecting terms of order i+3 and

greater . "

_55-

MARYLIE 3.0 (Douglas [1982], Dragt et al. [1985]) which does Lie

algebraic
computations through fourth order and has no first-order

terms, is (2) actually computing in the algebra Q • If f
n• gn, and¾ are

homogeneous nth order polynomials,

(3.7a)

(3. 7b)

(3. 7 c)

etc.

The results that are in sC3l are taken to be O, although any

element of 5(3) would be acceptable. In applying the Lie transforma

tions to particle coordinates, portions of the result that are in
5

(3)

may be chosen non-zero to insure that the overall result is symplectic .

The homomorphism Ad carries all these definitions to the adjoint

algebras• . s• is all the Lie operators that are of order i, i.e., as

i images of si, and
5
(i)• are the direct sum of Sf or the image of s<il.

The s(i)* are ideals, so the Q(i)• • s•/si+l)* are quotient algebras.

Thus the adjoint algebra has the same ideal and quotient structure as

the underlying algebra, as we expect, and commutators of Lie operators

are set to zero (or to an arbitrary value) ,men the Poisson Bracket of

the corresponding polynomials would be.

The Lie groups generated by these Lie algebras and composition are

as w e would expect:

the symplectic roaps on the coordinates that result,

-s6-

while
containing terms of all orders, are accurate only through order

Specifically, let G be the group of symplectic maps on
i+l for q(i).

phase space and G(i) (i = 0,1, •••) be the subgroup of these maps that

has a power series expansion consisting of terms only order i+l and

higher plus the identity. Then G(i) is a normal or invariant subgroup

of G, that is, ghg-1 E G(i) for all g E G, h E G(i), The quotient group

= G/G is defined as the equivalence classes given by g1 = g2
H(i) (i+l)

if gl • g

2

+ h, where h E G(i), That is, two elements are the same if

th
ey differ only by terms of order i+l or higher, That this is in fact

a group may be easily verified, These groups H(i) are generated by the

algebras Q(i)* and products.

b. With First-Order Transformation,2..

If a first-order transformation is present, the truncation by 6-

rank given in part (a) will not be sufficient because the 6-rank will be

lowered by a first-order term, Suppose we keep through 6-rank 4, and

dis ca rd anything higher • Th•" forming • for instance • [f I • [g 3 • h4]) would

Yield the wrong answer' in the first place [g3,h4l, we would take the

answer as O because the &-rank is 5, and so our overall answer would be

zero, But this is not correct; even though the first Poisson bracket is

6-rank 5, the Poisson bracket with f1 subsequently lowers the 6-rank to

an acceptable 4.
These kinds of trouble• maY be avoided by considering the source of

th fi As we shall see in part II, the first-order

e rst-order terms. te to a -~chine error , either a misalignment or a

rms are proportional
11

= mi these are small , ~ he first order will also be

spowering. Presuming s 1 saY that a factor of the small parameter E

ma 1. To be specific,

_57-

multiplies each first-order polynomial. We may now consider how this

changes the analysis of the algebra and the corresponding group in the

last section.

The polynomial spaces Si now need to be supplemented. Let s_1 be

the space of first-order polynomials. The Si (i = -1,0,1, •••) is still

a grading. However, we can not construct a corresponding complementary

filter according to (3.3), because we now have a negative i. Thus the

s(i) are no longer ideals and we cannot form the quotient algebra.

There is a corresponding destruction of the normal subgroups and

quotient groups of symplectic maps.

Instead of using a grading, let us try to create a complementary

filter, and thus a series of ideals and a series of quotient algebras,

in another way. Let us define a second index j (j = 0,1, •••) on the Si

that is equal to the£ order. Thus Sij is a subset of S that is

homogeneous of order i+2 in the phase space coordinates, and homogeneous

of order j in£. The index i ranges from -l,0,1, ••• 00 , and the index j

ranges from 0,1, ••• ,00 • I will say that a polynomial (or Lie operator)

has &-rank i and £-rank j if it belongs to Sij (or Sfj). The only

combination of i and j within these ranges that is prohibited is i= -1,

j=0, the smallness requirement on first-order terms discussed above. We

now seek a complementary filter constructed from the Sij•

Let -z2-* = {-1,0, 1, ••• } x {0, 1, ••• } - { (-1,0)}, the pairs of allowed

coefficients. Let z+ be the non-negative integers. Let \I be a function

2* ,t-v:Z -+ Z with the property

v(i,j) + v(k,1) (v(i+k, j+l). (3 .8)

-58-

Now define the sequence of subspaces s(i), i E z+ by

s<i) = EB (3.9)
v(j ,k))

This sequence is a compl ementary filter, which may be verified using the

fact

(3 .10)

Then the product of an element in s<v(i,j)) with one in s<v(k,t)) is in

8(v(i+k,j+t)) ,

A(S(v(i,j)), 8(v(k,t))) c 8(v(i+k) + v(j+t)) (3.11)

C 8(v(i+k,j+l))

because of the rule (3) of the definition of the complementary filter,

and the relation (3.8).

With this complementary filter, we have a sequence of ideals s(i)

in the algebra which may be used to define quotient algebras.

Note that \I is undetermined except for the condition (3.8). Con

sider two examples, v(i,j) = min(i,j) and v(i,j) = ai + ~j where a,~ E

z+ are constants. The former case corresponds to keeping all terms

except those whose &-rank and whose E-rank each exceed a certain value.

The latter exclude those whose weighted sum exceeds a certain value.

This form of \I satisfies a stricter condition than (3.8), in fact

-59-

v(i,j) + v(k,1) = v(i+k, j+!) (3.12)

and so we have a grading Sv(i,j)• which may take a complementary filter

by (3.3). This complementary filter is the same as the one defined by

(3.9).

Normal subgroups G(v(i,j)) of the group of symplectic maps G

including constant terms may be defined by analogy to the case without

constant terms. The quotient group H(v(i,j)) = G/G(v(i,j)) is the group

of transformations that will actually be used in computations.

The function v that I shall actually use, and the one that makes

the most intuitive sense, is

v(i,j) = i + j.

This will be called the total rank or total order. In terms of e-rank

and 6-rank, this criterion says that we restrict terms to O(o) + O(e) (

N for some N, specifically, N=4 for MARYLIE 3.1. For MARYLIE 3.0, where

we keep up through and including fourth-order polynomials, we would

choose N=4. Physically, this is a realistic criterion, because it means

for example that the misaligned element is off-center by an amount that

is the same order as the typical deviation of the particles when

entering an aligned element. Thus, we can expect the same accuracy in

the result. In this calculation, it should not matter whether the

magnet is moved or the particles are moved.

-60-

4. Concatenation of Factored Maps

The description of an accelerator lattice or section as a transfer

map has utility for tracking and for determination of analytic

quantities such as tunes and chromaticity . What adds greatly to this

utility, however is the ability to combine or concatenate maps to show

the effect of two or more sections in succession. Then a library of

common beamline elements may be maintained, and for a particular

lattice, maps are concatenated to form an overall transfer map. This is

an essential part of MARYLIE 3.0 (Dragt [1985] et al., and Douglas

[1982]), which contains Lie transformations second through fourth

order. This chapter describes an extension to include first-order

transformations arising from misalignments or mispowering. How the maps

including misalignment and mispowering arise is the subject of Part II;

for now, we shall assume they exist.

The task of this chapter is as follows. Consider two maps in the

standard factorization that includes a first-order polynomial

(4.la)

:gl: :gz: :g3: :g4:
Mg= e e e e • (4.lb)

We wish to find the polynomials¾ such that

Mf Mg= ¼i (4 .le)

where

-61-

: h 1 : : hz : : h3 : : h4 :
Mh = e e e e

(4.ld)

Additionally, we would like to convert toad di f
escen ng actorization· '

given Mf as above what are the ho such that

: h4 : : h 3 : : hz : : h 1 : : f 1 : : f 2 : : f 3 : : f 4 :
e e e e = Mf = e e e e

(4.2)

This computation is divided into two parts: the hard part and the

easy part. The hard part is moving the first-order term to the left.

This is covered in section a. The easy part is concatenating the

transformations second order and higher that are left behind. This is

covered in section b.

Both these parts use the same two tools. One tool is the transfor-

mation rule
'

: f: :g:
e e

·f. f :e· ·g: : :
= e e

(4.3)

proved in Chapter 1. The second tool is the Baker-Campbell-Hausdorff

theorem (BCH) and its inverse, the iassenhaus formula. The BCII Theorem

tells us how to bring the product of e,ponentials of non-commuting

objects into one e•ponent, and the iassenhaus formula tells us how to

take a single e,ponential and break it apart into the product of several

exponentials. The BCH theorem says that if

(4.4)

then

-62-

C =A+ B + ~ [A,B] + l~ [A, [A,B]] +
1

; [B, [B,A]] + ••• (4.5)

where [,] is the commutator Lie algebra multiplication. The

factorization will be changed by first using the BCH formula to combine

terms into a single exponent, and then using the Zassenhaus formula to

pull them apart in the order desired.

At the end of section b the goal of concatentation (4.1) will have

been achieved. In section c, the problem of writing the factorization

in descending form (4.2) is addressed; the computation is essentially

moving the first-order term to the right and is similar to that of

moving a first-order term to the left (section a). Section d shows that

when tracking a particular initial condition, the results agree exactly

With the first-order term from concatenation, and could serve as an

alternate derivation of that term. Finally, section e serves as an

appendix showing the details of one of the calculations in section a.

2.• Moving the First-Order Term Left

In order to simplify moving the first-order term to the left we may

d :gz: :g3: :g4: 11 d concentrate i i rop the term e e e temporar y an on wr t ng

as

f . ·f . ·g •
· f · · f2 : : 3 · · 4 · • 1 • · 1· · e e e e e

(1)'
·h'· ·h : · 1 ' • 2

e e • • •

h (n)
1

• •h' · ·h' · =2 '·3· ·4·
e e e

(4.6a)

(4.6b)

Th that there are more than one second-order
e possibility is left open

-63-

((l) I
linear) transformations h 2 ,

(n) I

• •., h2 • It may not be possible to

combine them into a single transformation, and in any case it is not

necessary, since they are kept as matrices.

The factorization change (4.6) will be performed by successively
·g .

moving e· l· left past each term. First, we shall compute¾• where

:f4: :gl: :k1: :k2: :k3: :k4:
e e = e e e e (4. 7)

Next, leaving behind the k2 , k3 , and k4 terms, we shall compute~ where

(4.8)

Again leaving behind the higher-order terms, we will find m[such that

= e

T
:ml :

and thus, putting it all back together, (4.6a) will be

(4.9)

(4.10)

~1 h left section b will be concerned with with the first-order terms on t e '

the form (4.6b) continuing the other terms into

On these calculations, the reader is reminded of
Before embarking

Which
~•e truncate the B(ll series. In Chapter 3 it was

the criterion by "

are to be discarded because their
noted that certain Poisson brackets

total order the sum of the 6 °rder ,

(count of first-order polynomials),

(phase space variables) and£ order

is too high. Thus, the BCH series

-64-

(4.5) will be stopped at some point by this criterion. The actual

number of terms used varies with each c 1 1 . a cu ation.

i. Moving gl past f4

C ·g . :f4: The irst step in concatenating is to get e· 1· paste We

want to find k1, k2, k3 and k4 such that

(4.11)

Note that in general, one would expect in moving g
1

past f 4 that terms

of all orders would appear in the standard factorization. Using the

transformation rule, we find the result

(4.12)

This expression is exact because the next term in the series is a

cons tant. We may say the second exponential on the right side is

where, with their orders in£ and o,

1 ·g .3f
6 · 1 · 4

]·2 = 1 ·g .2f4 2 . 1.

O(o) 1

O(o) = 2

-65-

(4.13)

0(£) = 3 (4.14a)

0(£) 2 (4.14b)

O(o) = 3 O(E) 1 (4.14c)

O(o) 4 O(E) = 0 (4.14d)

Note the total order, O(o) + O(E) is always 4. The next step is to

split up this sum in the exponent into a standard factorization of the

form

(4.15)

This is accomplished with the Zassenhaus formula: essentially, solve

the BCH formula using the unknown quantities 1 1 and kn. First, bring

the 1 1 to the left

(4.16)

then apply the BCH formula to the left side:

(4.17)

where

and solve for 1 1 iteratively. The BCH series for p has been cut off

-66-

be cause either the order in t 1 becomes too high yielding constants or

the total order becomes too high (each jn is total order 4). Note that

Pis a polynomial with no terms first-order in o. Therefore, we may

rewrite t 1 , as

(4.19)

and attempt to solve r 1 • So now, in terms of r 1 ,

Again, each jn has a total order of 4, so a Poisson bracket of one with

another has a total order 6. Since this exceeds the limit of 4 for

retention, all the terms that contain nothing but Poisson brackets of

j's may be dropped.

Taking the first-order in E part of both sides of (4.2), we have an

implicit equation in r 1 ,

0 1 ·r .2.
12 . 1· J3• (4.21)

The only reasonable solution to this is r 1 = 0, as is demonstrated in

detail in section e of this chapter. Thus, (4.19) gives t 1 = J1 •

-67-

From t 1 we may move on to solve for k2 •

(4 • 1 7) , is now:

where pis now different. Applying BCH:

Let

kz = jz + rz

so that

p -rz + j3 + j4

The equation to solve ,

(4.22)

(4.24)

+ •••

(4.25)

Again, we find that all Poisson brackets involving nothing but j's may

be dropped. The requirement that terms of p second-order in o be zero

dictates that r 2=o.

Next consider k3 • We are left with, in (4.16)

(4.26)

or

(4 .27)

-68-

Let

(4.28)

and by the reasoning above,

0 (4.29)

In summary,

(4.30)

where

(4.31a)

k2 1 ·g .2f
2 · 1 · 4 (4.31b)

(4.31c)

(4.31d)

to total order 4. Since the Poisson bracket of two first order

operators is a constant, g1 and 1 1 may be combined to form k1 so that

(4.32)

-69-

Thus we have a solution to (4.11)

ii. Moving k 1 past £ 3

The terms second and higher order present no problems in concate-

nating; they will be dealt with later. We thus may leave them behind

temporarily and concentrate on moving the first-order term past the next

obstacle,
:f 3:

e ;

(4.33)

analagous to (4.8). We shall see that the fourth-order term n4 does not

appear.

As with the £4 , we use the transformation property to obtain

- :kl:

:kl: :e f3:
e e

which is exact. We represent the second exponential as

where

1 ·k ,2f
2 · 1' 3

O(&)

-70-

1 0(£) = 2

(4.34)

(4.35)

(4.36a)

--.

0(o) = 2 0(€) = 1 (4.36b)

0(o) = 3 0(€) = 0. (4.36c)

The total order in all three cases is now 3 instead of 4. This makes the

calculation more interesting; we will obtain one Poisson bracket before

the series is terminated due to excessive total order. To get the ex

pression (4.35) to factored form,

(4.37)

the procedure is as before. We solve implicitly for n1:

(4.38)

where pis not as before. Knowing that p should have no first-order

term, we may solve (4.38) for n1 • Using BCH, this is

(4.39)

In the first step we take, with a new r1 but analogous to (4.19),

(4.40)

-71-

...

so we now must solve

(4.41)

The fourth term of this ,

(4.42)

is of total order 4, since each argument of each Poisson bracket is of

total order 3. However, brackets involving 3 or more m's may be dropped

because the total order will exceed 4. So

p = -rl

- 1~ [m1 + m2 + m3,[m1 + m2 + m3,r1ll + •••

To cancel off the first-order part again, we choose

-72-

(4.43)

(4.44)

where s
1

is yet to be found, and the term [m1,m2 1 is of total order 4 .

Note that all terms in the nested Poisson brackets involving this term

can be taken as zero. To get the first-order part of p to zero, we may

self-consistently take s 1 = O. Then

(4.45)

and

(4.46)

The next step is to solve for n2 using the result for p, (4.45) and

(4.38):

:m2+m3- _21 [ml ,m3]: :n3: :n4: - :n2: = e e = e :q:.

e e

(4.47)

Using BCll, this must be solved so that the second-order part of q is

zero .

(4.48)

Say

-73-

(4.49)

with r 2 to be determined, then

q (4.50)

where terms of excessive total order have been dropped. To get rid of

the terms second order in 6 we may take r 2 = 0 to yield

(4.51)

and

(4.52)

Finally, given (4.51), the right-hand of (4.47),

(4.53)

is solved by

(4.54)

-74-

·- - ,c··-------------------

(4.55)

In summary

(4.56)

where

(4.57a)

(4.57b)

(4.57c)

Again we may join the first-order terms

(4.58)

so (4.33) is solved by

1
[m1,m2J (4.59a) nl = kl+ ml 2

1
[ml .m3] (4.59b) n2 = m2 2

1
[m2,m3] (4.59c) 03 m3 2

-75-

0 (4.59d)

iii. Moving n1 past f2

Once again, we may concentrate on moving the first-order term and
:f 2:

leave the rest for later. The next term to pass is e • This is easy

to overcome, for we may apply the transformation rule in a straight-

foward manner. It is

• T,
:fz: :n1: .nl. :fz:

e e = e e (4.60)

where T indicates the transformed polynomial:

(4.61)

iv. Picking up the Pieces

The final step is to concatenate the terms second order and higher

that we have left behind. The expression we started with, (4.6a), now

looks like

(4.62)

:fl: :nr :fz: :nz: :n3: :kz: :k3: :k4:
=e e e e e e e e (4.63)

T The new terms n
1

, n2 , n3 , k2 , k3, and k4 have been calculated above.

-76-

T First, n1 i s, using (4.61), (4.59a), (4.57) and (4.32),

=(kl+.!_ ·k ·2f l [.!_ ·k •2f ·k •f)]T 2 · 1· 3 - 2 2 · 1· 3, -. 1· 3

(gl 1 ·g .3f + .!_ ·g .2f + .!_ [·g ,2f ·g ·f])T - 6 • . 1• 4 2 · 1· 3 4 · 1· 3,· 1· 3

(4.63)

The quantity 11 = g1 - ¼ :g1 :3f4 may be taken as gl in all but the first

term, because the total order is too high in all the other terms. This

is also done in computing n2 , using (4.59b), (4.57), and (4.32),

(4.64)

The polynomial n3 is found from (4.59c), (4.57), and (4.32)

1 1 1
n3 = m3 2 [m2,m3] = f3 2 [- :ll :f3,f3] = f3 + 2 [:gl :f3,f3]

(4.65)

= f3 + 1 •f .2g 2•3· 1·

The polynomials k2 and k3 are given in (4.31b) and (4.31c)

k 1 ·g ,2f
2 = 2·1· 4• (4.31b)

-77-

(4 .3lc)

To put these transformations in ascending order, we note the terms

involving n3 and k2 are in the wrong order, so use the transformation

rule to write

-:k2:
:k2 : :e n3 :

= e e (4.66)

-:k2:
because k2 has total order 4, e acts as the identity on n3 , so

(4.62) becomes

(4 .67)

:fl: :n;: :f2: :n2: :k2: :n3: :k3: :f4:
=e e e e e e e e

We may now combine some terms of like order as follows. The first-

order f1
T combined into a single terms and n
1

may be exponent

T
:fl+

T
:f 1 : :nl : Ill:

(4.68) e e = e

because their Poisson bracket is a constant, so all Poisson bracket

terms in their BCH formula are zero. The second-order terms d2 and c2

may be combined

:n2: :k2: :n2+k2:
e e = e (4.69)

-78-

because d2 has total order 3 and k2 has total order 4, so a Poisson

bracket will have total order S, higher than the cut-off of 4. Thus

any Poisson bracket terms in the BCH series may be taken to be zero. A

similar argument allows us to combine the third-order terms

Then

To summarize with the f's and g's in place, (4.6) is

:f2: :-:gl:f3+ ¼ [f3,:gl:2f3] : + ~ :g1:
2
f4:

e e

(4.70)

(4.71)

b. Concatenation of Terms Second- Order and Higher

tions

With g1 taken care of, we may now concatenate with the transforma

·g . ·g . ·g .
e· 2 ·e· 3 ·e· 4 · • Fortunately, these are easier. We have

:fl: :f2: :f3: :f4: :gl: :g2: :g3: :g4: (4.73)
e e e e e e e e

-79-

:h1': :h2': :h3': ·f . ·g . ·g . ·g . · 4• · 2· · 3· · 4• =e e e e e e e

·g .
By the transformation rule, the term e

0 2 " may be brought to the left.

·h' · ·h(l)' · ·h(2)' · ·g · •f'T. •fT• ' 1 ' . 2 . . 2 ' • 2 . ' 3 . . 4 . : g 3 : : g4 :
e e e e e e e e (4.74)

where the superscript T now indicates that the polynomial is to be

- :g2:
transformed bye :

-:g2=
= p(e C). (4.75)

We now concentrate on the third and fourth order terms. We may

make the exchange

·g. :f4T: . 3.
= e e (4.76)

because the Poisson bracket of a third-order polynomial and a fourth

order polynomial is a fifth-order polynomial, which we are excluding.

There are now two adjacent third-order terms and two adjacent fourth-

order terms:

•h'T •g . ·fT• .·g4,· '3 . 3 · . 4·
e e e e

The first two terms may be combined using the BCH formula

h ,T ·g . : 3 . 3.
e e

-80-

(4.77)

(4.78)

where the fourth-order term formed by the Poisson bracket of the third

order term may be put in a separate exponential, because all higher

terms are being neglected. For the same reason, all fourth-order terms

may be combined in a single exponential, giving

·h'· ·h(l). ·h(2). ·gz· ·h'T+g . . l_ [h'T g J + h4'+g4·· . 1 .. 2 .. 2 3 3. ·2 3 ' 3
=e e e e e e

(4.79)

Thus, the answer to the original question (4.1) is, to the proper total

order

(4.80b)

(4.80c)

(4.80d)

(4.80e)

(4 .80f)

-81-

c. Factorization in Descending Order and Inversion

In addition to concatenation of maps, the BCH and Zassenhaus

formulas may be used to find a map factorization in descending order

given its factorization in ascending order, that is, to find the hn such

that

e e e e

·h · ·h · ·h(l) · · 4· · 3· · 2 ·
= e e e •••

·h(n) • ·h · • 2 • . 1 .
e e (4.81)

This is useful for inverting a map: we first reverse the factorization,

and then change the sign of all polynomials.

As with the concatenation, we concentrate first on moving the term
. f .

e· l· only this time to the right instead of the left. By a derivation

almost identical to that of moving the first-order form left (section

b), we obtain

T 1 T 1 T2
::fl:f3--4 [f3,:fl:f3] +-2 :fl: f4: :f1: :f2: :f3: :f4: :f2:

e e e e = e e

where

T 1 T2 1 T3
:f 1 + 2= f 1: f 3 + 6 :f 1: f 4

e

(4.82)

(4.83)

By using the transformation rule with the two second-order transforma-

-82-

tions, we obtain

(4.84a)

(4.84b)

(4.84c)

(4.84d)

(4.84e)

where the superscript t indicates the transformation of the polynomial

·h(l) · ·h(Z) ·
' 2 • ' 2 '

=p(e e C). (4.85)

Note that these formulas are also useful in concatenation of maps

factorized in descending order, or in ascending order except with the

first-order term on the right.

d. Relation to Ray Tracing

An alternative process may be used to determine the concatenation

formula for h1 , or to understand why certain tracking results calculated

using either a concatenated map or using the maps separately agree

exactly (see Appendix B).

To simplify the problem, take f 1 = g2 = g3 = g4 = 0, so that

-83-

·h(l) · ·h(2) · : h 1 : . 2 . . 2 . : h . : h4 :
= e e e e 3 ·e (4.86)

with

(4.87b)

(4.87c)

h f + f + .!. . f . 2g 3 = - :gl: 4 3 2 · 3' 1, (4.87d)

(4.87e)

Consider the phase space points

- :hl:
vb= e • lo= [-hi,•1 (4.88)

and

v a = e : g 1 : • I O = [g 1 , •] • (4.89)

Using the formula for h1 above, I shall show that Mfvb = -va exactly

when Mf is the map expanded for non-symplectified tracking (see Chapter

2).

In order to see that both M~vb and -va are analytically the same

when tracked nonsymplectically, rephrase the equation as

-84-

(4.90)

or

-:f4: -:f3: -:f2:
e e e • 1-v

a
vb [-h1,•J (4.91)

-:gl: -:f4: -f3: -f2:
·Io = - [hp•] (4.92) e e e e

T T
-:gl: -:f2: -:f 4: -:f 3:

• lo [h 1 ' •] (4.93) e e e e = -

where

n = 3,4. (4.94)

We may exchange fT and fT since we are keeping only terms up through
3 4

fourth order

(4.95)

or

T T T
f -:gl: -:f3: -:f4: - : 2:

e e e e • I o = - [h l , • J (4 .96)

• I T
- [g 1 '•]

- [h l , •] • (4.97)

The expansion of the Lie transformation exponentials non-symplectically

through fourth order gives, with h1 given by (4.87a)

-85-

(• T .] 1 T T •] J - T •]) - [f 3' +-· [f3, [f3, [f 4' (4.98)
2 T - [g 1 ' •]

[- T 1 T 2 fT+.!.. T T T T T + .!.. T 3 T
= gl -6 :g 1: [[gl ,f3]' [gl ,gl ,f3J] :g 1: f 4 .]

3 4 6 '

I shall now show that, term by term, the two sides are equal. The first

terms are obviously the same, - [gf, •].

To show the equality of the remaining terms, let

(4.99)

and

g - (4 .100)

1H T T \"
Let aif = 'ITT:"" Then [g1 , •] = g • J and [g1 ,f] = l (g • J)i

i i
consider the second term on the right side of (4.98), acting

phase space variable, Ct:

(4.101)

1 T I (g •J)i
T

Ct] = - 2 [[g 1, aif31,
i

1 I [(g. J)i(g. J)j
T

Ct] = -2 aiajf3 ,
i,j

- .!. I (g. J)i(g. J)j
T

= casaiaj f 3) 3st 2 i . ,J

-86-

where use has been made of Taylor's theorem on the homogeneous second

T order polynomial oif
3

• Since this is true for all components t of C, we

may say

[- .!._. T,2 fT •]
2 .gl. 3' (4.102)

The third terms of (4.98) may be shown equal by a similar process:

(4.103)

= ¼ l (g. J)i<0s 0m01fj) 3mn (g. J)j(g. J)k <0n°j 0kfj) 3 st
i ,j ,k
m,n,s

-87-

T where the second step occurs because ~n~j~kf
3

is a constant. We may

conclude the third terms are equal,

(4.104)

Finally, the fourth term on the right side of (4.98) is

(4.105)

so

(4.106)

Thus, term by term, the two sides of (4.95) are equal. Clearly, had we

not known h1 , we could have run each of these calculations backward to

obtain it, and we could do so for higher orders, since the Taylor

expansion yields an easy sequence of terms for the left side.

e. Uniqueness of the Solution for r 1

In section a, we needed to solve equation (4.21) for r 1:

(4.21)

-88-

If ,,
,,
ti

11
•I .,
C
I

The purpose of this section is to explore the possible solutions of this

equation.

Although an obvious solution may immediately occur to the reader,

and this is in fact correct, it is worthwhile seeing that this is the

only solution. First, we shall assume that r 1 is of order at least one

in E. This is necesssary to be consistent with the previous truncation

of the BCH series, and is crucial to give a unique answer.

Let us investigate this equation by taking a particular example for

the polynomials. Suppose

(4.107a)

(4.107b)

so that

j4 = f4 -3XP3
(4.108a) X

2
(4.108b) h -:gl :£4 3EXPX

jz
1 ·g .2£ E2XP (4.108c) = · 1 · 4 2 X

1 ·g .3f
3

j 1
E x. (4.108d) = = 6 · 1 · 4 9

Now consider the possible solution r 1 = KX, where K is some, as yet

undetermined, real constant. The second term of (4.21) becomes

-89-

and the third term becomes

Then the right-hand side of (4.21) is

+ .!. j 1 ·r . 2j r1 2 :rl: 2 - IT · 1 · 3

1 2 - - Ke: X
2

1 2 1 = (1 - 2 e: - 2 KE) KX.

In order for this to be 0, we demand either

K = 0

or

1 - ½ e: 2 - ½KE= 0.

(4.109)

(4 .110)

(4.111)

(4 .112a)

(4.112b)

The former gives r 1 = 0 and is the obvious solution spoken of above.

The latter has the solution

2 K =--e:, e:

-90-

(4.113)

which gives r 1 = (¾ - E)X. This solution however, is prohibited by our

assumption: it contains a term proportional to £-l, and we assumed that

rl would only have terms of first order and higher in£. Not making

this assumption would clearly negate the BCH-series terminating benefits

of regulating the first-order terms with a small parameter£.

All possible solutions for r 1 will either be 0, or will be ill be

haved with respect to£. Thus we are forced to take r 1 = 0 and discard

the alternate solution. This provides us with a unique answer, which we

expect because we expect a unique final answer.

The other equations similar to (4.21) in section 1, such as (4.43)

with the value of r 1 given by (4.44), will have similar solutions.

-91-

S. Symplectification of Matrices

As shown in Chapter 4, a second-order map is created when trans

porting g1 past other maps. Unlike the other linear transformations

(second-order operators) of MARYLIE, this one is not born symplectic.
· f .

In treating e· 2 · we actually compute, store and manipulate it as a

matrix on phase space variables. These matrices when computed and

stored are symplectic to machine precision. When more than one of these

has to be concatenated, conventional matrix multiplication insures that

the result will also be symplectic. In this case, however, we generate

a second-order operator which is to be exponentiated. The a-order of

the terms does not provide a stopping point in the Taylor expansion of

the exponential, and truncation of the series may leave a non-symplectic

result.

There are several ways to deal with this problem. In each case,

the operators are first made into matrices on phase space, so that in

stead of dealing with :f2 : we are dealing with a corresponding matrix

JS, where Sis a symmetric matrix, as shown in part lf. A first and

most obvious method is to carry the Taylor series of the exponential to

a point where additional terms are beyond machine precision. The

advantage of this method is that it is not ony exactly symplectic, but

exactly correct. The disadvantage is that it may require too much

computation.

A second method is an iterative one of Furman (1985}. Recall the

definition that a matrix Mis a symplectic if MJM = J, where Mis the

transpose of M. Equivalently, -MJMJ = I where I is the identity. If we

~ study the matrix function F(M) = -I- MJMJ, we note that its deviation

-92-

1/ I

·•
,,, ,,
I

-··-- - --- - --------- -----------

from the zero matrix indicates how far Mis from symplecticity. We then

seek a correction matrix C such that M'=C Mis more symplectic than M,

based on the value of F(M). There is some arbitrariness in the choice

of C within this constraint. One choice is C=(I+F(M))-l/Z. We can

approximate for F(M) small, C ~ I - F(M)/2. Then M' = ½ (3+MJMJ)M.

With this approximation for C, the matrix M' will not be exactly

symplectic, but will be closer to being symplectic than M.

Specifically, I shall show that IIF(M')II < IIF(M)II for any suitable

matrix norm where II Ill = 1. Let M be nearly symplectic, its deviation

from symplecticity measured by IIF(M)II, with

0 < IIF(M)II « 1.

1 Now let M' = (I - 2 F(M)) M. The deviation from symplecticity is

F(M') = -I - M'JM'J

1 1
-I - (I - z F(M)) MJM (I - z F(M)) J

1 1 ~ 1 ~ = -I - MJMJ + z F(M) MJMJ + z MJM F(M) J - 4 F(M) MJM F(M) J

= F(M) + ½ F(M) (-I - F(M)) +½(-I - F(M)) J-l F(M) J

- ¼ F(M) (-I - F(M)) J-l F(M) J.

To calculate the relative symplecticity of M', we will need the

transpose, of F(M),

-93-

(5.1)

(5.2)

F(M) = - (I+ JMJM) = - (I+ JMJM), (5 .3)

so that

J-1 F(M) J = J(I + JMJM) J ~ = -I - MJMJ = F(M) (5.4)

where the relation J 2 = -I has been used. Then

F(M') = F(M) - ½ F(M) (I+ F(M)) ! (I+ F(M)) F(M)

+ ¼ F(M) (I+ F(M)) F(M) = - ¾ F2(M) + ¼ F3(M). (5.5)

Thus the deviation is II F(M') II "" IIF2(M)II = IIF(M)ll 2 • This shows that the

process is quadratically convergent when iterating. If II F(M) II < 1,

IIF(M')II-. IIF(M)II, equality only if F(M) = 0, for some suitable matrix

norm. Thus we may iterate: M' may be used to calculate a more

symplectic M", and so on, until we are satisfied with the degree of

symplecticity.

A third method uses the Cayley representation of symplectic

matrices. If a symplectic matrix M can be written M = exp(JS) with S

symmetric, we may rewrite it as

M =I+ tanh(JS/2) =I+ JW
I - tanh(JS/2) I - JW (5.6)

where W = -J tanh(EJS/2) is symmetric if and only if Mis symplectic.

Now run this backwards: we start with a matrix M that is nearly

symplectic. Define the matrix V by

-94-

V = J I - M
I+ M (5. 7)

which will be an approximate W. We create the actual W by symmetrizing

V: W = (V+V)/2. I+ JW
We may now use the formula 1 JW above to create a

new matrix M'. We are assured that M' is near Mand is exactly

symplectic.

This method may be extended so that we can exponentiate and

symplectify in one step. We start with the representation of the matrix

we wish to calculate as M = exp(EJS), where Sis symmetric and known.

