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The emergency management service (EMS) system is a complicated system that tries to coordinate 

each system component to provide a quick response to emergencies. Different types of vehicles 

cooperate to finish the tasks under unified command. The EMS system tries to respond quickly to 

emergency calls and communicate with each department to balance the resources and provide 

maximal coverage for the whole system.  

This work aims to develop a highly efficient model for the EMS system to assist the coordinator 

in making the dispatching and relocation decisions simultaneously. Meanwhile, the model will 

make a route decision to provide the vehicle drivers with route guidance. In the model, 

heterogenous emergency vehicle fleets consisting of police vehicles, Basic Life Support (BLS) 

vehicles, Advanced Life Support (ALS) vehicles, Fire Engines, Fire Trucks, and Fire Quants are 

considered. Moreover, a coverage strategy is proposed, and different coverage types are considered 

according to the division of vehicle function. The model tries to provide maximal coverage by 

advanced vehicles under the premise of ensuring full coverage by basic vehicles. The workload 



balance of the vehicle crews is considered in the model to ensure fairness. A mathematical model 

is proposed, then a numerical study is conducted to test the model's performance. The results show 

that the proposed model can perform well in large-scale problems with significant demands. A 

comprehensive analysis is conducted on the real-case historical medical data. Then a discrete event 

simulation system is built. The framework of a discrete event simulation model can mimic the 

evolution of the entire operation of an emergency response system over time. Finally, the proposed 

model and discrete event simulation system are applied to the real-case historical medical data. 

Three different categories of performance measurements are collected, analyzed, and compared 

with the real-case data. A comprehensive sensitivity analysis is conducted to test the ability of the 

model to handle different situations. The final results illustrate that the proposed model can 

improve overall performance in various evaluation metrics.  

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

REAL-TIME DISPATCHING AND REDEPLOYMENT OF HETEROGENEOUS 

EMERGENCY VEHICLES FLEET WITH A BALANCED WORKLOAD 

 

 

 

by 

 

 

             Chenyang Fang 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2023 

 

 

 
 

 

 

 

 

 

 

  Advisory Committee: 

Professor Ali Haghani, Chair 

Professor Cinzia Cirillo 

Professor Martin Dresner 

Professor Paul Schonfeld 

Professor Chenfeng Xiong 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Chenyang Fang 

2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

Acknowledgment 

First and foremost, I want to express my heartfelt gratitude and appreciation to my advisor, Dr. 

Ali Haghani. It has always been my great honor to be his student. When I transferred from structure 

to transportation engineering, Dr. Haghani kindly agreed to adopt me as his new student. I will 

never forget that moment. He generously mentored me through my doctoral studies and led me to 

a fulfilling journey of intellectual adventure.  

I want to thank the members of my dissertation committee, Dr. Cinzia Cirillo, Dr. Martin 

Dresner, Dr. Paul Schonfeld, and Dr. Chenfeng Xiong, for their insightful comments and 

invaluable suggestions throughout this research.  

Words cannot express my gratitude to my parents for their unwavering support, patience, and 

understanding during my academic life and for every significant decision which could change my 

life. Their constant encouragement, trust, and love have been a source of motivation on my journey. 

Furthermore, I am expressing my sincere love and gratitude to my beloved girlfriend, Siyu Xie, 

for accompanying, encouraging, and inspiring me to pursue a better self and chase my dream 

bravely.  

Finally, I would like to acknowledge the support provided by the University of Maryland 

Medical Center (UMMC). Their support enabled me to conduct my research effectively and 

accomplish the goals of my dissertation. 

 

 

 

 

 



 iii 

Table of Contents 

Chapter 1 : Introduction ......................................................................................................... 1 

1.1 Emergency management service ...................................................................................... 1 

1.2 Emergency call center (911) .............................................................................................. 3 

1.3 Maryland institute for emergency medical service systems (MIEMSS) ............................... 4 

1.4 Emergency response time ................................................................................................. 6 

1.5 Objectives of the research ................................................................................................ 7 

1.6 Contributions of the research ........................................................................................... 8 

1.7 Organization of the dissertation ....................................................................................... 9 

Chapter 2 : Literature Review ............................................................................................... 11 

2.1 Deterministic models...................................................................................................... 11 

2.2 Probabilistic models ....................................................................................................... 13 

2.3 Dynamic models ............................................................................................................. 18 

2.3.1 Offline redeployment approach ................................................................................... 20 

2.3.2 Online redeployment approach ................................................................................... 27 

Chapter 3 : Problem Statement and Mathematical Formulation ........................................... 35 

3.1 Problem statement ........................................................................................................ 35 

3.1.1 Excessive workload conflict ......................................................................................... 36 

3.1.2 Preference for home stations ....................................................................................... 37 

3.2 Characteristics of the problem ........................................................................................ 38 

3.2.1 Emergency vehicle fleet ............................................................................................... 38 

3.3 Assumption related to the model.................................................................................... 40 

3.3.1 Spatial assumptions .................................................................................................... 40 

3.3.2 Temporal assumptions ................................................................................................ 41 

3.3.3 System dynamic assumptions ...................................................................................... 42 

3.3.4 Assumptions related to crew ....................................................................................... 42 

3.4 Mathematical formulations............................................................................................ 43 

3.4.1 Notations .................................................................................................................... 43 

3.4.2 The integer programming model ................................................................................. 43 

Chapter 4 : Numerical Study ................................................................................................. 54 

4.1 Some clarifications about the numerical study ................................................................ 54 



 iv 

Chapter 5 : A Large-Scale Case Study .................................................................................... 59 

5.1 Case study operational data ........................................................................................... 59 

5.2 Case study network ........................................................................................................ 60 

5.2.1 Emergency Vehicles ..................................................................................................... 62 

5.2.2 Preparation time ......................................................................................................... 64 

5.2.3 Interarrival time .......................................................................................................... 65 

5.2.4 En-Route time ............................................................................................................. 68 

5.2.5 Service time ................................................................................................................ 68 

5.3 Case study zone importance ........................................................................................... 74 

5.3.1 Baltimore city original incidents data .......................................................................... 74 

5.3.2 Baltimore City incidents data adjusted by priority ........................................................ 75 

5.3.3 Baltimore city categorical incidents data ..................................................................... 77 

5.3.4 Baltimore city categorical incidents data adjusted by priority ...................................... 78 

Chapter 6 : Discrete Event Simulation ................................................................................... 80 

6.1 Introduction to the discrete event system ....................................................................... 80 

6.2 Conceptual framework of the simulation model.............................................................. 83 

6.2.1 Travel time module ..................................................................................................... 85 

6.2.2 Vehicle module............................................................................................................ 85 

6.2.3 Emergency module ...................................................................................................... 86 

6.2.4 Emergency call module ................................................................................................ 86 

6.2.5 Statistics module ......................................................................................................... 86 

6.2.6 Traffic condition module.............................................................................................. 87 

6.2.7 Busy factor module ..................................................................................................... 87 

6.2.8 Optimization module ................................................................................................... 87 

6.3 Summary ....................................................................................................................... 88 

Chapter 7 : Case Study Results ............................................................................................. 89 

7.1 Introduction to case study result analysis ....................................................................... 89 

7.2 Zone importance strategies analysis ............................................................................... 90 

7.2.1 En Route time.............................................................................................................. 91 

7.2.2 Coverage level............................................................................................................. 92 

7.2.3 Workload .................................................................................................................... 96 



 v 

7.2.4 Redeployment ............................................................................................................. 96 

7.2.5 Summary .................................................................................................................... 98 

7.3 Proposed model results .................................................................................................. 98 

7.3.1 Total coverage ............................................................................................................ 99 

7.3.2 Response time ............................................................................................................. 99 

7.3.3 Workload .................................................................................................................. 101 

7.3.4 Redeployment ........................................................................................................... 104 

7.3.5 Optimality ................................................................................................................. 104 

7.4 Sensitivity Analysis ....................................................................................................... 105 

7.4.1 Traffic time increment  .............................................................................................. 105 

7.4.2 Emergency vehicle busy factor ................................................................................... 124 

7.5 Police vehicle analysis .................................................................................................. 137 

7.6 Fire vehicle analysis ..................................................................................................... 142 

7.7 Summary ..................................................................................................................... 147 

Chapter 8: Summary, Conclusion, and Future Research ....................................................... 149 

8.1 Summary ..................................................................................................................... 149 

8.2 Conclusion ................................................................................................................... 150 

8.3 Future research ............................................................................................................ 153 

8.3.1 Mathematical formulation ........................................................................................ 153 

8.3.2 Simulation model ...................................................................................................... 154 

8.3.3 Sensitivity analysis .................................................................................................... 156 

8.3.4 Crew scheduling ........................................................................................................ 156 

8.3.5 Economic analysis ..................................................................................................... 156 

Reference .......................................................................................................................... 157 

 
  



 vi 

List of Figures 
Figure 1.1 Illustration of the EMS system ...................................................................................... 3 
Figure 1.2 Emergency response time .............................................................................................. 7 
Figure 5.1 The case study network (left) and the geospatial distribution of fire stations of 

Baltimore City (right) ................................................................................................................... 61 
Figure 5.2 The job assignments for different ALS ambulance vehicles ....................................... 63 
Figure 5.3 The job assignments for different BLS ambulance vehicles ....................................... 63 
Figure 5.4 The histogram of preparation time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models ....................................................................... 65 
Figure 5.5 The histogram of the interarrival time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models ....................................................................... 66 
Figure 5.6 Incident arrival rates in Baltimore City in 2019 .......................................................... 67 
Figure 5.7 Categories of interarrival time of incidents in Baltimore City in January 2019 ......... 68 
Figure 5.8 The histogram of the En Route time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models ....................................................................... 69 
Figure 5.9 The histogram of the service time for  incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models ....................................................................... 70 
Figure 5.10 Geospatial and temporal distribution of zone importance in Baltimore City in 2019 

during the day ............................................................................................................................... 75 
Figure 5.11 Geospatial and temporal distribution of zone importance in Baltimore City in 2019 

during the night ............................................................................................................................. 75 
Figure 5.12 Geospatial and temporal distribution of zone importance adjusted by priority in 

Baltimore City in 2019 during the day ......................................................................................... 76 
Figure 5.13 Geospatial and temporal distribution of zone importance adjusted by priority in 

Baltimore City in 2019 during the night ....................................................................................... 76 
Figure 5.14 Geospatial and temporal distribution of categories of zone importance in Baltimore 

City in 2019 during the day .......................................................................................................... 77 
Figure 5.15 Geospatial and temporal distribution of categories of zone importance in Baltimore 

City in 2019 during the night ........................................................................................................ 78 
Figure 5.16 Geospatial and temporal distribution of categories of zone importance adjusted by 

priority in Baltimore City in 2019 during the day ........................................................................ 78 
Figure 5.17 Geospatial and temporal distribution of categories of zone importance adjusted by 

priority in Baltimore City in 2019 during the night ...................................................................... 79 
Figure 6.1 The event scheduling scheme in EMS simulation ....................................................... 84 
Figure 7.1 Comparison of the En Route time for different zone importance strategies ............... 91 
Figure 7.2 Comparison of the total coverage rate of the real case data with models with different 

zone importance strategies ............................................................................................................ 93 
Figure 7.3 Comparison of the basic coverage for different strategies .......................................... 94 
Figure 7.4 Comparison of the double coverage for different strategies ....................................... 95 
Figure 7.5 Comparison of the fully functional double coverage for different strategies .............. 96 
Figure 7.6 Comparison of the number of redeployments for different strategies ......................... 97 
Figure 7.7 Comparison of the total coverage for real-case data and simulation results ............. 100 
Figure 7.8 Comparison of the En Route time for real-case data and simulation results............. 101 
Figure 7.9 Comparison of the percentage of incidents that can be reached within a predefined 

time threshold.............................................................................................................................. 102 
Figure 7.10 Comparison of the workload for different types of vehicles ................................... 102 



 vii 

Figure 7.11 Comparison of the workload distribution of emergency vehicles for the base 

condition and real-case data ........................................................................................................ 103 
Figure 7.12 The number of redeployments for incidents ............................................................ 106 
Figure 7.13 Comparison of the average En Route time for the base condition and different 

congestion levels ......................................................................................................................... 108 
Figure 7.14 Comparison of the percentage of incidents reached within 5 minutes for the base 

condition and models with different congestion levels............................................................... 109 
Figure 7.15 Comparison of the percentage of incidents reached within 8 minutes for the base 

condition and models with different congestion levels............................................................... 109 
Figure 7.16 Comparison of the En Route time for real-case data, the base model, and models 

with different congestion levels .................................................................................................. 111 
Figure 7.17 Comparison of the En Route time for real-case data, the base model, and models 

with different congestion levels (continued)............................................................................... 111 
Figure 7.18 Comparison of the percentage of basic coverage for the base model and models with 

different congestion levels .......................................................................................................... 114 
Figure 7.19 Comparison of the percentage of basic coverage for the base model and models with 

different congestion levels (continued) ....................................................................................... 114 
Figure 7.20 Comparison of the percentage of double coverage for the base model and models 

with different congestion levels .................................................................................................. 115 
Figure 7.21 Comparison of the percentage of double coverage for the base model and models 

with different congestion levels (continued)............................................................................... 115 
Figure 7.22 Comparison of the percentage of fully functional double coverage for the base model 

and models with different congestion levels ............................................................................... 116 
Figure 7.23 Comparison of percentage of fully functional double coverage for the base model 

and models with different congestion levels (continued) ........................................................... 116 
Figure 7.24 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different congestion levels ..................................................................................... 117 
Figure 7.25 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different congestion levels (continued) .................................................................. 117 
Figure 7.26 Comparison of the workload distribution of the BLS vehicles for the base model and 

models with different congestion levels ..................................................................................... 118 
Figure 7.27 Comparison of the workload distribution of the BLS vehicles for the base model and 

models with different congestion levels  (continued) ................................................................. 119 
Figure 7.28 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.1 ....................................................................................... 120 
Figure 7.29 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.2 ....................................................................................... 120 
Figure 7.30 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.3 ....................................................................................... 121 
Figure 7.31 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.4 ....................................................................................... 121 
Figure 7.32 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 0.5 ...................................................................................... 122 
Figure 7.33 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 1.0 ...................................................................................... 122 



 viii 

Figure 7.34 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 1.5 ...................................................................................... 123 
Figure 7.35 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =2.0 ....................................................................................... 123 
Figure 7.36 Comparison of the percentage of incidents reached within 5 minutes for the base 

model and models with different levels of busy factor ............................................................... 126 
Figure 7.37 Comparison of the percentage of incidents reached within 8 minutes for the base 

model and models with different levels of busy factor ............................................................... 126 
Figure 7.38 Comparison of the average En Route time for the base model and models with 

different levels of busy factor ..................................................................................................... 127 
Figure 7.39 Comparison of the En Route time between real-case data, the base model, and 

models with different levels of busy factor................................................................................. 128 
Figure 7.40 Comparison of the percentage of basic coverage for the base model and models with 

different levels of busy factors .................................................................................................... 131 
Figure 7.41 Comparison of the percentage of double coverage for the base model and models 

with different levels of busy factors............................................................................................ 132 
Figure 7.42 Comparison of the percentage of fully functional double coverage for the base model 

and models with different levels of busy factors ........................................................................ 133 
Figure 7.43 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different levels of busy factors ............................................................................... 133 
Figure 7.44 Comparison of workload distribution of the BLS vehicles for the base model and 

models with different levels of busy factors ............................................................................... 134 
Figure 7.45 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.05................................................................................... 135 
Figure 7.46 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.10................................................................................... 135 
Figure 7.47 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.15................................................................................... 136 
Figure 7.48 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.20................................................................................... 136 
Figure 7.49 Comparison of the En Route time for models with different numbers of police 

vehicles ....................................................................................................................................... 139 
Figure 7.50 The average En Route time for models with different numbers of police vehicles 139 
Figure 7.51 Comparison of the percentage of incidents that can be reached within 5 minutes for 

models with different numbers of police vehicles ...................................................................... 141 
Figure 7.52 Comparison of the percentage of incidents that can be reached within 8 minutes for 

models with different numbers of police vehicles ...................................................................... 141 
Figure 7.53 En Route time for fire vehicles ................................................................................ 143 
Figure 7.54 Basic coverage brought by fire vehicles .................................................................. 144 
Figure 7.55 Double coverage brought by fire vehicles ............................................................... 145 
Figure 7.56 Fully functional double coverage brought by fire vehicles ..................................... 145 
 

 

 

 

 



 ix 

List of Tables 
Table 3.1 Summary of notations ................................................................................................... 44 
Table 4.1 Characteristics of 6 cases .............................................................................................. 56 
Table 4.2 The number of variables and constraints and the running time for 6 cases .................. 56 
Table 5.1 The results of the estimation of the distribution of emergency incidents preparation 

time during the night ..................................................................................................................... 64 
Table 5.2 The results of the estimation of the distribution of emergency incidents preparation 

time during the day ....................................................................................................................... 65 
Table 5.3 The results of the estimation of the distribution of emergency incidents interarrival 

time during the night ..................................................................................................................... 66 
Table 5.4 The results of the estimation of the distribution of emergency incidents interarrival 

time during the day ....................................................................................................................... 66 
Table 5.5 The results of the estimation of the distribution of emergency incidents En Route time 

during the night ............................................................................................................................. 69 
Table 5.6 The results of the estimation of the distribution of emergency incidents En Route time 

during the day ............................................................................................................................... 69 
Table 5.7 The results of the estimation of the distribution of emergency incidents service time 

during the night ............................................................................................................................. 70 
Table 5.8 The results of the estimation of the distribution of emergency incidents service time 

during the day ............................................................................................................................... 70 
Table 5.9 Comparison of the number and ratio of incidents managed through dispatching policies

....................................................................................................................................................... 71 
Table 5.10 Distribution of incidents between public hospitals ..................................................... 72 
Table 5.11 Comparison of the number and ratio of incidents handled by different rescue 

transportation modes ..................................................................................................................... 72 
Table 5.12 Comparison of the number and ratio of incidents serviced by different ambulances. 73 
Table 5.13 Comparison of the number and ratio of incidents handled by different hospitals ...... 73 
Table 5.14 Distribution of the number and ratio of incidents priority .......................................... 74 
Table 6.1 Process flowchart for simulated EMS process ............................................................. 82 
Table 7.1 Summary of performance measurements of four strategies regarding the zones’ 

importance..................................................................................................................................... 90 
Table 7.2 Comparison of En Route time between real-case data and simulation results ........... 100 
Table 7.3 Average En Route time for the base model and models with different congestion levels

..................................................................................................................................................... 110 
Table 7.4 Average En Route time for the base model and models with different congestion levels 

(continued) .................................................................................................................................. 110 
Table 7.5 Comparison of percentage of basic coverage between the base model and models with 

different congestion levels .......................................................................................................... 112 
Table 7.6 Comparison of percentage of double coverage between the base model and models 

with different congestion levels .................................................................................................. 113 
Table 7.7 Comparison of percentage of fully functional double coverage between the base model 

and models with different congestion levels ............................................................................... 113 
Table 7.8 Average En Route time between the base model and models with different levels of 

busy factor ................................................................................................................................... 129 
Table 7.9 Comparison of percentage of basic coverage between base model and models with 

different levels of busy factor ..................................................................................................... 129 



 x 

Table 7.10 Comparison of percentage of double coverage between the base model and models 

with different levels of busy factor ............................................................................................. 130 
Table 7.11 Comparison of percentage of fully functional double coverage between the base 

model and models with different levels of busy factor ............................................................... 130 
Table 7.12 Comparison of  the average number of redeployments between models with different 

numbers of police vehicles.......................................................................................................... 140 
Table 7.13 Summary of performance measurements of fire vehicles ........................................ 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



 1 

Chapter 1 : Introduction 

 

1.1 Emergency management service 

Millions of Americans suffer from accidental injuries yearly, resulting in billions of dollars of 

direct or indirect economic losses. According to the Institute of Medicine report, more than 

600,000 Americans die of cardiac arrest strikes each year. Approximately 395,000 cases of cardiac 

arrest occur outside hospitals, where less than 6% survive, while 200,000 cases happen inside 

hospitals, where about 24% survive (ScienceDaily, n.d.). 

The cardiac arrest survival rate is extremely low and greatly depends on where the cardiac 

arrest happens and if the patients can get professional treatment. So, immediate effective treatment 

is critical to the survival rate, and every minute with professional treatment will increase the 

likelihood of survival without disability. It is the same for other types of injuries, such as car 

accidents. Unfortunately, based on the statistics, approximately thousands of deaths annually result 

from inadequate emergency medical care (Roemer, Kramer, & Frink, 1977). 

The term 'emergency management service system' means a system that provides for the 

arrangement of personnel, facilities, and equipment for the corrective and coordinated delivery of 

health care services in an appropriate geographical area under emergency conditions (occurring 

either as a result of the patient's conditions or natural disasters or similar simulation),  and which 

is administered by a public or nonprofit private entity which has the authority and the resources to 

provide effective administration of the system.  

EMS system act of 1973 and its subsequent amendment in 1976 have been proposed to support 

building an adequate, standard pre-hospital emergency system. As a result, more than 300 EMS 

systems across the nation have been set up, and funding has been set aside for future planning and 
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growth ("A Brief History of Emergency Medical Services in the United States EMRA," n.d.). By 

1975, more than 30 EMS residencies had developed nationwide, preparing physicians who would 

interface with EMS at all levels: from responders and educators to medical directors.  

Within the last ten years, EMS has become a focus of intense research on pre-hospital 

interventions into many commonly encountered acute care issues observed in emergency medicine 

("A Brief History of Emergency Medical Services in the United States EMRA," n.d.). With 

increasingly integrated technology used in pre-hospital care and hospital emergency rooms, the 

emergency response crew implements more and more services. Hospital emergency rooms are 

responsible for providing medical and surgical care to patients arriving at the hospital needing 

immediate care. Their work is limited to providing quick responses and transporting the patients 

to the assigned hospitals. In addition, earlier determination of patient condition severity, 

preparation before the arrival at the hospital, and coordination with the trauma center also can be 

done to shorten the time.  

The EMS system is not an isolated system. It needs multi-party collaboration between health 

care, public health, and public safety. For example, pre-hospital medical services are usually 

provided by a fire department, a hospital, an independent government agency, a nonprofit 

corporation, or commercial, for-profit companies. The EMS system's responsibility is to 

coordinate each system component to play essential roles and quickly respond to emergencies. The 

EMS system consists of the following components ("EMS.gov | What is EMS?," n.d.): 

• All kinds of private or public agencies and organizations  

• Communication and transportation networks 

• Trauma systems, hospitals, trauma centers, and specialty care centers 

• Rehabilitation facilities  
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• Highly trained professionals 

o Volunteer and career pre-hospital personnel 

o Physicians, nurses, and therapists 

o Administrators and government officials 

• An informed public that knows what to do in a medical emergency 

Figure 1.1 illustrates the structure of the EMS system. The large circle represents each system 

element activated in response to an incident in the diagram. The arrows within the circle represent 

the specialty care areas within EMS. The list within the circle represents the elements acting behind 

the scenes to support the system. 

 

 

 

Figure 1.1 Illustration of the EMS system 

 

1.2 Emergency call center (911) 

The emergency call center is responsible for prioritizing and dispatching the required number 

and type of units to the calls to provide corresponding assistance. All calls to 911 are answered by 
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trained universal call-takers at the Office of Unified Communications. For example, calls requiring 

fire vehicles or medical units will be immediately transferred to dispatchers within the call center. 

While calls that need police cars will be forwarded to the police dispatcher within the call center. 

The center's Computer-Aided Dispatch (CAD) system helps with the dispatch of first responders. 

In the meantime, the dispatcher needs to monitor the activities of the responding personnel. 

 

1.3 Maryland institute for emergency medical service systems (MIEMSS) 

The Maryland Emergency Medical Services (EMS) System is a coordinated statewide network 

that includes volunteer and career EMS clinicians, medical and nursing personnel, 

communications, transportation systems, trauma and specialty care centers, and emergency 

departments ("Who We Are," n.d.). 

The role of the Maryland Institute for Emergency Medical Service System (MIEMSS) is to 

provide oversight and coordinate all components of the Maryland Emergency Medical Service 

System in obedience to statute and regulation, including planning, operations, evaluation, and 

research.  

In addition, MIEMSS provides leadership and medical direction, conducts, and supports EMS 

educational programs, operates, and maintains a statewide communications system, designates 

trauma and specialty centers, licenses and regulates commercial ambulance services, and 

participates in EMS-related public education and prevention programs.  

