
Lie Algbraic Methods for Treating 

Lattice Parameter Errors in Particle Accelerators 

by 

Liam Michael Healy 

Dissertation submitted to the Faculty of the Graduat e School 
of the University of Maryland in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

1986 ; ·; i 

( . . \ . -,·, \' i 

' 

.f1Jo rd 

H(_>r , f J 
! . I!. 

r·· I 

' I r fr j J .') , 



APPROVAL SHEET 

Title of Dissertation: Lie Algebraic Methods for Treating Lattice 
Parameter Errors in Particle Accelerators 

Name of Candidate: Liam Michael Healy 
Doctor of Philosophy, 1986 

Dissertation and Abstract Approved: C[l~ £· J.J~ 
Alex J. Dragt 
Professor 
Department of Physics and Astronomy 

Date Approved: 



ABSTRACT 

Title of Dissertation: Lie Algebraic Methods for Treating Lattice 
Parameter Errors in Particle Accelerators 

Liam Michael Healy, Doctor of Philosophy, 1986 

Dissertation Directed By: Dr. Alex J. Dragt, Professor 
Department of Physics and Astronomy 
University of Maryland 

Orbital dynamics in particle accelerators, and ray tracing in light 

optics, are examples of Hamiltonian systems. The transformation from 

initial to final phase space coordinates in such systems is a symplectic 

map. Lie algebraic techniques have been used with great success in the 

case of idealized systems to represent symplectic maps by Lie 

transformations. These techniques allow rapid computation in tracking 

particles while maintaining complete symplecticity, and easy extraction 

of analytical quantities such as chromaticities and aberrations. 

Real accelerators differ from ideal ones in a number of ways. 

Magnetic or electric devices, designed to guide and focus the beam, may 

be in the wrong place or have the wrong orientation, and they may not 

have the intended field strengths. The purpose of this dissertation is 

to extend the Lie algebraic techniques to treat these misplacement, 

misalignment and mispowering errors. 

Symplectic maps describing accelerators with errors typically have 

first-order terms. There are two major aspects to creating a Lie 

algebraic theory of accelerator errors: creation of appropriate maps 

and their subs equent manipulation and use. 



There are several aspects to the manipulation and use of symplectic 

maps. A first aspect is particle tracking. That is, one must find how 

particle positions are transformed by a map. A second is concatenation, 

the combining of several maps into a single map including nonlinear 

feed-down effects from high-order elements. A third aspect is the 

computation of the fixed point of a map, and the expansion of a map 

about its fixed point. For the case of a map representing a full turn 

in a circular accelerator, the fixed point corresponds to the closed 

orbit. 

The creation of a map for an element with errors requires the 

integration of a Hamiltonian with first-order terms to obtain the 

corresponding Lie transformation. It also involves a procedure for the 

complete specification of errors, and the generation of the map for an 

element with errors from the map of an ideal element. 

The methods described are expected to be applicable to other 

electromagnetic systems such as electron microscopes, and also to light 

optics systems. 
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Introduction 

The work presented here is part of an ongoing effort in the appli

cation of Lie algebraic techniques to particle accelerators and related 

areas such as light optics (Dragt and Finn [1976], Dragt [1982], Douglas 

[1982], Dragt and Forest [1983], Forest [1984]). In particular, I treat 

the problem of lattice parameter errors, especially beam element align

ment, positioning and powering errors. 

Such errors will generally introduce a first-order term into the 

factorized Lie transformation, i.e., a particle on the design trajec

tory, once it passes through one of these erroneous beamline elements, 

will no longer be on the des ign trajectory. There thus need to be the 

mathematical tools available to work with these maps: concatenation, 

tracking and finding the fixed point (closed orbit) in particular. Part 

I covers these mathematical tools. 

Part II then treats a problem which perhaps conceptually comes be

fore Part I: how the maps of erroneous elements are computed in the 

first place. What is described here is an extension of the methods 

developed previously in the references given above for ideal elements, 

together with some computation of actual elements. 

Finally, the appendices cover various topics of related interest: 

the beginnings of a method for treating random distributions of errors; 

description, examples, testing and listing of MARYLIE 3.1, the computer 

code that embodies the work here by extending the Lie algebraic particle 

tracking code MARYLIE 3.0 (Dragt et. al. [1985]) to include errors; a 

description of ANNALIE, the code written in the language SMP to assist 

with the analytical computations needed to write MARYLIE. 
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Part I: General Lie Algebraic and Group Theoretical Tools 

This part deals with the mathematics necessary to treat beamline 

element errors, which produce first-order terms in the factored Lie 

transformations. It is an extension of the methods without first-order 

terms developed by Dragt and Finn [1976], Dragt [1982], and Douglas 

[1982]. Chapter 1 is an introduction to the mathematics, showing how 

Lie algebras play a role in Hamiltonian systems. Much of the informa

tion comes from the references above, but is repeated for the sake of 

completeness. Chapter 2 deals with the tracking of particles through 

the maps, and how a first-order term affects this process. Chapter 3 

describes, in mathematical terms, the various Lie algebras implied by 

possible approximation schemes, and shows a particular one as natural 

for concatenation. Chapter 4 is a computation of the concatenation 

rules. Chapter 5 shows how to handle the symplectification of matrices, 

necessary when a first-order term is concatenated with higher order 

terms. Chapter 6 is a description of a method for finding the fixed 

point, or closed orbit, of a map, and the map around it. This is ex

tremely important because in the presence of machine errors, one almost 

always wants to find the new fixed point and the map around it. 

Finally, Chapter 7 deals with the Euclidean group, the group of rigid 

body motions, which we shall need for description of element alignment 

errors. 

-2-



1. Introduction 

a. The Motion of Charged Particles in Accelerators 

A charged particle moving in an accelerator is subject to electro

magnetic forces of various origins. In most cases, the predominant 

force is from the magnets, radio frequency cavities, and perhaps 

electrostatic elements installed as part of the accelerator to guide and 

accelerate the beam. Other possible sources include space-charge 

forces, that is, the force of other charged particles in the bunch, and 

wake-field forces, the electromagnetic force reflected off the walls of 

a cavity from the earlier passage of particles. In addition, 

synchrotron radiation plays a significiant role in some machines, and 

minor effects may be caused by collision of the accelerated particles 

with residual gas in the beam pipe. 

A major task of accelerator physics is to simulate the motion of 

particles in accelerators to insure proper behavior and to understand 

what magnet arrangements and strengths - the lattice - will produce de

sirable behavior, and what arrangments will produce undesirable be

havior. If we are lucky, we may find some entity that represents the 

lattice, and from which we may extract the potential for good or ill 

behavior directly, or use this entity for simulation of particle motion. 

For simplicity, I shall assume the only significant effects in beam 

motion arise from the external magnetic or electric forces, that is, 

those forces coming from fixed elements such as bending magnets, 

focusing magnets (quadrupoles), and so on. We then choose a set of 

coordinates: the z direction will be along the direction of a particle 

-3-
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following the design trajectory ("design particle"), the x direction 

will be in the midplane of the bending magnets, or horizontal and 

perpendicular to z, y will be perpendicular to both, and twill be 

flight time (see Figure 1.1). Both x and y are measured from the design 

trajectory. Each of these has a conjugate momentum Px, Py, Pz, or Pt• 

Six of these quantities (three pairs) form the phase space, and the 

other pair become the independent variable and the negative of the 

Hamiltonian. Given a particle's initial position in phase space, 

one way to analyze particle dynamics is to study six dependent 

variables, denoted by C, as a function of time, say 

C(v0 ,t) - x(v0 ,t), px(v0 ,t), ••• pz(v0 ,t). 

(1.1) 

(1.2) 

A simple representation of particle behavior would be to give these 

functions for the whole time a particle would be in a machine. 

Certainly, undesirable properties would become obvious - if a beam were 

doomed to head for a wall, this would be indicated in the function. 

Unfortunately, these functions are difficult to calculate in general, 

due to non-linearities that arise from the kinematics and from the 

lattice elements, and we would be mathematically unable to make use of 

an obvious property of circular machines: as far as the forces are 

concerned, one turn is like another. 

We shall make an important change that remedies this problem: all 

phase space variables will be measured as deviations from the design 
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values. This allows us to approximate the motion by Taylor expansion of 

the functions: 

v~ + 
J 

+ ••• (1.3) 

where v0 are the coordinates at t = 0 and mij• tijk• ••• are real co

efficients. For convenience, we may take a fixed section of the 

accelerator, say one turn, as implicit, and drop the t. This corres

ponds to a Poincare surface of section; we give the coordinates of a 

particular particle only at a particular position on the ring at each 

pass and do not care what happens to it elsewhere. These functions Ci 

together form what is called a transfer map and shall usually be repre

sented with script letters M,N etc. 

Generally, this is an effective method, because most accelerators 

are quite linear. That is, each term in the expansion is much larger 

than the next, so that truncation of the series after two or three turns 

gives reasonable answers. 

The quantities M = {mij}, T = {tijk}, ••• are determined solely by 

the machine construction, and not at all by the initial (or any) 

conditions of the particle. This is the representation of the lattice 

we sought. We may track particles through a lattice by repeatedly 

applying (1.2), or we may extract useful information directly from the 

coefficients mij• tijk• ••• • Further, we may concatenate: determine 

the matrices M, T, ••• for a section from two pieces M1 ,T1 , and M2 ,T2 , 

that make it up, e.g., obtaining the lattice matrices for two turns 

from those for one. If the nonlinearities are not too great, the terms 

that have been eliminated in truncation will not be significant. 
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So far, I have assumed that all elements are perfectly positioned 

and powered: there are no constant terms in the expansion (1.3), so a 

design particle, with coordinates (0,0,0,0,0,0), maintains those coordi

nates. This need not be the case, of course; magnets, as well as 

particles, may fail to be in the design position. 

The introduction of constant terms represents no major problem 

until we try to combine maps. Suppose we have two maps, from time t
0 

to 

t +t 
vl = M 1 o(vo) (1.4a) 

and 

(1.4b) 

and we wish to combine these into a single map 

t + t 
v2 = M 2 o(vo). (1.5) 

Then, with the truncation of the Taylor series at each step, we may 

introduce "feed down" errors: a particular map's fourth-order term, 

when concatenated with a first-order term, generates a third-, second

and first-order term. If the fourth-order term had been neglected, the 

resultant third-order term would be wrong. The solution to this, which 

I shall discuss in greater detail later, is to assume that the constant 

terms are small in the sense that the phase space coordinates are small, 

and may be similarly truncated. 
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b. Hamiltonian Systems and Lie Groups 

i. Hamilton's Equations 

The motion of a charged particle in an accelerator, assuming no 

synchrotron radiation effects, is a Hamiltonian system. The description 

is given with a set of 2n coordinates C, which form n groups of 

canonical pairs, and there is a function H(C,t), the Hamiltonian, such 

that Hamilton's equations hold, 

Here the matrix J and the generalized gradient are defined by 

J 

and 

B 
0 

0 
B 

B [_~ ~] 

(1.6) 

(1.7) 

(1.8) 

On the f ace of i t , t he r e is nothing special about a Hamiltonian 

system as opposed to a non-Hamiltonian system . However , the motion 

possible from a Hamiltonian system, a Hamiltonian flow, is more re

stri c ted than an a rbitrary flow. In essence, some of t he coefficients 

M, T, ••• of Section l a are redundant. It will be possible to recast 

the description of an accelerator section with fewe r numbers . This i s 

-8-



done by means of a Lie transformation, a method describing a symplectic 

map. All Hamiltonian flows give rise to symplectic transformations on 

phase space, as I shall show later. 

ii. Groups 

To study Hamiltonian systems, we shall need the concept of a group. 

A group is a set, together with a "multiplication" operation which will 

be denoted by juxtaposition, satisfying the following four axioms: 

1) Closure: if A and Bare in the group, so is AB; 

2) Identity: there is an identity element I such that AI= IA= A; 

3) Inversion: for every element A there is an inverse A-l such that 

AA-l = A-lA = I; 

4) Associativity: group multiplication obeys the relation A(BC) = 

(AB)C. 

All the groups that will be introduced are Lie groups. Lie groups 

are groups that are also manifolds (have a differentiable structure) 

such that the group operation and inversion are both(; (infinitely 

differentiable). 

A mapping p: G + H from a group G to a group His a group 

homomorphism if the group operation is preserved, 

(1.9) 

If pis injective (one-to-one) and surjective (onto), i.e., is a one-to

one correspondence, then it is an isomorphism and the groups are 
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isomorphic. 

Groups of transformations frequently appear in physics and are of 

particular importance to Hamiltonian dynamics. For example, the set of 

all possible rotations of a rigid body in space (or transformation of 

the coordinate axes) forms a group. A particular kind of transforma

tion, the linear transformation, acts on a vector space V. A 

transformation T : V ~Vis linear if 

(1.10) 

where v1 ,v2 EV and a1 ,a2 ER. If a set of basis vectors has been picked 

for V, there is a 1-1 correspondence between the set of linear transfor

mations on V and the set of n by n matrices, where n is the dimension of 

V. For this reason, the distinction between these will be blurred. 

A homomorphism from a group to a group of transformations is called 

a realization of the first group. We shall see that a particular 

realization is useful for computing the effects of misalignments (see 

Chapter 12). If the homomorphism maps to a group of linear transforma

tions, the realization is called a representation. If a realization or 

a representation is an isomorphism it is called faithful. 

A subgroup is a subset of a group that is also a group in itself, 

under the same operation. An invariant or normal subgroup Hof G is one 

where for all h EH, g E G, ghg-l EH. 

iii. The Symplectic Group and the Group of Symplectic Maps 

A linear transformation or matrix Mis symplectic if it satisfies 
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the property 

~ MJM = J, (1.11) 

~ where M denotes the transpose of M. These transformations or matrices 

form a group under matrix multipliation called the symplectic group, 

designated Sp(2n). 

A map M from R2n to R2n, C =MC, is symplectic if its Jacobian 

matrix defined by 

~,. 
1 ~,. 
J 

(1.12) 

is symplectic for all C. These maps form a group under composition, the 

group of symplectic maps. The symplectic group is a subgroup of it. 

iv. The Poisson Bracket and Canonical Transformations 

The Hamiltonian evolution 

(1.13) 

can be used to study an arbitrary function on phase space f(C,t). Then 

the time dependence is 

df 
dt 

• Hamilton's equations allows us to substitute for C: 

-11-
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df 
-= 
dt V~f • J • V H + £!. 

"' C ot (1.15) 

It is useful to define the Poisson Bracket for two functions on phase 

space 

so that 

df 
-= 
dt 

[f ,H] + £!. ot 

If there is no explicit time dependence in the function f, then 

df 
dt 

(1.16) 

(1.17) 

(1.18) 

Closely related to the concept of a Poisson Bracket is the impor

tant concept of a canonical transformation. A canonical transformation 

is a set of functions C(C,t) which preserve the Poisson Bracket: 

(1.19) 

I have used the subscript C to indicate the derivative VC to be used, 

because we now have another set of coordinates C that could also be used 

as canonical coordinates. In fact, if we invert the transformation C 

~ C locally around the image C to form C(C,t), we find 

(1.20) 
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so it too is canonical. 

Suppose we make two canonical transformations in succession C ~ 

C ~ C • Then 

oci ocj 
= I - . J • oC mn oC 

m,n m n 

[ i:. ,e". 1 = JiJ" • 
1 J -

C 

So the composition of two canonical transformations C ~ C is 

canonical. Therefore, the composition of an arbitrary number of 

canonical transformations is canonical. 

(1.21) 

(1.22) 

Finally, canonical transformations are associative because all 

transformations are. For these reasons, canonical transformations on 

phase space form a group under composition. 

One may ask what the connection is between this group and the group 

of symplectic maps. Specifically, are they the same? The answer is 

yes, if canonical transformations are defined, as above, as those trans

formations that preserve the Poisson bracket. However, it is possible 

to define them as transformations that preserve the Hamiltonian. Then 
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the symplectic group is a subgroup of the canonical group. What is not 

included are the scaling transformations: if we allow transformations 

with Jacobian M such that 

~ MJM = AJ (1.23) 

then this extended group is the canonical group • 

Proof vr,. 
1 

• J . vc. 
J 

(1.24) 

because MJM AJ - MJM = AJ • 

v. Hamiltonian Flows and Symplectic Maps 

Now that we have the canonical group and the symplectic maps 

identified, we would like to relate Hamiltonian flows to them. Thus we 

have 

Theorem: A Hamiltonian flow that takes the coordinates r, 0 at time Oto 

r, at time t gives rise to a symplectic transformation from r, to r, 0
• 

Proof: The Jacobian matrix Mis defined by 

(1.25) 
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Then 

so 

where 

• 0 • 
M .. =-C. 

iJ oC~ i 

J 

• 

I 
k,1 

M = JSM 

(1.26) 

(1.27) 

(1.28) 

Now suppose tis divided up into N equal intervals of length E. If Mis 

the Jacobian matrix at the end and Mis the Jacobian matrix at the 

beginning of one of these intervals 

(1.29) 

If we assume M is symplecti.c to order E 

(1. 30) 
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we may check the symplecticity of M 

MJM = (M + EJSM + 0(£ 2)) J(M + EJSM + 0(£2)) (1.31) 

At time 0, Mis the identity, which is symplectic. Each of the N trans

formations is symplectic through order£. By letting£+ 0, we get 

exact symplecticity at the end; since N = t/£, the remainder term 0(£ 2) 

goes to zero faster than the number of intervals increases. 

c. Lie Algebras and Operators 

We have seen the symplectic mapping that governs particle behavior 

in an accelerator can be viewed as an element of a Lie group. We now 

wish to look at this Lie group from a differential view: if a particle 

is at a particular set of coordinates at a particular time, what are its 

coordinates a short time later? This information is given by the Lie 

algebra. 

An algebra over the reals is a vector space S, with a multiplica

tion rule A:S x S + S satisfying the bilinearity properties: 

1) A(as,t) = A(s,at) = aA(s,t) where a£ R; s,t £ S; 
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2) A(s,t + v) 

A(s + t,v) 

A(s,t) + A(s,v) 

A(s,v) + A(t,v). 

The algebra will be called associative if A(s,A(t,v)) = 

A(A(s,t),v). The algebra is a Lie algebra if the multiplication 

satisfies antisymmetry and the Jacobi identity: 

3) A(s,t) = -A(t,s) 

4) A(s,A(t,u)) + A(t,A(u,s)) + A(u,A(s,t)) = 0 

A Lie algebra multiplication is usually indicated with brackets [,]. 

A linear operator u on a vector space Sis a mapping from the 

vector space to itself, u:S ~ s. Call the space of all linear operators 

S*. It has a vector space structure adopted from S. If u,v ES*, a,~ 

scalars, ands ES, then 

(au+ ~v) s = au(s) + ~v(s). 

The composition of operators makes S* into an associative algebra. 

Repeated composition of operators shall be indicated with a super

script, by analogy with real numbers: 

uu , u3 = uuu , etc. (1.32) 

An operator with the superscript O is the identity. 

A derivation D of an algebra Sis a linear operator that satisfies 
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DA(s,t) A(Ds,t) + A(s,Dt). 

One may verify by induction that 

n 
DnA(s,t) = J.'. 

m=O 

Where ( n) __ n! 1.·s m m!(n-m)! the binomial coefficient. 

(l • 33) 

(1.34) 

An associative algebra can be made into a Lie algebra by defining 

the Lie product via the operation 

[s,t] = st - ts, (1 .35) 

which the reader may verify gives a Lie algebraic structure. It is 

called the commutator Ll.e algebra. 

The de rivations do not form a subalgebra of S* under composition. 

That is, the composition of two derivations is not in general a 

derivation. However, by forming the commutator Lie algebra 

(l • 36) 

we can make the space of derivations a subalgebra, because [D 1 ,D2] will 

always be a derivation if n1 and D2 are, as may be easily verified. 

A useful concept when dealing with Lie algebras is that of the 

adjoint map. An adjoint map of S gives, for each element of S, a linear 

operator on S, 
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(1.37) 

in the following way: 

(1.38) 

That is, multiplication by a fixed element of the algebra gives an 

operator , and the map AdA promotes that fixed element to that operator. 

Since S* is an associative algebra, it can be made into a commuta

tor Ll.e algebra. 

The map Ad from the underlying Ll.e algebra S to S* is a (Lie 

algebra) homomorphism, that is, it preserves the Lie structure: 

[Ads, Ad t ] = Ad[s,t ] , (1 . 39) 

which may easily be verified from the Jacobi identity and the anti

symmetry property: 

[Ads, Ad t ] =Ads Ad t - Ad t Ads 

= [s, [t, • ]] - [t, [s,• ]] 

= (s [t, •]] + [t, [• ,s] ] 

= -[•, [s,t ] ] 

= [ [ s , t ] , • ] = Ad [ s , t l , 
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where • indicates an unspecified arbitrary argument of S upon which the 

operators are to act. 

An operator in the image of Ad is called a Lie operator. If the 

Lie algebra is a commutator Lie algebra, such an operator is a deriva

tion on the associative algebra: 

(Ads) tu= [s,tu] stu - tus (1.41) 

stu - tsu + tsu - tus 

= [s,t] u + t[s,u] 

((ads) t) u + (t(ad s) u). 

Also, the Jacobi identity, together with the antisymmetry condition, 

means that a Lie operator is a derivation on the underlying Lie algebra, 

whether or not it is a commutator Lie algebra 

(Ad s) [t ,u] [s,[t,u]] - [u, [s,t]] - [t, [u,s]] (1.42) 

[ ( Ad s ) t , u ] + [ t , ( Ad s ) u ] • 

Lie operators are sometimes called inner derivations. 

Now we may apply these results. Let S be the space of continuous 

functions on phase space with at least one derivative, 

s = { f :R6 + R I f E c1} • (1.43) 

-20-



Consider the algebra given by pointwise multiplication on this space 

A(f ,g) - fg - {h / fh(x) =f(x) g(x) Vx e: Rn}. (1.44) 

Consider another multiplication operation [,] that makes this space a 

Lie algebra, whose adjoint is a derivation in A 

ff,gh] = ff,g]h + gff,h] (1.45) 

Furthermore, let the values on the phase space coordinates be 

(1 • 46) 

where we are considering the phase space variables C as functions. 

These rules uniquely define the Poisson Bracket Lie Algebra multi

plication, which we indicate by f,]. The reader should convince himself 

that the rules imply the relation given before: 

f, g e: s. (1.47) 

In the Poisson Bracket Lie Algebra we indicate the adjoint with a pair 

of colons 

:f:g = [f,g]. (1.48) 

Because Ad is not a bijection (one-to-one and onto map), however, it is 

not an isomorphism. For example :f + c: = :f:, where c = constant, be-

-21-



cause :c: = O. The kernel of the adjoint, that is the set of all points 

that map to zero, is called the center of the algebra; clearly, then, in 

this Lie algebra, the functions constant on phase space are the center. 

The time evolution of phase space functions in a Hamiltonian system 

is governed by this Lie algebra: 

e = -[H,C] (1.49a) 

or 

e = - :H:C. (1.49b) 

Obviously, the Lie operator :H: is very important in Hamiltonian 

systems, and one may reasonably expect that Lie algebras can play a 

significant role in analyzing these systems. Despite its importance, it 

is not practical in exactly this form. In accelerator physics, we 

usually want to find the coordinates after a finite time (or axial 

position) rather than the instantaneous rate of change. In other words, 

we need the integral rather than the differential form of the dynamical 

equations. In this case, Lie transformations are more useful. 

d. Lie Transformations 

We have thus far seen that Hamiltonian flows give rise to 

symplectic maps or canonical transformations which form a Lie group; we 

also have seen that the differential form of a Hamiltonian flow is 

governed by Lie operators which form a Lie algebra. One may conclude 

that Lie got his name on everything. One may also wonder what the 
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relation is between the two; it is given by the exponential of a Lie 

operator, called a (yes) Lie transformation. 

As motivation for the use of a Lie transformation, consider the 

dynamical differential equation 

-:H(t) :C 

This reminds one of the ordinary differential equation 

f I (x) g(x) f(x). 

The solution to this, of course, is 

f(x) 
fx g(x') dx' 

b e a 

(1.50) 

(1.51) 

(1.52) 

where b = f(a) is the initial condition. Thus we might propose that the 

solution of (1.50) is, if :H(t): commutes with itself at different 

times, 

= e 
- ft :H( t I): dt' 

0 C(O). (1.53) 

Here we must define the exponential of a Lie operator suitably. If we 

define it with the Taylor expansion that the ordinary exponential has, 

00 n 
e:f: = I : f: 

n=O n! 
(1.54) 

then it can be shown that (1.53) solves the differential equation 
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(l. 50). 

These exponentials of Lie operators give elements of the Lie group 

of symplectic maps and are called Lie transformations. We say that the 

Lie algebra generates the Lie transformation (group). The Lie transfor

mations have the remarkable property 

(1.55) 

This may be shown as follows. Using the derivation property (1.34) 

co 

= I 
n=O 

co 

e:f: [g,h] l. -f:fn:[g,h] 
n=O n. 

n 
1 I n! [ ( : f : mg , ) , ( : f : n -mh) ] 

n! m=O m! (n-m) ! 

co n m n-~ 
I I [ : f: g : f: 

= (n-m)!] m! 
, 

n=O m=O 

co co m l 
I I [ : f: g :f: h] , l! 

m=O l=O m! 

[e:f:g,e:f:h]. 

An identical calculation also based on the derivation rule yields 

(1.56) 

(1.57) 

This means that the transformation of a polynomial may be done on the 

coordinates. A polynomial is just a sum of monomials of the form 
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m C 2n 
2n (1.58) 

Then because of the relation (1.57) the Lie transformation may be 

distributed across the product, 

m m 
e:f(C): (a C 11; 2 

1 2 

and by linearity for any polynomial, 

( : f ( C ) : ,. m2 n) 
• • • e \-, 

2n 

(1 .59) 

It is clear by the above relations that transformations of the form 

e:f: are canonical for any f: if C = e:f:i; then 

(1 • 60) 

The converse is more interesting: given a canonical transformation, C + 

C is there an f such that C = e:f:1;? In general the answer is no. 

However, as we saw at the beginning of the section, the canonical trans

formation occurring under the flow of a Hamiltonian that commutes with 

itself at different times can be represented this way. Note that real 

accelerators have time-dependent Hamiltonians that do not commute with 

themselves, because the electromagnetic field seen by a given particle 
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depends on the time. In general it will not be possible to make a 

single Lie transformation representing the Hamiltonian flow. However, 

we can approximate the transformation by a finite series of transforma

tions I shall discuss in section f. 

From the Poisson bracket Lie algebra A of functions on phase space 

S, we used the map Ad to induce the adjoint Lie Algebra A*, or Commuta

tor Lie Algebra S*. Since this is itself a Lie Algebra, it is possible 

to get its adjoint. Define 

AdA*: S* 7 S** (1.61) 

where S**:S* 7 S* is the space of operators on S*. We denote the map 

AdA* by surrounding with '#', that is 

It : f : It : g: [:f:,:g:] :f::g: - :g::f:. (1.62) 

Douglas [1982] uses '"' as an abbreviation for It: :It, e.g. f - lt:f:lt. 

The Lie Algebra in S** is a commutator, as in S* 

[f,g] = fg - gf ( 1.63) 

The following theorem is useful for exchanging the order of two Lie 

transformations 

Theorem (Douglas [1982], Dragt and Finn [1976]). If f,g E F with 

n E Z, then 
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(a) 

(b) 

(c) 

Here 
f 

e is defined as 

Proof 

(a) 
f 

e :g: 

---·-- -·--------------

f 
e :g: (l . 64) 

(l .65) 

exp(ef:g:) = exp(:e=f=g:). (1.66) 

= 

f 
e 

00 

I 
n=O 

0:, 

I 

00 

= I 
n=O 

fn 

n! :g: 

:f:n 

n=O 
--,- g: = n. 

(1.67) 

00 

I 1 
: : f: ng: (1.68) ;r 

n=O 

·e=f=g· . . . 

To show (b) start with n=l. Let~ be a real parameter, and define 

:h(~): e ~ : f : : f : e -~ : f : • 

Differentiation gives 

d:h: 
d~ 

:f::h: - :h::f: = f:h:, 

which has the solution 

~f 
e :g: • 
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Setting ~=l yields 

f 
e :g: • 

For n > 1, note e-:f:e:f: is the identity so 

e : f : : g : ne - : f : 

£ (e :g:)n ·e:f:g.n . . . 

Finally, we have 

ex, n 
e :f: ( I ~) 

n! 

ex, 

z: 
n=O 

n=O 

1 ·f· n -•f· -, e· ·:g: e · · 
n. 

·e·f·g· ef·g· e · · = e · · 

This relation is useful if we have, say, 

(1.72) 

(1. 73) 

(1.74) 

and want the trans.formation e:.f: on the right. Then, using e-:f:e:f: 

identity, we have the result 
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(1.76) 

·e :f =g • •f · = e · ·e · · 
·gT. •f. 

e · ·e · · 

where 

(1.77) 

This will be called the transformation rule. 

e. Canonical Transformations to Convenient Coordinates 

In this section, following Douglas [1982] and Dragt [1981], I shall 

make certain coordinate changes to facilitate the use of Lie algebraic 

methods in particle accelerator physics. 

The first step is to make a canonical transformation so that the 

independent variable is no longer flight time t, but distance along the 

flight path z. Generally speaking, a dependent variable Qi in a 

Hamiltonian system may be made into the independent variable if 

Qi= ~H * O. 
uPi 

(1. 78) 

Formally, the theorem is (Douglas [1982], p. 94, Dragt [1981], p. 151) 

Theorem Let H(z,t) be the Hamiltonian for a system with n degrees of 

Qi= oH * 0 
oPi 
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in some region of state space. Then within this region, Qi can be 

introduced as the independent variable replacing the time t. Moreover, 

the equations of motion with Qi as independent variable may be obtained 

by using K = -P 1 as an effective Hamiltonian. 

For a proof, which is based on the implicit function theorem, the 

reader is urged to consult the references given above. 

It should be clear that for any reasonable motion of particles in 

an accelerator, this condition holds for z: 

• z :f. 0 (1.80) 

since z(t) is, we hope, a monotonically increasing function of time. 

Thus we may take as the Hamiltonian the quantity 

(1.81) 

The second step is to make a canonical transformation measuring 

time and its momentum as deviations from the design trajectory 

t*(z) 

p*(z) 
t 

= t(z) - t 0 (z) (1.82a) 

(1.82b) 

where the superscript o indicates the value of the quantity on the de

sign trajectory, and the superscript* indicates the new coordinates. 

This is a canonical transformation. We may use a generating function of 

type 2 (Goldstein [1950], p. 240) 
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F(t,p~;z) (t - t 0 (z)) (p~ + p~(z)). (1 .83) 

Then the new Hamiltonian is 

(1 • 84) 

In this system of coordinates, the design trajectory has the value 

(0,0,0,0,0,0) and particles "near" the design trajectory will be des

cribed by "small" values of the phase space variables. Thus the motion 

is amenable to a perturbation description, and the Taylor series des-

cribed in section a will have validity. 

The notions of smallness and nearness can be given precision by 

scaling these variables so that the result is dimensionless. This 

scaling preserves the Hamiltonian form of the equations of motion. 

Choose an arbitrary scale length 1; it could be, for instance, the 

bending radius of the machine. Choose as the scale momentum p
0 

the 

design momentum. Then 

X 
X (1.85a) = I 

Px 
PX 

(1.85b) 
po 

y y_ (1.85c) 
1 

Py = 2 (1.85d) 
Po 

T t* (l.8Se) = (1/c) 
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(l.85f) 

These imply that the Hamiltonian must be scaled 

(1.85g) 

f. The Relation Between Lie Transformations and Symplectic Maps 

Lie operators and transformations are more general than the 

corresponding map and symplectic maps on phase space. A symplectic map 

is a map M: S + S, that is, M maps phase space into itself. A Lie 

transformation, e:f:, or series of the form e:f:e:g: •••• on the other 

-hand, acts on real functions of phase space S: S + R. 

e :f: :s + s , (l.86) 

-m or sets of them, S : S + R, 

·f. ::m -m 
e • • :S + S • (l.87) 

In particular, we may consider the set of 2n functions C which give each 

of the 2n canonical coordinates X, Px, etc., in succession. If we apply 

a Lie transformation or series, then substitute specific values v
0 

for 

C, we will have a symplectic map: 

(1.88) 
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We then say e:f:e:g: ••• corresponds to M, and vice versa. 

At this point a brief explanation of the notation and terminology 

used in this thesis is in order. As I have used the symbols above, the 

Greek letters C, ~ •••• will stand for the dependent phase space 

variables 

C = (X 'p X, ••• ) , (1 .89) 

either as abstract symbols or as functions on phase space where now the 

new variables are used. For example, 

(1.90) 

means to apply the transformation formed from the homogeneous second

order polynomial f 2 of the phase space variables to each of the phase 

space variables separately, i.e. 

- :f2(0: 
(1.91) X = e X, 

- :f2 CO: 
PX = e Px, 

etc. 

To indicate specific values of these variables - i.e., a point in 

R6 phase space, I shall use lower case Latin letters v,w, •..• For 

example, 
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:£2(0: 
v = e C I C=v 

0 
( I .92) 

means to make the transformation above, then substitute the values X = 

vox, Px = v0 p , etc., in order to get 6 values corresponding to a new 
X 

point in R6. 

A convenient shortcut will be to leave off the symbol C for the 

phase space variables. Where its presence will be missed, a bullet ( • ) 

Will be used. For example, the equation (1.92) above can be written as 

:tz:. I 
V = e V (1 . 93) 

0 

The distinction made above between the Lie transformations and 

symplectic maps based on the objects on which they act may seem like an 

irrelevant technicality until one considers a series of Lie 

transformations. 

Consider just two Lie transformations, and their effect on phase 

Phase: let Mt= e:f:, and Mg= e:g: . Suppose we look at their 

successive effect on phase space, 

(I. 94) 

= e:£(1;):e:g(C):e-:f(C):e:f(/;): C 

= e 
:g(e :£ =c) =e :f(C): C 
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= e:g(~): ~,where~= e:f(C): c 

or 

I :f: 
e • I 

V 

( 1.95) 

We see that the corresponding symplectic transformations must be applied 

in reverse order: 

(l .96) 

In the future, I shall occasionally abuse notation and write v for 

M • / v, when doing so will not cause confusion. 

Now that we have a correspondence between the Lie transformations 

and symplectic maps, we shall take a look at the subgroup of linear 

transformations and their Lie algebras. 

For a homogeneous second-order polynomial, f2, the Lie transforma-

tion 

(l .97) 

is a linear transformation, because each application of the operator 

:f2: leaves the order of its argument unchanged. Thus, the corres

ponding symplectic map is linear and we may represent it with the 

symplectic matrix M, 

(l.98) 
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In this case, Sis a symmetric matrix obtained from the coefficients of 

fz. Thus we have a mapping of the set of Lie transformations of the 

•f • form e· z· into Sp(6). It is an injective but not surjective mapping; 
:f2: 

there are symplectic matrices to which no e corresponds (see Dragt 

and Finn [1976]). 

This mapping has a corresponding homomorphism in the Lie algebra, 

which is easily computed. If cciCj is the coefficent of CiCj in f 2 , 

then the matrix JS is given by 

_g_. 

2cxx 

-exp y 

cxy 

-exp 
T 

cxr 

-2Cp p 
XX 

CXP X 

-c PxPy 

Cp y 
X 

-c PxPr 

Cp T 
X 

-cp Y 
X 

CXY 

-cyp y 

2cyy 

-cyp 
T 

cyr 

The Factorization TheorE:E!. 

exp y 

-2cp p y y 

Cyp y 

-Cp p y T 

Cp T y 

-cp T 
X 

cxr 

-cp T y 

cyr 

-cTP 
T 

2crr 

CXP T 

-c PyPr 

Cyp 
T 

-2cp p 
T T 

cTP 
T 

- fz :H(z'): dz' 
0 

(1. 99) 

the Hamil tonian flo~ as e 
is awkward 

Representing 

f
rom a computational standpoint because the 

for combining and tracking 

ge
neral never terminate, and there will be no 

exponential series ~ill in 
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reasonable basis for truncating it. 

For this reason, the factorization theorem is very powerful. It 

allows us to split up any analytic symplectic map, order by order, and 

stop at any point. 

Before giving the theorem, let us take a look at the effect of the 

Poisson bracket operation on the order of polynomials in Lie 

operators. Let a subscript non a polynomial indicate that it is 

homogeneous in nth order in the phase space variables; e.g. f 3 = 5X2Py 

2 
YPT is homogeneous third-order. In a Poisson bracket of homogeneous 

polynomials, the resultant order is two less than the sum of the orders: 

hn+m-2 (n+m) 2) (1.100) 

because there are two derivatives, and a multiplication. Thus, a Lie 

operator :fn: raises the order of its argument by n-2. In particular, 

:f1 : lowers it by 1, :f2 : does not change the order, :f3: increases it 

by one, etc. 

·f · :f3: 
As Lie transformations, e· 2 ' corresponds to a linear map, e in 

general corresponds to quadratic and all higher orders, e 
:f4: 

corresponds to only higher even orders, and so on. I shall refer to 

:fn: 
e as an nth-order transformation. 

Now we are ready for the factorization theorem, an extension of the 

theorem and proof in Dragt and Finn [1976], Dragt [1981]. 

Theorem (Factorization) Let M be an analytic symplectic map. That is, 

suppose the relation 
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z = Mz 

can be . written as a Taylor series in the form 

where a is a collection of exponents cr1 , cr2, ••• cr2n and 

2n 
I a I = I cri 

1 

(I.IOI) 

(1. 102) 

Then there exist homogeneous polynomials f1, f~, f;, f3, •••• of degree 

1 , 2, 2, 3, •••• such that the map (I.IOI) can be written in the form 

z = 
f c fa ·e • . . . . . 3 . . 2· . 2· 

fe e e 

:f 1 : 

••• e 1 • lz• (1.103) 

These polynomials are unique. 

~ First, split off the constant terms ci 

(1 .104) 

and put them aside. 

Let M(z) be the Jacobian matrix of the functions F*(z). Then 

M(O) = L (1.105) 

Where the matrix 1 is defined as being the coefficients of the linear 
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part of F(z): 

(1.106) 

where Pj is a collection of 2n integers, the jth integer being 1 and the 

rest O. 

Since M(z) is symplectic for all values of z, so is L. Thus, by a 

theorem of Dragt [1982], it can be written in the form 

(1.107) 

where Sa is a symmetric matrix that anticommutes with J and sc is a 

symmetric matrix that commutes with J. Because of the Lie algebra iso

morphism between the matrix Lie algebra and the polynomial Poisson 

bracket Lie algebra, we may find the second-order polynomials that are 

the image under Sa and sc. a C We shall call them f 2 and f 2 • The iso-

morphism between the corresponding Lie groups therefore gives the appro-
a C . c. ,fa• :f2: :f2: 

priate maps e and e , and their product 
.f2. ' 2' 

e e for L. 

Now we note that the action of the linear transformations on zf is 

a C 
-:f2: -:f2: 

e e • I z* 
i 

(1.108) 

where r() 1) is a generic symbol for a polynomial of the phase space 

variables consisting of terms higher than first degree . To show this, 

use the expansion for F* written as 
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(1.109) 

-·fa· -·fc· . 2. . 2 · 
apply e e to both sides to get 

-:f;: -:f~: 
e e I • z* == 

i 

(1.110) 

Which can be written 

a C 

- ·fa. - ·fc. . 2 . ' 2 . 
e e • I z* 

-=f2: -:fz: 
== l LiJ' e e • I + r(> 1). (1.111) 

j zj 
i 

C a 
:f2= :fz: 

The correspondence between L and e e gives 

a C 
-:f2: -:fz: 1 

e e • I z = l ( 1 - ) j k 2 k • 

Thus we obtain the desired result 

a C 
-:fz: -:fz: 

e e • 

j k 

I = zi + r(> 1). 
z~ 

1 

(1.112) 

(1.113) 

Next, we assume the series (1.103) exists to order n, and extend it 

to order n+l. Assuming the series 

C a f fz, f2, ••• , n 
(n ;;, 2) 

is known, so that F* may be written 

F*(z) 

f
c ,fa. 

: 2: ' 2 . 
== e e 

:fn: 
••• e z + r(> n-1), 

-40-

(1.114) 

(1.115) 



a term fn+l may be obtained such that the remainder term is of order n: 

:fn: :fn+l: 
••• e e • / z + r() n). 0.116) 

Because we have assumed that the series (l .114) has been carried through 

order n, there is some homogeneous polynomial of order n, gn, such that 

e 

-·f . . n. i = zi + g
0 

(z) + r (> n). 0 .117) 

By forming the Poisson Bracket of this with j replacing i in it, we 

obtain 

(l.118) 

Looking at the terms of order n-1 in z, we see 

0 .119) 

This implies there exists a function fn+l 

(I. 120) 

wh· i that (1.119) may be rephrased as 
ich may be concluded by not ng 

0. 121) 
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Thus I gn dzr is an exact differential, so 

i 

is the function desired. 

Now 

e 

so 

-·f . . n· ... 
C 

-:fz= 
e • j_ 

-:fn+l: -:fn: 
e e ... 

zi 

C 
-:fz: 

e • I z* = zi + r () n) • 
i 

(1.122) 

(1.123) 

(1.124) 

Inverting the ,naps on left-hand side, and applying them to both sides 
, 

••• e 

:fn+l: • I + r () n) • 
zi 

(1.125) 

This gives us an inductive rule for carrYin& the series to any order. 