Then we may calculate M by the formula (5.6), using for W the

approximation of tanh(E J~) by its Taylor series truncated at some

suitable point:

w"' w = a
~ n (JS)n
l anE 2 •

n=O
(5.8)

This truncated series is automatically symmetric, so we need not

symmetrize. The first few coefficients an for the hyperbolic tangent

are

1
a3 = - 3 • (5.9)

The validity of the approximation of the hyperbolic tangent in the

Cayley method may be verified in the following manner. Let

CX)

W = tanh e~) = t n (JS)n
l an E 2 ,

n=O
(5.10)

where only odd n enter into the summation because the hyperbolic tangent

-95-

is an odd function. Let us write the truncated series as

ml n (JS)n E = JWa = J a E -n 2
n=O

the remainder term being dropped is

Er = JW - E = J ~ n (JS)n
l anE 2.

n=m+l

The approximated matrix Mis

1 + JW
a Ma = _l ___ J_W_ =
a

the actual matrix is

1 + E
1 - E

M =
l+E+E l+E+E l 1 + JW = _____ r = _____ r ____ _

E
Ma+ 1

r = - E

so

1 - JW 1 - E - E 1 - E E

E
(Ma+

r =
1 -

E
+ Ma

r
1 - E

E) [1 +

E

r 1 ___ r_
1 - E

E
r

1 - E

1
E

1 - r
1 - E

E
(r)2+ ...]
1 - E

E E
+ (r) 2

1 - E - Ma (1: E)
2

- (1: E

-96-

(5.11)

(5.12)

(5 .13)

(5 .14)

)3 + •••

(5.15)

Because S contains terms in£ of order 1 through N-2, M will not be

accurate in£ beyond order N-2. Therefore, we may truncate at m = N-3.

For N=4, we need keep just one term.

-97-

,,
ii
,j l ,, ,,

,1
ii
\I
,;I

6. Determination of the Fixed Point

Once we have computed the transformation for a section of the

accelerator,

M= (6.1)

a desirable thing to know would be the fixed point(s) v: the points

that satisfy

v = Mv. (6.2)

If the transfer map M represents one complete turn of a circular

acce l e rator, the fixed point will be the closed orbit. A particle

starting with those phase s pace coordinates will return to those

coordinates in each successive turn. Once the closed orbit has been

found it may be corrected to zero by a variety of methods, some of which

are outlined in Appendix B.

If the closed orbit remains uncorrected, we will want to extract

information about the behavior around the closed orbit, such as tune,

chromaticity, and so on. In terms of the Lie series, if

:g1: :gz = :g3 = :g4 = I
w = e e e e • w' (6.3)

then the map around the fixed point is given by the polynomials fn whe re

W - V
:f2: :f3: :f4:

= e e e • lw-v• (6.4)

-98-

... (6.8)

be a sequence of first-order polynomials yet to be determined. Define a

sequence of maps

(1)
N ' ••• (6.9)

by the rule

N (n)
-·f(n). . 1 .

= e M

(n)
+: f 1 :

e (6.10)

(n)
for a non-negative integer n where fl is defined below. By

application of the concatenation scheme above, N(n) may be put into the

standard factorization

·d(n). ·d(n). ·d(n). ·d(n).
' 1 .. 2 ' ' 3 ' ' 4 .

= e e e e

Now define the sequence {fn1} =O 1 by
n ' ' • • •

/n+l)
1

f (O) = 0
1 ,

./n).
f

(n) e. 2 ·)-1 d(n)
1 + (1 - 1

n = 0,1,2,•••

(6.11)

(6.12a)

(6.12b)

As these maps are iterated, d(n) will approach 0, and d(n) will approach
1 m

-100-

This procedure is, in principle , quadratically convergent. That

is, din+l), which measures how far fin+l) is from the actual f1. will be

order E2 if d(n) is of order E.
1

Let

(6.13)

which will be O(E) if din) is. Then

and

e

(n+l)
N

/n+l)
1

= f(n) + (n+l)
1 r 1

(n+l)
-:r

1
: (n)

= e N

(n+l)
:r 1 :

e

-:r~n+l): :din): :d~n): :djn): :din): :rin+l):
e e e e e e

(6.14)

(6.15)

-·r(n+l). ·d(n). ·d(n) .. (n+l). _. (n+l), ·d(n). ·d(n) .. /n+l).
· 1 · · 1 · · 2 · .rl · .rl · · 3 · · 4 · · 1 ·

e e e e e e e e

·d (n).
() . 2 .

:dln + (e - 1) (n+l)
rl

(n) (n+l) (n) (n) (n+l)
:d2 : -:rl : :d3 : :d4 : :rl :

e e e e e

:d~n\ -:rt+l): :d;n): :din): :rin+l):
=e e e e e

(n+l)
by the definition of r 1

Comparing this with (6.11) at iteration n+l, and recalling the rule for

moving first-order polynomials,
(n+l) 2 we see d
1

will be O(E).

In the above analysis, 1 -
:d2:

e was assumed to be invertible.

-101-

This is not always the case. Wherever a tune is O or 1, this quantity

will not be invertible. Of course, a realistic accelerator lattice will

not have such a tune in the horizontal or vertical degrees of freedom

but the third degree of freedom is flight time, and in such a case the

tune will be O or 1 if the Hamiltonian is time-independent, i.e. if the

particle's energy is not changed.

If the Hamiltonian is not explicitly dependent on time, and

1 1 - :dz: h d ib d b consequent y e is not invertible, t e process escr e a ove

may still be used with slight modification. Consider a particle

starting with coordinates u1 in the transverse part of phase space

(X,Px,Y,Py). Since the Hamiltonian is time-independent, it does not

change the energy PT. Therefore, any value is suitable for the PT

component of the fixed point. On the other hand, the flight time Twill

be changed by a fixed amount~ that is independent of the initial value

of T, and dependent only on u1 • Consequently, if we compute the fixed

point u1 by the process above working only on the transverse part of

phase space, we may say that

(6.16)

where Tis arbitrary, is a fixed point of the 4-dimensional subspace

(X,Px,Y,Py) when the Hamiltonian is time-independent.

-102-

7. The Euclidean Group

So far, we have seen groups associated with dynamical evolution in

a Hamiltonian system. We now turn our attention to a different kind of

Lie group: the Euclidean group. This is the group of rigid body

motions in space, which we shall need to describe the misalignment of

beamline elements.

There are six degrees of freedom for rigid body motion (Goldstein

[1950)); three translational, which form the subgroup T3 , and three

rotational, which form the subgroup S0(3). The Euclidean group is the

semi-direct product of T3 and S0(3); if ai E T3 , Ri E S0(3) for i = 1,2,

the multiplication in the Euclidean group is

(7.1)

3* .) where~= S0(3) ~ R is the representation of S0(3 as a linear trans-

formation in R3 , given in (7.4). The identity is the semi-direct

product of the identities of the two subgroups, E(0;I), and the inverse

is

(7.2)

which may be checked using (7.1).

The action of an element a of r3 on a rigid body is straight

forward. If we pick a set of coordinates, and give some fiducial point

of the body relative to these coordinates, a need only be the vector

from the origin to the fiducial point.

-103-

The rotation group S0(3) does not have as natural a parameteriza

tion. As a start, ~ote that every rotation leaves some axis (one

dimensional subspace) in R3 unchanged; one way to parameterize rotations

is to give the axis and the angle with direction of rotation given by

the right-hand rule. More useful for our purposes, however, is the

Euler angle parameterization, which is easily explicated in terms of the

axis-angle parameterization.

The Euler angles~, 9, ~, specify three successive rotations about

the coordinate axes (Goldstein [1950], Dragt [1986]).* In the first

step, we rotate about the Z axis by an angle~- In the second we rotate

about the Y axis by an angle 9. Finally, in the third step we rotate

about the Z axis by an angle~- The only disadvantage of the Euler

angles is that they are many- to-one, but we may make special allowance

for this.

In order to determine the multiplication and inversion rules under

the Euler angle parameterization, we shall pick a representation in

which we can do the multiplication. The result will then be compared

with the general form of the representation to extract the Euler angles.

For this method to work, we need a faithful representation; once again

we turn to the natural representation of 3 by 3 matrices. Although the

parameterization in terms of Euler angles is many-to-one, it will yield

a useful answer.

Writing out the three axis rotation,

*Note Goldstein uses passive rotations, and Dragt uses active rotations.
I shall follow Dragt, because he must approve this dissertation.

-104-

(7 .3)

In terms of the matrix representation, the Euler angle parameterization

looks like

(7.4)

~os¢ -sin<!> n [cos0 0 sige] [cos~ -sin<J, ~] = ~n<I> cos<!>
-si~9

1 sin<J, cos<J,
0 0 cos9 0 0

t os¢ cos9 cos<J, - sin<!> sin<J, -cos¢, cos9 sin<J, - sin¢, cos<J, cos¢ sin~
= sin! cos9 cos<J, + cos¢, sin<J, -sin¢, cos9 sin<J, + cos¢, cos<J, sin¢, sin9

sin9 cos<J, sin9 sin<J, cos0

We may multiply two of these matrices to get the product

(7.5)

and now solve for¢,, 0, <J, by looking at the form of the matrix above and

extracting the quantities. That is, we know that

(7.6)

so we find

i) e = arccos (7. 7)

-105-

,, fl
rll

Also, from elements 1,3 and 2,3

ii) ~ = arctan

and from elements 3,1 and 3,2

iii) <Ii= arctan
M31(~,0,;j;)

(- - - -)
M32 (<!> ,e ,<!,)

(7.8)

(7 .9)

Formulas ii) and iii) may give the wrong answer or no answer under

some circumstances; we need to be careful in two respects. First, the

function used should be a two-argument function, numerator and

denominator, that returns values on the full circle [-n,n] rather than

n n on the right half [- 2,2). Such a function is normally called atan2

(e.g., in Fortran). Second, if sin 0 = 0, both numerator and

denominator will be 0, and M(~,0,;j;) will represent a simple rotation

around the z axis

l cos(~ ± ~) + sin(~ ± ~)

±ci sin(~ ± ~) cos(~ ± ~)
0 0

(7 .10)

-
We may choose <Ii = 0, so that the matrix is

t cos <Ii - sin <I>

±~
cos <I> cos <I>

0 0

(7 .11)

In this case

ct,= arccos (±M11 (~,e,;j;)). (7.12)

-106-

I I ii
l l

The answers are

i) 0 = arccos[cos0 1 cos0 2 - cos($1 + ~2) sin0 1 sin02] . (7.13)

ii) If lcos SI* 1, $ = arctan(a/b) where

a = sin$2sin02cos0 1+ cos$ 2 sin($ 1+~z) sin0 1

+ sin$2 cos($ 1~ 2) cos02sin01 (7 .14a)

b = cos$ 2sin02cos0 1 - sin$2 sin($1+~z) sin0 1

+ cos$ 2 cos($ 1~ 2) cos02sin01 • (7.14b)

If cos 0 = 1'

$ arccos[-sin$2 sin~ 1 cos($1 + ~2) - cos$z sin0 1 sin0 2 cos~1

- cos$ 2 cos0z sin~1 sin($ 1 + ~z)

- sin$z cos0 1 cos~1 sin($1 + ~z)

+ cos$2 cos0 2 cos0 1 cos~1 cos($1 + ~z)J. (7 .14c)

iii) If lcos 91 * 1, ~ = arctan(a/b) where

a = sin0 1cos0zsin~ 1 + sin($1+~2)sin0 2cos~1

+ cos($1~ 2) cos0 1sin0zsin~1 , (7.15a)

b = sin0 1cos0 2cos~2 - sin($ 1+~2)sin0zsin~z

+ cos($ 1~ 2) cos0 1sin02cos~1• (7.15b)

If lcos 01 = 1, ~ = O.

-107-

Inverses are easily obtained by noting that S0(3) parameterized by

Euler angles is specified as a product of three easily-inverted

rotations

R(<!>,0,<ji) (7.16)

The inverses are

i = X,Y,Z, (7 .17)

so

(7.18)

R (-(ji , -0 , -<!>) •

-108-

PART II: Computation of Symplectic Maps

We now have the mathematical tools in hand to concatenate Lie

transformations, track particles through them, and determine the fixed

point, for maps that include first-order terms in the factorization.

What has not been covered yet is the source of these maps; given an

actual accelerator that we wish to model, how do we obtain the matrix

and polynomials of the transfer map of each element?

This task is divided into four chapters. Chapter 8 shows a method

for computing the factored Lie transformations from a Hamiltonian or

from the Taylor series for the transfer map. It is based on the work of

Dragt and Forest [1983]. Chapters 9 and 10 contain computations of the

Lie transformations for the steering dipole and mispowered dipoles. The

former is useful for error correction, which will be treated later, and

the latter allows us to treat a particular kind of error that occurs in

accelerators. Chapters 11 and 12 treat the problem of beamline element

misalignment. Chapter 11 shows how to convert a misalignment at the

fiducial point of an element into coordinate transformations (matching

maps) for the entry and exit faces. These transformations depend only

on the misalignment and the general geometry (straight or curved) of the

element. Finally, Chapter 12 shows how to compute the realization of

the Euclidean group, which we now have as coordinate transformations at

the entry and exit faces, in terms of symplectic maps. When

concatenated with the map for a perfect element, which is independent of

the misalignment, the result is the map for the misaligned element. As

a byproduct of these computations, some general comments about rotations

are made.

-109-

' I

,~
'' I~

,~
I L
I t ,~
I I

;t

I •
If
I I
11

I

: I
J

The thrust of this part is computation of factored maps with first

order terms. This is not exactly the same thing as maps of elements with

errors. For example, a mispowered quadrupole map will have no first

order term, because the quadrupole still sends a design particle out on

the design trajectory. In situations of this sort, the factored maps

are readily computed; the techniques of Chapter 8 will suffice for the

case H1 = O. More likely, however, the ideal map has already been

calculated and just needs to be computed with the actual parameters. In

the quadrupole case, for example, Douglas [1982] has already computed

the map, and we need only supply the actual powering to find the matrix

and polynomials.

-110-

8. Computation of Factored Maps from a Hamiltonian

So far, we have seen that a symplectic map may be written in the

factored form,

:f . ·f(c). •f(a).
1 ··2 ··2.

e e e ... ' (8.1)

and we have seen how to manipulate and use this factorization. In the

course of showing that a symplectic map can be represented by factored

Lie transformations, we have seen how to find the polynomials given the

coefficients of the Taylor expansion. We do not yet, however, know how

to get these polynomials directly from the Hamiltonian. This will be

useful for some of the computations in succeeding chapters; we shall

therefore treat it here.

We divide the task into three cases. First, break up the

Hamiltonian order-by-order in the phase space variables,

H (8.2)

Hn = polynomial homogeneous of order n in the phase space variables.

The first case is H1 = 0, or that for which there are no constant terms

in the transfer map. The method that applies in this case is described

by Dragt and Forest [1983]. The remaining cases apply when H1 * 0, for

which there are constant terms in the transfer map. When H1 is

infinitesimal (i.e., we desire computation only to the required total

order, in the sense of Chapter 3), the method of Dragt and Forest may be

extended. For H1 arbitrary, there are two alternatives. One is to

-111-

split the Hamiltonian into the product of two transformations, one

first-order, the other second and higher order, and apply the Dragt and

Forest techniques to the result. This does not always work. The second

alternative is to compute the transfer map either from geometric

considerations or by application of the Hamiltonian map to phase space,

and then to integrate the result as described in Chapter 1. Of course

geometric considerations may always be used. The overall procedure is

summarized as a flow chart, Figure 8.1.

Let us begin by assuming that we are studying the transformation

from a set of phase space variables C
0

at time t 0 to the set C(t)

parameterized by the time t. The independent variable will bet,

although it need not actually be time; it may be longitudinal position,

for instance. Since the transformation is canonical, there is a

Hamiltonian H(C,t) that gives the dynamics according to Hamilton's

equations. Assuming that His known, our goal is to find the functions

C(t)
:f 1(C,t): :f~(C,t): :f;(C,t): :f3(C,t):

= e e e e •••• le •
0

(8.3a)

or for short

C(t) = M(t)C
0

• (8.3b)

It will be assumed that the phase space variables are small in the sense

described in Chapter 3.

-112-

I ,_.
,_.
l,..l

I

~ - - -~ DrngtB
0 ·~~~

> smOu I. I Sec. 8 Ta-)-. • ,

Arbitrary ,1

Yes

Yes a No

- - ·I · Effect on Phase Space
' Tran sf er Matrices

1 ., 1 Integrate
Chap. l

Figure 8.1 Flow Chart for Computation of a Factored Map

--'--'----=--'-- -=-== '. m =- - _...~,,...,......,--------------------

a. H1 Small or Zero*

Let us rewrite the Hamiltonian factored by o order,

H = H l + H2 + H3 + ••• (8.4)

The first-order part is small; H1 contains a factor of£, or the inte

g ration over the independent variable is a range of length£. We may

calculate the factored product expansion through the appropriate order

in£ by a method similar to that of Dragt and Forest [1983] and Forest

[1984]. In the case£= 0, it reduces to those computations.

To begin, let M be the transfer map

(8.5)

If g is any function on phase space we may say

g(O (8.6)

so

(8. 7)

From the equations of motion we note,

*I am grateful to Etienne Forest for suggesting this idea.

-114-

,,
I I

' '

g(C) = [g(C) ,H(C, t) J (8.8)

Comparing this with (8,7) above, and noting g is arbitrary, we find

obeys the equation of motion

(8.9)

The process of solving for Mis iterative in powers of E; for€=

0, it has one step. Each step in the iteration produces a set of terms

·g(i). ·g(i). ·g(i)
·2 ··3 ··4

= e e e (8.10)

on the right; when we are done we shall have a series of second-order

and-higher sets:

:gl: (n) ••• NO) M = e N (8.11)

:g~n): :gin): :gin):
e e e ...

·g (1). . (l) (l) g • ·g . ·2 ··3 ··4 ·
e e e

We may then concatenate the Ji) to form a single set

-115-

' . . ,,
I •1

. . -- --·- -~~------

Af :f1: :fz: :f3: :f4:
1v = e e e e

with f 1 = g 1 , using the techniques of Chapter 4.

The dynamical equation in M,

will be solved iteratively, starting with H(l)

duce a partial answer for M (i)

(8.12)

(8.13)

H. Each step will pro-

(8.14a)

with N(i) determined and M(i+l) undetermined explicitly but governed by

the equation (8.13) with u(i+l) determined. We shall now see how to

obtain N(i) and H(i+l). At the final step of the iteration, the

solution obtained for M will be

M(n)=N(n). (8.14b)

Let HR(i) = H3(i) + H4(i) + h H(i) ••• so t at

Then we may write (8.13) as

(8.15)

Now, write M(i) in terms of the product

(8.16)

-116-

where each term will be determined. Further, write NR and N2 in terms

of Lie transformations,

and

(i)'
~

•g I• •g I• . 3. . 4.
e e (8.17)

(8.18)

We shall first find dynamical expressions for Nii)
1

and Nii), then

(")' (i)
determine gn1 and g2 from them, and finally apply the concatenation

rules of Chapter 4 to obtain the form (8 .10) for N (i).

Substituting (8.16) in (8.15),

(8.19)

Let N2 satisfy the dynamical equation

= N(i) ·-H(i). 2 . 2 .• (8.20)

If H~i) commutes with itself at different times, (8.20), is solved by

the exponential of the integral of H~i),

N (i\t)
2

= e
:gii)(t):

(8.21)

-117-

• j

• ,I
,I

I "I

. !I

.. I
,, , 1

I ii

' I ,·

I i

Alternatively, we may write H~i) in terms of the symmetric matrix s,

H2(i)(~,t) = .l l s(i) ~a~b
2 ab ab

We may then write for (8 .20) a matrix differential equation

•

(8.22)

M = JSM. (8 .23)

This matrix M will give the linear mapping of phase space. Section b

has a more detailed discussion of the solution of (8.20).

With the H2 term out of the way, the dynamical equation (8.19)

reduces to the two higher-order terms

·-H(i) -H(i) ·
' 1 R '•

(8.24)

Next we ask that N ~i)
1

satisfy

•N(i)'= M(i)' N(i) ._11 (il
R R 2 ,lR,

(i)-1
N2 • (8.25)

Let

:g~i)(t):
= e

(i)(t).
(i) :g2 .

= HR (e • I r , t) ,
•o

so (8.23) may be written as

-ll8-

We may solve this by noting

N(i) I (t) =
R

(i) I

= NR

(i)' (i)int
NR (t') :-HR (t'):dt':,

(8.27)

(8.28)

(i)'
where I, the identity map, is the value of NR at t=O. We may make a

Born (or Neumann) expansion on this integral equation by repeatedly

substituting the left-hand side into the right; thus

N(i)'(t) =7+ t
R t

int
:-ii) (t'):dt'

R
0

, (')int ()int
+ f~ f~ :-HR

1
(t")::- H/ (t'):dt'dt" + •••

0 0

(i)int
If we expand HR ,

(.)int (')int
= I-I l + II l + 3 4 • • • '

H
(i)int H(i)int

where n is the homogeneous n th order part of R , and

(8.29)

(8.30)

separate the terms by the order they change a homogeneous polynomial,

(8.29) becomes

(i)int
:-H

3
(t'):dt' (8.31)

(i)int , . int int
:-H

4
(t'):dt' + f~ f~ :-H~ 1

) (t")::-H~i) (t'):dt"dt')
0 0

+ •••

-119-

First, we write N(i)' in factored form, and then expand,
2

. (i)'. ·g(i)' .

. g3 . . 4 .
e e •••

= (1 + ·g(i)'. + _!_ ·g(i)' .2 +)(1 + ·g(i)'. +) ·3. 2·3 .••• ·4 .•••

1 + (i)' + _!_ ·g(i)'.2 + ·g(i)'. + : g3 : 2 . 3 . . 4 . • • • •

(8.32)

Comparing the order they change a homogeneous polynomial, we find that

:g?): is

(i)int
H

3
(t') dt'. (8.33)

The next order change is more complicated. Note that (8.33) implies

that
(i)' 2 .

:g
3

: 1S

1 •g(i) I ,2
2 . 3 •

1 tf tf (')int (i)int

2 ft ft :-n/ (t")::-H
3

(t'): dt"dt'. (8.34)
0 0

, 1,

.1:
, I
11,

I
: 11

' I

ti

'" , 11
i• ,,

1:I ,,

Splitting up the second integral yields ,11

1
t int . int

2
:g~i)' :2 =½I/I:' (:-Hji) (t")::-Hji) (t'): (8.35)

0 0

int . int
+ :-Hji) (t')::-Hj1

) (t"):)dt"dt',

so the next order is

1 ·g(i)'.2+ ·g(i)'
2 . 3 . . 4 : (8.36)

-120-

tf, (')int (')int
+ ft f! :-H/ (t")::-H/ (t'): dt"dt',

0 0

which gives
(i) I

g4 . '

(i) I
:g4 : (8 .37)

1 tf , (')int (')int +-f ft (:-H31 (t")::-H31 (t'):
2 t t

0 0

(.)int (')int
- :-H

3
1 (t')::-H

3
1 (t"):) dt"dt'

t int int
+ .!:._ f £ft' [:-H

3
(i) (t")::-H

3
(i) (t'):] dt"dt'.

2 t t
0 0

Using the homomorphism between the Poisson bracket Lie algebra and its

(i) I

adjoint algebra, we have an expression for g
4

,

tf (')int - f H
1

(t') dt'
t 4

(8.38)
0

t . int int
+}f/f!' [-H1

1
) (t"),-Hii) (t')] dt"dt'.

0 0

To obtain N(i) in the standard factorization, we may put N~i) on

the left by using the transformation rule:

(8.39)

-1
N(i)(t) = N(i) (t) N(i)'(t) N(i)(t)

R 2 f R 2 f

-121-

,,, ,,,

,[,

I'

II
1,

I

II

JI'

, ,
I'

(i) (i)' (i)'
-:g2 (t): :g3 : :g4

= e e e

·g(i). ·g(i).
' 3 . ' 4 '

= e e

where, for n) 3,

·g(i)(t) .
(i) -. 2 f ' (i)'

g (Ct) =e g (C,t)
n ' n

(8.40)

·g(i)(t) . (i)' -. 2 f '
= g (e C,t).

n

To calculate these explicitly, note that
(i)int (i)int

the g(i) involve integrals of
n

H • The H , in turn, are just
n n

H(i) with a linear transforma
n

tion of the arguments:

(8.41)

-:g2(i)(tf): :g2(i)(t):
= H(i) () e e C,t.

n

If H2 is independent of time, the linear transformations may be combined

(8.42)

Specifically, therefore, g;i) and (i) i b i 1 g4 are g ven y ntegra s over

(i)tr (i/r
H3 and H

4
,

tf (i) tr =ft -H3 (t') dt' (8.43)
0

-122-

•
t,

t

(i) tf (i)tr + _1 ftf ft' (i)tr (i)tr f -H (t') dt' [-H
3

(t"),-H
3

(t')] dt"dt'. g4 t 4 2 t t
0 0 0

(8.44)

(i)
The formulae for g

5
and higher may be computed by referring to Dragt

and Forest [1983].

Returning at long last to (8.22), we may use (8.23) to eliminate

the second term so that there is only one term left,

M
•(i+l) N(i)' N(i) _ 11 (i+l) N(i)' N(i) ·-H(i),

' R 2 - "' R 2 • 1 ., (8.45)

or

(8.46)

We may reduce this by moving the N maps to the right side,

~f i +l)

where

(·+1) () (i) (') (') N(i)-1 N(i)-1
M• i = M i + 1 N N 1- ·-H i ·

2 R 'l 'R 2
(8.47)

(') (i) (i)
:g/ : :g3 : :g4 :

e e e ·- (i). • • • • H • • • •

-123-

(i) (i) . (i).
-:g4 : -:g3 : -.g2 .

e e e

••• C,t).

(8.48)

If we let

(8.49)

we Will be done with this step of the iteration and ready to start again

at (8 .15) with the step i+l; this is

(8.50)

This iteration process must not last forever, of course, if we are

ever to get an answer. Thus we need a termination criterion and

Solution. We achieve this by using the total order criterion of Chapter

Assume that the integral of Hi over the specified range of the

i ndependent variable has a small factor e multiplying it; that is,

either H i 1 nvolves g or tf - to= g.

Each iteration produces an addition factor of eon all but the

first-order term of Hin). Eventually, the higher order terms may be

dropped. Assume that 8n (n) 2) and tf - to is independent of e. We

may define G1 so that H1 = eG1• Then

(8.51)

and g~l) will be independent of g. Then

-124-

1/1 I
I II /fl

'·"
111 I II l)

111 1,,

t II 1111,

!! U!J
Ill ,,M

I

H~
2

) = eG~ 2) + O(e) (8.52)

d (2)
an gn oc E • Continuing, we see that each iteration leaves a residual

term that has one higher power of E,

(8.53a)

(8.53b)

etc.

Eventually, our total order criterion will tell us to stop, and conclude

H(n+l) =
1

G
(n+l)

E 1

Consequently, the equation

is easily solved; the solution is

where

:gl:
= e

g
1

= J~ :- H~n+l)(t'): dt'.
0

-125-

(8.54)

(8.55)

(8.56)

(8.57)

•Ii
II
II

II
II
II

lll

Ill

1' .~
'II
.\

I

If the integral of H (n > 2) has dependencies -"'Il on E or its powers, this

only haS t ens the iterative process.

Putting the results from each iteration together, we get (8.11)

:g1 : :g(n). ·g(n). ·g(n).
M== 2 ··3 ··4 ·

e e e e

·g (I) . ·g (I) . ·g (I) .
·2 ··3 ··4.

e e e ... (8.11)

and w e may use the process described in Chapter 4 to write this as

M = e

:fl: ·g(l) . • 2 .
e

:gin): :f2: :fn:
e e e (8. I)

(i)
w: :g2 :

e only have to use the transformation rule to move thee to the

left, then use the concatenation rules for higher-order terms to combine

them i nto a single set of exponents. The first-order term need not be

moved, because it is already on the left.

Subsequent chapters have examples of this computation; in

particular, Chapters 9 and 10 have computations with a small factor in

H1, and Chapter 12 has a computation with a small integration region.

Chapter 12's computation is also done a different way (see Section c of

this chapter) so that all orders of the small quantity are computed; the

results of the two methods are compared.

b. - Computation of the Linear Part N2

This section is devoted to addressing the question of solution of

the linear part of the map N2 in more detail. The dynamical

differential equation for this map is (B. 20)

-126-

•
N2 = Nz : -Hz : ,

where the iteration-count superscript have been dropped.

where

If :H2 : commutes with itself at different times, then

Nz

g2 = - f~ Hz(C 0 ,t') dt'.
0

(8.20)

(8.55)

(8.56)

If it does not commute with itself, we must resort to other methods to

solve this equation. Since we are dealing with a strictly linear map on

phase space, we think in terms of matrices .

Instead of working with Hz directly, we may write

1
Hz(C,t) = 2 (8 .57)

and work with the symmetric matrix S, as was noted in Section a.

Equivalently, JS is obtained by applying the matrix correspondence rule

(1.99) to -H2 • If we consider Nz to be a matrix M, the dynamical

equation (8.20) becomes

• M = JSM, (8.58)

as is shown in Dragt and Forest [1983] .

-127-

111
ii I

di I
11,
11 1

II
M I
11,
ti

'II

,11
~

'II

The most general solution to (S.SS) i h
st e Born integral series

similar to (8.29),

M = I + ft
t

0

JS(t') dt' + ft ft'
t t JS(t') JS(t'') dt''dt 1 +

0 0

or as a solution to (8.20),

...
(8.59a)

N = I + ft 2 t
0

:-Hz:(t'): dt' + ft ft'
t t :-Hz(t'')::-Hz(t 1):dt 1 'dt 1 +

0 0 •••

(8.59b)

These may be seen to solve (8.58) or (8.20) simply by differentiating,

M = JS(t) + JS(t) ft JS(t') dt' + t ••• = JSM. (8 .60)
0

If :H2 : commutes with itself at different times, then the matrices JS(t)

may be multiplied in any order for different times. The solution for M

is in this case

f~ JS(t') dt'

M = e 0
(8.61)

the equivalent of (8.56).

In the general case, the series (8.59) would not be solvable in a

simple fashion and one might resort to integrating (8.58) numerically.

Even if :H2 : (or JS) does not commute with itself, it may be feasible to

use (8.59) to solve for M, based on considerations of e-order.

Suppose that Hz, and thus S, has a small factor E, which could

-128-

II
11 ►,,
11,.1
II 11

11,..

ll+1

~"' '41 ,;
II I

arise on a later iteration in solving a Hamiltonian with a small H1 •

Then each term in the series (8.59) increases by one in e-order.

Eventually, the total order criterion (Chapter 3) will allow us to

truncate the series. For example, if we keep through total order 4, we

would stop after three terms, becasue the double integral would have e

order 2, and on a linear transformation, that makes total order 4. This

is in fact the tactic used on the mispowered normal entry bending magnet

(Chapter 9).

It is interesting to consider whether the whole effect of the

linear transformation, N2 or M can be written as a single second-order

Lie transformation. That is, is there a matrix R such that

(8.62a)

or equivalently, is there a second-order polynomial g2 side that

(8.62b)

For a self-commuting Hamiltonian, of course, the answer is yes, with g2

and R exhibited above. In the general case, the answer is no, one must

allow at least two Lie transformations, (Equation (1.107) or Dragt

[1982])

(8.63a)

or

-129-

(8.63b)

Between the commuting and the general case, we may consider what

happens in the £-order regulated case. As pointed out above, if Hz or

JS has a factor of£, each term in (8.59) will have an additional order

of£, and the series may eventually be truncated. In order to write as

a single exponent we would say

I+ t
t

0

Jt Jt' :-Hz(t'): dt' + t t :-Hz(t")::-Hz(t'): dt"dt' •••

or

0 0

JS(t') dt' + f~ f~' JS(t') JS(t") dt"dt' •••
0 0

(8.64a)

(8.64b)

where the series stops eventually. Let us concentate on the form

(8.64a), knowing our result will carry over to the matrix form. Write

g2 as a power series in£,

(8.65)

Now expand the exponential

:Egz 1 + Egz 2 + •••· e , , (8.66)

-130-

· g •
Since e· z· is now factored by powers of E, we may match it term by

term with (8.64), solving successively for g2 ,

Egz 1 = f -H2(t') dt' ,

and for g2 2 ,

E
2 :g2 , 2 : = f~ f~' :-H2(t")::-H2(t') dt"dt' -½ E

2 :g2 , 1 :2

0 0

= f~ f~' :-H2(t")::-H2(t') dt"dt'
0 0

-.!..ft ft' :-Hz(t")::-Hz(t') dt"dt'
2 t t

0 0

f~ f!' :-H2(t")::-H2(t'): dt"dt'
0 0

(8.67)

(8.68)

- ~ f~ f~' (:-H2(t")::-H2(t'): + :-H2(t')::-H2(t"):) dt"dt'
0 0

or

=.!..ft ft' [:-Hz(t"):,:-Hz(t'):] dt"dt'
2 t t

0 0

= -1 ft ft')] : [-H2 (t") ,-H2 (t' : dt"dt,
2 t t

0 0

-- .!.. ft ft'))] g2,2 2 t t [-Hz(t" ,-Hz(t' dt"dt'
0 0

-131-

(8.69)

Ii I
11
II

II
II I
11 t
II

II I

~ I
11 1 ii :

I

---~ ----------------~

and so one. All this should have a familiar ring to it: it is very

much like the calculation of part a with a sequence of terms of &-order,

H3, H4, etc. In fact, there are some differences, but the process may

be carried over.

The first major difference is that the &-order factorization has

separate exponents

:g3: :g4:
N = e e •••

and the E-order factorization, we wish to make a single exponent

This may be remedied by first solving in factored form

2 • I • E:g21 1: E .g2 2" :g2: e =e , e ,

(8.70)

(8.71)

(8.72)

and then using the Baker-Campbell-Hausdorff formula to combine the

g2 i into a single exponent. The BCH series will terminate when the ,

order of E gets sufficiently high.

The second difference is that in this case, each successive term in

powers of Eon the right side of (8.64) consists of one multiple

integral, whereas each successive term in the powers of & in (8.31)

consists of one or more multiple integral summed; for example (8.36)

int int consists of integral over both H4 and H
3

• This may be remedied by

disposing with all terms but the multiple integral required; each of the

terms will be recognizable in the final answer. For example, if the

-132-

first term of (8.38) is removed, we will have the analogue of (8.69).