In Maryland, more than half of the pre-hospital clinicians are volunteers operating in public 

service EMS agencies, while others are employed as career EMS clinicians by public service 

agencies and/or commercial EMS services (ground and air). Both the volunteers and employed 

pre-hospital clinicians and personnel receive professional training. They are certified by the state 

and provide medical care and assistance in accordance with the Maryland Medical Protocols. 
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In Maryland, pre-hospital clinicians are divided into two categories based on professional skills: 

basic life support (BLS) and advanced life support (ALS). BLS is provided by state-certified 

emergency medical dispatchers (EMD), first responders, and emergency medical technicians-basic 

(EMT-B). ALS, which is available in all jurisdictions, is provided by state-licensed cardiac rescue 

technicians (CRT), cardiac rescue technicians-intermediate (CRT-I), and emergency medical 

technicians-paramedic (EMT-P).  

The MIEMSS uses the statewide EMS communication system to integrate and coordinate the 

entire EMS system in Maryland. By taking advantage of the advanced radio and microwave 

technology, the EMS communication system strengthens the links between the various 

departments of the system and enhances the connection between ambulances, helicopters, and 

hospitals. 

The Emergency Medical Resources Center (EMRC), a communications center at MIEMSS, 

can assist with the heavy demand for medical communication and coordinate medical 

consultations between medical units and hospital physicians. After the medical units pick up the 

patients and request medical assistance, operators at the EMRC will guide the medical vehicles to 

transfer the patients to the available hospitals based on the severity of the patients and the 

availability and priority of hospitals. Pre-hospital clinicians transmit patient information to a 

hospital physician online when the medical unit is heading toward the assigned hospital. 

Physicians may direct the pre-hospital clinician to follow specific medical protocols and approve 

additional treatment. 

The System Communication Center (SYSCOM), also located within the communication center, 

works with a Maryland State Police Duty Officer to dispatch and coordinate all Maryland State 

Police med-evac missions. In addition, the Maryland State Police Aviation Division, with a fleet 
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of 11 helicopters based in seven (7) sections across the state, transports over 5,000 critically injured 

or ill patients each year. 

MIEMSS is not only committed to balancing medical resources but also providing fast, 

effective, and accurate medical rescue for patients. According to the MIEMSS, about 85% of 

patients are taken to the nearest hospital emergency department. There are 48 hospital emergency 

departments in Maryland equipped with professional medical teams working around the clock to 

ensure timely medical assistance for patients. For patients who need a higher level of care, 

Maryland’s Trauma and EMS System can ensure that the patients get to the proper facilities to 

receive the right care through the use of statewide medical protocols for EMS clinicians. 

 

1.4 Emergency response time 

Many ambulance service providers use the percentage of highest urgency incidents reached by 

an ambulance within this maximum allowed response time as their performance criterion 

(Jagtenberg, Bhulai, & van der Mei, 2015). Three basic factors have been used to measure fire 

departments’ emergency response performance: availability, capability, and operational 

effectiveness (“Understanding and Measuring Fire Department Response Times,” n.d.) 

For precise quantification and evaluation of the dispatching, the total dispatching time has been 

divided into several parts, shown in Figure 1.2. 
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Figure 1.2 Emergency response time 

 

One of the key EMS benchmarks for municipal and career fire departments is the National Fire 

Protection Association’s (NFPA) 1710 (Standard for the Organization and Deployment of Fire 

Suppression Operations, Emergency Medical Operations, and Special Operations to the Public by 

Career Fire Departments). According to a combination of practices and more than 30 years of 

study, research, testing, and validation, NFPA committee members establish the standard, 

including representatives from various fire agencies. The NFPA establishes a one-minute turnout 

time, the elapsed time from when a unit is dispatched until the time its status changes to responding, 

and 240 seconds travel time benchmark for not less than 90% of dispatched incidents for EMS 

first response. Moreover, NFPA Standard 1710 establishes a 60-second “turnout time” and 480-

second “travel time” benchmark goal for “the arrival of an advanced life support (ALS) unit at an 

emergency medical incident” for not less than 90% of dispatched incidents (“EMS Response Time 

| fems,” n.d.). 

 

1.5 Objectives of the research 

Empirical studies suggest that after a cardiac and circulatory arrest, the chances for 

resuscitation to be successful decrease dramatically. Typically, chances decrease by 10% per 

minute if the patient is not treated accordingly. Providing a quick response to emergency requests 
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is crucial for the patients’ health. In practice, simple rules for dispatching and relocation are in use. 

In Austria, the closest ambulance will always be dispatched in case of an emergency because of 

regulatory rules. After serving a request, ambulances are supposed to return to their home base. 

The majority of EMS systems in North America have implemented a redeployment strategy. A 

highly efficient dispatching strategy can quickly respond to the emergency call to protect property 

and people’s safety and allocate resources reasonably to avoid waste.  

This work aims to develop a highly efficient and comprehensive integrated model of 

dispatching and relocating emergency service vehicles to assist the coordination center in making 

dispatching decisions. The model determines the required number and types of vehicles that need 

to be dispatched in response to emergency calls. Moreover, redeployment decisions will be made 

simultaneously to ensure the system can have maximal coverage in preparation for future incidents. 

Different types of vehicles can cooperate under the unified command to finish the tasks. Historical 

accident data, real-time traffic data, and the status of vehicles and the system will also be 

incorporated into the model to help with decision-making. 

 

1.6 Contributions of the research 

This work proposes a modified integrated model to assist in making dispatching and relocation 

decisions. The proposed optimization model can increase the system's performance compared with 

previous work. A heterogeneous vehicle fleet, which consists of three types of emergency vehicles, 

is considered in the proposed model. Police vehicles, ambulances, and fire vehicles will cooperate 

to handle the tasks under the unified scheduling. According to the different functions, two types 

of ambulances (Advanced Life Support and Basic Life Support) and three types of fire vehicles 

(Fire Engine, Fire Truck, and Fire Quint) are considered in the model. 
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Moreover, according to the different types of vehicles arriving at the scene, different coverage 

types are considered to measure the performance of the dispatching and relocation. ALS vehicles 

can work as BLS and provide advanced medical care. Fire engines and fire trucks need to cooperate 

to finish all the jobs. It is assumed that when two types of vehicles arrive at the scene 

simultaneously, the task is handled fully functionally. Fire quint is equivalent to a combination of 

a fire engine and a fire truck. Fully functional coverage and partial functional coverage are 

considered in the model, and the corresponding benefits are added to the system.  

Different types of vehicles will take different responsibilities in performing the tasks at hand. 

The BLS vehicles try to provide quick response, and ALS vehicles provide more professional and 

border treatment for the patients. Therefore, different standards are proposed for different types of 

vehicles. Different types of travel limits are considered in the model for different vehicles.  

Moreover, more parameters are introduced into the model to make it more realistic. The 

priority of the hospital will be used to help the coordinator to assign the proper hospital for the 

patients.  

Besides the decision-making constraints, some reasonable operational constraints are 

considered in the model. Workload balance is a symbol of fairness and affects the efficiency of 

relocation. Since the proposed approach is implemented in real-time, the accumulated workload 

will be calculated to help the system improve efficiency and avoid excessive moves. Work shifts 

are also considered in the model.   

 

1.7 Organization of the dissertation 

In Chapter 1, an introduction was made, and related concepts were introduced to have a better 

and more comprehensive understanding of the problem. In Chapter 2, previous work and literature 
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will be reviewed, and the evolution of existing models and algorithms will be sorted out. In Chapter 

3, the problem statement and the mathematical model will be introduced. In Chapter 4, a numerical 

study is presented to test the performance of the proposed model. Chapter 5 presents a 

comprehensive numerical analysis of the historical medical data. The underlying physical network 

and the operational data are illustrated for Baltimore City.  In Chapter 6, a discrete event system 

simulation model that is built to test the system is explained in detail. The framework of this 

discrete event simulation model can mimic the evolution of the entire operation of an emergency 

response system over time. The sophisticated discrete event simulation model is designed and 

coded in Python programming language. Chapter 7 presents the results of applying the proposed 

model in the discrete event simulation system in the real-world case study and compares those 

results with the actual operation data. Then an extensive sensitivity analysis is performed on the 

parameters in the model to test how the model will perform under various conditions. Chapter 8 

summarizes this research and presents some avenues for future research. 
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Chapter 2 : Literature Review 

 
This chapter comprehensively reviews the emergency vehicle dispatching problem, 

deployment, and redeployment problem.  

 

2.1 Deterministic models 

The location problem usually arises from the planning phase. The choice of the location of 

facilities will affect the system's performance.  

Totegas et al. (Constantine Toregas, 1970) proposed the first emergency facilities location 

model as a location set covering problem (LSCP).  This model aims to find the minimum number 

of facilities to cover all the demand nodes within a specific response time or distance. The LSCP 

tries to provide full coverage for all demand nodes, which is unrealistic, especially when the 

resources are limited.   

Another basic model (Church & Davis, 1992) maximizes coverage by using a fixed number of 

facilities, formulated as a maximal covering location problem (MCLP) by Church and ReVell in 

1974. However, these two models assume the minimum distance or response time between the 

demand nodes and the facilities is given. They overlook the stochastic feature of the problem.  

Once a facility is in service in these two models, then the demand points within the coverage 

previously will be unattended. They omit the feature of unavailability of the facilities and 

randomness of the accidents. One strategy to deal with the stochastic feature of demand and spatial 

and temporal availability is multi-objective approaches, consisting of hierarchical and true multi-

objective methods. Daskin and Stern have formulated a hierarchical objective set covering (HOSC) 

problem by considering the hierarchical programming and MCLP. The single objective model can 
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be modified to incorporate two objectives. The first objective is to minimize the number of 

facilities to cover all demands, while the second objective is to measure the degree of multiple 

coverages in the system.  (Mark S. Daskin, 1981) 

Hogan and ReVelle (Hogan & ReVelle, 1986) proposed two backup coverage models to ensure 

that areas with high demand can maintain a more uniform level of service, BACOP1 and BACOP2. 

The BACOP1 model provided backup coverage to as much of the population as possible with a 

given number of facilities. It incorporates both aspects of LSCP and MCLP to protect coverage 

from varying with time or with unit availability.  

The BACOP2 model extended the Maximal Covering Location Problem as a multi-objective 

problem, allowing simultaneous optimization of both backup coverages. The model can trade off 

the population with single coverage against those with double coverage.  

Daskin/Stern’s formulation divides the whole region into N zones while the model equally 

weights the zones. So, Eaton et al. (Eaton, Ml Sánchez, & Morgan, 1986) extended Daskin/Stern’s 

formulation to take into account weighted demand. The model tries to maximize the multiple 

coverages of demand within a given critical response time with a minimum number of ambulances. 

A multi-objective heuristic method is proposed to overcome the issue of insufficient random-

access memory. The algorithm is tested on the Santo Domingo EMS system in the Dominican 

Republic.  

One of the first models used to handle multiple types of vehicles was the tandem equipment 

allocation model (TEAM) in 1979 (Schilling, Elzinga, Cohon, Church, & Schilling, 1979). The 

model provides multiple types of services and some special capabilities to meet particular demands. 

The model was originally carried out for fire companies where protection is mainly provided by 

two types of fire vehicles: trucks (ladders) and engines (pumpers). This model can be applied in 
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the medical vehicle location model, in which ALS and BLS units provide full protection. The 

TEAM model assumes that demand is fully covered only if it has both primary and specialty 

equipment coverage with the pre-determined standard. Moreover, the specialty equipment can only 

be located in tandem with primary equipment. The constraint of required ordering has been relaxed 

in the facility-location, equipment-emplacement technique (FLEET) model (Schilling et al., 1979).  

 

2.2 Probabilistic models 

The early papers on the location problem focus on the location problem under deterministic 

conditions. Because the deterministic models overlook the fact that the facilities are not always 

available and the ambulance work in a queueing system, ignoring these features may result in 

inaccuracy or inefficiencies. The following papers concentrated on the location problem in which 

stochastic information has been considered. The probabilistic models have been put out to mimic 

this feature.  

Chapman and White (Chapman & White, 1974) formulated the first probabilistic version of 

the location set covering problem under the assumption of a uniform system-wide busy fraction 

for servers, which is denoted as the maximum expected covering location problem (MEXCLP).   

Daskin (Daskin, 1983) reformulated the maximum covering location model and extended it to 

incorporate the busy possibility factor for each facility. He assumed that not all the facilities are 

always available, and some facilities may be in service and cannot be accessed by the new request. 

The author assumes all the facilities are independent and have the same busy fraction q.  

In 1989, Batta et al. (Batta, Dolan, & Krishnamurthy, 1989) thought that even if the system 

could be modeled as a queueing system, the workloads may not be equal due to the geospatial 

distribution of the demand nodes. So, they denoted the adjusted MEXCLP model as AMEXCLP 
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and tried to relax three assumptions to incorporate more stochastic information. Their model 

assumes that the busy probabilities are not identical between different facilities and are variant 

with respect to their locations. An interactive version of the hypercube queueing model is used to 

provide statistics about the system. Moreover, they assume all the servers operate dependently and 

use the correction factors for the hypercube queueing model. The final comparison is conducted 

between different models.  

In Daskin’s MEXCLP model, the travel time is assumed to be deterministic. Ignoring the 

features of stochastic travel time and the location position results in low system operation 

efficiency. Goldberg et al. (Goldberg et al., 1990) extended the model to a nonlinear integer 

programming model for finding the optimal base location. The model tries to maximize the 

expected system success rate by considering stochastic travel times. Unequal vehicle utilization 

and multiple call classes are also considered in the model. The model is validated by using the 

Tuscan Emergency Medical System in Arizona.  

In 1994, Bernardo and Repede (Repede & Bernardo, 1994) extended the MEXCLP to 

incorporate temporal variation in the daily demand process in addition to spatial variation and 

multiple states of vehicle availability. Then the TIMEXCLP model was incorporated into a 

decision support system to determine the vehicles’ location initially. This approach can help EMS 

planners analyze the EMS system characteristics under alternative scenarios.  

Revelle and Hogan (Revelle & Hogan, 1989) introduced two maximum availability location 

problems derived from maximal covering location problems (MCLP). These two models try to 

maximize the population within the desirable travel time with stated reliability. The randomness 

only comes from the server availability in the paper, while the travel time is deterministic. The 

first MALP model assumed all the busy fractions for the servers in the system were the same. 
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While the second MALP model relaxed this assumption and allowed the busy fractions to vary in 

different city zones. Even the author noticed that a site-specified busy fraction is preferable to an 

area-specified busy fraction. However, the area-specified busy fraction was used in the paper 

because of some operation limitations. The site-specified busy fraction can be obtained by using 

the hypercube model.  

In 1994, ReVelle and Marianov (Marianov & Revelle, 1994) extended the PLSCP model to 

formulate the queueing probabilistic location set covering problem (Q-PLSCP). The main 

difference between these two models is the minimum number of servers that must be located within 

the time or required distance of the node. 

All of these models (MEXCLP, PLSCP, MALP (PROFLEET)) make the simplifying 

assumption that the probabilities of two vehicles being busy within the same region are 

independent. In the Q-PLSCP model, the dependence between servers with different busy fractions 

within the same neighborhood is considered. 

Ball and Lin (Ball & Lin, 1993) formulated a new version of probabilistic LSCP and extended 

the LSCP model to a reliability probabilistic model denoted as Rel-P. In addition, they tried to 

prove that the upper bound of the uncovered probability for the demand nodes is limited to a pre-

defined value.  

The previous probabilistic models only consider one type of vehicle. ReVelle and Marianov 

(Marianov & Revelle, 1994) extended the FLEET model to a probabilistic facility location 

equipment emplacement technique, PROFLEET, applied to a fire protection system. The model 

tried to locate the depots or stations to maximize the population (number of calls), which is covered 

by an engine company and a truck company within the given distance with the same reliability 𝛼. 
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Their model tried to locate 𝑝𝑆 fire stations and 𝑝𝐸+𝑇 vehicles to maximize the population which is 

covered by three engines and two tucks with the same reliability 𝛼. 

In these models, fire trucks and fire engines are two distinct types of vehicles, and they take 

different parts of the job. Therefore, based on the fire department's request, the demand node is 

fully covered only if the demand node is simultaneously covered by these two types of vehicles. 

In 1998, Mandell (Mandell, 1998) extended the model to a two-tiered emergency medical service 

system, denoted as TTM. Emergency medical service system usually consists of two types of 

vehicles with different capabilities: basic life support (BLS) units and advanced life support (ALS) 

units. In contrast to the previous models, this model allows one type of server to substitute for the 

other. Moreover, two different types of servers may have different time standards.  

Iannoni et al. adapted the hypercube queueing model to analyze the emergency medical system 

(EMS) on highways, which operates according to specific policies (Iannoni & Morabito, 2007). 

Different types of emergency calls and servers, partial backup of the servers, and multiple 

dispatching are considered in the model. Then those models were applied to a case study of an 

EMS operating on Brazilian highways.  

In 2009, a modified method was proposed by Iannoni et al. to optimize the location of 

ambulances based along the highway (Iannoni, Morabito, & Saydam, 2009). The location 

GA/hypercube algorithm includes a local search procedure to evaluate the local neighborhood of 

each solution generated by the GA operators, which can achieve better performance than the 

districting GA/hypercube algorithm.  

Expanding the system to incorporate multiple servers and represent each server individually 

can bring more complex and flexible dispatching policies. Morabito et al. (Morabito, Chiyoshi, & 

Galvão, 2008) proposed a model which assumed that the servers are non-homogeneous within 
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applications of the hypercube model. Experiments based on the proposed illustrative examples 

showed that model output measures could differ substantially depending on the degree of servers’ 

non-homogeneity. The results imply that the non-homogeneous hypercube models should be used 

to generate the appropriate dispatching decision in practice.  

By considering the spatial and temporal demand characteristics and server busy probabilities, 

Geroliminis et al. (Geroliminis, Karlaftis, & Skabardonis, 2009) developed a model for the 

congested service system, which is a spatial queueing model (SQM). The model also considered 

that the service rates are not identical and may vary between servers. Districting and dispatching 

problems are also integrated with the location model to optimize emergency vehicle deployment 

rather than based on the dispatching preference. A heuristic algorithm is proposed to find near-

optimal solutions.   

In 2009, a novel approach was proposed by Beraldi et al. (Beraldi & Bruni, 2009) to address 

uncertainty based on the probabilistic constraints in the traditional two-stage framework. In effect, 

the location and the definition of the corresponding capacities are the first-stage strategic decisions. 

In contrast, the tactical decisions concerning the allocation of customers to facilities can be taken 

in the second stage. Unlike the previous stochastic programming problem, replacing the stochastic 

constraints with probabilistic constraints allows the decision-makers to evaluate different solutions 

by varying the reliability level. The model assumes that the main source of uncertainty comes from 

the emergency calls process. Dependent assumptions among servers and demand points are 

modeled and tackled with joint probabilistic constraints, which is more general than the separate 

chance-constrained formulation. A Branch and Bound scheme is proposed to deal with the 

continuous variables to overcome the computationally overwhelming problem. 
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The local-reliability estimates and the 𝛼-reliability construct, two methods to measure the 

coverage level of the system, have been introduced and extended in the past decades. However, 

these issues are still subject to little empirical analysis and may not be modeled appropriately. In 

2010 a hybrid model designated the local reliability-based maximum expected covering location 

problem (LR-MEXCLP) was proposed to examine these features (Sorensen & Church, 2010). In 

the model, the local-reliability estimates are incorporated into the original maximum expected 

coverage goal of MEXCLP. Then, different scenarios were generated, and solutions for MEXCLP, 

MALP, and LR-MEXCLP were generated using a mixed-integer program solver.  

 

2.3 Dynamic models 

Static models are usually applied at the strategic level instead of operational due to a lack of 

flexibility (Schmid & Doerner, 2010). Once the location decision is made at the beginning of the 

planning horizon, certain assumptions and constraints will be given, and stochastic features of the 

systems will be ignored.  With the development of powerful computer systems and global 

positioning system (GPS) technology, the dynamic relocation approach has attracted more 

attention and is applied in the real world. With demand varying geospatially and temporally, 

dynamic relocation approaches need to be used to relocate the vehicles to cover for the busy 

ambulances.  

Ingolfsson (2013) conducted a literature review on simulation models applied to emergency 

medical service operations. In the first part, typical processes and specific features related to the 

EMS system are described to reflect the system's complexity. Different categories of performance 

measures associated with EMS operations are introduced. Then, a comprehensive literature review 

is conducted to analyze the main features of the problem, such as data collection, model design, 
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verification, and validation. Finally, an overview of different scenarios in the literature is proposed 

aiming at improving EMS system performance and conducting sensitivity analysis.  

Unlike previous research, which paid more attention to mathematical models, methodologies, 

and simulations, Ingolfsson (Ingolfsson, 2013) surveyed research on planning and management 

for emergency medical service emphasizing four different topics. First, three components as input 

information are investigated in detail: forecasting demand, response times, and workload. Second, 

appropriate EMS performance measures are discussed, and stochastic models which can be 

analytically solved are used to predict the EMS performance evaluation. Third, the optimization 

models for choosing station locations are interpreted. Finally, the optimization models designed 

for ambulance allocation are summarized based on predictable and unpredictable demand and 

travel time changes.  

In 2018, Belanger et al. (V. Bélanger, Ruiz, & Soriano, 2019) summarized and discussed 

modern modeling approaches to address problems related to ambulance fleet management, 

particularly those related to vehicle location and relocation, as well as dispatching decisions. First, 

the early static ambulance location problem has been reviewed as the introduction. Then, the 

authors traced the evolution of both multi-period and dynamic approaches to show various 

methods and factors have been incorporated into the model to make the model more realistic and 

easier to implement. By completing existing reviews, this work provided a precise and up-to-date 

picture of research on optimization models and presented all the models and variants in a 

summarized table.  

The most recent review paper was done by Joseph (Tassone & Choudhury, 2020), focusing on 

the developments of the ambulance routing problem (ARP) and ambulance location problem 

(ALP). First, multiple versions of ARP and ALP are structured with integer programming and 
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solved subject to a set of constraints. Then, a comprehensive review of simulation and 

mathematical programming is summarized in a table. Finally, various heuristic methods, which 

are: ant colony optimization (ACO), genetic algorithm (GA), local search-based solutions, 

neighborhood search description, particle swarm optimization (PSO), and clustering method, are 

analyzed according to the previous works and papers.  

2.3.1 Offline redeployment approach 

2.3.1.1 Planned multi-period deployments 

In 1994, Repede and Bernardo (Repede & Bernardo, 1994) formulated the first multi-period 

location model (TIMEXCLP). For a fleet vehicle, the model divides the day into multiple time 

periods and randomly selects the busy factors for the vehicles to consider the variation in demand 

pattern and the number of available ambulances. The model tries to maximize the expected 

coverage of the system.  

In the TIMEXCLP model, each time period is independent, and there may be a huge difference 

in the configuration of vehicles' locations between the periods. Van den Berg and Aardal (Van Den 

Berg & Aardal, 2015) extended the TIMEXCLP model by incorporating the start-up and relocation 

costs.  

In 2008, Rajagopalan et al. (Rajagopalan, Saydam, & Xiao, 2008) extended Marianov and 

ReVelle’s Q-PLSCP model for multiple periods, which is a dynamic available coverage location 

(DACL) model. The model tries to minimize the required number of ambulances to satisfy pre-

determined coverage requirement with certain reliability and try to relocate the ambulances to 

satisfy the demand requests for each cluster of time with varying demand pattern. The model also 

uses Jarvis’s hypercube approximate algorithm to calculate the ambulance busy fractions. Finally, 

a tabu search heuristic algorithm is given to solve the model.  
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Although redeployment can improve the performance of the emergency medical service 

system and reduce rescue time, frequent redeployment will cause an increase in operational costs 

and crew fatigue. Saydam et al. (Saydam, Rajagopalan, Sharer, & Lawrimore-Belanger, 2013) 

tried to reduce the number of redeployments without sacrificing coverage requirements. They 

considered the number of ambulance deployments in the objective function and extended the 

DACL model into a dynamic redeployment model (DRCL). Moreover, a new heuristic search 

algorithm is given to solve the problem.  

In 2010, Schmid and Doerner (Schmid & Doerner, 2010) extended the double standard model 

(DSM), which was introduced by Gendreau et al. (Michel Gendreau, 1997), to formulate a multi-

period mixed-integer model (mDSM) by considering the time-dependent variation in travel speed 

and resulting time-dependent variation in coverage areas. The double standard model (DSM) 

requires multiple coverages, such that demand points are supposed to be covered by more than one 

vehicle. The mDSM model tries to maximize the coverage throughout the entire planning horizon 

and considers the penalty to eliminate the unnecessary relocations. A variable neighborhood search 

method is proposed to solve the problem. 

Basar et al. (Başar, Çatay, & Ünlüyurt, 2011) extended the BACOP 1 and DSM model to 

formulate a multi-period backup double coverage model, which is denoted as MPBDCM. The 

model tries to maximize the total population double covered in all the periods within two distinct 

time standards for two different EMS vehicles. And some operational requests have been added to 

the stations. Moreover, a tabu search approach is proposed and demonstrated on the generated data. 