The one task that remain• is to account for the constant term; this 

is now easy to do. Recall 

z = F(z) = c + F*(z~ 
(1.126) 

wher h i h been left off. 
e t e component notat on as 

Find an f 1 such that 

(1.128) 
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This is solved by 

(1.129) 

Finally, we have a complete factorization, 

F(z) 
C a 

:f2: :f2: 
= e e ••· e 

:fl : 

e • /z + r(> n-1), (l .130) 

~hich may be verified by applying the map to a specific point in phase 

space. By applying the transformations as in (l.95), we have 

F(z) 

C a 
:f2: :f2: 

= e e • • • e 

:fn: :f1: 
e •/z + r(> n-1) (l .131) 

+ r(>n-1) • 
C a 

:f2: :f2: 
e e • • • 

Then observe that e :fl: evaluated at z is juat z + c, 

and so 

•fc . •fa. 
_ ·2· ·2· F(z) - e e ... 

(l.132) 

= z + ffuCl 

= z + c, 

e:fn: . lz + c + r() n-1) = F*(z) + c + r(> n-1) 

(l.133) 
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as desired. 

In practice we would want to cut off any of these series after a 

certain number of terms, say four: 

(1.134) 

Although this would be symplectic and in general would give terms of all 

orders, it would be accurate only through third order. Thus, as with a 

Taylor expansion, we are using a perturbation method. Therefore, we 

must know that the remaining terms are insignificant. This will be true 

if the dimensionless momenta are small, and if the coordinates are small 

With respect to the scale of non-linearities in the system. 

It will be more useful for our purposes to factorize with the 

first-order term on the left 

: f I : : f ~ : : f; : : f 3 : : f 4 : 
M=e e e e e ••• • (1.135) 

This is a much more difficult problem. If, however, we keep terms in 

the Taylor series (I.IOI) only through order n, which we have to do in 

practice anyway, we may use the factorization theorem to write this as 

:f~: :f;: : f3 : 
z = e e e 

:fn+l: :fl: 
••• e e • / z + r(> n). (l.136) 

The techniques of Chapter 4 will show us how to rewrite concatenation 

this with the first-order term on the left, 

• C. •ga .• :g3 : :g1: .g2. '2 
z = e e e e 

:gn+l: 
••• e •/ z + rc,z(> n). 
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Notice h h 1 · 1 · f ow t e remainder po ynomia rc,z is now a unction of both z and 

c, the constants in F. Thus, this factorization is only accurate 

th rough a set order in the constant terms. This restriction shall be no 

great burden, as we shall assume the machine errors (misalignment, 

mispowering, etc.) which give rise to the constant terms are small. 

The form (1.137) in ascending order shall be the standard 

f actorization we shall use. However, we shall occasionally need the 

descending-order factorization 

·f · •f · ·fc · •fa· :fl: •4· •3· ·2· ·2· 
Af= ••• e e e e e (l .138) 

It is possible to write this from the form (1.135) given truncation at a 

certain order. 
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2. Ray Tracing 

In tracing rays we are given a set of phase space variable values 

vo at a particular time (or axial position z) and ask what the values v 

are after having been transformed by the map M: 

V = Afv
0

• (2.1) 

In a circular accelerator, for instance, M could be the map for one turn 

around the machine. Then if v is the phase space position of a 
0 

Particle at a particular turn, v will be the position at the next 

turn. By applying M to v, the position at a subsequent turn will be 

obtained. This process may be repeated for any number of turns to find 

the long-term behavior of the machine . 

With the Lie transformations the relation (2 . 1) woul d be written as 

:f (C): :fz(C): :f3(C): :f4(C) : 
1 e e • • • C v = e e (2.2) 

These Lie t f t· may be rearranged using the transformation rans orma ions 

rule: 

:fl(C): :fl(C) : 
l') • : f

4 
( e C) : 

:f3 (e "' • 
e e 

(2 .3) 

I d r transformation of phase space 
n this equation, the f irst-ore 
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:f1(C): 
e C (2.4) 

occurs often, so let us call it!;. Then (2.3) can be shortened to 

:f2: :f3: :f4: 
v = e e e !; I • • • . f • 

. 1 . 
!;=e C I 

:f2: :f3: :f4: 
= e e e 

C=v 
0 

If we call the coordinates shifted by the operator :f1 : w, 

then v becomes 

:f2: :f3: :f4: 
v = e e e • • • lw• 

: f 2: 
A similar process with the transformation e gives 

:f3: :f4: 
v = e e ••• I ·f . 

• 2 • 
e • lw 

: f 2: 
It is more convenient from a practical standpoint to keep e as 

simply the matrix of the linear transformation M. In this case, 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

:f3: :f4: I <2.9) v=e e ••• Mw 

To compute the effect of the remaining terms we use a different tactic, 

-47-



making use of the higher orders of the polynomials which increase the 

order with each term in the Taylor case. 

The point at which the exponential series are truncated determines 

the order of the transformation. Since each homogeneous Lie operator 

:fn: of order n changes the order of its operand by n-2, and we wish to 

keep terms through order p, we may truncate the exponential of the Lie 

: fn: n-1 
transformation e after[~] terms, where [x] means greatest integer 

less than x, and the identity is the zeroth term. 

For example, if the terms in the ellipses are disregarded, 

will be accurate through order 3. The end result can be given as a 

transfer map for each phase space variable 

(2.11) 

Once the terms in the exponential are truncated, the map is no longer 

symplectic. MARYLIE (Dragt et. al. [1985]) has an alternative method of 

tracking that symplectifies the truncated series, but I shall not go 

into it here, except to say that it may be applied tow to include the 

effects of f1• 

When factorized in the reverse order, the process is similar, but 

the linear and higher-order parts of the transformation do not act on 

the constant term 
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-- -------------

V = 
(2.12) 

Mw + C 

W-here now 

:g3: I 
W = ••• e • V 

0 (2. 13) 

The truncation point of the exponential series was determined above 

by the highest final order desired. This is a reasonable criterion for 

Phase space variables small, so that the truncated series is close to 

the limit value. It assumed, however, that the function on which the 

transformation acted was just a single phase space variable. This would 

not be true if we had more than one map in succession. 

Suppose the final value z is related to the initial z
0 

by two 

successive transformations~ and~ where Mt is represented by 
:f1: :f2· •f · •f · 

e e ·e · 3·e · 4· and M by a similar series in g1,g2 , ••• Then 
g 

(2.14) 

The g transformations yield the result above. However, we may no longer 

cut off the exponential series at any point, even if in the end we only 

desi d This is because the succeeding re a transformation of or er P• 

transformation e :fl: decreases the order of its operand by one for each 

term in the exponential . Thus, even if we need only third-order terms, 
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: fl : 
we would have to keep higher terms in the g, because thee would 

bring it back below 3 in the end. 

The resolution of this problem is to assume the first-order trans

formations are small in the same way the phase space variables are. 

Then we are supplied with a natural guide for truncation again. This is 

discussed in more detail in Chapters 3 and 4. 
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3. Ideal Structure of the Lie Algebra 

The truncation of the Lie transformation series (l.135) or (1. 137) 

bo th with and without a first-order term deserves closer 

investigation . It is of particular interest in concatenation. 

two maps in the standard factorization 

I 
What 

Where 

are the polynomials~ such that 

Mt Mg = Mii, 

• • • ? 

Given 

(3 .la) 

(3.Ib) 

(3 .le) 

0.ld) 

If we truncate each series t?!, M~ at a fixed value of n, say n = 4, then 

it is also reasonable to truncate the Mh series at that value of n. In 

combining the polynomials, however, higher-order terms will be produced, 

as we shall see in Chapter 4. The question we need to answer is: by 

What standard are we permitted to ignore or choose arbitrarily the 

Poisson bracket of two polynomials ffn,gnJ? The answer is divided into 

two parts: without a first-order term present, as is computed in 

MARYLIE 3.0 (Douglas [1982], Dragt et. al. {1985]), and with first-order 
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terms present, as we will need to handle misalignment and other machine 

errors. 

a. First-Order Terms Absent 

The presumption of the Lie transformation series (1.135) or (1.137) 

is that the correspondng Taylor series is convergent (see Chapter 1). 

Since we are truncating this series, we want the remainder term that is 

left off to be so small that it can be safely dropped. In order to do 

this, we take the values of each of the phase space variables C to be 

small so that sufficiently high orders may be ignored. Specifically, 

let each of the phase space variables carry the small factor o, so that 

powers of o count the order of these variables. Polynomials homogeneous 

of order n, fn have a factor on, and will be said to have o-rank n. 

The behavior of the o-rank of polynomials in a Poisson bracket has 

been explored (1.100) in a slightly different guise; the o-rank of the 

Poisson bracket is 2 less than the sum of the participants' o-rank, 

provided each was at least 1. 

Since o is small we may, when taking Poisson brackets, neglect 

terms of a given order or higher. Thus, for example, if we choose to 

neglect terms of fourth order and higher, the Poisson bracket [f3 ,g4] 

may be ignored. 

We now give this process some rigor; before doing this however, it 

is necessary to introduce some new definitions. 

A subset S'S'.; Sis a subalgebra if A(S',S') C S', where A(S',S') is 

the image of the multiplication restricted to S'. A subset S' ~Sis an 

ideal if A(S' ,S) £. S', that is, for s' € S', s e S, A(s',s) e S'. (For 
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a Lie algebra this is equivalent to if A(S,S') f; S' .) Clearly, an ideal 

is also a subalgebra. 

An algebra Sis graded if Sis the direct sum of subspaces si (i = 

O • I , ••• , 00
) and A( Si, Sj) C Si +j • An algebra S is filtered if for each 

non-negative integer i, there is a subspace s(i) such that 

I) s(i)c s(j) for i < j; 

2) u s(i) = S; 

3 ) A(sCi>,s(j))csCi+j)_ 

If Sis graded, then it is filtered by the rule 

(3.2) 

Similarly, an algebra Sis complementary filtered* if for each non

(i) 
negative integer i, there is a subspace S such that 

l) s(i) ::> s(j) for i < j; 

2) U sCi) = s; 

3) A(sCi>,sU>)csCi+J). 

If i mplementary filtered by the rule Sis graded, then it s co 

(3 .3) 

*This is my own terminology. 
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It is clear from the above definition that each of the members s(i) 

of a complementary filter is an ideal. Let s(i) e s(i), s es. There

fore, there is a j such thats e s(j). Then A(s,s(i)) e s(i+j)C s(i), 

and also A(s(i) ,s) e s(i+j) C s<i). Since s and s(i) were arbitrary 

within their respective sets, s(i) is an ideal ins. 

Let S be a (Lie) algebra, I an ideal in S. Define S/I to be the 

set of equivalence classes given by the equivalence relation: s 1 = s 2 

if s 1 = s 2 + i, for some i e I. We denote these classes bys+ I, where 

s e S. Since an ideal is a subalgebra, S/I is a (Lie) algebra with the 

rules 

(s 1 +I)+ (sz +I)= (s 1 + s2 ) + I, 

c(sl +I)= cs1 + I, c e R, 

These rules are easily seen to be consistent. If i 1 , i 2 e I are 

arbitrary, the left side of (3.4a) is 

E (sl + sz) + I, 

since I is a vector subspace of S. A similar argument holds for 

(3.4b). The left side of (3.4c) is 
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(3 .6) 

s ree erms on the right side 
From the definition of an ideal, the lat th t 

are in I, thus upholding (3.4c) . 

Let us now apply this to our particular problem: let S be the 

unct ons on phase space tat have power series expansions with 
space off i h 
no first-order terms (note the more restricted definition than befo ) 

re • 

t with subspaces of polynomials homogeneous in a particular order 
Grade i 

of the phase space variables: let 

So= {constants)U {homogeneous polynomials of order 2) , 

Si= {homogeneous polynomials of order i+2) for i > O. 

(3.6a) 

(3 . 6b) 

One may easily verify that this is a grading on Sunder the Poisson 

Bracket . (Note that the constants are not relevant; they could have 

been included with any Si) . If a particular polynomial (or Lie 

operator) belongs to the subspace Si (or Sf), then I will say it has 6-

rank i . 

Given this grading Si by polynomial order, we have the corres

ponding complementary filter given by (J . J) . This gives us a series of 
/ 

(i) (i) 

ideals s<i l , and a series of quotient algebras S S • The ideals 

consists of all i ~ith coefficients zero for the terms of 
power seres (i) - / (i+l) 

order I through i+l . The quotient algebra Q - S s is a rigorous 

way of describing the algebra s but "neglecting terms of order i+3 and 

greater . " 
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MARYLIE 3.0 (Douglas [1982], Dragt et al. [1985]) which does Lie 

algebraic 
computations through fourth order and has no first-order 

terms, is (2) actually computing in the algebra Q • If f 
n• gn, and¾ are 

homogeneous nth order polynomials, 

(3.7a) 

(3. 7b) 

(3. 7 c) 

etc. 

The results that are in sC3l are taken to be O, although any 

element of 5(3) would be acceptable. In applying the Lie transforma

tions to particle coordinates, portions of the result that are in 
5

(3) 

may be chosen non-zero to insure that the overall result is symplectic . 

The homomorphism Ad carries all these definitions to the adjoint 

algebras• . s• is all the Lie operators that are of order i, i.e., as 

i images of si, and 
5
(i)• are the direct sum of Sf or the image of s<il. 

The s(i)* are ideals, so the Q(i)• • s•/si+l)* are quotient algebras. 

Thus the adjoint algebra has the same ideal and quotient structure as 

the underlying algebra, as we expect, and commutators of Lie operators 

are set to zero (or to an arbitrary value) ,men the Poisson Bracket of 

the corresponding polynomials would be. 

The Lie groups generated by these Lie algebras and composition are 

as w e would expect: 

the symplectic roaps on the coordinates that result, 
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while 
containing terms of all orders, are accurate only through order 

Specifically, let G be the group of symplectic maps on 
i+l for q(i). 

phase space and G(i) (i = 0,1, ••• ) be the subgroup of these maps that 

has a power series expansion consisting of terms only order i+l and 

higher plus the identity. Then G(i) is a normal or invariant subgroup 

of G, that is, ghg-1 E G(i) for all g E G, h E G(i), The quotient group 

= G/G is defined as the equivalence classes given by g1 = g2 
H(i) (i+l) 

if gl • g

2 

+ h, where h E G(i), That is, two elements are the same if 

th
ey differ only by terms of order i+l or higher, That this is in fact 

a group may be easily verified, These groups H(i) are generated by the 

algebras Q(i)* and products. 

b. With First-Order Transformation,2.. 

If a first-order transformation is present, the truncation by 6-

rank given in part (a) will not be sufficient because the 6-rank will be 

lowered by a first-order term, Suppose we keep through 6-rank 4, and 

dis ca rd anything higher • Th•" forming • for instance • [ f I • [g 3 • h4]) would 

Yield the wrong answer' in the first place [g3,h4l, we would take the 

answer as O because the &-rank is 5, and so our overall answer would be 

zero, But this is not correct; even though the first Poisson bracket is 

6-rank 5, the Poisson bracket with f1 subsequently lowers the 6-rank to 

an acceptable 4. 
These kinds of trouble• maY be avoided by considering the source of 

th fi As we shall see in part II, the first-order 

e rst-order terms. te to a -~chine error , either a misalignment or a 

rms are proportional 
11

= mi these are small , ~ he first order will also be 

spowering. Presuming s 1 saY that a factor of the small parameter E 

ma 1. To be specific, 
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multiplies each first-order polynomial. We may now consider how this 

changes the analysis of the algebra and the corresponding group in the 

last section. 

The polynomial spaces Si now need to be supplemented. Let s_1 be 

the space of first-order polynomials. The Si (i = -1,0,1, ••• ) is still 

a grading. However, we can not construct a corresponding complementary 

filter according to (3.3), because we now have a negative i. Thus the 

s(i) are no longer ideals and we cannot form the quotient algebra. 

There is a corresponding destruction of the normal subgroups and 

quotient groups of symplectic maps. 

Instead of using a grading, let us try to create a complementary 

filter, and thus a series of ideals and a series of quotient algebras, 

in another way. Let us define a second index j (j = 0,1, ••• ) on the Si 

that is equal to the£ order. Thus Sij is a subset of S that is 

homogeneous of order i+2 in the phase space coordinates, and homogeneous 

of order j in£. The index i ranges from -l,0,1, ••• 00 , and the index j 

ranges from 0,1, ••• ,00 • I will say that a polynomial (or Lie operator) 

has &-rank i and £-rank j if it belongs to Sij (or Sfj). The only 

combination of i and j within these ranges that is prohibited is i= -1, 

j=0, the smallness requirement on first-order terms discussed above. We 

now seek a complementary filter constructed from the Sij• 

Let -z2-* = {-1,0, 1, ••• } x {0, 1, ••• } - { (-1,0)}, the pairs of allowed 

coefficients. Let z+ be the non-negative integers. Let \I be a function 

2* ,t-v:Z -+ Z with the property 

v(i,j) + v(k,1) ( v(i+k, j+l). (3 .8) 
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Now define the sequence of subspaces s(i), i E z+ by 

s<i) = EB (3.9) 
v(j ,k) ) 

This sequence is a compl ementary filter, which may be verified using the 

fact 

(3 .10) 

Then the product of an element in s<v(i,j)) with one in s<v(k,t)) is in 

8(v(i+k,j+t)) , 

A(S(v(i,j)), 8(v(k,t))) c 8(v(i+k) + v(j+t)) (3.11) 

C 8(v(i+k,j+l)) 

because of the rule (3) of the definition of the complementary filter, 

and the relation (3.8). 

With this complementary filter, we have a sequence of ideals s(i) 

in the algebra which may be used to define quotient algebras. 

Note that \I is undetermined except for the condition (3.8). Con

sider two examples, v(i,j) = min(i,j) and v(i,j) = ai + ~j where a,~ E 

z+ are constants. The former case corresponds to keeping all terms 

except those whose &-rank and whose E-rank each exceed a certain value. 

The latter exclude those whose weighted sum exceeds a certain value. 

This form of \I satisfies a stricter condition than (3.8), in fact 
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v(i,j) + v(k,1) = v(i+k, j+!) (3.12) 

and so we have a grading Sv(i,j)• which may take a complementary filter 

by (3.3). This complementary filter is the same as the one defined by 

(3.9). 

Normal subgroups G(v(i,j)) of the group of symplectic maps G 

including constant terms may be defined by analogy to the case without 

constant terms. The quotient group H(v(i,j)) = G/G(v(i,j)) is the group 

of transformations that will actually be used in computations. 

The function v that I shall actually use, and the one that makes 

the most intuitive sense, is 

v(i,j) = i + j. 

This will be called the total rank or total order. In terms of e-rank 

and 6-rank, this criterion says that we restrict terms to O(o) + O(e) ( 

N for some N, specifically, N=4 for MARYLIE 3.1. For MARYLIE 3.0, where 

we keep up through and including fourth-order polynomials, we would 

choose N=4. Physically, this is a realistic criterion, because it means 

for example that the misaligned element is off-center by an amount that 

is the same order as the typical deviation of the particles when 

entering an aligned element. Thus, we can expect the same accuracy in 

the result. In this calculation, it should not matter whether the 

magnet is moved or the particles are moved. 
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4. Concatenation of Factored Maps 

The description of an accelerator lattice or section as a transfer 

map has utility for tracking and for determination of analytic 

quantities such as tunes and chromaticity . What adds greatly to this 

utility, however is the ability to combine or concatenate maps to show 

the effect of two or more sections in succession. Then a library of 

common beamline elements may be maintained, and for a particular 

lattice, maps are concatenated to form an overall transfer map. This is 

an essential part of MARYLIE 3.0 (Dragt [1985] et al., and Douglas 

[1982]), which contains Lie transformations second through fourth 

order. This chapter describes an extension to include first-order 

transformations arising from misalignments or mispowering. How the maps 

including misalignment and mispowering arise is the subject of Part II; 

for now, we shall assume they exist. 

The task of this chapter is as follows. Consider two maps in the 

standard factorization that includes a first-order polynomial 

(4.la) 

:gl: :gz: :g3: :g4: 
Mg= e e e e • (4.lb) 

We wish to find the polynomials¾ such that 

Mf Mg= ¼i (4 .le) 

where 
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: h 1 : : hz : : h3 : : h4 : 
Mh = e e e e 

(4.ld) 

Additionally, we would like to convert toad di f 
escen ng actorization· ' 

given Mf as above what are the ho such that 

: h4 : : h 3 : : hz : : h 1 : : f 1 : : f 2 : : f 3 : : f 4 : 
e e e e = Mf = e e e e 

(4.2) 

This computation is divided into two parts: the hard part and the 

easy part. The hard part is moving the first-order term to the left. 

This is covered in section a. The easy part is concatenating the 

transformations second order and higher that are left behind. This is 

covered in section b. 

Both these parts use the same two tools. One tool is the transfor-

mation rule 
' 

: f: :g: 
e e 

·f. f :e· ·g: : : 
= e e 

(4.3) 

proved in Chapter 1. The second tool is the Baker-Campbell-Hausdorff 

theorem (BCH) and its inverse, the iassenhaus formula. The BCII Theorem 

tells us how to bring the product of e,ponentials of non-commuting 

objects into one e•ponent, and the iassenhaus formula tells us how to 

take a single e,ponential and break it apart into the product of several 

exponentials. The BCH theorem says that if 

(4.4) 

then 
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C =A+ B + ~ [A,B] + l~ [A, [A,B]] + 
1

; [B, [B,A]] + ••• (4.5) 

where [,] is the commutator Lie algebra multiplication. The 

factorization will be changed by first using the BCH formula to combine 

terms into a single exponent, and then using the Zassenhaus formula to 

pull them apart in the order desired. 

At the end of section b the goal of concatentation (4.1) will have 

been achieved. In section c, the problem of writing the factorization 

in descending form (4.2) is addressed; the computation is essentially 

moving the first-order term to the right and is similar to that of 

moving a first-order term to the left (section a). Section d shows that 

when tracking a particular initial condition, the results agree exactly 

With the first-order term from concatenation, and could serve as an 

alternate derivation of that term. Finally, section e serves as an 

appendix showing the details of one of the calculations in section a. 

2.• Moving the First-Order Term Left 

In order to simplify moving the first-order term to the left we may 

d :gz: :g3: :g4: 11 d concentrate i i rop the term e e e temporar y an on wr t ng 

as 

f . ·f . ·g • 
· f · · f2 : : 3 · · 4 · • 1 • · 1· · e e e e e 

(1)' 
·h'· ·h : · 1 ' • 2 

e e • • • 

h (n) 
1 

• •h' · ·h' · =2 '·3· ·4· 
e e e 

(4.6a) 

(4.6b) 

Th that there are more than one second-order 
e possibility is left open 
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( (l) I 
linear) transformations h 2 , 

(n) I 

• •., h2 • It may not be possible to 

combine them into a single transformation, and in any case it is not 

necessary, since they are kept as matrices. 

The factorization change (4.6) will be performed by successively 
·g . 

moving e· l· left past each term. First, we shall compute¾• where 

:f4: :gl: :k1: :k2: :k3: :k4: 
e e = e e e e (4. 7) 

Next, leaving behind the k2 , k3 , and k4 terms, we shall compute~ where 

(4.8) 

Again leaving behind the higher-order terms, we will find m[ such that 

= e 

T 
:ml : 

and thus, putting it all back together, (4.6a) will be 

(4.9) 

(4.10) 

~1 h left section b will be concerned with with the first-order terms on t e ' 

the form (4.6b) continuing the other terms into 

On these calculations, the reader is reminded of 
Before embarking 

Which 
~•e truncate the B(ll series. In Chapter 3 it was 

the criterion by " 

are to be discarded because their 
noted that certain Poisson brackets 

total order the sum of the 6 °rder , 

(count of first-order polynomials), 

(phase space variables) and£ order 

is too high. Thus, the BCH series 
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(4.5) will be stopped at some point by this criterion. The actual 

number of terms used varies with each c 1 1 . a cu ation. 

i. Moving gl past f4 

C ·g . :f4: The irst step in concatenating is to get e· 1· paste We 

want to find k1, k2, k3 and k4 such that 

(4.11) 

Note that in general, one would expect in moving g
1 

past f 4 that terms 

of all orders would appear in the standard factorization. Using the 

transformation rule, we find the result 

(4.12) 

This expression is exact because the next term in the series is a 

cons tant. We may say the second exponential on the right side is 

where, with their orders in£ and o, 

1 ·g .3f 
6 · 1 · 4 

]·2 = 1 ·g .2f4 2 . 1. 

O(o) 1 

O(o ) = 2 
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0(£) = 3 (4.14a) 

0(£) 2 (4.14b) 



O(o) = 3 O(E) 1 (4.14c) 

O(o) 4 O(E) = 0 (4.14d) 

Note the total order, O(o) + O(E) is always 4. The next step is to 

split up this sum in the exponent into a standard factorization of the 

form 

(4.15) 

This is accomplished with the Zassenhaus formula: essentially, solve 

the BCH formula using the unknown quantities 1 1 and kn. First, bring 

the 1 1 to the left 

(4.16) 

then apply the BCH formula to the left side: 

(4.17) 

where 

and solve for 1 1 iteratively. The BCH series for p has been cut off 
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be cause either the order in t 1 becomes too high yielding constants or 

the total order becomes too high (each jn is total order 4). Note that 

Pis a polynomial with no terms first-order in o. Therefore, we may 

rewrite t 1 , as 

(4.19) 

and attempt to solve r 1 • So now, in terms of r 1 , 

Again, each jn has a total order of 4, so a Poisson bracket of one with 

another has a total order 6. Since this exceeds the limit of 4 for 

retention, all the terms that contain nothing but Poisson brackets of 

j's may be dropped. 

Taking the first-order in E part of both sides of (4.2), we have an 

implicit equation in r 1 , 

0 1 ·r .2. 
12 . 1· J3• (4.21) 

The only reasonable solution to this is r 1 = 0, as is demonstrated in 

detail in section e of this chapter. Thus, (4.19) gives t 1 = J1 • 
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From t 1 we may move on to solve for k2 • 

( 4 • 1 7) , is now: 

where pis now different. Applying BCH: 

Let 

kz = jz + rz 

so that 

p -rz + j3 + j4 

The equation to solve , 

(4.22) 

(4.24) 

+ ••• 

(4.25) 

Again, we find that all Poisson brackets involving nothing but j's may 

be dropped. The requirement that terms of p second-order in o be zero 

dictates that r 2=o. 

Next consider k3 • We are left with, in (4.16) 

(4.26) 

or 

(4 .27) 
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Let 

(4.28) 

and by the reasoning above, 

0 (4.29) 

In summary, 

(4.30) 

where 

(4.31a) 

k2 1 ·g .2f 
2 · 1 · 4 (4.31b) 

(4.31c) 

(4.31d) 

to total order 4. Since the Poisson bracket of two first order 

operators is a constant, g1 and 1 1 may be combined to form k1 so that 

(4.32) 
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Thus we have a solution to (4.11) 

ii. Moving k 1 past £ 3 

The terms second and higher order present no problems in concate-

nating; they will be dealt with later. We thus may leave them behind 

temporarily and concentrate on moving the first-order term past the next 

obstacle, 
:f 3: 

e ; 

(4.33) 

analagous to (4.8). We shall see that the fourth-order term n4 does not 

appear. 

As with the £4 , we use the transformation property to obtain 

- :kl: 

:kl: :e f3: 
e e 

which is exact. We represent the second exponential as 

where 

1 ·k ,2f 
2 · 1' 3 

O(&) 
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(4.34) 

(4.35) 

(4.36a) 

--. 



0(o) = 2 0(€) = 1 (4.36b) 

0(o) = 3 0(€) = 0. (4.36c) 

The total order in all three cases is now 3 instead of 4. This makes the 

calculation more interesting; we will obtain one Poisson bracket before 

the series is terminated due to excessive total order. To get the ex

pression (4.35) to factored form, 

(4.37) 

the procedure is as before. We solve implicitly for n1: 

(4.38) 

where pis not as before. Knowing that p should have no first-order 

term, we may solve (4.38) for n1 • Using BCH, this is 

(4.39) 

In the first step we take, with a new r1 but analogous to (4.19), 

(4.40) 
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so we now must solve 

(4.41) 

The fourth term of this , 

(4.42) 

is of total order 4, since each argument of each Poisson bracket is of 

total order 3. However, brackets involving 3 or more m's may be dropped 

because the total order will exceed 4. So 

p = -rl 

- 1~ [m1 + m2 + m3,[m1 + m2 + m3,r1ll + ••• 

To cancel off the first-order part again, we choose 
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(4.44) 

where s
1 

is yet to be found, and the term [m1,m2 1 is of total order 4 . 

Note that all terms in the nested Poisson brackets involving this term 

can be taken as zero. To get the first-order part of p to zero, we may 

self-consistently take s 1 = O. Then 

(4.45) 

and 

(4.46) 

The next step is to solve for n2 using the result for p, (4.45) and 

(4.38): 

:m2+m3- _21 [ml ,m3]: :n3: :n4: - :n2: = e e = e :q:. 

e e 

(4.47) 

Using BCll, this must be solved so that the second-order part of q is 

zero . 

(4.48) 

Say 
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(4.49) 

with r 2 to be determined, then 

q (4.50) 

where terms of excessive total order have been dropped. To get rid of 

the terms second order in 6 we may take r 2 = 0 to yield 

(4.51) 

and 

(4.52) 

Finally, given (4.51), the right-hand of (4.47), 

(4.53) 

is solved by 

(4.54) 
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·- - ,c··-------------------

(4.55) 

In summary 

(4.56) 

where 

(4.57a) 

(4.57b) 

(4.57c) 

Again we may join the first-order terms 

(4.58) 

so (4.33) is solved by 

1 
[m1,m2J (4.59a) nl = kl+ ml 2 

1 
[ml .m3] (4.59b) n2 = m2 2 

1 
[m2,m3] (4.59c) 03 m3 2 
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0 (4.59d) 

iii. Moving n1 past f2 

Once again, we may concentrate on moving the first-order term and 
:f 2: 

leave the rest for later. The next term to pass is e • This is easy 

to overcome, for we may apply the transformation rule in a straight-

foward manner. It is 

• T, 
:fz: :n1: .nl. :fz: 

e e = e e (4.60) 

where T indicates the transformed polynomial: 

(4.61) 

iv. Picking up the Pieces 

The final step is to concatenate the terms second order and higher 

that we have left behind. The expression we started with, (4.6a), now 

looks like 

(4.62) 

:fl: :nr :fz: :nz: :n3: :kz: :k3: :k4: 
=e e e e e e e e (4.63) 

T The new terms n
1

, n2 , n3 , k2 , k3, and k4 have been calculated above. 
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T First, n1 i s, using (4.61), (4.59a), (4.57) and (4.32), 

=(kl+.!_ ·k ·2f l [.!_ ·k •2f ·k •f )]T 2 · 1· 3 - 2 2 · 1· 3, -. 1· 3 

(gl 1 ·g .3f + .!_ ·g .2f + .!_ [ ·g ,2f ·g ·f ] )T - 6 • . 1• 4 2 · 1· 3 4 · 1· 3,· 1· 3 

(4.63) 

The quantity 11 = g1 - ¼ :g1 :3f4 may be taken as gl in all but the first 

term, because the total order is too high in all the other terms. This 

is also done in computing n2 , using (4.59b), (4.57), and (4.32), 

(4.64) 

The polynomial n3 is found from (4.59c), (4.57), and (4.32) 

1 1 1 
n3 = m3 2 [m2,m3] = f3 2 [- :ll :f3,f3] = f3 + 2 [:gl :f3,f3] 

(4.65) 

= f3 + 1 •f .2g 2•3· 1· 

The polynomials k2 and k3 are given in (4.31b) and (4.31c) 

k 1 ·g ,2f 
2 = 2·1· 4• (4.31b) 
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(4 .3lc) 

To put these transformations in ascending order, we note the terms 

involving n3 and k2 are in the wrong order, so use the transformation 

rule to write 

-:k2: 
:k2 : :e n3 : 

= e e (4.66) 

-:k2: 
because k2 has total order 4, e acts as the identity on n3 , so 

(4.62) becomes 

(4 .67) 

:fl: :n;: :f2: :n2: :k2: :n3: :k3: :f4: 
=e e e e e e e e 

We may now combine some terms of like order as follows. The first-

order f1 
T combined into a single terms and n
1 

may be exponent 

T 
:fl+ 

T 
:f 1 : :nl : Ill: 

(4.68) e e = e 

because their Poisson bracket is a constant, so all Poisson bracket 

terms in their BCH formula are zero. The second-order terms d2 and c2 

may be combined 

:n2: :k2: :n2+k2: 
e e = e (4.69) 

-78-



because d2 has total order 3 and k2 has total order 4, so a Poisson 

bracket will have total order S, higher than the cut-off of 4. Thus 

any Poisson bracket terms in the BCH series may be taken to be zero. A 

similar argument allows us to combine the third-order terms 

Then 

To summarize with the f's and g's in place, (4.6) is 

:f2: :-:gl:f3+ ¼ [f3,:gl:2f3 ] : + ~ :g1:
2
f4: 

e e 

(4.70) 

(4.71) 

b. Concatenation of Terms Second- Order and Higher 

tions 

With g1 taken care of, we may now concatenate with the transforma

·g . ·g . ·g . 
e· 2 ·e· 3 ·e· 4 · • Fortunately, these are easier. We have 

:fl: :f2: :f3: :f4: :gl: :g2: :g3: :g4: (4.73) 
e e e e e e e e 
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:h1': :h2': :h3': ·f . ·g . ·g . ·g . · 4• · 2· · 3· · 4• =e e e e e e e 

·g . 
By the transformation rule, the term e

0 2 " may be brought to the left. 

·h' · ·h(l)' · ·h( 2 )' · ·g · •f'T. •fT• ' 1 ' . 2 . . 2 ' • 2 . ' 3 . . 4 . : g 3 : : g4 : 
e e e e e e e e (4.74) 

where the superscript T now indicates that the polynomial is to be 

- :g2: 
transformed bye : 

-:g2= 
= p(e C). (4.75) 

We now concentrate on the third and fourth order terms. We may 

make the exchange 

·g. :f4T: . 3. 
= e e (4.76) 

because the Poisson bracket of a third-order polynomial and a fourth

order polynomial is a fifth-order polynomial, which we are excluding. 

There are now two adjacent third-order terms and two adjacent fourth-

order terms: 

•h'T •g . ·fT• .·g4,· '3 . 3 · . 4· 
e e e e 

The first two terms may be combined using the BCH formula 

h ,T ·g . : 3 . 3. 
e e 
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where the fourth-order term formed by the Poisson bracket of the third 

order term may be put in a separate exponential, because all higher 

terms are being neglected. For the same reason, all fourth-order terms 

may be combined in a single exponential, giving 

·h'· ·h(l). ·h(2). ·gz· ·h'T+g . . l_ [h'T g J + h4'+g4·· . 1 .. 2 .. 2 . . . . 3 3. ·2 3 ' 3 
=e e e e e e 

(4.79) 

Thus, the answer to the original question (4.1) is, to the proper total 

order 

(4.80b) 

(4.80c) 

(4.80d) 

(4.80e) 

( 4 .80f) 
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c. Factorization in Descending Order and Inversion 

In addition to concatenation of maps, the BCH and Zassenhaus 

formulas may be used to find a map factorization in descending order 

given its factorization in ascending order, that is, to find the hn such 

that 

e e e e 

·h · ·h · ·h(l) · · 4· · 3· · 2 · 
= e e e ••• 

·h(n) • ·h · • 2 • . 1 . 
e e (4.81) 

This is useful for inverting a map: we first reverse the factorization, 

and then change the sign of all polynomials. 

As with the concatenation, we concentrate first on moving the term 
. f . 

e· l· only this time to the right instead of the left. By a derivation 

almost identical to that of moving the first-order form left (section 

b), we obtain 

T 1 T 1 T2 
::fl:f3--4 [f3,:fl:f3] +-2 :fl: f4: :f1: :f2: :f3: :f4: :f2: 

e e e e = e e 

where 

T 1 T2 1 T3 
:f 1 + 2= f 1: f 3 + 6 :f 1: f 4 

e 

(4.82) 

(4.83) 

By using the transformation rule with the two second-order transforma-
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tions, we obtain 

(4.84a) 

(4.84b) 

(4.84c) 

(4.84d) 

(4.84e) 

where the superscript t indicates the transformation of the polynomial 

·h(l) · ·h(Z) · 
' 2 • ' 2 ' 

=p(e e C). (4.85) 

Note that these formulas are also useful in concatenation of maps 

factorized in descending order, or in ascending order except with the 

first-order term on the right. 

d. Relation to Ray Tracing 

An alternative process may be used to determine the concatenation 

formula for h1 , or to understand why certain tracking results calculated 

using either a concatenated map or using the maps separately agree 

exactly (see Appendix B). 

To simplify the problem, take f 1 = g2 = g3 = g4 = 0, so that 
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·h(l) · ·h( 2 ) · : h 1 : . 2 . . 2 . : h . : h4 : 
= e e e e 3 ·e (4.86) 

with 

(4.87b) 

(4.87c) 

h f + f + .!. . f . 2g 3 = - :gl: 4 3 2 · 3' 1, (4.87d) 

(4.87e) 

Consider the phase space points 

- :hl: 
vb= e • lo= [-hi,•1 (4.88) 

and 

v a = e : g 1 : • I O = [g 1 , • ] • (4.89) 

Using the formula for h1 above, I shall show that Mfvb = -va exactly 

when Mf is the map expanded for non-symplectified tracking (see Chapter 

2). 

In order to see that both M~vb and -va are analytically the same 

when tracked nonsymplectically, rephrase the equation as 
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(4.90) 

or 

-:f4: -:f3: -:f2: 
e e e • 1-v 

a 
vb [-h1,•J (4.91) 

-:gl: -:f4: -f3: -f2: 
·Io = - [hp•] (4.92) e e e e 

T T 
-:gl: -:f2: -:f 4: -:f 3: 

• lo [h 1 ' • ] (4.93) e e e e = -

where 

n = 3,4. (4.94) 

We may exchange fT and fT since we are keeping only terms up through 
3 4 

fourth order 

(4.95) 

or 

T T T 
f -:gl: -:f3: -:f4: - : 2: 

e e e e • I o = - [h l , • J (4 .96) 

• I T 
- [g 1 '•] 

- [h l , • ] • (4.97) 

The expansion of the Lie transformation exponentials non-symplectically 

through fourth order gives, with h1 given by (4.87a) 
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(• T . ] 1 T T • ] J - T •]) - [f 3' +-· [f3, [f3, [f 4' (4.98) 
2 T - [g 1 ' • ] 

[- T 1 T 2 fT+.!.. T T T T T + .!.. T 3 T 
= gl -6 :g 1: [ [gl ,f3]' [gl ,gl ,f3J] :g 1: f 4 . ] 

3 4 6 ' 

I shall now show that, term by term, the two sides are equal. The first 

terms are obviously the same, - [gf, •]. 

To show the equality of the remaining terms, let 

(4.99) 

and 

g - (4 .100) 

1H T T \" 
Let aif = 'ITT:"" Then [g1 , •] = g • J and [g1 ,f] = l (g • J)i 

i i 
consider the second term on the right side of (4.98), acting 

phase space variable, Ct: 

(4.101) 

1 T I (g •J)i 
T 

Ct] = - 2 [ [g 1, aif31, 
i 

1 I [(g. J)i(g. J)j 
T 

Ct] = -2 aiajf3 , 
i,j 

- .!. I (g. J)i(g. J)j 
T 

= casaiaj f 3) 3st 2 i . ,J 
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where use has been made of Taylor's theorem on the homogeneous second

T order polynomial oif
3

• Since this is true for all components t of C, we 

may say 

[- .!._. T,2 fT •] 
2 .gl. 3' (4.102) 

The third terms of (4.98) may be shown equal by a similar process: 

(4.103) 

= ¼ l (g. J)i<0s 0m01fj) 3mn (g. J)j(g. J)k <0n°j 0kfj) 3 st 
i ,j ,k 
m,n,s 

-87-



T where the second step occurs because ~n~j~kf
3 

is a constant. We may 

conclude the third terms are equal, 

(4.104) 

Finally, the fourth term on the right side of (4.98) is 

(4.105) 

so 

(4.106) 

Thus, term by term, the two sides of (4.95) are equal. Clearly, had we 

not known h1 , we could have run each of these calculations backward to 

obtain it, and we could do so for higher orders, since the Taylor 

expansion yields an easy sequence of terms for the left side. 

e. Uniqueness of the Solution for r 1 

In section a, we needed to solve equation (4.21) for r 1: 

(4.21) 
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The purpose of this section is to explore the possible solutions of this 

equation. 

Although an obvious solution may immediately occur to the reader, 

and this is in fact correct, it is worthwhile seeing that this is the 

only solution. First, we shall assume that r 1 is of order at least one 

in E. This is necesssary to be consistent with the previous truncation 

of the BCH series, and is crucial to give a unique answer. 

Let us investigate this equation by taking a particular example for 

the polynomials. Suppose 

(4.107a) 

(4.107b) 

so that 

j4 = f4 -3XP3 
(4.108a) X 

2 
(4.108b) h -:gl :£4 3EXPX 

jz 
1 ·g .2£ E2XP (4.108c) = · 1 · 4 2 X 

1 ·g .3f 
3 

j 1 
E x. (4.108d) = = 6 · 1 · 4 9 

Now consider the possible solution r 1 = KX, where K is some, as yet 

undetermined, real constant. The second term of (4.21) becomes 
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and the third term becomes 

Then the right-hand side of (4.21) is 

+ .!. j 1 ·r . 2j r1 2 :rl: 2 - IT · 1 · 3 

1 2 - - Ke: X 
2 

1 2 1 = (1 - 2 e: - 2 KE) KX. 

In order for this to be 0, we demand either 

K = 0 

or 

1 - ½ e: 2 - ½KE= 0. 