With these differences accounted for, the methods of part a will

carry over. More to the point, the general method for finding arbitrary

n th €-order polynomials (fn, n) 3) given by Dragt and Forest may be

carried over to find the €-order polynomials gz,i•

Whether or not the combination into a single exponent is feasible

:gz:
or possible, I shall metaphorically write ~2 as e •

c. HJ Arbitrary and Geometric Considerations

If H1 is arbitrary, i.e., not necessarily small, the situation is

much different. In this case there are two possible strategies. The

first is to try to split off the first-order part, i.e., try to find a

G1 and Ge such that

(8.73)

and then apply the techniques of Section a, or of Dragt and Forest

[1983] to e :Ge:. U f 1 h d i h G n ortunate y, t ere oes not always ex st sue a c,

and even if there does, it may not be easy to find.

The second strategy will always work. First, one finds the

coefficients of the Taylor series of the map (1.3), and then integrates

them as shown in Section lg. The coefficients may be obtained in one of

two ways. The first is by geometric considerations, i.e., knowing the

trajectory of the particle in advance, one can compute its outgoing

coordinates in terms of its incoming. For example, in a pure dipole

-133-

field, one knows the trajectory is circular. Therefore, from the angle

and position of entry of a particle, and the poleface geometry of the

magnet, one may calculate the angle and position of exit. With a little

work, this may be converted into phase space variables and expanded to

give the coefficients.

The other way of obtaining the coefficients is trying to solve the

dynamical equation in M (8.9) directly. For example, if :H: commutes

with itself at different times, (8.9) is solved by

tf - f :H(l;: ,t'): dt'
t 0

M = e
0 (8.74)

It may be possible to perform this integral and compute its effects on

phase space, then sum the series for the exponential in closed form to

the order necessary.

A variation on this method is to use a known factorized map but

alter the incoming map by adding a constant to one (or more) of the

phase space variables. This we shall do, for instance, in Chapter 12

when discussing the midplane rotation.

-134-

9. Mispowered Normal-Entry Bending Magnet

This chapter and the next are concerned with a particular kind of

acce l e rator error that gives rise to a first-order transformation, and

that is the incorrect powering of dipole (bending) magnets. This

chapter i s a treatment of the normal-entry-and-exit bending magnet

(NEBM), and the next chapter is a treatment of the various parallel face

magnets, orbit correctors, and the general bending magnet. Although all

computations are done for the mispowered magnets, the correctly powered

magnet maps may be recovered by setting the mispowering parameter E to

o.

In this chapter I present first two derivations of the mispowered

normal-entry-and-exit bending magnet, the first based on the methods of

Chapter 8 and the second based on geometric considerations and making

use of the half-parallel-face magnet map given the next chapter.

a. Computation of the Map from the Hamiltonian

A normal-entry-and-exit bending magnet (normal-entry bend or NEBM

for short) has the geometry shown in Figures 9.1 and 9.2. Its

Hamiltonian and factored map were calculated by Douglas (1982]. I shall

follow that calculation here, deviating, of course, from the ideal

powering he assumed.

It is most convenient to describe this magnet in polar coordinates:

(j> p~ with t the independent variable. P, Pp, Y, Py, , ~
The radius is P,

the radial momentum Pp• We shall eventually return to the familiar

Cartesian coordinates. In this coordinate system, the Hamiltonian is

-135-

lde~I Design
TraJectory

Act!Jal Design
TraJectory

Figure 9.1 Geometry of the Mispowered Normal-Entry Bend
Bactual > Bideal

-136-

Actual Design
Trajectory
Drift Gap

Actual Design
Trajectory
Field Gap

Ideal Design
Trajectory

Figure 9.2 Geometry of a Mispowered Normal-Entry Bend

Bactual < Bideal

-137-

(9 .1)

One obtains a new Hamiltonian by making the canonical transformation to

$ as the independent variable and t, Pt as part of phase space,

K = - P9

If we now replace the variables with ones that are small in

deviation from the ideal design trajectory ,

r - p - Po Pr - Pp

(9.2)

(9 . 3)

where p
0

is the ideal design bending radius . The generating function of

this transformation is

F - [t - t 0 ($)][p~ + p~],

where the flight time along the ideal design trajectory is

and p
0

= mc~y is the design momentum. Then the new Hamiltonian,

including the effects of the generating function, is

-138-

(9.4)

(9 .5)

(9.6)

- po (p* + po) - q(r + Po) A9•
c~ t t

If we rescale to dimensionless variables as explained in Chapter 1,

R - r/1

Y - r/1

T - t*/1

NEW
K

K = fy'
0

then in terms of the new variables, the Hamiltonian is

RJ.. + P0 /(+ o)2 2 4 2 2(P2 + p2) K = - __ c_p_l_{lpocpt Pt - m c - poc R Y
0

(R + p ~) /1 - ¾ PT + Pi

(9. 7)

(9.8)

For a pure bending magnet, the magnetic field is constant and points in

the (±) Y direction. Thus the vector potential is

1
A4i = - 2 pB. (9.9)

-139-

' I
•I

I~
I ,,

~I

In the current set of coordinates, A~ may be written

1
A~= - 2 (R.l + p

0
) B. (9.10)

Now, however, we must recall that B may not be as designed;

Bactual = (l + E) Bideal• (9 .11)

where lei << 1, and E may be positive or negative. Since the formula

for A~ involves Bactual• we may substitute (9.11) in (9.10),

1
- 2 (Rl + Po)(l + E) Bideal" (9.12)

Using the relation p0 = p0 qBideal' rewrite this as

(9.13)

Thus, the Hamiltonian is now

(9.14)

1 p 2
- 2p (1 + e)(R + ~)

0

Expanding by order in phase space variables,

(9.15)

-140-

where, ignoring Ko,

(9.16a)

K2
il) l ;>.., p2 + ~ (P2 + P2) + 1 + e R2 (9.16b) = = if RPT + 2 2y2~2 T 2 R y 2;>...

K3
H(l) 1

RP 2 + .!. R(P
2 + P2) + ;>..,

p3 + ~ p (P2 + P2) =
3 2~2y2 T 2 R y

2~3y2 T 2~ T R Y

(9.16c)

K4
H(l) 1 3 l 2 2 ;>.., 5 p4 = = RPT + ~ RPT(PR + Py) (1 - -)

4
2~\2 8~2y2 ~2 T

~ (1
4

2)
~2

p2
T

(P2 +
R

P2)
y + ~ (P2 +

8 R
P2)2

y (9.16d)

Now we shall use the techniques of Chapter 8 to obtain the factored

product expansion.

Let us first calculate the linear part of the map,

il)
2 = e (9.17)

as a matrix transformation on phase space. Since K2 is independent of

4> ' ,

(9.18)

The matrix that corresponds to -4):K2 : is

-141-

I ,,

► I

0 A. 0 0 0 0

1
1 + E: 0 0 0 0

A.
-i

0 0 0 A. 0 0

JS = <I> 0 0 0 0 0 0 (9. 19)

1
1 0 0

~
0 0 r2~2

0 0 0 0 0 0

Now the powers of JS are

A.
0 0

-(1 + E:) 0 0 ~

0 -(1 + E:) 0 0 0 0

0 0 0 0 0 0

(Js)2 = <1>2 0 0 0 0 0 0 (9.20) ~ t i l·
'\!:'.

A. 0 0 0 0
0 f3

1:ih I I

0 0

I 1', ,]

0 0 0 0
.,11,,1
I J!i• ~

1•1~1 I

,. I I

. ••1 I
. l'I '

and
;j ll
,I

;.:1,1:,

.~1 11

;1U i,:
' l j ,; I

-142-

0 -A.(l + e:) 0 0 0 0

(1 + e:)2
0 0

1 + £

A.
0 0

~

0 0 0 0 0 0

(Js)3 = <1>3 0 0 0 0 0 0 (9.21)

1 + e: 0 0 0 0 - A./~2

~

0 0 0 0 0 0

In general, powers of JS have the recursion relation

JSn = - (1 + e:) <1>2 (JS)n-2 , n = 4, 5, 6, • •·
(9.22)

Thus we may sum to all orders to calculate

M = eJS,
(9.23)

~2 <1>4 2
= l - L (1 + e:) + - (1 + e:) ••• =

21 4 !

cos (<I> ✓ 1 + e:)

A. <1>2 <I> 4 = - - (- - - (1 + e:) + •••)
~ 21 41

=

2 4
A. (2<1>I (1 + e:) - _44>I (1 + e:)2 + •••)

~(1 + e:)

= A. [(~ 11+€) - 1]
~(1 + e:) cos '+'

~3 <1> 5 2
M12 = A-(1 - L (1 + e:) + - (l + e:) - •••)

31 51

3 _3 <1>5 --5
= _ _;_A.=---- <II"+ "'e - !f <11 + e:) + sT < ✓ 1 + e:) - • • .)

✓ 1 + e:

-143-
'II..

'" ,u

Ill,
·1~

••· I I
!I I I

::ii
:HI
JU ►

,~If ,iU,., •t

::: A
sin (cp ✓1 + e)

✓1 + e:

Mz1 ::: - 1 + e:
(1

cp 3 cp 5 2
A

- - (1 + e:) + 51 (1 +e:)- •••)
3 !

=_II+e: X sin (cj) ✓1 + e:)

M26 = M 1 (cp3 cp5 2 - 51 = - ff 1 - 3T (1 + e:) + 51 (1 + e:) - •••)

A
- - --- sin (cj) ✓l + e:)

13✓ 1 + e:

M55 -- M 1 66 ==

X A <1>3 <1>5 <1>7
M56 = -2 2 <I> - -2 (-3! - -51 (l + e:) + -7! (l + e:)z - •••)

13 y 13

Obviously, the measure of mispowering µ = 11 + e is the most useful

quantity h ere. Then

-144-

M(<!>) =

cos(µ<!>) ~ sin(µ<!>) 0 0 0 A
- 2 [cos(µ<!>) - l]

- ~ sin(µ<!>) cos(µ<!>) 0 0 0
~µ 1

[cos(µ<!>) - l] >-. - ~µ
0 0 1 A 0 0

0 0 0 1 0 0

1 >-. [cos(µ<!>)-1] A 1 1 >-. ~µ sin(µ<!>) - ~µ2 0 0 1 2<2 - 2)<!> + 22 sin(µ<!>)
~ y µ ~ µ

0 0 0 0 0 1

(9.24)

This gives Douglas's [1982] result as coded into MARYLIE in the case of

no mispowering (µ = 1).

The polynomials for the first iteration are given by the integral

tr (8.43) of -K3 , given by (8.42),

(9.25)

The coefficients are listed in Table 9.1, and agree with the results of

Douglas [1982] (Table 4.3) for the case e = 0, µ = 1. Furthermore, we

(1)
may use for g4 the fourth-order term of Douglas because we need keep

no powers of e, and thus may take E = O, µ = 1. The coefficients of

g~l) are given in Table 9.2.

The next step is to compute the polynomial H(Z), using the rule

(8.48) and (8.49). In this case, H(2) is

·g(l) . ·g(l) . ·g(l) .
(1) . 2 •• 3 •• 4 •

= -H (e e e C) 1
(9.26)

-145-

·g(l). ·g(l). ·g(l)
·2 ·•3 ··4

= e: e e e R

.g<l). .g<l). ./1).
e: (e. 2 . R + e. 2 .[g;l), R] + ~ e. 2 .[g;l),[g11),R]]

./1).
+ . 2 • [(1) R]

e g4 , + •••) •

Thus order by order, the terms H(2) are, with C = cos(µ~), S - sin(µ~),
n

·g(l).
-H(2)

1
. 2 • \. \.

Ee R = E (cos(µ~) R + - sin(µ~) PR+ - [cos(µ~) - l] PT)
µ ~µ2

·g(l)_
-H(2) . 2 . (1)

2 = E e [g3 ,R]

= E (- - 1 s 2R2 + .!_ cs RPR + (- - 1- s 2 - _E_ ~S) RPT
2\. µ ~µ2 2~µ

\.
- C) p2 - (\. (1 - C) + \. s2 EA

- - (1
2~2y2µ2 2~2µ4

+
2~2µ3 2µ2

y

.g<l). ·g (1).
-H(2) 1 . 2 . (1) (1) + e. 2 .[gfl),R])

3 = E(z e [g3 '[g3 ,R]]

= E

2 2
(- _s - R2P - _s - RP2 + SC RP P - .§.. RP2

2~\. T 2 R ~ R T 2 y

~S)

(9.27a)

(9.27b)

P2)
T

(9.27c)

+ p2 + \.SC p3 + \.(C - 1) p2 p + \.SC p3 + \.(C - 1) pR2 pT
T 2 R 2~ R T 2 R 2~

-146-

H(Z) = 0 for n) 4, to the order we are concerned about.
n

(2)
Now we must solve (8.20) for N2 • Unfortunately, we may not use

(2)
the exponential of the integral (8.23) because H2 does not commute

with itself at different "times" (values of 4>). Therefore we shall

attempt to solve for N(l) by solving the matrix differential equation
2

(8.22) or (8.58),

•
M = JSM (8.22)

(2)
The matrix JS is formed from the coefficients of H

2
according to

(8.57). A solution is given by the series (8.59a). Since we keep only

two powers of e in matrices, we may truncate the series (8.59a) after

three terms. Let N(Z) be the integral of Js(2),

(9.28)

Then the value of M(Z)

(9.29)

will be sufficient for our purposes. The non-zero elements of JS(Z) are

given in Table 9.3, of N(Z) in Table 9.4, and of M(Z) in Table 9.5.

With the second linear transformation M(Z) computed, we may now try

(2)'
to compute g

3
• We compute the prime version,

•g(2) I, •g(2) •
• 3 • ' 2 •

e e

·g(2). ·g(2).
• 2 ' ' 3 •

= e e (9.30)

-147-

to save the effort of transforming by the linear map. In order to

compute gj2)', we will need

(9.31)

Because M(2) is the identity plus a term of order e, H~ 2
) is of order e,

and we keep only terms of order e in a third- order polynomial, we may

say

(2 /nt
-H =

3
-H(2)

3 • (9.32)

Thus

~ (2)int ~ (2)
= fo -H3 (r.,4>') d(j>' = fo -H3 (C,4> ') d(j> ' . (9.33)

The results are given in Table 9 . 6.

The polynomial g~ 2) need not be calculated because it would be of

order E or greater. For fourth-order polynomials, no terms of order e

or greater are retained.

The next step is to find the new "Hamiltonian," H(3)

•g(2) I • •g(2) •
(2) . 3 .. 2 .

= H1 (e e C,4>) (9.34)

Factored, the second-order part is

(9.35)

-148-

No linear transformation is necessary because it is proportional to e 2 ,

and M(
2

) is the identity plus order E. Since we are keeping only two

p o/nt - (3)
owers of E for second-order polynomials, we may take H2 - H

2

The equation (9.35) may be integrated to obtain the polynomial gi3) •

The coefficients are shown in Table 9.7. Exponentiating this polynomial

is no trouble, because each term is proportional to e2• Thus one term

Will suffice:

,.,/3)
2

= e

. (3) .

. g2 .
(9.36)

Since uO) consisted of only first- and second-order terms, we are

finally at the last step. The first order part

(9 .37)

is long and disgusting, so it will not be given. The first-order

transformation is determined by the equation (B.S?)

(9.38)

The coefficients of this polynomial are given in Table 9.8.

To summarize, the map for the mispowered normal-entry- and-exit

bendi ng magnet is given by

) (2) , • (2). ·go). ·g(O. ·g(l)
(3 :g3 • .g2 . 2 • . 3 . . 4

:gl: :g2 : e e e e
== e e e

(9.39)

-149-

1,

I rn

The second-order transformations are kept as matrices. All these

matrices and polynomials are given in (9.24) and tables 9.1 through

9.8. In these tables E = ~B/B is the mispowering, µ = /1 + E and C -

cos(µ~), S = sin(µ~).

Putting (9.39) into the standard factorization would not be
·g(2)
• 2

terribly difficult.

. g(l) .

The two second-order transformations e

• 2 .
e would have to be moved to the left by using the transformation

·g(2) 'T. ·g(l) .

rule. Then

. 3 . . 3 .
the two third-order transformations e e would

be adjacent (the first transformed). They could be combined in a single

b dd
· i h P i b k [(2) 'T (1)] is exponent ya ing, s nee t e o sson rac et g 3 , g 3 too high

in total order to worry about. The three linear transformations would

be left as separate matrices.

-150-

I I

I

• I
j
j

I

- ---
(1)

Table 9.1 Nonzero Coefficients of g3 for the Mispowered

R3 (28)

RP2 (34)
R

RP2 (43) y

(48)

(49)

(53)

(58)

(63)

(76)

(83)

Normal-Entry Bending Magnet

Note: S = sin(µ~)
C = cos(µ~)

- _1 sc2
2µ

- _l_ s2 (C + 2€)
~µ2

1 - - s 2µ

1 83

2~2µ3

~ (1 c3)
6µ2

- 1- (1 - C)
2µ2

- _A_ e~
2~µ2

(~ + SC)
µ

3
(~+~(~_SC))

3µ 2 µ

-151-

Table 9.2 Coeff icients of g~l) for the Mispowered

Normal-Entry Bending Magnet

R3p (89) __ l_ s3 T
6~A

2

R2p2
(90) - --1.. s3 R BA

R2p P
R T (94) 1 2

- 2~A SC

R2p2
(99) - _!_ s3 y BA

R2p2
(104) s - ~2 s3

T
8~

2
A

RP3
(105) - 1. s2c R 4

RP2
(109) _!_ s3 -!.. s RPT

4~ 2~

RP P2 (114) - 1. s2c Ry 4

RP P2 (119)
1 1 s2c R T - (2 2 + 2)

4~ y ~

RP2
YPT (132) 1 3 l

- 4~ s - ~ s

RP3
- (1 + -½-) s3 -

1
(139) 2 2 S T

4~3y2 2~ 2~ y

p4
(140) - ~ sc2 R 8

3
- l s2c + _!::. 0 - C) PRpT (144)

12~ 6~

p2p2
R y (149) } 53 _} s

-152-

4
Py (195)

4
p T (209)

- _!:_. s2 C + _!::_ (1 - C)
4~ 2~

~ s
8

- ~ s3 - ,._ (1 2 + -½-) S
8~

2
4~ y 2~

1 1 3 1 1
_,__ (+ -) S - " (4 2 + 4 4) S

s~\ 2
6~

4
2~ y s~ y

-153-

Table 9.3 Nonzero Elements of Js< 2) for the Mispowered

Normal-Entry Bending Magnet

2
= - _£_ s2 - _£_ ~s

~µ2 2~µ

= - A£ C(1 - C)
µ

[Js(2)l34 = x.; (1 - c)
µ

-154-

..

Table 9.4 Nonzero Elements of N(2) for the Mispowered

Normal-Entry Bending Magnet

N(2) E CS
21 = - - (~ - -)

- i2) ==
11

n. µ

i2) = _e_ s2
22 2µ2

N(2)
26 = - i2) =

51
- _E_ ~(l - E C) - _£_ S(E - C)

2~µ2 2~µ3

N(2) = N(2)
16 . 52

N(2) AE S
34 = - (~ - -)

µ2 µ

-155-

Table 9.5
Non-Identity Elements of M(2) for the Mispowered

Normal-Entry Bending Magnet

i 2) = 1 + e: (- .2. + i + 4> s - 4> s c c2 c3 c4 4> 2 s 2
1,1 12 2 2 4 - 8 + 6 - 8 - 8 - 2)

i2)
1,2

e:;>,., c21 _ s
3

+ 7sc s 3c
16 s - 6 16 + 73)

i2)
1 , 6

e:;>,., s c 4>s 4>sc c2 c3 c4 4>2 s2
~ (-IT+ 2 + 2 - T - 7f + 6 - 7f - 7f - 2)

i2) = ~- ! + sc) + ~ cl_~. _ _J_ _ 7sc + s 3c + 4ic2 + c\
2, 1 ;>... 2 2 ;>... 3 2 16 16 8 4 6

i2) =
2,2

+ e:S
2

+ e:2 (.!_ + .2_ _ ~ + 4>C _ SC _ c2 + c4 _ £ _ £)
l 2 8 2 2 2 2 4 8 2 6

i2)
2,6

2 3 2
= £_(SC_ 4>) + e: (1 _ C + 74> _ S + 4>C _ 15SC +SC+~+ c3)

2~ ~ 3 2 16 2 2 16 8 4

i2)
3,4

i2)
5, 1

3 2 2 3 2
£(94> _ SSC _ ~ _ !£_) + ~ (- 134> + ~ _ q>C + 15SC + 7S C + 1£_
~ 16 16 8 4 ~ 16 2 2 32 16 2

i2)
5,2

-156-

M(2)
5,6

+ s2 _ 9c
2

_ c3 + c
4

_ <PS _ cpsc)
8 3 2 2 4

= Q_ (<P + 9cp _ S _ SSC _ s3c _ <PC
2

)
A2 2 16 2 16 8 4
fJ y y

2 3
+ € ~ (- cp _ ll<P + 3S + 5S + 2S _ <PC

s2 Y2 B 2Y2 6 9

+ 25SC 9S
3

C 3cpc
2

<PC
3

)
32+76+-4-+-6-

-157-

Table 9.6 Coefficients of g~ 2)' for the Mispowered

Normal-Entry Bending Magnet

RR
2

(34)
R

RP
2

(43) y

Ri (48)
T

3
PR (49)

p3 (83)
T

E
4~A (SC - 4>)

£ (SC - qi)
4

¼ (SC - 4>)

£ (3 - ~2)(SC - 4>)
4

€A
8

2
4

~ (S - 4>)
2~

d. s2
4

EA (-34> + 2S + SC)
4~

-158-

Table 9.7 Coefficients of g(3)
2

for the Mispowered

Normal-Entry Bending Magnet

2
(8)

€ 3C + 3<\>S + c3)
RPR.

- (-4 +
6

2

RPT
(12) ~ (<\>C -

2B
S)

2
p2 (13) F.. "- (3qiC - 2S3 - 3S)

R
12

2
+ 3C + 6$S + 3C2 + c3)

PRPT
(17) ~ (-7

6B

2
2 (22) €. "- ($C - S)

Py 4

2
2 (27) ~(3 - B2)(<\>C - S)

PT 4

-159-

X

Table 9.8 Coefficients of g1 for the Mispowered

Normal-Entry Bending Magnet

+ E2 cl! _ 1§_ + 4,C + 23SC _ s
3

C _ 4ic2 + 4ic3 _ 4,
2
s 11S3 s5

16 2 4 48 24 4 12 -8- + ~ - 40)

+ ~) (.!.. _ C _ 214> + 103S _ jC _ 23SC + s
3

c
8 3 32 48 16 24 12

+ 34>c2 _ s4ic3 -+ p + c2 _ c
4

_ 19s
3

+ s\
8 24 8 4 24 48 10

PX EA(l - C)

2 193 17C 7C2 c3 c
4

c5 94,S
+€A (- 120 + 16 + 12 - 48 - 24 + 40 + 16)

+ €3A (1711 _ 125C _ 34> + S _ s
3

_ 11C
2

+ 65c
3

720 96 16 2 6 8 288

+ 3c4 _ 9c5 _ 4,C + fil + s
3

c _ 134>S _ 4,s
3

_ 4,c\
16 80 2 16 24 16 12 4

c 2A, 7 11s 3 _ ~ + 4>C + 23SC _ s
3

c _ 4,
2
s _ ff:. 4ic

3

T err 4> - s + --=rr- 40 4 48 24 8 4 + 72)
3 3 5 2 4

+ ~ (.!.. _ .£ _ 1914> + lli§. _ 191S + _L + .f_ _ .f._
~ 8 3 192 144 48 8 4 24

9<!>C 455SC + 17S3 C + 4>
2

S + 114>c2 _ 54,c3 _ 4ic
4

)
- °76 - 576 288 8 24 24 24

-160-

E..• Computation of the Map from Ideal Elements and Coordinate

Transformations

It is possible to view the transfer map of the mispowered normal

entry-and-exit bending magnet, with bending angle a and actual bending

radius P~ as a succession of three maps (Figure 9.1). Consider first

the case where the actual field is greater than the ideal. The first map

is a normal-entry-and-exit bending magnet, correctly powered so that it

has the same bending radius p~ < p
0

for the design trajectory. The

second is a correctly powered trailing half parallel face magnet (HPF)

with bending radius p' and angle a. The half parallel face magnet is
0

discussed in the next section. The third is a coordinate-transformation

map at the trailing face,

(9.40)

This is necessary because the actual design trajectory emerges at a dif

ferent X and Px coordinate and the two trajectories differ in flight

time. Since we want deviation from the ideal and we have deviation from

the actual, coordinate shifts in X, Px and Tare necessary. Once p', a,
0

~X, and 6T are known in terms of the ideal magnet parameters p0 , the

ideal bending radius,$, the bending angle, and the mispowering € =
6B/B, the maps may be computed in terms of these parameters and

concatenated either analytically or numerically by the techniques of

Chapter 4.

The case where the actual field is less than the ideal field

(Fi h Here the second map should be the
gure 9.2) is essentially t e same.

in It is readily verified that this is a
verse of a leading HPF magnet.

-161-

trailing HPF with negative angle. Thus, if the computation of a

respects sign, the computation can be included in the one above. Like

wise, th e coordinate transformation map will be correct if a and ~X

respect sign.

With these considerations in mind, we may proceed to calculate p'
o'

a and 6X. Recall that E = ~B/Bideal• ~B = Bactual - Bideal and Po=

Bp /Bi deal and Bp is the magnetic rigidity, a property of the machine.

Then the actual bending radius is given by

p I = __ B,.._p_
o B

actual

Bp
Bideal Bactual

= Po 1 + E
1

(9.41)

A close-up of the geometry at the apex (Figure 9.4) shows that the angle

(X •
is related top p' and cl> by

o• o

(,) (A. 1-) - p ' sin a, p O - p O cos 'I' - 2 - 0
(9.42)

or

sin a=
p - p'

0 0 sin cl>
p'

0

sin cp = E sin cp. (9.43)

Thus ct= arcsin(E sin cl>), which will be negative if Eis, as we require.

To compute ~X, consider the triangle at the apex (Figure 9.3). The

law f i h their opposite angles, 0 sines relates the sides wt

p I

JI. = __ o_
_s_i_n..,-(7.--_;_:,_..a __ -:;:-cp') sin cl> '

(9.44)

-162-

Figure 9.3 Geometric Quantities in a Mispowered

Normal-Entry Bending Magne t

-163-

where 1 = P0 - ~Xis the dist
ance from the

apex to the exit point of the
actual design trajectory. Solving fort,

1 = sin (a: + $)
sin $ p I

(9.45) 0

= p I sin ex cos$+ cos ex sin$
0 sin$

/1 2 2
= Po

- e: sin ~ + e: cos$
1 + e:

so

~x = p 0 - 1 (= P0 1
(9.46)

Note that 1 = P0 (tX = 0) when

/i _ e:2 . 2 + .+. sin p e: cos~= 1 + e: (9 .47)

1 - e: 2sin
2

$ = (1 + e:(l - cos $)) 2 = 1 + 2e:(l - cos$)+ e:2 (1 + cos $)2

(9.48)

2e: (1 + e:)(l - cos$)= 0 (9.49)

If the quantity on the left is less than 0, ~X will less than zero, if

it is greater,~ will be greater. The former will happen when e: > 0,

the latter when e: < 0, because e: is small so that 1 + e: can never change

sign, and$ is always positive and cos$ never exceeds 1.

Finally, to compute ~T, we must consider the two path lengths for

-164-

the des ign particle. For th id 11 d h h e ea y powere magnet, t e pat length is

Just th e product of the bending radius and the angle,

sideal = Po<I>• (9.50)

For th e mispowered magnet, the path length is the sum of the paths in

the correctly powered NEBM of bending radius p' and the HPF which define
0

the first two maps,

sactual = p' (a+ 4>).
0

The difference in path length is 6S = Sactual - 8ideal'

As (a + 4> - "')
0 = Po 1 + e '+'

po
= 1 + e: (a - e:4>).

(9.51)

(9.52)

Since both design particles move at the same constant speed c~, the

difference in flight times is just the difference in path length divided

by this speed,

6S 1 Po
6T - - = - - (a - e:4>).

- c~ c~ 1 + e:
(9.53)

If this value 6 T is added to the time coordinate T measured relative to

the actual design particle, the result will be the flight time measured

relative to the ideal design particle. This change in time coordinate

is accomplished by a first-order transformation proportional to 6T,

-6 T:Pr:
= e • (9.54)

-165-

I . bending magnet of
n summary, the mispowered normal-entry-and-exit

angl e ~. bending radius p and fractional mispowering E ~
0

B - B actual ideal 1
First, a norma -

B.d may be represented as three maps:
1 eal

t d
d . p' a

en ry-an -exit bending magnet of bending angle qi and ra ius o'

trailing HPF of angle a and radius p', and coordinate changes using the
0

maps M () M i.1 TT fl.T , Ry(a)• and 1vTx(fl.X)• where

pt =
0

a= arcsin(E sin <I>)

. 2 "' sin '+'

+ E

+ E COS <I>)

fl.T
1 Po (a - E<!>)

C~ 1 + E

-166-

(9.55)

(9.56)

(9.57)

(9.58)

10. Mispowered Parallel-Face Magnets and General Bending Magnet

In this chapter, I calculate the maps for mispowered dipoles that

have non-normal entry or exit, the parallel face magnets, and the

general bending magnet. The first section treats the parallel-face

bending magnets, which include the symmetric parallel-face magnet, and

what I call the half-parallel-face magnets, which are explained below.

The second section is a computation of an orbit corrector, which can be

considered a mispowered zero-strength parallel-face bending magnet. As

such, the computation is just a special case of those of the first

section. The third part considers the effect of fringe fields in a

mispowered dipole magnet, including normal-entry or -exit dipoles.

Finally, the last section shows how to construct the map for a general

bending magnet, one with arbitrary entry, exit and bending angles, out

of the maps obtained in the earlier sections.

i!..• Parallel Face Magnets

A parallel-face bending magnet (PFBM) is a dipole of uniform

constant field, its entry and exit pole faces parallel, and the angle of

entry and exit formed by the design trajectory and the normal to the

Pole faces equal. If a parallel-face magnet is cut half way down the

axis, each part is a half-parallel-face magnet (HPF), either leading or

trailing. An HPF has parallel faces, but is either normal-exit (leading

HPF) (ili g HPF) The HPF will prove useful for con-or normal-entry tra n •

struction of the general bending magnet (see Section lOe), and, when

ideall t the map of a mispowered normal entry bend
Y powered, to compu e

(see Section 9b). Figure 10.1 is an illustration of these bending

-167-

magnets.

The derivations of the maps for the mispowered pa rallel magnets are

all · il sim ar, differing only in the integration limits. Therefore, they

are treated together in this section. This treatment includes the body

only. To obtain the complete map, there must be concatenated at the

Pole faces the map for a fringe field and a map for a pole face (mid

Plane) rotation, equal to the (half) bend angle a:

M = M prot M fringe M body M fringe M prot (IO .1)

Assuming a hard-edge fringe field, the pole face (midplane) rotations

Will be in a field-free region, and therefore unaffected by the powering

of the magnet, so we may use the maps in Douglas [1982] or in Chapter

12 , exact in the angl e. The maps for the mispowered hard-edge fringe

field s are covered in section d . Once all these maps have been

computed, they may be concatenated numer i cally or analytically using the

techniques of Chapter 4.

I shall suppose throughout this section that the magnet has a

bending angle of 2a for the design trajectory in the ideally powered

magnet (a for the HPF magnets), and an ideal bending radius p0 • If the

magnetic fi Id i B instead of Bid al' the fractional mispowering
e s actual e

is

e: -

B - B actual ideal

Bideal
(10.2)

Which ma b ii or negative, and is presumed to be smal l
Y e either post ve

/t / « 1. magne t has a design bending radi us
The mispowered

-168-

PFBM

Design
--~-----~-- Trajectory

Leading
HPF

Trailing
HPF

Figure 10.1 The Parallel-Face Bending Magnet, and the

Half-Parallel-Face Magnets

-169-

p I = _.;_Bp""----- = ___ B_,_p __ _

0 Bactual Bideal(l + e)
oo .3)

where Bp is the magnetic rigidity of the beam.

In the parallel-face magnets, the mechanical momenta Ilx and Ilz are

not small for the design trajectory. However, at mid-magnet for the

Parallel face, or at the leading or trailing face for the HPF, where the

design trajectory is perpendicular to the faces, i.e. Ilx = O, we may set

the vector potential to be zero. If the magnet has (half) length L,

,.
A = xB(z - n) oo. 4)

where z is measured as shown in Figure 10.2.

The canonical momentum Px differs from the mechanical by q¾,

Px = ilx + qAx = ilx + qB(z - n), (10.5)

~e choose the quantity n so that rrx = 0 for the design trajectory at z =

T). This implies that Px =oat this point, but since Px is conserved,

it is zero everywhere. From Figure 10.3, we see that this happens at

n = p~ sin a - Po sin a

= (l - 1) sin a
Po l + e

e p sin a
0

= ------1 + €

(10 .6)

(IO. 7)

for the leading HPF or the full parallel-face magnet. For the trailing

HPF h is normal at entry by assumption, son= o.
, t e design trajectory

-170-

The Hamiltonian is

H = (10.8)

Transforming thi h s tote phase space x, Px, y, Py, t, Pt, gives the

Hamiltonian

(10.9)

Now 1 t e us transform to coordinates and momenta near the design trajec-

tory. In particular, Kandt must be measured from the design values,

as these change during the flight of the design particle . First, con

Sider the design flight time. The value of z is given, as a function of

time, by

z = p
0

sin (~ t)
Po

(10.10)

Where p
0

= ideal design bending radius,~=~' and a the (half) bend

angle. The zero of z is taken to be the midpoint of the full parallel

bend. Inverting this relation gives the absolute time as a function of

z,

to(z) = Po arcsin (_!.).
c~ P0

(10.11)

Note that in the limit Po=~ (no field), this gives the expected result

-171-

z=-L z=O z=L

Design
Trajectory

Figure 10.2 Geometry of the parallel-Face Magnets, Ideally Powered

-172-

I
I I
I I

z=77 z=O

Ideal Design
Trajectory

Figure 10 . 3 Determination of~ for Mispowered Parallel-Face Magnets

-173-

to(z) = c; • (10 .12)

The Value of the x coordinate is given by

x0 (z) = p
0

(cos 0 - cos a) oo .13)

= /4! - z
2

- p0 cos a.