In 2013, Naoum-Sawaya and Elhedhli (Naoum-Sawaya & Elhedhli, 2013) proposed a two-

stage stochastic optimization model for the redeployment problem. The model's objective is to 

minimize the number of relocations in the first stage and the number of emergency calls not served 
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within the pre-determined time. The historical data of the Waterloo region is used to test the 

algorithm's performance. 

The DSM and its extensions are good approaches to dealing with the location and relocation 

problem, while the stochastic features of the demand and travel time are ignored in the model. Not 

considering these features may cause the model to be inaccurate and inefficient. Degel et al. (Degel, 

Wiesche, Rachuba, & Werners, 2015) extended the DSM model to a data-driven optimization 

model by incorporating empirical data, dynamic variations, and economic aspects. The model tries 

to force adequate coverage on the tactical level by using historical data.  

In 2016, Bélanger et al. (V. Bélanger, Kergosien, Ruiz, & Soriano, 2016) proposed a 

comparison analysis study of location and relocation strategies to test the performance of different 

location and relocation strategies. The paper tried to quantify the benefits and drawbacks of the 

different relocation strategies compared with the static strategies. Therefore, four different 

relocation strategies were proposed. Strategy 1 and Strategy 2 are apriori models, and all decisions 

are made ahead regardless of the system's current state. Strategy 1 allows no relocations between 

periods, while relocation between periods is permitted in Strategy 2. In this model, the new idle 

ambulance can be relocated to the assigned station after the service. Strategies 3 and 4 are real-

time dynamic relocation strategies. 

2.3.1.2 Offline-dynamic redeployment 

Because the relocation strategies need to be executed each time a vehicle is dispatched to a 

call, it makes the dynamic relocation algorithm time-consuming and infeasible when the calls 

arrive quickly. Since parallel computing was not always an option for dynamic relocation in the 

early days, a series of pre-planned scenarios can be applied to deal with the case in real life. In 

2006, Gendreau et al. (M. Gendreau, Laporte, & Semet, 2006) proposed a dynamic model, a 
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maximum expected coverage relocation problem (MECRP). The model tries to maximize the 

expected coverage and consider the upper bounds of the relocation times.  

The hypercube queueing model (HQM) proposed by Larson in 1974 was a Markov chain 

model of a queueing system with distinguishable servers and assumed a static deployment strategy 

where the idle ambulances are assigned to the fixed home station. Alanis et al. (Alanis, Ingolfsson, 

& Kolfal, 2013) extended the HQM by considering repositioning policies and used the same data 

requirements and output as the HQM model. The model is a two-dimensional Markov chain model 

of an emergency medical service system with redeployment using a compliance table policy. The 

paper demonstrated the Markov chain model is near-optimal, and a well-designed compliance table 

is vital to the final result. 

In 2004, Yang (Yang, Hamedi, & Haghani, 2004) developed one of the most complete 

simulation models for the EMS vehicle dispatching system. The model is integrated with a Genetic 

algorithm to solve an EMS dispatching and redeployment problem. 

In 2007 Andersson and Värbrand (Andersson & Värbrand, 2007) suggested preparedness as a 

way to evaluate the ability of ambulances serving the regions. They proposed a new quantifiable 

measure for preparedness and new decision support tools for vehicle dispatching and relocation, 

which is a dynamic ambulance relocation model (DYNAROC). The model considers the 

prioritization of an ambulance call, and the data in Sweden was used. Moreover, the redirection of 

vehicles between calls with different severity is considered. The relocation occurs when the 

preparedness of one or more regions is lower than the pre-determined level. The relocation model 

aims to minimize the maximal travel time for any relocation vehicles to reach the pre-defined 

preparedness in all zones. Then a tree-search heuristic method is used to solve the DYNAROC 

problem.  



 24 

In 2015, Valerie et al. (Valérie Bélanger, Lanzarone, Ruiz, & Soriano, 2015a) addressed the 

ambulance dispatching and relocation decision problem simultaneously as the ambulance 

relocation and dispatching problem (ARDP), which tries to determine the location of available 

ambulances as well as the best-dispatching policy defined as a set of pre-assignment lists, one for 

each demand zone. ARDP suggests a joint dispatching and relocation strategy to minimize the 

total expected response time considering relocation efforts. In the model, the capacity of 

ambulances and maximal workload are considered. A metaheuristic decomposition approach 

consisting of heuristic algorithms that include the interoperation of metaheuristics and 

mathematical programming techniques is developed to solve the problem.  

Liu et al. (Liu, Li, Liu, & Patel, 2016) extended the DYNAROC model by considering other 

random elements consisting of travel time and emergency demands. They proposed a chance-

constrained programming model with probabilistic constraints to achieve a reliable level of 

services. The preparedness is modified using an approximate hypercube approach in the model. 

The model's objective is to maximize the profit with a given level of reliability within the limitation 

of the number of relocations. Finally, a genetic algorithm is proposed to solve the problem.  

As mentioned above, the compliance table is optional for relocating ambulances in real life. 

Sudtachat et al. (Sudtachat, Mayorga, & Mclay, 2016) extended the model to a nested-compliance 

table model and restricted the number of relocations that can occur simultaneously. The advantage 

of nested policies is that only a pre-defined number of vehicles are relocated, and unnecessary 

movements can be avoided. The nested-compliance table model is formulated as an integer 

programming model, and the objective is to maximize the expected coverage using the compliance 

table. This paper considers only one type of vehicle and one type of call priority, and no patient 

queue is formed. The model uses the Markov chain method to approximate the EMS system's 
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steady-state probability and other parameter measures. Finally, the real-world data is used to 

validate the model, and a comparative analysis study is proposed to prove the benefit of the 

relocation with respect to the adjusted maximum expected covering location problem.  

By extending previous work, two types of medical units are considered: Rapid Responder 

Ambulances (RRAs) and Regular Transport Ambulances (RTAs). The key difference between 

these two types of vehicles is that RRAs are faster, but they lack the ability to transport a patient 

to the hospital. In the model (van Barneveld, van der Mei, & Bhulai, 2017), the number of 

ambulances per vehicle type and traveling time that is instructed to relocate are constrained. If 

there is no EMS vehicle available for the response at the moment, the call enters a first-come-first-

serve queue and waits for the next available EMS vehicle to be dispatched. Then an integer linear 

programming is formulated to compute the compliance tables for the EMS system, which uses the 

outcomes of a hypercube model as input parameters. Finally, a discrete-event simulation is 

conducted to generate the two-dimensional compliance tables. 

The dynamic redeployment problem provides adequate coverage with reliability and relocates 

the idle vehicle to cover for the busy vehicles. In contrast to the urban areas, the rural areas have 

different features in the following aspects: rural areas have a limited number of ambulances, the 

demand per area in the rural region fluctuates, and the events occurring in the rural area are sparse. 

In 2017, van Barneveld et al. proposed a dynamic ambulance management system for a rural area 

with a limited number of ambulances (van Barneveld, Bhulai, & van der Mei, 2017). They 

proposed a discrete-time Markov decision process (MDP) to find a good configuration of 

ambulances that can respond quickly to the coming request. MDP provides a general framework 

for modeling sequential decision-making under uncertainty. However, the state space of the 

corresponding dynamic program may be extremely large, referred to as the curse of dimensionality, 
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which makes the computation intractable. Then a one-step look ahead heuristic method is proposed 

to address this problem, and a numerical comparative analysis with compliance table policy is 

conducted to test the performance. 

Maxwell divided the relocation models into three categories in the paper “Approximate 

Dynamic Programming for Ambulance Redeployment” (Maxwell, Restrepo, Henderson, & 

Topaloglu, 2010). The first class of redeployment models involves solving integer programs in 

real time whenever an ambulance redeployment decision needs to be made. The second class of 

models is based on solving integer programs in a preparatory phase. The third class of models 

attempts to explicitly capture the system's randomness, either through a dynamic programming 

formulation or through heuristic approaches. The paper also proposed an approximate dynamic 

programming (ADP) approach. Compared with these three classes of redeployment models, the 

ADP approach can capture the stochastic features of the emergency medical system and quickly 

obtain the relocation decision. Compared with the lookup table policy, the ADP approach can fully 

automate the decision-making process. In the lookup table approach, the model is solved in a 

preparatory phase and provides a lookup table describing the deployment of all vehicles. The ADP 

approach can work with a variety of objective functions and can handle large-size dimensions of 

state-space problems. The model minimizes the total expected discounted number of calls by 

relocating the idle ambulances within a given delay threshold. However, due to the size of the 

problem, only new idle ambulances can be relocated sometimes. Finally, the performance of the 

ADP approach is validated by using realistic problems, and the parameters in the model are tuned. 

In Maxwell’s model, the travel time is deterministic. Only one type of ambulance and call 

priority is considered. Schmid (Schmid, 2012) extended the ADP model to incorporate time-

dependent travel times and demand requests based on the proposed work. The objective of the 
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approximate dynamic programming model is to minimize the resulting response times for all 

demands that occur in a day. In the model, only the new idle ambulances are relocated to the 

stations because Austria’s law does not allow the empty ambulances to be repositioned from one 

station to another one. Despite this, the model has proved useful based on real data from the city 

of Vienna. Moreover, the stochastic travel time and demand volume are proved to be vital to the 

final dispatching result.  

As mentioned in the previous work, constrained relocation time was important for 

implementing the relocation model in real-world systems. Partitioning the whole area into districts 

can impose a restriction on relocation time and reduce the complexity of the problem. In 2020, 

Sudtachat et al. (Sudtachat, Mayorga, Chanta, & Albert, 2020) partitioned the service area into 

small sub-areas. Each sub-area operated as a distinguishable sub-system. The nested-compliance 

model is formulated as an integer programming model (MRCRDP) to maximize the expected 

coverage for each district. Then the algorithm of the nested-compliance model embedded into a 

Tabu search heuristic for the MECRDP is proposed. Finally, the performance comparison is 

conducted using real-world data between combined relocation and districting policies and static 

policy based on the adjusted maximum expected covering location problem (AMEXCLP). 

2.3.2 Online redeployment approach 

For offline redeployment approaches, deployment decisions are made using pre-determined 

computations, and they do not consider the current state of the system and vehicles. These models 

are computationally efficient and can improve the performance of the EMS system compared with 

the static models. However, they cannot capture the stochastic features of the system and 

sometimes cannot reflect the real situation of the real world. Therefore, they cannot achieve the 
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best result when considering the real status of the system. As mentioned above, stochastic 

information is vital to the computational results.  

With the development of advanced computational tools and powerful global positioning 

systems, the emergency medical system can be more precise, and the vehicles are much easier to 

track. Therefore, a higher level of requirement can be put forward in designing the emergency 

medical management system. In the new types of models, dispatching and redeployment of the 

vehicles should consider the system's current status in real time.  

The first real-time redeployment model was proposed by Gendreau et al. (Michel Gendreau, 

Laporte, & Semet, 2001) and formulated as an integer programming model defined as 𝑅𝑃𝑡. Several 

practical constraints and factors are considered in the model. The objective of the model is to 

maximize the zones covered by at least two vehicles to make sure they have extra coverage. 

Meanwhile, the corresponding penalties of relocations have been considered in the objective 

function to keep the location plan stable throughout the day, and the round trips and long trips will 

be avoided. Moreover, the model takes into account the workload and avoids redeploying the 

ambulance repeatedly. In 1997, Gendreau et al. used tabu search, a local search method, to solve 

the static ambulance location model. This method has been developed into a parallel tabu search 

heuristic method and applied to the dynamic problem. 

Yang (Yang, 2006) and Yang et al. (Yang, Hamedi, & Haghani, 2005)  were the first to develop 

a model which considers different categories of vehicles (police vehicles, ambulance vehicles, and 

fire vehicles). According to the emergency severity, the model will dispatch the appropriate types 

and numbers of vehicles to the incident site. Predetermined dispatching time for different types of 

vehicles is considered. Moreover, diversion of vehicles and redeployment of vehicles are also 

considered. For this problem and model, a Genetic algorithm heuristic method is used to find good 
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solutions in a reasonable time. Finally, a simulation model is conducted to check the performance 

of the optimization model on real-case data. In this research, the functional division of vehicles is 

not considered. For example, ALS vehicles can work as BLS vehicles. 

More and more dynamic redeployment models are applied in the real-time decision-making 

process. However, some limitations make redeployment difficult to be implemented in the real 

world. The efficiency and accuracy of the algorithms cannot be guaranteed for some large 

problems due to incomplete system information. In 2015, Jagtenberg et al. (Jagtenberg et al., 2015) 

proposed a polynomial-time heuristic method to solve the real-time dynamic ambulance relocation 

problem. In the model formulation, the maximum expected covering location problem (MEXCLP) 

(Daskin, 1983), which uses an integer programming model to search static policy, is used to 

calculate the marginal coverage contribution to obtain a dynamic redeployment strategy. The 

heuristic method tries to relocate the newly idle ambulances to the base, resulting in the largest 

marginal coverage according to the MEXCLP model. The model ignores various information 

details because of the state space definition, resulting in guaranteed optimality. However, the small 

region and the realistic case study proved that the dynamic MEXCLP methods can achieve better 

results than the static model in most conditions.   

System status management was first introduced to describe the process of dynamically 

reconfiguring EMS ambulance deployments to balance ambulance availability and demands across 

time and space (Stout, 1989). By matching the limited system resources with gradually increasing 

demands, system status management tries to derive dispatching and redeployment algorithms that 

dynamically assign ambulances to incidents. System status is the total number of ambulances 

available to respond to calls. In 2015, an ambulance allocation dynamic model (Lam et al., 2015) 

was proposed based on the system status management (SSM) strategy. The geographical 
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information system-based analysis and mathematical programming were used to develop the 

dynamic ambulance deployment plans for SSM based on real-world data. Discrete event 

simulation (DES) was used to compare the performance of the SSM strategy derived using the 

GIS-based analysis and MP approach. Three measures, response times, system utilization, and 

coverage proportions, were used to compare static allocation and SSM strategy performance under 

various demands and travel time uncertainties.  

As an extension of the previous study, an ADP modeling framework (Lam, Ng, Nguyen, Ng, 

& Ong, 2017) was proposed in 2017 to derive the optimal dynamic ambulance allocation policies 

by leveraging the DES model for the Singapore EMS system. The ADP approach based on the 

DES model can overcome the problem that the MDP model can quickly become intractable by 

considering more parameters and system configurations. This is the first study on applying the 

ADP approach for a national EMS system based on the actual ambulance demands over a 

continuous two-year study horizon. The study used the temporal difference (TD) and the least-

squares temporal difference (LSTD) learning algorithm to train the parameters of the ADP model. 

According to the organization of Singapore’s EMS system, various scenarios and deployment 

policies were evaluated.  

Due to the difficulty of achieving the optimality mentioned above, Jagtenberg et al. (Jagtenberg, 

van den Berg, & van der Mei, 2017) proposed a heuristic method instead of an optimal one to 

calculate the redeployment of the ambulances. This paper makes two contributions: first, some 

quantified standards have been set up to test the necessity of relocations in the heuristic method. 

The model tries to balance the benefits of relocation versus the disadvantages regarding the number 

of additional ambulance relocations to achieve this gain. Second, any idle ambulances can be 

relocated instead of dispatching the ambulances from base to destination. This strategy intends to 
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decrease the redeployment time to achieve the new allocation configuration. The model examines 

the relationship between relocations and performance by solving a linear bottleneck assignment 

problem (LBAP). Finally, some distinct scenarios are used to validate the performance of the 

heuristic method. 

The literature mentioned above shows that most of the dispatching and relocation of the 

ambulances are computed independently. And the joint dispatching and location policy have not 

been studied extensively. In 2015, Bélanger et al. (Valérie Bélanger, Lanzarone, Ruiz, & Soriano, 

2015b) proposed a joint dispatching and relocation model (ARDP) to determine the location of the 

ambulances as well as the best dispatching policy. Three main characteristics make the ARDP 

model different from others. First, the ARDP model will simultaneously consider dispatching and 

relocation to maintain an adequate service level and minimize the response time and relocation 

time. Second, the model takes into account the capacities and workload of ambulances. Finally, 

the expected response time is used to measure the performance of the policy rather than the number 

of coverages. The authors claim that the model that minimizes expected response time is much 

easier to understand and execute for the decision-maker for large-size problems, even when the 

expected coverage is not as precise as queueing theory-based model to estimate system 

performances under uncertainty. Then a metaheuristic decomposition approach is proposed to 

handle the large-size problem. The approach lies between the decomposition approaches and 

improvement heuristics. The problem is divided into serval small-size subproblems, and a specific 

model is applied to each subproblem. Finally, a real-world case is used to validate the performance 

of the heuristic method.  

In 2016, Bélanger et al. proposed two dynamic repositioning problems: the third and fourth 

models in the paper. The first dynamic model corresponding to the double standard repositioning 
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model maximizes overall coverage within different pre-defined standards. The model only allowed 

redeploying the new idle ambulances, which had just finished the service. While in the second 

dynamic model, the dynamic relocation of available vehicles in real-time is permitted. Both newly 

idle vehicles that just finished service and idle vehicles located in the stations can be relocated 

based on the system’s current status. The model is formulated as a double standard dynamic 

relocation model defined as DSDRM. The multi-objective model tries to maximize the double 

coverage while minimizing the vehicle relocating penalty.   

In Sharifi’s paper (Sharifi, 2014), the author proposed an integrated model to do the 

dispatching and relocation as well as considering the workload balance, work shift, and vehicle 

home stations. Based on the assumptions, the influence of these three factors is considered in the 

travel cost. A function is proposed to calculate the adjusted travel cost matrix because it is assumed 

that the assignment and relocation costs are different under different conditions.  

In 2018, a two-stage redeployment optimization approach was proposed (Enayati, Mayorga, 

Rajagopalan, & Saydam, 2018). In the first step, the model seeks to maximize the coverage of the 

demand zone, which is weighted by historical call volume by making redeployment decisions. 

Hence, the relocation decision can only be made when the accumulated busy time plus the time 

related to the redeployment decision is smaller than a specified amount. In the second step, the 

minimum total travel time location problem with the workload restriction model is formulated to 

minimize total travel time with respect to redeployment moves. 

Shakiba et al. (Enayati, Özaltın, Mayorga, & Saydam, 2018) proposed a two-stage stochastic 

programming model to redeploy and dispatch ambulances to maximize the expected coverage. The 

model incorporates multiple call priority levels and considers the balance of personnel workload 

in a shift. In the first stage, the idle ambulances are deployed, then dispatching decisions are made 



 33 

in the second stage. To overcome the gradually increasing scale of the problem and increase the 

computational efficiency, the authors proposed a dual decomposition algorithm based on a split-

variable reformulation to take advantage of the block separability of the underlying problem 

structure. By evaluating the model performance based on average coverage and ambulance 

workload during a shift, the proposed Lagrangian branch-and-bound algorithm can perform better 

than solving the integer programming model, especially for large-size problems.  

In 2018, Nasrollahzadeh et al. (Ali Nasrollahzadeh, Khademi, & Mayorga, 2018) developed a 

flexible optimization framework to consider dispatching, redeployment, and reallocation for real-

time dynamic EMS systems. Moreover, an approximate dynamic programming model is proposed 

to generate the solutions, and a lower bound on the expected response time of relocation policy is 

calculated to assess the quality of solutions. In addition, different basis functions and static and 

dynamic benchmarks are used to test the performance of the ADP model by using real-world data.  

In 2020, Carvalho et al. (Carvalho, Captivo, & Marques, 2020) focused on the operational level 

to solve the ambulance dispatching and relocation problems. Their work proposed two generic 

approaches based on real-life features: a mathematical model that integrates dispatching and 

relocation decisions and aims to maximize system coverage and a pilot method heuristic. Both 

approaches use a time-preparedness measure to evaluate the system’s capability to handle new 

emergencies.  

The brief literature review shows that joint dispatching and redeployment models are 

formulated to address the problem, and various parameters are added to the models to reflect the 

complexity of the EMS system. Effective algorithms are then proposed to solve the problems. 

However, except from the works of Sharifi (Sharifi, 2014), it seems that joint dispatching and 

redeployment of heterogeneous emergency vehicle fleets under a balanced workload have not been 
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studied extensively. Therefore, this work aims to develop a joint dispatching and redeployment 

model to compute the configuration of a heterogeneous emergency vehicle fleet consisting of 

police, ambulance, and fire vehicles. In addition, workload balance among vehicles is also 

considered to ensure fairness and effectiveness. 

Moreover, some operational constraints are considered in the model to reflect the actual 

situations in the real world. Different scenarios will be generated from real-world data to test the 

model's performance. Finally, an efficient heuristic approach will be proposed to solve the large-

size problem and deal with complex situations in the real world. 
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Chapter 3 : Problem Statement and Mathematical Formulation 

 

This chapter will elaborate on the characteristics and properties of the problem. The model's 

notations, parameters, and variables will be given and explained. Reasonable assumptions and 

simplifications about the practical problem will be provided, and then the mathematical 

formulation will be presented. Some details about the mathematical model will also be explained 

thoroughly.  

 

3.1 Problem statement  

In the real world, where medical resources and budget are limited, the Emergency Management 

Service (EMS) system is critical to coordinate the medical units and provide quick responses for 

the patients. Every second counts in life-threatening emergencies, which means the ability to 

provide fast and effective rescue can make the difference between survival and death. The main 

tasks of the EMS system are to coordinate all parts of the system to provide a quick response under 

the uniform command and shorten the response and rescue time. Therefore, ambulance service 

providers must meet strict requirements regarding response time. Response time is the core 

parameter to estimate the performance of the system. Response time is related to the dispatching 

system and largely depends on the system coverage by the remaining idle vehicle units. This 

research aims to develop an integrated model for the EMS system to assist dispatching and 

relocation decision-making. The integrated model will dispatch the required number and types of 

vehicles to the incident site and relocate the idle vehicles to other stations to maintain the maximal 

system coverage. Redeployment tries to make sure all regions are attended to and makes 

preparation for the accidents that may happen in the future. Both dispatching and relocation will 
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follow the guidelines and regulations. Some assumptions based on the actual conditions will be 

considered in the model to make it more realistic.  

In summary, the integrated model reflects the actual need and considers many uncertainties 

that can be used in real life to assist the emergency management center in making decisions. The 

following section will discuss the characteristics and details of the problem.  

3.1.1 Excessive workload conflict 

Surveys of North American EMS operators have shown that operators who use a dynamic 

strategy increased from 23% in 2001 (Cady, 2002) to 37% in 2009 (Williams, 2009). Relocation 

of idle ambulances can achieve good use of medical resources through proper and strategic 

scheduling. By relocating the vehicle to unattended areas, the system can prepare for the accidents 

that may happen in the future and improve coverage with the same or even fewer resources. With 

increased population density and motor vehicles, the EMS system must handle steady and rapidly 

growing demands even under budget cuts or no increase in funds. So, although repositioning 

strategies can increase coverage and shorten first response time under some conditions, there is no 

doubt that these strategies impose extra workload on the personnel and increase the cost of system 

operation and maintenance. Therefore, good strategies need to be considered to reduce 

unnecessary moves under the premise of ensuring the improvement of system coverage. A lot of 

research proposed various methods to limit the number of moves or consider the relocation cost in 

the decision-making process to increase the useability in real life.  

Sofianopoulos et al. (Sofianopoulos, Williams, Archer, & Thompson, 2011) conducted a study 

to investigate the impact of shift work on physical fatigue, sleep, and psychological factors among 

paramedics in Australia. Ambulance paramedics play an important, indispensable, and unique role 

as members of a component that forms a unique part of emergency services. As pre-hospital 
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clinicians, they are constantly and increasingly faced with heavy workloads that are physically, 

mentally, and emotionally tiring. These factors can compromise the effectiveness of these workers.  

Fatigue and back problem are associated with EMS technicians due to the extended work hours 

and lack of fitness.  

The system workload is better shared among the stations based on their cooperation. Stations 

are spatially distributed and operate independently, and the workloads may vary with the location 

of the stations (Aringhieri, Bruni, Khodaparasti, & van Essen, 2017). In some previous works, the 

total workload is evenly distributed among the available stations. Some others have mentioned that 

it would be desirable to have individual response time (the mean response time for each demand 

zone) that does not vary too much among the demand zones. In 2013, Toro-Diaz et al. (Toro-Díaz, 

Mayorga, Chanta, & McLay, 2013) illustrated two alternative criteria, in particular, variability in 

individual response time as well as variability in ambulance workloads which can be seen as 

fairness performance indicators from the perspective of internal and external customers.  

3.1.2 Preference for home stations  

An ambulance station is a structure or other area for storing ambulances and their medical 

equipment, as well as working and living space for their staff. Ambulance stations have the basic 

facilities to maintain the ambulance vehicles and provide the supplies for the medical units, such 

as a charger for the vehicles’ batteries and medical supplies. The stations have specific areas for 

storing medical equipment and supplies. Stations are also equipped with office and living areas for 

clinicians and technicians. In addition, the stations may have an alerting system and training rooms, 

which depend on whether crews routinely wait at the station. In some conditions, ambulance 

stations may be co-located with or integral to other emergency service facilities, such as fire 

stations or police stations, especially where the fire department runs the ambulance service.  
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After providing the basic medical treatment at the scene or dropping the patients off at the 

hospital, an ambulance can be on standby at the hospital or relocated to the station to allow staff 

to rest and replenish medical resources. Based on the configuration of stations, there is no doubt 

that crew members prefer to locate at their home stations. Compared with ambulances, the cost of 

relocating the fire vehicles to other stations is much higher than relocation to the home station.  