(4.109) 

(4 .110) 

(4.111) 

(4 .112a) 

(4.112b) 

The former gives r 1 = 0 and is the obvious solution spoken of above. 

The latter has the solution 

2 K =--e:, e: 
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which gives r 1 = ( ¾ - E)X. This solution however, is prohibited by our 

assumption: it contains a term proportional to £-l, and we assumed that 

rl would only have terms of first order and higher in£. Not making 

this assumption would clearly negate the BCH-series terminating benefits 

of regulating the first-order terms with a small parameter£. 

All possible solutions for r 1 will either be 0, or will be ill be

haved with respect to£. Thus we are forced to take r 1 = 0 and discard 

the alternate solution. This provides us with a unique answer, which we 

expect because we expect a unique final answer. 

The other equations similar to (4.21) in section 1, such as (4.43) 

with the value of r 1 given by (4.44), will have similar solutions. 
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S. Symplectification of Matrices 

As shown in Chapter 4, a second-order map is created when trans

porting g1 past other maps. Unlike the other linear transformations 

(second-order operators) of MARYLIE, this one is not born symplectic. 
· f . 

In treating e· 2 · we actually compute, store and manipulate it as a 

matrix on phase space variables. These matrices when computed and 

stored are symplectic to machine precision. When more than one of these 

has to be concatenated, conventional matrix multiplication insures that 

the result will also be symplectic. In this case, however, we generate 

a second-order operator which is to be exponentiated. The a-order of 

the terms does not provide a stopping point in the Taylor expansion of 

the exponential, and truncation of the series may leave a non-symplectic 

result. 

There are several ways to deal with this problem. In each case, 

the operators are first made into matrices on phase space, so that in

stead of dealing with :f2 : we are dealing with a corresponding matrix 

JS, where Sis a symmetric matrix, as shown in part lf. A first and 

most obvious method is to carry the Taylor series of the exponential to 

a point where additional terms are beyond machine precision. The 

advantage of this method is that it is not ony exactly symplectic, but 

exactly correct. The disadvantage is that it may require too much 

computation. 

A second method is an iterative one of Furman (1985}. Recall the 

definition that a matrix Mis a symplectic if MJM = J, where Mis the 

transpose of M. Equivalently, -MJMJ = I where I is the identity. If we 

~ study the matrix function F(M) = -I- MJMJ, we note that its deviation 
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-··-- - --- - --------- -----------

from the zero matrix indicates how far Mis from symplecticity. We then 

seek a correction matrix C such that M'=C Mis more symplectic than M, 

based on the value of F(M). There is some arbitrariness in the choice 

of C within this constraint. One choice is C=(I+F(M))-l/Z. We can 

approximate for F(M) small, C ~ I - F(M)/2. Then M' = ½ (3+MJMJ)M. 

With this approximation for C, the matrix M' will not be exactly 

symplectic, but will be closer to being symplectic than M. 

Specifically, I shall show that IIF(M')II < IIF(M)II for any suitable 

matrix norm where II Ill = 1. Let M be nearly symplectic, its deviation 

from symplecticity measured by IIF(M)II, with 

0 < IIF(M)II « 1. 

1 Now let M' = (I - 2 F(M)) M. The deviation from symplecticity is 

F(M') = -I - M'JM'J 

1 1 
-I - (I - z F(M)) MJM (I - z F(M)) J 

1 1 ~ 1 ~ = -I - MJMJ + z F(M) MJMJ + z MJM F(M) J - 4 F(M) MJM F(M) J 

= F(M) + ½ F(M) (-I - F(M)) +½(-I - F(M)) J-l F(M) J 

- ¼ F(M) (-I - F(M)) J-l F(M) J. 

To calculate the relative symplecticity of M', we will need the 

transpose, of F(M), 
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F(M) = - (I+ JMJM) = - (I+ JMJM), (5 .3) 

so that 

J-1 F(M) J = J(I + JMJM) J ~ = -I - MJMJ = F(M) (5.4) 

where the relation J 2 = -I has been used. Then 

F(M') = F(M) - ½ F(M) (I+ F(M)) ! (I+ F(M)) F(M) 

+ ¼ F(M) (I+ F(M)) F(M) = - ¾ F2(M) + ¼ F3(M). (5.5) 

Thus the deviation is II F(M') II "" IIF2(M)II = IIF(M)ll 2 • This shows that the 

process is quadratically convergent when iterating. If II F(M) II < 1, 

IIF(M')II-. IIF(M)II, equality only if F(M) = 0, for some suitable matrix 

norm. Thus we may iterate: M' may be used to calculate a more 

symplectic M", and so on, until we are satisfied with the degree of 

symplecticity. 

A third method uses the Cayley representation of symplectic 

matrices. If a symplectic matrix M can be written M = exp(JS) with S 

symmetric, we may rewrite it as 

M =I+ tanh(JS/2) =I+ JW 
I - tanh(JS/2) I - JW (5.6) 

where W = -J tanh(EJS/2) is symmetric if and only if Mis symplectic. 

Now run this backwards: we start with a matrix M that is nearly 

symplectic. Define the matrix V by 
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V = J I - M 
I+ M (5. 7) 

which will be an approximate W. We create the actual W by symmetrizing 

V: W = (V+V)/2. I+ JW 
We may now use the formula 1 JW above to create a 

new matrix M'. We are assured that M' is near Mand is exactly 

symplectic. 

This method may be extended so that we can exponentiate and 

symplectify in one step. We start with the representation of the matrix 

we wish to calculate as M = exp(EJS), where Sis symmetric and known. 

Then we may calculate M by the formula (5.6), using for W the 

approximation of tanh(E J~) by its Taylor series truncated at some 

suitable point: 

w"' w = a 
~ n (JS)n 
l anE 2 • 

n=O 
(5.8) 

This truncated series is automatically symmetric, so we need not 

symmetrize. The first few coefficients an for the hyperbolic tangent 

are 

1 
a3 = - 3 • (5.9) 

The validity of the approximation of the hyperbolic tangent in the 

Cayley method may be verified in the following manner. Let 

CX) 

W = tanh e~) = t n (JS)n 
l an E 2 , 

n=O 
(5.10) 

where only odd n enter into the summation because the hyperbolic tangent 
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is an odd function. Let us write the truncated series as 

ml n (JS)n E = JWa = J a E -n 2 
n=O 

the remainder term being dropped is 

Er = JW - E = J ~ n (JS)n 
l anE 2. 

n=m+l 

The approximated matrix Mis 

1 + JW 
a Ma = _l ___ J_W_ = 
a 

the actual matrix is 

1 + E 
1 - E 

M = 
l+E+E l+E+E l 1 + JW = _____ r = _____ r ____ _ 

E 
Ma+ 1 

r = - E 

so 

1 - JW 1 - E - E 1 - E E 

E 
(Ma+ 

r = 
1 -

E 
+ Ma 

r 
1 - E 

E) [ 1 + 

E 

r 1 ___ r_ 
1 - E 

E 
r 

1 - E 

1 
E 

1 - r 
1 - E 

E 
( r )2+ ... ] 
1 - E 

E E 
+ ( r ) 2 

1 - E - Ma (1: E)
2 

- (1: E 
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(5.15) 

Because S contains terms in£ of order 1 through N-2, M will not be 

accurate in£ beyond order N-2. Therefore, we may truncate at m = N-3. 

For N=4, we need keep just one term. 
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6. Determination of the Fixed Point 

Once we have computed the transformation for a section of the 

accelerator, 

M= (6.1) 

a desirable thing to know would be the fixed point(s) v: the points 

that satisfy 

v = Mv. (6.2) 

If the transfer map M represents one complete turn of a circular 

acce l e rator, the fixed point will be the closed orbit. A particle 

starting with those phase s pace coordinates will return to those 

coordinates in each successive turn. Once the closed orbit has been 

found it may be corrected to zero by a variety of methods, some of which 

are outlined in Appendix B. 

If the closed orbit remains uncorrected, we will want to extract 

information about the behavior around the closed orbit, such as tune, 

chromaticity, and so on. In terms of the Lie series, if 

:g1: :gz = :g3 = :g4 = I 
w = e e e e • w' (6.3) 

then the map around the fixed point is given by the polynomials fn whe re 

W - V 
:f2: :f3: :f4: 

= e e e • lw-v• (6.4) 
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... (6.8) 

be a sequence of first-order polynomials yet to be determined. Define a 

sequence of maps 

(1) 
N ' ••• (6.9) 

by the rule 

N (n) 
-·f(n). . 1 . 

= e M 

(n) 
+: f 1 : 

e (6.10) 

(n) 
for a non-negative integer n where fl is defined below. By 

application of the concatenation scheme above, N(n) may be put into the 

standard factorization 

·d(n). ·d(n). ·d(n). ·d(n). 
' 1 .. 2 ' ' 3 ' ' 4 . 

= e e e e 

Now define the sequence {fn1} =O 1 by 
n ' ' • • • 

/n+l) 
1 

f (O) = 0 
1 , 

./n). 
f

(n) e. 2 ·)-1 d(n) 
1 + (1 - 1 

n = 0,1,2,••• 

(6.11) 

(6.12a) 

(6.12b) 

As these maps are iterated, d(n) will approach 0, and d(n) will approach 
1 m 
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This procedure is, in principle , quadratically convergent. That 

is, din+l), which measures how far fin+l) is from the actual f1. will be 

order E2 if d(n) is of order E. 
1 

Let 

(6.13) 

which will be O(E) if din) is. Then 

and 

e 

(n+l) 
N 

/n+l) 
1 

= f(n) + (n+l) 
1 r 1 

(n+l) 
-:r

1 
: (n) 

= e N 

(n+l) 
:r 1 : 

e 

-:r~n+l): :din): :d~n): :djn): :din): :rin+l): 
e e e e e e 

(6.14) 

(6.15) 

-·r(n+l). ·d(n). ·d(n) .. (n+l). _. (n+l), ·d(n). ·d(n) .. /n+l). 
· 1 · · 1 · · 2 · .rl · .rl · · 3 · · 4 · · 1 · 

e e e e e e e e 

·d ( n). 
( ) . 2 . 

:dln + (e - 1) (n+l) 
rl 

(n) (n+l) (n) (n) (n+l) 
:d2 : -:rl : :d3 : :d4 : :rl : 

e e e e e 

:d~n\ -:rt+l): :d;n): :din): :rin+l): 
=e e e e e 

(n+l) 
by the definition of r 1 

Comparing this with (6.11) at iteration n+l, and recalling the rule for 

moving first-order polynomials, 
(n+l) 2 we see d
1 

will be O(E ). 

In the above analysis, 1 -
:d2: 

e was assumed to be invertible. 
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This is not always the case. Wherever a tune is O or 1, this quantity 

will not be invertible. Of course, a realistic accelerator lattice will 

not have such a tune in the horizontal or vertical degrees of freedom 

but the third degree of freedom is flight time, and in such a case the 

tune will be O or 1 if the Hamiltonian is time-independent, i.e. if the 

particle's energy is not changed. 

If the Hamiltonian is not explicitly dependent on time, and 

1 1 - :dz: h d ib d b consequent y e is not invertible, t e process escr e a ove 

may still be used with slight modification. Consider a particle 

starting with coordinates u1 in the transverse part of phase space 

(X,Px,Y,Py). Since the Hamiltonian is time-independent, it does not 

change the energy PT. Therefore, any value is suitable for the PT 

component of the fixed point. On the other hand, the flight time Twill 

be changed by a fixed amount~ that is independent of the initial value 

of T, and dependent only on u1 • Consequently, if we compute the fixed 

point u1 by the process above working only on the transverse part of 

phase space, we may say that 

(6.16) 

where Tis arbitrary, is a fixed point of the 4-dimensional subspace 

(X,Px,Y,Py) when the Hamiltonian is time-independent. 
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7. The Euclidean Group 

So far, we have seen groups associated with dynamical evolution in 

a Hamiltonian system. We now turn our attention to a different kind of 

Lie group: the Euclidean group. This is the group of rigid body 

motions in space, which we shall need to describe the misalignment of 

beamline elements. 

There are six degrees of freedom for rigid body motion (Goldstein 

[1950)); three translational, which form the subgroup T3 , and three 

rotational, which form the subgroup S0(3). The Euclidean group is the 

semi-direct product of T3 and S0(3); if ai E T3 , Ri E S0(3) for i = 1,2, 

the multiplication in the Euclidean group is 

(7.1) 

3* . ) where~= S0(3) ~ R is the representation of S0(3 as a linear trans-

formation in R3 , given in (7.4). The identity is the semi-direct 

product of the identities of the two subgroups, E(0;I), and the inverse 

is 

(7.2) 

which may be checked using (7.1). 

The action of an element a of r3 on a rigid body is straight

forward. If we pick a set of coordinates, and give some fiducial point 

of the body relative to these coordinates, a need only be the vector 

from the origin to the fiducial point. 
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The rotation group S0(3) does not have as natural a parameteriza

tion. As a start, ~ote that every rotation leaves some axis (one 

dimensional subspace) in R3 unchanged; one way to parameterize rotations 

is to give the axis and the angle with direction of rotation given by 

the right-hand rule. More useful for our purposes, however, is the 

Euler angle parameterization, which is easily explicated in terms of the 

axis-angle parameterization. 

The Euler angles~, 9, ~, specify three successive rotations about 

the coordinate axes (Goldstein [1950], Dragt [1986]).* In the first 

step, we rotate about the Z axis by an angle~- In the second we rotate 

about the Y axis by an angle 9. Finally, in the third step we rotate 

about the Z axis by an angle~- The only disadvantage of the Euler 

angles is that they are many- to-one, but we may make special allowance 

for this. 

In order to determine the multiplication and inversion rules under 

the Euler angle parameterization, we shall pick a representation in 

which we can do the multiplication. The result will then be compared 

with the general form of the representation to extract the Euler angles. 

For this method to work, we need a faithful representation; once again 

we turn to the natural representation of 3 by 3 matrices. Although the 

parameterization in terms of Euler angles is many-to-one, it will yield 

a useful answer. 

Writing out the three axis rotation, 

*Note Goldstein uses passive rotations, and Dragt uses active rotations. 
I shall follow Dragt, because he must approve this dissertation. 
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(7 .3) 

In terms of the matrix representation, the Euler angle parameterization 

looks like 

(7.4) 

~os¢ -sin<!> n [ cos0 0 sige] [cos~ -sin<J, ~] = ~n<I> cos<!> 
-si~9 

1 sin<J, cos<J, 
0 0 cos9 0 0 

t os¢ cos9 cos<J, - sin<!> sin<J, -cos¢, cos9 sin<J, - sin¢, cos<J, cos¢ sin~ 
= sin! cos9 cos<J, + cos¢, sin<J, -sin¢, cos9 sin<J, + cos¢, cos<J, sin¢, sin9 

sin9 cos<J, sin9 sin<J, cos0 

We may multiply two of these matrices to get the product 

(7.5) 

and now solve for¢,, 0, <J, by looking at the form of the matrix above and 

extracting the quantities. That is, we know that 

(7.6) 

so we find 

i) e = arccos (7. 7) 
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Also, from elements 1,3 and 2,3 

ii) ~ = arctan 

and from elements 3,1 and 3,2 

iii) <Ii= arctan 
M31(~,0,;j;) 

(- - - - ) 
M32 (<!> ,e ,<!,) 

(7.8) 

(7 .9) 

Formulas ii) and iii) may give the wrong answer or no answer under 

some circumstances; we need to be careful in two respects. First, the 

function used should be a two-argument function, numerator and 

denominator, that returns values on the full circle [-n,n] rather than 

n n on the right half [- 2,2). Such a function is normally called atan2 

(e.g., in Fortran). Second, if sin 0 = 0, both numerator and 

denominator will be 0, and M(~,0,;j;) will represent a simple rotation 

around the z axis 

l cos(~ ± ~) + sin(~ ± ~) 

±ci sin(~ ± ~) cos(~ ± ~) 
0 0 

(7 .10) 

-
We may choose <Ii = 0, so that the matrix is 

t cos <Ii - sin <I> 

±~ 
cos <I> cos <I> 

0 0 

(7 .11) 

In this case 

ct,= arccos (±M11 (~,e,;j;)). (7.12) 
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The answers are 

i) 0 = arccos[cos0 1 cos0 2 - cos($1 + ~2) sin0 1 sin02] . (7.13) 

ii) If lcos SI* 1, $ = arctan(a/b) where 

a = sin$2sin02cos0 1+ cos$ 2 sin($ 1+~z) sin0 1 

+ sin$2 cos($ 1~ 2) cos02sin01 (7 .14a) 

b = cos$ 2sin02cos0 1 - sin$2 sin($1+~z) sin0 1 

+ cos$ 2 cos($ 1~ 2) cos02sin01 • (7.14b) 

If cos 0 = 1' 

$ arccos[-sin$2 sin~ 1 cos($1 + ~2) - cos$z sin0 1 sin0 2 cos~1 

- cos$ 2 cos0z sin~1 sin($ 1 + ~z) 

- sin$z cos0 1 cos~1 sin($1 + ~z) 

+ cos$2 cos0 2 cos0 1 cos~1 cos($1 + ~z)J. (7 .14c) 

iii) If lcos 91 * 1, ~ = arctan(a/b) where 

a = sin0 1cos0zsin~ 1 + sin($1+~2)sin0 2cos~1 

+ cos($1~ 2) cos0 1sin0zsin~1 , (7.15a) 

b = sin0 1cos0 2cos~2 - sin($ 1+~2)sin0zsin~z 

+ cos($ 1~ 2) cos0 1sin02cos~1• (7.15b) 

If lcos 01 = 1, ~ = O. 

-107-



Inverses are easily obtained by noting that S0(3) parameterized by 

Euler angles is specified as a product of three easily-inverted 

rotations 

R(<!>,0,<ji) (7.16) 

The inverses are 

i = X,Y,Z, (7 .17) 

so 

(7.18) 

R ( -(ji , -0 , -<!> ) • 
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PART II: Computation of Symplectic Maps 

We now have the mathematical tools in hand to concatenate Lie 

transformations, track particles through them, and determine the fixed 

point, for maps that include first-order terms in the factorization. 

What has not been covered yet is the source of these maps; given an 

actual accelerator that we wish to model, how do we obtain the matrix 

and polynomials of the transfer map of each element? 

This task is divided into four chapters. Chapter 8 shows a method 

for computing the factored Lie transformations from a Hamiltonian or 

from the Taylor series for the transfer map. It is based on the work of 

Dragt and Forest [1983]. Chapters 9 and 10 contain computations of the 

Lie transformations for the steering dipole and mispowered dipoles. The 

former is useful for error correction, which will be treated later, and 

the latter allows us to treat a particular kind of error that occurs in 

accelerators. Chapters 11 and 12 treat the problem of beamline element 

misalignment. Chapter 11 shows how to convert a misalignment at the 

fiducial point of an element into coordinate transformations (matching 

maps) for the entry and exit faces. These transformations depend only 

on the misalignment and the general geometry (straight or curved) of the 

element. Finally, Chapter 12 shows how to compute the realization of 

the Euclidean group, which we now have as coordinate transformations at 

the entry and exit faces, in terms of symplectic maps. When 

concatenated with the map for a perfect element, which is independent of 

the misalignment, the result is the map for the misaligned element. As 

a byproduct of these computations, some general comments about rotations 

are made. 
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The thrust of this part is computation of factored maps with first

order terms. This is not exactly the same thing as maps of elements with 

errors. For example, a mispowered quadrupole map will have no first

order term, because the quadrupole still sends a design particle out on 

the design trajectory. In situations of this sort, the factored maps 

are readily computed; the techniques of Chapter 8 will suffice for the 

case H1 = O. More likely, however, the ideal map has already been 

calculated and just needs to be computed with the actual parameters. In 

the quadrupole case, for example, Douglas [1982] has already computed 

the map, and we need only supply the actual powering to find the matrix 

and polynomials. 
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8. Computation of Factored Maps from a Hamiltonian 

So far, we have seen that a symplectic map may be written in the 

factored form, 

:f . ·f(c). •f(a). 
1 ··2 ··2. 

e e e ... ' (8.1) 

and we have seen how to manipulate and use this factorization. In the 

course of showing that a symplectic map can be represented by factored 

Lie transformations, we have seen how to find the polynomials given the 

coefficients of the Taylor expansion. We do not yet, however, know how 

to get these polynomials directly from the Hamiltonian. This will be 

useful for some of the computations in succeeding chapters; we shall 

therefore treat it here. 

We divide the task into three cases. First, break up the 

Hamiltonian order-by-order in the phase space variables, 

H (8.2) 

Hn = polynomial homogeneous of order n in the phase space variables. 

The first case is H1 = 0, or that for which there are no constant terms 

in the transfer map. The method that applies in this case is described 

by Dragt and Forest [1983]. The remaining cases apply when H1 * 0, for 

which there are constant terms in the transfer map. When H1 is 

infinitesimal (i.e., we desire computation only to the required total 

order, in the sense of Chapter 3), the method of Dragt and Forest may be 

extended. For H1 arbitrary, there are two alternatives. One is to 
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split the Hamiltonian into the product of two transformations, one 

first-order, the other second and higher order, and apply the Dragt and 

Forest techniques to the result. This does not always work. The second 

alternative is to compute the transfer map either from geometric 

considerations or by application of the Hamiltonian map to phase space, 

and then to integrate the result as described in Chapter 1. Of course 

geometric considerations may always be used. The overall procedure is 

summarized as a flow chart, Figure 8.1. 

Let us begin by assuming that we are studying the transformation 

from a set of phase space variables C
0 

at time t 0 to the set C(t) 

parameterized by the time t. The independent variable will bet, 

although it need not actually be time; it may be longitudinal position, 

for instance. Since the transformation is canonical, there is a 

Hamiltonian H(C,t) that gives the dynamics according to Hamilton's 

equations. Assuming that His known, our goal is to find the functions 

C(t) 
:f 1(C,t): :f~(C,t): :f;(C,t): :f3(C,t): 

= e e e e •••• le • 
0 

(8.3a) 

or for short 

C(t) = M(t)C
0

• (8.3b) 

It will be assumed that the phase space variables are small in the sense 

described in Chapter 3. 
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a. H1 Small or Zero* 

Let us rewrite the Hamiltonian factored by o order, 

H = H l + H2 + H3 + ••• (8.4) 

The first-order part is small; H1 contains a factor of£, or the inte

g ration over the independent variable is a range of length£. We may 

calculate the factored product expansion through the appropriate order 

in£ by a method similar to that of Dragt and Forest [1983] and Forest 

[1984]. In the case£= 0, it reduces to those computations. 

To begin, let M be the transfer map 

(8.5) 

If g is any function on phase space we may say 

g(O (8.6) 

so 

(8. 7) 

From the equations of motion we note, 

*I am grateful to Etienne Forest for suggesting this idea. 
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g(C) = [g(C) ,H(C, t) J (8.8) 

Comparing this with (8,7) above, and noting g is arbitrary, we find 

obeys the equation of motion 

(8.9) 

The process of solving for Mis iterative in powers of E; for€= 

0, it has one step. Each step in the iteration produces a set of terms 

·g(i). ·g(i). ·g(i) 
·2 ··3 ··4 

= e e e (8.10) 

on the right; when we are done we shall have a series of second-order

and-higher sets: 

:gl: (n) ••• NO) M = e N (8.11) 

:g~n): :gin): :gin): 
e e e ... 

·g ( 1). . (l) (l) g • ·g . ·2 ··3 ··4 · 
e e e 

We may then concatenate the Ji) to form a single set 
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. . -- --·- -~~------

Af :f1: :fz: :f3: :f4: 
1v = e e e e 

with f 1 = g 1 , using the techniques of Chapter 4. 

The dynamical equation in M, 

will be solved iteratively, starting with H(l) 

duce a partial answer for M (i) 

(8.12) 

(8.13) 

H. Each step will pro-

(8.14a) 

with N(i) determined and M(i+l) undetermined explicitly but governed by 

the equation (8.13) with u(i+l) determined. We shall now see how to 

obtain N(i) and H(i+l). At the final step of the iteration, the 

solution obtained for M will be 

M(n)=N(n). (8.14b) 

Let HR(i) = H3(i) + H4(i) + h H(i) ••• so t at 

Then we may write (8.13) as 

(8.15) 

Now, write M(i) in terms of the product 

(8.16) 
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where each term will be determined. Further, write NR and N2 in terms 

of Lie transformations, 

and 

(i)' 
~ 

•g I• •g I• . 3. . 4. 
e e (8.17) 

(8.18) 

We shall first find dynamical expressions for Nii) 
1 

and Nii), then 

(")' (i) 
determine gn1 and g2 from them, and finally apply the concatenation 

rules of Chapter 4 to obtain the form (8 .10) for N (i). 

Substituting (8.16) in (8.15), 

(8.19) 

Let N2 satisfy the dynamical equation 

= N(i) ·-H(i). 2 . 2 .• (8.20) 

If H~i) commutes with itself at different times, (8.20), is solved by 

the exponential of the integral of H~i), 

N (i\t) 
2 

= e 
:gii)(t): 

(8.21) 

-117-

• j 

• ,I 
,I 

I "I 

. !I 

.. I 
,, , 1 

I ii 

' I ,· 

I i 



Alternatively, we may write H~i) in terms of the symmetric matrix s, 

H2(i)(~,t) = .l l s(i) ~a~b 
2 ab ab 

We may then write for (8 .20) a matrix differential equation 

• 

(8.22) 

M = JSM. (8 .23) 

This matrix M will give the linear mapping of phase space. Section b 

has a more detailed discussion of the solution of (8.20). 

With the H2 term out of the way, the dynamical equation (8.19) 

reduces to the two higher-order terms 

·-H(i) -H( i) · 
' 1 R '• 

(8.24) 

Next we ask that N ~i) 
1 

satisfy 

•N(i)'= M(i)' N(i) ._11 (il 
R R 2 ,lR, 

(i)-1 
N2 • (8.25) 

Let 

:g~i)(t): 
= e 

(i)(t). 
(i) :g2 . 

= HR ( e • I r , t ) , 
•o 

so (8.23) may be written as 

-ll8-



We may solve this by noting 

N(i) I (t) = 
R 

( i) I 

= NR 

(i)' (i)int 
NR (t') :-HR (t'):dt':, 

(8.27) 

(8.28) 

(i)' 
where I, the identity map, is the value of NR at t=O. We may make a 

Born (or Neumann) expansion on this integral equation by repeatedly 

substituting the left-hand side into the right; thus 

N(i)'(t) =7+ t 
R t 

int 
:-ii) (t'):dt' 

R 
0 

, (')int ( )int 
+ f~ f~ :-HR

1 
(t")::- H/ (t'):dt'dt" + ••• 

0 0 

(i)int 
If we expand HR , 

( .)int (')int 
= I-I l + II l + 3 4 • • • ' 

H
(i)int H(i)int 

where n is the homogeneous n th order part of R , and 

(8.29) 

(8.30) 

separate the terms by the order they change a homogeneous polynomial, 

(8.29) becomes 

(i)int 
:-H

3 
(t'):dt' (8.31) 

( i)int , . int int 
:-H

4 
(t'):dt' + f~ f~ :-H~ 1

) (t")::-H~i) (t'):dt"dt') 
0 0 

+ ••• 
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First, we write N(i)' in factored form, and then expand, 
2 

. (i)'. ·g(i)' . 

. g3 . . 4 . 
e e ••• 

= (1 + ·g(i)'. + _!_ ·g(i)' .2 + )(1 + ·g(i)'. + ) ·3. 2·3 .••• ·4 .••• 

1 + (i)' + _!_ ·g(i)'.2 + ·g(i)'. + : g3 : 2 . 3 . . 4 . • • • • 

(8.32) 

Comparing the order they change a homogeneous polynomial, we find that 

:g?): is 

( i)int 
H

3 
(t') dt'. (8.33) 

The next order change is more complicated. Note that (8.33) implies 

that 
(i)' 2 . 

:g
3 

: 1S 

1 •g(i) I ,2 
2 . 3 • 

1 tf tf (')int (i)int 

2 ft ft :-n/ (t")::-H
3 

(t'): dt"dt'. (8.34) 
0 0 

, 1, 

.1: 
, I 
11, 

I 
: 11 

' I 

ti 

'" , 11 
i• ,, 

1:I ,, 

Splitting up the second integral yields ,11 

1 
t int . int 

2 
:g~i)' :2 =½I/I:' (:-Hji) (t")::-Hji) (t'): (8.35) 

0 0 

int . int 
+ :-Hji) (t')::-Hj1

) (t"):)dt"dt', 

so the next order is 

1 ·g(i)'.2+ ·g(i)' 
2 . 3 . . 4 : (8.36) 
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tf, (')int (')int 
+ ft f! :-H/ (t")::-H/ (t'): dt"dt', 

0 0 

which gives 
( i) I 

g4 . ' 

( i) I 
:g4 : (8 .37) 

1 tf , (')int (')int +-f ft (:-H31 (t")::-H31 (t'): 
2 t t 

0 0 

( .)int (')int 
- :-H

3
1 (t')::-H

3
1 (t"):) dt"dt' 

t int int 
+ .!:._ f £ft' [:-H

3
(i) (t")::-H

3
(i) (t'):] dt"dt'. 

2 t t 
0 0 

Using the homomorphism between the Poisson bracket Lie algebra and its 

( i) I 

adjoint algebra, we have an expression for g
4 

, 

tf (')int - f H 
1 

(t') dt' 
t 4 

(8.38) 
0 

t . int int 
+}f/f!' [-H1

1
) (t"),-Hii) (t')] dt"dt'. 

0 0 

To obtain N(i) in the standard factorization, we may put N~i) on 

the left by using the transformation rule: 

(8.39) 

-1 
N(i)(t) = N(i) (t) N(i)'(t) N(i)(t) 

R 2 f R 2 f 
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(i) (i)' (i)' 
-:g2 (t): :g3 : :g4 

= e e e 

·g(i). ·g(i). 
' 3 . ' 4 ' 

= e e 

where, for n) 3, 

·g(i)(t ) . 
( i) -. 2 f ' (i)' 

g (Ct) =e g (C,t) 
n ' n 

(8.40) 

·g(i)(t ) . (i)' -. 2 f ' 
= g (e C,t). 

n 

To calculate these explicitly, note that 
(i)int (i)int 

the g(i) involve integrals of 
n 

H • The H , in turn, are just 
n n 

H(i) with a linear transforma
n 

tion of the arguments: 

(8.41) 

-:g2(i)(tf): :g2(i)(t): 
= H( i) ( ) e e C,t. 

n 

If H2 is independent of time, the linear transformations may be combined 

(8.42) 

Specifically, therefore, g;i) and (i) i b i 1 g4 are g ven y ntegra s over 

(i)tr (i/r 
H3 and H

4 
, 

tf (i) tr =ft -H3 (t') dt' (8.43) 
0 
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( i) tf (i)tr + _1 ftf ft' (i)tr (i)tr f -H (t') dt' [-H
3 

(t"),-H
3 

(t')] dt"dt'. g4 t 4 2 t t 
0 0 0 

(8.44) 

(i) 
The formulae for g

5 
and higher may be computed by referring to Dragt 

and Forest [1983]. 

Returning at long last to (8.22), we may use (8.23) to eliminate 

the second term so that there is only one term left, 

M
•(i+l) N(i)' N(i) _ 11 (i+l) N(i)' N(i) ·-H(i), 

' R 2 - "' R 2 • 1 ., (8.45) 

or 

(8.46) 

We may reduce this by moving the N maps to the right side, 

~f i +l) 

where 

( ·+1) ( ) (i) (') (') N(i)-1 N(i)-1 
M• i = M i + 1 N N 1- ·-H i · 

2 R 'l 'R 2 
(8.47) 

(') (i) (i) 
:g/ : :g3 : :g4 : 

e e e ·- (i). • • • • H • • • • 
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••• C,t). 

(8.48) 

If we let 

(8.49) 

we Will be done with this step of the iteration and ready to start again 

at (8 .15) with the step i+l; this is 

(8.50) 

This iteration process must not last forever, of course, if we are 

ever to get an answer. Thus we need a termination criterion and 

Solution. We achieve this by using the total order criterion of Chapter 

Assume that the integral of Hi over the specified range of the 

i ndependent variable has a small factor e multiplying it; that is, 

either H i 1 nvolves g or tf - to= g. 

Each iteration produces an addition factor of eon all but the 

first-order term of Hin). Eventually, the higher order terms may be 

dropped. Assume that 8n (n) 2) and tf - to is independent of e. We 

may define G1 so that H1 = eG1• Then 

(8.51) 

and g~l) will be independent of g. Then 
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H~
2

) = eG~ 2) + O(e) (8.52) 

d (2) 
an gn oc E • Continuing, we see that each iteration leaves a residual 

term that has one higher power of E, 

(8.53a) 

(8.53b) 

etc. 

Eventually, our total order criterion will tell us to stop, and conclude 

H(n+l) = 
1 

G
(n+l) 

E 1 

Consequently, the equation 

is easily solved; the solution is 

where 

:gl: 
= e 

g
1 

= J~ :- H~n+l)(t'): dt'. 
0 
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If the integral of H (n > 2) has dependencies -"'Il on E or its powers, this 

only haS t ens the iterative process. 

Putting the results from each iteration together, we get (8.11) 

:g1 : :g(n). ·g(n). ·g(n). 
M== 2 ··3 ··4 · 

e e e e 

·g (I) . ·g (I) . ·g ( I) . 
·2 ··3 ··4. 

e e e ... (8.11) 

and w e may use the process described in Chapter 4 to write this as 

M = e 

:fl: ·g(l) . • 2 . 
e 

:gin): :f2: :fn: 
e e e (8. I) 

(i) 
w: :g2 : 

e only have to use the transformation rule to move thee to the 

left, then use the concatenation rules for higher-order terms to combine 

them i nto a single set of exponents. The first-order term need not be 

moved, because it is already on the left. 

Subsequent chapters have examples of this computation; in 

particular, Chapters 9 and 10 have computations with a small factor in 

H1, and Chapter 12 has a computation with a small integration region. 

Chapter 12's computation is also done a different way (see Section c of 

this chapter) so that all orders of the small quantity are computed; the 

results of the two methods are compared. 

b. - Computation of the Linear Part N2 

This section is devoted to addressing the question of solution of 

the linear part of the map N2 in more detail. The dynamical 

differential equation for this map is (B. 20) 
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• 
N2 = Nz : -Hz : , 

where the iteration-count superscript have been dropped. 

where 

If :H2 : commutes with itself at different times, then 

Nz 

g2 = - f~ Hz(C 0 ,t') dt'. 
0 

(8.20) 

(8.55) 

(8.56) 

If it does not commute with itself, we must resort to other methods to 

solve this equation. Since we are dealing with a strictly linear map on 

phase space, we think in terms of matrices . 

Instead of working with Hz directly, we may write 

1 
Hz(C,t) = 2 (8 .57) 

and work with the symmetric matrix S, as was noted in Section a. 

Equivalently, JS is obtained by applying the matrix correspondence rule 

(1.99) to -H2 • If we consider Nz to be a matrix M, the dynamical 

equation (8.20) becomes 

• M = JSM, (8.58) 

as is shown in Dragt and Forest [1983 ] . 
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The most general solution to (S.SS) i h 
st e Born integral series 

similar to (8.29), 

M = I + ft 
t 

0 

JS(t') dt' + ft ft' 
t t JS(t') JS(t'') dt''dt 1 + 

0 0 

or as a solution to (8.20), 

... 
(8.59a) 

N = I + ft 2 t 
0 

:-Hz:(t'): dt' + ft ft' 
t t :-Hz(t'')::-Hz(t 1 ):dt 1 'dt 1 + 

0 0 ••• 

(8.59b) 

These may be seen to solve (8.58) or (8.20) simply by differentiating, 

M = JS(t) + JS(t) ft JS(t') dt' + t ••• = JSM. (8 .60) 
0 

If :H2 : commutes with itself at different times, then the matrices JS(t) 

may be multiplied in any order for different times. The solution for M 

is in this case 

f~ JS(t') dt' 

M = e 0 
(8.61) 

the equivalent of (8.56). 

In the general case, the series (8.59) would not be solvable in a 

simple fashion and one might resort to integrating (8.58) numerically. 

Even if :H2 : (or JS) does not commute with itself, it may be feasible to 

use (8.59) to solve for M, based on considerations of e-order. 

Suppose that Hz, and thus S, has a small factor E, which could 
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arise on a later iteration in solving a Hamiltonian with a small H1 • 

Then each term in the series (8.59) increases by one in e-order. 

Eventually, the total order criterion (Chapter 3) will allow us to 

truncate the series. For example, if we keep through total order 4, we 

would stop after three terms, becasue the double integral would have e 

order 2, and on a linear transformation, that makes total order 4. This 

is in fact the tactic used on the mispowered normal entry bending magnet 

(Chapter 9). 

It is interesting to consider whether the whole effect of the 

linear transformation, N2 or M can be written as a single second-order 

Lie transformation. That is, is there a matrix R such that 

(8.62a) 

or equivalently, is there a second-order polynomial g2 side that 

(8.62b) 

For a self-commuting Hamiltonian, of course, the answer is yes, with g2 

and R exhibited above. In the general case, the answer is no, one must 

allow at least two Lie transformations, (Equation (1.107) or Dragt 

[1982]) 

(8.63a) 

or 
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(8.63b) 

Between the commuting and the general case, we may consider what 

happens in the £-order regulated case. As pointed out above, if Hz or 

JS has a factor of£, each term in (8.59) will have an additional order 

of£, and the series may eventually be truncated. In order to write as 

a single exponent we would say 

I+ t 
t 

0 

Jt Jt' :-Hz(t'): dt' + t t :-Hz(t")::-Hz(t'): dt"dt' ••• 

or 

0 0 

JS(t') dt' + f~ f~' JS(t') JS(t") dt"dt' ••• 
0 0 

(8.64a) 

(8.64b) 

where the series stops eventually. Let us concentate on the form 

(8.64a), knowing our result will carry over to the matrix form. Write 

g2 as a power series in£, 

(8.65) 

Now expand the exponential 

:Egz 1 + Egz 2 + •••· e , , (8.66) 
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· g • 
Since e· z· is now factored by powers of E, we may match it term by 

term with (8.64), solving successively for g2 , 

Egz 1 = f -H2(t') dt' , 

and for g2 2 , 

E
2 :g2 , 2 : = f~ f~' :-H2(t")::-H2(t') dt"dt' -½ E

2 :g2 , 1 :2 

0 0 

= f~ f~' :-H2(t")::-H2(t') dt"dt' 
0 0 

-.!..ft ft' :-Hz(t")::-Hz(t') dt"dt' 
2 t t 

0 0 

f~ f!' :-H2(t")::-H2(t'): dt"dt' 
0 0 

(8.67) 

(8.68) 

- ~ f~ f~' (:-H2(t")::-H2(t'): + :-H2(t')::-H2(t"):) dt"dt' 
0 0 

or 

=.!..ft ft' [:-Hz(t"):,:-Hz(t'):] dt"dt' 
2 t t 

0 0 

= -1 ft ft' ) ] : [-H2 (t") ,-H2 (t' : dt"dt, 
2 t t 

0 0 

-- .!.. ft ft' ) )] g2,2 2 t t [-Hz(t" ,-Hz(t' dt"dt' 
0 0 
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---~ ----------------~ 

and so one. All this should have a familiar ring to it: it is very 

much like the calculation of part a with a sequence of terms of &-order, 

H3, H4, etc. In fact, there are some differences, but the process may 

be carried over. 

The first major difference is that the &-order factorization has 

separate exponents 

:g3: :g4: 
N = e e ••• 

and the E-order factorization, we wish to make a single exponent 

This may be remedied by first solving in factored form 

2 • I • E:g21 1: E .g2 2" :g2: e =e , e , 

(8.70) 

(8.71) 

(8.72) 

and then using the Baker-Campbell-Hausdorff formula to combine the 

g2 i into a single exponent. The BCH series will terminate when the , 

order of E gets sufficiently high. 

The second difference is that in this case, each successive term in 

powers of Eon the right side of (8.64) consists of one multiple 

integral, whereas each successive term in the powers of & in (8.31) 

consists of one or more multiple integral summed; for example (8.36) 

int int consists of integral over both H4 and H
3 

• This may be remedied by 

disposing with all terms but the multiple integral required; each of the 

terms will be recognizable in the final answer. For example, if the 
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first term of (8.38) is removed, we will have the analogue of (8.69). 

With these differences accounted for, the methods of part a will 

carry over. More to the point, the general method for finding arbitrary 

n th €-order polynomials (fn, n) 3) given by Dragt and Forest may be 

carried over to find the €-order polynomials gz,i• 

Whether or not the combination into a single exponent is feasible 

:gz: 
or possible, I shall metaphorically write ~2 as e • 

c. HJ Arbitrary and Geometric Considerations 

If H1 is arbitrary, i.e., not necessarily small, the situation is 

much different. In this case there are two possible strategies. The 

first is to try to split off the first-order part, i.e., try to find a 

G1 and Ge such that 

(8.73) 

and then apply the techniques of Section a, or of Dragt and Forest 

[1983] to e :Ge:. U f 1 h d i h G n ortunate y, t ere oes not always ex st sue a c, 

and even if there does, it may not be easy to find. 

The second strategy will always work. First, one finds the 

coefficients of the Taylor series of the map (1.3), and then integrates 

them as shown in Section lg. The coefficients may be obtained in one of 

two ways. The first is by geometric considerations, i.e., knowing the 

trajectory of the particle in advance, one can compute its outgoing 

coordinates in terms of its incoming. For example, in a pure dipole 
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field, one knows the trajectory is circular. Therefore, from the angle 

and position of entry of a particle, and the poleface geometry of the 

magnet, one may calculate the angle and position of exit. With a little 

work, this may be converted into phase space variables and expanded to 

give the coefficients. 