Again, in the limit p
0

=~we get the expected value x0 (z) = O.

and

The new variables will be

x* = x - x0 = x - (/4~ - z
2

- Po cos a)

t* = t - t 0
Po

= t - - arcsin
c~

(10.14)

(10.15)

The corresponding design momentum fort is the negative of the energy

so the new momentum is

o - - ymc2, pt (10 .16)

(10.17)

Since the design value of the x momentum Px is O, we need not change

that.

-174-

We now must use the generating function to get the new Hamiltonian

so

KNEW= K + BF
Bz

1 1

c~ '1 2
{J - (2-)

Po

2 PX
(p* - ymc) + ----

t 12 2
lpo - z

(10.18)

(10.19)

(10.20)

I 22 2 2 24 KNEW=_ l(P~ _ ymc) _ [px - qB(z - ~)] -py - m c (10.21)

PX
1 -_-:_-:_-:..1-:..-:..-:..;- (P * - ymc 2) + -,__ -,:_ -_ -_ -~ -

-cif ,1 2 t 12 2
✓ J (2-) lpo - z

po

Now let's scale the momenta and Hamiltonian using (1.85). The new

Hamiltonian is

K =

2 2
(p* - ymc)

t 2 2 2 4
[px - qB(z - n)J -py - m c

2
p* - ymc zpx

(t) + --,...,-=----_-_ --=-- •
P0 P /42 _ z2

0 0

Using the relation

2 2 4
(p* - ymc) 2 2 2

t m c = 1 - a Pr+ PT, -=---~2--- - -r I-'

Po Po

I< becomes

-175-

(10.22)

(10.23)

For

K = - /2 - I P + P2 - [P - !I!! (z - n)J 2 - P2
~ T T X p Y

0

1 2 zP
(.!. p - .Y.!!!£.._) X +

/2 - ,i/ ~ T p c~
/42 _ z2 0

po 0

convenience
' let Z = z/p

0
• Then, ignoring constants

K = - /2 -l p + P
2

- f Px
~ T T

qBp
0

in K,

The constant that multiples the z in the large square root may be

rewritten using the relation qBidealPo = P
0

,

(lo .24)

(10.25)

B actual
B

= 1 + £ (10 .26)
ideal

Where

B - B
e = ~ = actu:l ideal

- B ideal
(IO .27)

is th Th e fractional mispowering of the magnet. en

K = / 2 p2 - [P - (1 + e)(Z - -21)]2 - P2
- 1 - j PT+ T X po y

(10 .28)

- [PT - z PX

/i - z2

l'he net d b order expansion of Kin the small X step is to do an or er- y-

Phase space quantities. It is important to remember, however, that z is

-176-

not as 11 ma phase space quantity, so it is useful to rewrite K as

K =

2
- - p +

~ T
2(1 + E)(Z - -11) p + p2 _ p2

p
0

X X Y

(10.29)
/2 - z2

Expanding Kin the small quantities Px, Py, PT, we obtain K1 , K2 , K3 ,

and K4. Th 10 l ey are given in Table • •

In order to find g
2

, g
3

, and g4 , we shall have to integrate over z.

Since w is related to z by

the i

w = (1 + E)(Z - _.!)_) =
Po Po

l + E

ntegrals are over

po f
f dw = __.;;.._.- dz •

l + E

z + E sin a, (10.30)

(lo .31)

The limits of integration should correspond to the z values for leading

RPF (-p
0

sin a, O), for trailing HPF (O, p0 sin a), and for the full

PFBM (p i) Table 10.2 summarizes the values of w.
- 0 s n a, p

0
sin a.

-177-

1,_able 10.1 Expansion of the Hamiltonian K for the Parallel-Face Magnets

Kz ==

Note: w = (1 + e)(Z - .--!l.)
po

-~ p +(z -~ Px

/1 - z2 T /2 - i- /1 - w2
2

p2 w (1 1) w
_ w2)3/2 2 3/2 PxPT - -2(1 X

~(l - w) 2/i-w2 2~2(1-w2)3/2

p2 p2
+ X y

+
2/i 2 2/2 2

- w -w

-178-

p2
T

- (l
4(1 _ w2)3/2

+ l 4 (3
2 3/2 Py+ 2 2 5/2

8(1 - w) 4~ (1 - w)

-179-

_!able 10.2 Limits of Integration for the Parallel-Face Magnets

Magnet
zentry zexit wentry wexit

Lead HPF EpO sin a
-p

0
sin a 0 1

-sin a E sin a + E

Trail HPF 0 p
0

sin a 0 0 (l+E)sina

Epo sin a
Full PFBM -p

0
sin a p

0
sin a 1 + E

-sin a (1+2E)sina

Steering 0 L 0 0 ~L
Po

-180-

Even:

Odd:

Table 10.3 Integrals for Evaluating Parallel-Face Magnet Maps

Integrand J dw evaluated at w = sin A

1

/1 - w
2

1
(1 _ w2)3/2

2
w

(1 _ w2)3/2

1

(1 _ w2)5/2

2
w

(1 _ w2)5/2

1
(1 _ w2/ /2

2
w

(1 _ w2//2

4
w

(l -w2//2

w

w

A

tan A

tan A - A

tan A+~ tan3 A

.!. tan3 A
3

tan A+; tan3 A+½ tan5 A

; tan3 A+~ tan5 A

.!_ tan5 A
5

-cos A

sec A

.!. sec3 A
3

.!. sec5 A
5

-sec A+.!. sec3 A
3

- ½ sec3 A+~ sec5 A

-181-

The values of the integrals over w that will be needed are given in

Table 10.3. They are evaluated at w = sin A, so that, to evaluate a

given integral, one need only subtract the value at A= arcsin(wentry)

from A= arcsin(wexit).

Note that all terms in Kare momenta; thus, the Poisson bracket of

one with another is zero. This makes life very simple: to calculate

the polynomials gn in the transfer map, we merely integrate-~ over the

appropriate range.

The final step is to reconcile the discrepancy in the x momentum at

the exit face. For the ideally powered magnet, the mechanical momentum

of the design trajectory at the exit face is

Tiideal
X -qBideal (zexit - n). (10.32)

Immediately after zexit on the outside of the magnet, the field is zero.

Ignoring the hard-edge fringe field (section d), which does not affect

the design trajectory, the momentum just outside is

ideal Ilideal =
~ X

(10.33)

Since we have agreed that the coordinates shall be deviations from the

ideal design trajectory, this quantity must be subtracted. In the

calculation of the finite-angle midplane rotation (Chapter 12 or Douglas

[1982]) which is concatenated after the parallel-face body, one actually

restores it before rotating, but we are not concerned with that here.

What does concern us is that actual design trajectory will have a

slightly different momentum

-182-

actual= IIactual
px x = -qBactua1Czexit - n). (10.34)

Thus we must make a correction to the x momentum, so that we are

measuring relative to the ideal design trajectory. In terms of the

dimens· 1 ion ess momentum Px the correction is

Ap = _ (Ilideal _ rractual)/
ox x x Po (10.35)

= - q tB (zexit - n)IPo•

Th" is is effected by a first-order transformation proportional to X,

Which

- gtB (z - n) :X:
p exit

0
e

comes after the rest of the parallel-face body:

M PFBody

-qtB
(zexit - n) :X:

(10.36)

(IO .37)

'I'he transformations may be concatenated using the techniques of Chapter

4.

One may approximate the map of a mispowered parallel-face magnet by

ignoring the effects that arise from a finite length of the magnet,

i.e., to view the mispowering as a simple kick in momentum. In this

case, the gn would be taken as that of a correctly powered magnet and

(l0. 37) Would be

-183-

__,;;;;==---=====--- __ ,_

M PFBodyKick == M PFBody e

- qt-.B (z - T}) :X:
p exit

0 (10.38)

-184-

.!able 10.4 Matrix and Polynomials for Mispowered Parallel-Face Magnets

M =

Substitute the values¾= arcsin(wexit), At= arcsin(wenter)

from Table 10.2 for the particular magnet desired.

0 0
1

1 ta~-tanAt 0 - tcsec,\-se~)

0 1 0 0 0 0

po 0 0 1 ,\-At 0 0

-1 +e:
0 0 0 1 0 0

1 0 0 1
tanAu -tanAt

0 - j<sec¾-secAi) ~2
- ¾+A_t

0 0 0 0 0 1

Values given for polynomials g3 , g4 should be evaluated at A= A_t, then

subtracted from the value at A=¾• All terms should be multipled
po

by T + e: to obtain coefficient

c/2 (zexit/ Ii - z
) PX gl = (-cosA + cosAt - (enter/]

u
po po

z z
1

[arcsin
(exit) - arcsin (enter)])

PT - F (¾ - At - Po po

-185-

h

p3
X (49) ¼ sec3 A

2 (53) 1
A sec2 A PXPT - - tan

2~

2 (58) 1
A PxPy 2 sec

2 1 2
PxPT (63) =2 sec A (sec A

~2
- 1)

2
pypT (76)

p3
T (83)

P
4

(140)
X

(174)

(195)

(200)

(209)

1
- - tan A

2~

1
A 1 1 2 - -- tan (- + - tan

213
3 2 3

y

- ½ tan A sec4 A

1 5 1 3 2f3 sec A - 3f sec A

- ..!.. tan A sec2 A
4

A)

! tan A sec2 A - --¼ tan A sec4 A
413

- -
1

sec3 A+-½- sec5 A
2B 2B

1 - 8 tan A

- - 1- (tan A sec2 A + - 2
1

tan A + tan A]
4B

2
y

1 f- - 1 (l tan A+ 1 tan3 A+..!.. tan5 A)
4 B4 2 3 2

+-½ tan A (3 + tan2 A) - ; tan A]
13

-186-

..£..• The Steering Magnet

A steering magnet, or orbit corrector, is a weak adjustable

parallel-faced dipole placed in the beamline to correct for the

misalignment of other elements. For the purposes of computing its map,

it may be thought of as a mispowered zero-strength parallel-face bending

magnet (Figure 10.4). As such, the analysis in the previous section

holds for the steering magnet. We need a slight modification in the

notation, however, because the design magnetic field is zero, and the

design bending radius infinite.

The design trajectory enters as shown in Figure 10.4, and gets bent

one way or the other, or not at all, depending on the field applied.

The mechanical momentum rr is zero at the entry face, z = O. Thus, in
X

the analysis of the last section, we may set~= O. Furthermore, as

mentioned in the last section, the design flight time will be

t 0 (z) (10.40)

and the x coordinate will be

x0 (z) == O. (IO .41)

The Hamiltonian K given for the parallel-face magnet, (10.24), may

then be used, ignoring constants and taking Po~ oo,

K = (10.42)

The part first order in Px, Py, PT is

-187-

Design~:.-t---=:::a:;:=:::===:=:::=:=:=::::=::-t=:
Trajectory Possible Design -

Trajectory Paths

Figure 10.4 The Steering Magnet

-188-

.!_ (1 - 1) PT -

13 /i - w2 /2
w (10 .43)

2
- w

and K2 , K3 , K4 are as given in the last section, except w is interpreted

as

w (10.44)

When integrated, the limits are z = 0 to z = L, the length of the

magnet. The matrix and polynomials are as given in Table 10.4, using

the appropriate limits as stated in that table, and wentry = 0, wexit
qB

= _.£. L.
Po

The final momentum change is given by the transformation

-q~B(zexit - n) :X:
e = e

- ~ L:X:
po

where p' = actual design bending radius.
0

- p ~ :X:
0 = e

d. The Hard-Edge Fringe Field of a Mispowered Magnet

(10.45)

In any analysis of bending magnets, one must include the fringe

fields at the entry and exit pole faces. Douglas [1982] and Dragt

[1982b] have computed the Hamiltonian and map for the hard-edge fringe

field of an ideally powered bending magnet. I shall analyze the case of

a mispowered magnet.

The transformed Hamiltonian for an arbitrary vector potential in

the x direction is

-189-

K = (10 .46)

With an appropriate model of the fringe field, we should factor this and

integrate it over the region of the fringe field. In order to be con

sistent with Maxwell's equations, we may write the vector potential as

where

= a ' (z)
0

1 I "
= - 6 ao (z) etc.

In this case, a
0

is the part of By independent of y.

(10 .47)

(10 .48a)

(10 .48b)

(10 .48c)

In the hard-

edge model, we assume that the effect of the fringe field occurs over

zero length in z, that is, it rises from Oto the full field inside the

magnet Bin zero length, consistent with Maxwell ' s equations. We will

sandwich these fringe fields maps around the magnet body map derived

above.

Since the field rises in zero length, we use

a
0
(z) = B0(L - z) 0(1 + z) (10.49)

where 0 is the step function and the magnet extends from z -L to z =

-190-

+1 (although this illustration is with a parallel face.magnet, this fact

is not essential to the result). Then

b_ 1 = c, determined by the design entry angle

a' (z)
0

±B6(1 ± z)

l
b3 = - a ' " (z) 6 0

=+ 1 B6'''(1±z) 6

(10 .SOa)

(10.SOb)

(10 .SOc)

where the upper sign is for the leading edge, the lower sign is for the

trailing edge. The Hamiltonian becomes

K = /p~- [px- qB(c + ~ 6(1 ± z) / ± ~ 6" '(1 ± z) ~ 2 ...] - 2 2 4
p - m C y

(10.51)

Note that when the term in brackets in this expression is expanded ,

terms like y2 , y4 , etc. and PxY2 , PxY4 , etc. will be produced. These

terms will be proportional to B. If we write B Bideal + tB, the terms

caused by mispowering, proportional to tB, will be proportional to y2 ,

4 2 4 y , PxY , PxY, etc. Thus there are no first-order terms in the mis-

powered case. These are the only terms that are of concern in the ex

pansion, since the integral will be over an infinitesimal length.

Since no first-order terms are produced, we need not pay particular

attention to mispowering. Simply computing the transfer map with the

actual magnetic field Bis adequate. After scaling, these polynomials

are as given by Douglas [1982] for the entry face

-191-

1
tan ex Y2 (10.52) g2 = - 2p'

0

1
sec3 ex y2p 1 ex sec2 ex 2 (10.53) g3 = 2p' 2'/ftan y PT, X Po 0

where ex is the entry. A similar set of polynomials holds for the exit

face.

e. The General Bending Magnet

A general bending magnet is a dipole magnet that has arbitrary

entrance(~) and exit (~) angles, and an arbitrary bending angle (2cx).

See figure 10.5. It includes, as special cases, the normal-entry-and

exit bending magnet (~ = ~ = 0) and the symmetric parallel-face magnet

(~=~=ex).

With the map for the normal entry and exit magnet and for the

symmetric parallel face magnet already available (Douglas [1982)), the

general bending magnet is most conveniently calculated by imagining it

to be three separate magnets in succession (Fig. 10.5). The center

magnet is a normal-entry-and-exit magnet, and the outer magnets are HPF

magnets. Finally, the leading and trailing midplane (or pole face)

rotations, as for the parallel-face magnet, go at the beginning and end,

with any fringe field maps between them and the body. Once all the maps

are obtained, they may be concatenated numerically or analytically to

obtain the map of the general bending magnet.

-192-

NEBM

Figure 10.5 The General Bending Magnet

-193-

11 • Description of Alignment Errors

Having treated in the last two chapters one major source of

accelerator errors, the mispowering of dipoles, we now turn our

attention to another major source, alignment and position errors of

beamline elements. One expects that such errors produce first-order Lie

transformations; for example, a quadrupole translated horizontally will

exert a dipole force on the design particle, thus bending it off the

design trajectory. This chapter and the next are devoted to handling

these kinds of problems; this chapter gives a procedure for the complete

description of an arbitrary misalignment, and the next shows how to turn

that description into a map for a misaligned element.

Before we can hope to compute the effects of alignment errors in

accelerators, we need to be able to describe them. Since we wish to

allow for all possible misalignments, we will want to describe the

misalignment as rigid body motion of some fiducial point on the element

from the ideal position and orientation to the actual. We already know

that such motions form a group, the Euclidean group, which may be

parameterized by six numbers, three translations and three rotations.

The first temptation might be to proceed to calculate the

polynomials (and matrix) of the transfer map with the six misalignment

parameters, in addition to the parameters of a perfect element, as shown

in Chapter 8. While this is certainly possible, it does not make use of

the transfer map for a perfect element that is already calculated, and

requires the recomputation of all maps.

We would like to be able to decouple the misalignment from the per-

-194-

feet element map. It is clear that this is possible when one notes that

a misaligned element has the same transfer map from its entry face to

its exit face as a perfect one, the element itself not having changed.

We merely have to sandwich this map between two maps which transform the

coordinates at either face from the ideal to the actual or vice versa

(see Figure 11.1).

Mactual =Mi Mideal Mt• (11.1)

If we are able to calculate these coordinate-transformation, or

matching, maps Mi, Mt, we may use the existing ideal maps, and with the

concatenation techniques shown in Chapter 4, obtain the map for the

misaligned element.

The first step is to note that a Goordinate shift map is a

realization of the Euclidean group. Each misalignment coordinate change

is described by an element of the Euclidean group. Therefore, our task

is two-fold: first, finding the Euclidean group element giving the

coordinate change at each face, given the misalignment at the fiducial

point, and second, generating the map Mi or Mt given the Euclidean group

element. The first task will be dealt with in this chapter and the

second in Chapter 12.

We seek the function that gives the misalignment at each of the

pole faces given the misalignment at the fiducial point of the magnet:

F E + E, (11.2)

-195-

I
I
I/ ___ __y

Design
Trajectory

/
/

/

/
/

/

I
)

Figure 11.l Geometry of a Misa l igned Element

- 196-

where E i s the Euclidean group parameterized by (6X, 6T, 6Z, $, 0, ~)

(see Chapter 7). We may compute this knowing the rules for group

multipli i cat on and inversion and using a little physical insight. Let A

EE be the rigid body motion from the coordinate plane intersecting the

fiducial point to the entry or exit face (Fig. 11 . 2). Let BEE be the

motion from the ideal location of this plane to the actual location, and

let c EE be the motion from the ideal location of the pole face in

question to its actual location. We wish to find C, given A, a property

of the magnet, and B, the quantity specified in giving the magnet's mis

alignment. These quantities have the relation A= c-1AB. Thus

C = ABA-l (11.3)

The procedure for multiplying and inverting Euclidean group elements was

given in Chapter 7, so using these rules and the above relation, we will

be able to hf ce find the group element at eac a •

Since Bis specified in giving the misalignment, we need only com

Pute A, given properties of the element, in order to obtain C. The

computation of A is straightforward given a few simple geometric proper

ties of the element. If the element is straight-line (no design dipole

field), the Euclidean group element that gives the transformation from

the fiducial point to the entry or exit face is a simple translation

along the z mi half one length of the element, with axis of plus or nus

no rotation (see Figure 11.3a).

If the element is curved, i.e. has a dipole field, the situation is

only li d (see Figure 11.3b). First, the
8 ghtly more complicate

co to be parallel to the face. This is a
ordinate phase must be rotated

-197-

----.... ------~

,,,,. --
I
I
I ______ ___

Figure 11.2 Euclidean Group Elements in a Misalignment

-198-

Entry
Pofeface flz =-L/2 flz =+L/2 Exit

-r--==-===--=-===-=-====±' ==-=-===-=-=~~....J Poleface I _-;;_ --+-

----.,..,,...,,,,
/

Fiducial
Point

a. Straight-Line Element

Fiducial Point

flz =+p0 sin a

b. Curved Element

Figure 11.3 Computation of the Euclidean Group Element Transforming
Coordinates from the Fiducial Point to a Pole Face

-199-

midplane rotation, so the Euler angle 0 will be equal to ±a, one-half

the bending angle. Then there must be a translation to the face of +p
0

sin a in the Z direction, where p
0

is the design bending radius, and by

Po (cos a - l) in the X direction.

Now that we have the Euclidean group element giving the coordinate

transformation at the entry and exit face, we wish to be able to

calculate these symplectic maps Mt and Mt• This is the subject of the

next chapter.

-200-

12. Realization of the Euclidean Group by Symplectic Maps

We now have the description of the coordinate change at the entry

and exit face in f d terms o the Eucli ean group. What we need, in order

to concatenate and find the map for a misaligned element, is the

symplectic transformation that this produces, as given by the

Polynomials of the factored Lie transformation. These transformations

are a realization of the Euclidean group; that is, the group composition

of the Euclidean group is reflected in the concatenation of the

SYmplectic maps. As we shall see, these symplectic maps are non-linear

in general.

The realization of the Euclidean group can be decomposed into six

separate maps, corresponding to each of the parameters. The rotations

come first, in the order given in Chapter 7, and then the translations,

in any order, because they commute. We may write

M = MT(~)• z z
(12.1)

In the parameterization of the Euclidean group used here, the

rotations are performed first and the translations second. The

rotations of the axes are performed actively, relative to the original

axes which are fixed (Chapter 7). The translations of the axes are then

Performed, described in terms of the new (rotated) axes. Figure 12.1

illustrates the element Rz(f) Tx(~X). From the particle's point of

View, the transformation is passive.

-201-

y

\
X \

\
\
\ R2 (1r/2)
I
I
I

X' I
I

/---~
/ Y'

I
I

Tx (~X) (

\ X"
\

' '

Y"
~x {-L-_-_-_-_-..... ► Y'

Figure 12 .1 The coordinate trans f orma t i on R2(f) Tx(~X)

- 202-

a. Translations

Although they occur last, let us treat the translations first. Tx

a nd Ty, translations in the X and Y directions, may be taken together,

because their computation is identical, save for exchanging Y with X.

Tz requires a different treatment because Z is the independent variable.

To translate in the X direction by 6x we need to send all values of

the X coordinate from X to X - 6x; active motion of the element means

passive motion of the coordinates since the set of coordinates used in

the symplectic map on the particles is considered to be attached to the

element. This coordinate shift is effected by f1 = 6xPx,

(12.2)

so that after applying this transformation,

6x:Px: x = e X = X - 6x, (12.3a)

(12.3b)

etc.

This is exactly the effect desired. Clearly, replacing X with Y and Px

~ith Py has the same effect on Y.

Translation in the Z direction is slightly more complicated, owing

to the fact that z is the independent variable and not a part of phase

space. We have made a canonical transformation so that T, PT are a

-203-

canonical conjugate pair in phase space, Z is the independent variable

and -Pz is the Hamiltonian function. Assuming that in the process of

misaligning in the Z direction only free space is covered or exposed

(see Fig. 12.2), the map giving the Z coordinate change is a drift of

positive or negative length. This is an ordinary drift except that the

flight time for a design particle is zero, so we must introduce a trans

lation in the T coordinate, similar to the translations in X and Y

above, of the actual flight time in the drift . This amount ~Tis l/c~,

where c~ is the design velocity.

One may find the Hamiltonian for the drift as Douglas (1982] did.

Start with the Hamiltoni an in ordinary phase space,

(12 .4)

or

2 2 2 2 H
2

2 2
P = Px + Py + pz = 2 - m c •

C

(12.5)

In making the canonical transformation to new phase space coordintes x,

Px, Y, Py, t, Pt from the old x, Px, y, Py, z, Pz, the new Hamiltonian K

is what was -pz, and the old Hamiltonian H becomes -pt,

= -l~ -
C

2 2
ID C (12.6)

Scaling K = -
1 KNEW and the momenta as shown in Chapter 1, with p

0 po
= y~mc, we have

-204-

-· .

Drift
Space
Before

Drift
Space
After

z----..

Original
Position
of Magnet

Magnet
Moved to
Left

Magnet
Moved to
Right

Drift
Space
After

Drift
Space

~- Before

Figure 12.2 Translation in the Z Direction

-205-

(12.7)

dropping the irrelevant constant term. In preparation for calculating

the polynomials of the map, we expand K order by order in the phase

space variables. We find

(12.8)

where

(12.9a)

(12.9b)

(12.9c)

1 5 4
-- (1 - - 2) PT. (12.9d)
8~2y2 ~

Computation of the polynomials is easy because all terms of :K:

commute with themselves at different times, so

(12.lOa)

(12.lOb)

(12. lOc)

-206-

: f 2:
e has the corresponding matrix

1
0

..t
1

0
1
0

..t
1

1

0

0

(12. lOd)

1
(12.11)

Although it is not strictly speaking a misalignment, it is

appropriate at this point to consider how to treat a phasing error in an

RF cavity. An RF cavity is an active accelerating/decelerating section

with a longitudinal electric field

,.
1 = z E

0
sin(wt). (12.12)

One possible cavity to consider is that of a short buncher. The

effective Hamiltonian for a short buncher is (see Douglas [1982), Table

4.9)

(12.13)

which may be expanded and factored as Douglas does to obtain the map.

Now suppose that there is a phasing error in the cavity, so that

the electric field is

,.
1 = z E

0
sin(wt + a). (12 .14)

-207-

One may modify the Hamiltonian (12.13) appropriately, and do an

expansion and integration. This is analogous to what was first proposed

for misalignments: include the misalignments in the Hamiltonian and

solve for the map. As with the misalignment case, however, we may

separate out the phasing error so that we may take advantage of the

existing perfect-element map already computed. Specifically, we precede

and follow the map of the perfectly phased cavity with time translation

map: it shifts the time T + T + 1~ a. This is accomplished with a

first-order transformation proportional to Pr,

ca ca
- 1w :PT: 1w :PT:

M real cavity = e M perfect cavity e (12.15)

This is just a translation in time in the same way that a horizontal

misalignment perpendicular to the beam is a translation in X.

b. Rotations

Although there are three coordinate-rotation maps, there are only

two that are different, Ry and R2 • Because of the definition of the

Euler angles, Rx does not occur and need not be computed. For the

moment, however, we shall concern ourselves with all three rotations and

how they relate to each other.

In order to have a realization of S0(3) in the group of symplectic

maps, there must be a realization of the Lie algebra of S0(3) in the

Poisson bracket Lie algebra; that is, there must be a Lie algebra

homomorphism from the Lie algebra of S0(3) to the Poisson bracket Lie

algebra. The Lie algebra, or the generators, of S0(3) are what can be

called the angular momenta Lx, Ly, Lz• They are related by the

-208-

structure equations,

i,j,k = cyclic combinations of X,Y,Z. (12.16)

If the phase space were X, Px, Y, Py, Z, Pz, all the rotations of

S0(3) would be linear and, thus, the realization a representation. This

may be represented in the Poisson bracket Lie algebra with

1x_ = YPz - ZPy (12.17a)

Ly = ZPx - XPz (12.17b)

Lz = XPy - YPx· (12.17c)

In the matrix Lie algebra (see Chapter 1, Section f), we have

0 0 1 0 0 0
0 0 0 1 0 0

Lz
-1 0 0 0 0 0 (12 .18) = 0 0 0 -1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

Thus the element of the symplectic group which represents a passive

rotation (rotation of the element clockwise by the right-hand side for$

> 0) about the Z axis by an angle$ is

== e
$:Lz:

(12.19)

or as a matrix

-209-

cos~ 0 sin~ 0 0 0

0 cos ~ 0 sin~ 0 0

-sin~ 0 cos~ 0 0 0

0 -sin~ 0 cos~ 0 0

0 0 0 0 l 0

0 0 0 0 0 l

(12.20)

Because T and Pr are part of phase space and not Zand Pz, however,

we may not use all of the above representations. In particular,

rotation about the Z axis, Rz, is still linear and may be treated as

above, but the midplane rotation, Ry, is not as simple. Since this

transformation changes the value of the independent variable (Z) for

some particles, we must specify what kind of Hamiltonian is acting. The

rotation is assumed to occur at the entry and exit faces of the magnet

and any fringe fields are hard-edge (zero length), we may assume no

field, and therefore a drift Hamiltonian. In addition, since our goal

is a realization of the rotation group S0(3) in the group of symplectic

maps (actually q(Z), see Chapter 3), the generators Lx, Ly, Lz must obey

the structure equations (12.16) as they are realized in the Poisson

bracket Lie algebra.

We shall approach this by creating 1x: and Ly so that the dynamics

are the same as a drift, then verifying that they, along with Lz = XPy -

YPx, satisfy the structure equations (12.16). Let H(C) be the

Hamiltonian of a drift, calculated above, and suppose, to start, that we

are considering Ly, an infinitesimal rotation about the Y axis.

-210-

Consider the propagation of a particle under the Hamiltonian that is

near in phase space to X = 1. Then, because the independent . . variable Z

changes by !::iZ 10 (see Fig. 12.3), 0 small, we have the final phase

space coordinates as a function of the initial (to first order in !::iZ)

c + !::iz dC
dz

= C + /J.Z [C,K]

= C - 10 [C,K].

(12.21)

When the transformation is applied to C, we obtain the alternate result

(12 .22)

These two calculations should give the same result for X, Y, Py,

etc. (but not PX) to first order in e. Thus, for example, we compute X

for some small initial conditions v
0

around X = 1 (v0 x = O)

(X + :0Ly :X) I

:Ly: X I

= (X - 10 [X,K] I A

C=1X + v
0

C=1X + V
0

01.y

= -1 [X,K]

--= X oK
oPX oPX

XK + C
Px

-211-

I A

C=1X + v
0

C=1X + V
0

(12.23)

(12.24)

(12.25)

(12.26)

Rotated
x Axis

Original
X Axis

c4----------------
l:lz=- e

x=p

Figure 12.3 Drift of a Par ticle to Rotated Coordinates

-212-

where Cp is a constant independent of Px• By a similar computation, we
X

may conclude

(12 .27)

where wx is dependent only on X.

Similarly, we may compute Lx_

L_,c = -YK + Wy (12 .28)

and, as before, Lz = XPy - YPx• The next step will show that wx = wy =

o.

To verify that these realizations of Lx_, Ly, and Lz satisfy the

structure equations, we need to substitute the Hamiltonian for a drift K

(12.7). Then the generators of drift rotations for this phase space are

Lz = XPy - YPx-

In computing the Poisson brackets, note that

oK _
oPX -

oK
oPY =

The Poisson Bracket [Lx,Ly] is then seen to be Lz,

-213-

(12 .29a)

(12 .29b)

(12.29c)

(12.30)

[YK, - XK] (12.31)

= (K + X oK) (-Y oK) (X oK) (-Y oK)
oX oPX oPX ox

+ (X oK) oK (X oK) oK
(-Y -) - (-K-Y -)

oY oPY oPY oY

+ (X oK)
oT

(-Y oK)
oPT

_ (X oK)
oPT

(-Y oK)
oT

oK XY oK oK + XY oK oK = - KY --
oPX ox oPX oPX ox

- XY oK oK + XK oK + XY oK oK
oY oPY oPY oPY oY

as desired. The Poisson Bracket [Lz,Lxl, may be computed to verify that

it indeed is Ly,

[Lz,1x) = [XPy - YPx, YK] = Py y ~~ - (-Y) y ~~
X

- p y oK - X(K + y oK)
X oPY oY

= -x K + y (Py ~KP - Px ~KP) + y (Y oK - X oK)
u X u y oX oY

= -XK = Ly

-214-

(12.32)

The reader may easily verify that [Ly,Lz] = 1x_, too.

Although we shall not need to here, it should be noted that this

process can be carried over to an arbitrary Hamiltonian. This

possibility is discussed in part c.

We may now rotate to our heart's content. In particular, we are

interested in finding the map for rotations about the Y axis, MR,
y

MR (ct>) =
<I> :Ly:

(1 2.33) e
y

-<)> :X /1 2 l- p2 - p2 - - P +
~ T T X y

= e

and factorizing it so that it may be applied to the phase space

coordinates to see how they transform. We shall do this for arbitrary <I>

to compare with Dougl as's [1982] result, but later we shall use the

process described in Chapter 8 to factorize the map for infinitesimal <I>,

as is suitable for misalignments . The results will then be compared .

To calculate the factored map for arbitrary<)>, we may consider the

effect of the unfactored map (12.33) on phase space, and then extract

the factored expression of the map after expanding in the phase space

-
variables. For example, one may compute PX:

e-¢,:XK: = PX = Px - <)>K - ~ ¢,2 Px + ¼ ¢,3 K •• • (12.34)

cos ct> Px - sin¢, K,

because :XK: forms a cycle of two acting on Px,

-215-

Design
Trajectory

Magnet Body

a. Leading Midplane Rotation

Magnet Body

Design
Trajectory

b. Trailing Midplane Rotations

Figure 12.4 Leading and Trailing Midplane Rotations
for a Parallel-Face Magnet

-217-

C a

where the combined effect of e
: f 2 : :f 2 :

is the matrix e

cos <Ii 0 0 0 0 1 0
0 sec <I> 0 0 0 - - sin q,

~
0 0 1 0 0 0

M = 0 0 0 1 0 0 (12.38)
1

<I> 0 0 0 1 0 - sin
~

0 0 0 0 0 1

and the polynomials are

f 1 = sin <I> X (12 .39a)

(12.39b)

Note that this is accurate to all orders in <I>, even though we do not

need them all.

Alternatively, we may calculate the factored map for small <I> using

the techniques of Chapter 8. This will provide another instructive

example in those techniques, as well as allowing us to compare these

results with those exact in <I> as derived above .

We start with the full Hamiltonian and then expand it

1
= X (1 - i3 PT

1 2 1 2 2
PT - 2 (PX + Py)

2~2y2

1 p3 1 (2 2)
3 2 T - Vl PT PX+ Py + •••]

2~ y t-'

-218-

(12.40)

so that, with~ the small quantity e of Chapter 8,

Thus

- il) = X
1

- H(l) = l XP
2 - j T "

:g~l) (~): = J!: -¼ XPT: d~' =

:g~l)(~)
and the matrix corresponding toe is

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

~ 0 0 0 1 if
0 0 0 0 0

0

- 1
~

0

0

0

1

Then we may substitute this linear transformation to get H!nt,

Using (8 . 33), we find

-219-

(12 . 4 l a)

(12 .41 b)

(12.42)

(12.43)

(12.44a)

(12.44b)

- f
<P (l)int

= H d,1, 1

0 3 'I' (12 .45)

1 <P <P 3 2 ,i. 2 ,1, 2
,i. 2 = - - (- + -) XP '+' XP + '+' XP P '+' XP

2
~2 y2 3 T - 2 X ~ X T - 2 y •

Sine h et ird-order polynomials retain only one order of the small

quantity <P, we may shorten this slightly to find

(12 .46)

Furth er, transforming
:g~l)(V,):

bye has no effect, because the order in

<P Will be too high, so (1) (l)' (1) g
3

= g
3

• We may calculate g4 by the

formula (8.44), but since the integral over the independent variable$'
i (!)int
sonly over the range Oto the small quantity <P, and H4 is

i ndependent of$, we know in advance all these terms will be

Proportional to <P' with n ~ 1. This is beyond what we need to retain,

so we may take g4 = O.