EMS workers are commonly deployed in teams and work 12 or 24-hour shifts. At the end of the 

shift, vehicles located at other locations need to return to their home station for crews’ preparation. 

Also, a vehicle at the end of the shift is not suitable for relocation.  

 

3.2 Characteristics of the problem 

3.2.1 Emergency vehicle fleet 

Due to unexpected events' complexity, different departments sometimes need to cooperate to 

handle the accident.  After the incident happens, the patrolling police vehicle will be dispatched to 

the accident site. At the incident scene, the police officer must ensure everyone is safe and manage 

logistics like automobile removal, traffic control, recording accident, and finishing documents. 

After the accident, the police officer may also need to determine fault.  

Many EMS calls present situations that cannot be adequately addressed by a two-person 

ambulance crew. That is why a fire engine, fire truck, or fire quint is needed to help with the scene. 

The staff also needs to ensure the patient’s care needs are met promptly and safely if the patients 

are trapped, critically ill, or unable to walk. In addition, personnel must be prepared to address any 

hazards found and provide standby fire protection as needed. For example, suppose a fire were to 

break out. In that case, crews must be prepared to extinguish the flame and ensure personnel safety. 

Ambulances must reach the incident site to provide medical rescue and pre-hospital care. Then 
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communicate with the hospital, if necessary, to ensure the hospital finishes the necessary 

preparation and saves rescue time.  

So, three categories of emergency vehicles are considered in the model: 

- Police vehicles: only one type of police vehicle is considered 

- Ambulance vehicles:  

o Basic Life Support (or BLS) is a specific level of pre-hospital medical care provided 

by trained responders. Basic Life Support consists of a number of life-saving 

techniques focused on the "ABCs" of pre-hospital emergency care. 

o ALS (Advance Life Support) provider may perform advanced procedures and skills 

on a patient involving invasive and non-invasive procedures 

- Fire vehicles: 

o Fire Engines are equipped with hoses and water so that the personnel can fight with 

fire. 

o Fire trucks carry ladders, rescue equipment, and other tools to support firefighting 

activities. 

o Fire quint is a firefighting apparatus that serves the dual purpose of an engine and 

a ladder truck.  

According to different functions, the vehicles have a more detailed division which can make 

dispatching and scheduling quicker and more efficient. Therefore, considering three different types 

of emergency fleets and six different vehicle types can make the model more realistic.  
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 3.3 Assumption related to the model 

This section elaborates on the assumption behind the model. Key characteristics of the problem 

need to be extracted, and reasonable assumptions must be made to handle the uncertainties in real 

life. 

3.3.1 Spatial assumptions 

Unlike Sharifi’s research (Sharifi, 2014), which divides all nodes into two categories: critical 

nodes and ordinary nodes, demand zones will be used to do the relocation. Here are several 

advantages: 

- Because some nodes have similar properties, such as similar dispatching times and accident 

rates, using demand zones instead of nodes can decrease problem complexity significantly 

and save computational resources.  

- The importance of points is not fixed. The accident rate for a given location is different 

during different time periods. For example, the regions with significant office space need 

to be paid more attention during working hours. While during the night, after the staff 

leaves the office, the residential areas may need more coverage. Fixing the importance of 

the locations cannot reflect the geospatial and temporal distribution of accidents which may 

cause a huge difference in the results. 

- The importance of locations is a binary value. Even for two nodes that are both critical 

nodes, their importance may not be the same. For example, larger hospitals may need more 

equipment among hospitals of different sizes. 

- Fixed demand nodes do not fully use the historical data, which is precious in making 

dispatching and relocation decisions. 



 41 

An EMS system serves a large region and coordinates various departments. The continuous 

space of potential accident locations will be divided into several smaller subregions to reduce the 

system's complexity and computational difficulties. It is assumed that the subregions are small 

enough that all nodes in the subregion share common properties—moreover, each subregion's 

demand aggregates to the zone's centroid. Then the accident rate of each zone during different time 

periods can be calculated according to the historical data. 

3.3.2 Temporal assumptions 

The location of the accident site and stations is known for dispatching, and the travel time can 

be computed based on the road network. For relocation, however, the travel time between the 

stations and each zone can be represented as the travel time between stations and centroids of 

zones. Accurate travel time estimation will affect the dispatching decision and change the 

redeployment decision and workload balance. In the real-world case study, the Open Street Map 

will be used in Python to generate the road network of Baltimore City. And the travel distance 

matrix is calculated based on the network using Dijkstra’s algorithm. When calculating travel time, 

travel condition is not considered for several reasons. First, sirens and lights are used to clear the 

path when the vehicles are en route. So, traffic conditions may not affect travel speed. Second, in 

the historical data, the actual travel conditions at the time of the incidents are missing. Real-time 

travel information can be obtained from Google if travel conditions are necessary. The real-world 

case study's purpose is to ensure the model works.  

For relocation, long-distance dispatching is not an option in real life. A constraint can be 

imposed on the relocation travel time. If the relocation travel time is greater than a specific value, 

relocation is not an option.  
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The occurrence of the relocation has strict restrictions. When an emergency vehicle unit is 

dispatched to respond to a call, personnel must provide basic rescue at the scene. The medical 

clinicians may provide pre-hospital treatment and then transfer the patient to the assigned hospital. 

After finishing a series of tasks, the ambulance will become idle and can be dispatched to a new 

accident site or relocated to a station. The real-world case study will assume an average working 

time for each dispatching. If the interarrival time between two incidents is smaller than a threshold, 

it usually means that the relocated vehicle cannot get to the assigned station to prepare for a new 

incident. On the other hand, if the interarrival time of two incidents is larger than the average 

working time, the dispatched vehicle has finished its job and can return to its home station. 

To account for the workload balance in the model, after dispatching the vehicles to the incident 

sites and relocating the vehicles to the stations, the travel time of each vehicle needs to be added 

to the accumulated busy time. 

3.3.3 System dynamic assumptions 

It is assumed that the current status of vehicles and the system are known in real time. Therefore, 

the online redeployment approach is based on the event. Each time a call comes into the system, 

information about the vehicle and the system will be updated. Then the decision-making will be 

based on the updated information.  

3.3.4 Assumptions related to crew 

The proposed model tries to give out efficient dispatching and relocation decisions to guide 

the operation of the EMS system as well as consider the workload balance of vehicle units. This 

measure tries to maintain fairness and avoid excessive workload. First, according to the 

configuration of the stations and vehicles, it is assumed that the crews prefer their home station 

when relocation decisions are being made. Second, after their shift, the vehicles and crews must 
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return to their home stations and rest. Third, the accumulated work hour for each vehicle is 

calculated. If a vehicle’s accumulated work hours exceeds a given value, it is assumed that it is 

unavailable for relocation, but it can still be sent to a new emergency scene. This is reasonable in 

real life. When an accident happens, sending the nearest available vehicle to the accident site will 

result in the best solution in most cases. Dispatching the proper vehicle to take care of the patients 

is highly recommended, rather than leaving them at the incident site waiting. While the relocation 

is not mandatory, the workload should be considered in the decision-making for relocation. 

Excessive workload should be avoided to help avoid crew fatigue.   

 

3.4 Mathematical formulations 

3.4.1 Notations 

The real-time dispatching and redeployment problem is formulated as an integer-programming 

problem subject to various constraints. Table 3.1 illustrates the variables, parameters, and notations 

used in the mathematical model.  

3.4.2 The integer programming model 

Traditionally, the dispatching and relocation decisions are considered separately. Some studies 

have shown that the response times and busy fractions largely depend on the station locations, 

frequency of the incidents, and the policy of the EMS vehicles dispatching. Various dispatching 

policies and many important factors can affect the dispatching of EMS vehicles. There is no way 

to guarantee that one method is helpful in all situations. The most widely used dispatching policy 

for EMS vehicles is to dispatch the closest vehicles to the emergency site. It is the most 

straightforward method to reduce the system response time.  
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Table 3.1 Summary of notations 

GLOBAL PARAMETERS AND SETS 

N Initial fleet size at the beginning of a shift 

S 

A 

H 

D 

T 

𝝉𝒔𝒔′ 

𝝉𝒔𝒂 

𝝉𝒂𝒔 

𝝉𝒂𝒉 

𝒛𝒅 

𝑷𝑫𝒌𝒅 

𝑷𝑻𝒌𝒂 

𝜻𝒅 

𝜸 

A 

𝑻𝒌𝒂 

Set of ambulance locations 

Set of incident sites 

Set of hospitals 

Set of demand zones 

Total hours of a shift 

Shortest travel time from station 𝑠 ∈ 𝑆 to station 𝑠′ ∈ 𝑆 

Shortest travel time from station 𝑠 ∈ 𝑆 to incident site 𝑎 ∈ 𝐴 

Shortest travel time from accident site 𝑎 ∈ 𝐴 to station 𝑠 ∈ 𝑆 

Shortest travel time from accident site 𝑎 ∈ 𝐴 to hospital h ∈ 𝐻 

Importance of demand zone d ∈ 𝐷 

The penalty for deficiency of type k vehicles at demand zone 𝑑 ∈ 𝐷 

The penalty for the shortage of type k vehicles at accident site 𝑎 ∈ 𝐴 

Set of locations that cover zone d ∈ 𝐷 

Maximum allowed workload of each ambulance in a shift (hours) 

Set of accidents 

The pre-defined travel time limit for type k vehicles to the accident site a 

 

DYNAMIC PARAMETERS AND SETS  

t  

𝑳𝒕 

𝜶𝒕 

 

𝜷𝒌𝒊𝒔
𝒕  

𝑰𝒌𝒊𝒔 

 

𝑹𝒆𝒒𝒌𝒂 

𝒕𝒕𝒍𝒊𝒎𝒊𝒕 

Current time in the shift, t ∈ {0, 𝑇} 

Set of available ambulances at time t ∈ 𝑇, 𝐿𝑡 ≤ 𝑁 

Maximum allowed accumulated busy time for each ambulance at time t ∈ 𝑇  

after the redeployment decision at time t ∈ 𝑇 

Accumulated busy time of type k vehicle I located at station s at time t 

Binary parameter, =1 if type k ambulance I is located at station 𝑠 ∈ 𝑆 at time t, 

=0 otherwise. 

Integer parameter, number of type k vehicles required by accident site a at time t 

Integer parameter, travel time limit for the relocation 
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DECISION VARIABLES 

𝑹𝒔𝒔′ 

 

𝑫𝑰𝑺𝒌𝒔𝒂 

 

𝑫𝑰𝑺𝒌𝒂𝒔 

 

𝑫𝑰𝑺𝒌𝒂𝒉 

Binary variable, =1 if a vehicle located at station s (regardless of type) moves 

from 𝑠 ∈ 𝑆 to 𝑠′ ∈ 𝑆, =0 otherwise 

Binary variable, =1 if type k vehicle is dispatched from station s to accident site 

a, =0 otherwise 

Binary variable, =1 if type k vehicle is dispatched from accident site a to station 

s, =0 otherwise 

Binary variable, =1 if type k vehicle is dispatched from accident site a to 

hospital h, =0 otherwise 

𝒀𝒌𝒅 

 

𝑿𝒌𝒊𝒔 

 

𝑿𝑨𝑩𝒊𝒔
𝒂  

 

𝑿𝑸𝑬𝒊𝒔
𝒂  

 

𝑿𝑸𝑭𝒊𝒔
𝒂  

 

𝑿𝑨𝑩𝒊𝒔
𝒓  

 

𝑿𝑸𝑬𝒊𝒔
𝒓  

 

𝑿𝑸𝑭𝒊𝒔
𝒓  

 

𝑬𝑿𝑻𝒌𝒔𝒊 

 

 

𝒙𝒌𝒊𝒔
𝒂  

 

Integer variable, =n if d ∈ 𝐷 is covered n times by type k ambulance after  

redeployment decision, =0 otherwise 

Binary variable, =1 if a type k ambulance i is located at station 𝑠 ∈ 𝑆 after 

deployment decision, =0 otherwise 

Binary variable, =1 if ALS ambulance i located at station 𝑠 ∈ 𝑆 works as a BLS 

ambulance for dispatching at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if Fire Quint i located at station 𝑠 ∈ 𝑆 works as a Fire Engine 

for dispatching at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if Fire Quint i located at station 𝑠 ∈ 𝑆 works as a Fire Truck 

for dispatching at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if ALS ambulance i located at station 𝑠 ∈ 𝑆 works as a BLS 

ambulance for redeployment at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if Fire Quint i located at station 𝑠 ∈ 𝑆 works as a Fire Engine 

for redeployment at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if Fire Quint i located at station 𝑠 ∈ 𝑆 works as a Fire Truck 

for redeployment at time t ∈ 𝑇, =0 otherwise 

Binary variable, =1 if type k vehicle i dispatched from station s exceeds the 

required travel time limit, =0 otherwise 

Binary parameter, =1 if a type k ambulance i located at location 𝑠 ∈ 𝑆 at time t is 

dispatched to an emergency site, =0 otherwise. 
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𝒙𝒌𝒊𝒔
𝒓  

 

𝒙𝒌𝒊𝒂 

 

𝒙𝒌𝒊𝒉 

Binary parameter, =1 if a type k ambulance i located at location 𝑠 ∈ 𝑆 is 

relocated to another station, =0 otherwise. 

Binary parameter, =1 if a type k ambulance i is located at accident site a∈ 𝐴, =0 

otherwise. 

Binary parameter, =1 if a type k ambulance i is located at hospital h∈ 𝐻, =0 

otherwise. 

 

In 2017, Jagtenberg et al. (Jagtenberg, Bhulai, & van der Mei, 2017) proposed that the closest-

idle dispatching policy is not always optimal. They showed that under light traffic conditions, the 

model using the myopic dispatching policy, which dispatches the closest vehicles, can lead to an 

optimal solution, while this might not be the case in heavy traffic conditions. However, the final 

result is close to the optimal state in the latter condition.  

Toro-Diaz et al. (Toro-Díaz et al., 2013) proposed a joint location and dispatching decisions 

model for the EMS system that integrated the location and dispatching decisions. Their study found 

that the closest vehicle dispatching policy can lead to the optimal solution when the objective is to 

minimize the average response time. While if the objective is to maximize the coverage, the policy 

may result in a suboptimal result. It is also noticed that the joint location and dispatching model 

may bring little benefit to the system if the two most common criteria, which are response time 

and expected coverage, are used. So, to test the actual performance of the integrated model, another 

two criteria, in particular variability on individual response and ambulance workloads, are 

considered to measure the potential benefits.  

This section will present the formulation of an integrated integer programming model for 

dispatching and redeployment. The model seeks to minimize the total travel time and considers 

the deficiency of each type of EMS vehicle. On the other hand, the model tries to maximize the 

total coverage weighted by the historical demand in each zone at different time periods T.  
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3.4.2.1 Objective function 

Minimize  

 𝑍𝐷 = ∑ ∑ ∑ 𝐷𝐼𝑆𝑘𝑠𝑎𝑥𝑘𝑠𝑖𝜏𝑠𝑎

𝑠

+ 

𝑘𝑎 ∈𝐴

∑ ∑ ∑ 𝑅𝑠𝑠′𝑥𝑘𝑠𝑖𝜏𝑠𝑠′

𝑠′

 

𝑠𝑘

+ ∑ ∑ ∑ 𝐷𝐼𝑆𝑘𝑎𝑠𝑥𝑘𝑎𝑖𝜏𝑎𝑠

𝑠𝑘𝑎∈𝐴

+ ∑ ∑ ∑ 𝐷𝐼𝑆𝑘𝑎ℎ𝑥𝑘𝑎𝑖𝜏𝑎ℎ

ℎ𝑘𝑎∈𝐴

+ ∑ ∑ ∑ 𝐷𝐼𝑆𝑘ℎ𝑠𝑥𝑘ℎ𝑖𝜏ℎ𝑠

𝑠𝑘ℎ∈𝐻

+ ∑ ∑ 𝑃𝐷𝑘𝑎 ⋅ 𝐷𝑘𝑎

𝑎∈𝐴𝑘

+  ∑ ∑ 𝑃𝐷𝑘𝑑 ⋅ 𝐷𝑘𝑑

𝑑∈𝐷𝑘

+ ∑ ∑ ∑ 𝑃𝑇𝑘𝑎 ⋅ |𝜏𝑠𝑎 − 𝑇𝑘𝑎| ⋅ 𝐸𝑋𝑇𝑘𝑠𝑖

𝑎𝑠𝑘

− ∑ ∑ 𝑧𝑘𝑑

𝑑

 

𝑘

⋅ 𝑌𝑘𝑑   
(3-1) 

Equation (3-1) is the objective function that minimizes the total travel cost of the problem. The 

first two terms of the equation minimize the travel cost of dispatching the vehicles to the incident 

site and relocating the idle vehicles to other stations.   

After pre-hospital treatment, some patients may need to be sent for higher-level medical care, 

and the ambulances need to transfer the patients to the assigned hospital while other patients are 

good to go.  Then the ambulance needs to return to the station. The third and fourth terms are set 

to do the relocation from the incident site and escort the patient to a hospital. Like above, the fifth 

term minimizes the travel time of vehicles relocating to stations from hospitals.  

Under ideal circumstances, all calls can be answered immediately, and the nearest vehicles can 

be dispatched to the incident site to rescue the patients. Moreover, there are enough numbers and 

types of idle vehicles that can be relocated to cover all the regions in the system. With limited 

budgets and resources, existing vehicles cannot meet the needs of dispatching and relocation. 

Therefore, limited resources are used to satisfy higher priority demand, which is the purpose of 
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the sixth and seventh terms in the objective function. If there are not enough numbers and types of 

vehicles to do the dispatching or relocation, penalties will be added to the model.  

Since response time is critical to pre-hospital treatment, different standards have been set up 

to regulate rescue operations and estimate the performance of the dispatching algorithm. If the 

vehicles cannot reach the incident sites within the specified time, penalties represented by the 

eighth term will be added to the model.  

For the relocation part, the last term in the model provides maximal coverage for the whole 

system based on the importance of different zones, calculated from the historical distribution of 

incidents. 

3.4.2.2 Constraints 

• Dispatching constraints  

 ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 + ∑ 𝑅𝑠𝑠′𝑥𝑘𝑖𝑠

𝑟

𝑠′

≤ 1, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠

𝑎

 (3-2) 

 𝑥𝑘𝑖𝑠
𝑎 + 𝑥𝑘𝑖𝑠

𝑟 ≤ 𝐼𝑘𝑖𝑠, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-3) 

Constraints (3-2) require each vehicle to have at most one destination at each time step. 

Constraints (3-3) ensure that dispatching or relocation can only happen if there is a vehicle on duty.  

𝐼𝑘𝑖𝑠 is an index variable used to indicate if there is a type k vehicle i located at station s. 

For the police vehicle, 

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 + 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 1

𝑖 ∈𝐿𝑠𝑠

 (3-4) 

Constraints (3-4) ensure enough emergency vehicles are dispatched to the incident sites. 𝐷𝑘𝑎 

are variables used to record the deficiency of emergency vehicle type k at the incident site a. If 

there is a shortage of required types of vehicles, penalties will be added to the model to ensure all 

demands can be appropriately satisfied. 
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For the ambulances, 

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 + 𝑋𝐴𝐵𝑖𝑠

𝑎 + 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 2

𝑖 ∈𝐿𝑠𝑠

 (3-5) 

 𝑥𝑘𝑖𝑠
𝑎 ≥ 𝑋𝐴𝐵𝑖𝑠

𝑎 , ∀ 𝑘 = 3, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-6) 

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 − 𝑋𝐴𝐵𝑖𝑠

𝑎 + 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 3

𝑖∈𝐿𝑠𝑠

 (3-7) 

 𝑥𝑘𝑖𝑠
𝑟 ≥ 𝑋𝐴𝐵𝑖𝑠

𝑟 , ∀ 𝑘 = 3, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-8) 

Constraints (3-5) to (3-8) define the number of deficiencies of ALS and BLS in an emergency. 

According to the functional division, ALS is a higher-level and advanced version of BLS. So, if 

ALS can reach the incident site before BLS, it is assumed that ALS can perform the job of a BLS. 

This is the reason that the definition of deficiency of BLS is different. 𝑋𝐴𝐵𝑖𝑠
𝑎  is the variable 

indicating whether an ALS works as a BLS. The superscript a indicates that ALS is dispatched to 

an incident site to provide medical care, while r means that relocation action happens.  

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 + ∑ ∑ 𝑋𝑄𝐸𝑖𝑠

𝑎

𝑖∈𝐿𝑠𝑠

+ 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 4

𝑖 ∈𝐿𝑠𝑠

, 𝑎 ∈ 𝐴 (3-9) 

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 + ∑ ∑ 𝑋𝑄𝑇𝑖𝑠

𝑎

𝑖∈𝐿𝑠𝑠

+ 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 5

𝑖 ∈𝐿𝑠𝑠

, 𝑎 ∈ 𝐴 (3-10) 

 𝑥𝑘𝑠𝑖
𝑎 ≥ 𝑋𝑄𝐸𝑠𝑖

𝑎  +  𝑋𝑄𝑇𝑖𝑠
𝑎, ∀ 𝑘 = 6, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-11) 

 𝑥𝑘𝑠𝑖
𝑟  ≥  𝑋𝑄𝐸𝑠𝑖

𝑟 +  𝑋𝑄𝑇𝑖𝑠
𝑟 , ∀ 𝑘 = 6, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-12) 

 ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠
𝑎 − ∑ ∑ 𝑋𝑄𝐸𝑖𝑠

𝑎

𝑖∈𝐿𝑠𝑠

− ∑ ∑ 𝑋𝑄𝑇𝑖𝑠
𝑎

𝑖∈𝐿𝑠𝑠

− ∑ ∑ 𝑋𝑄𝐸𝑖𝑠
𝑟

𝑖∈𝐿𝑠𝑠𝑖∈𝐿𝑠𝑠

− ∑ ∑ 𝑋𝑄𝑇𝑖𝑠
𝑟

𝑖∈𝐿𝑠𝑠

         + 𝐷𝑘𝑎 ≥ 𝑅𝑒𝑞𝑘𝑎, ∀𝑘 = 6 , 𝑎 ∈ 𝐴 

(3-13) 

The condition of fire vehicles is similar to the ambulances but with a bit of difference. Because 

the fire engine and truck can only finish a part of the job, it is assumed that both the fire engine 
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and fire truck must arrive at the incident site so that the task can be considered fully completed. 

Since a fire quint is functionally a combination of a fire engine and a fire truck, a fire quint can be 

dispatched to finish all the work. Constraints (3-9), (3-10), and (3-13) ensure that the required 

number of fire vehicles are dispatched to the incident site. If there are not enough vehicles, the 

deficiencies of each type of vehicle will be calculated. Constraints (3-11) and (3-12) ensure that 

there are enough fire quints to be dispatched as a basic vehicle: fire engine and fire truck.  

The dispatching and relocation need to satisfy the flow conservation constraints. Constraints 

(3-14) ensure that the number of dispatched vehicles should be less than the number of available 

vehicles located in the station. 

 ∑ ∑ 𝑅𝑠𝑠′𝑥𝑘𝑖𝑠
𝑟 + ∑ ∑ 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠

𝑎

𝑖𝑎

≤ 𝑛𝑘𝑠, ∀𝑠 ∈ 𝑆

𝑖𝑠′

 (3-14) 

 𝑋𝑘𝑖𝑠  = 𝐼𝑘𝑖𝑠 − (𝑅𝑠𝑠′𝑥𝑘𝑖𝑠
𝑟 + 𝐷𝐼𝑆𝑠𝑎𝑥𝑘𝑖𝑠

𝑎 ) + 𝑅𝑠′𝑠𝑥𝑘𝑠′𝑖  +  𝐷𝐼𝑆𝑎𝑠𝑥𝑘𝑖ℎ  

+  𝐷𝐼𝑆ℎ𝑠𝑥𝑘𝑖ℎ, ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼𝑠, 𝑠 ∈ 𝑆 

(3-15) 

 𝑥𝑘𝑖ℎ ≤ 𝐼𝑘𝑖ℎ, ∀𝑘 ∈ 𝐾, ℎ ∈ 𝐻, 𝑖 ∈ 𝐿𝐻 (3-16) 

 𝑥𝑘𝑖𝑎 ≤ 𝐼𝑘𝑖𝑎, ∀𝑘 ∈ 𝐾, 𝑎 ∈ 𝐴, 𝑖 ∈ 𝐿𝐻 (3-17) 

Constraints (3-15) define the status of vehicles and the system after the dispatching and 

relocation. Constraints (3-16) and (3-17) define the existence of the vehicles that need to be 

redeployed.  