The other way of obtaining the coefficients is trying to solve the 

dynamical equation in M (8.9) directly. For example, if :H: commutes 

with itself at different times, (8.9) is solved by 

tf - f :H(l;: ,t'): dt' 
t 0 

M = e 
0 (8.74) 

It may be possible to perform this integral and compute its effects on 

phase space, then sum the series for the exponential in closed form to 

the order necessary. 

A variation on this method is to use a known factorized map but 

alter the incoming map by adding a constant to one (or more) of the 

phase space variables. This we shall do, for instance, in Chapter 12 

when discussing the midplane rotation. 
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9. Mispowered Normal-Entry Bending Magnet 

This chapter and the next are concerned with a particular kind of 

acce l e rator error that gives rise to a first-order transformation, and 

that is the incorrect powering of dipole (bending) magnets. This 

chapter i s a treatment of the normal-entry-and-exit bending magnet 

(NEBM), and the next chapter is a treatment of the various parallel face 

magnets, orbit correctors, and the general bending magnet. Although all 

computations are done for the mispowered magnets, the correctly powered 

magnet maps may be recovered by setting the mispowering parameter E to 

o. 

In this chapter I present first two derivations of the mispowered 

normal-entry-and-exit bending magnet, the first based on the methods of 

Chapter 8 and the second based on geometric considerations and making 

use of the half-parallel-face magnet map given the next chapter. 

a. Computation of the Map from the Hamiltonian 

A normal-entry-and-exit bending magnet (normal-entry bend or NEBM 

for short) has the geometry shown in Figures 9.1 and 9.2. Its 

Hamiltonian and factored map were calculated by Douglas (1982]. I shall 

follow that calculation here, deviating, of course, from the ideal 

powering he assumed. 

It is most convenient to describe this magnet in polar coordinates: 

(j> p~ with t the independent variable. P, Pp, Y, Py, , ~ 
The radius is P, 

the radial momentum Pp• We shall eventually return to the familiar 

Cartesian coordinates. In this coordinate system, the Hamiltonian is 
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Act!Jal Design 
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Figure 9.1 Geometry of the Mispowered Normal-Entry Bend 
Bactual > Bideal 
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Figure 9.2 Geometry of a Mispowered Normal-Entry Bend 

Bactual < Bideal 
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(9 .1) 

One obtains a new Hamiltonian by making the canonical transformation to 

$ as the independent variable and t, Pt as part of phase space, 

K = - P9 

If we now replace the variables with ones that are small in 

deviation from the ideal design trajectory , 

r - p - Po Pr - Pp 

(9.2) 

(9 . 3) 

where p
0 

is the ideal design bending radius . The generating function of 

this transformation is 

F - [ t - t 0 ($) ][p~ + p~], 

where the flight time along the ideal design trajectory is 

and p
0 

= mc~y is the design momentum. Then the new Hamiltonian, 

including the effects of the generating function, is 
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(9.4) 

(9 .5) 

(9.6) 



- po (p* + po) - q(r + Po) A9• 
c~ t t 

If we rescale to dimensionless variables as explained in Chapter 1, 

R - r/1 

Y - r/1 

T - t*/1 

NEW 
K 

K = fy' 
0 

then in terms of the new variables, the Hamiltonian is 

RJ.. + P0 /( + o)2 2 4 2 2(P2 + p2) K = - __ c_p_l_{lpocpt Pt - m c - poc R Y 
0 

(R + p ~) /1 - ¾ PT + Pi 

(9. 7) 

(9.8) 

For a pure bending magnet, the magnetic field is constant and points in 

the (±) Y direction. Thus the vector potential is 

1 
A4i = - 2 pB. (9.9) 
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In the current set of coordinates, A~ may be written 

1 
A~= - 2 (R.l + p

0
) B. (9.10) 

Now, however, we must recall that B may not be as designed; 

Bactual = (l + E) Bideal• (9 .11) 

where lei << 1, and E may be positive or negative. Since the formula 

for A~ involves Bactual• we may substitute (9.11) in (9.10), 

1 
- 2 (Rl + Po)(l + E) Bideal" (9.12) 

Using the relation p0 = p0 qBideal' rewrite this as 

(9.13) 

Thus, the Hamiltonian is now 

(9.14) 

1 p 2 
- 2p (1 + e)(R + ~) 

0 

Expanding by order in phase space variables, 

(9.15) 
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where, ignoring Ko, 

(9.16a) 

K2 
il) l ;>.., p2 + ~ (P2 + P2) + 1 + e R2 (9.16b) = = if RPT + 2 2y2~2 T 2 R y 2;>... 

K3 
H(l) 1 

RP 2 + .!. R(P
2 + P2) + ;>.., 

p3 + ~ p (P2 + P2) = 
3 2~2y2 T 2 R y 

2~3y2 T 2~ T R Y 

(9.16c) 

K4 
H(l) 1 3 l 2 2 ;>.., 5 p4 = = RPT + ~ RPT(PR + Py) (1 - -) 

4 
2~\2 8~2y2 ~2 T 

~ (1 
4 

2) 
~2 

p2 
T 

(P2 + 
R 

P2) 
y + ~ (P2 + 

8 R 
P2)2 

y (9.16d) 

Now we shall use the techniques of Chapter 8 to obtain the factored 

product expansion. 

Let us first calculate the linear part of the map, 

il) 
2 = e (9.17) 

as a matrix transformation on phase space. Since K2 is independent of 

4> ' , 

(9.18) 

The matrix that corresponds to -4):K2 : is 
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0 A. 0 0 0 0 

1 
1 + E: 0 0 0 0 

A. 
-i 

0 0 0 A. 0 0 

JS = <I> 0 0 0 0 0 0 (9. 19) 

1 
1 0 0 

~ 
0 0 r2~2 

0 0 0 0 0 0 

Now the powers of JS are 

A. 
0 0 

-(1 + E:) 0 0 ~ 

0 -(1 + E:) 0 0 0 0 

0 0 0 0 0 0 

(Js)2 = <1>2 0 0 0 0 0 0 (9.20) ~ t i l· 
'\!:'. 

A. 0 0 0 0 
0 f3 

1:ih I I 

0 0 

I 1', , ] 

0 0 0 0 
.,11,,1 
I J!i• ~ 

1•1~1 I 

,. I I 

. ••1 I 
. l'I ' 

and 
;j ll 
,I 

;.:1,1:, 

.~1 11 

;1U i,: 
' l j ,; I 
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0 -A.(l + e:) 0 0 0 0 

(1 + e:)2 
0 0 

1 + £ 

A. 
0 0 

~ 

0 0 0 0 0 0 

(Js)3 = <1>3 0 0 0 0 0 0 (9.21) 

1 + e: 0 0 0 0 - A./~2 

~ 

0 0 0 0 0 0 

In general, powers of JS have the recursion relation 

JSn = - (1 + e:) <1>2 (JS)n-2 , n = 4, 5, 6, • •· 
(9.22) 

Thus we may sum to all orders to calculate 

M = eJS, 
(9.23) 

~2 <1>4 2 
= l - L (1 + e:) + - (1 + e:) ••• = 

21 4 ! 

cos (<I> ✓ 1 + e:) 

A. <1>2 <I> 4 = - - (- - - (1 + e:) + ••• ) 
~ 21 41 

= 

2 4 
A. (2<1>I (1 + e:) - _44>I (1 + e:)2 + ••• ) 

~(1 + e:) 

= A. [ ( ~ 11+€) - 1 ] 
~(1 + e:) cos '+' 

~3 <1> 5 2 
M12 = A-(1 - L (1 + e:) + - (l + e:) - ••• ) 

31 51 

3 _3 <1>5 --5 
= _ _;_A.=---- <II"+ "'e - !f <11 + e:) + sT < ✓ 1 + e:) - • • .) 

✓ 1 + e: 
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::: A 
sin (cp ✓1 + e) 

✓1 + e: 

Mz1 ::: - 1 + e: 
(1 

cp 3 cp 5 2 
A 

- - (1 + e:) + 51 (1 +e:)- ••• ) 
3 ! 

=_II+e: X sin (cj) ✓1 + e:) 

M26 = M 1 ( cp3 cp5 2 - 51 = - ff 1 - 3T (1 + e:) + 51 (1 + e:) - ••• ) 

A 
- - --- sin (cj) ✓l + e:) 

13✓ 1 + e: 

M55 -- M 1 66 == 

X A <1>3 <1>5 <1>7 
M56 = -2 2 <I> - -2 (-3! - -51 (l + e:) + -7! (l + e:)z - ••• ) 

13 y 13 

Obviously, the measure of mispowering µ = 11 + e is the most useful 

quantity h ere. Then 
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M(<!>) = 

cos(µ<!>) ~ sin(µ<!>) 0 0 0 A 
- 2 [cos(µ<!>) - l] 

- ~ sin(µ<!>) cos(µ<!>) 0 0 0 
~µ 1 

[cos(µ<!>) - l] >-. - ~µ 
0 0 1 A 0 0 

0 0 0 1 0 0 

1 >-. [cos(µ<!>)-1] A 1 1 >-. ~µ sin(µ<!>) - ~µ2 0 0 1 2<2 - 2)<!> + 22 sin(µ<!>) 
~ y µ ~ µ 

0 0 0 0 0 1 

(9.24) 

This gives Douglas's [1982] result as coded into MARYLIE in the case of 

no mispowering (µ = 1). 

The polynomials for the first iteration are given by the integral 

tr (8.43) of -K3 , given by (8.42), 

(9.25) 

The coefficients are listed in Table 9.1, and agree with the results of 

Douglas [1982] (Table 4.3) for the case e = 0, µ = 1. Furthermore, we 

(1) 
may use for g4 the fourth-order term of Douglas because we need keep 

no powers of e, and thus may take E = O, µ = 1. The coefficients of 

g~l) are given in Table 9.2. 

The next step is to compute the polynomial H(Z), using the rule 

(8.48) and (8.49). In this case, H( 2) is 

·g(l) . ·g(l) . ·g(l) . 
(1) . 2 •• 3 •• 4 • 

= -H (e e e C) 1 
(9.26) 
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·g(l). ·g(l). ·g(l) 
·2 ·•3 ··4 

= e: e e e R 

.g<l). .g<l). ./1). 
e: ( e. 2 . R + e. 2 .[g;l), R] + ~ e. 2 .[g;l),[g11),R]] 

./1). 
+ . 2 • [ (1) R] 

e g4 , + ••• ) • 

Thus order by order, the terms H( 2) are, with C = cos(µ~), S - sin(µ~), 
n 

·g(l). 
-H(2) 

1 
. 2 • \. \. 

Ee R = E (cos(µ~) R + - sin(µ~) PR+ - [cos(µ~) - l] PT) 
µ ~µ2 

·g(l)_ 
-H(2) . 2 . (1) 

2 = E e [g3 ,R] 

= E (- - 1 s 2R2 + .!_ cs RPR + (- - 1- s 2 - _E_ ~S) RPT 
2\. µ ~µ2 2~µ 

\. 
- C) p2 - ( \. (1 - C) + \. s2 EA 

- - (1 
2~2y2µ2 2~2µ4 

+ 
2~2µ3 2µ2 

y 

.g<l). ·g (1). 
-H(2) 1 . 2 . (1) (1) + e. 2 .[gfl),R]) 

3 = E(z e [g3 '[g3 ,R]] 

= E 

2 2 
(- _s - R2P - _s - RP2 + SC RP P - .§.. RP2 

2~\. T 2 R ~ R T 2 y 

~S) 

(9.27a) 

(9.27b) 

P2) 
T 

(9.27c) 

+ p2 + \.SC p3 + \.(C - 1) p2 p + \.SC p3 + \.(C - 1) pR2 pT 
T 2 R 2~ R T 2 R 2~ 
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H(Z) = 0 for n) 4, to the order we are concerned about. 
n 

(2) 
Now we must solve (8.20) for N2 • Unfortunately, we may not use 

(2) 
the exponential of the integral (8.23) because H2 does not commute 

with itself at different "times" (values of 4>). Therefore we shall 

attempt to solve for N(l) by solving the matrix differential equation 
2 

(8.22) or (8.58), 

• 
M = JSM (8.22) 

(2) 
The matrix JS is formed from the coefficients of H

2 
according to 

(8.57). A solution is given by the series (8.59a). Since we keep only 

two powers of e in matrices, we may truncate the series (8.59a) after 

three terms. Let N(Z) be the integral of Js( 2), 

(9.28) 

Then the value of M(Z) 

(9.29) 

will be sufficient for our purposes. The non-zero elements of JS(Z) are 

given in Table 9.3, of N(Z) in Table 9.4, and of M(Z) in Table 9.5. 

With the second linear transformation M(Z) computed, we may now try 

(2)' 
to compute g 

3 
• We compute the prime version, 

•g(2) I, •g(2) • 
• 3 • ' 2 • 

e e 

·g(2). ·g(2). 
• 2 ' ' 3 • 

= e e (9.30) 
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to save the effort of transforming by the linear map. In order to 

compute gj2)', we will need 

(9.31) 

Because M( 2 ) is the identity plus a term of order e, H~ 2
) is of order e, 

and we keep only terms of order e in a third- order polynomial, we may 

say 

( 2 /nt 
-H = 

3 
-H(2) 

3 • (9.32) 

Thus 

~ ( 2)int ~ ( 2) 
= fo -H3 (r.,4>') d(j>' = fo -H3 (C,4> ' ) d(j> ' . (9.33) 

The results are given in Table 9 . 6. 

The polynomial g~ 2) need not be calculated because it would be of 

order E or greater. For fourth-order polynomials, no terms of order e 

or greater are retained. 

The next step is to find the new "Hamiltonian," H( 3) 

•g(2) I • •g(2) • 
( 2) . 3 .. 2 . 

= H1 (e e C,4>) (9.34) 

Factored, the second-order part is 

(9.35) 
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No linear transformation is necessary because it is proportional to e 2 , 

and M(
2

) is the identity plus order E. Since we are keeping only two 

p o/nt - (3) 
owers of E for second-order polynomials, we may take H2 - H

2 

The equation (9.35) may be integrated to obtain the polynomial gi3 ) • 

The coefficients are shown in Table 9.7. Exponentiating this polynomial 

is no trouble, because each term is proportional to e2• Thus one term 

Will suffice: 

,.,/3) 
2 

= e 

. (3) . 

. g2 . 
(9.36) 

Since uO) consisted of only first- and second-order terms, we are 

finally at the last step. The first order part 

(9 .37) 

is long and disgusting, so it will not be given. The first-order 

transformation is determined by the equation (B.S?) 

(9.38) 

The coefficients of this polynomial are given in Table 9.8. 

To summarize, the map for the mispowered normal-entry- and-exit 

bendi ng magnet is given by 

) ( 2 ) , • (2). ·go). ·g(O. ·g(l) 
( 3 :g3 • .g2 . 2 • . 3 . . 4 

:gl: :g2 : e e e e 
== e e e 

(9.39) 
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The second-order transformations are kept as matrices. All these 

matrices and polynomials are given in (9.24) and tables 9.1 through 

9.8. In these tables E = ~B/B is the mispowering, µ = /1 + E and C -

cos(µ~), S = sin(µ~). 

Putting (9.39) into the standard factorization would not be 
·g(2) 
• 2 

terribly difficult. 

. g(l) . 

The two second-order transformations e 

• 2 . 
e would have to be moved to the left by using the transformation 

·g(2) 'T. ·g(l) . 

rule. Then 

. 3 . . 3 . 
the two third-order transformations e e would 

be adjacent (the first transformed). They could be combined in a single 

b dd 
· i h P i b k [ ( 2 ) 'T (1)] is exponent ya ing, s nee t e o sson rac et g 3 , g 3 too high 

in total order to worry about. The three linear transformations would 

be left as separate matrices. 
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- ---
(1) 

Table 9.1 Nonzero Coefficients of g3 for the Mispowered 

R3 ( 28) 

RP2 (34) 
R 

RP2 (43) y 

(48) 

(49) 

(53) 

(58) 

(63) 

(76) 

(83) 

Normal-Entry Bending Magnet 

Note: S = sin(µ~) 
C = cos(µ~) 

- _1 sc2 
2µ 

- _l_ s2 (C + 2€) 
~µ2 

1 - - s 2µ 

1 83 

2~2µ3 

~ (1 c3) 
6µ2 

- 1- (1 - C) 
2µ2 

- _A_ e~ 
2~µ2 

(~ + SC) 
µ 

3 
(~+~(~_SC)) 

3µ 2 µ 
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Table 9.2 Coeff icients of g~l) for the Mispowered 

Normal-Entry Bending Magnet 

R3p (89) __ l_ s3 T 
6~A

2 

R2p2 
(90) - --1.. s3 R BA 

R2p P 
R T (94) 1 2 

- 2~A SC 

R2p2 
(99) - _!_ s3 y BA 

R2p2 
(104) s - ~2 s3 

T 
8~

2
A 

RP3 
(105) - 1. s2c R 4 

RP2 
(109) _!_ s3 - ....!.. s RPT 

4~ 2~ 

RP P2 ( 114) - 1. s2c Ry 4 

RP P2 (119) 
1 1 s2c R T - ( 2 2 + 2) 

4~ y ~ 

RP2 
YPT (132) 1 3 l 

- 4~ s - ~ s 

RP3 
- ( 1 + -½-) s3 -

1 
( 139) 2 2 S T 

4~3y2 2~ 2~ y 

p4 
(140) - ~ sc2 R 8 

3 
- l s2c + _!::. 0 - C) PRpT (144) 

12~ 6~ 

p2p2 
R y (149) } 53 _} s 
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4 
Py (195) 

4 
p T ( 209) 

- _!:_. s2 C + _!::_ ( 1 - C) 
4~ 2~ 

~ s 
8 

- ~ s3 - ,._ ( 1 2 + -½-) S 
8~

2 
4~ y 2~ 

1 1 3 1 1 
_,__ ( + -) S - " ( 4 2 + 4 4) S 

s~\ 2 
6~

4 
2~ y s~ y 
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Table 9.3 Nonzero Elements of Js< 2) for the Mispowered 

Normal-Entry Bending Magnet 

2 
= - _£_ s2 - _£_ ~s 

~µ2 2~µ 

= - A£ C( 1 - C) 
µ 

[Js(2)l34 = x.; (1 - c) 
µ 
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Table 9.4 Nonzero Elements of N( 2) for the Mispowered 

Normal-Entry Bending Magnet 

N(2) E CS 
21 = - - (~ - -) 

- i2) == 
11 

n. µ 

i2) = _e_ s2 
22 2µ2 

N(2) 
26 = - i2) = 

51 
- _E_ ~(l - E C) - _£_ S(E - C) 

2~µ2 2~µ3 

N(2) = N(2) 
16 . 52 

N( 2 ) AE S 
34 = - (~ - -) 

µ2 µ 
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Table 9.5 
Non-Identity Elements of M( 2) for the Mispowered 

Normal-Entry Bending Magnet 

i 2) = 1 + e: ( - .2. + i + 4> s - 4> s c c2 c3 c4 4> 2 s 2 
1,1 12 2 2 4 - 8 + 6 - 8 - 8 - 2) 

i2) 
1,2 

e:;>,., c21 _ s
3 

+ 7sc s 3c 
16 s - 6 16 + 73) 

i2) 
1 , 6 

e:;>,., s c 4>s 4>sc c2 c3 c4 4>2 s2 
~ (-IT+ 2 + 2 - T - 7f + 6 - 7f - 7f - 2) 

i2) = ~- ! + sc) + ~ cl_~. _ _J_ _ 7sc + s 3c + 4ic2 + c\ 
2, 1 ;>... 2 2 ;>... 3 2 16 16 8 4 6 

i2) = 
2,2 

+ e:S
2 

+ e:2 (.!_ + .2_ _ ~ + 4>C _ SC _ c2 + c4 _ £ _ £) 
l 2 8 2 2 2 2 4 8 2 6 

i2) 
2,6 

2 3 2 
= £_(SC_ 4>) + e: (1 _ C + 74> _ S + 4>C _ 15SC +SC+~+ c3) 

2~ ~ 3 2 16 2 2 16 8 4 

i2) 
3,4 

i2) 
5, 1 

3 2 2 3 2 
£(94> _ SSC _ ~ _ !£_) + ~ (- 134> + ~ _ q>C + 15SC + 7S C + 1£_ 
~ 16 16 8 4 ~ 16 2 2 32 16 2 

i2) 
5,2 
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M(2) 
5,6 

+ s2 _ 9c
2 

_ c3 + c
4 

_ <PS _ cpsc) 
8 3 2 2 4 

= Q_ ( <P + 9cp _ S _ SSC _ s3c _ <PC
2

) 
A2 2 16 2 16 8 4 
fJ y y 

2 3 
+ € ~ (- cp _ ll<P + 3S + 5S + 2S _ <PC 

s2 Y2 B 2Y2 6 9 

+ 25SC 9S
3 

C 3cpc
2 

<PC
3

) 
32+76+-4-+-6-
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Table 9.6 Coefficients of g~ 2)' for the Mispowered 

Normal-Entry Bending Magnet 

RR
2 

(34) 
R 

RP
2 

(43) y 

Ri (48) 
T 

3 
PR (49) 

p3 (83) 
T 

E 
4~A (SC - 4>) 

£ (SC - qi) 
4 

¼ (SC - 4>) 

£ (3 - ~2 )(SC - 4>) 
4 

€A 
8

2 
4 

~ (S - 4>) 
2~ 

d. s2 
4 

EA (-34> + 2S + SC) 
4~ 
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Table 9.7 Coefficients of g( 3) 
2 

for the Mispowered 

Normal-Entry Bending Magnet 

2 
(8) 

€ 3C + 3<\>S + c3) 
RPR. 

- (-4 + 
6 

2 

RPT 
(12) ~ (<\>C -

2B 
S) 

2 
p2 (13) F.. "- (3qiC - 2S3 - 3S) 

R 
12 

2 
+ 3C + 6$S + 3C2 + c3) 

PRPT 
(17) ~ (-7 

6B 

2 
2 (22) €. "- ($C - S) 

Py 4 

2 
2 (27) ~(3 - B2)(<\>C - S) 

PT 4 
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X 

Table 9.8 Coefficients of g1 for the Mispowered 

Normal-Entry Bending Magnet 

+ E2 cl! _ 1§_ + 4,C + 23SC _ s
3 

C _ 4ic2 + 4ic3 _ 4,
2
s 11S3 s5 

16 2 4 48 24 4 12 -8- + ~ - 40) 

+ ~) (.!.. _ C _ 214> + 103S _ jC _ 23SC + s
3

c 
8 3 32 48 16 24 12 

+ 34>c2 _ s4ic3 -+ p + c2 _ c
4 

_ 19s
3 

+ s\ 
8 24 8 4 24 48 10 

PX EA(l - C) 

2 193 17C 7C2 c3 c
4 

c5 94,S 
+€A (- 120 + 16 + 12 - 48 - 24 + 40 + 16) 

+ €3A (1711 _ 125C _ 34> + S _ s
3 

_ 11C
2 

+ 65c
3 

720 96 16 2 6 8 288 

+ 3c4 _ 9c5 _ 4,C + fil + s
3

c _ 134>S _ 4,s
3 

_ 4,c\ 
16 80 2 16 24 16 12 4 

c 2A, 7 11s 3 _ ~ + 4>C + 23SC _ s
3

c _ 4,
2
s _ ff:. 4ic

3 

T err 4> - s + --=rr- 40 4 48 24 8 4 + 72) 
3 3 5 2 4 

+ ~ (.!.. _ .£ _ 1914> + lli§. _ 191S + _L + .f_ _ .f._ 
~ 8 3 192 144 48 8 4 24 

9<!>C 455SC + 17S3 C + 4>
2

S + 114>c2 _ 54,c3 _ 4ic
4 

) 
- °76 - 576 288 8 24 24 24 
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E..• Computation of the Map from Ideal Elements and Coordinate 

Transformations 

It is possible to view the transfer map of the mispowered normal

entry-and-exit bending magnet, with bending angle a and actual bending 

radius P~ as a succession of three maps (Figure 9.1). Consider first 

the case where the actual field is greater than the ideal. The first map 

is a normal-entry-and-exit bending magnet, correctly powered so that it 

has the same bending radius p~ < p
0 

for the design trajectory. The 

second is a correctly powered trailing half parallel face magnet (HPF) 

with bending radius p' and angle a. The half parallel face magnet is 
0 

discussed in the next section. The third is a coordinate-transformation 

map at the trailing face, 

(9.40) 

This is necessary because the actual design trajectory emerges at a dif

ferent X and Px coordinate and the two trajectories differ in flight 

time. Since we want deviation from the ideal and we have deviation from 

the actual, coordinate shifts in X, Px and Tare necessary. Once p', a, 
0 

~X, and 6T are known in terms of the ideal magnet parameters p0 , the 

ideal bending radius,$, the bending angle, and the mispowering € = 
6B/B, the maps may be computed in terms of these parameters and 

concatenated either analytically or numerically by the techniques of 

Chapter 4. 

The case where the actual field is less than the ideal field 

(Fi h Here the second map should be the 
gure 9.2) is essentially t e same. 

in It is readily verified that this is a 
verse of a leading HPF magnet. 
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trailing HPF with negative angle. Thus, if the computation of a 

respects sign, the computation can be included in the one above. Like

wise, th e coordinate transformation map will be correct if a and ~X 

respect sign. 

With these considerations in mind, we may proceed to calculate p' 
o' 

a and 6X. Recall that E = ~B/Bideal• ~B = Bactual - Bideal and Po= 

Bp /Bi deal and Bp is the magnetic rigidity, a property of the machine. 

Then the actual bending radius is given by 

p I = __ B,.._p_ 
o B 

actual 

Bp 
Bideal Bactual 

= Po 1 + E 
1 

(9.41) 

A close-up of the geometry at the apex (Figure 9.4) shows that the angle 

(X • 
is related top p' and cl> by 

o• o 

( , ) (A. 1-) - p ' sin a, p O - p O cos 'I' - 2 - 0 
(9.42) 

or 

sin a= 
p - p' 

0 0 sin cl> 
p' 

0 

sin cp = E sin cp. (9.43) 

Thus ct= arcsin(E sin cl>), which will be negative if Eis, as we require. 

To compute ~X, consider the triangle at the apex (Figure 9.3). The 

law f i h their opposite angles, 0 sines relates the sides wt 

p I 

JI. = __ o_ 
_s_i_n..,-( 7.--_;_:,_..a __ -:;:-cp') sin cl> ' 

(9.44) 
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Figure 9.3 Geometric Quantities in a Mispowered 

Normal-Entry Bending Magne t 
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where 1 = P0 - ~Xis the dist 
ance from the 

apex to the exit point of the 
actual design trajectory. Solving fort, 

1 = sin (a: + $) 
sin $ p I 

(9.45) 0 

= p I sin ex cos$+ cos ex sin$ 
0 sin$ 

/1 2 2 
= Po 

- e: sin ~ + e: cos$ 
1 + e: 

so 

~x = p 0 - 1 ( = P0 1 
(9.46) 

Note that 1 = P0 (tX = 0) when 

/i _ e:2 . 2 + .+. sin p e: cos~= 1 + e: (9 .47) 

1 - e: 2sin
2

$ = (1 + e:(l - cos $)) 2 = 1 + 2e:(l - cos$)+ e:2 (1 + cos $)2 

(9.48) 

2e: (1 + e:)(l - cos$)= 0 (9.49) 

If the quantity on the left is less than 0, ~X will less than zero, if 

it is greater,~ will be greater. The former will happen when e: > 0, 

the latter when e: < 0, because e: is small so that 1 + e: can never change 

sign, and$ is always positive and cos$ never exceeds 1. 

Finally, to compute ~T, we must consider the two path lengths for 
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the des ign particle. For th id 11 d h h e ea y powere magnet, t e pat length is 

Just th e product of the bending radius and the angle, 

sideal = Po<I>• (9.50) 

For th e mispowered magnet, the path length is the sum of the paths in 

the correctly powered NEBM of bending radius p' and the HPF which define 
0 

the first two maps, 

sactual = p' (a+ 4>). 
0 

The difference in path length is 6S = Sactual - 8ideal' 

As ( a + 4> - "') 
0 = Po 1 + e '+' 

po 
= 1 + e: (a - e:4>). 

(9.51) 

(9.52) 

Since both design particles move at the same constant speed c~, the 

difference in flight times is just the difference in path length divided 

by this speed, 

6S 1 Po 
6T - - = - - (a - e:4>). 

- c~ c~ 1 + e: 
(9.53) 

If this value 6 T is added to the time coordinate T measured relative to 

the actual design particle, the result will be the flight time measured 

relative to the ideal design particle. This change in time coordinate 

is accomplished by a first-order transformation proportional to 6T, 

-6 T:Pr: 
= e • (9.54) 
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I . bending magnet of 
n summary, the mispowered normal-entry-and-exit 

angl e ~. bending radius p and fractional mispowering E ~ 
0 

B - B actual ideal 1 
First, a norma -

B.d may be represented as three maps: 
1 eal 

t d 
d . p' a 

en ry-an -exit bending magnet of bending angle qi and ra ius o' 

trailing HPF of angle a and radius p', and coordinate changes using the 
0 

maps M ( ) M i.1 TT fl.T , Ry(a)• and 1vTx(fl.X)• where 

pt = 
0 

a= arcsin(E sin <I>) 

. 2 "' sin '+' 

+ E 

+ E COS <I>) 

fl.T 
1 Po (a - E<!>) 

C~ 1 + E 
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10. Mispowered Parallel-Face Magnets and General Bending Magnet 

In this chapter, I calculate the maps for mispowered dipoles that 

have non-normal entry or exit, the parallel face magnets, and the 

general bending magnet. The first section treats the parallel-face 

bending magnets, which include the symmetric parallel-face magnet, and 

what I call the half-parallel-face magnets, which are explained below. 

The second section is a computation of an orbit corrector, which can be 

considered a mispowered zero-strength parallel-face bending magnet. As 

such, the computation is just a special case of those of the first 

section. The third part considers the effect of fringe fields in a 

mispowered dipole magnet, including normal-entry or -exit dipoles. 

Finally, the last section shows how to construct the map for a general 

bending magnet, one with arbitrary entry, exit and bending angles, out 

of the maps obtained in the earlier sections. 

i!..• Parallel Face Magnets 

A parallel-face bending magnet (PFBM) is a dipole of uniform 

constant field, its entry and exit pole faces parallel, and the angle of 

entry and exit formed by the design trajectory and the normal to the 

Pole faces equal. If a parallel-face magnet is cut half way down the 

axis, each part is a half-parallel-face magnet (HPF), either leading or 

trailing. An HPF has parallel faces, but is either normal-exit (leading 

HPF) ( ili g HPF) The HPF will prove useful for con-or normal-entry tra n • 

struction of the general bending magnet (see Section lOe), and, when 

ideall t the map of a mispowered normal entry bend 
Y powered, to compu e 

(see Section 9b). Figure 10.1 is an illustration of these bending 
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magnets. 

The derivations of the maps for the mispowered pa rallel magnets are 

all · il sim ar, differing only in the integration limits. Therefore, they 

are treated together in this section. This treatment includes the body 

only. To obtain the complete map, there must be concatenated at the 

Pole faces the map for a fringe field and a map for a pole face (mid

Plane) rotation, equal to the (half) bend angle a: 

M = M prot M fringe M body M fringe M prot (IO .1 ) 

Assuming a hard-edge fringe field, the pole face (midplane) rotations 

Will be in a field-free region, and therefore unaffected by the powering 

of the magnet, so we may use the maps in Douglas [ 1982] or in Chapter 

12 , exact in the angl e. The maps for the mispowered hard-edge fringe 

field s are covered in section d . Once all these maps have been 

computed, they may be concatenated numer i cally or analytically using the 

techniques of Chapter 4. 

I shall suppose throughout this section that the magnet has a 

bending angle of 2a for the design trajectory in the ideally powered 

magnet (a for the HPF magnets), and an ideal bending radius p0 • If the 

magnetic fi Id i B instead of Bid al' the fractional mispowering 
e s actual e 

is 

e: -

B - B actual ideal 

Bideal 
(10.2) 

Which ma b ii or negative, and is presumed to be smal l 
Y e either post ve 

/t / « 1. magne t has a design bending radi us 
The mispowered 
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PFBM 

Design 
--~-----~-- Trajectory 

Leading 
HPF 

Trailing 
HPF 

Figure 10.1 The Parallel-Face Bending Magnet, and the 

Half-Parallel-Face Magnets 
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p I = _.;_Bp""----- = ___ B_,_p __ _ 

0 Bactual Bideal(l + e) 
oo .3) 

where Bp is the magnetic rigidity of the beam. 

In the parallel-face magnets, the mechanical momenta Ilx and Ilz are 

not small for the design trajectory. However, at mid-magnet for the 

Parallel face, or at the leading or trailing face for the HPF, where the 

design trajectory is perpendicular to the faces, i.e. Ilx = O, we may set 

the vector potential to be zero. If the magnet has (half) length L, 

,. 
A = xB(z - n) oo. 4) 

where z is measured as shown in Figure 10.2. 

The canonical momentum Px differs from the mechanical by q¾, 

Px = ilx + qAx = ilx + qB(z - n), (10.5) 

~e choose the quantity n so that rrx = 0 for the design trajectory at z = 

T). This implies that Px =oat this point, but since Px is conserved, 

it is zero everywhere. From Figure 10.3, we see that this happens at 

n = p~ sin a - Po sin a 

= ( l - 1) sin a 
Po l + e 

e p sin a 
0 

= ------1 + € 

(10 .6) 

(IO. 7) 

for the leading HPF or the full parallel-face magnet. For the trailing 

HPF h is normal at entry by assumption, son= o. 
, t e design trajectory 
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The Hamiltonian is 

H = (10.8) 

Transforming thi h s tote phase space x, Px, y, Py, t, Pt, gives the 

Hamiltonian 

(10.9) 

Now 1 t e us transform to coordinates and momenta near the design trajec-

tory. In particular, Kandt must be measured from the design values, 

as these change during the flight of the design particle . First, con

Sider the design flight time. The value of z is given, as a function of 

time, by 

z = p
0 

sin (~ t) 
Po 

(10.10) 

Where p
0 

= ideal design bending radius,~=~' and a the (half) bend 

angle. The zero of z is taken to be the midpoint of the full parallel 

bend. Inverting this relation gives the absolute time as a function of 

z, 

to(z) = Po arcsin ( _!.). 
c~ P0 

(10.11) 

Note that in the limit Po=~ (no field), this gives the expected result 
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z=-L z=O z=L 

Design 
Trajectory 

Figure 10.2 Geometry of the parallel-Face Magnets, Ideally Powered 
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I 
I I 
I I 

z=77 z=O 

Ideal Design 
Trajectory 

Figure 10 . 3 Determination of~ for Mispowered Parallel-Face Magnets 
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to(z) = c; • (10 .12) 

The Value of the x coordinate is given by 

x0 (z) = p
0 

(cos 0 - cos a) oo .13) 

= /4! - z
2 

- p0 cos a. 

Again, in the limit p
0 

=~we get the expected value x0 (z) = O. 

and 

The new variables will be 

x* = x - x0 = x - (/4~ - z
2 

- Po cos a) 

t* = t - t 0 
Po 

= t - - arcsin 
c~ 

(10.14) 

(10.15) 

The corresponding design momentum fort is the negative of the energy 

so the new momentum is 

o - - ymc2, pt (10 .16) 

(10.17) 

Since the design value of the x momentum Px is O, we need not change 

that. 
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We now must use the generating function to get the new Hamiltonian 

so 

KNEW= K + BF 
Bz 

1 1 

c~ '1 2 
{J - (2-) 

Po 

2 PX 
(p* - ymc ) + ----

t 12 2 
lpo - z 

(10.18) 

(10.19) 

(10.20) 

I 22 2 2 24 KNEW=_ l(P~ _ ymc) _ [px - qB(z - ~)] -py - m c (10.21) 

PX 
1 -_-:_-:_-:..1-:..-:..-:..;- ( P * - ymc 2) + -,__ -,:_ -_ -_ -~ -

-cif ,1 2 t 12 2 
✓ J (2-) lpo - z 

po 

Now let's scale the momenta and Hamiltonian using (1.85). The new 

Hamiltonian is 

K = 

2 2 
(p* - ymc ) 

t 2 2 2 4 
[px - qB(z - n)J -py - m c 

2 
p* - ymc zpx 

( t ) + --,...,-=----_-_ --=-- • 
P0 P /42 _ z2 

0 0 

Using the relation 

2 2 4 
(p* - ymc ) 2 2 2 

t m c = 1 - a Pr+ PT, -=---~2--- - -r I-' 

Po Po 

I< becomes 
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For 

K = - /2 - I P + P2 - [P - !I!! (z - n)J 2 - P2 
~ T T X p Y 

0 

1 2 zP 
( .!. p - .Y.!!!£.._) X + 

/2 - ,i/ ~ T p c~ 
/42 _ z2 0 

po 0 

convenience 
' let Z = z/p

0
• Then, ignoring constants 

K = - /2 -l p + P
2 

- f Px 
~ T T 

qBp 
0 

in K, 

The constant that multiples the z in the large square root may be 

rewritten using the relation qBidealPo = P
0

, 

(lo .24) 

(10.25) 

B actual 
B 

= 1 + £ (10 .26) 
ideal 

Where 

B - B 
e = ~ = actu:l ideal 

- B ideal 
(IO .27) 

is th Th e fractional mispowering of the magnet. en 

K = / 2 p2 - [P - (1 + e)(Z - -21)]2 - P2 
- 1 - j PT+ T X po y 

(10 .28) 

- [ PT - z PX 

/i - z2 

l'he net d b order expansion of Kin the small X step is to do an or er- y-

Phase space quantities. It is important to remember, however, that z is 
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not as 11 ma phase space quantity, so it is useful to rewrite K as 

K = 

2 
- - p + 

~ T 
2(1 + E)(Z - -11) p + p2 _ p2 

p
0 

X X Y 

(10.29) 
/2 - z2 

Expanding Kin the small quantities Px, Py, PT, we obtain K1 , K2 , K3 , 

and K4. Th 10 l ey are given in Table • • 

In order to find g
2

, g
3

, and g4 , we shall have to integrate over z. 

Since w is related to z by 

the i 

w = (1 + E)(Z - _.!)_) = 
Po Po 

l + E 

ntegrals are over 

po f 
f dw = __.;;.._.- dz • 

l + E 

z + E sin a, (10.30) 

(lo .31) 

The limits of integration should correspond to the z values for leading 

RPF (-p
0 

sin a, O), for trailing HPF (O, p0 sin a), and for the full 

PFBM ( p i ) Table 10.2 summarizes the values of w. 
- 0 s n a, p

0 
sin a. 
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1,_able 10.1 Expansion of the Hamiltonian K for the Parallel-Face Magnets 

Kz == 

Note: w = (1 + e)(Z - .--!l.) 
po 

-~ p +( z -~ Px 

/1 - z2 T /2 - i- /1 - w2 
2 

p2 w ( 1 1 ) w 
_ w2)3/2 2 3/2 PxPT - -2(1 X 

~(l - w ) 2/i-w2 2~2(1-w2)3/2 

p2 p2 
+ X y 

+ 
2/i 2 2/2 2 

- w -w 
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- ( l 
4(1 _ w2)3/2 

+ l 4 ( 3 
2 3/2 Py+ 2 2 5/2 

8(1 - w) 4~ (1 - w) 
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_!able 10.2 Limits of Integration for the Parallel-Face Magnets 

Magnet 
zentry zexit wentry wexit 

Lead HPF EpO sin a 
-p

0 
sin a 0 1 

-sin a E sin a + E 

Trail HPF 0 p
0 

sin a 0 0 (l+E)sina 

Epo sin a 
Full PFBM -p

0 
sin a p

0 
sin a 1 + E 

-sin a (1+2E)sina 

Steering 0 L 0 0 ~L 
Po 

-180-



Even: 

Odd: 

Table 10.3 Integrals for Evaluating Parallel-Face Magnet Maps 

Integrand J dw evaluated at w = sin A 

1 

/1 - w
2 

1 
(1 _ w2)3/2 

2 
w 

(1 _ w2 )3/2 

1 

(1 _ w2 )5/2 

2 
w 

(1 _ w2)5/2 

1 
(1 _ w2/ /2 

2 
w 

(1 _ w2//2 

4 
w 

(l -w2//2 

w 

w 

A 

tan A 

tan A - A 

tan A+~ tan3 A 

.!. tan3 A 
3 

tan A+; tan3 A+½ tan5 A 

; tan3 A+~ tan5 A 

.!_ tan5 A 
5 

-cos A 

sec A 

.!. sec3 A 
3 

.!. sec5 A 
5 

-sec A+.!. sec3 A 
3 

- ½ sec3 A+~ sec5 A 
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The values of the integrals over w that will be needed are given in 

Table 10.3. They are evaluated at w = sin A, so that, to evaluate a 

given integral, one need only subtract the value at A= arcsin(wentry) 

from A= arcsin(wexit). 

Note that all terms in Kare momenta; thus, the Poisson bracket of 

one with another is zero. This makes life very simple: to calculate 

the polynomials gn in the transfer map, we merely integrate-~ over the 

appropriate range. 

The final step is to reconcile the discrepancy in the x momentum at 

the exit face. For the ideally powered magnet, the mechanical momentum 

of the design trajectory at the exit face is 

Tiideal 
X -qBideal (zexit - n). (10.32) 

Immediately after zexit on the outside of the magnet, the field is zero. 

Ignoring the hard-edge fringe field (section d), which does not affect 

the design trajectory, the momentum just outside is 

ideal Ilideal = 
~ X 

(10.33) 

Since we have agreed that the coordinates shall be deviations from the 

ideal design trajectory, this quantity must be subtracted. In the 

calculation of the finite-angle midplane rotation (Chapter 12 or Douglas 

[1982]) which is concatenated after the parallel-face body, one actually 

restores it before rotating, but we are not concerned with that here. 