This ends the first pass. we now may compute the second

"Hamiltonian" H(2)

:g~l)(<P'):
= e

: g2(1 >c <P I) :

Because e has no effect, H(2) has the expansion

H(2) = X + <P'XPx + •••

u(2)
splits up by order into

-220-

(12 .47)

(12.48)

H(2) = X
1 '

(12 .49a)

(12.49b)

For n) 3, the H(2) are zero because they will be too high order in$;
n

note that since a small quantity$ is the independent variable, we will

get (at least) one extra power of$ on integration; therefore, terms of

total order 4 and higher will be excluded .

Now we solve for g?) with the "Hamiltonian" H(Z), using (8.21),

·g(2).
• 2 •

The map e may be represented as the matrix

1
$2

0 0 0 0 0 -2
$2

0 1 +- 0 0 0 0
2

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1 (12.50)

to the appropriate order in$.

The higher-order dynamics equations yield g~2) = 0, n > 2, because

H(2) = O. Thus we may go right to the last step of the iteration, and
n

integrate the first-order term. Step by step in the iteration, it is

= H(l) = X,
1

-221-

(12.51)

(12.52)

The integral is

Jqi (1 ¢ '
2

X d~' 0 - -2-) 'V
(12 .53)

Summarizing the results, the map in fact ored form is

· g . · g(2). ·g (l) . :g3:
· 1 . · 2 · · 2 .

M = e e e e (12.54)

with the polynomials defined by

(12.54a)

(2) ,j)2
g2 = 2 XPx (12.54b)

(12.54c)

¢ 1 2 2 2
- - (- - XP + X (PX + P))

2
8

2 2 T y
' y

(12.54d)

The matrix corresponding to

·g(2). ·g(l) _
. 2 . · - 2 .

e e (12.55)

is, to the proper order in¢,

-2'2.2-

l - <P2
0 0 0 0 0 2

<1>2
0 l 0 0 0

_ _! +-
2 ~

0 0 l 0 0 0

0 0 0 l 0 0

<P 0 0 0 l 0 f
0 0 0 0 0 l (12.56)

A comparison with the results exact in <f>, (12.38) and (12.39), reveals

this derivation to be identical to the appropriate order in <j> •

.£.• Rotations with Propagation Under an Arbitrary Hamiltonian

Although it is off the main line of work, it is interesting to

speculate about rotations under an arbitrary Hamiltonian, not

necessarily a drift. This would be must useful for the computation of

the fringe field rotation for a parallel-face bending magnet, for some

finite-length fringe field, i.e., not a hard edge fringe field. Thus it

would be necessary to obtain the map for an arbitrary, not necessarily

small, rotation.

The general process would be similar to that above for the drift

rotation. One would compare the effects of a Hamiltonian

infinitesimally with that of the rotation. It is important to note the

z evolution would in general be different than the result for a drift

(Fig. 12.5). The rotation obtained, I.x,Ly, together with Lz, should be

checked with the structure equations of the Lie algebra of S0(3) to make

sure they are, in fact, a realization. Then the whole result would have

to be factored.

-223-

It would make an interesting line of investigation for some bright

young graduate student (or for some withered old post-doc!).

-224-

Rotated
X Axis

Original
X Axis

Zdrift ------'

Ztield ___ ---.1

Figure 12.5 Change in z for Drift Rotation and for
Rotation with a Non-Zero Field

-225-

Appendix A. Treatment of Random Distributions of Errors

The mechanism described in parts I and II shows us how to compute a

map for a beamline element that is possibly misaligned and mispowered,

and how to concatenate it with other such elements to produce a map for

a section of beamline or a whole accelerator. With this map, one may

track particles or extract information about the lattice such as tune

and chromaticity.

Throughout this procedure, it has been assumed that all parameters,

even those representing errors, may be precisely specified. This is

certainly reasonable in many circumstances; suppose, for example, that a

survey of an accelerator shows that a certain quadrupole is misaligned

in the horizontal direction by .5 mm. Then we have the tools to see how

this affects the tune, dynamic aperture, and so on. On the other hand,

there are cases where the parameters are not known precisely. For

example, in a prospective accelerator, one does not know where the

elements will actually end up, but we may be able to say from past

experience that the quadrupoles will be placed within± .6 mm of where

they should be.

The way it stands, the only way to treat such random distributions

of errors is to select samples from such distributions, i.e., as a Monte

Carlo technique, and analyze the results for the distribution of desired

quantities. Such a calculation could require a large number of

computations, particularly if there are many parameters subject to

error. Also, one must take care that the source of random numbers is

really random, in order that the results are reliable. Even so, the

result may be a coincidence, due to the numbers picked.

-226-

In this chapter, I describe a way of obtaining the behavior not

Only at given 1 f h va ues o t e parameters, but nearby as well. It is based

on the method of propagation of errors. One assumes that the parameters

are statistical with a certain distribution, and follows the effects of

th
eir variation through the creation and concatenation of the maps, and

then to the lattice functions or tracking.

There are two assumptions made, both reasonable for practical

accelerator design. The first is that the statistical quantities, the

uncertain parameters, have a Gaussian distribution with the given mean

and variance. This is reasonable in view of the central limit theorem:

the sum of statistical quantities tends to a Gaussian, no matter what

their distribution. Specifically, errors in accelerator construction

and operation are in reality the sums of other errors, e.g., the error

of field strength of the magnet is a result of errors in the placement

of the wire, the quality of the power supply, etc.

The second assumption is that parameter errors are independent. It

is i reasonable to assume, for instance, that errors n powering a magnet

have nothing to do with errors in its physical length. In the method

developed here, it is also assumed that the parameters of two maps are

statistically independent. This will not be the case, for instance, in

a misalignment, as the leading and trailing shift maps will be functions

of the same statistical parameter. Nevertheless, this is adequate for

many maps and suffices as a start.

What is given here is a general description of the propagation of

errors technique, including nonlinear propagation of errors, and then an

application to the mathematical operations of Lie algebraic code such as

-227-

MARYLIE: element map generation, concatenation, and computation of

lattice functions. The concatenation computed here only includes matrix

multiplication and not Poisson bracketing or transforming, and so

effects from nonlinearities and errors where first-order transformations

are produced are not included. The principles of propagation of error

can be extended to these also. Finally, there is a discussion of the

results applied to the calculation of the tune of a simple bending cell,

including a comparison with results from samples of the distribution.

a. Statistical Distributions and Propagation of Errors

Suppose we have a set of n quantities {x1 ,x2, ••. ,¾},that have a

statistical distribution ~(x), where xis a vector representing the

whole set. A convenient way of characterizing the distribution function

- 2
~ is by the mean of x, x, and the covariance matrix~ • The means and xx

covariances are defined by integrating over the distribution~,

(A.l)

and

(A.2)

Note that for the covariance matrix is symmetric. Although it is n

2 n(n-1) by n and therefore has n elements, there are only
2

independent

off-diagonal terms. Together with then diagonal terms, there are

n(n+l)
2 independent terms. Although the diagonal elements are properly

called variances, when referring to them as a class I will call them co-

-228-

variances.

The technique of propagation of errors allows us to consider the

statistical properties of functions of the statistical variables x1 ,

••• , ¾• Specifically, suppose there are m functions f 1 , ••• , fn of

these n variables

... ' (A.3)

... '

As with the original statistical variables x, we would like to know

about the mean fi and covariance a2 of these functions in terms of
fi fj

the mean and covariance of the x.

To simplify the expression, let us pick any two functions (which

may be the same) from the set f 1 , ••• , fm, and call then f and g. Inf

(and g) we may write the Taylor expansion

where ai

x=x

0 = xi - x 1 for all i, and Oi acts as-~- only on f.
vxi

f(x)

-229-

(A.4)

Explicitly,

(A.5)

While fo r most functions the linear term is sufficient in the expansion,

we shall consider the general case (non-linear propagation of errors)

becaus ewe will encounter cases where the extra terms are significant.

Integrating with the distribution ~(x) yields an expansion of the mean

in terms of moments
'

f ==

(A.6)

Where µi is a moment of the distribution, j •••

µ = f (xi - xi)(xj - ;;j) H X) d nx'
ij •••

(A.7)

and f
ij ••• is a multiple derivative off evaluated at the mean value of

x, x
i

fi. = aiaJ .••• f(x)
J •••

(A.8)
x=x

For completeness of notation, let f 0 - f(x).

Since we assume the random variables have a Gaussian distribution,

we shall however, let us postpone that task and need these moments;

continue the calculation for an arbitrary distribution.

We may calculate the variance by

2 = (fg) - f g (1fg

-230-

(A.9)

- ~ ~ ·--- - -· ,._ -·-·

As f and g- are already il bl ith th f 1 (A 6) d ava a e w e ormu a • , we nee only

calculate (fg).

Let h(x) = f(x)g(x). Then (fg) = h, and the formula (A.6) may be

used. We need only determine the derivatives of h, hi i , in terms
I••• n

of those off and g. If C = {ii, ••• , in} is the set of indices with

~hich derivatives are to be taken, he is the sum of the product of all

Possible ways of distributing those derivatives between f and g

he = h. i = l fAgB. 1 1•·• n divisions of C
(A.IO)

into 2 sets A,B

For example,

(A .1 I)

We may show the relation (A.IO) by induction. More precisely, we

may show the relation before evaluation of the derivatives,

I (A.12)
di vision of C

into 2 sets A,B

by induction on the size of the set C. Start by assuming that C is the

nu11 set. The equation (A.IO) then is h(x) = f(x) g(x), which is true

by the d fi f h Now assume the formula is true for C of size n-e ntion o •

1 , and prove it for size n. Specifically, let C' be a set of the n-1

dif ferentiation variables,

C' = {i1, ••• , in-I}, (A.13)

-231-

and let C be C' augmented with a new variable i,

Then the multiple derivative C may be written in terms of the

derivatives on C'

oi I
divisions

of C'

I [oioAf(x)] [oBg(x)] + [oAf(x)] [oioBg(x)]
divisions

of C'

= I
divisions

of C

(A.14)

(A.15)

because the possible divisions of Care just all those of C' with i in

one or the other. When evaluated at x, the relation (A.10) is obtained.

Now it is possible to write out the first few terms of the

covariance using the relation

-232-

(A.16)

where use has been made of the fact that there is summation over all

indices.

The remaining task is to find the moments µi
1

i based on the
• • • n

distribution function~ for a Gaussian. It is the exponential of a

quadratic form,

,,--.___,,,
1 + + -1 + +

(x - x) V (x - x)
2 (A.17)

Since a Gaussian is completely characterized by its mean and variance,

2
we can express the moments, of any order, in terms of variances aij" In

fact, the even moments are symmetrized products of the variance, and the

odd moments are zero,

(2n) ! 2
••• izn = n!2n a[i

1
i

2
(A.18a)

-233-

µi = 0,
1 • • • izn+l

(A.18b)

where the br acke ted subscripts indicate they are symmetrized.

Explicitly, the first few orders of the mean and variance formulas

for a Gaussian are computed by substitution of (A.18) into (A.6)

f fo + .!. Y. 2
fij

1 I 2 2 = O'ij +- O' [ij crU] 2 i u. 8 i,j,k,1 ,J

1 I 2 2 2
fijk1mn + + 48 O' [ijO'UO'mn] ...

i,j,k,1,m,n

and for the variance by substituting (A.18) in (A.16),

t 2 2 2
+ l [(cr i.O',_oO' +

J tv- mn
...) -

+ •••

fijk1 (A .19)

'

(A.20)

For most purposes, the functions are close enough to linear that we may

-234-

take just the first term

(A.21)

(A.22)

b. Application of the Propagation of Errors Techniques to Accelerator

Design

Having seen how to propagate errors in the general case, we are now

ready to apply the method to the problem of accelerator design. It may

be applied to almost any accelerator design code, but, naturally, I will

apply it to the Lie algebraic techniques described in this thesis and by

others (Dragt [1981], Douglas [1982], Dragt et. al. [1985]). Although

there are several stages to the computation of specifying a lattice,

computing the maps, and calculating the lattice functions, we may reduce

this to a few mathematical operations. In particular, we divide the

process into three tasks: map generation, concatenation, and lattice

function computation.

i. Generation of Maps

For each type of beamline element, such as a quadrupole or drift

segment, a map, consisting of a matrix and polynomial coefficient, is

calculated based on parameters supplied. By computing their derivatives

with respect to the parameters, we will be able to propagate the

statistical effect of these parameters to the maps.

Assume for instance, that the matrix is a function of the para-

-235-

meters a 1 , ••• , an

... ,

... ,

... ,

a)
n

a)
n

a)
n

... ,

... ,

From the derivation above, the mean value is

If we have the derivative matrices

omll oml2

oai oai

om21 om22

~ oai
1

oM(a 1 , ... ' a)
n = •

oai •
•

... ,

•••

a)
n

•

a)
n

a)
n

we may calculate the covariance matrix between the elements.

... ' a)
n

(A.23)

(A.24)

(A.25)

(A.26)

Note that the 6x6 = 36 elements of the matrix are merely 36

-236-

separate functions from a statistical analysis point of view. Thus the

covariance matrix was 36x36 = 1296 quantities, of which 18x37 = 666 are

independent.

As an example on a smaller matrix, consider the simple 2x2 phase

advance matrix

M =rcos 0
j_:_in 0

-sin el
cos !J (A.27)

With 0 2 a statistical parameter having mean 0 and variance a0 • Then the

tnean i h st e matrix evaluated at 0,

- uos a M"' sin 0
-sin ~
cos~

l'he c i i i ovariances can be obtained from the der vat ve matr x

and they are

a2

I-sin 0 L cos a

= a 2

mll m22

2 2
a = a
m12 m21

2 2
= a

rnllml2
ae

2 2
= a

rnll m2 l
- ae

-237-

-cos ;J
-sin~

=
2

ae sin2e

= 2
ae cos 2e

sin 0 cos 8

sin 0 cos 0

(A.28)

(A.29)

(A.3Oa)

(A.3Ob)

(A.3Oc)

(A.3Od)

2 = - ~e sine cos e

(A.30e)

(A.30f)

(A.30g)

(A.30h)

The mean and variance of the polynomial coefficients may be calcu

lated in the same way. Of course, there will be covariances among them-

selves and with the matrix, so altogether there will be for computations

through f Ourth order polynomials

36 (matrix elements)+ 6 (first-order polynomials) (A.31)

+ 56 (third-order polynomials)

+ 126 (fourth-order polynomials)= 224 quantities

2i4 x (224 + 1) = 25,200 independent covariances.

ii. Concatenation

As we saw in Chapter 4, concatenation involves much computation:

matrix multiplication, moving the first-order term, and so on. However,

if we know the propagation of errors formulae for addition and multipli

cation, this task is reduced to finding the propagation of errors for

matrix multiplication, Poisson bracketing, and transforming. Each of

-238-

these, in turn, is again essentially just multiplication and addition.

Consider first the multiplication of two matrices Mand N to form P

p = MN, (A.32)

where the elements are Pij• Mij• rij•

(A.33)

Further, let us assume that both Mand N are subject to independent

statistical error. By the covariance propagation formula (A.22), we may

find the covariance in P to first order, as a function of Mand N

involving only products and sums,

(A.34)

The mean of an element is, to first order , just the sum of the products

of the means (A.21),

= I
r

mi m . r rJ
(A.35)

For this relationship, a first order formula is reasonable, as multipli

cation and addition are not too nonlinear!

Taking the Poisson bracket of two polynomials involves just dif

ferentiation with respect to phase space, multiplication, and addition.

If we let the fi
1

in the polynomial f, and

be the coefficient of the monomial Ci ••• Ci
1 n

similarly for gj j for the polynomial g,
1 • • • n

-239-

then if h = [f,g] the Poisson bracket may be expanded

h = J fi i g. . (C. • •• Ci , C, ••• Cjm] dx. (A.36)
1 ••• n J1 •••Jn 1 1 n J1

Since the statistical quantities are the coefficients fi
1

g.
J 1 ••• jn' the mean value is given in lowest order by the value at the

mean,

h = J

or

• • • i
n

(A.37)

h = [f, g] (A.38)

A particular coefficient of his the sum over particular products of the

coefficients off and g .

•• • in jl
f

• • • jm i 1 • • • in gj 1 • • • jm

(A.39)

where n is an integration factor from the Poisson bracket. The

covariance between two coefficients of h depends on f and g

i
n • • • i I n

-240-

i I • I • I
n J 1 • • • Jm

• gj I • t
Jm 1 • • • Jm

(A.40)

i
n

i I g. I

n J 1

i)
n

The final operation on which we need to know how to propagate

errors is the process of transforming a polynomial by a matrix,

(A.41)

The coefficients of fT are related to the coefficients off by the

matrix elements

i
n

Thus in lowest order the mean is

-
where f is the polynomial with coefficients equal to the mean

The covariance is

I 2 = [O'f
f • I

j 1 jn j 1 ... j I
J 1 n

j i j~

j I

n

T
i fi,
n 1

-241-

• • • i I n

(A.42)

(A.43)

(A.44)

iii. Lattice Functions

The ultimate goal of constructing the map for a lattice is usually

not the map itself, but some function of it, such as the tune or its

effect on particles. If we know the mean and covariance of the map, it

will be possible to determine the mean and covariance of these lattice

functions. As an example, I will consider the case of the tune in an

accelerator with midplane symmetry.

For an accelerator with midplane symmetry, the horizontal and

vertical degrees of freedom are uncoupled, so the tune is

tri(M)
= 2; arccos (2) (A.45)

where tri(M) is the trace of the i th degree of freedom of matrix M, e.g.

tr1(M) = M11 + M22 • The tune function is dependent only on the linear

part of the map, the matrix.

The tune function, unfortunately, is not very linear, especially at

values of the trace near± 2 (see Figure A.l). Therefore, we shall have

to do a nonlinear propagation of errors. The derivatives, as a function

of the trace of the small matrix, are given in Table A.l. We may then

say, according to (A.19), that the mean is

l
2

(1 _ ~)3/2
4

(A.46)

-242-

0
TRACE

Figure A.l The Tune Function

-243-

2

and the variance from (A.20) is

-2
2 xi

1
-2

2 Si 1 4
1 +- xi cr =-

-2 + (2) + ••• , vi 161/
Si -2 - 2 -2

xi
64rl

xi 3
64i(I

xi 3
1 - 4 (1 - -) - -)

4 4 (A.47)

Where

(A.48)

and

(A.49)

is the variance of the trace.

-244-

Table A.l Derivatives of the Tune as a Function of the Trace of the

Small Matrix

O)

1)

2)

3)

4)

5)

Function

() 1 (-x
2

) f x = 21t arccos

1 f'(x) = - -----

f"(x) =

f"'(x)

f(4)(x)

f(5)(x)

41t /2 - x2
4

X

2
l61t (1 _ !_)3/2

4

2
1 + !_

2 = - 2
l61t (1 _ !_)5/2

4

18x + 3x 3
= 2

1281t (1 - ~//2
4

18 + 36x2 + 3x4
= 2

1281t (1 _ ~)9/2
4

-245-

Value for x = -1.81958

0.43187874

- .191723

.506235

- 4.28829

59.5537

- 1156.66

c. Results

The statistical computations described above, including maps and

their derivatives, matrix multipliation, and tune computation were coded

in order to compare the statistical method with the results from varying

samples of data.

In order to make such comparisons, one must have a measure of how

close the mean and covariances obtained from the propagation of errors

is to that of the sample data. Such a measure comes under the general

heading of test statistics. A test statistic is a computation that

takes a theoretical distribution and an actual result and gives a number

between O and 1 indicating how close they are, 1 being very close. The

test statistic I use is the maximum likelihood ratio (Eadie et. al.

[1971]). Given the theoretical probability distribution, one takes the

ratio of the probability density at the actual value to that of the most

likely value (see Figure A.2). A low number indicates poor agreement

between theory and the actual results, a high number good agreement.

For a Gaussian distribution of a random variable which we are

assuming, the probability distribution of a sampled mean of these

variables is what is called at-distribution (Eadie [1971], Bevington

[1969]) and the probability distribution of a sampled covariance is a x2

distribution. Both these distributions are well-known and tabulated

(see, for example, the references given), making computation of the

maximum likelihood ratio straightforward.

To apply the maximum likelihood ratio to a covariance matrix, we

will need to look at the covariances in normal coordinates, that is,

coordinates where there is no covariance between different elements,

-246-

P(X)

1.0

08
11

0.6
I. - -

P(x)

OA- -

0.2

o~------,.--.--------..--....--__,;;==r
-3 -2 -I 0

X
I

s.d.

MLR = P(X)
P(Xmax)

Figure A.2 The Maximum Likelihood Ratio

-247-

2 3

only variances (covariances between identical elements). This means

that we are interested in the diagonalized covariance matrix. We then

may apply the maximum likelihood ratio to these eigenvalues to judge the

relative validity of the sampling and theory.

As an actual test, we may propose looking at a simple bending cell

(see Figure A.3) consisting of a horizontally focusing quadrupole, a

drift, a parallel-face bend, a drift and a horizontally defocusing

quadrupole. We suppose that the quadrupoles have strengths that vary

according to a Gaussian distribution about some mean. This means that

the design trajectory will remain the same as these parameters will

vary, so there will be no first-order term in the Lie transformation.

We may then look at how well the means of the matrix elements and the

tunes agree with the theoretical predictions, and how well the eigen

values of the covariance matrix agree, according to the maximum

likelihood ratio.

One can imagine several diffrent maps of generating sample distri

butions of parameters in accordance with the parent Gaussian distribu

tion. I have selected two, a pseudo-random number generator such as is

typically part of numerical computation packages, and a regular distri

bution, obtained by dividing the integral into n equal intervals and

using variable value at the center of each interval (see Figure A.4).

The latter method produces a regular set of data, with values clustered

in the area of highest probability density.

The results of a particular run are shown in Table A.2, for both

kinds of samples. From this result and many others, we may draw a few

conclusions. First of all, it is necessary when doing the propagation

-248-

Ho r iz .
Defocusing

Quad .

Bend Horiz .
Focusing

Quad .

Figure A.3 A Bending Cell

-249-

)P<X>
1.0

Divide into
equal intervals

♦

0.6 -

0.4

-- Values used O-'---=:;;...._...,..L.----l.....,.....1--.....1-,--...----.
-3 -2 -1 0

X

2 3

Fi gure A.4 Generation of a Regularly Distributed Sample of a Gaussian

-250-

of
errors on the tune, to include higher Borders in the calculation, at

leas t near trace 1 f 2 va ues o ± where the arccosine function becomes very

nonlinear. S econd, in doing a sampling with varying parameters, it is

better
to gene rate them regularly than randomly, at least with a pseudo-

random number 1 1 generator of the type commonly avai ab e. Last, the

Validit
Y of a sample remains roughly constant if the number of points

sampled n goes as the power of the number of parameters, b where n is the

number of parameters and bis the base, and it should be at least 5 or

IO for a maximum likelihood ratio above 0.9. Thus, for two varying

Parameters, 25 would be the smallest reasonable sample size, and for

four, 625 would be the smallest.

The method of propagation of errors extends the Lie algebraic

accele b rator design techniques so that not only is ehavior at a

Particular set of parameters known, but behavior nearby is known as

~e11. It has potential for development because of its advantages over a

Monte Carlo simulation: it requires far less computation for equivalent

Validity of the answer, it is not subject to the possible unreliability

Of
a random number generator, and it gives directly useful information,

to Wit, the mean and variance of desired quantities. Regula r

Simulati ons are better than Monte Carlo in that they do not rely on a

random number generator and give a more reliable answer with the same

number f 0 samples, but still are not as advantageous as the propagation

Of
errors me thod.

-251-

Table A.2 Comparison of Propagation of Errors with

Random and Regularly Generated Samples

Horizontal defocusing quad strength K = -2.19652710

Horizontal focusing quad strength K = 3.7453240 ,

2
, o-K = .0001

2
o-K = .0001

Regular sample used 10 points of each strength (10 x 10 = 100), random

sample used 1000 points total. Seed for the random number generator was

6548804.

One term in propagation of errors formula for tune:

Regular Random
Theory (mlr) (mlr)

Tune x mean 0.4318793499 0.4319077293 .4319438640
(0.9903) (0.6219)

variance 0 .417795lxl0-5 0 .4186980xl0-5 0 .4382925xl0-5

(0 .9877) (0 .5317)

Tune y mean 0.0670334734 0.0669517969 0 .06697 461177
(0 .9716) (0.8738)

variance 0 .1162271x10-4 0 .1170186xl0-4 0.1285695xl0-4

(0.9822) (0.0648)

Three terms in propagation of errors formula for tune:

Regular Random
Theory (mlr) (mlr)

Tune x mean 0.4319082160 0.4319082160 0.4319438640
(1.0000) (0.8649)

variance 0 .4190343x10-5 0.4186980xl0-5 0.4382925xl0-5

(0.9908) (0.5922)

Tune y mean 0.06695118513 0.06695179690 0 .06697 461177
(1.0000) (0.9789)

variance 0 .117 2369x10-4 0.1170186x10-4 0.1285695xl0-4

(0 .9917) (0.1014)

-252-

Appendix B. MARYLIE 3.1

The techniques for treating accelerator errors Lie algebraically

that are described in the body of the text have Jeen implemented and

tested in a computer code called MARYLIE 3.1. The core of this code is

an extension of MARYLIE 3.0, written by Douglas :Douglas [1982), Dragt

et. al. [1985]), that implements Lie algebraic techniques for accelera

tors without errors through third order (polynomlals through fourth

order). In addition, MARYLIE 3.1 has a completely different user inter

face.

The first section of this appendix shows hov to use some of the

features of the code, with some examples. It is not intended to be a

manual or to replace one, but rather to show how the formalism of

treating accelerator errors looks to the user with a real problem to

solve. The second section describes the implemeotation and testing of

the techniques described in the body of the text into code, including

some of the practical aspects, to give a better ~nderstanding of them.

Finally, the third section contains a listing of some important routines

of MARYLIE 3.1, along with descriptions of other routines that the

listed ones call.

a. Usage and Examples

In this section, I shall describe how to specify misalignments, how

to find the closed orbit and the map nearby, and how to correct for the

closed orbit. Also, a description of the fitting routine which may be

used for c losed orbit correction is given, and some applications related

to closed orbit correction demonstrated.

-253-

i. Misalig1ment

Misalignments are specified for an element in the same way as other

parameters. The user gives the six pa rameters specifying the misalign

ment at the fiducial point of the elemerrt. The example given in Table

B.l is of a horizontally defocusing quairupole that has been misaligned

by a horizontal translation of 0 .001 met ers and rotated in the midplane

by 0.0015 radians, at the fiducial point. After it has been specified,

and the magnetic rigidity and speed have been specified, we may see what

the transfer map looks like . The matriK and polynomial coefficients are

given; the first six rows are the matriK, the following lines are the

polynomial coefficients, with the monomial name in brackets (all upper

case phase space variables used above have become lower case in the

coding, and there no are subscripts). Note that there are coefficients

of x, px, and pt in the map, present because of the misalignment. The

coefficients of y and py present are insignificant.

Misalignments may be specified for almost any of the elements

available in MARYLIE. The only exceptions are those for which a mis

alignment does not make sense, such as a drift or a phase advance.

Concatenation of maps, including those with first-order

polynomials, is straightfoward. For example, suppose one has a simple

bending cell (Table B.2) consisting of a horizontally defocusing quadru

pole, a parallel face bending magnet, and a horizontally focusing quad

rupole, with drift spaces interspersed . With the defocusing quadrupole

misaligned as before, and the focusing quadrupole also misaligned, the

map for each will contain a first-order part. When they are concate-

-254-

nated together into a cell called 'nsex,' the whole transfer map may be

obtained, as easily as the map for a single element. The result is

printed out in the table.

ii. Closed Orbit Determination

Closed orbit determination is specified as a change in the form of

the map. As constructed from the element library or from the concatena

tor, the polynomials of the map are kept in ascending form, i.e.,

:fl: :f2: :f3: :f4:
e e e e (B. l)

However, it is possible to put this in another form, the fixed point, or

closed orbit, form

-:g l : :g2: :g3: :g4: :gl:
e e e e e (B.2)

as shown in Chapter 6. This is acheived by specifying the function

'fix' of the map, and is demonstrated for the bending cell in the

table. The first-order terms (x, px, y, py and pt) are the coefficients

of the polynomial that gives the fixed point, that is,

z - e (B.3)

is the fixed point. The map around z is given by the matrix and the

other polynomial coefficients.