 

 ∑ 𝑋𝑘𝑠𝑖 ≤ 𝐶𝑘𝑠, ∀𝑘 𝑖𝑛 𝐾, ∀𝑠 ∈ 𝑆 (3-18) 

Constraints (3-18) are about the capacity of the stations. Therefore, when relocating, the 

stations' capacities need to be considered. If the number of vehicles exceeds the stations’ capacities, 

it is assumed that relocation is not an option. 



 51 

 𝜏𝑠𝑎 ⋅ 𝐷𝐼𝑆𝑠𝑎 ⋅ 𝑥𝑘𝑖𝑠 − 𝑀 ⋅ 𝐸𝑋𝑇𝑘𝑠𝑖 ≤ 𝑇𝑘𝑎, ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠, 𝑎 ∈ 𝐴 (3-19) 

Constraints (3-19) ensure that emergency vehicles can reach the incident sites within the 

required time. If they cannot respond to the incidents in time, variable 𝐸𝑋𝑇𝑘𝑠𝑖 will be equal to 1, 

and the penalty will be added to the objective function.  

• Required coverage constraints 

For ambulance  

 ∑ ∑ (𝑋𝑘𝑖𝑠 + ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝐴𝐵𝑖𝑠′
𝑟 ) + 𝐷𝑘𝑑 ≥ 𝑌𝑘𝑑 , ∀𝑑 ∈ 𝐷, 𝑘 = 2

𝑖 ∈𝐿𝑠𝑠 ∈𝜁𝑑

 (3-20) 

 𝑌𝑘𝑑 ≥ 1, ∀ 𝑑 ∈ 𝐷, 𝑘 = 2 (3-21) 

 ∑ ∑ (𝑋𝑘𝑖𝑠 − ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝐴𝐵𝑖𝑠′
𝑟 ) ≥ 𝑌𝑘𝑑 , ∀𝑑 ∈ 𝐷, 𝑘 = 3

𝑖 ∈𝐿𝑠𝑠 ∈𝜁𝑑

 (3-22) 

For fire vehicle 

 ∑ ∑(𝑋𝑘𝑖𝑠 + ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝑄𝐸𝑖𝑠′
𝑟 ) + 𝐷𝑘𝑑 ≥ 𝑌𝑘𝑑 , ∀𝑑 ∈ 𝐷, 𝑘 = 4

𝑖 ∈𝐼𝑠𝑠 ∈𝜁𝑑

 (3-23) 

 𝑌𝑘𝑑 ≥ 1, ∀ 𝑑 ∈ 𝐷, 𝑘 = 4 (3-24) 

 ∑ ∑(𝑋𝑘𝑖𝑠 + ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝑄𝑇𝑖𝑠′
𝑟 ) + 𝐷𝑘𝑠 ≥ 𝑌𝑘𝑑 , ∀𝑑 ∈ 𝐷, 𝑘 = 5

𝑖 ∈𝐼𝑠𝑠 ∈𝜁𝑑

 (3-25) 

 𝑌𝑘𝑑 ≥ 1, ∀ 𝑑 ∈ 𝐷, 𝑘 = 5 (3-26) 

 ∑ ∑(𝑋𝑘𝑖𝑠 − ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝑄𝐸𝑖𝑠′
𝑟 − ∑ 𝑅𝑠′𝑠 ⋅

𝑠′

𝑋𝑄𝑇𝑖𝑠′
𝑟 ) ≥ 𝑌𝑘𝑑 , ∀𝑑 ∈ 𝐷, 𝑘 = 6

𝑖 ∈𝐼𝑠𝑠 ∈𝜁𝑑

 (3-27) 

Constraints (3-20), (3-22), (3-23), (3-25), and (3-27) define the times that each zone is covered 

by different types of vehicles. Constraints (3-21), (3-24), and (3-26) ensure that each demand zone 

is covered by a basic vehicle at least once.   

• Priority constraints 
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 𝐷𝐼𝑆𝑎ℎ ⋅ 𝑃ℎ ≥ 𝑁𝑝, ∀𝑎 ∈ 𝐴, ∀ℎ ∈ 𝐻 (3-28) 

The patients are not always assigned to the nearest hospitals in the real world. The pre-hospital 

clinicians need to coordinate with the medical center to escort the patients to the proper hospitals 

according to various factors, including the severity of patients’ conditions, the type of treatment 

and cure needed, and the availability of hospitals. The coordination operation is a complex process 

that needs multi-professional decisions. Constraints (3-28) ensure that the patient can be escorted 

to the corresponding level hospital based on the different priorities.   

• Workload balance constraints 

 𝛽𝑘𝑖𝑠 + 𝑅𝑠𝑠′𝜏𝑠𝑠′𝑥𝑘𝑖𝑠
𝑟 ≤ 𝛼𝑡 , ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-29) 

 𝑅𝑠𝑠′𝜏𝑠𝑠′𝑥𝑘𝑖𝑠
𝑟 ≤ 𝑡𝑡𝑙𝑖𝑚𝑖𝑡 , ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-30) 

 
𝛼𝑡 =  

𝑡 ⋅ 𝛾

𝑇
 (3-31) 

Workload balance is the system's fairness and affects the performance of decision-making. Not 

considering the workload may cause crew fatigue and decrease the operations' efficiency. 

Constraints (3-29) ensure the accumulated work time of vehicle units is shorter than a pre-defined 

value in a shift. If the total work time of a vehicle unit exceeds the threshold value, it is assumed 

that this vehicle unit is not suitable for relocation. This constraint only works for relocation.  

Excessive and frequent relocation may cause crew fatigue and increase the unnecessary waste 

of workload and budget. On the other hand, efficient relocation can help the system get maximal 

coverage and shorten the response time. Therefore, there are strict restrictions on the occurrence 

of relocation action. Constraints (3-30) ensure that long-distance relocation is not allowed. 

Constraints (3-31) are used to calculate the pre-defined value.  
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• Operational constraints 

 𝐼𝑘𝑖𝑠
𝑇 = 0, ∀𝑠 ∈ 𝑆𝑝 (3-32) 

 𝐼𝑘𝑖𝑠
0 = 𝐼𝑘𝑖𝑠

𝑇 , ∀𝑠 ∈ 𝑆\𝑆𝑝 (3-33) 

Besides constraints required to make the system perform better, operational constraints are 

considered to make the model more realistic and in accordance with real situations. Constraints 

(3-32) to (3-33) ensure the vehicle units return to their home stations at the end of the shift. The 

vehicles on standby in temporary locations also need to return to home stations.  

• Variable domain constraints 

 𝐷𝐼𝑆𝑠𝑎 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (3-34) 

 𝑅𝑠𝑠′ ∈ {0,1}, ∀𝑠, 𝑠′ ≠ 𝑠 ∈ 𝑆 (3-35) 

 𝑥𝑘𝑖𝑠
𝑟 ∈ {0,1}, ∀𝑠 ∈ 𝑆 (3-36) 

 𝑥𝑘𝑖𝑠
𝑎 ∈ {0,1}, ∀𝑠 ∈ 𝑆 (3-37) 

 𝑋𝑘𝑖𝑠 ∈ {0,1}, ∀𝑠 ∈ 𝑆 (3-38) 

 𝑌𝑘𝑑 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, ∀𝑑 ∈ 𝐷 (3-39) 

 𝑋𝐴𝐵𝑖𝑠
𝑎 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-40) 

 𝑋𝑄𝐸𝑖𝑠
𝑎 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-41) 

 𝑋𝑄𝑇𝑖𝑠
𝑎 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-42) 

 𝑋𝐴𝐵𝑖𝑠
𝑟 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-43) 

 𝑋𝑄𝐸𝑖𝑠
𝑟 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-44) 

 𝑋𝑄𝑇𝑖𝑠
𝑟 ∈ {0,1}, ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐿𝑠 (3-45) 

Constraints (3-34) to (3-45) define the variable domains.  
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Chapter 4 : Numerical Study 

 

In this chapter, a small-size problem will be solved, and different scenarios will be tested to 

evaluate the performance of the integrated model. Gurobi optimizer, a commercial optimization 

solver for linear programming, quadratic programming, quadratically constrained programming, 

mixed-integer linear programming, mixed-integer quadratic programming, and mixed-integer 

quadratically constrained programming in Python, is used to solve numerical problems and to find 

the optimal solution. This numerical study first proves that the proposed mathematical model can 

handle complex situations and assist the coordinator in making dispatching and relocation 

decisions. Second, by using Sharifi’s model as a baseline, a comparison is made between these 

two models to evaluate the performance of the proposed model. Third, by increasing the problem's 

size, the model's characteristics and properties are explored, and the model's performance under 

large demands is analyzed. The numerical study aims to prove that the proposed model can handle 

large-scale problems and perform better than other models. In real life, incidents always come into 

the system one by one in a small region. Therefore, to better compare and display the performance 

of models, several generated large-scale and complex scenarios are used to make the comparison.  

 

4.1 Some clarifications about the numerical study 

The numerical studies are conducted on a randomly generated graph to eliminate the influence 

of human intervention.  

First, the Erdos-Renyi model (Erdӧs & Rėnyi, 1959) is used to generate the random graph. In 

the model, a graph is constructed by connecting labeled nodes randomly. Then, each edge is 

included in the graph with probability p, independently from the other edges. After the graph is 

generated, random weights will be generated using the Python built-in function ‘random.’  
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Second, after the randomly generated graph is ready, NetworkX, a Python package for creating, 

manipulating, and studying complex networks' structure, dynamics, and functions, is used to 

prepare the data. The shortest path lengths are calculated using Dijkstra’s algorithm. If two nodes 

are not connected, a large number represents the lack of connectivity.  

Third, the travel distance matrices for the two models are calculated respectively based on the 

same graph. This measurement ensures the fairness of the comparison. As a reminder, Sharifi’s 

model considers two types of nodes according to their importance. In contrast, the proposed model 

in this research divides the whole region into some small zones with the same properties. This 

move can vastly decrease the size and complexity of the problem, which will shorten the 

computational time and the data preprocessing time. Besides the size of the problem, to compare 

the performance of the two models fairly, the same size of the demand zones will be used to do 

the computation.  

Fourth, based on the above procedure, different sizes of problems are used to test the model's 

performance in different situations. The characteristics of these randomly generated cases are 

shown in Table 4.1.  

The cases are solved with the latest version of Gurobi in Python on a computer with the same 

configuration. The number of constraints and variables and running time for each scenario are 

shown in Table 4.2. 

Table 4.2 summarizes the properties and characteristics of both models and the number of 

constraints and variables for each case. Both models are dedicated to achieving two functions: 

dispatching and relocation. Both models try to dispatch the required number and type of vehicles 

to the incident sites within the pre-defined travel time for dispatching.  
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Table 4.1 Characteristics of 6 cases 

 

Case Number 

of demand 

zones 

Number of 

ordinary 

nodes 

Number of 

critical 

modes 

Number of 

vehicles for 

each type 

Number 

of stations 

for each 

type 

Number of 

accidents 

in the 

system 

Case 1 55 50 5 5 5 1 

Case 2 55 50 5 5 5 5 

Case 3 550 500 50 50 50 5 

Case 4 550 500 50 50 50 10 

Case 5 550 500 50 50 50 20 

Case 6 550 500 50 50 50 40 

 

 

Table 4.2 The number of variables and constraints and the running time for 6 cases 

 

Case Number of 

constraints 

Number of 

variables 

Running time 

(Dispatching) 

Running time 

(Dispatching 

and relocation) 

Case 1 - Sharifi’s Model 2733 2261 0.015 0.21 

Case 1 - This research 593 976 0.0145 0.049 

Case 2 - Sharifi’s Model 3257 2725 0.0233 0.255 

Case 2 - This research 617 1312 0.01 0.064 

Case 3 - Sharifi’s Model 32276 40480 0.098 178.97 

Case 3 - This research 5792 14182 0.032 2.66 

Case 4 - Sharifi’s Model 38556 46010 0.153 264.85 

Case 4 - This research 5822 17302 0.032 2.724 

Case 5 - Sharifi’s Model 51116 57070 0.245 289.65 

Case 5- This research 5882 23542 0.04 2.9 

Case 6- Sharifi’s Model 76236 79190 0.436 247.73 

Case 6 - This research 6002 36002 0.044 10.41 
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If there are vehicle deficiencies or travel time exceeds the pre-defined travel limit, penalties 

will be added to the objective function. Both models use the same algorithm and have the same 

objective. It is easy to quantify the performance of the final results. Therefore, the running time of 

dispatching has been measured independently. In the dispatching model, all constraints have been 

commented out. It is illustrated from the table that the proposed model in this work can get the 

same results by using less time. The modified structure of the model can shorten the computational 

time.   

Two different covering strategies have been chosen for the two models for the relocation part. 

Sharifi’s model attempts to provide double coverage for critical nodes within 𝑇1 minutes and 

provide double coverage for ordinary nodes within 𝑇2 minutes, where 𝑇1 and 𝑇2 are pre-defined 

time limits. Several constraints have been set to define how often each node is covered. While the 

proposed model in this work tries to use the BLS vehicles to cover all the demand zones to shorten 

the first response time and use ALS vehicles to get maximal coverage. Both models have their 

advantages and suitable applicable scenarios. Due to the complexities of the problem, it is hard to 

quantify the coverage performance. It is shown that the proposed model in this research can finish 

the relocation decision in a few seconds, while for Sharifi’s model, the computational time 

increases a lot with the increase in problem size.   

According to Table 4.2, it is shown that for the integrated model, the relocation part consumes 

the most computational resources. Both models can finish the decision process without considering 

relocation within a few seconds. When considering relocation, the computational time increases 

significantly, especially when the sizes of the problems increase. Fire departments nationwide seek 

to decrease their response times to emergencies. When the problem sizes get larger, the running 

time of relocation will exceed the allowable running time.  
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The performance of relocation is affected by many factors, such as the graph's connectivity, 

the available number of vehicles, and the location of critical and ordinary nodes.  

In summary, the proposed model can handle large-scale and complex situations and produce 

dispatching and relocation decisions in a reasonable time. Furthermore, the modified structure of 

the model can decrease not only the dispatching time but also the relocation time. With the increase 

in problems’ sizes, the running time of the integrated model will also increase, but the increase in 

the running time is within an acceptable range.   
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Chapter 5 : A Large-Scale Case Study 

 

This chapter presents a comprehensive numerical analysis of the historical medical data. The 

underlying physical network and the operational data are from Baltimore City.  

 

 5.1 Case study operational data 

The data used in the analysis comes from the University of Maryland Medical Center (UMMC) 

and the Maryland Institute for Emergency Medical Service System (MIEMSS). The data are 

generated from the real-world operations of the ambulances and medical units for the incidents 

that happened in Baltimore City. The study data comprised all ambulance calls over a continuous 

one-year period from 1 January 2019 to 31 December 2019 and was analyzed across the time of 

the day.  

According to medical data, 61,233 incidents occurred in Maryland in January 2019. For each 

incident, a variety of main vital signs are routinely monitored by medical professionals and 

healthcare providers. Multiple medical records might correspond to one incident. Duplicate 

records and unnecessary data were dropped according to the PSAP (public safety answering point) 

call time to help with the emergency vehicle dispatching study.  

The data consisted of approximately 99,100 calls in Maryland state per year. 15,162 of these 

incidents happened in Baltimore City. 7,501 incidents occurred in January, and 1,140 of these 

incidents happened in Baltimore City.  

The medical data records detailed and comprehensive information about the incidents, 

including the time and location of the incidents and detailed dispatching information. The medical 

data provides valuable data for future research and study. Moreover, it also provides scientific 

theoretical support for model and solution optimization. However, some data are not fully recorded 
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due to special regulations and limitations. For example, only physical address information has been 

recorded for each incident that happened in Baltimore City, while exact GPS location information 

is missing. Moreover, only the dispatched vehicle unit number is kept in records, and 

corresponding station information is missing, which makes it difficult to find the original location 

for each unit.  

Several processing methods and reasonable assumptions are devised to make the data 

accessible and to handle these problems. The programming language cannot identify physical 

addresses. It is necessary to convert the data type through a geocoding process. Geocoding is the 

computational process of transforming a physical address description to a location on the Earth’s 

surface (spatial representation in numerical coordinates). In this study, geocoding in Python with 

the help of Geopy and Geopandas libraries is conducted to convert the physical addresses to their 

corresponding latitude and longitude. Due to several reasons, such as missing zip code, misspelled 

street name, misspelled city name, and different kinds of abbreviations in the data, only 797 records 

of incident data can be used to find the geospatial information. 

  

 5.2 Case study network 

The network consists of 12,643 nodes and 32,264 directed links. According to the Baltimore 

City fire department website, in this region, there are 24 fire stations strategically located 

throughout the city, shown as green icons in Figure 5.1. These fire stations are equipped with 

various types and numbers of ambulances, medical units, and fire vehicles. According to the 

records, 17 hospitals in this region were used to transfer patients as destinations.  
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Figure 5.1 The case study network (left) and the geospatial distribution of fire stations of 

Baltimore City (right) 

 

This study will use the demand zones to generate the calls and calculate the performance 

measurements. There are several advantages: 

• Using the demand zones instead of nodes can vastly decrease the size of the problems and 

shorten the computational time. 

• Second, sufficient data does not exist to support the model and generate the necessary 

distribution function for each node, which may cause inaccurate final results. In some 

scenarios, some nodes are close enough to be assumed to have the same properties, such 

as incident rates and dispatching time. 

A geohash is a unique identifier of a specific region on the earth. This study uses geohash to 

generate the city's demand zones. It is assumed that each demand zone is small enough that all 

nodes in the same demand zone will have unified properties, such as the same call arrival rates and 

traveling time from stations. Python package Geohash is used to generate the spatial 

representations, and different precisions can be chosen depending on the accuracy demand. In this 

study, precision 6 is used, which means the service region of Baltimore City, MD, is divided into 
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356 demand zones, where each demand zone is a 0.7625 by 0.38125 miles square region. The city 

is about 92.05 square miles with 356 demand zones and has a population of about 585,000. 

Demands are defined to be the calls requesting paramedic units from an EMS system. Some zones 

had no demand (no calls for service) during the observed period and, therefore, were removed 

from consideration. The total number of demand zones with positive demand is 356 during the day 

and 329 during the night period. 

5.2.1 Emergency Vehicles 

One hundred fifty-five vehicle identification numbers are reported in the data, and 114 of these 

vehicles took care of fewer than 30 incidents in 2019. Based on the Baltimore City Fire Station’s 

official website, 41 registered ambulance and medical units are considered in the study. According 

to the vehicle types on the records and official website, 16 basic life support (BLS) ambulances 

and 31 advanced life support (ALS) ambulances are selected for the dispatching and redeployment 

operations.  

In the medical record data, only dispatched vehicle unit number is recorded, while the original 

station information is missing. All EMS vehicles’ original stations are assumed to be identical to 

the information on Baltimore City Fire Station’s official website. Next, for the missing station 

information for some vehicles, the K-means clustering method is used to aggregate the dispatching 

trajectories. The cluster is generated, and the nearest station is selected as their home station.  

Figure 5.2 The job assignments for different ALS ambulance vehiclespresents the detailed job 

assignment for different ALS ambulance vehicles, and  

Figure 5.3 shows the same for BLS ambulance vehicles. 
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Figure 5.2 The job assignments for different ALS ambulance vehicles 

 

 

 
 

Figure 5.3 The job assignments for different BLS ambulance vehicles 

 

The probability distribution analysis on the input data was conducted using Python and some 

libraries. Some packages were used to identify the best-fitted distribution for the generated 

database and determine the quality of fitting of probability distribution functions to the input data. 

First, histograms were plotted to show the general type of the input data.  Then numerous 
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distributions and fitting functions were tested, and a summary of the best distribution was obtained. 

The five best distributions were kept and sorted from the best to the worst according to the 

respective error terms.  

In the probability distribution analysis, the whole dispatching process was divided into 

different periods. For each period, various distribution functions were tested at different times of 

the day. In this study, the whole day was divided into two 12-hour periods to represent day and 

night to reflect the actual demands and operation proprieties. The daytime is from 8 am to 8 pm, 

while the rest is nighttime.  

5.2.2 Preparation time  

The preparation time starts with the call arriving at the 911 center and ends with the emergency 

vehicles dispatched from the stations. During this period, the incident information is collected, 

dispatching and rescue decisions must be made, and the crew members must prepare to finish the 

task. A total of 15,162 records were used to calculate the preparation time for each incident. 

According to the test results shown in Error! Reference source not found. and Table 5.3, the 

best distribution is Lognormal Distribution with a squared error equal to 1.253 for nighttime and 

0.071 for the daytime. The comparison of histograms of the real-world data and the fitted data is 

shown in  

Figure 5.4. 

 

Table 5.1 The results of the estimation of the distribution of emergency incidents preparation 

time during the night  

 

Fitted Function Squared Error 

Exponential 1.31121726 

Normal 1.37892533 

Gamma 1.70083921 
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Chi-squared 1.35897134 

Lognormal 1.25345486 

Beta 1.31910642 

Burr 1.38015642 

Table 5.2 The results of the estimation of the distribution of emergency incidents preparation 

time during the day 

 

Fitted Function Squared Error 

Exponential 0.10154709 

Normal 0.13182412 

Gamma 0.25853525 

Chi-squared 0.18216477 

Lognormal 0.07091998 

Beta 0.1189358 

Burr 0.09237762 

 

 
 

Figure 5.4 The histogram of preparation time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models 

 

 

5.2.3 Interarrival time 

A total of 15,162 medical data records were used to calculate the interarrival time between 

each consecutive pair of incidents. According to the distribution fitting analysis, the top six best-

fitted distribution functions are shown in Table 5.3 and Table 5.4, corresponding to nighttime and 

daytime. The results in Table 5.3 and Table 5.4 indicate that the exponential distribution with a 

squared error equal to 0.00023 for nighttime and 0.00021 for daytime is the best.  
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Figure 5.5 shows the histograms of the real-world data and the fitted data. 

 

Table 5.3 The results of the estimation of the distribution of emergency incidents interarrival 

time during the night  

 

Fitted Function Squared Error 

Normal 0.00176799 

Exponential 0.00023617 

Gamma 0.00025205 

Lognormal 0.00030228 

Beta 0.00034868 

Burr 0.00025675 

 

 

Table 5.4 The results of the estimation of the distribution of emergency incidents interarrival 

time during the day  

 

Fitted Function Squared Error 

Normal 0.00210502 

Exponential 0.00021134 

Gamma 0.00020898 

Lognormal 0.00802299 

Beta 0.0002089 

Burr 0.00052968 

 

 
 

Figure 5.5 The histogram of the interarrival time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models 

 

 

The average call arrival rate across the time of the day is summarized in the box plot in  
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Figure 5.6. The vertical axis represents the total number of incidents that occurred at that time 

of the day for each month and the variation between different months. Twenty-four box plots 

represent the different hours of the day. The figure indicates the highest accident rate of the day is 

around 6 pm, and the lowest is around 5 to 6 am. 

 
 

Figure 5.6 Incident arrival rates in Baltimore City in 2019 

 

 

Figure 5.7 shows a pie chart that represents different categories of inter-arrival time of 

incidents. All data in the graph are in minutes. The figure shows that the inter-arrival time between 

5 to 30 minutes and 30 to 60 minutes accounts for 44% and 23% of all data. The inter-arrival time 

is critical to the dispatching and redeployment model. Too short an inter-arrival time will make 

the redeployment decision model inaccessible. The vehicle cannot be dispatched to the new 

incident site while en route to another station. So, the redeployment process can sometimes even 

decrease the total coverage and negatively impact the system. 

On the other hand, too long an inter-arrival time will cause a waste of resources because the 

dispatched vehicles can finish their jobs and return to their home locations to prepare for future 
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incidents. A redeployment decision is not necessary for the system. An inter-arrival time between 

20-60 minutes is assumed to be good enough.  

Figure 5.7 indicates the incident data meets the expectations. Good dispatching and 

redeployment decisions may benefit the system by finding the best configuration for the 

deployment of emergency vehicles.   

 

 
 

Figure 5.7 Categories of interarrival time of incidents in Baltimore City in January 2019 

 

 

5.2.4 En-Route time  

Vehicle En Route time represents the time period from the vehicle leaving the station for the 

incident site to the arrival at the incident site. A total of 15,162 incident records were used to 

generate the En Route time for each dispatching. According to analysis results shown in Error! 

Reference source not found. and Error! Reference source not found., the best distribution is 

Lognormal Distribution with a squared error equal to 0.0869 for nighttime and 0.2715 for the 

daytime. The comparison of histograms of the real-world data and the fitted data is shown in  

Figure 5.8.  

5.2.5 Service time 

The service time is calculated as the difference between when the vehicle arrived at the site 

and when the same vehicle departed from the site. A total of 15,162 records were used to generate 
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the service time for each rescue. According to the test result shown in Error! Reference source 

not found. and Error! Reference source not found., the best distribution is Lognormal 

Distribution with a squared error equal to 0.0258 for the nighttime and 0.0323 for the daytime. 