What does concern us is that actual design trajectory will have a 

slightly different momentum 
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actual= IIactual 
px x = -qBactua1Czexit - n). (10.34) 

Thus we must make a correction to the x momentum, so that we are 

measuring relative to the ideal design trajectory. In terms of the 

dimens· 1 ion ess momentum Px the correction is 

Ap = _ (Ilideal _ rractual)/ 
ox x x Po (10.35) 

= - q tB (zexit - n)IPo• 

Th" is is effected by a first-order transformation proportional to X, 

Which 

- gtB (z - n) :X: 
p exit 

0 
e 

comes after the rest of the parallel-face body: 

M PFBody 

-qtB 
(zexit - n) :X: 

(10.36) 

(IO .37) 

'I'he transformations may be concatenated using the techniques of Chapter 

4. 

One may approximate the map of a mispowered parallel-face magnet by 

ignoring the effects that arise from a finite length of the magnet, 

i.e., to view the mispowering as a simple kick in momentum. In this 

case, the gn would be taken as that of a correctly powered magnet and 

(l0. 37) Would be 
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__,;;;;==---=====--- __ ,_ 

M PFBodyKick == M PFBody e 

- qt-.B (z - T}) :X: 
p exit 

0 (10.38) 
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.!able 10.4 Matrix and Polynomials for Mispowered Parallel-Face Magnets 

M = 

Substitute the values¾= arcsin(wexit), At= arcsin(wenter) 

from Table 10.2 for the particular magnet desired. 

0 0 
1 

1 ta~-tanAt 0 - tcsec,\-se~) 

0 1 0 0 0 0 

po 0 0 1 ,\-At 0 0 

-1 +e: 
0 0 0 1 0 0 

1 0 0 1 
tanAu -tanAt 

0 - j<sec¾-secAi) ~2 
- ¾+A_t 

0 0 0 0 0 1 

Values given for polynomials g3 , g4 should be evaluated at A= A_t, then 

subtracted from the value at A=¾• All terms should be multipled 
po 

by T + e: to obtain coefficient 

c/2 (zexit/ Ii - z 
) PX gl = (-cosA + cosAt - ( enter/] 

u 
po po 

z z 
1 

[arcsin 
( exit) - arcsin ( enter)]) 

PT - F (¾ - At - Po po 
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h 

p3 
X (49) ¼ sec3 A 

2 (53) 1 
A sec2 A PXPT - - tan 

2~ 

2 (58) 1 
A PxPy 2 sec 

2 1 2 
PxPT (63) =2 sec A (sec A 

~2 
- 1) 

2 
pypT (76) 

p3 
T (83) 

P
4 

(140) 
X 

(174) 

(195) 

(200) 

(209) 

1 
- - tan A 

2~ 

1 
A 1 1 2 - -- tan (- + - tan 

213
3 2 3 

y 

- ½ tan A sec4 A 

1 5 1 3 2f3 sec A - 3f sec A 

- ..!.. tan A sec2 A 
4 

A) 

! tan A sec2 A - --¼ tan A sec4 A 
413 

- -
1 

sec3 A+-½- sec5 A 
2B 2B 

1 - 8 tan A 

- - 1- (tan A sec2 A + - 2
1 

tan A + tan A] 
4B

2 
y 

1 f- - 1 (l tan A+ 1 tan3 A+..!.. tan5 A) 
4 B4 2 3 2 

+-½ tan A (3 + tan2 A) - ; tan A] 
13 
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..£..• The Steering Magnet 

A steering magnet, or orbit corrector, is a weak adjustable 

parallel-faced dipole placed in the beamline to correct for the 

misalignment of other elements. For the purposes of computing its map, 

it may be thought of as a mispowered zero-strength parallel-face bending 

magnet (Figure 10.4). As such, the analysis in the previous section 

holds for the steering magnet. We need a slight modification in the 

notation, however, because the design magnetic field is zero, and the 

design bending radius infinite. 

The design trajectory enters as shown in Figure 10.4, and gets bent 

one way or the other, or not at all, depending on the field applied. 

The mechanical momentum rr is zero at the entry face, z = O. Thus, in 
X 

the analysis of the last section, we may set~= O. Furthermore, as 

mentioned in the last section, the design flight time will be 

t 0 (z) (10.40) 

and the x coordinate will be 

x0 (z) == O. (IO .41) 

The Hamiltonian K given for the parallel-face magnet, (10.24), may 

then be used, ignoring constants and taking Po~ oo, 

K = (10.42) 

The part first order in Px, Py, PT is 
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Trajectory Paths 

Figure 10.4 The Steering Magnet 
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.!_ ( 1 - 1) PT -

13 /i - w2 /2 
w (10 .43) 

2 
- w 

and K2 , K3 , K4 are as given in the last section, except w is interpreted 

as 

w (10.44) 

When integrated, the limits are z = 0 to z = L, the length of the 

magnet. The matrix and polynomials are as given in Table 10.4, using 

the appropriate limits as stated in that table, and wentry = 0, wexit 
qB 

= _.£. L. 
Po 

The final momentum change is given by the transformation 

-q~B(zexit - n) :X: 
e = e 

- ~ L:X: 
po 

where p' = actual design bending radius. 
0 

- p ~ :X: 
0 = e 

d. The Hard-Edge Fringe Field of a Mispowered Magnet 

(10.45) 

In any analysis of bending magnets, one must include the fringe 

fields at the entry and exit pole faces. Douglas [1982] and Dragt 

[1982b] have computed the Hamiltonian and map for the hard-edge fringe 

field of an ideally powered bending magnet. I shall analyze the case of 

a mispowered magnet. 

The transformed Hamiltonian for an arbitrary vector potential in 

the x direction is 
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K = (10 .46) 

With an appropriate model of the fringe field, we should factor this and 

integrate it over the region of the fringe field. In order to be con

sistent with Maxwell's equations, we may write the vector potential as 

where 

= a ' (z) 
0 

1 I " 
= - 6 ao (z) etc. 

In this case, a
0 

is the part of By independent of y. 

(10 .47) 

(10 .48a) 

(10 .48b) 

( 10 .48c) 

In the hard-

edge model, we assume that the effect of the fringe field occurs over 

zero length in z, that is, it rises from Oto the full field inside the 

magnet Bin zero length, consistent with Maxwell ' s equations. We will 

sandwich these fringe fields maps around the magnet body map derived 

above. 

Since the field rises in zero length, we use 

a
0
(z) = B0(L - z) 0(1 + z) (10.49) 

where 0 is the step function and the magnet extends from z -L to z = 
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+1 (although this illustration is with a parallel face.magnet, this fact 

is not essential to the result). Then 

b_ 1 = c, determined by the design entry angle 

a' (z) 
0 

±B6(1 ± z) 

l 
b3 = - a ' " ( z ) 6 0 

=+ 1 B6'''(1±z) 6 

(10 .SOa) 

(10.SOb) 

(10 .SOc) 

where the upper sign is for the leading edge, the lower sign is for the 

trailing edge. The Hamiltonian becomes 

K = /p~- [px- qB(c + ~ 6(1 ± z) / ± ~ 6" '(1 ± z) ~ 2 ... ] - 2 2 4 
p - m C y 

(10.51) 

Note that when the term in brackets in this expression is expanded , 

terms like y2 , y4 , etc. and PxY2 , PxY4 , etc. will be produced. These 

terms will be proportional to B. If we write B Bideal + tB, the terms 

caused by mispowering, proportional to tB, will be proportional to y2 , 

4 2 4 y , PxY , PxY, etc. Thus there are no first-order terms in the mis-

powered case. These are the only terms that are of concern in the ex

pansion, since the integral will be over an infinitesimal length. 

Since no first-order terms are produced, we need not pay particular 

attention to mispowering. Simply computing the transfer map with the 

actual magnetic field Bis adequate. After scaling, these polynomials 

are as given by Douglas [1982] for the entry face 
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1 
tan ex Y2 (10.52) g2 = - 2p' 

0 

1 
sec3 ex y2p 1 ex sec2 ex 2 (10.53) g3 = 2p' 2'/ftan y PT, X Po 0 

where ex is the entry. A similar set of polynomials holds for the exit 

face. 

e. The General Bending Magnet 

A general bending magnet is a dipole magnet that has arbitrary 

entrance(~) and exit (~) angles, and an arbitrary bending angle (2cx). 

See figure 10.5. It includes, as special cases, the normal-entry-and

exit bending magnet (~ = ~ = 0) and the symmetric parallel-face magnet 

(~=~=ex). 

With the map for the normal entry and exit magnet and for the 

symmetric parallel face magnet already available (Douglas [1982)), the 

general bending magnet is most conveniently calculated by imagining it 

to be three separate magnets in succession (Fig. 10.5). The center 

magnet is a normal-entry-and-exit magnet, and the outer magnets are HPF 

magnets. Finally, the leading and trailing midplane (or pole face) 

rotations, as for the parallel-face magnet, go at the beginning and end, 

with any fringe field maps between them and the body. Once all the maps 

are obtained, they may be concatenated numerically or analytically to 

obtain the map of the general bending magnet. 
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11 • Description of Alignment Errors 

Having treated in the last two chapters one major source of 

accelerator errors, the mispowering of dipoles, we now turn our 

attention to another major source, alignment and position errors of 

beamline elements. One expects that such errors produce first-order Lie 

transformations; for example, a quadrupole translated horizontally will 

exert a dipole force on the design particle, thus bending it off the 

design trajectory. This chapter and the next are devoted to handling 

these kinds of problems; this chapter gives a procedure for the complete 

description of an arbitrary misalignment, and the next shows how to turn 

that description into a map for a misaligned element. 

Before we can hope to compute the effects of alignment errors in 

accelerators, we need to be able to describe them. Since we wish to 

allow for all possible misalignments, we will want to describe the 

misalignment as rigid body motion of some fiducial point on the element 

from the ideal position and orientation to the actual. We already know 

that such motions form a group, the Euclidean group, which may be 

parameterized by six numbers, three translations and three rotations. 

The first temptation might be to proceed to calculate the 

polynomials (and matrix) of the transfer map with the six misalignment 

parameters, in addition to the parameters of a perfect element, as shown 

in Chapter 8. While this is certainly possible, it does not make use of 

the transfer map for a perfect element that is already calculated, and 

requires the recomputation of all maps. 

We would like to be able to decouple the misalignment from the per-
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feet element map. It is clear that this is possible when one notes that 

a misaligned element has the same transfer map from its entry face to 

its exit face as a perfect one, the element itself not having changed. 

We merely have to sandwich this map between two maps which transform the 

coordinates at either face from the ideal to the actual or vice versa 

(see Figure 11.1). 

Mactual =Mi Mideal Mt• (11.1) 

If we are able to calculate these coordinate-transformation, or 

matching, maps Mi, Mt, we may use the existing ideal maps, and with the 

concatenation techniques shown in Chapter 4, obtain the map for the 

misaligned element. 

The first step is to note that a Goordinate shift map is a 

realization of the Euclidean group. Each misalignment coordinate change 

is described by an element of the Euclidean group. Therefore, our task 

is two-fold: first, finding the Euclidean group element giving the 

coordinate change at each face, given the misalignment at the fiducial 

point, and second, generating the map Mi or Mt given the Euclidean group 

element. The first task will be dealt with in this chapter and the 

second in Chapter 12. 

We seek the function that gives the misalignment at each of the 

pole faces given the misalignment at the fiducial point of the magnet: 

F E + E, (11.2) 
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where E i s the Euclidean group parameterized by (6X, 6T, 6Z, $, 0, ~) 

(see Chapter 7). We may compute this knowing the rules for group 

multipli i cat on and inversion and using a little physical insight. Let A 

EE be the rigid body motion from the coordinate plane intersecting the 

fiducial point to the entry or exit face (Fig. 11 . 2). Let BEE be the 

motion from the ideal location of this plane to the actual location, and 

let c EE be the motion from the ideal location of the pole face in 

question to its actual location. We wish to find C, given A, a property 

of the magnet, and B, the quantity specified in giving the magnet's mis

alignment. These quantities have the relation A= c-1AB. Thus 

C = ABA-l (11.3) 

The procedure for multiplying and inverting Euclidean group elements was 

given in Chapter 7, so using these rules and the above relation, we will 

be able to hf ce find the group element at eac a • 

Since Bis specified in giving the misalignment, we need only com

Pute A, given properties of the element, in order to obtain C. The 

computation of A is straightforward given a few simple geometric proper

ties of the element. If the element is straight-line (no design dipole 

field), the Euclidean group element that gives the transformation from 

the fiducial point to the entry or exit face is a simple translation 

along the z mi half one length of the element, with axis of plus or nus 

no rotation (see Figure 11.3a). 

If the element is curved, i.e. has a dipole field, the situation is 

only li d (see Figure 11.3b). First, the 
8 ghtly more complicate 

co to be parallel to the face. This is a 
ordinate phase must be rotated 
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midplane rotation, so the Euler angle 0 will be equal to ±a, one-half 

the bending angle. Then there must be a translation to the face of +p
0 

sin a in the Z direction, where p
0 

is the design bending radius, and by 

Po (cos a - l) in the X direction. 

Now that we have the Euclidean group element giving the coordinate 

transformation at the entry and exit face, we wish to be able to 

calculate these symplectic maps Mt and Mt• This is the subject of the 

next chapter. 
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12. Realization of the Euclidean Group by Symplectic Maps 

We now have the description of the coordinate change at the entry 

and exit face in f d terms o the Eucli ean group. What we need, in order 

to concatenate and find the map for a misaligned element, is the 

symplectic transformation that this produces, as given by the 

Polynomials of the factored Lie transformation. These transformations 

are a realization of the Euclidean group; that is, the group composition 

of the Euclidean group is reflected in the concatenation of the 

SYmplectic maps. As we shall see, these symplectic maps are non-linear 

in general. 

The realization of the Euclidean group can be decomposed into six 

separate maps, corresponding to each of the parameters. The rotations 

come first, in the order given in Chapter 7, and then the translations, 

in any order, because they commute. We may write 

M = MT(~)• z z 
(12.1) 

In the parameterization of the Euclidean group used here, the 

rotations are performed first and the translations second. The 

rotations of the axes are performed actively, relative to the original 

axes which are fixed (Chapter 7). The translations of the axes are then 

Performed, described in terms of the new (rotated) axes. Figure 12.1 

illustrates the element Rz(f) Tx(~X). From the particle's point of 

View, the transformation is passive. 
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a. Translations 

Although they occur last, let us treat the translations first. Tx 

a nd Ty, translations in the X and Y directions, may be taken together, 

because their computation is identical, save for exchanging Y with X. 

Tz requires a different treatment because Z is the independent variable. 

To translate in the X direction by 6x we need to send all values of 

the X coordinate from X to X - 6x; active motion of the element means 

passive motion of the coordinates since the set of coordinates used in 

the symplectic map on the particles is considered to be attached to the 

element. This coordinate shift is effected by f1 = 6xPx, 

(12.2) 

so that after applying this transformation, 

6x:Px: x = e X = X - 6x, (12.3a) 

(12.3b) 

etc. 

This is exactly the effect desired. Clearly, replacing X with Y and Px 

~ith Py has the same effect on Y. 

Translation in the Z direction is slightly more complicated, owing 

to the fact that z is the independent variable and not a part of phase 

space. We have made a canonical transformation so that T, PT are a 
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canonical conjugate pair in phase space, Z is the independent variable 

and -Pz is the Hamiltonian function. Assuming that in the process of 

misaligning in the Z direction only free space is covered or exposed 

(see Fig. 12.2), the map giving the Z coordinate change is a drift of 

positive or negative length. This is an ordinary drift except that the 

flight time for a design particle is zero, so we must introduce a trans

lation in the T coordinate, similar to the translations in X and Y 

above, of the actual flight time in the drift . This amount ~Tis l/c~, 

where c~ is the design velocity. 

One may find the Hamiltonian for the drift as Douglas (1982 ] did. 

Start with the Hamiltoni an in ordinary phase space, 

(12 .4) 

or 

2 2 2 2 H
2 

2 2 
P = Px + Py + pz = 2 - m c • 

C 

(12.5) 

In making the canonical transformation to new phase space coordintes x, 

Px, Y, Py, t, Pt from the old x, Px, y, Py, z, Pz, the new Hamiltonian K 

is what was -pz, and the old Hamiltonian H becomes -pt, 

= -l~ -
C 

2 2 
ID C (12.6) 

Scaling K = -
1 KNEW and the momenta as shown in Chapter 1, with p

0 po 
= y~mc, we have 
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(12.7) 

dropping the irrelevant constant term. In preparation for calculating 

the polynomials of the map, we expand K order by order in the phase 

space variables. We find 

(12.8) 

where 

(12.9a) 

(12.9b) 

(12.9c) 

1 5 4 
-- (1 - - 2 ) PT. (12.9d) 
8~2y2 ~ 

Computation of the polynomials is easy because all terms of :K: 

commute with themselves at different times, so 

(12.lOa) 

(12.lOb) 

(12. lOc) 
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: f 2: 
e has the corresponding matrix 

1 
0 

..t 
1 

0 
1 
0 

..t 
1 

1 

0 

0 

(12. lOd) 

1 
(12.11) 

Although it is not strictly speaking a misalignment, it is 

appropriate at this point to consider how to treat a phasing error in an 

RF cavity. An RF cavity is an active accelerating/decelerating section 

with a longitudinal electric field 

,. 
1 = z E

0 
sin(wt). (12.12) 

One possible cavity to consider is that of a short buncher. The 

effective Hamiltonian for a short buncher is (see Douglas [1982), Table 

4.9) 

(12.13) 

which may be expanded and factored as Douglas does to obtain the map. 

Now suppose that there is a phasing error in the cavity, so that 

the electric field is 

,. 
1 = z E

0 
sin(wt + a). (12 .14) 
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One may modify the Hamiltonian (12.13) appropriately, and do an 

expansion and integration. This is analogous to what was first proposed 

for misalignments: include the misalignments in the Hamiltonian and 

solve for the map. As with the misalignment case, however, we may 

separate out the phasing error so that we may take advantage of the 

existing perfect-element map already computed. Specifically, we precede 

and follow the map of the perfectly phased cavity with time translation 

map: it shifts the time T + T + 1~ a. This is accomplished with a 

first-order transformation proportional to Pr, 

ca ca 
- 1w :PT: 1w :PT: 

M real cavity = e M perfect cavity e (12.15) 

This is just a translation in time in the same way that a horizontal 

misalignment perpendicular to the beam is a translation in X. 

b. Rotations 

Although there are three coordinate-rotation maps, there are only 

two that are different, Ry and R2 • Because of the definition of the 

Euler angles, Rx does not occur and need not be computed. For the 

moment, however, we shall concern ourselves with all three rotations and 

how they relate to each other. 

In order to have a realization of S0(3) in the group of symplectic 

maps, there must be a realization of the Lie algebra of S0(3) in the 

Poisson bracket Lie algebra; that is, there must be a Lie algebra 

homomorphism from the Lie algebra of S0(3) to the Poisson bracket Lie 

algebra. The Lie algebra, or the generators, of S0(3) are what can be 

called the angular momenta Lx, Ly, Lz• They are related by the 

-208-



structure equations, 

i,j,k = cyclic combinations of X,Y,Z. (12.16) 

If the phase space were X, Px, Y, Py, Z, Pz, all the rotations of 

S0(3) would be linear and, thus, the realization a representation. This 

may be represented in the Poisson bracket Lie algebra with 

1x_ = YPz - ZPy (12.17a) 

Ly = ZPx - XPz (12.17b) 

Lz = XPy - YPx· (12.17c) 

In the matrix Lie algebra (see Chapter 1, Section f), we have 

0 0 1 0 0 0 
0 0 0 1 0 0 

Lz 
-1 0 0 0 0 0 (12 .18) = 0 0 0 -1 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

Thus the element of the symplectic group which represents a passive 

rotation (rotation of the element clockwise by the right-hand side for$ 

> 0) about the Z axis by an angle$ is 

== e 
$:Lz: 

(12.19) 

or as a matrix 
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cos~ 0 sin~ 0 0 0 

0 cos ~ 0 sin~ 0 0 

-sin~ 0 cos~ 0 0 0 

0 -sin~ 0 cos~ 0 0 

0 0 0 0 l 0 

0 0 0 0 0 l 

(12.20) 

Because T and Pr are part of phase space and not Zand Pz, however, 

we may not use all of the above representations. In particular, 

rotation about the Z axis, Rz, is still linear and may be treated as 

above, but the midplane rotation, Ry, is not as simple. Since this 

transformation changes the value of the independent variable (Z) for 

some particles, we must specify what kind of Hamiltonian is acting. The 

rotation is assumed to occur at the entry and exit faces of the magnet 

and any fringe fields are hard-edge (zero length), we may assume no 

field, and therefore a drift Hamiltonian. In addition, since our goal 

is a realization of the rotation group S0(3) in the group of symplectic 

maps (actually q(Z), see Chapter 3), the generators Lx, Ly, Lz must obey 

the structure equations (12.16) as they are realized in the Poisson 

bracket Lie algebra. 

We shall approach this by creating 1x: and Ly so that the dynamics 

are the same as a drift, then verifying that they, along with Lz = XPy -

YPx, satisfy the structure equations (12.16). Let H(C) be the 

Hamiltonian of a drift, calculated above, and suppose, to start, that we 

are considering Ly, an infinitesimal rotation about the Y axis. 
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Consider the propagation of a particle under the Hamiltonian that is 

near in phase space to X = 1. Then, because the independent . . variable Z 

changes by !::iZ 10 (see Fig. 12.3), 0 small, we have the final phase 

space coordinates as a function of the initial (to first order in !::iZ) 

c + !::iz dC 
dz 

= C + /J.Z [C,K] 

= C - 10 [C,K]. 

(12.21) 

When the transformation is applied to C, we obtain the alternate result 

(12 .22) 

These two calculations should give the same result for X, Y, Py, 

etc. (but not PX) to first order in e. Thus, for example, we compute X 

for some small initial conditions v
0 

around X = 1 (v0 x = O) 

(X + :0Ly :X) I 

:Ly: X I 

= (X - 10 [X,K] I A 

C=1X + v 
0 

C=1X + V 
0 

01.y 

= -1 [X,K] 

--= X oK 
oPX oPX 

XK + C 
Px 
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C=1X + v 
0 

C=1X + V 
0 

(12.23) 

(12.24) 

(12.25) 

(12.26) 
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where Cp is a constant independent of Px• By a similar computation, we 
X 

may conclude 

(12 .27) 

where wx is dependent only on X. 

Similarly, we may compute Lx_ 

L_,c = -YK + Wy (12 .28) 

and, as before, Lz = XPy - YPx• The next step will show that wx = wy = 

o. 

To verify that these realizations of Lx_, Ly, and Lz satisfy the 

structure equations, we need to substitute the Hamiltonian for a drift K 

(12.7). Then the generators of drift rotations for this phase space are 

Lz = XPy - YPx-

In computing the Poisson brackets, note that 

oK _ 
oPX -

oK 
oPY = 

The Poisson Bracket [Lx,Ly] is then seen to be Lz, 

-213-

(12 .29a) 

(12 .29b) 

(12.29c) 
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[YK, - XK] (12.31) 

= (K + X oK) (-Y oK) (X oK ) (-Y oK) 
oX oPX oPX ox 

+ (X oK) oK (X oK) oK 
(-Y -) - (-K-Y -) 

oY oPY oPY oY 

+ (X oK) 
oT 

(-Y oK ) 
oPT 

_ (X oK) 
oPT 

(-Y oK) 
oT 

oK XY oK oK + XY oK oK = - KY --
oPX ox oPX oPX ox 

- XY oK oK + XK oK + XY oK oK 
oY oPY oPY oPY oY 

as desired. The Poisson Bracket [Lz,Lxl, may be computed to verify that 

it indeed is Ly, 

[Lz,1x) = [XPy - YPx, YK] = Py y ~~ - (-Y) y ~~ 
X 

- p y oK - X(K + y oK) 
X oPY oY 

= -x K + y (Py ~KP - Px ~KP ) + y (Y oK - X oK) 
u X u y oX oY 

= -XK = Ly 
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The reader may easily verify that [Ly,Lz] = 1x_, too. 

Although we shall not need to here, it should be noted that this 

process can be carried over to an arbitrary Hamiltonian. This 

possibility is discussed in part c. 

We may now rotate to our heart's content. In particular, we are 

interested in finding the map for rotations about the Y axis, MR, 
y 

MR (ct>) = 
<I> :Ly: 

(1 2.33) e 
y 

-<)> :X /1 2 l- p2 - p2 - - P + 
~ T T X y 

= e 

and factorizing it so that it may be applied to the phase space 

coordinates to see how they transform. We shall do this for arbitrary <I> 

to compare with Dougl as's [1982] result, but later we shall use the 

process described in Chapter 8 to factorize the map for infinitesimal <I>, 

as is suitable for misalignments . The results will then be compared . 

To calculate the factored map for arbitrary<)>, we may consider the 

effect of the unfactored map (12.33) on phase space, and then extract 

the factored expression of the map after expanding in the phase space 

-
variables. For example, one may compute PX: 

e-¢,:XK: = PX = Px - <)>K - ~ ¢,2 Px + ¼ ¢,3 K •• • (12.34) 

cos ct> Px - sin¢, K, 

because :XK: forms a cycle of two acting on Px, 
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C a 

where the combined effect of e 
: f 2 : :f 2 : 

is the matrix e 

cos <Ii 0 0 0 0 1 0 
0 sec <I> 0 0 0 - - sin q, 

~ 
0 0 1 0 0 0 

M = 0 0 0 1 0 0 (12.38) 
1 

<I> 0 0 0 1 0 - sin 
~ 

0 0 0 0 0 1 

and the polynomials are 

f 1 = sin <I> X (12 .39a) 

(12.39b) 

Note that this is accurate to all orders in <I>, even though we do not 

need them all. 

Alternatively, we may calculate the factored map for small <I> using 

the techniques of Chapter 8. This will provide another instructive 

example in those techniques, as well as allowing us to compare these 

results with those exact in <I> as derived above . 

We start with the full Hamiltonian and then expand it 

1 
= X (1 - i3 PT 

1 2 1 2 2 
PT - 2 (PX + Py) 

2~2y2 

1 p3 1 ( 2 2) 
3 2 T - Vl PT PX+ Py + ••• ] 

2~ y t-' 
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so that, with~ the small quantity e of Chapter 8, 

Thus 

- il) = X 
1 

- H(l) = l XP 
2 - j T " 

:g~l) (~): = J!: -¼ XPT: d~' = 

:g~l)(~) 
and the matrix corresponding toe is 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

~ 0 0 0 1 if 
0 0 0 0 0 

0 

- 1 
~ 

0 

0 

0 

1 

Then we may substitute this linear transformation to get H!nt, 

Using (8 . 33), we find 
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- f
<P (l)int 

= H d,1, 1 

0 3 'I' (12 .45) 

1 <P <P 3 2 ,i. 2 ,1, 2 
,i. 2 = - - (- + -) XP '+' XP + '+' XP P '+' XP 

2
~2 y2 3 T - 2 X ~ X T - 2 y • 

Sine h et ird-order polynomials retain only one order of the small 

quantity <P, we may shorten this slightly to find 

(12 .46) 

Furth er, transforming 
:g~l)(V,): 

bye has no effect, because the order in 

<P Will be too high, so (1) ( l)' (1) g
3 

= g
3 

• We may calculate g4 by the 

formula (8.44), but since the integral over the independent variable$' 
i (!)int 
sonly over the range Oto the small quantity <P, and H4 is 

i ndependent of$, we know in advance all these terms will be 

Proportional to <P' with n ~ 1. This is beyond what we need to retain, 

so we may take g4 = O. 

This ends the first pass. we now may compute the second 

"Hamiltonian" H(2) 

:g~l)(<P'): 
= e 

: g2(1 >c <P I ) : 

Because e has no effect, H(2) has the expansion 

H(2) = X + <P'XPx + ••• 

u(2) 
splits up by order into 
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H(2) = X 
1 ' 

(12 .49a) 

(12.49b) 

For n ) 3, the H( 2) are zero because they will be too high order in$; 
n 

note that since a small quantity$ is the independent variable, we will 

get (at least) one extra power of$ on integration; therefore, terms of 

total order 4 and higher will be excluded . 

Now we solve for g?) with the "Hamiltonian" H(Z), using (8.21), 

·g(2). 
• 2 • 

The map e may be represented as the matrix 

1 
$2 

0 0 0 0 0 -2 
$2 

0 1 +- 0 0 0 0 
2 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 (12.50) 

to the appropriate order in$ . 

The higher-order dynamics equations yield g~2) = 0, n > 2, because 

H( 2 ) = O. Thus we may go right to the last step of the iteration, and 
n 

integrate the first-order term. Step by step in the iteration, it is 

= H(l) = X, 
1 
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(12.52) 

The integral is 

Jqi (1 ¢ '
2 

X d~' 0 - -2- ) 'V 
(12 .53) 

Summarizing the results, the map in fact ored form is 

· g . · g(2 ). ·g (l) . :g3: 
· 1 . · 2 · · 2 . 

M = e e e e (12.54) 

with the polynomials defined by 

(12.54a) 

( 2) ,j)2 
g2 = 2 XPx (12.54b) 

(12.54c) 

¢ 1 2 2 2 
- - ( - - XP + X ( PX + P ) ) 

2 
8

2 2 T y 
' y 

(12.54d) 

The matrix corresponding to 

·g(2). ·g(l) _ 
. 2 . · - 2 . 

e e (12.55) 

is, to the proper order in¢, 
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l - <P2 
0 0 0 0 0 2 

<1>2 
0 l 0 0 0 

_ _! +-
2 ~ 

0 0 l 0 0 0 

0 0 0 l 0 0 

<P 0 0 0 l 0 f 
0 0 0 0 0 l (12.56) 

A comparison with the results exact in <f>, (12.38) and (12.39), reveals 

this derivation to be identical to the appropriate order in <j> • 

.£.• Rotations with Propagation Under an Arbitrary Hamiltonian 

Although it is off the main line of work, it is interesting to 

speculate about rotations under an arbitrary Hamiltonian, not 

necessarily a drift. This would be must useful for the computation of 

the fringe field rotation for a parallel-face bending magnet, for some 

finite-length fringe field, i.e., not a hard edge fringe field. Thus it 

would be necessary to obtain the map for an arbitrary, not necessarily 

small, rotation. 

The general process would be similar to that above for the drift 

rotation. One would compare the effects of a Hamiltonian 

infinitesimally with that of the rotation. It is important to note the 

z evolution would in general be different than the result for a drift 

(Fig. 12.5). The rotation obtained, I.x,Ly, together with Lz, should be 

checked with the structure equations of the Lie algebra of S0(3) to make 

sure they are, in fact, a realization. Then the whole result would have 

to be factored. 
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It would make an interesting line of investigation for some bright 

young graduate student (or for some withered old post-doc!). 
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Figure 12.5 Change in z for Drift Rotation and for 
Rotation with a Non-Zero Field 
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Appendix A. Treatment of Random Distributions of Errors 

The mechanism described in parts I and II shows us how to compute a 

map for a beamline element that is possibly misaligned and mispowered, 

and how to concatenate it with other such elements to produce a map for 

a section of beamline or a whole accelerator. With this map, one may 

track particles or extract information about the lattice such as tune 

and chromaticity. 

Throughout this procedure, it has been assumed that all parameters, 

even those representing errors, may be precisely specified. This is 

certainly reasonable in many circumstances; suppose, for example, that a 

survey of an accelerator shows that a certain quadrupole is misaligned 

in the horizontal direction by .5 mm. Then we have the tools to see how 

this affects the tune, dynamic aperture, and so on. On the other hand, 

there are cases where the parameters are not known precisely. For 

example, in a prospective accelerator, one does not know where the 

elements will actually end up, but we may be able to say from past 

experience that the quadrupoles will be placed within± .6 mm of where 

they should be. 

The way it stands, the only way to treat such random distributions 

of errors is to select samples from such distributions, i.e., as a Monte 

Carlo technique, and analyze the results for the distribution of desired 

quantities. Such a calculation could require a large number of 

computations, particularly if there are many parameters subject to 

error. Also, one must take care that the source of random numbers is 

really random, in order that the results are reliable. Even so, the 

result may be a coincidence, due to the numbers picked. 
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In this chapter, I describe a way of obtaining the behavior not 

Only at given 1 f h va ues o t e parameters, but nearby as well. It is based 

on the method of propagation of errors. One assumes that the parameters 

are statistical with a certain distribution, and follows the effects of 

th
eir variation through the creation and concatenation of the maps, and 

then to the lattice functions or tracking. 

There are two assumptions made, both reasonable for practical 

accelerator design. The first is that the statistical quantities, the 

uncertain parameters, have a Gaussian distribution with the given mean 

and variance. This is reasonable in view of the central limit theorem: 

the sum of statistical quantities tends to a Gaussian, no matter what 

their distribution. Specifically, errors in accelerator construction 

and operation are in reality the sums of other errors, e.g., the error 

of field strength of the magnet is a result of errors in the placement 

of the wire, the quality of the power supply, etc. 

The second assumption is that parameter errors are independent. It 

is i reasonable to assume, for instance, that errors n powering a magnet 

have nothing to do with errors in its physical length. In the method 

developed here, it is also assumed that the parameters of two maps are 

statistically independent. This will not be the case, for instance, in 

a misalignment, as the leading and trailing shift maps will be functions 

of the same statistical parameter. Nevertheless, this is adequate for 

many maps and suffices as a start. 

What is given here is a general description of the propagation of 

errors technique, including nonlinear propagation of errors, and then an 

application to the mathematical operations of Lie algebraic code such as 
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MARYLIE: element map generation, concatenation, and computation of 

lattice functions. The concatenation computed here only includes matrix 

multiplication and not Poisson bracketing or transforming, and so 

effects from nonlinearities and errors where first-order transformations 

are produced are not included. The principles of propagation of error 

can be extended to these also. Finally, there is a discussion of the 

results applied to the calculation of the tune of a simple bending cell, 

including a comparison with results from samples of the distribution. 

a. Statistical Distributions and Propagation of Errors 

Suppose we have a set of n quantities {x1 ,x2, ••. ,¾},that have a 

statistical distribution ~(x), where xis a vector representing the 

whole set. A convenient way of characterizing the distribution function 

- 2 
~ is by the mean of x, x, and the covariance matrix~ • The means and xx 

covariances are defined by integrating over the distribution~, 

(A.l) 

and 

(A.2) 

Note that for the covariance matrix is symmetric. Although it is n 

2 n(n-1) by n and therefore has n elements, there are only 
2 

independent 

off-diagonal terms. Together with then diagonal terms, there are 

n(n+l) 
2 independent terms. Although the diagonal elements are properly 

called variances, when referring to them as a class I will call them co-
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variances. 

The technique of propagation of errors allows us to consider the 

statistical properties of functions of the statistical variables x1 , 

••• , ¾• Specifically, suppose there are m functions f 1 , ••• , fn of 

these n variables 

... ' (A.3) 

... ' 

As with the original statistical variables x, we would like to know 

about the mean fi and covariance a2 of these functions in terms of 
fi fj 

the mean and covariance of the x. 

To simplify the expression, let us pick any two functions (which 

may be the same) from the set f 1 , ••• , fm, and call then f and g. Inf 

(and g) we may write the Taylor expansion 

where ai 

x=x 

0 = xi - x 1 for all i, and Oi acts as-~- only on f. 
vxi 

f(x) 
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(A.4) 

Explicitly, 

(A.5) 



While fo r most functions the linear term is sufficient in the expansion, 

we shall consider the general case (non-linear propagation of errors) 

becaus ewe will encounter cases where the extra terms are significant. 

Integrating with the distribution ~(x) yields an expansion of the mean 

in terms of moments 
' 

f == 

(A.6) 

Where µi is a moment of the distribution, j ••• 

µ = f ( xi - xi )( xj - ;;j ) H X) d nx' 
ij ••• 

(A.7) 

and f 
ij ••• is a multiple derivative off evaluated at the mean value of 

x, x 
i 

fi. = aiaJ .••• f(x) 
J ••• 

(A.8) 
x=x 

For completeness of notation, let f 0 - f(x). 

Since we assume the random variables have a Gaussian distribution, 

we shall however, let us postpone that task and need these moments; 

continue the calculation for an arbitrary distribution. 

We may calculate the variance by 

2 = (fg) - f g (1fg 
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- ~ ~ ·--- - -· ,._ -·-· 

As f and g- are already il bl ith th f 1 (A 6) d ava a e w e ormu a • , we nee only 

calculate (fg). 

Let h(x) = f(x)g(x). Then (fg) = h, and the formula (A.6) may be 

used. We need only determine the derivatives of h, hi i , in terms 
I••• n 

of those off and g. If C = {ii, ••• , in} is the set of indices with 

~hich derivatives are to be taken, he is the sum of the product of all 

Possible ways of distributing those derivatives between f and g 

he = h. i = l fAgB. 1 1•·• n divisions of C 
(A.IO) 

into 2 sets A,B 

For example, 

(A .1 I) 

We may show the relation (A.IO) by induction. More precisely, we 

may show the relation before evaluation of the derivatives, 

I (A.12) 
di vision of C 

into 2 sets A,B 

by induction on the size of the set C. Start by assuming that C is the 

nu11 set. The equation (A.IO) then is h(x) = f(x) g(x), which is true 

by the d fi f h Now assume the formula is true for C of size n-e ntion o • 

1 , and prove it for size n. Specifically, let C' be a set of the n-1 

dif ferentiation variables, 

C' = {i1, ••• , in-I}, (A.13) 
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and let C be C' augmented with a new variable i, 

Then the multiple derivative C may be written in terms of the 

derivatives on C' 

oi I 
divisions 

of C' 

I [oioAf(x)] [oBg(x)] + [oAf(x)] [oioBg(x)] 
divisions 

of C' 

= I 
divisions 

of C 

(A.14) 

(A.15) 

because the possible divisions of Care just all those of C' with i in 

one or the other. When evaluated at x, the relation (A.10) is obtained. 

Now it is possible to write out the first few terms of the 

covariance using the relation 
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where use has been made of the fact that there is summation over all 

indices. 

The remaining task is to find the moments µi
1 

i based on the 
• • • n 

distribution function~ for a Gaussian. It is the exponential of a 

quadratic form, 

,,--.___,,, 
1 + + -1 + + 

(x - x) V (x - x) 
2 (A.17) 

Since a Gaussian is completely characterized by its mean and variance, 

2 
we can express the moments, of any order, in terms of variances aij" In 

fact, the even moments are symmetrized products of the variance, and the 

odd moments are zero, 

( 2n) ! 2 
••• izn = n!2n a[i

1
i

2 
(A.18a) 
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µi = 0, 
1 • • • izn+l 

(A.18b) 

where the br acke ted subscripts indicate they are symmetrized. 

Explicitly, the first few orders of the mean and variance formulas 

for a Gaussian are computed by substitution of (A.18) into (A.6) 

f fo + .!. Y. 2 
fij 

1 I 2 2 = O'ij +- O' [ij crU] 2 i u. 8 i,j,k,1 ,J 

1 I 2 2 2 
fijk1mn + + 48 O' [ijO'UO'mn] ... 

i,j,k,1,m,n 

and for the variance by substituting (A.18) in (A.16), 

t 2 2 2 
+ l [(cr i.O',_oO' + 

J tv- mn 
... ) -

+ ••• 

fijk1 (A .19) 

' 

(A.20) 

For most purposes, the functions are close enough to linear that we may 
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take just the first term 

(A.21) 

(A.22) 

b. Application of the Propagation of Errors Techniques to Accelerator 

Design 

Having seen how to propagate errors in the general case, we are now 

ready to apply the method to the problem of accelerator design. It may 

be applied to almost any accelerator design code, but, naturally, I will 

apply it to the Lie algebraic techniques described in this thesis and by 

others (Dragt [1981], Douglas [1982], Dragt et. al. [1985]). Although 

there are several stages to the computation of specifying a lattice, 

computing the maps, and calculating the lattice functions, we may reduce 

this to a few mathematical operations. In particular, we divide the 

process into three tasks: map generation, concatenation, and lattice 

function computation. 

i. Generation of Maps 

For each type of beamline element, such as a quadrupole or drift 

segment, a map, consisting of a matrix and polynomial coefficient, is 

calculated based on parameters supplied. By computing their derivatives 

with respect to the parameters, we will be able to propagate the 

statistical effect of these parameters to the maps. 

Assume for instance, that the matrix is a function of the para-

-235-



meters a 1 , ••• , an 

... , 

... , 

... , 

a ) 
n 

a ) 
n 

a ) 
n 

... , 

... , 

From the derivation above, the mean value is 

If we have the derivative matrices 

omll oml2 

oai oai 

om21 om22 

~ oai 
1 

oM(a 1 , ... ' a ) 
n = • 

oai • 
• 

... , 

••• 

a ) 
n 

• 

a ) 
n 

a ) 
n 

we may calculate the covariance matrix between the elements. 

... ' a ) 
n 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

Note that the 6x6 = 36 elements of the matrix are merely 36 
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separate functions from a statistical analysis point of view. Thus the 

covariance matrix was 36x36 = 1296 quantities, of which 18x37 = 666 are 

independent. 