-255-

Table B.l Example of MARYLIE: Misaligned Element

ML3.l) ! The magnetic rigidity is specified by brho, the speed by beta
ML3.l) brho=4.8691523
ML3.l> beta=0.8412103393
ML3.l> ! The following command specifies a defocusing quadrupole
ML3.l) ! that has been misaligned horizontally
ML3.l) ! by 0.00lm and rotationally in the rnidplane by 0.0015 radians.
ML3.l) hdq:quad,l=0.5,kl=-l.93,delx=0 .001,theta=0.0015
ML3.l) ! The following command prints out the matrix and polynomials
ML3.l) ! of the map
ML3.l) print hdq
1.0500 0.50830 -2.17602E-17 -l.12543E-17 0.00000E+00
0.20148 1.0500 4.46093E-18 -2.17602E-17 0.00000E+00
2.40280E-17 l.16322E-17 0.95086 0.49178 0.00000E+00
4.61074E-18 2.40280E-17 -0.19493 0.95086 0.00000E+00

6.84590E-05
8.68903E-06
l.34754E-20
l.93515E-20

4.66974E-06 6.74624E-05 -2.05329E-20 l.90462E-21 1.0000
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 o.oooooE+00

0.20658
1.0000

hdq[x] =-2.0209359818933772E-04
hdq[px] =-5.624 1980046548858E-05
hdq[y] =-2.3290344846676129E-20
hdq[py] =2.5559573247026451E-20
hdq[pt] =3.5615143293835734E-06
hdq[x xx] =4.6214861290262093E-05
hdq[x x px] =-2 .1917207889858402E-04
hdq[x x y] =-3.4403977226576909E-21
hdq[x x py] =-7 .8909047684250828E-21
hdq[x x pt] =-3.9687203779944684E-03
hdq[x px px] =2.1717934959245682E-04
hdq[x px y] =-l.8734093274946567E-20
hdq[x px py] =l.9823610538152742E-20
hdq[x px pt] =6.0870890129539595E-02
hdq[x y y] =9 .4400528189299484E-05
hdq[x y py] =2.3905829251721772E-04
hdq[x y pt] =-7.0562531767054717E-21
hdq[x PY py] =-l.658787410275 1662E-04
hdq[x py pt] =2 .6969894874270836E-18
hdq[x pt pt] =l.1950494045847783E-05
hdq[px px px] =-6 .8911612664317048E- 05
hdq[px px y] =l.2596808369202098E-20
hdq[px px py] =-l.0170543647415764E-20
hdq[px px pt] =-0.3071991624156031
hdq[px y y] =l.0849232448812077E-04
hdq[px y py] =-l.2513631221717794E-04
hdq[px y pt] =2.6969565312405407E-18
hdq[px PY py] =2 .7355807298381209E-05
hdq[px PY pt] =-8.9871782719335052E-19
hdq[px pt pt] =-9.4004651982864068E-05
hdq[y y y] =l.6090534230346103E-21
hdq[y y py] =l.0602879804796601E-20
hdq[y y pt] =-3.8144076084688497E-03
hdq[y PY py] =2 .0250154137856189E-21
hdq[y PY pt] =-5.6979315032469157E-02
hdq[y pt pt] =3 .3097850160976309E-21

-256-

hdq [py PY PY]
hdq[py PY pt]
hdq[py pt pt]
hdq[pt pt pt]
hdq[x xx x]
hdq [x x x px]
hdq[x xx y]
hdq[x xx py]
hdq[x xx pt]
hdq[x x px px]
hdq[x x px y]
hdq [x x px py]
hdq[x x px pt]
hdq[x x y y]
hdq[x x y py]
hdq[x x y pt]
hdq[x x py py]
hdq[x x PY pt]
hdq[x x pt pt]
hdq[x px px px]
hdq [x px px y]
hdq[x px px py]
hdq[x px px pt]
hdq[x px y y]
hdq[x px y py]
hdq[x px y pt]
hdq[x px py py]
hdq[x px PY pt]
hdq[x px pt pt]
hdq[x y y y]
hdq[x y y py]
hdq[x y y pt]
hdq[x y py py]
hdq [x y PY pt]
hdq[x y pt pt]
hdq[x PY PY py]
hdq[x PY PY pt]
hdq [x PY pt pt]
hdq[x pt pt pt]
hdq[px px px px]
hdq[px px px y]
hdq[px px px py]
hdq[px px px pt]
hdq[px px y y]
hdq[px px y py]
hdq[px px y pt]
hdq [px px py py]
hdq[px px py pt]
hdq[px px pt pt]
hdq[px y y y]
hdq[px y y py]
hdq[px y y pt]
hdq[px y py py]
hdq[px y py pt]

=-4.7017994764514440E-21
=-0.2875645362891140
=-6.4304978660762564E-21
=-0.1227849184152725
=-7.7232642324291876E-03
=l.8818776681204116E-02
=l.0889899520524252E-18
=-2.5415729608614839E-19
=7.3091304098399213E-05
=-6.9031150958326567E-02
=-7.1797832985174532E-19
=-4.7444936325076198E-18
=-6 .8658144637723236E-04
=-3 .9239410422525906E-02
=2.9924810965651031E-02
=4.0447676825624633E-22
=4.4441235473335375E-02
=-2 .47 18374141706286E- 20
=-S .4555487090434210E-03
=S.601268531 1786729E-02
=-2.2687191016075999E-19
=3 .5908287253772188E-18
=7.8681653765253221E-04
=2 .8952662776853766E-02
=-l.9623869573405422E-02
=-2.8252097436597739E-20
=3.7644254888865468E-03
=4.1049697579192941E-20
=8.4131986462893835E-02
=-l.2875753337517813E-18
=l.0598906378722498E-18
=8.7459329853886297E-05
=7.8280697226996276E-20
=3.1429609575511220E-04
=-l.3862827713345885E-20
=l.086643867629972SE-18
=3.9999323702321767E-06
=3.6762370541639613E-18
=l.8712483635342766E-04
=-7.1394465692224513E-02
=l.1994565036443791E-18
=-7 .8051354607002803E-19
=-l.5170823668890271E-03
=-S.4262436099911447E-02
=3 .5997297571197237E-03
=3 .4275268890774707E-20
=-0.1257360230031477
=-3.8163347387641213E-20
=-0.4246497735280909
=3.3846527835228803E-19
=-4 .4393298079974429E-18
=-2.1920055390121209E-04
=3 .2524204809391448E-18
=-2.3483138660921952E-04

-257-

hdq[px Y pt pt] =3.6762751579009847E-18
~:q[px PY PY pyJ =-7.3546950511144508E-19
hdqfpx PY PY pt] =-1.2757873870120113E-03
hdq px PY pt pt] =-1.7590983373390017E-18
hd~fpx pt pt pt] =-1.8920035329196499E-03
hdq[y y Y y] =-5.5538277818209808E-03
hdq[y y Y py] =1.4162700637201822E-02
hd y y Y ptJ =1.7125150669872634E-21
hd~fy y PY py] =3.2918877310855554E-02
hdq[y y PY pt] =7.6744897737884513E-22
hd y y pt pt] =-5.1528002253951172E-03
hdqfy PY PY py] =-4.3719368943504521E-02
hdq y PY PY pt] =7.3507699392116773E-21
hdqfy PY pt pt] =-7.6510909155198873E-02
hdq y pt pt pt] =l.Ol59315603294272E-20
hdqfpy PY PY py] =-5.4833622754068101E-02
hdq[py PY PY pt] =-2.2253064289553352E-20
hdq PY PY pt pt] =-0.3862154810733600
hdq[[py pt pt pt] =-2.6518178631959275E-20

q pt pt pt pt] =-0.1566346259487956

-258-

Tabl B
e •

2
Exam le of MARYLIE: Concatenation with Misali ned Element

and Determination of Fixed Point

ML3.l) 1 ML3
1

· Parameters
ML3. > brho=4.8691523
ML3.l) beta=0.8412103393

.1) I D f ML3 l) · e ine drifts
ML3.l drs:drift,0.45
ML3:l~ ~rl:drift,2.28646
ML3.l) . Bending magnet
ML3.l) ;bnd :rbend,angle=0.6283185307,kO=l.2

ML3 1) . Quads ML3:l> ~~q:quad,0.5,-l,92,delxa-0,001,theta=0,0015
ML3.l)

1

q.quad,0.5,2.72,dely=-0.002,phi=0.0005

ML3.l) ~ Define the cell nsex
ML3.l) sex:{drl hdq drs pbnd drs hfq drl}

1.0491 print nsex ---o.
279

6,3609 -8.15777E-04 4,15067E-03 o.oooooE+oo -2,4
108

-3_

565

i~ -0.14130 -4.32238E--04 -2.55449E-04 o.oooooE+-00 --0,313
15

-4_

4210

E-03 -1.96288E--02 -0.10116 6.1585 o.oooooE+-00 2.00561E-OS
1,0652

8
E-04 -2.99573E-03 -0.27890 1.0139 o.oooooE+OO 2.83648E-04

0,000 4.1607 9,32781E--04 4,38151E-04 1,0000 3,4959
nsex(~~E+oo o.oooooE+00 o.oooooE+-O0 o.oooooE+-OO o.oooooE+-OO 1.0000

nsex(x) -2.0172525808729309E--04
nsex(P] =-5 .1902716457048420E-04
nsex(y I -6.5748730501532581E--07
nsex[PY) =2,0522902938269129E-0l
nsex(pt =3.32!6685097319039E-06
nsex(x xx) =-l.1685467853048130E-02
nsex[x x px] =4.9115827700417679E-02
nsex[x x y) =-3,750884646359I030E-04
nsex[x x py) =l,3515587093583536E--03
nsex[x x pt] =-0.2921899009584240
nsex x px px] =0.1541293598102544
nsex [x px y] =l.8459840991815392E-03
nsex!x px py) =-5 ,8109273418567862E-03
nsex x px pt] =-l.053266552300671
nsex!x Y YI =-6.2567929197728024E-02
nsex x Y py] =0.7199593929369587
nsex!x Y pt) =-l.8782870284975775E-03
nsex x PY py] =-l.905835214730898
nsex!x PY pt) =l,0349651051635205E--02
nsex x pt pt] =-l.418381223580777
nsex!px px px) =9.2273820159942378E--02
nsex[px PX y) =-5.7687961928001209E-0l
nsex(px PX py) =2,2412575998832867E-02
nse px px pt] =-3.066265995682219
nse:[px Y YI =-2.08958I8716566702E-02
nse px Y py] =0.1761480429306482
ns x[px Y pt) -1.9658215829637552E-03
ns:xipx PY py) =2,5641756864780207E-02
nse:(px PY pt) =l,4344371769626050E-02
nse px pt pt] =-3 .087690940763916

x[y Y y] =-3.8682917243934783E-04

-259-

nsex[y y py]
nsex[y y pt]
nsex[y py py]
nsex [y py pt]
nsex[y pt pt]
nsex [py py py]
nsex[py py pt]
nsex[py pt pt]
nsex[pt pt pt]
nsex[x xx x]
nsex[x xx px]
nsex[x xx y]
nsex[x xx py]
nsex[x xx pt]
nsex[x x px px]
nsex[x x px y]
nsex[x x px py]
nsex[x x px pt]
nsex[x x y y]
nsex[x x y py]
nsex[x x y pt]
nsex[x x py py]
nsex[x x py pt]
nsex[x x pt pt]
nsex[x px px px]
nsex[x px px y]
nsex[x px px py]
nsex[x px px pt]
nsex[x px y y]
nsex[x px y py]
nsex[x px y pt]
nsex[x px py py]
nsex[x px py pt]
nsex[x px pt pt]
nsex[x y y y]
nsex[x y y py]
nsex[x y y pt]
nsex[x y py py]
nsex[x y py pt]
nsex[x y pt pt]
nsex[x py py py]
nsex[x py py pt]
nsex[x py pt pt]
nsex[x pt pt pt]
nsex[px px px px]
nsex[px px px y]
nsex[px px px py]
nsex[px px px pt]
nsex[px px y y]
nsex[px px y py]
nsex[px px y pt]
nsex[px px py py]
nsex[px px py pt]
nsex[px px pt pt]

=4.9328086194929029E-03
=-0.4971576016263518
=-2.2633644651601651E-02
=4.414549844753906
=-5.2034938613428767E-03
=3.5869993137844974E-02
=-12.42649316007642
=3.0l78405085538552E-02
=-4.350038301724557
=-l.4006356421361361E-02
=8.2995446808865904E-02
=-7.5594388156762432E-05
=l.9236304176885807E-04
=-7.7171281470707818E-02
=-0.7017707554868090
=3.3335985118406195E-04
=3.5079341329712458E-04
=-0.3754456037467961
=-0.1299619123656771
=0.8400508327057035
=-9.4199818018458537E-04
=-l.537169654433486
=4.0009463272032682E-03
=-0.8195286205449076
=-5.1444402135832124E-02
=-l.8449049177966154E-03
=8.4056416703511137E-03
=-l.797369248474826
=0.2237088369735704
=-0.6164200724772446
=2.9266080076750372E-04
=-0.2196249527114565
=2.5532874205083786E-03
=-2.831565236049871
=-5.2396933337770688E-05
=l.6675770125039356E-03
=-0.4520924714228340
=-l.0456491049240043E-02
=4.449141065244286
=-4.2798098789980154E-03
=l.8925799840188203E-02
=-ll.05749117982887
=2.4253106861265555E-02
=-3.232368510198176
=-2.636812513968043
=9.2667477419446441E-03
=-3.5740554914225448E-02
=-4.756024007088811
=-2.214163774812210
=18.42249270581254
=l.1174047777924586E-02
=-40.72939786089794
=-2.8721138973226055E-02
=-7.805283953512858

-260-

nsex[px y y y] =-l.8875983256306527E-04
nsex[px y y py] =3.8065596561437331E-03
nsex[px y y pt] =-l.736046318494450
nsex[px y py py] =-2.4641015781689582E-02
nsex[px y py pt] =15.83800454819271
nsex[px y pt pt] =l.4835421580820193E-02
nsex[px PY py py] =4.9913067760440442E-02
nsex[px py py pt] =-36.26137089715613
nsex[px py pt pt] =-3.9843257329945709E-02
nsex[px pt pt pt] =-6.041142472460865
nsex[y y y y] =-7.0539192719261391E-02
nsex[y y y py] =l.204687843698255
nsex[y y y pt] =-l.3159298582876629E-04
nsex[y y PY py] =-8.059116752940898
nsex[y y py pt] =6.5894987840005124E-03
nsex[y y pt pt] =-l.649095603672400
nsex[y PY PY py] =24.49769714159961
nsex[y PY PY pt] =-5.1207525118099098E-02
nsex[y py pt pt] =16.46375453710148
nsex[y pt pt pt] =-l.8652344236122379E-03
nsex[py py py py] =-28.65309774423115
nsex[py PY py pt] =0.1099918173529561
nsex[py py pt pt] =-43.97665684879331
nsex[py pt pt pt] =2.9842432479775850E-02
nsex[pt pt pt pt] =-7.378314076666465
ML3.l) ! The following command defines ' newmap' as the fixed point
ML3.l) ! form of nsex
ML3.l) newmap:fix(nsex)
ML3.l) print newmap
1.0491 6.3610 -7.27624E-04 3.94080E-03 0.00000E+00 -2.4109
-0.27939 -0.74088 -4.77134E-04 -l.43323E-04 0.00000E+00 -0.37298
-3.66227E-03 -2.05917E-02 -0.70734 6.1587 0.00000E+00 -8.36462E-05
-4.48541E-04 -3.06390E-03 -0.27882 1.0139 0.00000E+00 -2.33892E-04
1.0649 4.1588 7.36833E-04 3.17107E-03 1.0000 3.4953
0.00000E+00 0.00000E+00 0.00000E+00 0 .00000E+00 0.00000E+00 1.0000
newmap[x] =-l.2163785669934853E-04
newmap[px] =-7.4219599423172437E-04
newmap[y] =-3.3784480106511362E-04
newmap[py] =2.0679431223401606E-03
newmap[x xx] =-l.1634876685829601E-02
newmap[x x px] =4.8753596724315318E-02
newmap[x x y] =-6.3480566207657209E-04
newmap[x x py] =2.0812061540395292E-03
newmap[x x pt] =-0.2920291725814404
newmap[x px px] =0.1551366432380444
newmap[x px y] =2.5464030142382336E-03
newmap[x px py] =-7.1422496322291046E-03
newmap[x px pt] =-l.052947588815111
newmap[x y y] =-6.2345209613934738E-02
newmap[x y py] =0.7186082862251167
newmap[x y pt] =-2.1514329065539798E-03
newmap[x py py] =-l.903506496648869
newmap[x py pt] =l.1505487962646018E-02
newmap[x pt pt] =-l.417236209970535

-261-

newmap[px px px]
newmap[px px y]
newmap[px px py]
newmap[px px pt]
newmap[px y y]
newmap[px y py]
newmap[px y pt]
newmap[px py py]
newmap[px py pt]
newmap[px pt pt]
newmap[y y y]
newmap[y y py]
newmap[y y pt]
newmap[y py py]
newmap[y py pt]
newmap[y pt pt]
newmap[py py py]
newmap[py py pt]
newmap[py pt pt]
newmap[pt pt pt]
newmap[x xx x]
newmap[x xx px]
newmap[x xx y]
newmap[x xx py]
newmap[x xx pt]
newmap[x x px px]
newmap[x x px y]
newmap[x x px py]
newmap[x x px pt]
newmap[x x y y]
newmap[x x y py]
newmap[x x y pt]
newmap[x x py py]
newmap[x x py pt]
newmap[x x pt pt]
newmap[x px px px]
newmap[x px px y]
newmap[x px px py]
newmap[x px px pt]
newmap[x px y y]
newmap[x px y py]
newmap[x px y pt]
newmap[x px py py]
newmap[x px py pt]
newmap[x px pt pt]
newmap[x y y y]
newmap[x y y py]
newmap[x y y pt]
newmap[x y py py]
newmap[x y py pt]
newmap[x y pt pt]
newmap[x py py py]
newmap[x py py pt]
newmap[x py pt pt]

=9.1026880641269469E-02
=-8.7032929551061216E-03
=3.3006283839682483E-02
=-3.066702791933980
=-2.1592677307057182E-02
=0.1809702474085750
=-3.9150268038297 156E-03
=l.6310976313448819E-02
=2.3554983623730158E-02
=-3.086482726702 191
=-5.6244363788545997E-04
=6 .9397617783938767E-03
=-0.4969668714604797
=-3.0975835542627141E-02
=4.412817299343964
=-5.5754776523087279E-03
=4.7420662700775558E-02
=-12.42280589920402
=2.9114489647151 106E-02
=-4.347915962023496
=-l.4006356421361361E-02
=8.2995446808865904E-02
=-7.5594388156762432E-05
=l.9236304176885807E-04
=-7 .7171281470707818E-02
=-0.7017707554868090
=3 .3335985118406195E-04
=3.5079341329712458E-04
=-0.3754456037467961
=-0.1299619123656771
=0.8400508327057035
=-9.4199818018458537E-04
=-l.537169654433486
=4.0009463272032682E-03
=-0.8195286205449076
=-5.1444402135832124E-02
=-l.8449049177966154E-03
=8.4056416703511137E-03
=-l.797369248474826
=0.2237088369735704
=-0.6164200724772446
=2.9266080076750372E-04
=-0.2196249527114565
=2.5532874205083786E-03
=-2.831565236049871
=-5.2396933337770688E-05
=l.6675770125039356E-03
=-0.4520924714228340
=-l.0456491049240043E-02
=4.449141065244286
=-4.2798098789980154E-03
=l.8925799840188203E-02
=-ll.05749117982887
=2.4253106861265555E-02

-262-

newma [newm P x pt pt pt] =-3.232368510198176
newm:p[px px px px] =-2.636812513968043
newmap(px px px y] =9.2667477419446441E-03
newm p[px px px py] =-3.5740554914225448E-02
newm:Pipx px px pt] =-4.756024007088811
newmap px px Y y] =-2.214163774812210
newma~lpx px Y py] =18.42249270581254
newm px px Y pt] =l.1174047777924586E-02
newm:p(px px PY py] =-40.72939786089794
newmap [px px PY pt] =-2.8721138973226055E-02
newma:fpx px pt pt] =-7.805283953512858
newma px Y Y y] =-l.8875983256306527E-04
newmap(px Y Y py] =3.8065596561437331E-03
newm/ [px Y Y pt] =-1. 736046318494450
newmap[px Y PY py] =-2.4641015781689582E-02
newmap[px Y PY pt] =15.83800454819271
newmap(px Y pt pt] =l.4835421580820193E-02
newma:~px PY PY py] =4.9913067760440442E-02
newma px PY PY pt] =-36.26137089715613
newmap[px PY pt pt] =-3.9843257329945709E-02
newma:~px pt pt pt] =-6.041142472460865
newma y Y Y y] =-7.0539192719261391E-02
newmap[y Y Y py] =l.204687843698255
ne"'8ap[y y Y pt] =-l.3159298582876629&-04
newma~[Y Y PY py] =-8.059116752940898
ne"'8a [y Y PY pt] •6.S89498784000S124E-Ol
newm PY Y pt pt] =-l.649095603672400
newm::Iy PY PY py) =24.49769714159961
ne"1nap[y PY PY pt] =-S.1207525118099098&-02
newma [Y PY pt pt] =16.46375453710148
newm PY pt pt pt] =-l.8652344236122379E-03
newm:p[py PY PY py] =-28.65309774423115
newma~~PY PY PY pt] =0.1099918173529561
newma PY PY pt pt] =-43.97665684879331
newmap[[py pt pt pt] =2.98424324797 75850E-02

P pt pt pt pt] =-7.378314076666465

-263-

iii. Fitting Routines and Closed Orbit Correction

MARYLIE 3.1 has an option for fitting any set of parameters so that

an equal number of target functions are minimized. For instance, one

may adjust the vertical and horizontal quadrupole strengths in a

focusing cell so that the two tunes assume certain desired values.

Table B.4, discussed below, has a demonstration of such a calculation.

The routines that do the fitting are rather involved and so are not

listed here. The process is essentially the following, however. First,

initial guesses of the parameters that are to be varied are given by the

user. The target functions are evaluated at these initial values and

then at nearby values so that the Jacobian matrix may be calculated.

This gives a linear approximation to the targets as a function of the

parameters. From this approximation, it is possible to extrapolate to

the desired values. The new value will not be exact but will be closer

if the functions are reasonably linear. This process may be continued

until the target functions are close enough to the desired values, as

dictated by some previously specified tolerance parameter.

With the closed orbit (fixed point) determination implemented as

described in Chapter 6 and the fitting facility available, we may easily

implement a closed orbit correction scheme such as the beam bump method

(Myers [1984], Guignard [1970]). This method is designed to insure that

the design beam passes through the center of each quadrupole, even the

misaligned ones. Let us consider the example of a mythical four-sided

ring (four right-angle bends) for storing protons at 797 MeV. Suppose

each cell from the center of one side to the center of the next is a

FODO cell. Suppose further that the horizontally focusing quadrupole in

-264-

one of the cells (call it number 1) has been moved horizontally by 1

cm. c ers (orbit correction dipoles in the short-length With ki k

approximati
on, see (10.38)) adjacent to each quadrupole, we wish to know

What strengths
to give these correction magnets so that the beam goes

through the
center of each quadrupole. Since we are only misaligning

the h orizontal plane, we may ignore the corrections in the vertical.

Thus or our qua rupo es.
we have four correctors f f d 1

The first step is to set up a file with the definitions of the beam

line 1
e ements and the cells (Table B.3). The next step is to fit the

strengths so that the tunes are the desired values (vx=0.19,
quadrupole

Vy=0.185).
The actual process is shown in Table B.4. Once this has

been do
ne, we may perform the beam bump process. First, we work with

the collection of elements consisting of cell 4, the one prior to the

one With the
misalignment, and the kicker adjacent to its horizontal

quadrupole.
We fit so that the design trajectory is sent to 1 cm on the

X axis at
the misaligned quadrupole. Because 'adjl' is defined as the

cone
atenated map of these elements factored in descending order, this is

acco mplished by demanding that •adjl' be --0.01 px. When this map is

applied t
o the phase-space values zero, the linear and higher-order part

Will b
• not change it, and the --0.01 px term will take zero to 0.01 x,

the cente f r o the misaligned magnet.

Once this has been done, and we are assured the beam is going

through the 1 1 k h center of the misaligned quadrupo e, we may oo at t e

fixed
point of the half ring from the horizontal kicker prior to cell I

to th
e beginning of cell 2, and fit so that this is zero. Then a beam

on the design trajectory starting into the cell 1 will be deflected so

that
it enters the misaligned quad at the center, then deflected so that

-265-

at cell 2 it is back on the design trajectory. This final fitting is

shown in the last part of Table B.4, together with the resultant

strengths of each of the horizontal kickers.

-266-

VCQry
hdq

hfq
hcorr

hcorr hfq.

M
.,6,. 1sa 1gned

Cell 4

vcorr hdq

hdq vcorr

Cell I

Cell 2

Cell 3

hfq hcorr

hcorr
hfq

hdq
vcorr

Figure B.1 A Mythical Four-Sided Rinll for Demonstration of
Closed orbit Correction .

-267-

Table B.3 Example of Fitting and Orbit Correction: file FOURSIDE

These following describes a mythical four-sided ring
that stores protons at 797 MeV.
(XJ.e of the horizontally focusing quadrupoles has been moved 1 cm
horizontally.

Global parameters
brho=4.8691523159713
beta=.84121033934903

! Drifts
drks:drift,0.2 for use with kickers of length .25 in drs
drs:drift,0.45
drm:drift,1.48646
drl:drift,2.28646

! Bends
nbnd:sbend,1=2.5494821908441938,angle=3.141592653589793/4
hcorrl:hkick,l=0.25,kO=strhl; strhl=O
vcorrl:vkick,l=0.25,kO=strvl; strvl=O
hcorr2:hkick,l=0.25,kO=strh2; strh2=0
vcorr2:vkick,l=0.25,k0=strv2; strv2=0
hcorr3:hkick,l=0 . 25,kO=strh3; strh3=0
vcorr3:vkick,l=0.25,kO=strv3; strv3=0
hcorr4:hkick,l=0.25,kO=strh4; strh4=0
vcorr4:vkick,l=0.25,kO=strv4; strv4=0

! Quads
klf=0.4
hfq:quad,0.5,klf
badhfq:quad,0.5,klf,delx=0 . 01

kld=-1.6
hdq:quad,0.5,kld

! Single Cell
def: drl hdq drs nbnd drs hfq drl
dcbf: drl hdq drs nbnd drs badhfq drl
cell:fix(dcf)

Aligned horizontal focusing quad
This quad has been misaligned
1 cm in the horizontal direction

Aligned horizontal defocusing quad

defocusing-corner-focusing
defocusing-corner-bad focusing

! Single rotated bad cells with and without kickers
bfdc: badhfq drl drl hdq drs nbnd drs ! bad focusing-defocusing- corner
bfdck: badhfq drl drl hdq vcorrl drks nbnd drks hcorrl

Single rotated good cells with and without kickers
The good cells are numbered 2, 3, and 4 . The horizontal
kicker that preceeds each horizontal kicker has the number one less
(mod 4), e.g., the kicker for the horizontal quad in cell 4 is hcorr3.

fdc: hfq drl drl hdq drs nbnd drs ! focusing-defocusing-corner
fdck2: hfq drl drl hdq vcorr2 drks nbnd drks hcorr2
fdck3: hfq drl drl hdq vcorr3 drks nbnd drks hcorr3
fdck4: hfq drl drl hdq vcorr4 drks nbnd drks hcorr4

-268-

! Maps on which to check adjustments (see table B.4)
adjl:des(hcorr3 fdck4)
adj2:fix(hcorr3 fdck4 bfdck)

-269-

l

ML3 .1) ML3.I> ~emonstration of fitting and orbit correction in Marylie 3.1
ML3.J> xample is a four-sided ring composed of FODO cells.
ML3 I> Fir

st
' set the tunes to the desired values of .19 and .185.

Table B.4
Sample Run of Fitting and Correction

ML3:l) <;ourside
cell[t p cell[tune]
cell[tune x]=0.1975049037232380
cell[tune y]=0.1866276261612764
ML3.l)u~e t]=O.OOOOOOOOOOOOOOOOE+OO
ML3.l) . argx=.19
ML3 targy=.185

.1) fit ML3.I> cell[tune x]-targx,cell[tune y]-targy kl1

cell[t pr cell[tune]
cell[tune x]=0.1899999999999998
cell[tune y]=0.1850000000000001
ML3.l)une t]=l.1857967309049915E-09
klf=O pr kl?
kld=-i 203l540176634698

•45581 9033088247

ML3 .1) I B ML3.I> ; egin correction for single ,nisaligned horizontal quad in

ML3.l) ; Fcell 1. ML3,I> j it the horizontal kicker at horizontal quad previous to the

ML3.l)
1

one with the misalignment so that the beam
ML3,I> figoes through the center of the misaligned quad,

ML3.l) t adjl [px]+0.01 : strh3
adj 1 [x/r adj 1 [?]
•djl[px] -2.1407162629898209E-04
adjl[pt] =-1.ooooooooooooooooE-02
ML3.l) =-8.7344303359367659E-03

strhl=Opr strh?
strh

2
=o .ooooooooooooooooE+oo

Strh3=-iOOOOOOOOOOOOOOOOE+00
strh4=0 •1856600497176117E-02

.ooooooooooooooooE+oo

ML3.l) I N ML3.1> ; ow adjust the strengths of the kickers at the horizontal quad
ML3.I> j with the misalignment and at the next horizontal quad so that
ML3.i>

1

beam returns to the design trajectory at the latter horizontal

ML3 l> quad. . fi ML3.l) t adj2 [x] ,adj2 [px] : strh4,strhl

adj2 [x/r adj2 [?]
adj2[px] =3.7177677481727441E-21
ML3.l) =-l.9176431230311452E-19

strhl=-~r strh?
8 trh2=0 •1644003957606226E-02
strh

3
=_2°00oooooooooooooE+OO

8 trh4=l •1856600497176117E-02
•99 l5047851789408E-02

-210-

and Testin

Adapting MARYLIE to 1·nclude h fi d t e rst-or er transformation
mechanis

m involves essentially two modifications: the tracking
routines ,

and the concatentation routines.

i. Tracking and Concatenation

Tracking is implemented i hf d b n a straig t orwar manner y the scheme
described

in Chapter 2. The initial coordinates v
0

are offset by the
amount [f

1,CJ/v, and then ordinary tracking proceeds from there. This
involve o

s minor modification to the MARYLIE 3.0 routines for non-symplec-

tic and sy l
mp ectic tracking.

Testing merely involves checking that the initial conditions are

Shifted by
the amount expected based on the value of f 1 • The higher-

order
Portions of the map may be set to the identity to facilitate

Checking.

Concatenation is more difficult, implementing the process described
in Ch

apter 4. The routines for concatenating matrices and polynomials
th· lrd-ord

er and higher, as explained in Section 4b, already exist in

MARYtrE 3 .o. The routines principally responsible for this are CONCAT

and XFORM
, the former for concatenating the polynomials and multiplying

the matrices , the latter for transforming a polynomial by a matrix. To
thes

e must

is
Present.

be added a facility for concatenating when a first-order term

A special routine GlMOVE, called by CONCAT, performs the
comp

utation needed to move the first-order term to the left (4.72), or
0
Ptiona11y h (4 82) Th to move the first-order term to the rig t • • is

routine in
turn calls various utilities, including MATIFY which turns

-271-

--- ---- - - -

the
calculated

second-order polynomial h2 into a matrix JS according to
the equation

(l.99), and EXPM which symplectically exponentiates this
matrix b

' Y any of the three methods described in Chapter 5. It was

found after
coding all three methods that, for the same degree of

accuracy, the first two methods ran at approximately the same speed but
the Cayley

method ran approximately twice as fast. · Therefore, this

method was
used. GlMOVE also uses two Poisson bracket routines, FlPBKT

and PBI<T •

One easy test of the values of~ in the concatenation (4.72) is

afforded
by applying the result to zero on both sides. First, we

Simplify the problem by saying f 1 = g2 = g3 = g4 = O so

:f2: •f3. •f4. ·g . • • • . • l •
\.: e e .Je •lo v-----

(B.4)

On the left d t M h side, the application of the higher-or er par f tote
initial

condition o yields o. Then all that remains is

(B.5)

Fore~ [~1
ample, if g1 = .l Px, then the left side is •1 Px,~ =

(- 1
• ,O,o,o,o,o). On the right side, track in the fashion described

above h
' applying e: 1= first then using the usual tracking method for

higher
0 rder terms. We should get the same result for both sides to

order €3 .
Additionally'

l'hen
'on the right-hand side,

- :hl:
we may apply both sides to Cb= e •lo= [-h1,•J.

: h1 :
the application of e to these initial

-272-

conditions yields 0, and the application of the higher-order~ does not

change this. Thus, to test we may apply ½:Cb and expect to get -Ca•

Note that this method does not check the h2 , h3 or h4.

Both the above methods were used, and proved the routines correct.

In fact, the two sides of the second method are exactly the same, as

shown in Section 4d.

Another check on the formulas and coding is to move the g1 to the

left

: f 2 : : f 3 : : f 4 : : g 1 : : h 1 : : hz : : h3 : : h4 :
e e e e =e e e e (B.6)

and then move h 1 back to the right

:h1: :hz: :h3: :h4: :kz: :k3: :k4: :k1:
e e e e =e e e e (B.7)

and see how the polynomials kn compare with fn and g1• Considering that

the total order must correct through order 4, one would expect that

(B.8a)

(B.8b)

(B.8c)

(B.8d)

These were all borne out by scaling checks, although f4 - k4 is zero

because the computation of h4 and¾ is exact.

-273-

An important check of the concatenation routines is to compare the

result of tracking a map with an f 1 present with one where it is missing

but simulated it with a "kick" of the coordinates . The user-specified

subroutines of MARYLIE allow one to alter the coordinates in tracking

any way one pleases, so we may add constants in the same way that the

application of a first-order map does. If e and & are both scaled by a

factors, the difference of the end results of the two runs should scale

by a factor s 4 • This was indeed the case with the test lattices tried .

Finally, a check may be made on the end-result by translating a

parallel-face bending magnet in the direction along its pole faces, the

X direction. This should make no difference in the result up through

the appropriate total order in matrix and coefficients. This was tested

and confirmed to be the case.

ii. The Fixed Point (Cl osed Orbit) Finder

There are four routines that form the fixed point (closed orbit)

finder. CLORB is the main routine implementing the iteration scheme,

and is called on the user's instructions during lattice construction in

MARYLIE . It replaces the current map with the shift to the closed

orbit, and the map around the closed orbit. It calls three routines:

SANDWC, which constructs the map "sandwich" MNU- 1 or U-1NM; the logical

function TINDEP which determines whether the map is time independent or

not; and the subroutine GET4X4 which extracts the transverse part of the
·g .

matrix that represents e· 2 · in the cases of time independence . CLORB

has been written so that the user may dictate that the procedure in the

case of time independence or for time dependence be followed, or to let

the code determine this automatically .

-274-

In practice , the convergence is not quadratic as was demonstrated
theoreti

Cally in Chapter 6 because if-n+l) is not calculated by acting
on N, n)

Wi th the r(n+l) maps, as in (6.15) but by acting on M with the
f(n) l

l maps as in (6.10). This introduces some round-off error in the
computation ,

Ponent of ~

8ence. Even

because of the relatively large, fixed first-order com
:gl:

e , that washes out the quadratic nature of the conver-

so, convergence to ten digits precision occurs in ten
iterati ons for the lattice shown (Table B.) but with the horizontally
defocusing

quadrupoles misplaced by 10 cm horizontally. If Jn+l) is
ca1cu1

ated with ,In) i t b d ti A N' and, the convergence s seen o e qua ra c.
tout·

lne NCLORB (not listed) performs the calculation this way, and the

quadrati
c converage was verified.

To test the closed orbit finder routines, we merely check both
s .
ldes Of (6 .7)

(6. 7)

by
Putting the right side into the standard factorization with the con-

Catenation tools available. The testing proved the routines correct •

.!ih_specification of Misalignments and Generation of Maps

'!'here are several routines to implement the misalignment
Spe i

c fication and map generation described in Chapters 7, 11, and 12.
Th

e routine SHIFID takes Euler angle parameters given at a fiducial

Point
and computes what they should be at the entry or exit palefaces

to the process described in Chapter 11 • It uses the routines

INVEUC for doing multiplication and inversion respectively in

-275-

the Euclidean group. Once the Euclidean group parameters are known at

the face, the routine SHIFT computes the map according to the method of

Chapter 12. It uses the routines AROT and TPROTl for the rotations and

LATSHF and DRIFTl for the translations.

iv. Dipoles

The map computation for the correction dipole has been coded in the

kicker approximation (10.38). It is called KICKER. It first computes

the map of an ideally powered half-parallel face magnet, and concaten

ates this with the coordinate transformation explained in Chapter 10.

The ideally powered half-parallel face magnets and the general

bending magnet have been coded into routines HPF and GBODY (not

listed). This mispowered versions, as well as the mispowered version of

the normal-entry bending magnet, await coding.

-276-

c. Listings of Important Routines

In the following pages are tables giving listings of some of the

important routines used in MARYLIE 3.1 for concatenation, fixed point

finding, and so on. They are written in Fortran (ANSI X3.9-1978), with

the exception of the "include" statements.

Table B.5 is a brief summary of routines not listed that are called

by the listed routines. Tables B.6 through B.12 are listings of

misalignment concatenation routines described in Section Bb, along with

various matrix symplectification and symlecticity checking routines (see

Chapter 5). Table B.13 lists the closed orbit finder routine . Tables

B.14 through B.18 list the routines for computation of the misaligned

maps as described in Chapter 12. Tables B.19 through B.22 describe the

misalignment specification and Euclidean group computation described in

Chapters 7 and 11.

-277-

1'I!NV (M)

MMutr (A, B, C)

MTMutr (A,B,c)

CMutr (A,X,B)

VCLE AR (F,N)

VCAnn (F,X,G,N)

VADD (F,G,H,N)

VA.ss (F,G,N)

ALtoc (N)

DEA.Lt
(PTR,LEN)

SVpBI<T
(F,N,I,G)

M.<\I>ELT (TYPE
, PARMS, KCK)

LEs (
X,D!M,M,Y,S)

l-ipplJT
' MPGET' MP TOWN

Table B.5 Routines Not Listed

Inverts a symplectic matrix M.

Matrix multiplication A= B c.

Matrix transpose and multiply A=

Btranspose C.

Matrix multipy by constant A= X B.

Clear (set to 0) the order N part of the
polynomial F.

Cumulative addition of polynomial
coefficients F = F + XG for scalar X and
Nth order part of F and G.

Polynomial coefficient addition F = G + H,
Nth order part.

Polynomial assignment F = G, copy Nth order
part of G into F.