The comparison of histograms of the real-world data and the fitted data is shown in  

Figure 5.9. 

Table 5.5 The results of the estimation of the distribution of emergency incidents En Route time 

during the night  

 

Fitted Function Square Error 

Normal 0.09849947 

Exponential 0.12528977 

Gamma 0.08706707 

Lognormal 0.08690945 

Beta 0.08708189 

Burr 0.08676187 

 

 

Table 5.6 The results of the estimation of the distribution of emergency incidents En Route time 

during the day  

 

Fitted Function Square Error 

Normal 0.28418342 

Exponential 0.31233214 

Gamma 0.27086472 

Erlang 0.27086462 

Lognormal 0.27156524 

Beta 0.27087528 

Burr 0.27180689 
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Figure 5.8 The histogram of the En Route time for incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models 

 

 Table 5.7 The results of the estimation of the distribution of emergency incidents service time 

during the night 

 

Fitted Function Squared Error 

Normal 0.028858237 

Exponential 0.048426183 

Gamma 0.025827384 

Lognormal 0.025833742 

Beta 0.025831267 

Burr 0.02603148 

 

 

Table 5.8 The results of the estimation of the distribution of emergency incidents service time 

during the day  

 

Fitted Function Squared Error 

Normal 0.03584363 

Exponential 0.058591606 

Gamma 0.032502182 

Lognormal 0.032375977 

Beta 0.032500347 

Burr 0.032720868 

 



 71 

 
 

Figure 5.9 The histogram of the service time for  incidents during the night (left) and the day 

(right) in Baltimore City in 2019 vs. fitted models 

 

 

The call characteristics for the emergency medical demand data in the study are shown in Table 

5.9 to Table 5.14. Table 5.9 represents the number and ratio of choosing the destination of incidents. 

It indicates that 73% of patients have been sent to the closest facility. Nearest dispatching can 

make sure the patients get access to immediate hospital treatment. Sometimes, the closest facility 

is not always an optimal solution. Choosing a destination highly depends on the capacity of 

hospitals, what treatments the patients need, and what treatments the hospitals can provide. Among 

the incidents, 10% of patients have been escorted to the designed hospital according to the 

protocols. 

 

Table 5.9 Comparison of the number and ratio of incidents managed through dispatching policies 

 

Closest Facility 8609 0.73966836 

Protocol - When NOT closest Hospital/Specialty Center 1194 0.10258613 

State Specialty Center 723 0.06211874 

Patient's Choice 534 0.04588023 

On-Line/On-Scene Medical Direction 271 0.02328379 

Other 234 0.02010482 

Diversion 74 0.00635793 

 

According to the study data, of the 15,162 incidents, 11,618 incidents indicate the patients 

requiring continued hospital care, which is 76% of the incidents. Based on the patients’ hospital 
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records, 22 hospitals took on the main task of treatment, and some other patients, smaller than 

1.2%, were transferred to other hospitals. The distribution of these hospitals as final destinations 

is shown in  

Table 5.10. 

In rescue missions, ALS and BLS ambulances perform the main dispatch and escort tasks. For 

some specific or urgent rescue tasks, other means of rescue, such as an aircraft, will also be 

included. A variety of rescue methods can provide maximum coverage in different ways to provide 

more timely assistance to patients. Table 5.11 shows detailed information on the number and ratio 

of incidents handled by different rescue transportation modes. 

For ambulance rescue mode, different types of ambulances undertake different treatment tasks. 

Table 5.12 describes the detailed dispatching records. It presents that ALS and BLS ambulances 

are each responsible for nearly half of the incident’s responses. A better dispatching and 

redeployment decision strategy can vastly enhance the role of ALS vehicles in rescue and provide 

more professional pre-hospital treatment for the patients. 

 

Table 5.10 Distribution of incidents between public hospitals 

 

Public Hospital 1 1784 0.15355483 

Public Hospital 2 1482 0.12756068 

Public Hospital 3 1158 0.09967292 

Public Hospital 4 1098 0.09450852 

Public Hospital 5 1062 0.09140988 

Public Hospital 6 927 0.07978998 

Public Hospital 7 803 0.06911689 

Public Hospital 8 633 0.05448442 

Public Hospital 9 496 0.04269237 

Public Hospital 10 462 0.03976588 

Public Hospital 11 452 0.03890515 

Public Hospital 12 445 0.03830263 

Public Hospital 13 391 0.03365467 
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Public Hospital 14 124 0.01067309 

Public Hospital 15 58 0.00499225 

Public Hospital 16 55 0.00473403 

Public Hospital 17 51 0.00438974 

Public Hospital 18 36 0.00309864 

Public Hospital 19 31 0.00266827 

Public Hospital 20 25 0.00215183 

Public Hospital 21 20 0.00172147 

Public Hospital 22 9 0.00077466 

Other Hospital 16 0.00137717 

 

Table 5.11 Comparison of the number and ratio of incidents handled by different rescue 

transportation modes 

 

Ground - Ambulance 11337 0.97113243 

Ground - ATV or Rescue 

Vehicle 

253 0.02167209 

Air Medical - Rotor Craft 66 0.00565359 

Ground - Other Not Listed 18 0.00154189 

 

 

Table 5.12 Comparison of the number and ratio of incidents serviced by different ambulances 

 

ALS - Paramedic 6460 0.42606516 

BLS - EMT-IV 5832 0.38464583 

BLS - EMT 1781 0.11746471 

ALS - CRT 1067 0.0703733 

BLS - First Responder/EMR 14 0.00092336 

ALS - Community 

Paramedicine 

8 0.00052763 

 

Levels of care refer to the comprehensiveness of services hospitals provide to patients. 

Hospitals are certified based on services available in their emergency departments, inpatient units, 

and on-campus outpatient clinics. Table 5.13 compares the number and ratio of incidents handled 

by different level hospitals.  
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Table 5.13 Comparison of the number and ratio of incidents handled by different hospitals 

 

Hospital (General) 3787 0.64002028 

MD SAFE Hospital 877 0.148217 

Level II Trauma Center 621 0.10495183 

Level I Trauma Center 559 0.09447355 

Burn Center 47 0.00794321 

Others 26 0.00439412 

 

 

The priority level is a selection made during incident creation that conveys the severity of an 

incident so that responders can react accordingly. According to the Maryland Institute for 

Emergency Medical Service System, priority 1 is a critically ill or injured person requiring 

immediate attention. From priority 1 to priority 4, the degree of urgency of the accident decreases 

in order, as does the degree of injury to the patients. Table 5.14 keeps a record of the incidents’ 

priority. The data can help the decision model to predict the level of injury.  

 

 

Table 5.14 Distribution of the number and ratio of incidents priority 

 

Priority 3 10505 0.69606414 

Priority 2 3346 0.22170686 

Priority 1 1038 0.06877816 

Priority 4 114 0.00755367 

Dead without Resuscitation Efforts 89 0.00589716 

 

 5.3 Case study zone importance 

5.3.1 Baltimore city original incidents data 

The geospatial and temporal distribution of historical incidents is shown in  

Figure 5.10 and  
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Figure 5.11. The height of the bars represents the number of incidents, which also means the 

incidents rate.  

Figure 5.10 illustrates the incidents that occurred in Baltimore City in 2019 during the day, 

while  

Figure 5.11 shows the incidents during the night. In the figure, areas are marked with different 

colors based on the number of incidents that occurred in this zone. They are red, orange, yellow, 

and green from high to low. Different colors are used to distinguish the area and compare different 

incident rates.  

Figure 5.10 illustrates incidents concentrated in the downtown area. The number of incidents 

in the surrounding areas is significantly lower than in the downtown area. The number of incidents 

in certain surrounding regions is also in the top 25 percent. During the night, the number of 

incidents is significantly less. The areas where incidents are concentrated are reduced accordingly. 

However, they are still concentrated in the middle of the downtown area.  

 

 
 

Figure 5.10 Geospatial and temporal distribution of zone importance in Baltimore City in 2019 

during the day 
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Figure 5.11 Geospatial and temporal distribution of zone importance in Baltimore City in 2019 

during the night 

 

5.3.2 Baltimore City incidents data adjusted by priority 

The number of incidents is a critical metric to evaluate the importance of zones, while the 

severity of incidents also impacts the importance of zones.  If the severities of incidents in a 

specific area are very high, the area needs more protection and coverage. In the case study, if there 

is no specific regulation of coverage for some specific areas, such as hospitals, schools, or other 

important places, then the incident rate and severity of incidents can be used to evaluate the 

importance of zones. According to the Maryland Institute for Emergency Medical Services 

Systems (MIEMSS), clinical priority is divided into four levels. The strategy for generating zones’ 

importance is to use the number of incidents that occurred in the zone multiplied by the priority of 

each incident divided by four.  

Figure 5.12 and  

Figure 5.13 show the geospatial and temporal distribution of the importance of zones adjusted 

by priority.  
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Figure 5.12 Geospatial and temporal distribution of zone importance adjusted by priority in 

Baltimore City in 2019 during the day 

 

 

 
 

Figure 5.13 Geospatial and temporal distribution of zone importance adjusted by priority in 

Baltimore City in 2019 during the night 

 

 

 

Compared with  

Figure 5.10 and  

Figure 5.11 without considering the priority, in  

Figure 5.12 and  

Figure 5.13, important areas extend from the central area to the surrounding areas. More areas 

need to be focused. 
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5.3.3 Baltimore city categorical incidents data 

The above graphs show a huge difference in the height of different areas. According to the 

records of incidents, the number of incidents in some specific areas may exceed one hundred in a 

year, while in some surrounding suburban areas, the number of incidents is less than ten. If the 

importance of zones is expressed in terms of the real number of incidents, there is a probability 

that emergency vehicles would abandon the surrounding suburban areas and converge on the 

central area of the city. This phenomenon is not acceptable. Thus, instead of using ordinal numbers 

to express the zones’ importance, using categories to express the zones’ importance can avoid this 

problem.  

Figure 5.14 and  

Figure 5.15 illustrate the importance of zones using categories. According to the incident rate, 

the whole city is divided into four categories to indicate the importance of zones.  

 

 
 

Figure 5.14 Geospatial and temporal distribution of categories of zone importance in Baltimore 

City in 2019 during the day 
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Figure 5.15 Geospatial and temporal distribution of categories of zone importance in Baltimore 

City in 2019 during the night 

 

 

5.3.4 Baltimore city categorical incidents data adjusted by priority 

Based on the above arguments,  

Figure 5.16 and  

Figure 5.17 represent the categorical zone importance adjusted by priority. When the priority 

is considered, the important areas change a little.  

 

 
 

Figure 5.16 Geospatial and temporal distribution of categories of zone importance adjusted by 

priority in Baltimore City in 2019 during the day 
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Figure 5.17 Geospatial and temporal distribution of categories of zone importance adjusted by 

priority in Baltimore City in 2019 during the night 

 

Different strategies were proposed above, and corresponding figures were plotted to illustrate 

the geospatial and temporal distribution of zone importance. The performance of different 

strategies on the final results varies from case to case. In this study, models with different strategies 

will be tested and compared in the following chapter to determine the performance of strategies. 

The strategy with the best performance will be selected for further analysis.  
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Chapter 6 : Discrete Event Simulation 

 

In Chapter 3, an integrated dispatching and redeployment decision-making model was 

proposed. At any given moment, when the exact status of the system and demand requests are 

known, the model can provide the best dispatching and redeployment decisions.  Chapter 5 

provided a comprehensive data analysis. The data generated from the real-world operations for the 

ambulances and medical units for the incidents that occurred in Baltimore City has a record of 

vehicle dispatching trajectory and real operational times. So, a simulation procedure is critical and 

necessary to see how the proposed model performs in a real-world case study. In this chapter, a 

discrete event system simulation model is built and explained in detail. The framework of this 

discrete event simulation model can mimic the evolution of the entire operation of an emergency 

response system over time. The sophisticated discrete event simulation model is designed and 

coded in Python programming language. 

 

 6.1 Introduction to the discrete event system 

The system simulation model is event-based and is evolved whenever there is an event in the 

system. Discrete event-based methods are applicable to systems that can be interpreted as a set of 

interrelated entities which can change their status at discrete time points and, as a result, can cause 

a change in the system’s state (Ullrich & Lückerath, 2017).  

The potential behavior of an entity that may cause the change of system can be defined as an event. 

In this study, the events can be: 

• Occurrence of an emergency: when an emergency call comes into the system, the 

dispatching and redeployment decisions need to be made for the available emergency 
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vehicles. If there are not enough vehicles to be dispatched to deal with the tasks, the call 

will be put into a queue system. 

• Change in the status of vehicles: When the status of emergency vehicles changes, the total 

expected coverage for the system may vary. Moreover, a subsequent decision must be made 

for the vehicles that have completed their tasks. So, the change in the status of vehicles can 

be defined as an event that may cause a change in the system’s status. 

• Change in the traffic data: The integer model primarily relies on the input data to make 

decisions. Any change in the input data may result in a different decision. For example, 

when the traffic conditions vary, the model needs to be called to calculate the shortest path 

to escort the patients to the designed hospitals.   

• Change in the likelihood of an emergency in demand zones: For the integrated integer 

model, both dispatching and redeployment decisions must be made simultaneously to 

reduce the rescue time and maintain the maximal coverage for the whole area. The 

coverage calculation largely relies on each zone's importance, which is the likelihood of an 

emergency happening in the demand zone. If the likelihood changes, the deployment 

configuration may be changed accordingly. 

A detailed process flowchart for the simulated EMS process is shown in Table 6.1. The table 

defines the operational decisions that evolve with time, and the ambulance-related events in each 

period are also defined. When the events come into the system, the data and parameters required 

for the proposed model to make decisions are also described. The detailed discrete event simulation 

system is built according to the flowchart for the simulated EMS process. 
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Table 6.1 Process flowchart for simulated EMS process  

 

Simulated EMS Process 

Time Operational 

Decisions 

Ambulance Related 

Events 

Model Parameters 

 

 

 

 

Dispatching and 

redeployment 

decision 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dispatching and 

redeployment 

decision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time of incident 

reported. 

Time of vehicle 

dispatched or 

redeployed from 

base location.  

Time of vehicle 

arrives at scene 

or other station.  

Time of vehicle 

departs scene 

heading to 

hospital or 

station.  

Time of vehicle 

arrives at 

hospital.  

Preparation time 

Response time 

Conveyance time 

Service time (On 

scene) 

 

Historical call for different time 

periods. 

Locations of calls within each 

district. 

 
Preparation time: 

Historical data for different district 

and time periods. 

Vehicle busy availability factor. 

 

Response time: 

Historical time for different district 

and time periods. 

Congestion level factor. 

 

Service time: 

Historical service time for 

different levels of priority of 

incidents  

 

Response time: 

Historical conveyance time for 

different district and time periods. 

Congestion level factor. 
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Simulated EMS Process (continued) 

Time Operational 

Decisions 

Ambulance Related 

Events 

Model Parameters 

 

 

 

 

 

 

 

Redispatch and 

redeployment 

decision 

 

 

 

 

   

 

 

 

 6.2 Conceptual framework of the simulation model 

Figure 6.1 illustrates the conceptual framework of the discrete event simulation model, 

developed for this research and implemented in Python. During the simulation process, the 

simulation engine recursively retrieves and removes the event according to the minimum time 

stamp.   

Several modules and components are identified in the simulation, including their attributes, 

relations, activities, and event. These modules are: 

• Travel time module 

• Vehicle module  

• Emergency module 

• Emergency call module 

Time of vehicle 

departs hospital. 

Time of vehicle 

returns to station.  

Handover time 

Recovery time 

Handover time: 

Historical handover time for 

different district and time periods. 

 

Recovery time: 

Historical enroute time for 

different district and time periods. 

Congestion level factor. 
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• Statistics module 

• Traffic condition module 

• Busy factor module  

• Optimization module 

 

 

 

 

 

 

 

 

                                                                                                  
                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 The event scheduling scheme in EMS simulation 

Time flow mechanism: 

Select next event from 

event list (𝑒𝑘 , 𝑡𝑘). 

Solution solver 

mechanism: 

Import the solver to 

get the solution and 

generate a future event 

list. 

Event routine 

end 

Output: 

Performance, 

Metrics, 

Event list 

generator 

End 

Initialize 

Random 

information 

generator 

Update 

system state 

If the event list is empty 

If the event list is not empty 
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6.2.1 Travel time module 

The calculation of expected travel time is based on the existing street network of the designed 

area. Accurate and preprocessed spatiotemporal historical travel time is critical to the decision 

model and final result.  

Google Maps is a web mapping service that leverages GPS crowdsource to retrieve accurate 

traffic data and provide access to the traffic data publicly, but with limited features and requires 

further pre-processing. Google API can only provide historical travel data for public transportation, 

and historical traffic data and congestion levels are not accessible from Google Maps.  

The Open Source Routing Machine (OSRM) is an open-source router designed for use with 

data from the OpenStreetMap project. It combines sophisticated routing algorithms with the open 

and free road network data of the OpenStreetMap (OSM) project. Moreover, OSRM can compute 

and output the shortest path between any origin and destination pair. In this research, The OSRM 

will be used in Python to compute the travel time between any pair of nodes with the free flow 

speed. Each time an incident is identified, and the GPS location of the incident is given, the OSRM 

is imported to calculate the distance matrix between the incident site and stations and the distance 

matrix between the incident site and all hospitals. 

6.2.2 Vehicle module 

The vehicle module is designed to track and update the status and locations of the vehicles. At 

a specific time stamp, the optimization solver module is imported to make dispatching and 

redeployment decisions to satisfy the demand requests and find the best configuration for the 

deployment. The job assignment and route choice for each vehicle are provided. Meanwhile, each 

vehicle's location and destination are updated after the decision-making. The vehicle module is 

called to update the status and location of each vehicle. 
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6.2.3 Emergency module 

The emergency module is used to track and update the status of the emergencies in the system. 

When new emergency calls come into the system, based on the arrival time, location, severity, 

priority, and request information, the emergency module is used to check if the emergencies are 

fully serviced or if they are in the queue system waiting for the response. The emergency module 

keeps tracking the status of the emergency request until it is fully serviced. 

6.2.4 Emergency call module 

This module carefully defines the emergency call arrival time, location information, request 

information, status severity, and priority. According to the historical medical data, the spatial 

distribution and geographical distribution are known in advance. The historical emergency calls 

are imported by using the module.   

6.2.5 Statistics module 

The statistics module, also called the performance module, is designed to collect the metrics 

and performance measure parameters. Several performance measures will be collected during the 

simulation to fairly and comprehensively reflect the system's performance and compare different 

methods under uncertainty.  These include: 

• Performance related to the dispatching efficiency, including the response time, en route 

time, the number of calls that can be reached within the required time, and the total 

coverage for the whole system. 

• Performance related to the system operating cost, including the number of relocations, total 

relocation distances, etc. 

• Performance related to the workload, including the average working time for the crew 

members and the average relocation times. 
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6.2.6 Traffic condition module 

When travel times are needed, the model cannot access the historical travel times due to data 

source issues. The OSRM package generates the static, optimal travel time matrix for the 

calculation. Without considering the traffic condition, the computational result may be inaccurate 

and inapplicable to the real world. Exogenous information is needed to evaluate the model’s 

reaction to specific disruptions or disturbances. A traffic condition module is developed to generate 

disruptions that are systematically injected into the model as exogenous information. The traffic 

condition module generates random traffic jams for each timestamp based on a pre-defined 

congestion level for each road segment.  Different congestion levels will be systematically 

generated and used in the corresponding simulation. Its effectiveness can be examined 

systematically.  

6.2.7 Busy factor module 

Similar to the traffic condition module, the busy factor module is designed to generate 

exogenous information for the vehicles. In the actual dispatching operations, the availabilities of 

emergency vehicles at that moment are not accessible. Ignoring this factor would overstate the 

optimization effect of the new model. The mechanism of the busy factor module is using a 

Binomial distribution to generate a Boolean-valued outcome based on a pre-defined probability 

factor. According to the Boolean-valued result, the status of vehicles at each time stamp is 

available. The available vehicles will be selected to fulfill the dispatching or redeployment tasks.  

6.2.8 Optimization module 

This module imports the integrated integer programming model, which is the core module in 

the simulation system. The purpose of the optimization module is to calculate the best decisions 

based on the current status of the system. This module will be called whenever an event comes 
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into the system. After the dispatching or redeployment decisions have been made, the subsequent 

tasks for the corresponding vehicles will be added to the future event list.  

Once the components of the discrete event simulation system are identified, including their 

attributes, relations, activities, and events, the model is implemented using a programming 

language. The simulation events are managed by the Future Event List (FEL). This data structure 

is managed as a priority queue, ordered by a key parameter, such as a time stamp. 

Figure 6.1 depicts the model’s operational logic in detail. During a simulation run, the system 

will repeatedly retrieve the next event from the Future Event List (FEL) according to the time 

stamp, import the corresponding module to execute it, and remove it after finishing. The simulation 

time will be set to the currently executed event’s time stamp in these processes. The generated 

future events will be added to the FEL if applicable, and the system’s state will be updated. The 

simulation will run until the stop conditions (such as an empty FEL) are fulfilled.  

 

 6.3 Summary 

In this chapter, a sophisticated discrete event simulation system was defined. Each component 

in the system was identified, and the logic behind the simulation was built up. A large-scale case 

study was conducted using the abovementioned discrete event simulation framework.  The results 

and analysis will be presented and discussed in the next chapter. 
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Chapter 7 : Case Study Results 

In previous chapters, the proposed integer programming model was tested in different 

numerical cases to prove the capability to handle multiple tasks in different scenarios. A discrete 

event simulation (DES) system is built to test the performance of the integer programming model 

in actual operations during a long time horizon. This chapter compares the results of applying the 

proposed model in the discrete event simulation system in the real-world case study with the actual 

operation data. Then an extensive sensitivity analysis is performed on the parameters in the model 

to test how the model will perform under various conditions. 

 

 7.1 Introduction to case study result analysis 

In Chapter 6, we carefully defined the input data source at different time periods and developed 

the basic simulation system framework. The simulation model is applied to the real case data, and 

the performance measures are collected and evaluated.  

In the output analysis, three different categories of statistics are analyzed, which are: 

• Performance related to the dispatching efficiency, including the response time, en route 

time, the number of calls that can be reached within the required time, the total coverage 

for the whole system, and basic coverage, double coverage, and fully functional double 

coverage level for the entire system. 

• Performance related to the system operating cost, including the number of relocations, etc. 

• Performance related to the workload, including the average number of dispatches for each 

vehicle and the workload distribution for different types of vehicles. 
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Chapter 6 proposed four different strategies regarding the zones’ importance. In section 7.2, 

the proposed discrete event simulation system is used to implement models with different 

importance of zones. Three categories of performance measures mentioned above are collected 

and compared among four strategies regarding the zones’ importance. Finally, the strategy with 

the best performance is selected as the baseline model and used in the following output and 

sensitivity analyses.  

 

 7.2 Zone importance strategies analysis 

Table 7.1 summarizes the detailed characteristics of the set of experiments that implemented 

the models with different importance of zones. For each metric, specific graphs are used to 

illustrate the model's performance in detail.  

Table 7.1 Summary of performance measurements of four strategies regarding the zones’ 

importance 

 

 Strategy 1 Strategy 2 Strategy 3 Strategy 4 

En Route Time 4.7910 4.7911 4.8086 4.8086 

Actual Total Coverage Rate 9.1458 9.1108 6.9846 6.9618 

Total Coverage Rate 11.1194 11.0113 7.8338 7.7851 

Total Coverage Improvement  17.7% 17.2% 10.8% 10.57% 

Basic Coverage 0.8916 0.8912 0.8896 0.8896 

Double Coverage 0.6459 0.6454 0.642458 0.642470 

Fully Functional Double Coverage 0.5641 0.56408 0.5563 0.5563 

Number of Incidents Reached by BLS 158 158 160 160 

Number of Incidents Reached by ALS 626 626 624 624 

The average number of redeployments 0.7665 0.8482 0.8048 0.9145 
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7.2.1 En Route time 

Table 7.1 illustrates the average En Route time for the four strategies. The maximum difference 

between the four values is less than one percent, which indicates that the models with different 

zone importances can achieve similar performance. This is because the system has multiple 

emergency medical vehicles on standby. Even when the strategies differ, the system can achieve 

excellent coverage in most situations. The vast majority of incidents can have the nearest vehicle 

dispatched. Only in a few cases, no vehicles are available for dispatch from the nearest station 

because of the deployment configuration. This leads to a different En Route time. Figure 7.1 

compares En Route time for different zone importance strategies. The variation of En Route time 

among the four strategies is so minimal that it is difficult to tell the difference, which is consistent 

with the results in the table. Strategy 1 can achieve the shortest En Route time among the four 

strategies.  