As an example on a smaller matrix, consider the simple 2x2 phase 

advance matrix 

M =rcos 0 
j_:_in 0 

-sin el 
cos !J (A.27) 

With 0 2 a statistical parameter having mean 0 and variance a0 • Then the 

tnean i h st e matrix evaluated at 0, 

- uos a M"' sin 0 
-sin ~ 
cos~ 

l'he c i i i ovariances can be obtained from the der vat ve matr x 

and they are 

a2 

I-sin 0 L cos a 

= a 2 

mll m22 

2 2 
a = a 
m12 m21 

2 2 
= a 

rnllml2 
ae 

2 2 
= a 

rnll m2 l 
- ae 
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-cos ;J 
-sin~ 

= 
2 

ae sin2e 

= 2 
ae cos 2e 

sin 0 cos 8 

sin 0 cos 0 

(A.28) 

(A.29) 

(A.3Oa) 

(A.3Ob) 

(A.3Oc) 

(A.3Od) 



2 = - ~e sine cos e 

(A.30e) 

(A.30f) 

(A.30g) 

(A.30h) 

The mean and variance of the polynomial coefficients may be calcu

lated in the same way. Of course, there will be covariances among them-

selves and with the matrix, so altogether there will be for computations 

through f Ourth order polynomials 

36 (matrix elements)+ 6 (first-order polynomials) (A.31) 

+ 56 (third-order polynomials) 

+ 126 (fourth-order polynomials)= 224 quantities 

2i4 x (224 + 1) = 25,200 independent covariances. 

ii. Concatenation 

As we saw in Chapter 4, concatenation involves much computation: 

matrix multiplication, moving the first-order term, and so on. However, 

if we know the propagation of errors formulae for addition and multipli

cation, this task is reduced to finding the propagation of errors for 

matrix multiplication, Poisson bracketing, and transforming. Each of 
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these, in turn, is again essentially just multiplication and addition. 

Consider first the multiplication of two matrices Mand N to form P 

p = MN, (A.32) 

where the elements are Pij• Mij• rij• 

(A.33) 

Further, let us assume that both Mand N are subject to independent 

statistical error. By the covariance propagation formula (A.22), we may 

find the covariance in P to first order, as a function of Mand N 

involving only products and sums, 

(A.34) 

The mean of an element is, to first order , just the sum of the products 

of the means (A.21), 

= I 
r 

mi m . r rJ 
(A.35) 

For this relationship, a first order formula is reasonable, as multipli

cation and addition are not too nonlinear! 

Taking the Poisson bracket of two polynomials involves just dif

ferentiation with respect to phase space, multiplication, and addition. 

If we let the fi 
1 

in the polynomial f, and 

be the coefficient of the monomial Ci ••• Ci 
1 n 

similarly for gj j for the polynomial g, 
1 • • • n 
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then if h = [f,g] the Poisson bracket may be expanded 

h = J fi i g. . (C. • •• Ci , C, ••• Cjm] dx. (A.36) 
1 ••• n J1 •••Jn 1 1 n J1 

Since the statistical quantities are the coefficients fi 
1 

g. 
J 1 ••• jn' the mean value is given in lowest order by the value at the 

mean, 

h = J 

or 

• • • i 
n 

(A.37) 

h = [f, g] (A.38) 

A particular coefficient of his the sum over particular products of the 

coefficients off and g . 

•• • in jl 
f 

• • • jm i 1 • • • in gj 1 • • • jm 

(A.39) 

where n is an integration factor from the Poisson bracket. The 

covariance between two coefficients of h depends on f and g 

i 
n • • • i I n 
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n J 1 • • • Jm 

• gj I • t 
Jm 1 • • • Jm 

(A.40) 



i 
n 

i I g. I 

n J 1 

i ) 
n 

The final operation on which we need to know how to propagate 

errors is the process of transforming a polynomial by a matrix, 

(A.41) 

The coefficients of fT are related to the coefficients off by the 

matrix elements 

i 
n 

Thus in lowest order the mean is 

-
where f is the polynomial with coefficients equal to the mean 

The covariance is 

I 2 = [O'f 
f • I 

j 1 jn j 1 ... j I 
J 1 n 

j i j~ 

j I 

n 

T 
i fi, 
n 1 
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iii. Lattice Functions 

The ultimate goal of constructing the map for a lattice is usually 

not the map itself, but some function of it, such as the tune or its 

effect on particles. If we know the mean and covariance of the map, it 

will be possible to determine the mean and covariance of these lattice 

functions. As an example, I will consider the case of the tune in an 

accelerator with midplane symmetry. 

For an accelerator with midplane symmetry, the horizontal and 

vertical degrees of freedom are uncoupled, so the tune is 

tri(M) 
= 2; arccos ( 2 ) (A.45) 

where tri(M) is the trace of the i th degree of freedom of matrix M, e.g. 

tr1(M) = M11 + M22 • The tune function is dependent only on the linear 

part of the map, the matrix. 

The tune function, unfortunately, is not very linear, especially at 

values of the trace near± 2 (see Figure A.l). Therefore, we shall have 

to do a nonlinear propagation of errors. The derivatives, as a function 

of the trace of the small matrix, are given in Table A.l. We may then 

say, according to (A.19), that the mean is 

l 
2 

(1 _ ~)3/2 
4 

(A.46) 
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0 
TRACE 

Figure A.l The Tune Function 
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and the variance from (A.20) is 

-2 
2 xi 

1 
-2 

2 Si 1 4 
1 +- xi cr =-

-2 + ( 2 ) + ••• , vi 161/ 
Si -2 - 2 -2 

xi 
64rl 

xi 3 
64i(I 

xi 3 
1 - 4 (1 - -) - -) 

4 4 (A.47) 

Where 

(A.48) 

and 

(A.49) 

is the variance of the trace. 
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Table A.l Derivatives of the Tune as a Function of the Trace of the 

Small Matrix 

O) 

1) 

2) 

3) 

4) 

5) 

Function 

( ) 1 (-x
2

) f x = 21t arccos 

1 f'(x) = - -----

f"(x) = 

f"'(x) 

f( 4)(x) 

f( 5)(x) 

41t /2 - x2 
4 

X 

2 
l61t (1 _ !_)3/2 

4 

2 
1 + !_ 

2 = - 2 
l61t (1 _ !_)5/2 

4 

18x + 3x 3 
= 2 

1281t (1 - ~//2 
4 

18 + 36x2 + 3x4 
= 2 

1281t (1 _ ~)9/2 
4 
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Value for x = -1.81958 

0.43187874 

- .191723 

.506235 

- 4.28829 

59.5537 

- 1156.66 



c. Results 

The statistical computations described above, including maps and 

their derivatives, matrix multipliation, and tune computation were coded 

in order to compare the statistical method with the results from varying 

samples of data. 

In order to make such comparisons, one must have a measure of how 

close the mean and covariances obtained from the propagation of errors 

is to that of the sample data. Such a measure comes under the general 

heading of test statistics. A test statistic is a computation that 

takes a theoretical distribution and an actual result and gives a number 

between O and 1 indicating how close they are, 1 being very close. The 

test statistic I use is the maximum likelihood ratio (Eadie et. al. 

[1971]). Given the theoretical probability distribution, one takes the 

ratio of the probability density at the actual value to that of the most 

likely value (see Figure A.2). A low number indicates poor agreement 

between theory and the actual results, a high number good agreement. 

For a Gaussian distribution of a random variable which we are 

assuming, the probability distribution of a sampled mean of these 

variables is what is called at-distribution (Eadie [1971], Bevington 

[1969]) and the probability distribution of a sampled covariance is a x2 

distribution. Both these distributions are well-known and tabulated 

(see, for example, the references given), making computation of the 

maximum likelihood ratio straightforward. 

To apply the maximum likelihood ratio to a covariance matrix, we 

will need to look at the covariances in normal coordinates, that is, 

coordinates where there is no covariance between different elements, 
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Figure A.2 The Maximum Likelihood Ratio 

-247-

2 3 



only variances (covariances between identical elements). This means 

that we are interested in the diagonalized covariance matrix. We then 

may apply the maximum likelihood ratio to these eigenvalues to judge the 

relative validity of the sampling and theory. 

As an actual test, we may propose looking at a simple bending cell 

(see Figure A.3) consisting of a horizontally focusing quadrupole, a 

drift, a parallel-face bend, a drift and a horizontally defocusing 

quadrupole. We suppose that the quadrupoles have strengths that vary 

according to a Gaussian distribution about some mean. This means that 

the design trajectory will remain the same as these parameters will 

vary, so there will be no first-order term in the Lie transformation. 

We may then look at how well the means of the matrix elements and the 

tunes agree with the theoretical predictions, and how well the eigen

values of the covariance matrix agree, according to the maximum 

likelihood ratio. 

One can imagine several diffrent maps of generating sample distri

butions of parameters in accordance with the parent Gaussian distribu

tion. I have selected two, a pseudo-random number generator such as is 

typically part of numerical computation packages, and a regular distri

bution, obtained by dividing the integral into n equal intervals and 

using variable value at the center of each interval (see Figure A.4). 

The latter method produces a regular set of data, with values clustered 

in the area of highest probability density. 

The results of a particular run are shown in Table A.2, for both 

kinds of samples. From this result and many others, we may draw a few 

conclusions. First of all, it is necessary when doing the propagation 
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Figure A.3 A Bending Cell 
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Fi gure A.4 Generation of a Regularly Distributed Sample of a Gaussian 
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of 
errors on the tune, to include higher Borders in the calculation, at 

leas t near trace 1 f 2 va ues o ± where the arccosine function becomes very 

nonlinear. S econd, in doing a sampling with varying parameters, it is 

better 
to gene rate them regularly than randomly, at least with a pseudo-

random number 1 1 generator of the type commonly avai ab e. Last, the 

Validit 
Y of a sample remains roughly constant if the number of points 

sampled n goes as the power of the number of parameters, b where n is the 

number of parameters and bis the base, and it should be at least 5 or 

IO for a maximum likelihood ratio above 0.9. Thus, for two varying 

Parameters, 25 would be the smallest reasonable sample size, and for 

four, 625 would be the smallest. 

The method of propagation of errors extends the Lie algebraic 

accele b rator design techniques so that not only is ehavior at a 

Particular set of parameters known, but behavior nearby is known as 

~e11. It has potential for development because of its advantages over a 

Monte Carlo simulation: it requires far less computation for equivalent 

Validity of the answer, it is not subject to the possible unreliability 

Of 
a random number generator, and it gives directly useful information, 

to Wit, the mean and variance of desired quantities. Regula r 

Simulati ons are better than Monte Carlo in that they do not rely on a 

random number generator and give a more reliable answer with the same 

number f 0 samples, but still are not as advantageous as the propagation 

Of 
errors me thod. 
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Table A.2 Comparison of Propagation of Errors with 

Random and Regularly Generated Samples 

Horizontal defocusing quad strength K = -2.19652710 

Horizontal focusing quad strength K = 3.7453240 , 

2 
, o-K = .0001 

2 
o-K = .0001 

Regular sample used 10 points of each strength (10 x 10 = 100), random 

sample used 1000 points total. Seed for the random number generator was 

6548804. 

One term in propagation of errors formula for tune: 

Regular Random 
Theory (mlr) (mlr) 

Tune x mean 0.4318793499 0.4319077293 .4319438640 
(0.9903) (0.6219) 

variance 0 .417795lxl0-5 0 .4186980xl0-5 0 .4382925xl0-5 

(0 .9877) (0 .5317) 

Tune y mean 0.0670334734 0.0669517969 0 .06697 461177 
(0 .9716) (0.8738) 

variance 0 .1162271x10-4 0 .1170186xl0-4 0.1285695xl0-4 

(0.9822) (0.0648) 

Three terms in propagation of errors formula for tune: 

Regular Random 
Theory (mlr ) (mlr) 

Tune x mean 0.4319082160 0.4319082160 0.4319438640 
( 1.0000) (0.8649) 

variance 0 .4190343x10-5 0.4186980xl0-5 0.4382925xl0-5 

(0.9908) (0.5922) 

Tune y mean 0.06695118513 0.06695179690 0 .06697 461177 
(1.0000) (0.9789) 

variance 0 .117 2369x10-4 0.1170186x10-4 0.1285695xl0-4 

(0 .9917) (0.1014) 
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Appendix B. MARYLIE 3.1 

The techniques for treating accelerator errors Lie algebraically 

that are described in the body of the text have Jeen implemented and 

tested in a computer code called MARYLIE 3.1. The core of this code is 

an extension of MARYLIE 3.0, written by Douglas :Douglas [1982), Dragt 

et. al. [1985]), that implements Lie algebraic techniques for accelera

tors without errors through third order (polynomlals through fourth 

order). In addition, MARYLIE 3.1 has a completely different user inter

face. 

The first section of this appendix shows hov to use some of the 

features of the code, with some examples. It is not intended to be a 

manual or to replace one, but rather to show how the formalism of 

treating accelerator errors looks to the user with a real problem to 

solve. The second section describes the implemeotation and testing of 

the techniques described in the body of the text into code, including 

some of the practical aspects, to give a better ~nderstanding of them. 

Finally, the third section contains a listing of some important routines 

of MARYLIE 3.1, along with descriptions of other routines that the 

listed ones call. 

a. Usage and Examples 

In this section, I shall describe how to specify misalignments, how 

to find the closed orbit and the map nearby, and how to correct for the 

closed orbit. Also, a description of the fitting routine which may be 

used for c losed orbit correction is given, and some applications related 

to closed orbit correction demonstrated. 
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i. Misalig1ment 

Misalignments are specified for an element in the same way as other 

parameters. The user gives the six pa rameters specifying the misalign

ment at the fiducial point of the elemerrt. The example given in Table 

B.l is of a horizontally defocusing quairupole that has been misaligned 

by a horizontal translation of 0 .001 met ers and rotated in the midplane 

by 0.0015 radians, at the fiducial point. After it has been specified, 

and the magnetic rigidity and speed have been specified, we may see what 

the transfer map looks like . The matriK and polynomial coefficients are 

given; the first six rows are the matriK, the following lines are the 

polynomial coefficients, with the monomial name in brackets (all upper 

case phase space variables used above have become lower case in the 

coding, and there no are subscripts). Note that there are coefficients 

of x, px, and pt in the map, present because of the misalignment. The 

coefficients of y and py present are insignificant. 

Misalignments may be specified for almost any of the elements 

available in MARYLIE. The only exceptions are those for which a mis

alignment does not make sense, such as a drift or a phase advance. 

Concatenation of maps, including those with first-order 

polynomials, is straightfoward. For example, suppose one has a simple 

bending cell (Table B.2) consisting of a horizontally defocusing quadru

pole, a parallel face bending magnet, and a horizontally focusing quad

rupole, with drift spaces interspersed . With the defocusing quadrupole 

misaligned as before, and the focusing quadrupole also misaligned, the 

map for each will contain a first-order part. When they are concate-
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nated together into a cell called 'nsex,' the whole transfer map may be 

obtained, as easily as the map for a single element. The result is 

printed out in the table. 

ii. Closed Orbit Determination 

Closed orbit determination is specified as a change in the form of 

the map. As constructed from the element library or from the concatena

tor, the polynomials of the map are kept in ascending form, i.e., 

:fl: :f2: :f3: :f4: 
e e e e (B. l) 

However, it is possible to put this in another form, the fixed point, or 

closed orbit, form 

-:g l : :g2: :g3: :g4: :gl: 
e e e e e (B.2) 

as shown in Chapter 6. This is acheived by specifying the function 

'fix' of the map, and is demonstrated for the bending cell in the 

table. The first-order terms (x, px, y, py and pt) are the coefficients 

of the polynomial that gives the fixed point, that is, 

z - e (B.3) 

is the fixed point. The map around z is given by the matrix and the 

other polynomial coefficients. 
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Table B.l Example of MARYLIE: Misaligned Element 

ML3.l) ! The magnetic rigidity is specified by brho, the speed by beta 
ML3.l) brho=4.8691523 
ML3.l> beta=0.8412103393 
ML3.l> ! The following command specifies a defocusing quadrupole 
ML3.l) ! that has been misaligned horizontally 
ML3.l) ! by 0.00lm and rotationally in the rnidplane by 0.0015 radians. 
ML3.l) hdq:quad,l=0.5,kl=-l.93,delx=0 .001,theta=0.0015 
ML3.l) ! The following command prints out the matrix and polynomials 
ML3.l) ! of the map 
ML3.l) print hdq 
1.0500 0.50830 -2.17602E-17 -l.12543E-17 0.00000E+00 
0.20148 1.0500 4.46093E-18 -2.17602E-17 0.00000E+00 
2.40280E-17 l.16322E-17 0.95086 0.49178 0.00000E+00 
4.61074E-18 2.40280E-17 -0.19493 0.95086 0.00000E+00 

6.84590E-05 
8.68903E-06 
l.34754E-20 
l.93515E-20 

4.66974E-06 6.74624E-05 -2.05329E-20 l.90462E-21 1.0000 
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 o.oooooE+00 

0.20658 
1.0000 

hdq[x] =-2.0209359818933772E-04 
hdq[px] =-5.624 1980046548858E-05 
hdq[y] =-2.3290344846676129E-20 
hdq[py] =2.5559573247026451E-20 
hdq[pt ] =3.5615143293835734E-06 
hdq[x xx] =4.6214861290262093E-05 
hdq[x x px] =-2 .1917207889858402E-04 
hdq[x x y] =-3.4403977226576909E-21 
hdq[x x py] =-7 .8909047684250828E-21 
hdq[x x pt] =-3.9687203779944684E-03 
hdq[x px px] =2.1717934959245682E-04 
hdq[x px y ] =-l.8734093274946567E-20 
hdq[x px py] =l.9823610538152742E-20 
hdq[x px pt] =6.0870890129539595E-02 
hdq[x y y] =9 .4400528189299484E-05 
hdq[x y py] =2.3905829251721772E-04 
hdq[x y pt] =-7.0562531767054717E-21 
hdq[x PY py] =-l.658787410275 1662E-04 
hdq[x py pt] =2 .6969894874270836E-18 
hdq[x pt pt] =l.1950494045847783E-05 
hdq[px px px] =-6 .8911612664317048E- 05 
hdq[px px y] =l.2596808369202098E-20 
hdq[px px py] =-l.0170543647415764E-20 
hdq[px px pt] =-0.3071991624156031 
hdq[px y y] =l.0849232448812077E-04 
hdq[px y py] =-l.2513631221717794E-04 
hdq[px y pt] =2.6969565312405407E-18 
hdq[px PY py] =2 .7355807298381209E-05 
hdq[px PY pt] =-8.9871782719335052E-19 
hdq[px pt pt] =-9.4004651982864068E-05 
hdq[y y y] =l.6090534230346103E-21 
hdq[y y py] =l.0602879804796601E-20 
hdq[y y pt] =-3.8144076084688497E-03 
hdq[y PY py] =2 .0250154137856189E-21 
hdq[y PY pt] =-5.6979315032469157E-02 
hdq[y pt pt] =3 .3097850160976309E-21 
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hdq [py PY PY] 
hdq[py PY pt] 
hdq[py pt pt] 
hdq[pt pt pt] 
hdq[x xx x] 
hdq [x x x px] 
hdq[x xx y] 
hdq[x xx py] 
hdq[x xx pt] 
hdq[x x px px] 
hdq[x x px y] 
hdq [x x px py] 
hdq[x x px pt] 
hdq[x x y y] 
hdq[x x y py] 
hdq[x x y pt] 
hdq[x x py py] 
hdq[x x PY pt] 
hdq[x x pt pt] 
hdq[x px px px] 
hdq [x px px y] 
hdq[x px px py] 
hdq[x px px pt] 
hdq[x px y y] 
hdq[x px y py] 
hdq[x px y pt] 
hdq[x px py py] 
hdq[x px PY pt] 
hdq[x px pt pt] 
hdq[x y y y] 
hdq[x y y py] 
hdq[x y y pt] 
hdq[x y py py] 
hdq [x y PY pt] 
hdq[x y pt pt] 
hdq[x PY PY py] 
hdq[x PY PY pt] 
hdq [x PY pt pt] 
hdq[x pt pt pt] 
hdq[px px px px] 
hdq[px px px y] 
hdq[px px px py] 
hdq[px px px pt] 
hdq[px px y y] 
hdq[px px y py] 
hdq[px px y pt] 
hdq [px px py py] 
hdq[px px py pt] 
hdq[px px pt pt] 
hdq[px y y y] 
hdq[px y y py] 
hdq[px y y pt] 
hdq[px y py py] 
hdq[px y py pt] 

=-4.7017994764514440E-21 
=-0.2875645362891140 
=-6.4304978660762564E-21 
=-0.1227849184152725 
=-7.7232642324291876E-03 
=l.8818776681204116E-02 
=l.0889899520524252E-18 
=-2.5415729608614839E-19 
=7.3091304098399213E-05 
=-6.9031150958326567E-02 
=-7.1797832985174532E-19 
=-4.7444936325076198E-18 
=-6 .8658144637723236E-04 
=-3 .9239410422525906E-02 
=2.9924810965651031E-02 
=4.0447676825624633E-22 
=4.4441235473335375E-02 
=-2 .47 18374141706286E- 20 
=-S .4555487090434210E-03 
=S.601268531 1786729E-02 
=-2.2687191016075999E-19 
=3 .5908287253772188E-18 
=7.8681653765253221E-04 
=2 .8952662776853766E-02 
=-l.9623869573405422E-02 
=-2.8252097436597739E-20 
=3.7644254888865468E-03 
=4.1049697579192941E-20 
=8.4131986462893835E-02 
=-l.2875753337517813E-18 
=l.0598906378722498E-18 
=8.7459329853886297E-05 
=7.8280697226996276E-20 
=3.1429609575511220E-04 
=-l.3862827713345885E-20 
=l.086643867629972SE-18 
=3.9999323702321767E-06 
=3.6762370541639613E-18 
=l.8712483635342766E-04 
=-7.1394465692224513E-02 
=l.1994565036443791E-18 
=-7 .8051354607002803E-19 
=-l.5170823668890271E-03 
=-S.4262436099911447E-02 
=3 .5997297571197237E-03 
=3 .4275268890774707E-20 
=-0.1257360230031477 
=-3.8163347387641213E-20 
=-0.4246497735280909 
=3.3846527835228803E-19 
=-4 .4393298079974429E-18 
=-2.1920055390121209E-04 
=3 .2524204809391448E-18 
=-2.3483138660921952E-04 
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hdq[px Y pt pt] =3.6762751579009847E-18 
~:q[px PY PY pyJ =-7.3546950511144508E-19 
hdqfpx PY PY pt] =-1.2757873870120113E-03 
hdq px PY pt pt] =-1.7590983373390017E-18 
hd~fpx pt pt pt] =-1.8920035329196499E-03 
hdq[y y Y y] =-5.5538277818209808E-03 
hdq[y y Y py] =1.4162700637201822E-02 
hd y y Y ptJ =1.7125150669872634E-21 
hd~fy y PY py] =3.2918877310855554E-02 
hdq[y y PY pt] =7.6744897737884513E-22 
hd y y pt pt] =-5.1528002253951172E-03 
hdqfy PY PY py] =-4.3719368943504521E-02 
hdq y PY PY pt] =7.3507699392116773E-21 
hdqfy PY pt pt] =-7.6510909155198873E-02 
hdq y pt pt pt] =l.Ol59315603294272E-20 
hdqfpy PY PY py] =-5.4833622754068101E-02 
hdq[py PY PY pt] =-2.2253064289553352E-20 
hdq PY PY pt pt] =-0.3862154810733600 
hdq[[py pt pt pt] =-2.6518178631959275E-20 

q pt pt pt pt] =-0.1566346259487956 
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Tabl B 
e •

2 
Exam le of MARYLIE: Concatenation with Misali ned Element 

and Determination of Fixed Point 

ML3.l) 1 ML3 
1 

· Parameters 
ML3. > brho=4.8691523 
ML3.l) beta=0.8412103393 

.1) I D f ML3 l) · e ine drifts 
ML3.l drs:drift,0.45 
ML3:l~ ~rl:drift,2.28646 
ML3.l) . Bending magnet 
ML3.l) ;bnd :rbend,angle=0.6283185307,kO=l.2 

ML3 1) . Quads ML3:l> ~~q:quad,0.5,-l,92,delxa-0,001,theta=0,0015 
ML3.l) 

1 

q.quad,0.5,2.72,dely=-0.002,phi=0.0005 

ML3.l) ~ Define the cell nsex 
ML3.l) sex:{drl hdq drs pbnd drs hfq drl} 

1.0491 print nsex ---o.
279 

6,3609 -8.15777E-04 4,15067E-03 o.oooooE+oo -2,4
108 

-3_

565

i~ -0.14130 -4.32238E--04 -2.55449E-04 o.oooooE+-00 --0,313
15 

-4_

4210 

E-03 -1.96288E--02 -0.10116 6.1585 o.oooooE+-00 2.00561E-OS 
1,0652 

8
E-04 -2.99573E-03 -0.27890 1.0139 o.oooooE+OO 2.83648E-04 

0,000 4.1607 9,32781E--04 4,38151E-04 1,0000 3,4959 
nsex(~~E+oo o.oooooE+00 o.oooooE+-O0 o.oooooE+-OO o.oooooE+-OO 1.0000 

nsex( x) -2.0172525808729309E--04 
nsex(P] =-5 .1902716457048420E-04 
nsex(y I -6.5748730501532581E--07 
nsex[PY) =2,0522902938269129E-0l 
nsex(pt =3.32!6685097319039E-06 
nsex(x xx) =-l.1685467853048130E-02 
nsex[x x px] =4.9115827700417679E-02 
nsex[x x y) =-3,750884646359I030E-04 
nsex[x x py) =l,3515587093583536E--03 
nsex[x x pt] =-0.2921899009584240 
nsex x px px] =0.1541293598102544 
nsex [x px y] =l.8459840991815392E-03 
nsex!x px py) =-5 ,8109273418567862E-03 
nsex x px pt] =-l.053266552300671 
nsex!x Y YI =-6.2567929197728024E-02 
nsex x Y py] =0.7199593929369587 
nsex!x Y pt) =-l.8782870284975775E-03 
nsex x PY py] =-l.905835214730898 
nsex!x PY pt) =l,0349651051635205E--02 
nsex x pt pt] =-l.418381223580777 
nsex!px px px) =9.2273820159942378E--02 
nsex[px PX y) =-5.7687961928001209E-0l 
nsex(px PX py) =2,2412575998832867E-02 
nse px px pt] =-3.066265995682219 
nse:[px Y YI =-2.08958I8716566702E-02 
nse px Y py] =0.1761480429306482 
ns x[px Y pt) -1.9658215829637552E-03 
ns:xipx PY py) =2,5641756864780207E-02 
nse:(px PY pt) =l,4344371769626050E-02 
nse px pt pt] =-3 .087690940763916 

x[y Y y] =-3.8682917243934783E-04 
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nsex[y y py] 
nsex[y y pt] 
nsex[y py py] 
nsex [y py pt] 
nsex[y pt pt] 
nsex [py py py] 
nsex[py py pt] 
nsex[py pt pt] 
nsex[pt pt pt] 
nsex[x xx x] 
nsex[x xx px] 
nsex[x xx y] 
nsex[x xx py] 
nsex[x xx pt] 
nsex[x x px px] 
nsex[x x px y] 
nsex[x x px py] 
nsex[x x px pt] 
nsex[x x y y] 
nsex[x x y py] 
nsex[x x y pt] 
nsex[x x py py] 
nsex[x x py pt] 
nsex[x x pt pt] 
nsex[x px px px] 
nsex[x px px y] 
nsex[x px px py] 
nsex[x px px pt] 
nsex[x px y y] 
nsex[x px y py] 
nsex[x px y pt] 
nsex[x px py py] 
nsex[x px py pt] 
nsex[x px pt pt] 
nsex[x y y y] 
nsex[x y y py] 
nsex[x y y pt] 
nsex[x y py py] 
nsex[x y py pt] 
nsex[x y pt pt] 
nsex[x py py py] 
nsex[x py py pt] 
nsex[x py pt pt] 
nsex[x pt pt pt] 
nsex[px px px px] 
nsex[px px px y] 
nsex[px px px py] 
nsex[px px px pt] 
nsex[px px y y] 
nsex[px px y py] 
nsex[px px y pt] 
nsex[px px py py] 
nsex[px px py pt] 
nsex[px px pt pt] 

=4.9328086194929029E-03 
=-0.4971576016263518 
=-2.2633644651601651E-02 
=4.414549844753906 
=-5.2034938613428767E-03 
=3.5869993137844974E-02 
=-12.42649316007642 
=3.0l78405085538552E-02 
=-4.350038301724557 
=-l.4006356421361361E-02 
=8.2995446808865904E-02 
=-7.5594388156762432E-05 
=l.9236304176885807E-04 
=-7.7171281470707818E-02 
=-0.7017707554868090 
=3.3335985118406195E-04 
=3.5079341329712458E-04 
=-0.3754456037467961 
=-0.1299619123656771 
=0.8400508327057035 
=-9.4199818018458537E-04 
=-l.537169654433486 
=4.0009463272032682E-03 
=-0.8195286205449076 
=-5.1444402135832124E-02 
=-l.8449049177966154E-03 
=8.4056416703511137E-03 
=-l.797369248474826 
=0.2237088369735704 
=-0.6164200724772446 
=2.9266080076750372E-04 
=-0.2196249527114565 
=2.5532874205083786E-03 
=-2.831565236049871 
=-5.2396933337770688E-05 
=l.6675770125039356E-03 
=-0.4520924714228340 
=-l.0456491049240043E-02 
=4.449141065244286 
=-4.2798098789980154E-03 
=l.8925799840188203E-02 
=-ll.05749117982887 
=2.4253106861265555E-02 
=-3.232368510198176 
=-2.636812513968043 
=9.2667477419446441E-03 
=-3.5740554914225448E-02 
=-4.756024007088811 
=-2.214163774812210 
=18.42249270581254 
=l.1174047777924586E-02 
=-40.72939786089794 
=-2.8721138973226055E-02 
=-7.805283953512858 
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nsex[px y y y] =-l.8875983256306527E-04 
nsex[px y y py] =3.8065596561437331E-03 
nsex[px y y pt] =-l.736046318494450 
nsex[px y py py] =-2.4641015781689582E-02 
nsex[px y py pt] =15.83800454819271 
nsex[px y pt pt] =l.4835421580820193E-02 
nsex[px PY py py] =4.9913067760440442E-02 
nsex[px py py pt] =-36.26137089715613 
nsex[px py pt pt] =-3.9843257329945709E-02 
nsex[px pt pt pt] =-6.041142472460865 
nsex[y y y y] =-7.0539192719261391E-02 
nsex[y y y py] =l.204687843698255 
nsex[y y y pt] =-l.3159298582876629E-04 
nsex[y y PY py] =-8.059116752940898 
nsex[y y py pt] =6.5894987840005124E-03 
nsex[y y pt pt] =-l.649095603672400 
nsex[y PY PY py] =24.49769714159961 
nsex[y PY PY pt] =-5.1207525118099098E-02 
nsex[y py pt pt] =16.46375453710148 
nsex[y pt pt pt] =-l.8652344236122379E-03 
nsex[py py py py] =-28.65309774423115 
nsex[py PY py pt] =0.1099918173529561 
nsex[py py pt pt ] =-43.97665684879331 
nsex[py pt pt pt] =2.9842432479775850E-02 
nsex[pt pt pt pt] =-7.378314076666465 
ML3.l) ! The following command defines ' newmap' as the fixed point 
ML3.l) ! form of nsex 
ML3.l) newmap:fix(nsex) 
ML3.l) print newmap 
1.0491 6.3610 -7.27624E-04 3.94080E-03 0.00000E+00 -2.4109 
-0.27939 -0.74088 -4.77134E-04 -l.43323E-04 0.00000E+00 -0.37298 
-3.66227E-03 -2.05917E-02 -0.70734 6.1587 0.00000E+00 -8.36462E-05 
-4.48541E-04 -3.06390E-03 -0.27882 1.0139 0.00000E+00 -2.33892E-04 
1.0649 4.1588 7.36833E-04 3.17107E-03 1.0000 3.4953 
0.00000E+00 0.00000E+00 0.00000E+00 0 .00000E+00 0.00000E+00 1.0000 
newmap[x] =-l.2163785669934853E-04 
newmap[px] =-7.4219599423172437E-04 
newmap[y] =-3.3784480106511362E-04 
newmap[py] =2.0679431223401606E-03 
newmap[x xx ] =-l.1634876685829601E-02 
newmap[x x px] =4.8753596724315318E-02 
newmap[x x y] =-6.3480566207657209E-04 
newmap[x x py] =2.0812061540395292E-03 
newmap[x x pt ] =-0.2920291725814404 
newmap[x px px] =0.1551366432380444 
newmap[x px y] =2.5464030142382336E-03 
newmap[x px py] =-7.1422496322291046E-03 
newmap[x px pt] =-l.052947588815111 
newmap[x y y ] =-6.2345209613934738E-02 
newmap[x y py] =0.7186082862251167 
newmap[x y pt] =-2.1514329065539798E-03 
newmap[x py py ] =-l.903506496648869 
newmap[x py pt] =l.1505487962646018E-02 
newmap[x pt pt] =-l.417236209970535 
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newmap[px px px] 
newmap[px px y] 
newmap[px px py] 
newmap[px px pt] 
newmap[px y y] 
newmap[px y py] 
newmap[px y pt] 
newmap[px py py] 
newmap[px py pt] 
newmap[px pt pt] 
newmap[y y y] 
newmap[y y py] 
newmap[y y pt] 
newmap[y py py] 
newmap[y py pt] 
newmap[y pt pt] 
newmap[py py py] 
newmap[py py pt] 
newmap[py pt pt] 
newmap[pt pt pt] 
newmap[x xx x] 
newmap[x xx px] 
newmap[x xx y] 
newmap[x xx py] 
newmap[x xx pt] 
newmap[x x px px] 
newmap[x x px y] 
newmap[x x px py] 
newmap[x x px pt] 
newmap[x x y y] 
newmap[x x y py] 
newmap[x x y pt] 
newmap[x x py py] 
newmap[x x py pt] 
newmap[x x pt pt] 
newmap[x px px px] 
newmap[x px px y] 
newmap[x px px py] 
newmap[x px px pt] 
newmap[x px y y] 
newmap[x px y py] 
newmap[x px y pt] 
newmap[x px py py] 
newmap[x px py pt] 
newmap[x px pt pt] 
newmap[x y y y] 
newmap[x y y py] 
newmap[x y y pt] 
newmap[x y py py] 
newmap[x y py pt] 
newmap[x y pt pt] 
newmap[x py py py] 
newmap[x py py pt] 
newmap[x py pt pt] 

=9.1026880641269469E-02 
=-8.7032929551061216E-03 
=3.3006283839682483E-02 
=-3.066702791933980 
=-2.1592677307057182E-02 
=0.1809702474085750 
=-3.9150268038297 156E-03 
=l.6310976313448819E-02 
=2.3554983623730158E-02 
=-3.086482726702 191 
=-5.6244363788545997E-04 
=6 .9397617783938767E-03 
=-0.4969668714604797 
=-3.0975835542627141E-02 
=4.412817299343964 
=-5.5754776523087279E-03 
=4.7420662700775558E-02 
=-12.42280589920402 
=2.9114489647151 106E-02 
=-4.347915962023496 
=-l.4006356421361361E-02 
=8.2995446808865904E-02 
=-7.5594388156762432E-05 
=l.9236304176885807E-04 
=-7 .7171281470707818E-02 
=-0.7017707554868090 
=3 .3335985118406195E-04 
=3.5079341329712458E-04 
=-0.3754456037467961 
=-0.1299619123656771 
=0.8400508327057035 
=-9.4199818018458537E-04 
=-l.537169654433486 
=4.0009463272032682E-03 
=-0.8195286205449076 
=-5.1444402135832124E-02 
=-l.8449049177966154E-03 
=8.4056416703511137E-03 
=-l.797369248474826 
=0.2237088369735704 
=-0.6164200724772446 
=2.9266080076750372E-04 
=-0.2196249527114565 
=2.5532874205083786E-03 
=-2.831565236049871 
=-5.2396933337770688E-05 
=l.6675770125039356E-03 
=-0.4520924714228340 
=-l.0456491049240043E-02 
=4.449141065244286 
=-4.2798098789980154E-03 
=l.8925799840188203E-02 
=-ll.05749117982887 
=2.4253106861265555E-02 
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newma [ newm P x pt pt pt] =-3.232368510198176 
newm:p[px px px px] =-2.636812513968043 
newmap(px px px y] =9.2667477419446441E-03 
newm p[px px px py] =-3.5740554914225448E-02 
newm:Pipx px px pt] =-4.756024007088811 
newmap px px Y y] =-2.214163774812210 
newma~lpx px Y py] =18.42249270581254 
newm px px Y pt] =l.1174047777924586E-02 
newm:p(px px PY py] =-40.72939786089794 
newmap [px px PY pt] =-2.8721138973226055E-02 
newma:fpx px pt pt] =-7.805283953512858 
newma px Y Y y] =-l.8875983256306527E-04 
newmap(px Y Y py] =3.8065596561437331E-03 
newm/ [px Y Y pt] =-1. 736046318494450 
newmap[px Y PY py] =-2.4641015781689582E-02 
newmap[px Y PY pt] =15.83800454819271 
newmap(px Y pt pt] =l.4835421580820193E-02 
newma:~px PY PY py] =4.9913067760440442E-02 
newma px PY PY pt] =-36.26137089715613 
newmap[px PY pt pt] =-3.9843257329945709E-02 
newma:~px pt pt pt] =-6.041142472460865 
newma y Y Y y] =-7.0539192719261391E-02 
newmap[y Y Y py] =l.204687843698255 
ne"'8ap[y y Y pt] =-l.3159298582876629&-04 
newma~[Y Y PY py] =-8.059116752940898 
ne"'8a [y Y PY pt] •6.S89498784000S124E-Ol 
newm PY Y pt pt] =-l.649095603672400 
newm::Iy PY PY py) =24.49769714159961 
ne"1nap[y PY PY pt] =-S.1207525118099098&-02 
newma [Y PY pt pt] =16.46375453710148 
newm PY pt pt pt] =-l.8652344236122379E-03 
newm:p[py PY PY py] =-28.65309774423115 
newma~~PY PY PY pt] =0.1099918173529561 
newma PY PY pt pt] =-43.97665684879331 
newmap[[py pt pt pt] =2.98424324797 75850E-02 

P pt pt pt pt] =-7.378314076666465 
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iii. Fitting Routines and Closed Orbit Correction 

MARYLIE 3.1 has an option for fitting any set of parameters so that 

an equal number of target functions are minimized. For instance, one 

may adjust the vertical and horizontal quadrupole strengths in a 

focusing cell so that the two tunes assume certain desired values. 

Table B.4, discussed below, has a demonstration of such a calculation. 

The routines that do the fitting are rather involved and so are not 

listed here. The process is essentially the following, however. First, 

initial guesses of the parameters that are to be varied are given by the 

user. The target functions are evaluated at these initial values and 

then at nearby values so that the Jacobian matrix may be calculated. 

This gives a linear approximation to the targets as a function of the 

parameters. From this approximation, it is possible to extrapolate to 

the desired values. The new value will not be exact but will be closer 

if the functions are reasonably linear. This process may be continued 

until the target functions are close enough to the desired values, as 

dictated by some previously specified tolerance parameter. 

With the closed orbit (fixed point) determination implemented as 

described in Chapter 6 and the fitting facility available, we may easily 

implement a closed orbit correction scheme such as the beam bump method 

(Myers [1984], Guignard [1970]). This method is designed to insure that 

the design beam passes through the center of each quadrupole, even the 

misaligned ones. Let us consider the example of a mythical four-sided 

ring (four right-angle bends) for storing protons at 797 MeV. Suppose 

each cell from the center of one side to the center of the next is a 

FODO cell. Suppose further that the horizontally focusing quadrupole in 
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one of the cells (call it number 1) has been moved horizontally by 1 

cm. c ers (orbit correction dipoles in the short-length With ki k 

approximati 
on, see (10.38)) adjacent to each quadrupole, we wish to know 

What strengths 
to give these correction magnets so that the beam goes 

through the 
center of each quadrupole. Since we are only misaligning 

the h orizontal plane, we may ignore the corrections in the vertical. 

Thus or our qua rupo es. 
we have four correctors f f d 1 

The first step is to set up a file with the definitions of the beam 

line 1 
e ements and the cells (Table B.3). The next step is to fit the 

strengths so that the tunes are the desired values (vx=0.19, 
quadrupole 

Vy=0.185). 
The actual process is shown in Table B.4. Once this has 

been do 
ne, we may perform the beam bump process. First, we work with 

the collection of elements consisting of cell 4, the one prior to the 

one With the 
misalignment, and the kicker adjacent to its horizontal 

quadrupole. 
We fit so that the design trajectory is sent to 1 cm on the 

X axis at 
the misaligned quadrupole. Because 'adjl' is defined as the 

cone 
atenated map of these elements factored in descending order, this is 

acco mplished by demanding that •adjl' be --0.01 px. When this map is 

applied t 
o the phase-space values zero, the linear and higher-order part 

Will b 
• not change it, and the --0.01 px term will take zero to 0.01 x, 

the cente f r o the misaligned magnet. 

Once this has been done, and we are assured the beam is going 

through the 1 1 k h center of the misaligned quadrupo e, we may oo at t e 

fixed 
point of the half ring from the horizontal kicker prior to cell I 

to th 
e beginning of cell 2, and fit so that this is zero. Then a beam 

on the design trajectory starting into the cell 1 will be deflected so 

that 
it enters the misaligned quad at the center, then deflected so that 
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at cell 2 it is back on the design trajectory. This final fitting is 

shown in the last part of Table B.4, together with the resultant 

strengths of each of the horizontal kickers. 
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Figure B.1 A Mythical Four-Sided Rinll for Demonstration of 
Closed orbit Correction . 
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Table B.3 Example of Fitting and Orbit Correction: file FOURSIDE 

These following describes a mythical four-sided ring 
that stores protons at 797 MeV. 
(XJ.e of the horizontally focusing quadrupoles has been moved 1 cm 
horizontally. 