Allocate a block of data of length N from
the common storage 'BLDATA'. Value
returned is a pointer to the start.

Deallocate data block.

Single variable Poisson bracket GN

create the map on the map ring stack level
specified by KICK of TYPE with parameters
PARMS.

Linear equat ion solver Y = MX. Sis
scratch area.

"Sandwich" the two maps on top of the

stack, either B-1AB or BAB-I.

Put map on right stack, get it from stack,
place or remove temporary ownership on map
to prevent deletion.

-278-

Table B.6 Subroutine GlMOVE

c Thesubroutine glmove(out,mout, f,mf,g,which)
c poly g move moves the exponential of a first order routine" 1 "
c nomial to the right (which=l):
c exp(:gl:)exp(:f2:)exp(:f3:)exp(:f4:)exp(:fl:)
c or t = exp(:h2:)exp(:h3:)exp(:h4:)exp(:hl:)

c o the left (which=-1):
c exp(:fl:)exp(:f2:)exp(:f3:)exp(:f4:)exp(:gl:)
c Writ = exp(:hl:)exp(:h2:)exp(:h3:)exp(:h4:)
c ten by Liam Healy, June 13, 1985.

c----v c ariables----
out -c - array of polynomials returned
mout -- matrix returned

c f dofuble precision out(*),mout(6,6)
' m - 1 c g = po ynomial and matrix of first map

c mfin = polynomial of second map
v - inverse of mf

c Whidouble precision f(*),mf(6,6),g(*),mfinv(6,6)
~h, dw = which way to move gl (see above)

nteger which
c h double precision dw

ut - hl - , untransformed
c glf~o~ble precision hut(6)

- [gl,f3] etcetera #double precision glf3(27),glglf3(6),glf4(83),glglf4(27),

c gt _ggglf4(6),ggfgf(6),ggf3f3(27),f3glf3(83)
- first order part of g transformed by mf

c double precision gt(6) - e symplectic exponentiation of the matr x calculated emh - th i
~ouble precision mh(6,6),emh(6,6)

C
integer i

c--c ;~Functions and Subroutines called----

c pbkt, pbkt
matif ' c va Y, mmult, mass, minv,expM

c xfss, vadd, vcadd, vclear,
orm

C

c----Routine---
do 100 i=l 6

. f ' l00 1. (g(i).ne.0.) goto 120

continue
call vass(out f 0)
C 11 ' ' a mass(mout,mf)
return

c---12;----Calculate gt, gl transformed by the matrix mf------

continue
if (which.gt.0) then

call mass(mfinv,mf)
call minv(mfinv)

-279-

call xforrn(g,l,rnfinv O gt)
else ' '

call vass(gt g 1)
endif ' '

c--
c

-(g--l-,f-
3
-c]reate all the Vari Pi B kt N d d

ous o sson races ee e ---------------

c (glcalll flpbkt(glf3, gt,f,3)
,g ,f3]

c (f
3
calll flpbkt(glglf3, gt,glf3,2)
,g ,f3]

c [gl~;!t pbkt(f,3,glf3,2, f3glf3)

c (glcalll flpbkt(glf4, gt,f,4)
,g ,f4]

c (l call flpbkt(glglf4, gt,glf4,3)
g ,gl,gl,f4]

c ((1all flpbkt(ggglf4, gt,glglf4,2)
g C 'g 1 , f 3] , (g 1 , f3]]

c ((glall flpbkt(ggfgf, glglf3,glf3,2)
,gl ,f3] ,f3]

call flpbkt(ggf3f3 glglf3,f,3)
dw=dble(which) '

c----c Th ---Calculate the matrix part of the factored exponential-------

ere ar
c The f e two uncombined exponentials representing a linear map

c The irst is simply mf, as supplied.
second is:

call vclear(out, 2)
call vcadd(out, dw,glf3,2)
call vcadd(out, dw*.25dO,ggf3f3,2)

c Nowcall vcadd(out, .5dO,glglf4,2)
c and we must make this into a matrix 'mh',

multiply the matrices together to get the final one.

call matify(mh out)
call ' expM(emh mh)
call mmult(mo~t, emh,mf)

c--------Calculate the third-order part of the factored exponential-----

call vclear(out, 3)
call vcadd(out, l.dO,f,3)
call vcadd(out, dw*.5dO,f3glf3,3)
call vcadd(out, dw,glf4,3)

c--------Fourth-order part is trivial ______ _

call vass(out, f,4)

e--
-----Calculate first-order part of the factored exponential-------

call vclear(out, 1)
call vass(hut, gt,l)
call vcadd(hut, .5dO,glglf3,l)
call vcadd(hut, dw*l.d0/6.dO,ggglf4,l)
~all vcadd(hut, .25dO,ggfgf,l)

f (which.lt.O) then

-280-

call xform(hut,l,mf,O,out)
call vadd(out, out,f,l)

else
call vadd(out, hut,f,1)

endif
return
end

Table B.7 Subroutine MATIFY

subroutine matify(matrix,f2)
c Computes the matrix that corresponds to :f2:.
c It is written in a simple-minded manner to keep execution time short.
c Written by Liam Healy, May 29, 1985.
C

c----Variables----
c matrix= matrix supplied

double precision matrix(6,6)
c f2 = array of coefficients giving f2 values (others are ignored)

double precision f2(*)
C

c----Routine----
matrix(l,l)=-f2(8)
matrix(l,2)=-2.*f2(13)
matrix(l,3)=-f2(14)
matrix(l,4)=-f2(15)
matrix(l,5)=-f2(16)
matrix(l,6)=-f2(17)
matrix(2,1)=2.*f2(7)
matrix(2,2)=f2(8)
matrix(2,3)=f2(9)
matrix(2,4)=f2(10)
matrix(2,5)=f2(11)
matrix(2,6)=f2(12)
matrix(3,l)=-f2(10)
matrix(3,2)=-f2(15)
matrix(3,3)=-f2(19)
matrix(3,4)=-2.*f2(22)
matrix(3,5)=-f2(23)
matrix(3,6)=-f2(24)
matrix(4,l)=f2(9)
matrix(4,2)=f2(14)
matrix(4,3)=2*f2(18)
matrix(4,4)=f2(19)
matrix(4,5)=f2(20)
matrix(4,6)=f2(21)
matrix(5,l)=-f2(12)
matrix(5,2)=-f2(17)
matrix(5,3)=-f2(21)
matrix(5,4)=-f2(24)
matrix(5,5)=-f2(26)
matrix(5,6)=-2.*f2(27)
matrix(6,l)=f2(11)
matrix(6,2)=f2(16)
matrix(6,3)=f2(20)
matrix(6,4)=f2(23)
matrix(6,5)=2.*f2(25)
matrix(6,6)=f2(26)
return
end

-282-

Table B.8 Subroutine FlPBKT

subroutine flpbkt(pb, left,right,ords)
c fl Poisson Bracket.
c Takes the Poisson bracket of the first order part of 'left' with
c the order 'ord' part of 'right'. The result is left in pb.
c If ords<O, then do all orders from 1 up to -ords.
c Written by Liam Healy, June 13, 1985.
C

c----Variables----
c pb = Poisson Bracket, returned

double precision pb(*)
c left, right= coefficients of monomials to be concatenated

double precision left(*),right(*)
c onetrm = result of concatenating 'right' with a single phase
c space variable

double precision onetrm(0:83)
c ords, ord, ordm = order supplied, order of 'right' to be
c concatenated, ord-1
c psv = phase space variable (1 ••• 6)

integer ords,ord,psv,ordm
C

c----Functions and Subroutines called---
c svpbkt, vcadd, vclear
C

c----Routine----
call vclear(pb,sign(abs(ords)-1,ords))
do 140 ord=max(ords,l),abs(ords)

ordm=ord-1
do 100 psv=l,6

call svpbkt(right,ord,psv,l, onetrm)
call vcadd(pb, -left(psv),onetrm,ordm)

100 continue
140 continue

return
end

-283-

Table B.9 Function TINDEP and Subroutine GET4X4

logical function tindep
c Is the linear part of the map
c represented by the matrix time independent, i.e. does it leave
c energy untouched?
c Written by Ll.am Healy, October 20, 1985.

c----Variables----
include 'map:mappcs.inc'

c ptrs = pointers to current map
integer ptrs(NPCS),base,i
include 'bldata'

c----Routine----
call mpget(ptrs,O)
base=ptrs(MATRIX)-1
tindep= bldata(base+36).eq.l.
do 100 i=l,5

100 tindep=tindep.and. bldata(base+6*i).eq.O.
return
end

subroutine get4x4(matout, matin)
c Collect only the transverse piece of matin into matout.
c Written by Liam Healy, October 20, 1985.

c----Variables----
c matout, matin = matrices returned and supplied

double precision matout(4,4),matin(6,6)
c row, col= row and column indeces

integer row,col

c----Routine----
do 100 row=l,4
do 100 col=l ,4

100 matout(row,col)=matin(row,col)
return
end

-284-

Table B.10 Routines for Exponentiation of Matrices

subroutine expM (matout, matin)
c Exponentiate a matrix by the Cayley method.
c This program written by Liam Healy, June 1, 1985.
C

c----Variables----
c matin, matout = the matrix to be exponentiated and the result.

double precision matin(6,6),matout(6,6)
c matin2, matin3 = square and cube of matin

double precision matin2(6,6), matin3(6,6)
c terml, term2 = first and second terms in tanh series

double precision terml(6,6),term2(6,6)
c num, den, JWaprx = numerator and denominator of M calc, J*Wapprox

double precision num(6,6),den(6,6),JWaprx(6,6)
c ident =identity

C

double precision ident(6,6)
common/id/ident

c----Routine----
call mmult(matin2, matin,matin)
call mmult(matin3, matin,matin2)
call cmult(terml, dble(l./2.),matin)
call cmult(term2, dble(-l./24.),matin3)
call madd(JWaprx, terml,term2)
call madd(num, ident,JWaprx)
call msub(den, ident,JWaprx)
call mdiv(matout, num,den)
return
end

subroutine expMtaya (matout, matin,lterm)
c Exponentiates a matrix the conventional way : Taylor series
c The norm of each term is printed in this routine (as opposed to c
expMtayl) .
c This routine for testing purposes only.
C

double precision matout(6,6),matin(6,6)
double precision term(6,6),new(6,6)
double precision norms(0:4),mxclsu
double precision fact

c ident = identity matrix
double precision ident(6,6)
common/id/ident

c lterm = last term in Taylor series.
integer lterm

C

fact= l
call mass(new,ident)
call mass(matout,ident)
print *,'Norm of Taylor terms:'
do 100 i=l,lterm

-285-

call mmultd(new, new,rnatin)
fact=fact*i
call cmult(term, l.d0/fact,new)
norms(mod(i,S))=mxclsu(terrn)
if (mod(i,S).eq.0) print 800,(norms(j),j=l,4),norms(0)

800 format (Sgl3 . 6)
call madd(matout, matout,term)

100 continue
if (mod(lterm,S).gt.0) print 800,(norms(j),j=l,mod(lterm,S))
print*
return
end

subroutine expMtayl (matout, rnatin,lterm)
c Exponentiates a matrix the conventional way : Taylor series
c This routine for testing purposes only .
C

double precision rnatout(6,6),matin(6,6)
double precision term(6,6),new(6,6)
double precision norms(0:4),mxclsu
double precision fact

c ident = identity matrix
double precision ident(6,6)
common / id/ident

c lterm = last term in Taylor series.
integer lterm

C

fact=l
call mass(new,ident)
call mass(matout,ident)

c print *,'Norm of Taylor terms: '
do 100 i=l,lterm

call mmultd(new, new,matin)
fact=fact*i
call cmult(term, l.d0/fact,new)

c norms(mod(i,S))=mxclsu (term)
c if (mod(i,S) . eq.0) print 800,(norms(j),j=l,4) , norms(0)
c 800 format (Sgl3.6)

call rnadd(matout, matout,term)
100 continue

c if (mod(lterm,S).gt.0) print 800,(norms(j),j= l ,mod(lterm,S))
c print*

return
end

-286-

Table B.11 Subroutines for Matrix Symplectification by Furman's Method

subroutine corr(cormat, mat)
c Gives the correction matrix C of M. Furman's prescription for
c symplectification.
c Written by Liam Healy, June 11, 1985 .
C

c----Variables----
c cormat, mat= the correction matrix and the input matrix.

double precision cormat(6,6), mat(6,6)
c err= the matrix E

double precision err(6,6)
c ident = identity matrix

double precision ident(6,6)
common/id/ident

C

c----Routine----

C

C

C

call symper(err,mat)
call cmult(err, .5d0,err)
call msub(cormat, ident,err)
return
end

subroutine iter(m,niter)
Iterates to converge on a sympectic matrix by the prescription of
M. Furman .
Written by Liam Healy, June 11, 1985.

C

c----Variables----
c m = matrix input and symplectic matrix returned

double precision m(6,6)
c cormat= correction matrix C

double precision cormat(6,6)
c niter= number of iterations

integer niter
C

c----Routine----
do 100 i=l,niter

call corr(cormat,m)
call mmultd(m, cormat,m)

100 continue
return
end

-287-

Table B.12 Routines for Determining the Symplecticity of a Matrix

subroutine symper(err, mat)
c Gives SYMPlectic ERror: The deviation of a matrix from symplecticity
c according to the formula of A. Dragt and M. Furman :
c E = -1 -N.J.Ntranspose.J
c where N = mat, the suppplied matrix, E = err
C

c----Variables----
c err= error matrix returned
c mat= matrix to be tested, supplied

double precision err(6,6),mat(6,6)
c ntj, nj, term2 = Ntranspose . J, N.J, N.J . Ntranspose

double precision ntj(6,6),nj(6,6),term2(6 , 6)
c jm = matrix J

integer jm(6,6)
common/symp/jm

c ident = identity matrix
double precision ident(6,6)
common/id/ident

C

c----Routine----
call mtmult(ntj, mat,jm)
call mmult(nj, mat , jm)
call mmult(term2, nj,ntj)
call madd(err, ident,term2)
call cmult(err, -1.d0,err)
return
end

double precision function mxclsu(m)
c Computes the MaXimum CoLumn SUm norm for the matrix m.
c Reference: L. Collatz, Functional Analysis & Numerical Mathematics,
C p. 177
c Written by Liam Healy, June 6, 1985 .
C

c ----Variables--
c m =matrix

double precision m(6,6)
c sum= sum norms for the columns

double precision sum(6)
C

c----Routine----
mxclsu=0.
do 100 j=l,6

100 sum(j)=0.
do 120 j= l ,6

do 110 i=l ,6
110 sum(j)=sum(j)+abs(m(i,j))
120 mxclsu=max(mxclsu,sum(j))

return
end

-288-

Table B.13 Subroutine CLORB

subroutine clorb(signal)
c Closed orbit finder. Based on the techniques of Chapter 6.
c Written by Liam Healy, October 1, 1985, rewritten April 4, 1986.

c----Variables-----
include 'map:mappcs.inc'

c signal= error condition returned
integer signal

c orig= original map as supplied on top of the ring stack
integer orig(NPCS),fl(NPCS),d(NPCS)
integer idsubd,rnpll,scrach,isdred,zkick,opt,i

c dtimin =dis time independent
logical dtimin

c identity matrix
double precision iden(6,6)
common/id/iden
external ident
include 'bldata'

c----Function----
integer alloc
logical tindep

c----Routine---
zkick=O
idsubd=alloc(36)
if (idsubd.le.O) goto 300
rnpll=alloc(6)
if (rnpll.le.O) goto 300
call mptown(l ,O)
call mpget(orig,O)
call mapelt(ident,O,zkick)
if (zkick.eq.-1) goto 300
call mptown(l ,O)
call mpget(fl,O)
d(MATRIX)=O
do 100 i=l ,8

if (d(MATRIX).gt.O) call remmap(d)
call mpput(orig,O)
opt=2
call sandwc(opt,-1)
if (opt.eq.O) goto 300
dtimin=tindep()
call mpget(d,O)
call msub(bldata(idsubd),iden,bldata(d(MATRIX)))
call mtran(bldata(idsubd))
if (dtimin) then

isdred=alloc(l6)
if (isdred.le.O) goto 300
call get4x4(bldata(isdred),bldata(idsubd))

-289-

&

&

100

300

scrach=alloc(20)
if (scrach.le.O) goto 300
call les(bldata(rnpll),4,bldata(isdred),

bldata(d(POLYS)),bldata(scrach))

bldata(rnpll+4)=0.
bldata(rnpll+5)=0.
call deall(isdred,16)
call deall(scrach,20)

else
scrach=alloc(42)
if (scrach.le.O) goto 300 call les(bldata(rnpll),6,bldata(idsubd),bldata(d(POLYS)),

bldata(scrach))
call deall(scrach,42)

endif call vadd(bldata(fl(POLYS)),bldata(fl{POLYS)),bldata(rnpll),l)

call mpput(fl,0)
continue call vass(bldata(d(POLYS)),bldata(fl(POLYS)),l)

orig(OWNED)=max(orig(OWNED),O)
call remmap(orig)
fl (OWNED)=O
call remmap(fl)
call deall(idsubd,36)
call deall(rnpll,6)
call mpput(d,0)
return

continue
signal=-!
call remmap(orig)
f 1 (OWNED)=0
call remmap(fl)
call deall(idsubd,36)
call deall(rnpll,6)
end

-290-

Table B.14 Subroutine SHIFT

c G Subroutine shift(parms,kick) c a tra

1
th

e map for a coordinate transformation corrosponding to
enerates and ri id n ° coordinates in the X, Y, Z axes (delx, dely, delz),

c Goldst!i body rotations with the Euler angles (phi, theta, psi) (see c ns atio f

c Transf n, sec 4-4 for definition). c respec;rmations are active motion of the beamline elements with
c they a to the fixed coordinates; from the particles' point of view,
elements re passive tranformations of the coordinates attached to the

C Th • c must be routines IATSHF, AROT, TPROTI, DRIFT! us th
c of the called so that they describe passive transformation
c Writte coordinates {tprotl is called with negative of parameter).

c en by Liam Healy, August 21, 1985.

c----v ariables----
doubl . i e precision parms(*)

c libr:teger kick,nokick,maxkck,opt
ry routines called

c rnal latshf,driftl,arot,tProtl exte

c----Routine----

C

C

C

30Q

opt=2
nokick=O
maxkck=max(l kick)
call , if (mapelt(arot,parms(4),maxkck)

maxkck.eq.-1) goto 300 The Y-axis rotation is opposite sign, becau~e our rotation is
positive by right-band rule, whereas tprot 1s positive bY left-

hand.
call) if (mapelt(tprotl,-parms(S),nokick

nokick.eq.-1) goto 300
call if ccmap(opt)

(opt.eq.O) goto 300
call) if (mapelt(arot,parms(6),nolcick
callnokick.eq.-1) goto 300
if ccmap(opt)
caliopt.eq.O) goto 300
if (mapelt(latshf,parms,nokick)
callnokick.eq.-1) goto 300
if ccmap(opt)
caliopt.eq.O) goto 300
if mapelt(driftJ,parms(3),nokick)
cal(nokick.eq.-1) goto 300
if 1 ccmap(opt)
if (opt.eq.O) goto 300
if (kick.eq.O) call ptrdrp(nokick)
r (nokick.eq.-1) goto 300

eturn
kick=-1
return
end

C

C

C

C.

C

C

C

C

C

C

100

Table B.15 Subroutine TPROT

subroutine tprot(parms,mh,h,flag)

subroutine to generate lie transformation
for trailing edge rotation to pole faces of parallel faced

bending magnet without fringe field
rho is the magnet design orbit
radius in metres, psi the angle between the design
orbit and the normal to the pole face

implicit double precision (a-h,o-z)
double precision parms(*),h(*),mh(6,6)

include 'glparm.inc'
integer flag

goto 100

entry tprotl(parms,mh,h,flag)
h(l)=sin(parms(l))
continue

C. p arameters
C

C

C

C

C

C

C.

C

C

C

C

C

psi= rotation angle
psi=parms(l)

spsi=dsin(psi)
cpsi=dcos(psi)
tan=spsi/cpsi
tan2=tan*tan
sec=l.OdO/cpsi

trailing edge map, in absence of fringe fields

matrix arrays (containing linear effects)

do 70 i=3 6
' mh(i,i)=+l.OdO

70 continue
mh(2,6)=-sec*spsi/beta
mh(5,l)=+spsi/beta
mh(l,l)=cpsi
mh(2,2)=sec

arrays containing generators of nonlinearties

degree 3

h(34)=-tan/2.0d0
h(43) =-tan/2.0d0
h(48)=-tan/(gamma**Z*beta**Z*Z.Od0)

degree 4

-292-

h(l05)=+tan2/4.d0
h(l09)=-tan/(2.dO*beta)
h(ll4)=+tan2/4.d0
h(ll9)=+tan2/(4.dO*gamma**2*beta**2)
h(l32)=-tan/(2.dO*beta)
h(l39)=-tan/(2.dO*gamma**Z*beta**3)
return
end

Table B.16 Subroutine AROT

Subroutine arot(parms,mh,h,flag)

c Rotates c right- axes in x-y plane by angle •ang'. Positive angle rotates by
c This ihand rule (thumb in z direction, the direction of beam).
c of s a passive rotation; particle coordinates are given in terms

c new axes.
In ord c rot er to get the map for an element, e.g., a quad,

ated o i i h d c of th n ts axis by theta clockwise looking n t e irection
c by e beam, the element map should be preceded a
c Wri;rot(theta) and followed by arot(-theta).

iten by Liam Healy, June 12, 1984.
mplicit double precision (a-h,o-z)

~ouble precision h(*),mh(6,6)

1
ouble precision parms(*)
nteger flag

c R ang=parms(l)
otat e coordinates

mh(l,l)=cos(ang)
mh(l,3)=sin(ang)
mh(3 ,l)=-sin(ang)

c Rotmh(3,3)=cos(ang)
ate momenta
mh(Z,2)=cos(ang)
mh(Z,4)=sin(ang)
mh(4 ,2)=-sin(ang)

c Don~h(4,4)=cos(ang)
t touch flight time

mh(5,5)=1.
c mh(6 6)=1

Pol ' • ynomials are zero (bless those linear maps).

return
end

-294-

Table B.17 Subroutine IATSHF

C

C

Subroutine latshf(parms,mh,h,flag)
Lateral shift map.
Liam Healy, March 18, 1986.

C double precision mh(36),h(*)
Parms= list of parameters

c double precision parms(*)
flag= what derivatives to calculate

integer flag,i
double precision ident(36)
common/id/ident

c-- R
-- outfne----

do 100 i=l 36
lOO mh(i)=id~nt(i)

h(2)=parms(l)
h(4)=parms(2)
return
end

-295-

C

C

C

C

C

C

Table B.18 Subroutine DRIF,'.!'..

subroutine drift(parms,mh,h,flag)

generates linear matrix mh and
array h containing nonlinearities
for the transfer map describing
a drift section of length 1 metres

implicit double precision (a-h,o-z)
double precision l,lsc,mh
dimension h(209)
dimension mh(6,6,0:*)

c include 'glparm.inc'
Parms= list of parameters

c flado~ble precision parms(*)
g - what derivatives to calculate

C

C

C

C

100

integer flag

goto 100
entry driftl(parms,mh,h,flag)
h(6)=-parms(l)/(sl*beta)

continue
l=parms(l)
lsc=l/sl

add drift terms to mh

do 40 k=l 6
40 mh(k,k,O);+l.OdO

continue
mh(l ,2 ,O)=+lsc
mh(3,4,0)=+lsc **Z)))
mh(5,6,0)=+(lsc/((gamma**Z)*(beta

c Deriv ti respect to length 1
a ve of matrix with

C

C

C

C

C

C

C

if (flag.gt.l) then
mh (1 , 2 , 1) = 1 • / s 1
mh(3,4,1)=1./sl **Z)
mh(S,6,1)=1./(sl*(gamma*beta)

endif

add drift terms to h

degree 3

h(53)=-(lsc/(2.0d0*beta))
h(76)=-(lsc/(2.0d0*beta)) * ta**3)))
h(B3)=-(lsc/(2.0dO*(gamma**2) (be

degree 4

h(l40)=-lsc/8.0d0

_z96-

h(l49)=-lsc/4 OdO
h(l54)- . " h(l

9
S)=+(lsc*(l.Od0-(3.0d0/(beta**2))))/4.0d0

h(
2
0 =-lsc/8.0dO h(

2
00)=+(lsc*(l.Od0-(3.0d0/(beta**2))))/4.0d0

ret 9)-+lsc*(l.OdO-(S.OdO/beta**Z))/(8.0dO*gamma**Z*beta**Z)

urn
end

_z97-

Table B.19 Subroutine SHIFID

c Get the Eucn~ shifid(mface,misfid,parms,eltyp,face) c subrouti
the face lidean group (3 misplacements+ 3 Euler angles) of

c Point a ;isalignment, given the misalignment at the fiducial
~ ' n the parameters describing the magnet,

C - A -l -1 -1 -1 c The E-

1

B A or C = A B A (entry face, exit face)
Positiv ang es are active rotations of the beamline elements,

c u er 1
c Writtenebaccording to the right-hand rule.
c-- Y Liam Healy, March 16, 1986,

--Vari b c mf ales----c misfid.

8

-_Euclidean group element of face misalignment (output)
c ace == C -Parms= - Euclidean group element of fiducial point misalignment

c bend radius, bend angle, entrY angle, exit angle (bend)
c parameter of perfect elment, either:

doubl length (straight element) ~ eltyp. e precision mface(6),misfid(6),partJIS(4),theta

face==
1
~l:bend, l:straight

c inte · entry face, -1:exit face
ftof == !e: eltyp,face doub - Euclidean group element of fiducial to face map

int le precision ftof(6) invff(6),interm(6),invmf(6)

eger i '

c--
--Routine----

lOO do 100 i==l,6
ftof(i)=O

if (elt • th yp.lt.O) then
fteta=parms(2)/2.
f of(l)=-2*parms(l)*sin(theta/2,)**2
ftof(3)=-face*parms(l)*sin(theta)

el tof(S)=face*theta
Se
ftof(3) endif =-face*parms(l)/2.

call i if (f nveuc(invff,ftof)
ace.gt.O) then

ca
1
ll eucpr(interm,misfid,invff)

ca 1) else eucpr(mface,ftof,interm

~all inveuc(invmf,misfid)
cail eucpr(interm,invmf,invff)

end;f l eucpr(mface,ftof,interm)

return
end

-298-

Table B.20 Subroutine EUCPR

subroutine eucpr(out, inl,in2)
c Take the product of the Euclidean group (translations+ S0(3))
c elements parameterized by displacements alpha (elements 1,2,3)
~ ~uler angles psi, theta, phi (elements 4,5,6) (see Goldstein sec 4-

).
c Written by Liam Healy, December 5, 1985.

c----Variables----c out, inl, in2 = returned parameters, two incoming parameter sets
double precision out(6),inl(6),in2(6)

c Ph, th, ps = phi, theta, psi Euler angles
c double precision phpr,thpr,pspr,phl,thl,psl,pb2,th2,ps2

sines and cosines of angles double precision csum,ssum,cphl,sphl,cph2,sph2,cthl,sthl,cth2,

c & sth2,cpsl,spsl,cps2,sps2,arg,num,den
matrix= rotation matrix in R3

double precision matrix(3,3)
c i,j = indeces in R3

integer i 3'
C h i ' P = half of pi

include 'nature '
double precision HPI
parameter (HPI=PI/2.)

c----F unction----
double precision gen,a,b,c,nofuzz
gen(a,b,c) = sin(a)*sin(b)*cos(c) + cos(a)*ssum*sin(c)

& + sin(a)*csum*cos(b)*sin(c)

nofuzz(a)=sign(l.dO,a)*min(abs(a),l.dO)

c-- R -- outine----c Product of S0(3) elements, parameterized by Euler angles

C

C

csum=cos(inl(6)+in2(4))
ssum=sin(inl(6)+in2(4))
phl=inl(4)
cphl=cos(phl)
sphl=sin(phl)
thl=inl(5)
th2=in2(5)
cthl=cos(thl)
sthl=sin(thl)
cth2=cos(th2)
sth2=sin(th2)
ps2=in2(6)
cps2=cos(ps2)
sps2=sin(ps2)
arg=cthl*cth2-csum*sthl*sth2
out(5)=acos(nofuzz(arg))
if (out(5).ne.O.) then The numerator and denominator of the atan2 are not both 0,

because elements 1,3 and 2,3 of the rotation matrix can

-299-

C

C

&
&

be both O only if theta=O (see Dragt notes on Rotation, p.59)

num=gen(phl,thl,th2)
den=gen(phl+HPI,thl,th2)
.£ (i num.eq.O •• and.den.eq.O.) then

out(4)=0.
else

out(4)=atan2(num,den)
endif
num=gen(ps2,th2,thl)
den=gen(ps2+HPI,th2,thl)
if (num.eq.O •• and.den.eq.O.) then

out(6)=0.
else

out(6)=atan2(num,den)
endif

else
theta=O : Rotation matrix is just Rz(phi)

out(4)=acos(nofuzz(csum*(cphl*cps2*cthl*cth2-sphl*sps2)
-ssum* (cphl*sps2*cthl+sphl*cps2*cth2)

-cphl*cps2*sthl*sth2))

out(6)=0.
endif

c The translation part
do 120 j=l ,3

120 out(j)=in2(j)
call euler(out, inl,in2(4))
return
end

-300-

Table B.21 Subroutine EULER

subroutine euler(vecout, vecin,angs)
c Returns the rotation matrix applied to vector for the Euler angles
c supplied.
c Translated vector is added to whatever is already in vecout.
c Written by Liam Healy, December 6, 1985.

c----Variables----
c vecin, vecout = vector supplied and returned

double precision vecin(3),vecout(3)
c matrix= matrix

double precision matrix(3,3)
c angs = Euler angles

double precision angs(3)
c cph, sph, cth, sth, cps, sps cosine and sine of the angles

double p~ecision cph,sph,cth,sth,cps,sps
c i,j = indeces in R3

integer i,j

c----Routine----
c Define trig quantities

cph=cos(angs(l))
sph=sin(angs(l))
cth=cos(angs(Z))
sth=sin(angs(Z))
cps=cos(angs(3))
sps=sin(angs(3))

c Set matrix values
matrix(l,l)=cph*cth*cps-sph*sps
matrix(Z,l)=sph*cth*cps+cph*sps
matrix(3,l)=-sth*cps
matrix(l,2)=-cph*cth*sps-sph*cps
matrix(Z,2)=-sph*cth*sps+cph*cps
matrix(3,2)=sth*sps
matrix(l,3)=cph*sth
matrix(2,3)=sph*sth
matrix(3, 3) =cth
do 100 j=l ,3
do 100 i=l ,3

100 vecout(i)=vecout(i)+matrix(i,j)*vecin(j)
return
end

-301-

Table B.22 Subroutine INVEUC
subrouti c Finds t ne inveuc(out,in)

c specif• he inverse element of the element of the Euclidean group
c Writt led by in (translation vector+ Euler angles).

en by Liam Healy, December 9, 1985.
c----v
c ariables----

Out, in=
c Grou returned parameters, incoming parameters.

P is p 3 l l d arameterized by 3 translation vectors + Eu er ang es.
c i = ~udble precision out(6),in(6)

n ex in R3
integer i

c _ n
-"-0Utine---

out(4)==-in(6)
out(5)=-in(5)
out(6)==-in(4)

120 do 120 i==l,3
out(i)==O

C l •
d~ t euler(out, in,out(4))

100 oo i==l,3
out(i)==-out(i)

return
end

-302-

C

Table B.23 Subroutine KICKER

subroutine kicker(parms,kick)

parms = list of parameters
double precision parms(*)

c b = field strength, len = length of dipole
c rho= bend radius
c theta= bend angle
c hv = horizontal (0) or vertical (1) flag

double precision b,len,rho,theta,hv,hpfprm(3),frgprm(2)
integer kick,kck,nokick,opt

include 'libr: glparm . inc '
include 'nature'
external hpfl,nfrng,arot,drift

c----Routine---
opt=2
len=parms(l)
b=parms(2)
if (b.eq.0.) then

call mapelt(drift,parms,kick)
if (kick.eq.-1) goto 300

else
hv=parms(3)
rho=brho/b
theta=asin(len/rho)
nokick=0
kck=max(l ,kick)
if (nint(hv).ge.l) then

call mapelt(arot,PI/2,kck)
kck=0

endif
frgprm(l)=rho
frgprm(2)=1
call mapelt(nfrng,frgprm,kck)
if (kck.eq.-1) goto 300
if (nint(hv).ge.l) then

call ccmap(opt)
if (opt.eq.0) goto 300

endif
hpfprm(l)=rho
hpfprm(2)=theta
hpfprm(3)=1 kick)
call mapelt(hpfl,hpfprm,no
if (nokick.eq.-1) goto 300
call ccmap(opt)
if (opt.eq.0) goto 300
frgprm(2)=-l kick)
call mapelt(nfrng,frgprm,~

0

if (nokick.eq.-1) goto 3o
call ccmap(opt)
if (opt.eq.0) goto 300

-303-

if (nint(hv) .ge.l) t hen
call mapelt(arot,-PI/ 2,nokick)
if (nokick.eq.-1) go t o 300
call ccmap (opt)

endif
if (kick.eq.O) cal l pt rdrp (O)

endif
return

300 continue
i f (kick .eq .O) cal l ptrdr p(O)
kick=-1
return
end

-304-

■

~Ppendix C: The Symbolic Computation Code ANNALIE

In this Appendix I h 11 s a briefly describe and give examples for
ANNALIE (A
t ~lytical ~ Algebraic computations for charged particle beam
rans port)

'a code written in the language SMP to do some of the
com

Putations
t of MARYLIE described above analytically. I will assume
hat th

e reader i f s amiliar with the SMP language (Inference Corp.
[1983])

' or can figure it out with examples and an explanation.
Portions of

this package were used to verify the concatenation formulae
Of Ch apter 4 , and to compute the maps in Chapters 9 and 10.