 

Figure 7.1 Comparison of the En Route time for different zone importance strategies 
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7.2.2 Coverage level 

Table 7.1 illustrates the actual total coverage rate and total coverage rate based on computation. 

The coverage rate is the summation of the importance of all zones, which can be reached by all 

stations. Because the calculation of the importance of zones is different, it is impossible to compare 

the coverage rates among strategies directly. To overcome these issues, the total coverage 

improvement is calculated to compare how much the system coverage rate is improved based on 

the strategy. The percentage of progress can be used to evaluate the performance of strategies. 

According to the final results, it is concluded that Strategy 1 and Strategy 2 can maintain a higher 

level of total coverage. 

Figure 7.2 compares total coverage rates among the real-case data and models with different 

strategies. Table 7.1 only reflects the increase in coverage adopting different strategies. Figure 7.2 

clearly displays the change in total coverage rates as events enter the system. Compared with 

Strategy 2, Strategy 1 can maintain a higher level of total coverage throughout the calculation 

period. The total coverage rates based on the models can outperform the results according to the 

real-case data in almost all scenarios. While Strategy 3 and Strategy 4 can also significantly 

improve total coverage compared to the real-case data, the percentage of improvement is less than 

Strategy 1 and Strategy 2. 

Moreover, according to the figure, in a few extreme cases, the total coverage rates of Strategy 

3 and Strategy 4 drop to a worse level than the real-case data. This situation never happens to 

Strategy 1 and Strategy 2. This means Strategy 1 and Strategy 2 are more suitable than the other 

two strategies in real-life applications.  
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Figure 7.2 Comparison of the total coverage rate of the real case data with models with different 

zone importance strategies 

 

Besides the total coverage rate, basic, double, and fully functional double coverage rates are 

also calculated. This is to avoid the fact that some models only emphasize the total system coverage 

rates and provide more protection for the incident-intensive areas, which reduces the basic 

coverage of surrounding areas. These three parameters, basic coverage rate, double coverage rate, 

and fully functional double coverage rate, are thus introduced into the system. The results indicate 

that four strategies can maintain a high level of similar results on these three parameters. Strategy 

1 narrowly outperforms other strategies. Strategy 1 can cover a broader area while maintaining 
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maximum system coverage, allowing more areas to gain basic coverage rate, double coverage rate, 

and fully function double coverage rate.  

Figure 7.3 shows the comparison of basic coverage between models with different strategies. 

In the figure, most of the four curves overlap, which means the basic coverage can be maintained 

at a similar level among the four strategies. The basic coverage level can be kept at a stable value 

of about 0.9. The variation of basic coverage for Strategy 1 is more stable than for Strategy 2 and 

Strategy 4.  

 

 

Figure 7.3 Comparison of the basic coverage for different strategies 

 

Figure 7.4 shows the comparison of double coverage between models with different strategies. 

The double coverage level can be maintained around 0.65. The variation of double coverage for 
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Strategy 4 is larger than others. In some extreme situations, the double coverage rate can reach a 

level smaller than 0.5.  

 
Figure 7.4 Comparison of the double coverage for different strategies 

 

Figure 7.5 compares fully functional double coverage between models with different strategies. 

The fully functional double coverage level can be maintained around 0.55. Similar to the basic and 

double coverage rates, the variation of fully functional double coverage rates for Strategy 4 is 

larger than others. In some extreme situations, the fully functional double coverage rate can reach 

a level smaller than 0.5.  

Among these three parameters, the variation of coverage level for Strategy 4 is larger than 

others. In some cases, the minimal coverage value for Strategy 2 is smaller than in others. In 

summary, Strategy 1 is the best strategy regarding these performance measurements. It can 
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maintain a high level of basic coverage rate, double coverage rate, and fully functional double 

coverage rate with fewer variations.  

 

 
Figure 7.5 Comparison of the fully functional double coverage for different strategies 

 

 

7.2.3 Workload 

Meanwhile, Table 7.1 displays the workload distribution between different types of vehicles. 

The number of incidents reached by BLS and ALS is close among the four strategies. Strategies 3 

and 4 can dispatch more advanced emergency medical vehicles to the incident sites and increase 

the utilization of ALS vehicles.  

7.2.4 Redeployment 

Table 7.1 also shows the average number of redeployments. This performance measure ensures 

the system can maintain the best performance with the least number of redeployments. If the 

average number of redeployments for each incident is too high, it means the system requires a very 
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high cost to maintain the optimal condition. In some cases, the high cost is unachievable. This is 

the reason that the parameter is introduced into the performance measures. According to the final 

results, it illustrates that the average number of redeployments is smaller than 1. Strategy 1 uses 

the least redeployments to maintain the highest level of system performance.  

Figure 7.6 shows the number of redeployments when making decisions for each incident in the 

system. It illustrates that the number of redeployments in most conditions does not exceed one. In 

some conditions, the numbers of redeployments are around five. Compared with other strategies, 

Strategy 1 can maintain fewer redeployments. 

 

 

Figure 7.6 Comparison of the number of redeployments for different strategies 
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7.2.5 Summary 

In summary, Strategy 1 for generating the zones’ importance is the best among all strategies. 

It can not only achieve the shortest En Route time but also maintain a high level of system coverage 

rate. At the same time, Strategy 1 can find an optimal deployment configuration for all vehicles to 

maximize the basic coverage rate, double coverage rate, and fully functional double coverage rate.  

Except for the total coverage improvement, all four strategies can achieve similar results in the 

remaining metrics. This is because the distribution pattern of the importance of zones is roughly 

the same across strategies. Certain areas may show large differences due to different calculation 

strategies, but because of the high coverage rate, most incidents can have the shortest dispatch time 

from the nearest stations, and the final rescue times do not differ much.  

Strategy 1 will be used as a baseline in this study in the following analysis. Using the number 

of incidents to represent the importance of zones can not only emphasizes zones with high incident 

rates but also show the variation in incident distribution.  

For other studies in the future, the results may be completely different. Therefore, the above 

analysis should be conducted to compare the performance of strategies to determine which one is 

more suitable for other areas.  

 

 7.3 Proposed model results 

In section 7.2, the four strategies regarding the importance of zones were applied in the 

proposed model and discrete event simulation system. This section conducts a comprehensive 

output results analysis, and different categories of performance measures are collected and 

compared. Based on the conclusions in Section 7.2, the importance of zones generated according 

to Strategy 1 can help the proposed model find the best configuration for the deployment of 
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vehicles. Strategy 1 is used as a baseline in this section, and the simulation results generated 

according to the corresponding importance of zones will be compared with the real-case data. 

Multi-dimensional metrics are collected to estimate the performance improvement when applying 

the proposed model to the real-case data. 

7.3.1 Total coverage 

Total coverage is calculated based on the importance of zones which is calculated according 

to the ratio of incidents that happened in the zones. For each pair of zone and station, if the travel 

time is shorter than the threshold, the zone is covered by the station, and the importance of the 

zone will be added to the total coverage. The comparison of total coverage rates between real-case 

data and the simulation results is shown in Figure 7.7. It illustrates the total coverage rate provided 

by the emergency medical vehicles based on real-case data and computation according to the 

proposed model. The orange line indicates the fluctuation of the coverage level of the whole area 

under the actual dispatch data of emergency medical vehicles. While the blue line represents the 

coverage level under the calculation. Line segment fluctuations reflect emergency medical 

vehicles' deployment at different stations. If a vehicle is dispatched on a mission or redeployed to 

other stations, it is not considered available to provide coverage for the system. Therefore, the total 

coverage level decreases. Figure 7.7 illustrates that the average total coverage level, according to 

the proposed model, is around 11. While the average total coverage level, according to the actual 

operating data, is about 9.3. In almost all scenarios, the proposed model can increase the total 

coverage for the system and provide more protection than the actual operating policy.  

7.3.2 Response time 

Table 7.2 summarizes the statistics of En Route time between real-case data and computational 

data. The table records the minimal, maximal, and different percentage values for both data sets. 
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Except for the minimal value for the real-case data, which is 0 and better than the proposed model, 

in all other data, the computational results can achieve better results than real-case data.  

 

 
Figure 7.7 Comparison of the total coverage for real-case data and simulation results 

 

 

Table 7.2 Comparison of En Route time between real-case data and simulation results 

 

 Real Case Integer Model 

Minimal value 0 0.1 

25th percentile 4 2.349 

50th percentile 6 3.718 

75th percentile 9 6.254 

Maximal value 52 22.66 

 

Figure 7.8 compares En Route time between real-case data and the proposed model. In this 

comparison, the ratio of incidents occurring in the zone is used to represent the importance of the 

zone. The importance of zones will affect the coverage rate. Figure 7.8 shows the histogram of 

two data sets and reflects the distribution of En Route time under different scenarios. It 

demonstrates a significant increase in the proportion of incidents that use less rescue time in the 

proposed model. More than half of the incidents can be reached within 5 minutes, which may take 

more time in the real-case date.  
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Figure 7.8 Comparison of the En Route time for real-case data and simulation results  

 

Response time is an important measure to evaluate the performance of dispatching policies. 

The percentage of incidents that can be reached within a pre-defined time threshold is an important 

indicator of the response time. The NFPA standard clearly states the time threshold. Ensuring that 

all incidents can be reached within the specified time as far as possible can not only meet the 

requirement but also ensures that more incidents can be rescued in a timely manner, thereby 

reducing the rescue time. Figure 7.9 compares the percentages of incidents reached within a pre-

defined time threshold. It illustrates that the ratio of incidents reached within 5 minutes will 

increase from 0.45 to 0.65 if the proposed mode is applied. The ratio of incidents reached within 

8 minutes will increase from 0.75 to 0.83. The results illustrate that the proposed model can largely 

increase the proportion of incidents that can be reached within the pre-defined time threshold.  

7.3.3 Workload 

The proposed model aims to make the dispatching and redeployment decisions for the 

heterogeneous emergency vehicle fleet to shorten the rescue time and consider the workload 

between different units and crew members. Figure 7.10 shows the comparison of workload 

distributed among different types of vehicles. By applying the proposed model to the real-case 
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data, the utilization of ALS vehicles will increase from 50 percent to nearly 80 percent. Increased 

utilization of advanced level vehicles allows for more professional pre-hospital treatments for 

patients.  

 
Figure 7.9 Comparison of the percentage of incidents that can be reached within a predefined 

time threshold 

 

 

Figure 7.10 Comparison of the workload for different types of vehicles 
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Figure 7.11 compares workload distribution between different types of emergency vehicles in 

real-case data and computational results. The standard deviation for BLS vehicles in real-case data 

is 10.9137, while in the computation is 3.2572. The standard deviation for ALS ambulances in 

real-case data is 10.0012, while in the computation is 7.1861. Figure 7.11 demonstrates the 

proportion of incidents reached by ALS ambulances increases, and the workload distribution 

among ALS ambulances is more balanced than in the real-case data. The utilization of BLS 

ambulances is significantly reduced. The tasks are more evenly distributed in the BLS ambulances. 

It must be mentioned that ambulance A25 has not been dispatched to any incidents during the 

computation. This is not a miscalculation. This may be due to the deployment of the vehicles 

resulting in ambulance A25 being located consistently at the stations. This situation will not occur 

again in the following sensitivity analysis when small perturbations are added to the system. 

 

 

Figure 7.11 Comparison of the workload distribution of emergency vehicles for the base 

condition and real-case data  
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7.3.4 Redeployment  

The previous sections demonstrate the proposed model can shorten the rescue time and find 

the best configuration for the deployment of vehicles to maintain a higher level of total coverage. 

Part of this overall performance improvement is achieved by increasing the number of 

redeployments. Therefore, the number of redeployments should be limited to a certain number and 

not increased indefinitely. Too many deployments will not only increase crew members’ workload 

but also increase the cost. In the proposed model, the number of redeployments is not explicitly 

limited by adding a constraint. However, some other parameters are added to the model to simulate 

real situations, thus indirectly restricting the number of redeployments. Figure 7.12 shows that the 

number of redeployments does not exceed one for the vast majority of incidents. Table 7.1 shows 

the average number of redeployments is 0.7665. In a few cases, the number of redeployments is 

around 5. The results demonstrate that the proposed model can improve overall performance with 

a few redeployments, which is acceptable. In future applications, if certain limits on the number 

of redeployments are needed, a corresponding constraint can be added to the integer model.  

7.3.5 Optimality  

Chapter 4 shows that the proposed model can handle large-scale and complex situations and 

produce dispatching and relocation decisions in a reasonable time. In chapter 7, the proposed 

model is applied to the real-case data and can be solved optimally using the Gurobi optimizer 

solver. In real situations, Baltimore city has plenty of emergency vehicles on standby to prepare 

for the future, and extreme situations where a large number of incidents occur simultaneously are 

rare. It ensures the model can always provide a feasible optimal solution for the current situation. 

In the future, if the incident number is greater than the available vehicles in the system, the model 

might be infeasible. A queueing system can be developed and incorporated into the discrete event 
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system to handle infeasibility. Suppose there are not enough emergency vehicles to be dispatched 

to satisfy the requirements. In that case, the incidents should be sorted according to the priority or 

arrival time, then wait in the queue until fulfillment.  

 

 7.4 Sensitivity Analysis 

7.4.1 Traffic time increment  

Historical traffic congestion data is not available for the recorded medical data. Actual traffic 

time largely determines the efficiency of rescue. Neglecting the effect of travel time increase may 

result in overestimating the optimality of the model. So, testing the system's performance at 

different travel time conditions is critical. The traffic system is an interrelated and complex system 

that is integrated with multiple entities. Numerous reasons cause traffic congestion. In this study, 

the causes of the congestion and its attributes and properties are out of the scope of the research. 

The study focuses on the impacts of travel time increase on the final performance of the proposed 

model. Thus, the study will assess the effects of traffic congestion by increasing the congestion 

level, which is a predefined parameter to quantify the increase in travel time at different congestion 

levels. 
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Figure 7.12 The number of redeployments for incidents 

 

Due to the lack of sufficient historical data to generate a specific congestion probability density 

function for each road segment, a random generator will be used, which is implemented by using 

the package ‘random’ in Python. The random traffic congestion generator will generate an extra 

traveling time for each origin and destination pair based on a predefined congestion level. And the 

random congestion information will be updated at every time step. It means the whole area uses 

the same congestion level at each time. This assumption might be unreasonable in some real-world 

situations because it doesn’t distinguish the busy and non-busy areas. The results might not 

accurately reflect the real dispatching situations. But when important historical data is missing, 

this approach can illustrate the characteristics of the problem and show how the response time will 

change due to different congestion conditions. Moreover, in some serious incidents, the emergency 

vehicles will turn on the lights and sirens, and surrounding vehicles will make way for the rescue 

vehicle to proceed. This will also make the rescue time not heavily dependent on traffic congestion 

information. 



 108 

In this study, eight different given congestion levels, which are: 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 

and 2.0, will be tested on the historical medical data. A given congestion level is the parameter 

used to calculate the additional travel time between each pair of origins and destinations caused 

by traffic jams. The congestion level is assumed to start from 0.1 and increase gradually in 

increments of 0.1 to reflect the slightly congested traffic conditions. Then congestion levels 1.0, 

1.5, and 2.0 are chosen to simulate the severely congested traffic conditions. These numbers have 

been selected to reflect travel times with traffic congestion that may be several times greater than 

the free-flow travel times. Five simulations will be conducted for each congestion level to reduce 

the randomness. And same statistics will be collected during the computation. The results and 

analysis are shown below. 

Figure 7.13 compares the average En Route time between the base conditions and different 

congestion levels. Under each level, the congestion time is not identical to all the routes. A specific 

congestion level is randomly selected between 0 and the given congestion level for each pair of 

stations, zones, and incident sites. Then the actual travel time is calculated using the travel time 

without traffic congestion multiplied by one plus the specific congestion level. With the increase 

in congestion level, the En Route time will increase accordingly. When the congestion level 

reaches 0.5, the average En Route time is about 5.8 minutes, indicating a 21% increase. If the 

congestion level increase to 1.0, the average En Route time is about 6.8 minutes, indicating a 42% 

increase. If the congestion level reach 2.0, the average En Route time will increase by 62.5%. Such 

extreme situations are not common in real life because emergency vehicles will turn on lights and 

sirens, which can reduce the impact of congestion. However, the sensitivity analysis can roughly 

reflect the effect brought by congestion. 
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Figure 7.13 Comparison of the average En Route time for the base condition and different 

congestion levels 

 

Figure 7.14 and Figure 7.15 illustrate the percentage of incidents that can be reached within 5 

and 8 minutes under base conditions and conditions with different congestion levels. Only 56% of 

incidents can be reached within 5 minutes if the congestion level increases to 0.5, which is a 16% 

decrease. If the congestion level reaches 2.0, only less than 40% of incidents can be reached within 

5 minutes, indicating a 45% decrease. The figures also illustrate when the congestion level reaches 

0.5, 76% of incidents can be reached within 8 minutes, indicating an 8% decrease compared with 

the base model. If the congestion level expands to 2.0, only 63% of incidents can be reached within 

8 minutes.  
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Figure 7.14 Comparison of the percentage of incidents reached within 5 minutes for the base 

condition and models with different congestion levels 

 

 
 

Figure 7.15 Comparison of the percentage of incidents reached within 8 minutes for the base 

condition and models with different congestion levels 
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Table 7.3 and  

Table 7.4 summarize the average En Route time statistics between ideal data, which is the base 

model without considering the traffic condition and results with different congestion levels.  

 

Table 7.3 Average En Route time for the base model and models with different congestion levels 

 

 Base 

Model 

Congestion 

level_0.1 

Congestion 

level_0.2 

Congestion 

level_0.3 

Congestion 

level_0.4 

Congestion 

level_0.5 

Replica 1 4.79 5.021 5.213 5.437 5.635 5.822 

Replica 2  5.019 5.197 5.405 5.594 5.811 

Replica 3  5.019 5.213 5.422 5.637 5.773 

Replica 4  4.998 5.217 5.414 5.619 5.779 

Replica 5  5.015 5.189 5.386 5.633 5.783 

 

 

Table 7.4 Average En Route time for the base model and models with different congestion levels 

(continued) 

 

 Base 

Model 

Congestion 

level_1.0 

Congestion 

level_1.5 

Congestion 

level_2.0 

Replica 1 4.79 6.6624 7.2565 7.8068 

Replica 2  6.6578 7.2967 7.8265 

Replica 3  6.6639 7.3575 7.9876 

Replica 4  6.6196 7.1987 7.7756 

Replica 5  6.6465 7.4675 7.8376 

 

Figure 7.16 and Figure 7.17 compare the En Route time for real-case data, the base model, and 

models with different congestion levels. The boxplots can clearly show that with the congestion 

level increase, the average En Route time will gradually increase. When the congestion level is 

smaller than 0.5, the models can perform better than real-case data. When the congestion level 

continues to increase to 1.0, 1.5, and 2.0, the actual En Route time will deteriorate or be even worse 

than the real-case data. The dispatch time for some extreme cases can be significantly increased 

compared to the base model. 
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Figure 7.16 Comparison of the En Route time for real-case data, the base model, and models 

with different congestion levels 

 

 
Figure 7.17 Comparison of the En Route time for real-case data, the base model, and models 

with different congestion levels (continued) 

 

Table 7.5 summarizes the comparison of the percentage of basic coverage between the base 

model without considering traffic conditions and results with considering different congestion 

levels. Five different statistics are collected and computed for the base model and models 
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considering congestion levels. Except for the minimal value, the integer model can maintain a 

higher coverage level than those considering the congestion. This is consistent with common sense. 

More severe congestion may increase vehicle dispatching and redeployment time, thus affecting 

decision-making. If the redeployment duration exceeds the threshold, the redeployment decision 

will not be considered. This will affect the whole coverage level for the system. The maximal value 

is kept at 0.970, which is close to 1. The system can cover almost all zones except for very few 

outlying areas. This value ensures that virtually all areas in the system can get immediate access 

to basic medical assistance. If the congestion level is smaller or equal to 0.3, the minimal coverage 

is greater than the base model without considering the traffic condition. This result may be because 

congestion is gathering in the downtown area, and emergency vehicles are not dispatched from the 

nearest station but from other stations.  

Table 7.5 Comparison of percentage of basic coverage between the base model and models with 

different congestion levels 

 

 Integer 

Model 

Congestion 

level_0.1 

Congestion 

level_0.2 

Congestion 

level_0.3 

Congestion 

level_0.4 

Congestion 

level_0.5 

Minimal value 0.598 0.670 0.617 0.631 0.578 0.582 

25th percentile 0.890 0.889 0.888 0.887 0.883 0.883 

50th percentile 0.893 0.893 0.893 0.893 0.893 0.893 

75th percentile 0.915 0.914 0.911 0.910 0.907 0.905 

Maximal value 0.970 0.970 0.970 0.970 0.970 0.970 

 

Table 7.6 and Table 7.7 compare the percentage of double coverage rate and fully functional 

coverage rate between the base model and models with different congestion levels. The maximal 

double coverage rate can be maintained at 72.9%, and the maximal fully functional double 

coverage rate can reach 63.5%. Double and fully functional double coverage can maintain small 

fluctuations in different congestion levels. 

  



 114 

Table 7.6 Comparison of percentage of double coverage between the base model and models 

with different congestion levels 

 

 Integer 

Model 

Congestion 

level_0.1 

Congestion 

level_0.2 

Congestion 

level_0.3 

Congestion 

level_0.4 

Congestion 

level_0.5 

Minimal value 0.483 0.490 0.487 0.495 0.495 0.493 

25th percentile 0.626 0.620 0.620 0.620 0.617 0.618 

50th percentile 0.660 0.660 0.656 0.653 0.650 0.649 

75th percentile 0.669 0.669 0.669 0.667 0.666 0.666 

Maximal value 0.729 0.729 0.729 0.729 0.729 0.729 

 

Table 7.7 Comparison of percentage of fully functional double coverage between the base model 

and models with different congestion levels 

 

 Integer 

Model 

Congestion 

level_0.1 

Congestion 

level_0.2 

Congestion 

level_0.3 

Congestion 

level_0.4 

Congestion 

level_0.5 

Minimal value 0.483 0.490 0.487 0.487 0.485 0.489 

25th percentile 0.548 0.548 0.547 0.547 0.547 0.547 

50th percentile 0.574 0.570 0.569 0.569 0.569 0.570 

75th percentile 0.584 0.584 0.584 0.582 0.583 0.582 

Maximal value 0.635 0.635 0.635 0.635 0.635 0.635 

 

 

Figure 7.18 and Figure 7.19 compare the percentage of basic coverage between the base model 

and models with different congestion levels. They show that for the base model, the system can 

maintain around 90 percent of the basic coverage, regardless of the impact of some special cases. 

In some extreme conditions, when the requests in the medical system increase and multiple 

vehicles are on-site or at the hospital to deal with tasks, the basic cover of the system will decrease 

to 60 percent. For different congestion levels, there will be a reduction in the coverage of the 

system. But the system can still maintain a high level of base coverage. With the increase in 

congestion levels, the basic coverage rate will decrease. In more than half of the scenarios, the 

basic coverage rate is less than 90% if the congestion level reaches 2. 
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Figure 7.18 Comparison of the percentage of basic coverage for the base model and models with 

different congestion levels 

 

 

 

 
Figure 7.19 Comparison of the percentage of basic coverage for the base model and models with 

different congestion levels (continued) 

 

Figure 7.20 and Figure 7.21 illustrate the comparison of the percentage of double coverage 

between the base model and models with different congestion levels. They show that for the base 

model, the system can maintain around 66 percent of the double coverage rate, regardless of the 
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impact of some special cases. With the increase in congestion levels, the median value of the 

double coverage rate will decrease accordingly. Moreover, in extreme conditions, the minimum 

value of the double coverage rate is also reduced, which is around 50 percent. 

 

 
Figure 7.20 Comparison of the percentage of double coverage for the base model and models 

with different congestion levels 

 

 
Figure 7.21 Comparison of the percentage of double coverage for the base model and models 

with different congestion levels (continued) 
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Figure 7.22 and Figure 7.23 compare the percentage of fully functional double coverage 

between the base model and models with different congestion levels. They show that for the base 

model, the system can maintain around 57.5 percent of the fully functional double coverage, 

regardless of the impact of some special cases. With the increase in congestion levels, the median 

value of the fully functional double coverage rate will decrease accordingly. 

 
Figure 7.22 Comparison of the percentage of fully functional double coverage for the base model 

and models with different congestion levels 

 

 

 
Figure 7.23 Comparison of percentage of fully functional double coverage for the base model 

and models with different congestion levels (continued) 
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Figure 7.24 and Figure 7.25 compare the workload distribution for advanced life support (ALS) 

ambulances between real case data, the base model, and different congestion levels. Because 

advanced level vehicles undertake more rescue tasks, the average number of dispatching per 

vehicle increases, but the workloads are more evenly distributed compared to the real-case data. 