Global parameters 
brho=4.8691523159713 
beta=.84121033934903 

! Drifts 
drks:drift,0.2 for use with kickers of length .25 in drs 
drs:drift,0.45 
drm:drift,1.48646 
drl:drift,2.28646 

! Bends 
nbnd:sbend,1=2.5494821908441938,angle=3.141592653589793/4 
hcorrl:hkick,l=0.25,kO=strhl; strhl=O 
vcorrl:vkick,l=0.25,kO=strvl; strvl=O 
hcorr2:hkick,l=0.25,kO=strh2; strh2=0 
vcorr2:vkick,l=0.25,k0=strv2; strv2=0 
hcorr3:hkick,l=0 . 25,kO=strh3; strh3=0 
vcorr3:vkick,l=0.25,kO=strv3; strv3=0 
hcorr4:hkick,l=0.25,kO=strh4; strh4=0 
vcorr4:vkick,l=0.25,kO=strv4; strv4=0 

! Quads 
klf=0.4 
hfq:quad,0.5,klf 
badhfq:quad,0.5,klf,delx=0 . 01 

kld=-1.6 
hdq:quad,0.5,kld 

! Single Cell 
def: drl hdq drs nbnd drs hfq drl 
dcbf: drl hdq drs nbnd drs badhfq drl 
cell:fix(dcf) 

Aligned horizontal focusing quad 
This quad has been misaligned 
1 cm in the horizontal direction 

Aligned horizontal defocusing quad 

defocusing-corner-focusing 
defocusing-corner-bad focusing 

! Single rotated bad cells with and without kickers 
bfdc: badhfq drl drl hdq drs nbnd drs ! bad focusing-defocusing- corner 
bfdck: badhfq drl drl hdq vcorrl drks nbnd drks hcorrl 

Single rotated good cells with and without kickers 
The good cells are numbered 2, 3, and 4 . The horizontal 
kicker that preceeds each horizontal kicker has the number one less 
(mod 4), e.g., the kicker for the horizontal quad in cell 4 is hcorr3. 

fdc: hfq drl drl hdq drs nbnd drs ! focusing-defocusing-corner 
fdck2: hfq drl drl hdq vcorr2 drks nbnd drks hcorr2 
fdck3: hfq drl drl hdq vcorr3 drks nbnd drks hcorr3 
fdck4: hfq drl drl hdq vcorr4 drks nbnd drks hcorr4 
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! Maps on which to check adjustments (see table B.4) 
adjl:des(hcorr3 fdck4) 
adj2:fix(hcorr3 fdck4 bfdck) 
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l 

ML3 .1) ML3.I> ~emonstration of fitting and orbit correction in Marylie 3.1 
ML3.J> xample is a four-sided ring composed of FODO cells. 
ML3 I> Fir

st
' set the tunes to the desired values of .19 and .185. 

Table B.4 
Sample Run of Fitting and Correction 

ML3:l) <;ourside 
cell[t p cell[tune] 
cell[tune x]=0.1975049037232380 
cell[tune y]=0.1866276261612764 
ML3.l)u~e t]=O.OOOOOOOOOOOOOOOOE+OO 
ML3.l) . argx=.19 
ML3 targy=.185 

.1) fit ML3.I> cell[tune x]-targx,cell[tune y]-targy kl1 

cell[t pr cell[tune] 
cell[tune x]=0.1899999999999998 
cell[tune y]=0.1850000000000001 
ML3.l)une t]=l.1857967309049915E-09 
klf=O pr kl? 
kld=-i 203l540176634698 

•45581 9033088247 

ML3 .1) I B ML3.I> ; egin correction for single ,nisaligned horizontal quad in 

ML3.l) ; Fcell 1. ML3,I> j it the horizontal kicker at horizontal quad previous to the 

ML3.l) 
1 

one with the misalignment so that the beam 
ML3,I> figoes through the center of the misaligned quad, 

ML3.l) t adjl [px]+0.01 : strh3 
adj 1 [x/r adj 1 [?] 
•djl[px] -2.1407162629898209E-04 
adjl[pt] =-1.ooooooooooooooooE-02 
ML3.l) =-8.7344303359367659E-03 

strhl=Opr strh? 
strh

2
=o .ooooooooooooooooE+oo 

Strh3=-iOOOOOOOOOOOOOOOOE+00 
strh4=0 •1856600497176117E-02 

.ooooooooooooooooE+oo 

ML3.l) I N ML3.1> ; ow adjust the strengths of the kickers at the horizontal quad 
ML3.I> j with the misalignment and at the next horizontal quad so that 
ML3.i> 

1 

beam returns to the design trajectory at the latter horizontal 

ML3 l> quad. . fi ML3.l) t adj2 [x] ,adj2 [px] : strh4,strhl 

adj2 [x/r adj2 [?] 
adj2[px] =3.7177677481727441E-21 
ML3.l) =-l.9176431230311452E-19 

strhl=-~r strh? 
8 trh2=0 •1644003957606226E-02 
strh

3
=_2°00oooooooooooooE+OO 

8 trh4=l •1856600497176117E-02 
•99 l5047851789408E-02 
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and Testin 

Adapting MARYLIE to 1·nclude h fi d t e rst-or er transformation 
mechanis 

m involves essentially two modifications: the tracking 
routines , 

and the concatentation routines. 

i. Tracking and Concatenation 

Tracking is implemented i hf d b n a straig t orwar manner y the scheme 
described 

in Chapter 2. The initial coordinates v
0 

are offset by the 
amount [f 

1,CJ/v, and then ordinary tracking proceeds from there. This 
involve o 

s minor modification to the MARYLIE 3.0 routines for non-symplec-

tic and sy l 
mp ectic tracking. 

Testing merely involves checking that the initial conditions are 

Shifted by 
the amount expected based on the value of f 1 • The higher-

order 
Portions of the map may be set to the identity to facilitate 

Checking. 

Concatenation is more difficult, implementing the process described 
in Ch 

apter 4. The routines for concatenating matrices and polynomials 
th· lrd-ord 

er and higher, as explained in Section 4b, already exist in 

MARYtrE 3 .o. The routines principally responsible for this are CONCAT 

and XFORM 
, the former for concatenating the polynomials and multiplying 

the matrices , the latter for transforming a polynomial by a matrix. To 
thes 

e must 

is 
Present. 

be added a facility for concatenating when a first-order term 

A special routine GlMOVE, called by CONCAT, performs the 
comp 

utation needed to move the first-order term to the left (4.72), or 
0
Ptiona11y h (4 82) Th to move the first-order term to the rig t • • is 

routine in 
turn calls various utilities, including MATIFY which turns 
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--- ---- - - -

the 
calculated 

second-order polynomial h2 into a matrix JS according to 
the equation 

(l.99), and EXPM which symplectically exponentiates this 
matrix b 

' Y any of the three methods described in Chapter 5. It was 

found after 
coding all three methods that, for the same degree of 

accuracy, the first two methods ran at approximately the same speed but 
the Cayley 

method ran approximately twice as fast. · Therefore, this 

method was 
used. GlMOVE also uses two Poisson bracket routines, FlPBKT 

and PBI<T • 

One easy test of the values of~ in the concatenation (4.72) is 

afforded 
by applying the result to zero on both sides. First, we 

Simplify the problem by saying f 1 = g2 = g3 = g4 = O so 

:f2: •f3. •f4. ·g . • • • . • l • 
\.: e e .Je •lo v-----

(B.4) 

On the left d t M h side, the application of the higher-or er par f tote 
initial 

condition o yields o. Then all that remains is 

(B.5) 

Fore~ [ ~1 
ample, if g1 = .l Px, then the left side is •1 Px,~ = 

(- 1 
• ,O,o,o,o,o). On the right side, track in the fashion described 

above h 
' applying e: 1= first then using the usual tracking method for 

higher 
0 rder terms. We should get the same result for both sides to 

order €3 . 
Additionally' 

l'hen 
'on the right-hand side, 

- :hl: 
we may apply both sides to Cb= e •lo= [-h1,•J. 

: h1 : 
the application of e to these initial 

-272-



conditions yields 0, and the application of the higher-order~ does not 

change this. Thus, to test we may apply ½:Cb and expect to get -Ca• 

Note that this method does not check the h2 , h3 or h4. 

Both the above methods were used, and proved the routines correct. 

In fact, the two sides of the second method are exactly the same, as 

shown in Section 4d. 

Another check on the formulas and coding is to move the g1 to the 

left 

: f 2 : : f 3 : : f 4 : : g 1 : : h 1 : : hz : : h3 : : h4 : 
e e e e =e e e e (B.6) 

and then move h 1 back to the right 

:h1: :hz: :h3: :h4: :kz: :k3: :k4: :k1: 
e e e e =e e e e (B.7) 

and see how the polynomials kn compare with fn and g1• Considering that 

the total order must correct through order 4, one would expect that 

(B.8a) 

(B.8b) 

(B.8c) 

(B.8d) 

These were all borne out by scaling checks, although f4 - k4 is zero 

because the computation of h4 and¾ is exact. 
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An important check of the concatenation routines is to compare the 

result of tracking a map with an f 1 present with one where it is missing 

but simulated it with a "kick" of the coordinates . The user-specified 

subroutines of MARYLIE allow one to alter the coordinates in tracking 

any way one pleases, so we may add constants in the same way that the 

application of a first-order map does. If e and & are both scaled by a 

factors, the difference of the end results of the two runs should scale 

by a factor s 4 • This was indeed the case with the test lattices tried . 

Finally, a check may be made on the end-result by translating a 

parallel-face bending magnet in the direction along its pole faces, the 

X direction. This should make no difference in the result up through 

the appropriate total order in matrix and coefficients. This was tested 

and confirmed to be the case. 

ii. The Fixed Point (Cl osed Orbit) Finder 

There are four routines that form the fixed point (closed orbit) 

finder. CLORB is the main routine implementing the iteration scheme, 

and is called on the user's instructions during lattice construction in 

MARYLIE . It replaces the current map with the shift to the closed 

orbit, and the map around the closed orbit. It calls three routines: 

SANDWC, which constructs the map "sandwich" MNU- 1 or U-1NM; the logical 

function TINDEP which determines whether the map is time independent or 

not; and the subroutine GET4X4 which extracts the transverse part of the 
·g . 

matrix that represents e· 2 · in the cases of time independence . CLORB 

has been written so that the user may dictate that the procedure in the 

case of time independence or for time dependence be followed, or to let 

the code determine this automatically . 
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In practice , the convergence is not quadratic as was demonstrated 
theoreti 

Cally in Chapter 6 because if-n+l) is not calculated by acting 
on N, n) 

Wi th the r(n+l) maps, as in (6.15) but by acting on M with the 
f(n) l 

l maps as in (6.10). This introduces some round-off error in the 
computation , 

Ponent of ~ 

8ence. Even 

because of the relatively large, fixed first-order com
:gl: 

e , that washes out the quadratic nature of the conver-

so, convergence to ten digits precision occurs in ten 
iterati ons for the lattice shown (Table B.) but with the horizontally 
defocusing 

quadrupoles misplaced by 10 cm horizontally. If Jn+l) is 
ca1cu1 

ated with ,In) i t b d ti A N' and, the convergence s seen o e qua ra c. 
tout· 

lne NCLORB (not listed) performs the calculation this way, and the 

quadrati 
c converage was verified. 

To test the closed orbit finder routines, we merely check both 
s . 
ldes Of (6 .7) 

(6. 7) 

by 
Putting the right side into the standard factorization with the con-

Catenation tools available. The testing proved the routines correct • 

.!ih_specification of Misalignments and Generation of Maps 

'!'here are several routines to implement the misalignment 
Spe i 

c fication and map generation described in Chapters 7, 11, and 12. 
Th 

e routine SHIFID takes Euler angle parameters given at a fiducial 

Point 
and computes what they should be at the entry or exit palefaces 

to the process described in Chapter 11 • It uses the routines 

INVEUC for doing multiplication and inversion respectively in 

-275-



the Euclidean group. Once the Euclidean group parameters are known at 

the face, the routine SHIFT computes the map according to the method of 

Chapter 12. It uses the routines AROT and TPROTl for the rotations and 

LATSHF and DRIFTl for the translations. 

iv. Dipoles 

The map computation for the correction dipole has been coded in the 

kicker approximation (10.38). It is called KICKER. It first computes 

the map of an ideally powered half-parallel face magnet, and concaten

ates this with the coordinate transformation explained in Chapter 10. 

The ideally powered half-parallel face magnets and the general 

bending magnet have been coded into routines HPF and GBODY (not 

listed). This mispowered versions, as well as the mispowered version of 

the normal-entry bending magnet, await coding. 

-276-



c. Listings of Important Routines 

In the following pages are tables giving listings of some of the 

important routines used in MARYLIE 3.1 for concatenation, fixed point 

finding, and so on. They are written in Fortran (ANSI X3.9-1978), with 

the exception of the "include" statements. 

Table B.5 is a brief summary of routines not listed that are called 

by the listed routines. Tables B.6 through B.12 are listings of 

misalignment concatenation routines described in Section Bb, along with 

various matrix symplectification and symlecticity checking routines (see 

Chapter 5). Table B.13 lists the closed orbit finder routine . Tables 

B.14 through B.18 list the routines for computation of the misaligned 

maps as described in Chapter 12. Tables B.19 through B.22 describe the 

misalignment specification and Euclidean group computation described in 

Chapters 7 and 11. 

-277-



1'I!NV (M) 

MMutr (A, B, C) 

MTMutr (A,B,c) 

CMutr (A,X,B) 

VCLE AR (F,N) 

VCAnn (F,X,G,N) 

VADD ( F,G,H,N) 

VA.ss (F,G,N) 

ALtoc (N) 

DEA.Lt 
(PTR,LEN) 

SVpBI<T 
(F,N,I,G) 

M.<\I>ELT (TYPE 
, PARMS, KCK) 

LEs ( 
X,D!M,M,Y,S) 

l-ipplJT 
' MPGET' MP TOWN 

Table B.5 Routines Not Listed 

Inverts a symplectic matrix M. 

Matrix multiplication A= B c. 

Matrix transpose and multiply A= 

Btranspose C. 

Matrix multipy by constant A= X B. 

Clear (set to 0) the order N part of the 
polynomial F. 

Cumulative addition of polynomial 
coefficients F = F + XG for scalar X and 
Nth order part of F and G. 

Polynomial coefficient addition F = G + H, 
Nth order part. 

Polynomial assignment F = G, copy Nth order 
part of G into F. 

Allocate a block of data of length N from 
the common storage 'BLDATA'. Value 
returned is a pointer to the start. 

Deallocate data block. 

Single variable Poisson bracket GN 

create the map on the map ring stack level 
specified by KICK of TYPE with parameters 
PARMS. 

Linear equat ion solver Y = MX. Sis 
scratch area. 

"Sandwich" the two maps on top of the 

stack, either B-1AB or BAB-I. 

Put map on right stack, get it from stack, 
place or remove temporary ownership on map 
to prevent deletion. 
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Table B.6 Subroutine GlMOVE 

c Thesubroutine glmove(out,mout, f,mf,g,which) 
c poly g move moves the exponential of a first order routine" 1 " 
c nomial to the right (which=l): 
c exp(:gl:)exp(:f2:)exp(:f3:)exp(:f4:)exp(:fl:) 
c or t = exp(:h2:)exp(:h3:)exp(:h4:)exp(:hl:) 

c o the left (which=-1): 
c exp( :fl:)exp(:f2:)exp(:f3:)exp(:f4:)exp(:gl:) 
c Writ = exp(:hl:)exp(:h2:)exp(:h3:)exp(:h4:) 
c ten by Liam Healy, June 13, 1985. 

c----v c ariables----
out -c - array of polynomials returned 
mout -- matrix returned 

c f dofuble precision out(*),mout(6,6) 
' m - 1 c g = po ynomial and matrix of first map 

c mfin = polynomial of second map 
v - inverse of mf 

c Whidouble precision f(*),mf(6,6),g(*),mfinv(6,6) 
~h, dw = which way to move gl (see above) 

nteger which 
c h double precision dw 

ut - hl - , untransformed 
c glf~o~ble precision hut(6) 

- [gl,f3] etcetera #double precision glf3(27),glglf3(6),glf4(83),glglf4(27), 

c gt _ggglf4(6),ggfgf(6),ggf3f3(27),f3glf3(83) 
- first order part of g transformed by mf 

c double precision gt(6) - e symplectic exponentiation of the matr x calculated emh - th i 
~ouble precision mh(6,6),emh(6,6) 

C 
integer i 

c--c ;~Functions and Subroutines called----

c pbkt, pbkt 
matif ' c va Y, mmult, mass, minv,expM 

c xfss, vadd, vcadd, vclear, 
orm 

C 

c----Routine---
do 100 i=l 6 

. f ' l00 1. (g(i).ne.0.) goto 120 

continue 
call vass(out f 0) 
C 11 ' ' a mass(mout,mf) 
return 

c---12;----Calculate gt, gl transformed by the matrix mf------

continue 
if (which.gt.0) then 

call mass(mfinv,mf) 
call minv(mfinv) 
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call xforrn(g,l,rnfinv O gt) 
else ' ' 

call vass(gt g 1) 
endif ' ' 

c--
c 

-(g--l-,f-
3
-c]reate all the Vari Pi B kt N d d 

ous o sson races ee e ---------------

c (glcalll flpbkt(glf3, gt,f,3) 
,g ,f3] 

c (f
3
calll flpbkt(glglf3, gt,glf3,2) 
,g ,f3] 

c [gl~;!t pbkt(f,3,glf3,2, f3glf3) 

c (glcalll flpbkt(glf4, gt,f,4) 
,g ,f4] 

c ( l call flpbkt(glglf4, gt,glf4,3) 
g ,gl,gl,f4] 

c (( 1all flpbkt(ggglf4, gt,glglf4,2) 
g C 'g 1 , f 3] , (g 1 , f3] ] 

c ((glall flpbkt(ggfgf, glglf3,glf3,2) 
,gl ,f3] ,f3] 

call flpbkt(ggf3f3 glglf3,f,3) 
dw=dble(which) ' 

c----c Th ---Calculate the matrix part of the factored exponential-------

ere ar 
c The f e two uncombined exponentials representing a linear map 

c The irst is simply mf, as supplied. 
second is: 

call vclear(out, 2) 
call vcadd(out, dw,glf3,2) 
call vcadd(out, dw*.25dO,ggf3f3,2) 

c Nowcall vcadd(out, .5dO,glglf4,2) 
c and we must make this into a matrix 'mh', 

multiply the matrices together to get the final one. 

call matify(mh out) 
call ' expM(emh mh) 
call mmult(mo~t, emh,mf) 

c--------Calculate the third-order part of the factored exponential-----

call vclear(out, 3) 
call vcadd(out, l.dO,f,3) 
call vcadd(out, dw*.5dO,f3glf3,3) 
call vcadd(out, dw,glf4,3) 

c--------Fourth-order part is trivial ______ _ 

call vass(out, f,4) 

e--
-----Calculate first-order part of the factored exponential-------

call vclear(out, 1) 
call vass(hut, gt,l) 
call vcadd(hut, .5dO,glglf3,l) 
call vcadd(hut, dw*l.d0/6.dO,ggglf4,l) 
~all vcadd(hut, .25dO,ggfgf,l) 

f (which.lt.O) then 
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call xform(hut,l,mf,O,out) 
call vadd(out, out,f,l) 

else 
call vadd(out, hut,f,1) 

endif 
return 
end 



Table B.7 Subroutine MATIFY 

subroutine matify(matrix,f2) 
c Computes the matrix that corresponds to :f2:. 
c It is written in a simple-minded manner to keep execution time short. 
c Written by Liam Healy, May 29, 1985. 
C 

c----Variables----
c matrix= matrix supplied 

double precision matrix(6,6) 
c f2 = array of coefficients giving f2 values (others are ignored) 

double precision f2(*) 
C 

c----Routine----
matrix(l,l)=-f2(8) 
matrix(l,2)=-2.*f2(13) 
matrix(l,3)=-f2(14) 
matrix(l,4)=-f2(15) 
matrix(l,5)=-f2(16) 
matrix(l,6)=-f2(17) 
matrix(2,1)=2.*f2(7) 
matrix(2,2)=f2(8) 
matrix(2,3)=f2(9) 
matrix(2,4)=f2(10) 
matrix(2,5)=f2(11) 
matrix(2,6)=f2(12) 
matrix(3,l)=-f2(10) 
matrix(3,2)=-f2(15) 
matrix(3,3)=-f2(19) 
matrix(3,4)=-2.*f2(22) 
matrix(3,5)=-f2(23) 
matrix(3,6)=-f2(24) 
matrix(4,l)=f2(9) 
matrix(4,2)=f2(14) 
matrix(4,3)=2*f2(18) 
matrix(4,4)=f2(19) 
matrix(4,5)=f2(20) 
matrix(4,6)=f2(21) 
matrix(5,l)=-f2(12) 
matrix(5,2)=-f2(17) 
matrix(5,3)=-f2(21) 
matrix(5,4)=-f2(24) 
matrix(5,5)=-f2(26) 
matrix(5,6)=-2.*f2(27) 
matrix(6,l)=f2(11) 
matrix(6,2)=f2(16) 
matrix(6,3)=f2(20) 
matrix(6,4)=f2(23) 
matrix(6,5)=2.*f2(25) 
matrix(6,6)=f2(26) 
return 
end 
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Table B.8 Subroutine FlPBKT 

subroutine flpbkt(pb, left,right,ords) 
c fl Poisson Bracket. 
c Takes the Poisson bracket of the first order part of 'left' with 
c the order 'ord' part of 'right'. The result is left in pb. 
c If ords<O, then do all orders from 1 up to -ords. 
c Written by Liam Healy, June 13, 1985. 
C 

c----Variables----
c pb = Poisson Bracket, returned 

double precision pb(*) 
c left, right= coefficients of monomials to be concatenated 

double precision left(*),right(*) 
c onetrm = result of concatenating 'right' with a single phase 
c space variable 

double precision onetrm(0:83) 
c ords, ord, ordm = order supplied, order of 'right' to be 
c concatenated, ord-1 
c psv = phase space variable (1 ••• 6) 

integer ords,ord,psv,ordm 
C 

c----Functions and Subroutines called---
c svpbkt, vcadd, vclear 
C 

c----Routine----
call vclear(pb,sign(abs(ords)-1,ords)) 
do 140 ord=max(ords,l),abs(ords) 

ordm=ord-1 
do 100 psv=l,6 

call svpbkt(right,ord,psv,l, onetrm) 
call vcadd(pb, -left(psv),onetrm,ordm) 

100 continue 
140 continue 

return 
end 

-283-



Table B.9 Function TINDEP and Subroutine GET4X4 

logical function tindep 
c Is the linear part of the map 
c represented by the matrix time independent, i.e. does it leave 
c energy untouched? 
c Written by Ll.am Healy, October 20, 1985. 

c----Variables----
include 'map:mappcs.inc' 

c ptrs = pointers to current map 
integer ptrs(NPCS),base,i 
include 'bldata' 

c----Routine----
call mpget(ptrs,O) 
base=ptrs(MATRIX)-1 
tindep= bldata(base+36).eq.l. 
do 100 i=l,5 

100 tindep=tindep.and. bldata(base+6*i).eq.O. 
return 
end 

subroutine get4x4(matout, matin) 
c Collect only the transverse piece of matin into matout. 
c Written by Liam Healy, October 20, 1985. 

c----Variables----
c matout, matin = matrices returned and supplied 

double precision matout(4,4),matin(6,6) 
c row, col= row and column indeces 

integer row,col 

c----Routine----
do 100 row=l,4 
do 100 col=l ,4 

100 matout(row,col)=matin(row,col) 
return 
end 
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Table B.10 Routines for Exponentiation of Matrices 

subroutine expM (matout, matin) 
c Exponentiate a matrix by the Cayley method. 
c This program written by Liam Healy, June 1, 1985. 
C 

c----Variables----
c matin, matout = the matrix to be exponentiated and the result. 

double precision matin(6,6),matout(6,6) 
c matin2, matin3 = square and cube of matin 

double precision matin2(6,6), matin3(6,6) 
c terml, term2 = first and second terms in tanh series 

double precision terml(6,6),term2(6,6) 
c num, den, JWaprx = numerator and denominator of M calc, J*Wapprox 

double precision num(6,6),den(6,6),JWaprx(6,6) 
c ident =identity 

C 

double precision ident(6,6) 
common/id/ident 

c----Routine----
call mmult(matin2, matin,matin) 
call mmult(matin3, matin,matin2) 
call cmult(terml, dble(l./2.),matin) 
call cmult(term2, dble(-l./24.),matin3) 
call madd(JWaprx, terml,term2) 
call madd(num, ident,JWaprx) 
call msub(den, ident,JWaprx) 
call mdiv(matout, num,den) 
return 
end 

subroutine expMtaya (matout, matin,lterm) 
c Exponentiates a matrix the conventional way : Taylor series 
c The norm of each term is printed in this routine (as opposed to c 
expMtayl) . 
c This routine for testing purposes only. 
C 

double precision matout(6,6),matin(6,6) 
double precision term(6,6),new(6,6) 
double precision norms(0:4),mxclsu 
double precision fact 

c ident = identity matrix 
double precision ident(6,6) 
common/id/ident 

c lterm = last term in Taylor series. 
integer lterm 

C 

fact= l 
call mass(new,ident) 
call mass(matout,ident) 
print *,'Norm of Taylor terms:' 
do 100 i=l,lterm 
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call mmultd(new, new,rnatin) 
fact=fact*i 
call cmult(term, l.d0/fact,new) 
norms(mod(i,S))=mxclsu(terrn) 
if (mod(i,S).eq.0) print 800,(norms(j),j=l,4),norms(0) 

800 format (Sgl3 . 6) 
call madd(matout, matout,term) 

100 continue 
if (mod(lterm,S).gt.0) print 800,(norms(j),j=l,mod(lterm,S)) 
print* 
return 
end 

subroutine expMtayl (matout, rnatin,lterm) 
c Exponentiates a matrix the conventional way : Taylor series 
c This routine for testing purposes only . 
C 

double precision rnatout(6,6),matin(6,6) 
double precision term(6,6),new(6,6) 
double precision norms(0:4),mxclsu 
double precision fact 

c ident = identity matrix 
double precision ident(6,6) 
common / id/ident 

c lterm = last term in Taylor series. 
integer lterm 

C 

fact=l 
call mass(new,ident) 
call mass(matout,ident) 

c print *,'Norm of Taylor terms: ' 
do 100 i=l,lterm 

call mmultd(new, new,matin) 
fact=fact*i 
call cmult(term, l.d0/fact,new) 

c norms(mod(i,S))=mxclsu (term ) 
c if (mod(i,S) . eq.0) print 800,(norms(j),j=l,4) , norms(0) 
c 800 format (Sgl3.6) 

call rnadd(matout, matout,term) 
100 continue 

c if (mod(lterm,S).gt.0) print 800,(norms(j),j= l ,mod(lterm,S)) 
c print* 

return 
end 
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Table B.11 Subroutines for Matrix Symplectification by Furman's Method 

subroutine corr(cormat, mat) 
c Gives the correction matrix C of M. Furman's prescription for 
c symplectification. 
c Written by Liam Healy, June 11, 1985 . 
C 

c----Variables----
c cormat, mat= the correction matrix and the input matrix. 

double precision cormat(6,6), mat(6,6) 
c err= the matrix E 

double precision err(6,6) 
c ident = identity matrix 

double precision ident(6,6) 
common/id/ident 

C 

c----Routine----

C 

C 

C 

call symper(err,mat) 
call cmult(err, .5d0,err) 
call msub(cormat, ident,err) 
return 
end 

subroutine iter(m,niter) 
Iterates to converge on a sympectic matrix by the prescription of 
M. Furman . 
Written by Liam Healy, June 11, 1985. 

C 

c----Variables----
c m = matrix input and symplectic matrix returned 

double precision m(6,6) 
c cormat= correction matrix C 

double precision cormat(6,6) 
c niter= number of iterations 

integer niter 
C 

c----Routine----
do 100 i=l,niter 

call corr(cormat,m) 
call mmultd( m, cormat,m) 

100 continue 
return 
end 
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Table B.12 Routines for Determining the Symplecticity of a Matrix 

subroutine symper(err, mat) 
c Gives SYMPlectic ERror: The deviation of a matrix from symplecticity 
c according to the formula of A. Dragt and M. Furman : 
c E = -1 -N.J.Ntranspose.J 
c where N = mat, the suppplied matrix, E = err 
C 

c----Variables----
c err= error matrix returned 
c mat= matrix to be tested, supplied 

double precision err(6,6),mat(6,6) 
c ntj, nj, term2 = Ntranspose . J, N.J, N.J . Ntranspose 

double precision ntj(6,6),nj(6,6),term2(6 , 6) 
c jm = matrix J 

integer jm(6,6) 
common/symp/jm 

c ident = identity matrix 
double precision ident(6,6) 
common/id/ident 

C 

c----Routine----
call mtmult(ntj, mat,jm) 
call mmult(nj, mat , jm) 
call mmult(term2, nj,ntj) 
call madd(err, ident,term2) 
call cmult(err, -1.d0,err) 
return 
end 

double precision function mxclsu(m) 
c Computes the MaXimum CoLumn SUm norm for the matrix m. 
c Reference: L. Collatz, Functional Analysis & Numerical Mathematics, 
C p. 177 
c Written by Liam Healy, June 6, 1985 . 
C 

c ----Variables--
c m =matrix 

double precision m(6,6) 
c sum= sum norms for the columns 

double precision sum(6) 
C 

c----Routine----
mxclsu=0. 
do 100 j=l,6 

100 sum(j )=0. 
do 120 j= l ,6 

do 110 i=l ,6 
110 sum(j)=sum(j)+abs(m(i,j)) 
120 mxclsu=max(mxclsu,sum(j)) 

return 
end 
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Table B.13 Subroutine CLORB 

subroutine clorb(signal) 
c Closed orbit finder. Based on the techniques of Chapter 6. 
c Written by Liam Healy, October 1, 1985, rewritten April 4, 1986. 

c----Variables-----
include 'map:mappcs.inc' 

c signal= error condition returned 
integer signal 

c orig= original map as supplied on top of the ring stack 
integer orig(NPCS),fl(NPCS),d(NPCS) 
integer idsubd,rnpll,scrach,isdred,zkick,opt,i 

c dtimin =dis time independent 
logical dtimin 

c identity matrix 
double precision iden(6,6) 
common/id/iden 
external ident 
include 'bldata' 

c----Function----
integer alloc 
logical tindep 

c----Routine---
zkick=O 
idsubd=alloc(36) 
if (idsubd.le.O) goto 300 
rnpll=alloc( 6) 
if (rnpll.le.O) goto 300 
call mptown(l ,O) 
call mpget(orig,O) 
call mapelt(ident,O,zkick) 
if (zkick.eq.-1) goto 300 
call mptown(l ,O) 
call mpget(fl,O) 
d(MATRIX)=O 
do 100 i=l ,8 

if (d(MATRIX).gt.O) call remmap(d) 
call mpput(orig,O) 
opt=2 
call sandwc(opt,-1) 
if (opt.eq.O) goto 300 
dtimin=tindep() 
call mpget(d,O) 
call msub(bldata(idsubd),iden,bldata(d(MATRIX))) 
call mtran(bldata(idsubd)) 
if (dtimin) then 

isdred=alloc(l6) 
if (isdred.le.O) goto 300 
call get4x4(bldata(isdred),bldata(idsubd)) 
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& 

& 

100 

300 

scrach=alloc(20) 
if (scrach.le.O) goto 300 
call les(bldata(rnpll),4,bldata(isdred), 

bldata(d(POLYS)),bldata(scrach)) 

bldata(rnpll+4)=0. 
bldata(rnpll+5)=0. 
call deall(isdred,16) 
call deall(scrach,20) 

else 
scrach=alloc(42) 
if (scrach.le.O) goto 300 call les(bldata(rnpll),6,bldata(idsubd),bldata(d(POLYS)), 

bldata(scrach)) 
call deall(scrach,42) 

endif call vadd(bldata(fl(POLYS)),bldata(fl{POLYS)),bldata(rnpll),l) 

call mpput(fl,0) 
continue call vass(bldata(d(POLYS)),bldata(fl(POLYS)),l) 

orig(OWNED)=max(orig(OWNED),O) 
call remmap(orig) 
fl ( OWNED )=O 
call remmap(fl) 
call deall(idsubd,36) 
call deall(rnpll,6) 
call mpput(d,0) 
return 

continue 
signal=-! 
call remmap(orig) 
f 1 ( OWNED )=0 
call remmap(fl) 
call deall(idsubd,36) 
call deall(rnpll,6) 
end 

-290-



Table B.14 Subroutine SHIFT 

c G Subroutine shift(parms,kick) c a tra 

1 
th

e map for a coordinate transformation corrosponding to 
enerates and ri id n ° coordinates in the X, Y, Z axes (delx, dely, delz), 

c Goldst!i body rotations with the Euler angles (phi, theta, psi) (see c ns atio f 

c Transf n, sec 4-4 for definition). c respec;rmations are active motion of the beamline elements with 
c they a to the fixed coordinates; from the particles' point of view, 
elements re passive tranformations of the coordinates attached to the 

C Th • c must be routines IATSHF, AROT, TPROTI, DRIFT! us th 
c of the called so that they describe passive transformation 
c Writte coordinates {tprotl is called with negative of parameter). 

c en by Liam Healy, August 21, 1985. 

c----v ariables----
doubl . i e precision parms(*) 

c libr:teger kick,nokick,maxkck,opt 
ry routines called 

c rnal latshf,driftl,arot,tProtl exte 

c----Routine----

C 

C 

C 

30Q 

opt=2 
nokick=O 
maxkck=max(l kick) 
call , if ( mapelt(arot,parms(4),maxkck) 

maxkck.eq.-1) goto 300 The Y-axis rotation is opposite sign, becau~e our rotation is 
positive by right-band rule, whereas tprot 1s positive bY left-

hand. 
call ) if ( mapelt(tprotl,-parms(S),nokick 

nokick.eq.-1) goto 300 
call if ccmap(opt) 

(opt.eq.O) goto 300 
call ) if ( mapelt(arot,parms(6),nolcick 
callnokick.eq.-1) goto 300 
if ccmap(opt) 
caliopt.eq.O) goto 300 
if ( mapelt(latshf,parms,nokick) 
callnokick.eq.-1) goto 300 
if ccmap(opt) 
caliopt.eq.O) goto 300 
if mapelt(driftJ,parms(3),nokick) 
cal(nokick.eq.-1) goto 300 
if 1 ccmap(opt) 
if (opt.eq.O) goto 300 
if (kick.eq.O) call ptrdrp(nokick) 
r (nokick.eq.-1) goto 300 

eturn 
kick=-1 
return 
end 



C 

C 

C 

C. 

C 

C 

C 

C 

C 

C 

100 

Table B.15 Subroutine TPROT 

subroutine tprot(parms,mh,h,flag) 

subroutine to generate lie transformation 
for trailing edge rotation to pole faces of parallel faced 

bending magnet without fringe field 
rho is the magnet design orbit 
radius in metres, psi the angle between the design 
orbit and the normal to the pole face 

implicit double precision (a-h,o-z) 
double precision parms(*),h(*),mh(6,6) 

include 'glparm.inc' 
integer flag 

goto 100 

entry tprotl(parms,mh,h,flag) 
h(l)=sin(parms(l)) 
continue 

C. p arameters 
C 

C 

C 

C 

C 

C 

C. 

C 

C 

C 

C 

C 

psi= rotation angle 
psi=parms(l) 

spsi=dsin(psi) 
cpsi=dcos(psi) 
tan=spsi/cpsi 
tan2=tan*tan 
sec=l.OdO/cpsi 

trailing edge map, in absence of fringe fields 

matrix arrays (containing linear effects) 

do 70 i=3 6 
' mh(i,i)=+l.OdO 

70 continue 
mh(2,6)=-sec*spsi/beta 
mh(5,l)=+spsi/beta 
mh(l,l)=cpsi 
mh(2,2)=sec 

arrays containing generators of nonlinearties 

degree 3 

h(34)=-tan/2.0d0 
h(43) =-tan/2.0d0 
h(48)=-tan/(gamma**Z*beta**Z*Z.Od0) 

degree 4 
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h(l05)=+tan2/4.d0 
h(l09)=-tan/(2.dO*beta) 
h(ll4)=+tan2/4.d0 
h(ll9)=+tan2/(4.dO*gamma**2*beta**2) 
h(l32)=-tan/(2.dO*beta) 
h(l39)=-tan/(2.dO*gamma**Z*beta**3) 
return 
end 



Table B.16 Subroutine AROT 

Subroutine arot(parms,mh,h,flag) 

c Rotates c right- axes in x-y plane by angle •ang'. Positive angle rotates by 
c This ihand rule (thumb in z direction, the direction of beam). 
c of s a passive rotation; particle coordinates are given in terms 

c new axes. 
In ord c rot er to get the map for an element, e.g., a quad, 

ated o i i h d c of th n ts axis by theta clockwise looking n t e irection 
c by e beam, the element map should be preceded a 
c Wri;rot(theta) and followed by arot(-theta). 

iten by Liam Healy, June 12, 1984. 
mplicit double precision (a-h,o-z) 

~ouble precision h(*),mh(6,6) 

1
ouble precision parms(*) 
nteger flag 

c R ang=parms(l) 
otat e coordinates 

mh(l,l)=cos(ang) 
mh(l,3)=sin(ang) 
mh( 3 ,l)=-sin(ang) 

c Rotmh(3,3)=cos(ang) 
ate momenta 
mh(Z,2)=cos(ang) 
mh(Z,4)=sin(ang) 
mh( 4 ,2)=-sin(ang) 

c Don~h(4,4)=cos(ang) 
t touch flight time 

mh(5,5)=1. 
c mh(6 6)=1 

Pol ' • ynomials are zero (bless those linear maps). 

return 
end 
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Table B.17 Subroutine IATSHF 

C 

C 

Subroutine latshf(parms,mh,h,flag) 
Lateral shift map. 
Liam Healy, March 18, 1986. 

C double precision mh(36),h(*) 
Parms= list of parameters 

c double precision parms(*) 
flag= what derivatives to calculate 

integer flag,i 
double precision ident(36) 
common/id/ident 

c-- R 
-- outfne----

do 100 i=l 36 
lOO mh(i)=id~nt(i) 

h(2)=parms(l) 
h(4)=parms(2) 
return 
end 
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C 

C 

C 

C 

C 

C 

Table B.18 Subroutine DRIF,'.!'.. 

subroutine drift(parms,mh,h,flag) 

generates linear matrix mh and 
array h containing nonlinearities 
for the transfer map describing 
a drift section of length 1 metres 

implicit double precision (a-h,o-z) 
double precision l,lsc,mh 
dimension h(209) 
dimension mh(6,6,0:*) 

c include 'glparm.inc' 
Parms= list of parameters 

c flado~ble precision parms(*) 
g - what derivatives to calculate 

C 

C 

C 

C 

100 

integer flag 

goto 100 
entry driftl(parms,mh,h,flag) 
h(6)=-parms(l)/(sl*beta) 

continue 
l=parms(l) 
lsc=l/sl 

add drift terms to mh 

do 40 k=l 6 
40 mh(k,k,O);+l.OdO 

continue 
mh(l ,2 ,O)=+lsc 
mh(3,4,0)=+lsc **Z))) 
mh(5,6,0)=+(lsc/((gamma**Z)*(beta 

c Deriv ti respect to length 1 
a ve of matrix with 

C 

C 

C 

C 

C 

C 

C 

if (flag.gt.l) then 
mh (1 , 2 , 1 ) = 1 • / s 1 
mh(3,4,1)=1./sl **Z) 
mh(S,6,1)=1./(sl*(gamma*beta) 

endif 

add drift terms to h 

degree 3 

h(53)=-(lsc/(2.0d0*beta)) 
h(76)=-(lsc/(2.0d0*beta)) * ta**3))) 
h(B3)=-(lsc/(2.0dO*(gamma**2) (be 

degree 4 

h(l40)=-lsc/8.0d0 
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h(l49)=-lsc/4 OdO 
h(l54)- . " h(l

9
S)=+(lsc*(l.Od0-(3.0d0/(beta**2))))/4.0d0 

h(
2
0 =-lsc/8.0dO h(

2
00)=+(lsc*(l.Od0-(3.0d0/(beta**2))))/4.0d0 

ret 9)-+lsc*(l.OdO-(S.OdO/beta**Z))/(8.0dO*gamma**Z*beta**Z) 

urn 
end 
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Table B.19 Subroutine SHIFID 

c Get the Eucn~ shifid(mface,misfid,parms,eltyp,face) c subrouti 
the face lidean group (3 misplacements+ 3 Euler angles) of 

c Point a ;isalignment, given the misalignment at the fiducial 
~ ' n the parameters describing the magnet, 

C - A -l -1 -1 -1 c The E-

1 

B A or C = A B A (entry face, exit face) 
Positiv ang es are active rotations of the beamline elements, 

c u er 1 
c Writtenebaccording to the right-hand rule. 
c-- Y Liam Healy, March 16, 1986, 

--Vari b c mf ales----c misfid. 