The Package of routines called GENL (Table C.1) contains a number
Of

general Purpose routines and initialization routines. The function
8 et-

Up creates the canonical variables, parameters such as the dimension
Of

Phase 8 Pace, and quantities such as the matrix J (1.7). The function
I

nde:,c•
computes the index number for an array of exponents, and 'expon'

does the
, reverse (see Appendix D). The other important functions are

Jcform•
Which transforms a polynomial by a matrix by the transformation

tu1 e, and ,
matify' which turns a polynomial into a matrix according to

the tule
(l .99). The package SETUP (Table C.2) involves the appropriate

.1.nit:t.
al:1.zauon and defintion.

MAAYtrE, through working numerically is, in effect, doing symbolic

comPutat:1.
0 ns. Storing each polynomial coefficient as a separate element

Of an
array, for instance, it performs a, Possion bracket on these

Po1
Ynom:1.a1s l t by multiplying and adding the appropriate array e emen s.

G:f.ven
a symbolic manipulation program such as SMP, one has a broader

tang e of chi For example, a polynomial
0 ces in representing the maps.

can b
e Stored as i 1 number and coefficient the way it

an array by monom a

-305-

is stored in MARYLIE ,

(C.l)

ic2s • c29, • • •] ,

or as a symboli c polynomial ,

(c.2)

lrlh ere the inde c x numbers r
oeffi a ea particular way of storing the polynomial

cients (th
the G e illustration here is the storage scheme of MARYLIE,

on For this
iorgelli reas

0rd
ering, Appendix Dor Dragt et. al. [1985]).

, there

r

are many r ti f h i
•Pre ou nes or t e representat on and conversion of

(Tabt of polynomials. These are contained in the package POLYS
sentation

e C.3).

A. compani
funcu on to POLYS is CREATE (Table c.4), which has several

ons f ll!ak or making polynomials.
"ill polynomial from a list of indices and 'mkind' which

Chief among these are 'npol' which

es a symbolic

ll!ake
a lia

t
of indices based on some quality such as 'mps' for

l!am· Y or conserve' for time-independence of the lllid Plane

J.ltoni

symmetr '

an .
Finally, 'pick' randomlY picks monomials from a list to

form
a Pol via 'ranpoly.' '1n ynomial

is 1 s so

lrlhe re the
fully general polynomial m•Y be too l arge for SMP to handle•

that relations may

be tested on sample small polynomials,

fu packages PB and LIE (Tables c.5 and c.6) contain the major
l'he t WO

llCti ons
f of ANNALIE They implement the definitions of Chapter I. The

Ullcti • (1

4

computes the Poisson bracket axiomatically, bY the rules

That is, computation proceeds by using linearity and the
on 'pb'

• 3 1 - .46).

-306-

derivati on rule t b 0 reak up 1
a po ynomial, until only fundamental Poisson

brackets (those b
space variables) remain.

Once the

fun etween phase

damental

be

Poisson b rackets have been calculated '
the final answer may

const ructed.

The fu nctions th
•Per at remain in the package PB are devoted to the Lie

ators turn ' or the adjoint of the Poisson bracket.

8

a The function 'colon'

polynomi 1
con a into a Lie operator (see section le), 'concat'

catenates e, (composes) then and 'liepow' and 'lieplus' allow their

Ponenti ' ation and addition.

Th e useful 'all ness of these Lie

ow' i n the th package LIE.

operators is extended by the function

lt any mathematical function with a Taylor series and alter

This function is a general purpose routine

at Will take

so that when it i
Taylor s applied to a Lie operator, it is replaced by its

' series with
con addition replaced with 'lieplus,' multiplication by

In particular, when applied

Cat' , and exponentiation by 'liepow'•

to 'E Xp I ' the SMP tra exponentiation
function, it forms the Lie

In practice th• Taylor series is truncated at
nsfo rmati on (1 54)

So • •
Illes uitable

point, specified by th• user as an argument to 'allow,'

There
to are other functions of ,\!INALill not included here, primarily

lllake it Part compatible on input and output with M,IRYLill• Much of what is

Of MA l"U,.RYLIE
the • however, is not present in ,\!INALIE, In particular,

re is 11,\J\yLlE no
th

ing that is associated with purely numerical aspects of

' for
example, the element librar}' or computations of tunes,

ANNALIE h
as proved quite useful as an aid to the implementation of

the math ematics
coul in this dissertation into MA]<YLIE, There is much that

d be
done to extend this usefulness, t,ut from a practical standpoint

-307-

it would be limited by the capacity of most computers that SMP runs on,

and the bugs in SMP. These considerations have restricted the

usefulness of ANNALIE as it is.

-JOB-

I

~

Table C.1 Package GENL

(~ ote: the pr nts as = in these listings.)
continuation symbol i ' '

I****** ******** I* Utility ****************/

s Sub list Ubl [$Us extraction */
t,$range] .. I* ·· Cat[Ar[$range ,$list]]

Sub e~pr Stitute 1 <l<:Li•••ion •ta ist of values for a list of variables in an

Sl(St0
$expr $ $va1s ;ovbls_=onedeep[$vbls]

- nedeep [$, -A [vals I & P [Len [$vbls]=Len [$vals] II :: _
sav [p S,Prep[$expr,Ldist[Rep[$vbls,$vals]]]]

e $f 1 rest un . . ($
0

<e[$fu~j ,-;- fun[master] :Rel[$funl; restore[$fun])
I** · · $fun :Rel [_$fun [master]]

******* ****** I• General Purpose Routines •••••••••••••/

Create a d consta t ••t n the n s based on the number of phase space dimensions

up[$psd =;aximum order of polynomials. */
- (~enp [$psd I ,$polymaxord #NatP [$polymaxordl l :: _

cl [%i,%j %sh]. -
Map[S , , -e~, 'psd, 'polymaxord, 'canvbl, 'top, ,..,

*I = bottom, 'id, 'zmat, 'J, 'sm, 'expon]; =
$psd: Number of phase space dimensions

psd:$psd·
$poly , -= maxord: Maximum order retained in polynomials */
polym -
1

axord:$polymaxord;
fJ$psd<•6,%sh:subl[cvn, T,$psd J; -

ap[Set,%sh]; canvbl : Rel[%sh], _
f* Set Set[z];canvbl:Map[z, 1 •• $psd]]; ,.,.

property to indicate canonical variables */=
I* Mini Map L$a [canvbl]: 1,canvbl]; _

t mum, maximum indeces for each
bop: Cat[Ar[1,$polymaxord

I* Use;ttom: Cat[Ar[1,$polymaxord
ul array & matrices *I

zarr: Repl[O $psd] . -
zm t ' ' ... id~ : Repl [zarr, $psd] ; _,.

· Ar[$psd $psd]·

order *I_
,comb[$a+$psd,$a]-l]]; -=
,comb[$a+$psd-l,$a-l]]];

/ J• A [' , -* Res~o r "$psd,$psd ,genJ]; _
re memoed" functions */

I• cr:estore ['expon]; restore ['mkin'd I; -
(e.g ate symbolic monomial from exponents mono.ix 2 y from 2

0 1 0 0 0) and make a table of symbolic
m als b ' ' , ' , ' d */ ased indexed by the standard in eces ..,,,

;m[OJ :I; %j: expon[O] : Repl[O,psd] ; - •.
o[%i,top[$polymaxordl %J:next[%J]; sm[%i]:symmon[%J]I;

Null) '

-309-

I* T &enJ[e$rnplate to generate matrix J */
i, $j] /• :: P[Ceil[$i/2] • Ceil[$j/2]]•Sign[$j + -$ii

Index Obin[$ $ computation */

d
rn, i] C n ex[$j] :: :: omb[$m+psd-$i,l+psd-$i]

(Lcl[cord,ind,ib]; ind:cord:$j [psd];
Do[ib,psd-1,1,-1,Inc[cord,$j[ib]];"""
Inc[ind,obin[cord,ib]]]; ind) =

I* Find th e

1

xponents *e/ la9t non-zero exponent (except psd) in an array of

/• J :: (Lelli] ; i : psd ; Loop[$j [ii = 0 I i = psd,Declil.i > OJ) nzj [$.]

next (in the index ordering) array of exponents from

one */
Get the
this

next[$1]
: : (Lcl [out ,i] ; out : $1 ; outlpsdl : 0 ; i : lnzj [$1] ; If [i

> 0 ,Decloutli]]] ; rncloutli + 1 I ,1 + $1 [psdll ; out) -

I*
<

The ex XMSet ponents for each index*/

exp [on $ind] expon [OJ , :: : next [expon [$ind + -1 I I
save [, · Repl [O, 'psd]

expon]

I* Invert sminv[$ a syrnplectic matrix */
rn -id I• - - s byd [$mil :: -J, Trans [$ml ,J

Transf
corresorm a polynomial by a map (given as an array of psd functions,
or ponding to what each of the image of each of the varisbles),

Xform[$a matrix. */ Xform[$p~ly,$map_•onedeep[$mapll :: &x[sl[$poly,csnvbl,$mapll
I• P ly,$mat_=isdbyd[$matll :: xform[$poly,$mat,canvbl]

Defini i
ton: monomial basis element is a product of powers of

I* the v / Make ariables, e.g. x px PY 2, • out a matrix for the transformation of monomial basis elements

of an array of such transformations *I

I* Turn
6

a second-order polynomial into a matrix

matif [$phase space vbls) */
-$ Y poly] ..

Pol . · y[B],-2*$poly[13],-$polY[14],-$PolY[15], =

2

• -$poly [16 I,- $poly 117] • -
_ $poly[7],$poly[8],$poly[9],$poly[l0],$po1Ylll],$poly[12]

$poly[lO],-$poly[15],-$polYl19l,-2•$polYl
22

l, -
-$poly [23] ' - $poly [24] ' -

!poly[9],$poly [14],
2
*$polYl18],$polYl19],$poly[20],$poly[21]

$poly[l2], -$poly [17], $poly[21J,-$poly[Z
4
l, --$poly [26], -2*$polY [27l , =

$poly[ll],$poly[l6],$poly[20],$poly[23],2•$polYl25],$poly[26]

I**** ••·••·•·· ··········••! Character Determination

I* List / goes to exactly a depth of one *

' -=

_310-

onedeep[$1J:: Contp[$1J & P[Len[Dim[$1JJ=IJ

I* Object is a list of n-long lists that do not contain any lists */
lofl [$1,$n]:: (Lcl [%dim];

Fullp[$1,2J & P[(%dii:Dim[$1})[2]=$nJ & P[Len[%dim}=2J)

I* Object is a psd by psd matrix, with no lists as elements */
isdbyd[$m) :: Fullp[$m,2J & P[Dim[$m]= psd,psd]

I* Two terms are in the Giorgelli order, or if the same exponents,
in lexical order */

sortind [$exprl_= Listp [$exprl J ,$expr2_= Listp [$expr2] l::
(Lcl [%0];
lf [(%o:Sign[ndex[exps[$expr2]J-ndex[exps[$exprlJ]])=0,

. 0rd[$exprl,$expr2],%oJ)
1 ssortind [$exprl ,$expr2] : : Ceil [Theta [sortind [$exprl ,$expr2] l l

!*******
I ****** * Na~ ** Initial Values *****************/

Table c.2 Package SETUP

.. ,es of th
C\Tn , , e canonical variables */

• X I I
, PX, Y, 'py, 't, 'pt

nte){ f P 2tay:6 I* Number of terms in exponential to take

Create d
I*
lf[Natpfb imension and maximum order for polynomials */

Ottom[l}},setup[6,4]}
/'Ir
tn Names

apnames: to give to maps when they are read in */
'mt , ' f , ' mg , 'g , 1 mh , ' h , 'mk , 'k , 'ml , 1 l , mj , 'j

-312-

for f2s *I

/•••••• Table C.3 Package POLYS

sy Representation and Conversion of Polynomials••••••••••/

nunon [$ j l •• I• ·· Inner[Pow,canvbl,$j,Hult]

theFor a p articul
ar monomial, give a list consisting of the index and

coeffi exps[$ cient */
co[$ mon] .. Ma [mon,$exi· .. P Expt[$a,$mon],canvbl]
I• ·· Coef[symmon[$ex],$monl

Produce an or i index, coeff for a/each term in a polynomial

n a list f ic. 'Lda list of O terms, or return a polynomial from
ic-• ist index,coef pairs, •/

i _:Tier
c.[$mon - = Ll.stp [$ l l i (Lcl [mon : :
c. [$p pwrs] • -Pie [oly_=P[$ • pwr~:exps[$mon]; ndex[pwrsJ,co[$mon,pwrsl)

Pi [$1_=oned po~y[OJ= Plus]] :: ic[terms[$polyll
1.° $~=lofl [$P $II l : : $1 [2]•sm[$l [!] I
spt:tCont ig •} • 2 II : : poly [Hap [pie, $1 I I

$1] . . Co J• ·· ntig[sepoly[picf$111, polymaxord ,OJ

Find th to (note te order of a term, or orders in list of terms or a polynomial

or~~l[order=~tal order will be taken if totalorder•ll •/

ord $term] .. c [$p] .. M · Ap [Plus ,exps [$term]] + totslorder•Expde ,$term!

I* •• ap[ordi,terms[$p]]

The ordj [order
$term$]of any particular phase space variable •!

I• 'n :: Expt[canvb1[$n],$terml

A ord non-r
ers ·T epeating list of the orders of the terms in a polynomial •/

orde -· ier rs[$p] I* : : Union [ordd$p]]

h ls th
0mo e pol ma &[$p] .. ynomial homogeneous? •I

lllaXord :Ldi. P[Len[orders[$p]]=l]
Xord[$ st

/* p] : : Last [orders [$p]]

Sep <er •rate t i 1 •/

t

ms :Ti erms of a polynomial into a list of monom as.

erm - er ,
te s [$p -c rms[$p-: ~ntp[$p]] :: $p If[% [~ntp[$p]] ,: (Lc1[%p]; %p:Exf$p]; -])
/• •P]='Plus, Ar[Lenf%p] ,%pl, %p , %p

Make lllon Selecat polynomial out of a list of monomials or o ter 1 -~al or list of
mials· ms of a certain order from a po yno=

retu'
A

rn a ny polynomial particular sele~tion criterion can be picked for $sel,

_313-

preceeded by a single quote. E.g., so[l,'Le,3J picks out
all terms less than or equal to third order. */

Le[$n,$mJ :: $m)=$n
Lt [$n,$mJ : : $m)$n
poly :Tier
poly[$1 =Contp[$1]] :: Ap[Plus,$1]
poly ($1-= Contp [$1J J : : $1
poly[$p-:-$ord _= Natp[$ordJ I $ord=O] :: poly[$p,Eq,$ordJ
<XMask
poly [$p ,$sel =Symbp [$sell ,$ords J : : (Lcl [%tJ; %t :terms [$pJ;

poly[Mask[Map[$sel[ordi[$aJ,$ords],%tJ,%tJJ)

/* Create a list of polynomials by seperating a polynomial or list
of terms according to the value of $qual for each term.
indexed by that value.
Default quality is order. */

sepoly_:Ldist
sepoly :Tier
sepoly[$p,$qualJ ::

(Lcl[%quals,%t]; %t:terms[$p]; %quals:Rel[Map[$qual,%tJJ;
Ar[Union[%qualsJ ,poly[Mask[Map[$a=$b,%quals],%tJ]J)

sepoly [$p] : : sepoly [$p, 'ordi]

-314-

Table C.4 Package CREATE

!************* Creation of Arrays ************/

I* make symbolic polynomials (arrayed by order)
for an array with indeces given in the list $inds. */

mkpol [$name, $inds =Contp [$inds J J : :
spic[Transf $inds-;Ldist[$name f$inds]J]]

I* Pick $n elements at random from a list */
I* <XMask *I
Pick[$1ist,$n] :: (Lcl[%len]; %len:Len[$list]; =

Mask[Map[P [$n/%len)$a] ,Ar[%len, Rand []J] ,$list])

I* Make a list of indices satisfy a given property $qual
e.g., mkind['expon [$a,2]=0] yields a list of indices for which
the there is no px term */

mkind[$qual] ::: Cat[Ar [top fpolymaxord] ,,Rel [$qual]] J
save ['mkind]

I* Some qualities to act on indices */
mps [$ind] : : Smp [expon [$ind] J [3]=0
conserve [$ind] : : Smp [expon [$ind] J [5] =0
both [$ind] : : mps [$ind] & conserve [$ind]

ranpoly [$name,$qual , $n] : : rnkpol [$name,pick[mkind[$qual] ,$n]]

-315 -

Table C.S Package PB

/* Expression contains only constants (literal or
declared symbolic) */

cons tp [$expr] : : Ap [And, Map [P [_$a [Const] =l], Cont [$expr]]]

/* Expression contains only constants or canonical variables */
evalbl [$expr] : :

Ap[And,Map[P[_$a[Const]=l l_$a['canvbl]=l], Cont[$expr]]]

/* Non-null arguments */
nna [$$r] : : P [$$r=Null]

pb_:Ldist
pb_:Tier

/* Fundamental Poisson Brackets */
Inner[Set[cvnum[$a],$bl,canvbl, Ar[psd]l
pb: Tier(Ar[canvbl , canvbl ,J[cvnum[$al,cvnum[$bllll
pb[$f,$fl :0

/* Constants */
pb [$$r,$c_=constp [$cl ,$$u] : 0

/* How to interpret quotients */
pb[$$r,$f/$g,$$sl :: Rel[pb[$$r,'$g -l $f,$$s]]

/* Derivation property */
pb[$$r,$f, $g $$t =nna[$$tll ::

pb[$$r,pb[$f,$$t] $gl + pb[$$r ,pb[$f,$gl $$tl
pb [$$r, $f $$t =nna [$$t], $$u =nna [$$u]] : :

pb[$$r,$$t pb[$f,$$ulT + pb [$$r,$f pb[$$t,$$ull
pb[$f $n,$g] :: $n $f ($n-l) pb[$f,$g]
pb[$f,$g $nl :: $n $g ($n-l) pb[$f,$g]

/* Linearity */
pb[$$r,$f+$$t,$$ul :: pb [$$r, $f,$$u l + pb[$$r,$$t,$$u]

/* Unflatten pb chain if it's calculable. */
pb[$$r,pb[$f,$$sl] :: pb[$$r,$f,$$s l
pb [$$r, $f =evalbl [$f], $g =evalbl [$g J] : : pb [$$r, pb [$f ,$g]]
pb [$f_=P [$f [Mgenl =l l l :: $f

/* Null pb is just argument*/
pb [,$fl:: $f
pb[$$r,] :: pb[$$rl
pb[$f,] :: $f

/* Identity Lie operator */
iden [$obj l : : $obj

/* Colonize */
colon[Extr,Multl :concat

;olon[$f,$obj] :: 'pb[$f,$obj]

-316-

I* Is the object a Lie operator? */
lo[$£] :: P[Len[$f]=l & Ind[$f,1]=$obj]

/* Concatenate maps */
concat :Tier
concat[$f =lo [$f] ,$g =lo [$g]] : : Rel [Ldist [$f [$g]]]
concat [$f-:-$g, $$r =nna [$$r]] : : concat [$f, concat [$g, $$r]]

Sxset [" ... ,concat-:-4,2]

/* Raise them to powers */
/* <XMSet */
liepow :Tier
liepow[$f =lo[$£] ,OJ : iden
liepow [$f-=lo [$f], 1] : : $f
liepow[$f-=lo[$f],$n =Natp[$n]& $n)l]
save ['lie pow] -
Sxset [". ",liepow,3,1]

concat[$f,liepow[$f,$n-l]]

/* Add maps */
li e plus :Tier
lieplus[$f =evalbl[$f],$g =lo[$g]] :: Rel[$£ iden + $g]
lieplus [$£-=lo [$f], $g =evalbl [$g]] : : Rel [$g iden + $f]
lieplus[$£-=lo[$f],$g-=lo[$g]] :: Rel[$£+ $g]
lieplus [$f-:-$g, $$r_=nna [$$r]] : : lieplus [$f ,lieplus [$g ,$$r]]

-317-

Table C.6 Package LIE

/* Allow or disallow use of a function on a Lie operator */
/* SMP bug: don't 'disallow' or look at properties of a system function

once it's been used with a Lie operator (causes crash). */
allow[$fun,$nterms] :: (Lcl[%dum,%1iex]; _

%1iex:S[As[S[Dis[Ax[Ps[$fun[%dum],%dum,O,$nterms]],Inf], _
'Pow->'liepow, 'Mult->'concat,'Plus->'lieplus],Inf],%dum->$c];
Ap[Setd, '$fun[$c =lo[$c]],%liex]; $fun:Rel[Rel[$fun]];
If [Valp [$fun], $fun [hold]: $fun; $fun [Ldist]:])

disallow[$fun]-:: (If[Valp[$fun]-:- $fun:-$fun[hold]];
$fun[$c_=lo[$c]]:) - - -

-318-

Appendix D. Index Numbers for Monomial Coefficients Used by Marylie

Index Exponents of Variables
X px y PY t pt

1 1 0 0 0 0 0 X

2 0 l 0 0 0 0 px
3 0 0 l 0 0 0 y
4 0 0 0 l 0 0 PY
5 0 0 0 0 1 0 t

6 0 0 0 0 0 1 pt
7 2 0 0 0 0 0 X X

8 1 1 0 0 0 0 X px
9 1 0 1 0 0 0 X y

10 1 0 0 1 0 0 X PY

11 1 0 0 0 1 0 X t
12 1 0 0 0 0 1 X pt
13 0 2 0 0 0 0 px px
14 0 1 1 0 0 0 px y
15 0 1 0 1 0 0 px PY

16 0 1 0 0 1 0 px t
17 0 1 0 0 0 1 px pt
18 0 0 2 0 0 0 y y
19 0 0 1 1 0 0 y PY
20 0 0 1 0 1 0 y t

21 0 0 l 0 0 1 y pt
22 0 0 0 2 0 0 PY PY
23 0 0 0 1 1 0 PY t
24 0 0 0 1 0 1 PY pt
25 0 0 0 0 2 0 t t

26 0 0 0 0 1 1 t pt
27 0 0 0 0 0 2 pt pt
28 3 0 0 0 0 0 X X X

29 2 1 0 0 0 0 X X px
30 2 0 1 0 0 0 X X y

31 2 0 0 1 0 0 X X PY
32 2 0 0 0 1 0 X X t
33 2 0 0 0 0 1 X X pt
34 1 2 0 0 0 0 X px px
35 1 1 1 0 0 0 X px y

36 1 1 0 1 0 0 X px PY
37 1 1 0 0 1 0 X px t
38 1 1 0 0 0 1 X px pt
39 l 0 2 0 0 0 X y y
40 1 0 1 1 0 0 X y PY

-319-

Index Exponents of Variables
X px y PY t pt

41 1 0 1 0 1 0 X y t
42 1 0 1 0 0 1 X y pt
43 1 0 0 2 0 0 X PY PY
44 1 0 0 1 1 0 X PY t
45 1 0 0 1 0 1 X PY pt

46 1 0 0 0 2 0 X t t
47 1 0 0 0 1 1 X t pt
48 1 0 0 0 0 2 X pt pt
49 0 3 0 0 0 0 px px px
50 0 2 1 0 0 0 px px y

51 0 2 0 1 0 0 px px PY
52 0 2 0 0 1 0 px px t
53 0 2 0 0 0 1 px px pt
54 0 1 2 0 0 0 px y y
55 0 1 1 1 0 0 px y PY

56 0 1 1 0 1 0 px y t
57 0 1 1 0 0 1 px y pt
58 0 1 0 2 0 0 px PY PY
59 0 1 0 1 1 0 px PY t
60 0 1 0 1 0 1 px PY pt

61 0 1 0 0 2 0 px t t
62 0 1 0 0 1 1 px t pt
63 0 1 0 0 0 2 px pt pt
64 0 0 3 0 0 0 y y y
65 0 0 2 1 0 0 y y PY

66 0 0 2 0 1 0 y y t
67 0 0 2 0 0 1 y y pt
68 0 0 1 2 0 0 y PY PY
69 0 0 1 1 1 0 y PY t
70 0 0 1 1 0 1 y PY pt

71 0 0 1 0 2 0 y t t
72 0 0 1 0 1 1 y t pt
73 0 0 1 0 0 2 y pt pt
74 0 0 0 3 0 0 PY PY PY
75 0 0 0 2 1 0 PY PY t

76 0 0 0 2 0 1 PY PY pt
77 0 0 0 1 2 0 PY t t
78 0 0 0 1 1 1 PY t pt
79 0 0 0 1 0 2 PY pt pt
80 0 0 0 0 3 0 t t t

-320-

Index Exponents of Variables
X px y PY t pt

81 0 0 0 0 2 1 t t pt
82 0 0 0 0 1 2 t pt pt
83 0 0 0 0 0 3 pt pt pt
84 4 0 0 0 0 0 X X X X

85 3 1 0 0 0 0 X X X px

86 3 0 1 0 0 0 X X X y
87 3 0 0 1 0 0 X X X PY
88 3 0 0 0 1 0 X X X t
89 3 0 0 0 0 1 X X X pt
90 2 2 0 0 0 0 X X px px

91 2 1 1 0 0 0 X X px y
92 2 1 0 1 0 0 X X px PY
93 2 1 0 0 1 0 X X px t
94 2 1 0 0 0 1 X X px pt
95 2 0 2 0 0 0 X X y y

96 2 0 1 1 0 0 X X y PY
97 2 0 1 0 1 0 X X y t
98 2 0 1 0 0 1 X X y pt
99 2 0 0 2 0 0 X X PY PY

100 2 0 0 1 1 0 X X PY t

101 2 0 0 1 0 1 X X PY pt
102 2 0 0 0 2 0 X X t t
103 2 0 0 0 1 1 X X t pt
104 2 0 0 0 0 2 X X pt pt
105 1 3 0 0 0 0 X px px px

106 1 2 1 0 0 0 X px px y
107 1 2 0 1 0 0 X px px PY
108 1 2 0 0 1 0 X px px t
109 1 2 0 0 0 1 X px px pt
110 1 1 2 0 0 0 X px y y

111 1 1 1 1 0 0 X px y PY
112 1 1 1 0 1 0 X px y t
113 1 1 1 0 0 1 X px y pt
114 1 1 0 2 0 0 X px PY PY
115 1 1 0 1 1 0 X px PY t

116 1 1 0 1 0 1 X px PY pt
117 1 1 0 0 2 0 X px t t
118 1 1 0 0 1 1 X px t pt
119 1 1 0 0 0 2 X px pt pt
120 1 0 3 0 0 0 X y y y

-321-

Index Exponents of Variables
X px y PY t pt

121 1 0 2 1 0 0 X y y PY
122 1 0 2 0 1 0 X y y t
123 1 0 2 0 0 1 X y y pt
124 1 0 1 2 0 0 X y PY PY
125 1 0 l 1 1 0 X y PY t

126 1 0 1 1 0 1 X y PY pt
127 1 0 1 0 2 0 X y t t
128 1 0 1 0 1 1 X y t pt
129 1 0 1 0 0 2 X y pt pt
130 1 0 0 3 0 0 X PY PY PY

131 1 0 0 2 1 0 X PY PY t
132 1 0 0 2 0 1 X PY PY pt
133 1 0 0 1 2 0 X PY t t
134 1 0 0 1 1 1 X PY t pt
135 1 0 0 1 0 2 X PY pt pt

136 1 0 0 0 3 0 X t t t
137 1 0 0 0 2 1 X t t pt
138 1 0 0 0 1 2 X t pt pt
139 1 0 0 0 0 3 X pt pt pt
140 0 4 0 0 0 0 px px px px

141 0 3 1 0 0 0 px px px y

142 0 3 0 1 0 0 px px px PY
143 0 3 0 0 1 0 px px px t
144 0 3 0 0 0 1 px px px pt
145 0 2 2 0 0 0 px px y y

146 0 2 1 1 0 0 px px y PY
147 0 2 1 0 1 0 px px y t
148 0 2 1 0 0 1 px px y pt
149 0 2 0 2 0 0 px px PY PY
150 0 2 0 1 1 0 px px PY t

151 0 2 0 1 0 1 px px PY pt
152 0 2 0 0 2 0 px px t t
153 0 2 0 0 1 1 px px t pt
154 0 2 0 0 0 2 px px pt pt
155 0 1 3 0 0 0 px y y y

156 0 1 2 1 0 0 px y y PY
157 0 1 2 0 1 0 px y y t
158 0 1 2 0 0 1 px y y pt
159 0 1 1 2 0 0 px y PY PY
160 0 1 1 1 1 0 px y PY t

-322-

Index Exponents of Variables
X px y PY t pt

161 0 1 1 1 0 1 px y PY pt
162 0 1 1 0 2 0 px y t t
163 0 1 1 0 1 1 px y t pt
164 0 1 1 0 0 2 px y pt pt
165 0 1 0 3 0 0 px PY PY PY

166 0 1 0 2 1 0 px PY PY t
167 0 1 0 2 0 1 px PY PY pt
168 0 1 0 1 2 0 px py t t
169 0 1 0 1 1 1 px PY t pt
170 0 1 0 1 0 2 px PY pt pt

171 0 1 0 0 3 0 px t t t
172 0 1 0 0 2 1 px t t pt
173 0 1 0 0 1 2 px t pt pt
174 0 1 0 0 0 3 px pt pt pt
175 0 0 4 0 0 0 y y y y

176 0 0 3 1 0 0 y y y PY
177 0 0 3 0 1 0 y y y t
178 0 0 3 0 0 1 y y y pt
179 0 0 2 2 0 0 y y PY PY
180 0 0 2 1 1 0 y y PY t

181 0 0 2 1 0 1 y y PY pt
182 0 0 2 0 2 0 y y t t
183 0 0 2 0 1 1 y y t pt
184 0 0 2 0 0 2 y y pt pt
185 0 0 1 3 0 0 y PY PY PY

186 0 0 1 2 1 0 y PY PY t
187 0 0 1 2 0 1 y PY PY pt
188 0 0 1 1 2 0 y PY t t
189 0 0 1 1 1 1 y PY t pt
190 0 0 1 1 0 2 y PY pt pt

191 0 0 1 0 3 0 y t t t
192 0 0 1 0 2 1 y t t pt
193 0 0 1 0 1 2 y t pt pt
194 0 0 1 0 0 3 y pt pt pt
195 0 0 0 4 0 0 PY PY PY PY

196 0 0 0 3 1 0 PY PY PY t
197 0 0 0 3 0 1 PY PY PY pt
198 0 0 0 2 2 0 PY PY t t
199 0 0 0 2 1 1 PY PY t pt
200 0 0 0 2 0 2 PY PY pt pt

-323-

Index Exponents of Variables
X px y PY t pt

201 0 0 0 1 3 0 PY t t t
202 0 0 0 1 2 1 PY t t pt
203 0 0 0 1 1 2 PY t pt pt
204 0 0 0 1 0 3 PY pt pt pt
205 0 0 0 0 4 0 t t t t

206 0 0 0 0 3 1 t t t pt
207 0 0 0 0 2 2 t t pt pt
208 0 0 0 0 1 3 t pt pt pt
209 0 0 0 0 0 4 pt pt pt pt

-324-

References

Arnold [1978], V.I.: Mathematical Methods of Classical Mechanics,

Springer-Verlag, New York.

Bevington [1969], Philip R.: Data Reduction and Error Analysis for the

Physical Sciences, McGraw-Hill, New York.

Chow [1978], Yutze: General Theory of Ll.e Algebras, Vol. 1, Gordon and

Breach, New York.

Dixmier [1977], Jacques: Enveloping Algebras, North Holland, Amsterdam.

Douglas [1982], D.R.: Ph.D. Thesis, University of Maryland,

unpublished.

Dragt [1976], A.J., J. Finn: Lie Series and Invariant Functions for

Symplectic Maps, J. Math. Phys. 12., 2215.

Dragt [1982], A.J.: Lectures on Nonlinear Orbit Dynamics, in Physics of

High Energy Particle Accelerators (Proceedings of the 1981 Fermilab

Summer School of High Energy Particle Physics), AIP Conference

Proceedings, vol. 87, Am. Inst. Physics, New York.

Dragt [1982b], A.J.: Unpublished notes on fringe field calculations.

Dragt [1983], A.J., E. Forest: Computation of Nonlinear Behavior of

Hamiltonian Systems Using Ll.e Algebraic Methods, J. Math. Phys.,~,

1734.

Dragt [1985], A.J., L.M. Healy, F. Neri, R. Ryne, D. Douglas, E.

Forest: Marylie 3.0 Manual.

-325-

Dragt [1986], A.J.: Lecture notes on the rotation group, unpublished.

Eadie [1971], W.T., D. Drijard, F.E. James, M. Roos, B. Sodoulet:

Statistical Methods in Experimental Physics, North-Holland,

Amsterdam.

Forest [1984], E.: Ph.D. Thesis, University of Maryland, unpublished.

Furman [1985], M.: A Simple Method to Symplectify Matrices, SSC-TM-

4001, SSC Central Design Group, Berkeley, Cal., unpublished.

Goldstein [1950], H.: Classical Mechanics; Addison Wesley, Reading, MA.

Guignard [1970], G.: Effects des Champs Magnetiques Perturbateurs d'un

Synchrotron sur l'0rbite Fermee et Les Oscillations Betatroniques,

Ainsi Que Leur Compensation, CERN 70-24, Geneva, unpublished.

Hausner [1968], M., J. Schwartz: Lie Groups, Lie Algebras, Gordon and

Breach, N.Y.

Helgason [1978], S: Differential Geometry, Lie Groups, and Symmetric

Spaces; Academic Press, New York.

Inference Corp. [1983]: SMP Reference Manual, Inference Corp.

Jacobson [1962], Nathan: Lie Algebras; Dover, New York.

Myers [1984], Peter D.: SSC Magnet Alignment and Aperture, SSC Note-27,

SSC Central Design Group, Berkeley, Cal., unpublished.

Richtmyer [1978], Robert D.: Principles of Advanced Mathematical

Physics, Springer-Verlag, Berlin.

-326-

Schutz (1980], B.: Geometrical Methods of Mathematical Physics,

Cambridge Univ. Press, Cambridge.

Spivak (1970], M.: Differential Geometry; Publish or Perish, Berkeley,

CA.

-327-