8

-_Euclidean group element of face misalignment (output) 
c ace == C -Parms= - Euclidean group element of fiducial point misalignment 

c bend radius, bend angle, entrY angle, exit angle (bend) 
c parameter of perfect elment, either: 

doubl length (straight element) ~ eltyp. e precision mface(6),misfid(6),partJIS(4),theta 

face== 
1
~l:bend, l:straight 

c inte · entry face, -1:exit face 
ftof == !e: eltyp,face doub - Euclidean group element of fiducial to face map 

int le precision ftof(6) invff(6),interm(6),invmf(6) 

eger i ' 

c--
--Routine----

lOO do 100 i==l,6 
ftof(i)=O 

if (elt • th yp.lt.O) then 
fteta=parms(2)/2. 
f of(l)=-2*parms(l)*sin(theta/2,)**2 
ftof(3)=-face*parms(l)*sin(theta) 

el tof(S)=face*theta 
Se 
ftof(3) endif =-face*parms(l)/2. 

call i if (f nveuc(invff,ftof) 
ace.gt.O) then 

ca
1
ll eucpr(interm,misfid,invff) 

ca 1 ) else eucpr(mface,ftof,interm 

~all inveuc(invmf,misfid) 
cail eucpr(interm,invmf,invff) 

end;f l eucpr(mface,ftof,interm) 

return 
end 
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Table B.20 Subroutine EUCPR 

subroutine eucpr(out, inl,in2) 
c Take the product of the Euclidean group (translations+ S0(3)) 
c elements parameterized by displacements alpha (elements 1,2,3) 
~ ~uler angles psi, theta, phi (elements 4,5,6) (see Goldstein sec 4-

). 
c Written by Liam Healy, December 5, 1985. 

c----Variables----c out, inl, in2 = returned parameters, two incoming parameter sets 
double precision out(6),inl(6),in2(6) 

c Ph, th, ps = phi, theta, psi Euler angles 
c double precision phpr,thpr,pspr,phl,thl,psl,pb2,th2,ps2 

sines and cosines of angles double precision csum,ssum,cphl,sphl,cph2,sph2,cthl,sthl,cth2, 

c & sth2,cpsl,spsl,cps2,sps2,arg,num,den 
matrix= rotation matrix in R3 

double precision matrix(3,3) 
c i,j = indeces in R3 

integer i 3' 
C h i ' P = half of pi 

include 'nature ' 
double precision HPI 
parameter (HPI=PI/2.) 

c----F unction----
double precision gen,a,b,c,nofuzz 
gen(a,b,c) = sin(a)*sin(b)*cos(c) + cos(a)*ssum*sin(c) 

& + sin(a)*csum*cos(b)*sin(c) 

nofuzz(a)=sign(l.dO,a)*min(abs(a),l.dO) 

c-- R -- outine----c Product of S0(3) elements, parameterized by Euler angles 

C 

C 

csum=cos(inl(6)+in2(4)) 
ssum=sin(inl(6)+in2(4)) 
phl=inl(4) 
cphl=cos(phl) 
sphl=sin(phl) 
thl=inl(5) 
th2=in2(5) 
cthl=cos(thl) 
sthl=sin(thl) 
cth2=cos(th2) 
sth2=sin(th2) 
ps2=in2(6) 
cps2=cos(ps2) 
sps2=sin(ps2) 
arg=cthl*cth2-csum*sthl*sth2 
out(5)=acos(nofuzz(arg)) 
if (out(5).ne.O.) then The numerator and denominator of the atan2 are not both 0, 

because elements 1,3 and 2,3 of the rotation matrix can 
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C 

C 

& 
& 

be both O only if theta=O (see Dragt notes on Rotation, p.59) 

num=gen(phl,thl,th2) 
den=gen(phl+HPI,thl,th2) 
.£ ( i num.eq.O •• and.den.eq.O.) then 

out(4)=0. 
else 

out(4)=atan2(num,den) 
endif 
num=gen(ps2,th2,thl) 
den=gen(ps2+HPI,th2,thl) 
if (num.eq.O •• and.den.eq.O.) then 

out(6)=0. 
else 

out(6)=atan2(num,den) 
endif 

else 
theta=O : Rotation matrix is just Rz(phi) 

out(4)=acos( nofuzz(csum*(cphl*cps2*cthl*cth2-sphl*sps2) 
-ssum* (cphl*sps2*cthl+sphl*cps2*cth2) 

-cphl*cps2*sthl*sth2) ) 

out(6)=0. 
endif 

c The translation part 
do 120 j=l ,3 

120 out(j)=in2(j) 
call euler(out, inl,in2(4)) 
return 
end 
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Table B.21 Subroutine EULER 

subroutine euler(vecout, vecin,angs) 
c Returns the rotation matrix applied to vector for the Euler angles 
c supplied. 
c Translated vector is added to whatever is already in vecout. 
c Written by Liam Healy, December 6, 1985. 

c----Variables----
c vecin, vecout = vector supplied and returned 

double precision vecin(3),vecout(3) 
c matrix= matrix 

double precision matrix(3,3) 
c angs = Euler angles 

double precision angs(3) 
c cph, sph, cth, sth, cps, sps cosine and sine of the angles 

double p~ecision cph,sph,cth,sth,cps,sps 
c i,j = indeces in R3 

integer i,j 

c----Routine----
c Define trig quantities 

cph=cos(angs(l)) 
sph=sin(angs(l)) 
cth=cos(angs(Z)) 
sth=sin(angs(Z)) 
cps=cos(angs(3)) 
sps=sin(angs(3)) 

c Set matrix values 
matrix(l,l)=cph*cth*cps-sph*sps 
matrix(Z,l)=sph*cth*cps+cph*sps 
matrix(3,l)=-sth*cps 
matrix(l,2)=-cph*cth*sps-sph*cps 
matrix(Z,2)=-sph*cth*sps+cph*cps 
matrix(3,2)=sth*sps 
matrix(l,3)=cph*sth 
matrix(2,3)=sph*sth 
matrix(3, 3 ) =cth 
do 100 j=l ,3 
do 100 i=l ,3 

100 vecout(i)=vecout(i)+matrix(i,j)*vecin(j) 
return 
end 
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Table B.22 Subroutine INVEUC 
subrouti c Finds t ne inveuc(out,in) 

c specif• he inverse element of the element of the Euclidean group 
c Writt led by in (translation vector+ Euler angles). 

en by Liam Healy, December 9, 1985. 
c----v 
c ariables----

Out, in= 
c Grou returned parameters, incoming parameters. 

P is p 3 l l d arameterized by 3 translation vectors + Eu er ang es. 
c i = ~udble precision out(6),in(6) 

n ex in R3 
integer i 

c .... _ ..... n 
-"-0Utine---

out(4)==-in(6) 
out(5)=-in(5) 
out(6)==-in(4) 

120 do 120 i==l,3 
out(i)==O 

C l • 
d~ t euler(out, in,out(4)) 

100 oo i==l,3 
out(i)==-out(i) 

return 
end 
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C 

Table B.23 Subroutine KICKER 

subroutine kicker(parms,kick) 

parms = list of parameters 
double precision parms(*) 

c b = field strength, len = length of dipole 
c rho= bend radius 
c theta= bend angle 
c hv = horizontal (0) or vertical (1) flag 

double precision b,len,rho,theta,hv,hpfprm(3),frgprm( 2) 
integer kick,kck,nokick,opt 

include 'libr: glparm . inc ' 
include 'nature' 
external hpfl,nfrng,arot,drift 

c----Routine---
opt=2 
len=parms(l) 
b=parms(2) 
if (b.eq.0.) then 

call mapelt(drift,parms,kick) 
if (kick.eq.-1) goto 300 

else 
hv=parms(3) 
rho=brho/b 
theta=asin(len/rho) 
nokick=0 
kck=max(l ,kick) 
if (nint(hv).ge.l) then 

call mapelt(arot,PI/2,kck) 
kck=0 

endif 
frgprm(l)=rho 
frgprm(2)=1 
call mapelt(nfrng,frgprm,kck) 
if (kck.eq.-1) goto 300 
if (nint(hv).ge.l) then 

call ccmap(opt) 
if (opt.eq.0) goto 300 

endif 
hpfprm(l)=rho 
hpfprm(2)=theta 
hpfprm(3)=1 kick) 
call mapelt(hpfl,hpfprm,no 
if (nokick.eq.-1) goto 300 
call ccmap(opt) 
if (opt.eq.0) goto 300 
frgprm(2)=-l kick) 
call mapelt(nfrng,frgprm,~

0 

if (nokick.eq.-1) goto 3o 
call ccmap(opt) 
if (opt.eq.0) goto 300 
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if (nint(hv) .ge.l ) t hen 
call mapelt(arot,-PI/ 2,nokick) 
if (nokick.eq.-1) go t o 300 
call ccmap (opt ) 

endif 
if (kick.eq.O ) cal l pt rdrp (O) 

endif 
return 

300 continue 
i f (kick .eq .O) cal l ptrdr p(O) 
kick=-1 
return 
end 
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~Ppendix C: The Symbolic Computation Code ANNALIE 

In this Appendix I h 11 s a briefly describe and give examples for 
ANNALIE (A 
t ~lytical ~ Algebraic computations for charged particle beam 
rans port) 

'a code written in the language SMP to do some of the 
com 

Putations 
t of MARYLIE described above analytically. I will assume 
hat th 

e reader i f s amiliar with the SMP language (Inference Corp. 
[1983]) 

' or can figure it out with examples and an explanation. 
Portions of 

this package were used to verify the concatenation formulae 
Of Ch apter 4 , and to compute the maps in Chapters 9 and 10. 

The Package of routines called GENL (Table C.1) contains a number 
Of 

general Purpose routines and initialization routines. The function 
8 et-

Up creates the canonical variables, parameters such as the dimension 
Of 

Phase 8 Pace, and quantities such as the matrix J (1.7). The function 
I 

nde:,c• 
computes the index number for an array of exponents, and 'expon' 

does the 
, reverse (see Appendix D). The other important functions are 

Jcform• 
Which transforms a polynomial by a matrix by the transformation 

tu1 e, and , 
matify' which turns a polynomial into a matrix according to 

the tule 
(l .99). The package SETUP (Table C.2) involves the appropriate 

.1.nit:t. 
al:1.zauon and defintion. 

MAAYtrE, through working numerically is, in effect, doing symbolic 

comPutat:1. 
0 ns. Storing each polynomial coefficient as a separate element 

Of an 
array, for instance, it performs a, Possion bracket on these 

Po1 
Ynom:1.a1s l t by multiplying and adding the appropriate array e emen s. 

G:f.ven 
a symbolic manipulation program such as SMP, one has a broader 

tang e of chi For example, a polynomial 
0 ces in representing the maps. 

can b 
e Stored as i 1 number and coefficient the way it 

an array by monom a 
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is stored in MARYLIE , 

(C.l) 

ic2s • c29, • • • ] , 

or as a symboli c polynomial , 

(c.2) 

lrlh ere the inde c x numbers r 
oeffi a ea particular way of storing the polynomial 

cients (th 
the G e illustration here is the storage scheme of MARYLIE, 

on For this 
iorgelli reas 

0rd
ering, Appendix Dor Dragt et. al. [1985]). 

, there 

r 

are many r ti f h i 
•Pre ou nes or t e representat on and conversion of 

(Tabt of polynomials. These are contained in the package POLYS 
sentation 

e C.3). 

A. compani 
funcu on to POLYS is CREATE (Table c.4), which has several 

ons f ll!ak or making polynomials. 
"ill polynomial from a list of indices and 'mkind' which 

Chief among these are 'npol' which 

es a symbolic 

ll!ake 
a lia

t 
of indices based on some quality such as 'mps' for 

l!am· Y or conserve' for time-independence of the lllid Plane 

J.ltoni 

symmetr ' 

an . 
Finally, 'pick' randomlY picks monomials from a list to 

form 
a Pol via 'ranpoly.' '1n ynomial 

is 1 s so 

lrlhe re the 
fully general polynomial m•Y be too l arge for SMP to handle• 

that relations may 

be tested on sample small polynomials, 

fu packages PB and LIE (Tables c.5 and c.6) contain the major 
l'he t WO 

llCti ons 
f of ANNALIE They implement the definitions of Chapter I. The 

Ullcti • (1 

4 

computes the Poisson bracket axiomatically, bY the rules 

That is, computation proceeds by using linearity and the 
on 'pb' 

• 3 1 - .46). 
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derivati on rule t b 0 reak up 1 
a po ynomial, until only fundamental Poisson 

brackets (those b 
space variables) remain. 

Once the 

fun etween phase 

damental 

be 

Poisson b rackets have been calculated ' 
the final answer may 

const ructed. 

The fu nctions th 
•Per at remain in the package PB are devoted to the Lie 

ators turn ' or the adjoint of the Poisson bracket. 

8 

a The function 'colon' 

polynomi 1 
con a into a Lie operator ( see section le), 'concat' 

catenates e, (composes) then and 'liepow' and 'lieplus' allow their 

Ponenti ' ation and addition. 

Th e useful 'all ness of these Lie 

ow' i n the th package LIE. 

operators is extended by the function 

lt any mathematical function with a Taylor series and alter 

This function is a general purpose routine 

at Will take 

so that when it i 
Taylor s applied to a Lie operator, it is replaced by its 

' series with 
con addition replaced with 'lieplus,' multiplication by 

In particular, when applied 

Cat' , and exponentiation by 'liepow'• 

to 'E Xp I ' the SMP tra exponentiation 
function, it forms the Lie 

In practice th• Taylor series is truncated at 
nsfo rmati on (1 54) 

So • • 
Illes uitable 

point, specified by th• user as an argument to 'allow,' 

There 
to are other functions of ,\!INALill not included here, primarily 

lllake it Part compatible on input and output with M,IRYLill• Much of what is 

Of MA l"U,.RYLIE 
the • however, is not present in ,\!INALIE, In particular, 

re is 11,\J\yLlE no
th

ing that is associated with purely numerical aspects of 

' for 
example, the element librar}' or computations of tunes, 

ANNALIE h 
as proved quite useful as an aid to the implementation of 

the math ematics 
coul in this dissertation into MA]<YLIE, There is much that 

d be 
done to extend this usefulness, t,ut from a practical standpoint 
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it would be limited by the capacity of most computers that SMP runs on, 

and the bugs in SMP. These considerations have restricted the 

usefulness of ANNALIE as it is. 
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I 

~ 

Table C.1 Package GENL 

(~ ote: the pr nts as = in these listings.) 
continuation symbol i ' ' 

I****** ******** I* Utility ****************/ 

s Sub list Ubl [$Us extraction */ 
t,$range] .. I* ·· Cat[Ar[ $range ,$list]] 

Sub e~pr Stitute 1 <l<:Li•••ion •ta ist of values for a list of variables in an 

Sl( St0 
$expr $ $va1s ;ovbls_=onedeep[$vbls] 

- nedeep [$ , -A [ vals I & P [Len [$vbls ]=Len [$vals] II :: _ 
sav [ p S,Prep[$expr,Ldist[Rep[$vbls,$vals]]]] 

e $f 1 rest un . . ( $ 
0

<e[$fu~j ,-;- fun[master] :Rel[$funl; restore[$fun]) 
I** · · $fun :Rel [_$fun [master]] 

******* ****** I• General Purpose Routines •••••••••••••/ 

Create a d consta t ••t n the n s based on the number of phase space dimensions 

up[$psd =;aximum order of polynomials. */ 
- ( ~enp [$psd I ,$polymaxord #NatP [$polymaxordl l :: _ 

cl [%i,%j %sh]. -
Map[S , , -e~, 'psd, 'polymaxord, 'canvbl, 'top, ,.., 

*I = bottom, 'id, 'zmat, 'J, 'sm, 'expon ]; = 
$psd: Number of phase space dimensions 

psd:$psd· 
$poly , -= maxord: Maximum order retained in polynomials */ 
polym -
1 

axord:$polymaxord; 
fJ$psd<•6,%sh:subl[cvn, T,$psd J; -

ap[Set,%sh]; canvbl : Rel[%sh], _ 
f* Set Set[z];canvbl:Map[z, 1 •• $psd ]]; ,.,. 

property to indicate canonical variables */= 
I* Mini Map L$a [canvbl ]: 1,canvbl]; _ 

t mum, maximum indeces for each 
bop: Cat[Ar[ 1,$polymaxord 

I* Use;ttom: Cat[Ar[ 1,$polymaxord 
ul array & matrices *I 

zarr: Repl[O $psd] . -
zm t ' ' ... id~ : Repl [zarr, $psd] ; _,. 

· Ar[ $psd $psd ]· 

order *I_ 
,comb[$a+$psd,$a]-l]]; -= 
,comb[$a+$psd-l,$a-l]]]; 

/ J• A [ ' , -* Res~o r "$psd,$psd ,genJ]; _ 
re memoed" functions */ 

I• cr:estore [ 'expon]; restore [ 'mkin'd I; -
(e.g ate symbolic monomial from exponents mono.ix 2 y from 2 

0 1 0 0 0 ) and make a table of symbolic 
m als b ' ' , ' , ' d */ ased indexed by the standard in eces ..,,, 

;m[OJ :I; %j: expon[O ] : Repl[O,psd] ; - •. 
o[%i,top[$polymaxordl %J:next[%J]; sm[%i]:symmon[%J]I; 

Null) ' 
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I* T &enJ[e$rnplate to generate matrix J */ 
i, $j] /• :: P[Ceil[$i/2] • Ceil[$j/2]]•Sign[$j + -$ii 

Index Obin[$ $ computation */ 

d 
rn, i] C n ex[$j] :: :: omb[$m+psd-$i,l+psd-$i] 

(Lcl[cord,ind,ib]; ind:cord:$j [psd]; 
Do[ib,psd-1,1,-1,Inc[cord,$j[ib]];""" 
Inc[ind,obin[cord,ib]]]; ind) = 

I* Find th e

1

xponents *e/ la9t non-zero exponent (except psd) in an array of 

/• J :: (Lelli] ; i : psd ; Loop[$j [ii = 0 I i = psd,Declil.i > OJ) nzj [$. ] 

next (in the index ordering) array of exponents from 

one */ 
Get the 
this 

next[$1] 
: : (Lcl [out ,i] ; out : $1 ; outlpsdl : 0 ; i : lnzj [$1] ; If [i 

> 0 ,Decloutli]]] ; rncloutli + 1 I ,1 + $1 [psdll ; out) -

I* 
< 

The ex XMSet ponents for each index*/ 

exp [ on $ind] expon [OJ , :: : next [expon [$ind + -1 I I 
save [, · Repl [O, 'psd] 

expon] 

I* Invert sminv[$ a syrnplectic matrix */ 
rn -id I• - - s byd [$mil :: -J, Trans [$ml ,J 

Transf 
corresorm a polynomial by a map (given as an array of psd functions, 
or ponding to what each of the image of each of the varisbles), 

Xform[$a matrix. */ Xform[$p~ly,$map_•onedeep[$mapll :: &x[sl[$poly,csnvbl,$mapll 
I• P ly,$mat_=isdbyd[$matll :: xform[$poly,$mat,canvbl] 

Defini i 
ton: monomial basis element is a product of powers of 

I* the v / Make ariables, e.g. x px PY 2, • out a matrix for the transformation of monomial basis elements 

of an array of such transformations *I 

I* Turn 
6 

a second-order polynomial into a matrix 

matif [$phase space vbls) */ 
-$ Y poly] .. 

Pol . · y[B],-2*$poly[13],-$polY[14],-$PolY[15], = 

2

• -$poly [16 I,- $poly 117] • -
_ $poly[7],$poly[8 ],$poly[9],$poly[l0],$po1Ylll],$poly[12] 

$poly[lO],-$poly[15],-$polYl19l,-2•$polYl
22

l, -
-$poly [23] ' - $poly [24] ' -

!poly[9],$poly [14],
2
*$polYl18],$polYl19],$poly[20],$poly[21] 

$poly[ l2], -$poly [17], $poly[21J,-$poly[Z
4
l, --$poly [26], -2*$polY [27l , = 

$poly[ll],$poly[l6],$poly[20],$poly[23],2•$polYl25],$poly[26] 

I**** ••·••·•·· ··········••! Character Determination 

I* List / goes to exactly a depth of one * 

' -= 
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onedeep[$1J:: Contp[$1J & P[Len[Dim[$1JJ=IJ 

I* Object is a list of n-long lists that do not contain any lists */ 
lofl [$1,$n]:: (Lcl [%dim]; 

Fullp[$1,2J & P[(%dii:Dim[$1})[2]=$nJ & P[Len[%dim}=2J) 

I* Object is a psd by psd matrix, with no lists as elements */ 
isdbyd[$m) :: Fullp[$m,2J & P[Dim[$m]= psd,psd] 

I* Two terms are in the Giorgelli order, or if the same exponents, 
in lexical order */ 

sortind [$exprl_= Listp [$exprl J ,$expr2_= Listp [$expr2] l:: 
( Lcl [%0]; 
lf [(%o:Sign[ndex[exps[$expr2]J-ndex[exps[$exprlJ]])=0, 

. 0rd[$exprl,$expr2],%oJ) 
1 ssortind [$exprl ,$expr2] : : Ceil [Theta [sortind [$exprl ,$expr2] l l 



!******* 
I ****** * Na~ ** Initial Values *****************/ 

Table c.2 Package SETUP 

.. ,es of th 
C\Tn , , e canonical variables */ 

• X I I 
, PX, Y, 'py, 't, 'pt 

nte){ f P 2tay:6 I* Number of terms in exponential to take 

Create d 
I* 
lf[ Natpfb imension and maximum order for polynomials */ 

Ottom[l}},setup[6,4]} 
/'Ir 
tn Names 

apnames: to give to maps when they are read in */ 
'mt , ' f , ' mg , 'g , 1 mh , ' h , 'mk , 'k , 'ml , 1 l , mj , 'j 
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/•••••• Table C.3 Package POLYS 

**** 
sy Representation and Conversion of Polynomials••••••••••/ 

nunon [$ j l •• I• ·· Inner[Pow,canvbl,$j,Hult] 

theFor a p articul 
ar monomial, give a list consisting of the index and 

coeffi exps[$ cient */ 
co[$ mon] .. Ma [ mon,$exi· .. P Expt[$a,$mon],canvbl] 
I• ·· Coef[symmon[$ex],$monl 

Produce an or i index, coeff for a/each term in a polynomial 

n a list f ic. 'Lda list of O terms, or return a polynomial from 
ic-• ist index,coef pairs, •/ 

i _:Tier 
c.[$mon - = Ll.stp [$ l l i ( Lcl [ mon : : 
c. [$p pwrs] • -Pie [ oly_=P[$ • pwr~:exps[$mon]; ndex[pwrsJ,co[$mon,pwrsl ) 

Pi [$1_=oned po~y[OJ= Plus]] :: ic[terms[$polyll 
1.° $~=lofl [$P $II l : : $1 [2]•sm[$l [!] I 
spt:tCont ig •} • 2 II : : poly [Hap [pie, $1 I I 

$1] . . Co J• ·· ntig[sepoly[picf$111, polymaxord ,OJ 

Find th to (note te order of a term, or orders in list of terms or a polynomial 

or~~l[order=~tal order will be taken if totalorder•ll •/ 

ord $term] .. c [$p] .. M · Ap [Plus ,exps [$term]] + totslorder•Expde ,$term! 

I* •• ap[ordi,terms[$p]] 

The ordj [ order 
$term$ ]of any particular phase space variable •! 

I• 'n :: Expt[canvb1[$n],$terml 

A ord non-r 
ers ·T epeating list of the orders of the terms in a polynomial •/ 

orde -· ier rs[$p] I* : : Union [ordd$p]] 

h ls th 
0mo e pol ma &[$p] .. ynomial homogeneous? •I 

lllaXord :Ldi. P[Len[orders[$p]]=l] 
Xord[$ st 

/* p] : : Last [orders [$p]] 

Sep <er •rate t i 1 •/ 

t 

ms :Ti erms of a polynomial into a list of monom as. 

erm - er , 
te s [$p -c rms[$p-: ~ntp[$p]] :: $p If[% [~ntp[$p]] ,: (Lc1[%p]; %p:Exf$p]; -]) 
/• •P ]='Plus, Ar[Lenf%p] ,%pl, %p , %p 

Make lllon Selecat polynomial out of a list of monomials or o ter 1 -~al or list of 
mials· ms of a certain order from a po yno= 

retu' 
A 

rn a ny polynomial particular sele~tion criterion can be picked for $sel, 
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preceeded by a single quote. E.g., so[l,'Le,3J picks out 
all terms less than or equal to third order. */ 

Le[$n,$mJ :: $m)=$n 
Lt [$n,$mJ : : $m)$n 
poly :Tier 
poly[$1 =Contp[$1]] :: Ap[Plus,$1] 
poly ($1-= Contp [$1J J : : $1 
poly[$p-:-$ord _= Natp[$ordJ I $ord=O] :: poly[$p,Eq,$ordJ 
<XMask 
poly [$p ,$sel =Symbp [$sell ,$ords J : : (Lcl [%tJ; %t :terms [$pJ; 

poly[Mask[Map[$sel[ordi[$aJ,$ords],%tJ,%tJJ) 

/* Create a list of polynomials by seperating a polynomial or list 
of terms according to the value of $qual for each term. 
indexed by that value. 
Default quality is order. */ 

sepoly_:Ldist 
sepoly :Tier 
sepoly[$p,$qualJ :: 

(Lcl[%quals,%t]; %t:terms[$p]; %quals:Rel[Map[$qual,%tJJ; 
Ar[ Union[%qualsJ ,poly[Mask[Map[$a=$b,%quals],%tJ]J) 

sepoly [$p] : : sepoly [$p, 'ordi] 
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Table C.4 Package CREATE 

!************* Creation of Arrays ************/ 

I* make symbolic polynomials (arrayed by order) 
for an array with indeces given in the list $inds. */ 

mkpol [$name, $inds =Contp [$inds J J : : 
spic[Transf $inds-;Ldist[$name f$inds]J ]] 

I* Pick $n elements at random from a list */ 
I* <XMask *I 
Pick[$1ist,$n] :: (Lcl[%len]; %len:Len[$list]; = 

Mask[Map[P [$n/%len)$a ] ,Ar[%len, Rand []J] ,$list ] ) 

I* Make a list of indices satisfy a given property $qual 
e.g., mkind['expon [$a,2 ]=0] yields a list of indices for which 
the there is no px term */ 

mkind[$qual] ::: Cat[Ar [ top fpolymaxord] ,,Rel [$qual]] J 
save [ 'mkind ] 

I* Some qualities to act on indices */ 
mps [$ind] : : Smp [expon [$ind ] J [3]=0 
conserve [$ind] : : Smp [expon [$ind ] J [5] =0 
both [$ind ] : : mps [$ind ] & conserve [$ind] 

ranpoly [$name,$qual , $n] : : rnkpol [$name,pick[mkind[$qual ] ,$n ] ] 
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Table C.S Package PB 

/* Expression contains only constants (literal or 
declared symbolic) */ 

cons tp [$expr] : : Ap [And, Map [P [_$a [Const ] =l], Cont [$expr]]] 

/* Expression contains only constants or canonical variables */ 
evalbl [$expr] : : 

Ap[And,Map[P[_$a[Const ]=l l_$a[ 'canvbl]=l], Cont[$expr]]] 

/* Non-null arguments */ 
nna [$$r] : : P [$$r=Null] 

pb_:Ldist 
pb_:Tier 

/* Fundamental Poisson Brackets */ 
Inner[Set[cvnum[$a],$bl,canvbl, Ar[psd ]l 
pb: Tier(Ar[ canvbl , canvbl ,J[cvnum[$al,cvnum[$bllll 
pb[$f,$fl :0 

/* Constants */ 
pb [$$r,$c_=constp [$cl ,$$u] : 0 

/* How to interpret quotients */ 
pb[$$r,$f/$g,$$sl :: Rel[pb[$$r,'$g -l $f,$$s]] 

/* Derivation property */ 
pb[$$r,$f, $g $$t =nna[$$tll :: 

pb[$$r,pb[$f,$$t] $gl + pb[$$r ,pb[$f,$gl $$tl 
pb [$$r, $f $$t =nna [$$t], $$u =nna [$$u ]] : : 

pb[$$r,$$t pb[$f,$$ulT + pb [$$r,$f pb[$$t,$$ull 
pb[$f $n,$g] :: $n $f ($n-l) pb[$f,$g ] 
pb[$f,$g $nl :: $n $g ($n-l) pb[$f,$g ] 

/* Linearity */ 
pb[$$r,$f+$$t,$$ul :: pb [$$r, $f,$$u l + pb[$$r,$$t,$$u] 

/* Unflatten pb chain if it's calculable. */ 
pb[$$r,pb[$f,$$sl] :: pb[$$r,$f,$$s l 
pb [$$r, $f =evalbl [$f], $g =evalbl [$g J] : : pb [$$r, pb [$f ,$g]] 
pb [$f_=P [ $f [Mgenl =l l l :: $f 

/* Null pb is just argument*/ 
pb [,$fl:: $f 
pb[$$r,] :: pb[$$rl 
pb[$f,] :: $f 

/* Identity Lie operator */ 
iden [$obj l : : $obj 

/* Colonize */ 
colon[Extr,Multl :concat 

;olon[$f,$obj] :: 'pb[$f,$obj] 
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I* Is the object a Lie operator? */ 
lo[$£] :: P[Len[$f]=l & Ind[$f,1]=$obj] 

/* Concatenate maps */ 
concat :Tier 
concat[$f =lo [$f] ,$g =lo [$g]] : : Rel [Ldist [$f [$g]]] 
concat [$f-:-$g, $$r =nna [$$r]] : : concat [$f, concat [$g, $$r]] 

Sxset [" ... ,concat-:-4,2] 

/* Raise them to powers */ 
/* <XMSet */ 
liepow :Tier 
liepow[$f =lo[$£] ,OJ : iden 
liepow [$f-=lo [$f], 1] : : $f 
liepow[$f-=lo[$f],$n =Natp[$n]& $n)l] 
save ['lie pow] -
Sxset [". ",liepow,3,1] 

concat[$f,liepow[$f,$n-l]] 

/* Add maps */ 
li e plus :Tier 
lieplus[$f =evalbl[$f],$g =lo[$g]] :: Rel[$£ iden + $g] 
lieplus [$£-=lo [$f], $g =evalbl [$g]] : : Rel [$g iden + $f] 
lieplus[$£-=lo[$f],$g-=lo[$g]] :: Rel[$£+ $g] 
lieplus [$f-:-$g, $$r_=nna [$$r]] : : lieplus [$f ,lieplus [$g ,$$r]] 
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Table C.6 Package LIE 

/* Allow or disallow use of a function on a Lie operator */ 
/* SMP bug: don't 'disallow' or look at properties of a system function 

once it's been used with a Lie operator (causes crash). */ 
allow[$fun,$nterms] :: (Lcl[%dum,%1iex]; _ 

%1iex:S[As[S[Dis[Ax[Ps[$fun[%dum],%dum,O,$nterms]],Inf], _ 
'Pow->'liepow, 'Mult->'concat,'Plus->'lieplus],Inf],%dum->$c]; 
Ap[Setd, '$fun[$c =lo[$c]],%liex ]; $fun:Rel[Rel[$fun]]; 
If [Valp [ $fun], $fun [hold]: $fun; $fun [Ldist]:] ) 

disallow[$fun]-:: (If[Valp[ $fun]-:- $fun:-$fun[hold]]; 
$fun[$c_=lo[$c]]: ) - - -
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Appendix D. Index Numbers for Monomial Coefficients Used by Marylie 

Index Exponents of Variables 
X px y PY t pt 

1 1 0 0 0 0 0 X 

2 0 l 0 0 0 0 px 
3 0 0 l 0 0 0 y 
4 0 0 0 l 0 0 PY 
5 0 0 0 0 1 0 t 

6 0 0 0 0 0 1 pt 
7 2 0 0 0 0 0 X X 

8 1 1 0 0 0 0 X px 
9 1 0 1 0 0 0 X y 

10 1 0 0 1 0 0 X PY 

11 1 0 0 0 1 0 X t 
12 1 0 0 0 0 1 X pt 
13 0 2 0 0 0 0 px px 
14 0 1 1 0 0 0 px y 
15 0 1 0 1 0 0 px PY 

16 0 1 0 0 1 0 px t 
17 0 1 0 0 0 1 px pt 
18 0 0 2 0 0 0 y y 
19 0 0 1 1 0 0 y PY 
20 0 0 1 0 1 0 y t 

21 0 0 l 0 0 1 y pt 
22 0 0 0 2 0 0 PY PY 
23 0 0 0 1 1 0 PY t 
24 0 0 0 1 0 1 PY pt 
25 0 0 0 0 2 0 t t 

26 0 0 0 0 1 1 t pt 
27 0 0 0 0 0 2 pt pt 
28 3 0 0 0 0 0 X X X 

29 2 1 0 0 0 0 X X px 
30 2 0 1 0 0 0 X X y 

31 2 0 0 1 0 0 X X PY 
32 2 0 0 0 1 0 X X t 
33 2 0 0 0 0 1 X X pt 
34 1 2 0 0 0 0 X px px 
35 1 1 1 0 0 0 X px y 

36 1 1 0 1 0 0 X px PY 
37 1 1 0 0 1 0 X px t 
38 1 1 0 0 0 1 X px pt 
39 l 0 2 0 0 0 X y y 
40 1 0 1 1 0 0 X y PY 
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Index Exponents of Variables 
X px y PY t pt 

41 1 0 1 0 1 0 X y t 
42 1 0 1 0 0 1 X y pt 
43 1 0 0 2 0 0 X PY PY 
44 1 0 0 1 1 0 X PY t 
45 1 0 0 1 0 1 X PY pt 

46 1 0 0 0 2 0 X t t 
47 1 0 0 0 1 1 X t pt 
48 1 0 0 0 0 2 X pt pt 
49 0 3 0 0 0 0 px px px 
50 0 2 1 0 0 0 px px y 

51 0 2 0 1 0 0 px px PY 
52 0 2 0 0 1 0 px px t 
53 0 2 0 0 0 1 px px pt 
54 0 1 2 0 0 0 px y y 
55 0 1 1 1 0 0 px y PY 

56 0 1 1 0 1 0 px y t 
57 0 1 1 0 0 1 px y pt 
58 0 1 0 2 0 0 px PY PY 
59 0 1 0 1 1 0 px PY t 
60 0 1 0 1 0 1 px PY pt 

61 0 1 0 0 2 0 px t t 
62 0 1 0 0 1 1 px t pt 
63 0 1 0 0 0 2 px pt pt 
64 0 0 3 0 0 0 y y y 
65 0 0 2 1 0 0 y y PY 

66 0 0 2 0 1 0 y y t 
67 0 0 2 0 0 1 y y pt 
68 0 0 1 2 0 0 y PY PY 
69 0 0 1 1 1 0 y PY t 
70 0 0 1 1 0 1 y PY pt 

71 0 0 1 0 2 0 y t t 
72 0 0 1 0 1 1 y t pt 
73 0 0 1 0 0 2 y pt pt 
74 0 0 0 3 0 0 PY PY PY 
75 0 0 0 2 1 0 PY PY t 

76 0 0 0 2 0 1 PY PY pt 
77 0 0 0 1 2 0 PY t t 
78 0 0 0 1 1 1 PY t pt 
79 0 0 0 1 0 2 PY pt pt 
80 0 0 0 0 3 0 t t t 
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Index Exponents of Variables 
X px y PY t pt 

81 0 0 0 0 2 1 t t pt 
82 0 0 0 0 1 2 t pt pt 
83 0 0 0 0 0 3 pt pt pt 
84 4 0 0 0 0 0 X X X X 

85 3 1 0 0 0 0 X X X px 

86 3 0 1 0 0 0 X X X y 
87 3 0 0 1 0 0 X X X PY 
88 3 0 0 0 1 0 X X X t 
89 3 0 0 0 0 1 X X X pt 
90 2 2 0 0 0 0 X X px px 

91 2 1 1 0 0 0 X X px y 
92 2 1 0 1 0 0 X X px PY 
93 2 1 0 0 1 0 X X px t 
94 2 1 0 0 0 1 X X px pt 
95 2 0 2 0 0 0 X X y y 

96 2 0 1 1 0 0 X X y PY 
97 2 0 1 0 1 0 X X y t 
98 2 0 1 0 0 1 X X y pt 
99 2 0 0 2 0 0 X X PY PY 

100 2 0 0 1 1 0 X X PY t 

101 2 0 0 1 0 1 X X PY pt 
102 2 0 0 0 2 0 X X t t 
103 2 0 0 0 1 1 X X t pt 
104 2 0 0 0 0 2 X X pt pt 
105 1 3 0 0 0 0 X px px px 

106 1 2 1 0 0 0 X px px y 
107 1 2 0 1 0 0 X px px PY 
108 1 2 0 0 1 0 X px px t 
109 1 2 0 0 0 1 X px px pt 
110 1 1 2 0 0 0 X px y y 

111 1 1 1 1 0 0 X px y PY 
112 1 1 1 0 1 0 X px y t 
113 1 1 1 0 0 1 X px y pt 
114 1 1 0 2 0 0 X px PY PY 
115 1 1 0 1 1 0 X px PY t 

116 1 1 0 1 0 1 X px PY pt 
117 1 1 0 0 2 0 X px t t 
118 1 1 0 0 1 1 X px t pt 
119 1 1 0 0 0 2 X px pt pt 
120 1 0 3 0 0 0 X y y y 
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Index Exponents of Variables 
X px y PY t pt 

121 1 0 2 1 0 0 X y y PY 
122 1 0 2 0 1 0 X y y t 
123 1 0 2 0 0 1 X y y pt 
124 1 0 1 2 0 0 X y PY PY 
125 1 0 l 1 1 0 X y PY t 

126 1 0 1 1 0 1 X y PY pt 
127 1 0 1 0 2 0 X y t t 
128 1 0 1 0 1 1 X y t pt 
129 1 0 1 0 0 2 X y pt pt 
130 1 0 0 3 0 0 X PY PY PY 

131 1 0 0 2 1 0 X PY PY t 
132 1 0 0 2 0 1 X PY PY pt 
133 1 0 0 1 2 0 X PY t t 
134 1 0 0 1 1 1 X PY t pt 
135 1 0 0 1 0 2 X PY pt pt 

136 1 0 0 0 3 0 X t t t 
137 1 0 0 0 2 1 X t t pt 
138 1 0 0 0 1 2 X t pt pt 
139 1 0 0 0 0 3 X pt pt pt 
140 0 4 0 0 0 0 px px px px 

141 0 3 1 0 0 0 px px px y 

142 0 3 0 1 0 0 px px px PY 
143 0 3 0 0 1 0 px px px t 
144 0 3 0 0 0 1 px px px pt 
145 0 2 2 0 0 0 px px y y 

146 0 2 1 1 0 0 px px y PY 
147 0 2 1 0 1 0 px px y t 
148 0 2 1 0 0 1 px px y pt 
149 0 2 0 2 0 0 px px PY PY 
150 0 2 0 1 1 0 px px PY t 

151 0 2 0 1 0 1 px px PY pt 
152 0 2 0 0 2 0 px px t t 
153 0 2 0 0 1 1 px px t pt 
154 0 2 0 0 0 2 px px pt pt 
155 0 1 3 0 0 0 px y y y 

156 0 1 2 1 0 0 px y y PY 
157 0 1 2 0 1 0 px y y t 
158 0 1 2 0 0 1 px y y pt 
159 0 1 1 2 0 0 px y PY PY 
160 0 1 1 1 1 0 px y PY t 
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Index Exponents of Variables 
X px y PY t pt 

161 0 1 1 1 0 1 px y PY pt 
162 0 1 1 0 2 0 px y t t 
163 0 1 1 0 1 1 px y t pt 
164 0 1 1 0 0 2 px y pt pt 
165 0 1 0 3 0 0 px PY PY PY 

166 0 1 0 2 1 0 px PY PY t 
167 0 1 0 2 0 1 px PY PY pt 
168 0 1 0 1 2 0 px py t t 
169 0 1 0 1 1 1 px PY t pt 
170 0 1 0 1 0 2 px PY pt pt 

171 0 1 0 0 3 0 px t t t 
172 0 1 0 0 2 1 px t t pt 
173 0 1 0 0 1 2 px t pt pt 
174 0 1 0 0 0 3 px pt pt pt 
175 0 0 4 0 0 0 y y y y 

176 0 0 3 1 0 0 y y y PY 
177 0 0 3 0 1 0 y y y t 
178 0 0 3 0 0 1 y y y pt 
179 0 0 2 2 0 0 y y PY PY 
180 0 0 2 1 1 0 y y PY t 

181 0 0 2 1 0 1 y y PY pt 
182 0 0 2 0 2 0 y y t t 
183 0 0 2 0 1 1 y y t pt 
184 0 0 2 0 0 2 y y pt pt 
185 0 0 1 3 0 0 y PY PY PY 

186 0 0 1 2 1 0 y PY PY t 
187 0 0 1 2 0 1 y PY PY pt 
188 0 0 1 1 2 0 y PY t t 
189 0 0 1 1 1 1 y PY t pt 
190 0 0 1 1 0 2 y PY pt pt 

191 0 0 1 0 3 0 y t t t 
192 0 0 1 0 2 1 y t t pt 
193 0 0 1 0 1 2 y t pt pt 
194 0 0 1 0 0 3 y pt pt pt 
195 0 0 0 4 0 0 PY PY PY PY 

196 0 0 0 3 1 0 PY PY PY t 
197 0 0 0 3 0 1 PY PY PY pt 
198 0 0 0 2 2 0 PY PY t t 
199 0 0 0 2 1 1 PY PY t pt 
200 0 0 0 2 0 2 PY PY pt pt 
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Index Exponents of Variables 
X px y PY t pt 

201 0 0 0 1 3 0 PY t t t 
202 0 0 0 1 2 1 PY t t pt 
203 0 0 0 1 1 2 PY t pt pt 
204 0 0 0 1 0 3 PY pt pt pt 
205 0 0 0 0 4 0 t t t t 

206 0 0 0 0 3 1 t t t pt 
207 0 0 0 0 2 2 t t pt pt 
208 0 0 0 0 1 3 t pt pt pt 
209 0 0 0 0 0 4 pt pt pt pt 
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