 

 
Figure 7.24 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different congestion levels 

 

 

 
 

Figure 7.25 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different congestion levels (continued) 
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Figure 7.26 and Figure 7.27 compare the workload distribution for basic life support (BLS) 

ambulances between real case data, the base model, and different congestion levels. They show 

the variation of workload distribution in real-case data is extremely large, and the workload 

distribution is uneven. While for the proposed model, with and without considering congestion 

conditions, the results can achieve balanced scheduling. The huge improvement comes not only 

from the algorithm, which considers the workload factor, but also because the utilization of BLS 

is reduced. The model considers the functional division of the vehicles, which can increase the use 

of ALS vehicles to substitute the BLS vehicles and thus reduce the rescue time. The figures show 

that the median values can be maintained at a stable level of around 12 for the proposed models.  

 

 
 

Figure 7.26 Comparison of the workload distribution of the BLS vehicles for the base model and 

models with different congestion levels 
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Figure 7.27 Comparison of the workload distribution of the BLS vehicles for the base model and 

models with different congestion levels  (continued) 

 

Figure 7.28 to Figure 7.35 compare the workload distribution between ALS and BLS 

ambulances under base condition and conditions with different congestion levels. These figures 

show that a more balanced distribution of rescue tasks among different vehicles is achieved. 

Compared with the base model, different congestion levels do not create an unbalanced 

assignment of rescue tasks. On the contrary, the tasks assigned between different ambulances are 

more reasonable in some conditions. For example, in the base model, BLS ambulance A25 is not 

assigned any task.  

 

 



 121 

 
Figure 7.28 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.1 

 

 
Figure 7.29 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.2 
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Figure 7.30 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.3 

 

 
Figure 7.31 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =0.4 
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Figure 7.32 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 0.5 

 

 
Figure 7.33 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 1.0 
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Figure 7.34 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level = 1.5 

 

 
Figure 7.35 Comparison of the workload distribution of emergency vehicles for the base model 

and models with congestion level =2.0 
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7.4.2 Emergency vehicle busy factor 

Another parameter that is worth analyzing is fleet size. It is evident that by increasing the fleet 

size, the results will improve a lot. The adequate number and type of emergency vehicles will 

decrease the rescue time, improve rescue efficiency, and enlarge the coverage for the whole area, 

which is equivalent to the effect of redeployment. It is interesting to see how the decisions will be 

influenced by changing the fleet size.  

The vehicle sources have been analyzed in the previous chapter. In reality, the availability of 

the vehicle fleets at some specific timestamp is unknown. Moreover, the busy factor for each 

vehicle in the emergency fleet is also unknown. After serving an incident, how long the EMS fleet 

must recover is also inaccessible.  

For this part of the analysis, a vehicle busy factor generator is developed and imported each 

time the decisions need to be made. The random busy factor generates a Boolean-valued outcome: 

available or busy according to a binomial distribution with given parameters. This module can 

define the status of all emergency vehicles. The limitation is that the same busy level is used for 

all stations to generate the outcomes. Like traffic congestion level information, the method used 

to generate the busy factors does not distinguish the stations located in busy areas and the non-

busy areas.  

But a general understanding will be summarized for the process and simulation. More accurate 

results can be obtained in the future with the support of comprehensive data. In this research, four 

different busy levels will be studied, which are: 0.05, 0.10, 0.15, 0.20. The parameter starts from 

0.05 and increases gradually in increments of 0.05 to reflect different availability probabilities. For 

each busy level, five simulations are run to minimize the impact brought by the randomness. The 

results and analysis are shown below.  
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In the analysis, the base model will be used as a baseline to measure the effectiveness of the 

busy factor. When the busy factor is equal to 0.05, it means that for each vehicle, there is a 

probability of 0.05 that the vehicle status is unavailable.  

Figure 7.36 and Figure 7.37 show the percentage of incidents that can be reached by emergency 

medical vehicles within 5 minutes and 8 minutes under different conditions. Different levels of 

busy factors are considered to simulate vehicle availability in different scenarios. Emergency 

medical vehicles located at stations may be unavailable in real situations due to repair or other 

conditions. In an ideal condition, all vehicles are available to be dispatched or redeployed when 

the events or incidents come into the system, which is the base model in the figures. About 65% 

of incidents can be reached within 5 minutes, and 83.5% within 8 minutes. If the busy factor 

increases to 0.20, 61% of incidents can be reached within 5 minutes, and 81% within 8 minutes. 

Five sets of experiments were conducted for each level of busy factor to exclude the interference 

of individual cases on the final results. Then the average percentage of incidents that can be 

reached within 5 minutes and 8 minutes were calculated and plotted.   

As mentioned before, the percentage of incidents reached within 5 minutes drops to 56% if the 

congestion level reaches 0.5. The increase in congestion level will have a more significant impact 

on rescue time, so it will also affect the percentage of incidents that can be reached within the pre-

defined time limit. 
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Figure 7.36 Comparison of the percentage of incidents reached within 5 minutes for the base 

model and models with different levels of busy factor 

 

 

 
 

Figure 7.37 Comparison of the percentage of incidents reached within 8 minutes for the base 

model and models with different levels of busy factor  

 

Figure 7.38 compares the average En Route time between the base condition and models with 

different levels of busy factors. Under the base condition, the average En Route time for emergency 
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medical vehicles is about 4.8 minutes. With the increase of the busy factor, the average En Route 

time increases and reaches 5 minutes.  

 

 
Figure 7.38 Comparison of the average En Route time for the base model and models with 

different levels of busy factor 

 

Increasing busy factors or congestion levels will decrease rescue efficiency and increase rescue 

time. The increase in congestion level will have a greater impact on rescue time than the increase 

in a busy factor. This situation is because a station may be equipped with multiple emergency 

medical vehicles on standby, and if one vehicle becomes unavailable, other vehicles can be 

dispatched or redeployed to achieve the same effect. However, the increase in congestion level 

causes the rising of actual travel time on all routes, making the increase in rescue time inevitable. 

So as a reflection of the results, increasing the congestion level will lead to a longer rescue time.  

Figure 7.39 compares the En Route time between the base condition, calculated from real case 

data, and different levels of busy factors.  

Five sets of experiments are conducted for each condition of the busy factor, and the average 

value of the En Route time is calculated and represented in the box plot. The box plots can properly 

compare multiple data sets and visualize outlier values. There are some abnormal data for the real 
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case data, which means the En Route time is greater than 30 minutes. This is unacceptable in reality, 

and it greatly increases the rescue time. This issue can be effectively avoided by applying the 

proposed model. The maximal En Route time is about 20 minutes due to the dispatching distance 

or deficiency of emergency vehicles. Moreover, the average En Route time is decreased.  

 

 
Figure 7.39 Comparison of the En Route time between real-case data, the base model, and 

models with different levels of busy factor 

 

 

Table 7.8 summarizes the average En Route time between the base model without considering 

the unavailability of emergency medical vehicles and models with different levels of busy factors.  

Table 7.9 compares the percentage of basic coverage between the base model without 

considering the unavailability of emergency medical vehicles and models with considering the 

busy factor. The results and conclusions are roughly the same as in the congestion level part. The 

base model can maintain higher coverage levels on other values except for the minimal value. For 

the minimal basic coverage level value, except for the condition that the busy factor equals 0.10, 

all other models can maintain a higher minimal value than the base condition. This phenomenon 
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is because the vehicle in the nearest station might be unavailable to be dispatched. Another 

difference is that the maximal value will be the same for all congestion levels, while the increase 

in the busy factor will cause a decrease in maximal basic coverage.  

 

Table 7.8 Average En Route time between the base model and models with different levels of 

busy factor 

 

 Base 

Model 

Busy 

factor_0.05 

Busy 

factor_0.10 

Busy 

factor_0.15 

Busy 

factor_0.20 

Replica 1 4.79 4.830 4.918 4.927 5.038 

Replica 2  4.852 4.910 4.989 5.001 

Replica 3  4.842 4.911 4.977 5.034 

Replica 4  4.842 4.879 4.927 4.970 

Replica 5  4.844 4.888 4.966 5.011 

 

 

Table 7.9 Comparison of percentage of basic coverage between base model and models with 

different levels of busy factor 

 

 Integer 

Model 

Busy 

factor_0.05 

Busy 

factor_0.10 

Busy 

factor_0.15 

Busy 

factor_0.20 

Minimal value 0.598 0.640 0.574 0.643 0.629 

25th percentile 0.890 0.857 0.842 0.833 0.827 

50th percentile 0.893 0.879 0.863 0.856 0.851 

75th percentile 0.915 0.890 0.880 0.874 0.871 

Maximal value 0.970 0.964 0.948 0.943 0.931 

 

 

The busy factor and congestion level affect coverage level and rescue time completely 

differently. The results show that with the increase of the busy factor, the rescue time will increase 

slowly because there might be more than one vehicle located in a station. If the busy factor is not 

large enough, the probability of all rescue vehicles being unavailable simultaneously is very low. 

Stations can have multiple vehicles on standby, and the system can dispatch the vehicle from the 

nearest station. In comparison, congestion will have a more significant and immediate impact on 

rescue time.  
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The phenomenon is the opposite at the coverage level. The increase in congestion levels will 

cause a drop in coverage level slightly, while the increase in the busy factor will cause a significant 

reduction in coverage level. If the busy factor reaches 0.2, the maximal value will be reduced by 

about 5%. 

Table 7.10 and Table 7.11 compare the percentage of double coverage and fully functional 

double coverage for the base model and models with different levels of busy factor. In most 

conditions, the coverage level will decrease with the increase of the busy factor. When the busy 

factor equals 0.2, the maximal value of double coverage is greater than the base condition. The 

maximal value remains the same for different conditions for the fully functional double coverage 

level. 

 

Table 7.10 Comparison of percentage of double coverage between the base model and models 

with different levels of busy factor 

 

 Integer 

Model 

Busy 

factor_0.05 

Busy 

factor_0.10 

Busy 

factor_0.15 

Busy 

factor_0.20 

Minimal value 0.483 0.506 0.482 0.490 0.487 

25th percentile 0.626 0.598 0.590 0.589 0.593 

50th percentile 0.660 0.615 0.608 0.608 0.613 

75th percentile 0.669 0.630 0.624 0.627 0.632 

Maximal value 0.729 0.723 0.717 0.720 0.739 

 

 

 

Table 7.11 Comparison of percentage of fully functional double coverage between the base 

model and models with different levels of busy factor 

 

 Integer 

Model 

Busy 

factor_0.05 

Busy 

factor_0.10 

Busy 

factor_0.15 

Busy 

factor_0.20 

Minimal value 0.483 0.488 0.481 0.484 0.487 

25th percentile 0.548 0.548 0.548 0.547 0.548 

50th percentile 0.574 0.568 0.564 0.565 0.565 

75th percentile 0.584 0.582 0.582 0.580 0.579 

Maximal value 0.635 0.635 0.635 0.635 0.635 
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Figure 7.40 compares the percentage of basic coverage between the base model and models 

with different levels of the busy factor. It shows that for the base model, the system can maintain 

85 to 90 percent of the basic coverage, regardless of the impact of some special cases.  

In some extreme conditions, the requests in the medical system increase. When multiple 

vehicles are either on-site or at the hospital to deal with tasks, the basic cover of the system will 

decrease to 60 percent. There will be a reduction in the system's coverage for different levels of 

busy factors, but the system can still maintain a high level of base coverage.  

 

 
Figure 7.40 Comparison of the percentage of basic coverage for the base model and models with 

different levels of busy factors 

 

 

Figure 7.41 compares the percentage of double coverage between the base model and models 

with different levels of busy factor. Compared with the base model, the median values of double 

coverage decrease by almost 7 percent for different levels of busy factors. Overall coverage levels 

decline due to the increase in busy factors. The minimal double coverage levels reach 50 percent. 
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The workload is also a critical metric for system evaluation. Figure 7.42 compares the 

percentage of fully functional double coverage levels for the base model and models with different 

levels of busy factor. Compared with the base model, the median value has a downward trend. 

Compared with the double coverage level, the decrease in fully functional double coverage 

between the base model and models with different levels of busy factor is smaller. Figure 7.43 

compares the workload distribution for advanced life support (ALS) ambulances between the real 

case data, the base model, and models with different levels of busy factors. The box plots in the 

figure clearly illustrate the distribution in each experiment. In the real case data, the variation in 

workload is huge, which means the workload distribution is uneven.  

 
Figure 7.41 Comparison of the percentage of double coverage for the base model and models 

with different levels of busy factors 

 

 

Applying the proposed model can largely decrease the variation in workload. Figure 7.43 

illustrates that the median values for the base model and models with different levels of busy 

factors are approximately the same, which is about 20. Compared with the base model, adding 

different levels of busy factors to the system can narrow the variation significantly.    
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The results show the same trend as the congestion level. The workload distribution is more 

even than the real case data. The reasons for this phenomenon may be the original locations of the 

vehicles. After adding some perturbations to the system, the dispatch of vehicles achieves a more 

balanced scheduling.  

 

 
Figure 7.42 Comparison of the percentage of fully functional double coverage for the base model 

and models with different levels of busy factors 

 

 
Figure 7.43 Comparison of the workload distribution of the ALS vehicles for the base model and 

models with different levels of busy factors 
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Figure 7.44 compares workload distribution for basic life support (BLS) ambulances between 

real case data, base model, and models with different levels of busy factors. The base model can 

largely decrease the variation of workload distribution. And the median values can be maintained 

at a stable level, which is about 12 for proposed models with and without considering the busy 

factors.  

 

 
Figure 7.44 Comparison of workload distribution of the BLS vehicles for the base model and 

models with different levels of busy factors 

 

Figure 7.45 to Figure 7.48 display the comparison of workload distribution between ALS and 

BLS ambulances under base condition and conditions with different levels of busy factor. These 

figures show that a more balanced distribution of rescue tasks among the different vehicles is 

achieved. Compared with the base model, different levels of busy factors do not cause the 

assignment of rescue tasks to be unbalanced. On the contrary, the tasks assigned between different 

ambulances are more reasonable in some conditions.  
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Figure 7.45 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.05 

 

 

 
Figure 7.46 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.10 



 137 

 
Figure 7.47 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.15 

 

 

 
Figure 7.48 Comparison of the workload distribution of the emergency vehicles for the base 

model and model with busy factor = 0.20 
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These results illustrate that the proposed model can increase the use of advanced levels vehicles 

in rescue tasks. The increased ALS vehicle utilization does not result in uneven workload 

distribution. The daily workload of vehicles can be guaranteed to be smaller than the 

predetermined level.  

The increased utilization of advanced level vehicles can provide more professional pre-hospital 

treatments to the patients on incident sites.  

In the sensitivity analysis, the different levels of perturbations added to the system do not lead 

to an uneven workload. On the contrary, the workload balance between different vehicles is still 

balanced. These results also indicate that the model can not only take into account the workload 

balance but also it has the ability to handle a variety of different complex situations and 

perturbations.  

 

 7.5 Police vehicle analysis 

The proposed model is designed to determine dispatching and redeployment decisions for a 

heterogeneous emergency vehicles fleet, which includes police vehicles, emergency medical 

vehicles, and fire vehicles. In the previous sections, the results of a comprehensive sensitivity 

analysis were reported for medical vehicles. Experiments need to be conducted on police and fire 

vehicles to test the model's performance on the whole heterogeneous emergency vehicles fleet.  

In the real-case data, only emergency medical vehicle information is available.  The police and 

fire vehicles dispatching information is not accessible to the research. Some reasonable 

assumptions and sensitivity analysis are needed to test the model's performance on the real-case 

data. 

One of the most important parameters is the fleet size of each vehicle type. Detailed 

information about police vehicles, which includes the number of police vehicles, their home 
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locations, and routing information, is not accessible to the public. It is evident that by increasing 

the fleet size, the results will improve. However, due to funding and workforce issues, more police 

vehicles will increase the cost significantly.  

In this study, different numbers of police vehicles are tested, and corresponding data is 

collected and analyzed during the computation. Several basic data metrics will be used to 

determine and analyze the model's performance. The metrics include average En Route time, 

percentage of incidents that can be reached within 5 minutes, percentage of incidents that can be 

reached within 8 minutes, number of redeployments for each incident, and the basic coverage level 

brought by the police vehicles. 

This section considers four scenarios with different numbers of police vehicles, which are 10, 

20, 30, and 40. The number of police vehicles is assumed to start from 10 and increase gradually 

in increments of 10 to reflect the different scenarios of real situations. The section aims to compare 

the impact of different numbers of police vehicles on the final results and the coverage level 

provided. The original locations for police vehicles are randomly selected. The original locations 

of the police vehicles will not affect the final result. The model can find the best configuration for 

the deployment of police vehicles. In this model, Baltimore City is divided into 356 zones, which 

means the problem size is small enough compared with using the nodes in the calculation. We can 

assume the nodes in each zone have the same properties. It is assumed that police vehicles will be 

deployed in the zones and patrol within each zone to reduce the size of the problem. 

Figure 7.49 compares the En Route time between models with different numbers of police 

vehicles. The figure can give a basic illustration of the distribution of En Route time.  

Figure 7.50 shows the average En Route time for models with different numbers of police 

vehicles. The figure shows that the average En Route time when the police vehicle is 10 is more 
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than 7.5 minutes. With the increase in the number of vehicles, the average En Route time decreases 

to about 5 minutes when there are 40 police vehicles.  

 
 

Figure 7.49 Comparison of the En Route time for models with different numbers of police 

vehicles 

 

 

 
 

Figure 7.50 The average En Route time for models with different numbers of police vehicles 
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Figure 7.51 shows the percentage of incidents that can be reached within 5 minutes for different 

scenarios. Only 37.5 percent of incidents can be reached within 5 minutes if there are ten police 

vehicles. With the increase in the number of police vehicles, the coverage level will increase, and 

the percentage of incidents that can be reached within 5 minutes will increase. While the rate of 

increase is gradually decreasing. When increasing the number of police vehicles from 10 to 20, the 

percentage will increase by 27%, while if increasing the number of police vehicles from 30 to 40, 

the percentage will increase by 5%. 

Figure 7.52 illustrate the percentage of incidents that can be reached within 8 minutes for the 

models. Only 55% of incidents can be reached within 8 minutes if there are ten police vehicles. 

The percentage will increase to 72.5 if there are 40 police vehicles. The increase of percentage 

brought by the vehicle number is decreasing.  

Table 7.12 compares the average number of redeployments between situations with different 

numbers of police vehicles. When there are 10 or 20 police vehicles, the total coverage level of 

the system is relatively low. Police vehicles are required to patrol the incident-intensive areas. A 

relatively small number of deployments are necessary to achieve good coverage. When the number 

of police vehicles reaches 30 or 40, the system has more flexibility. Then the number of 

redeployments will increase.  

 

 

Table 7.12 Comparison of  the average number of redeployments between models with different 

numbers of police vehicles 

 

Number of 

police 

vehicles 

 

10 

 

20 

 

30 

 

40 

The average 

number of 

redeployments 

1.2397 1.2257 1.7602 1.7602 
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Figure 7.51 Comparison of the percentage of incidents that can be reached within 5 minutes for 

models with different numbers of police vehicles 

 

 

 
 

Figure 7.52 Comparison of the percentage of incidents that can be reached within 8 minutes for 

models with different numbers of police vehicles 
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 7.6 Fire vehicle analysis 

The previous section presented the results of a sensitivity analysis conducted on police vehicles. 

This section presents the results of a sensitivity analysis conducted on fire vehicles. The real 

requests and dispatching information for fire vehicles are also unavailable, similar to the police 

vehicle. Unlike police vehicles, the types and number of fire vehicles are known according to the 

Baltimore Fire Department website. The home station for each fire vehicle is already defined. It is 

assumed that one type of police vehicle is considered in the model. However, there are three types 

of fire vehicles according to their functions.  

According to the official website, 32 fire engines, 18 fire trucks, and 4 fire quints are 

strategically located throughout the region.  

Differences in the distribution of vehicle types and numbers and variations in actual demand 

requests can lead to different results with huge differences. In this research, the actual demand 

requests are for different types of ambulance vehicles. Reasonable assumptions are made to 

generate demand requests for different types of fire vehicles. The strategy for generating the 

demand requests is that if the priority of the incident is 1, which means a critically ill or injured 

person requiring immediate attention, the required fire vehicle type is a fire quint. Otherwise, the 

required fire vehicle type is randomly selected. Then multiple experiments are repeated to cancel 

the effect of extreme value and randomness.  

Table 7.13 records the detailed results of the experiments. Various metrics are collected. Table 

7.13 illustrates that the average En Route time is about 3.25 minutes. Figure 7.53 shows the 

distribution of En Route time for fire vehicles. The figure demonstrates that most incidents can get 

access to immediate rescue by fire vehicles within 5 minutes. The median value is about 3 minutes.  
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Fire vehicles have a wider distribution of stations, and there are more of them than ambulance 

vehicles, so they have a better performance than ambulance vehicles.  

 

Table 7.13 Summary of performance measurements of fire vehicles 

 

 Fire vehicle 

Average En Route time 3.2462 

Basic coverage Rate 0.9552 

Double coverage Rate 0.9216 

Fully functional double 

coverage Rate 

0.7268 

Reached within 5 minutes 0.8877 

Reached within 8 minutes 0.9681 

 

 

 
 

Figure 7.53 En Route time for fire vehicles 

 

The average basic coverage rate for the system can be maintained above 95 percent. Almost 

all the zones can be covered by fire vehicles. The double coverage rate can also be maintained at 

a high level. If a zone can be covered by multiple fire vehicles, it is considered double coverage. 

The average double coverage for the system is 92 percent.  

 

Figure 7.54,  

Figure 7.55, and  
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Figure 7.56 show the basic coverage level, double coverage level, and fully functional double 

coverage level for the system correspondingly.  These three figures clearly demonstrate that the 

basic coverage rate brought by fire vehicles is around 0.96. In most conditions, the basic coverage 

rate can be maintained at a high level. Even under certain extreme conditions, the system can still 

maintain a basic coverage rate of around 90%. Double coverage brought by the fire vehicles is 

around 92%.  The double coverage rate fluctuates more than the basic coverage rate. In some 

conditions, the double coverage rate drops to below 90%. The Fully functional double coverage 

brought by the fire vehicles is around 73%. The fully functional double coverage rate is more 

sensitive to the incidents. The fluctuation is more frequent and dramatic compared with the basic 

and double coverage rates. 

 

 
 

Figure 7.54 Basic coverage brought by fire vehicles 
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Figure 7.55 Double coverage brought by fire vehicles 

 

 
 

Figure 7.56 Fully functional double coverage brought by fire vehicles 
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In this research, even when the number of police vehicles is assumed to be 40, compared with 

ambulance vehicles and fire vehicles, the average En Route time is still larger. The various 

coverage levels for police vehicles are also lower than the other two types of vehicles. This is 

because the number of police vehicles is less than the other two types of vehicles. Another reason 

is the other two types of vehicles have various stations strategically distributed in the city, and the 

corresponding vehicles can only be located at the stations. This extends the basic coverage rate, 

reduces the En Route time, and avoids excessive vehicle concentration in certain areas. Other 

circumstances may lead to a performance improvement. For example, the whole area can be 

divided into subareas which contain various zones, and different numbers of police vehicles can 

be assigned to different subareas. This might avoid excessive concentration of police vehicles. In 

future studies, it would be beneficial if more detailed information is available and can be used.  

In this study, there are 24 stations for ambulance vehicles and 38 stations for fire vehicles. The 

number of fire vehicles is also greater than ambulance vehicles. As a result, fire vehicles can 

achieve a better performance than ambulances in some metrics. Fire vehicles can achieve shorter 

rescue times and maintain higher levels of coverage. This is partly due to a more extensive 

distribution of stations.  

In future research, if ambulance stations could be extended to a broader area, this could 

enhance the basic coverage to a greater extent. For example, if ambulances can use these stations 

and hospitals for temporary stations, the overall performance might be improved. Of course, 

corresponding performance tests need to be conducted. This is a trade-off analysis. More extensive 

stations mean better infrastructure development and more budget.  
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7.7 Summary 

This chapter compared the results of applying the proposed model to the real-case dispatching 

requests with the real-case operational results. The results illustrated that the proposed model 

performed very well and often showed much improvement in all the metrics. Also, a 

comprehensive sensitivity analysis was performed on essential parameters in the model. The 

analysis intended to investigate how the results will change by modifying those parameters.  

In the experiments, three different categories of performance measures were collected to test 

and quantify the performance of the models: metrics related to the dispatching efficiency, metrics 

related to the system operating cost, and those related to the workload. 

When different levels of congestion or vehicle busy probability are considered, the dispatching 

time will increase gradually. Meanwhile, rescue efficiency will be reduced, and the number of 

incidents that can be reached within a predefined time will decrease. These parameters will also 

cause a drop in the coverage level of the system. 

The proposed model is built for a heterogeneous emergency vehicles fleet with well-defined 

assumptions and constraints. The parameters might need to be tuned to apply the model in other 

real situations. Once the detailed information about vehicles and incidents is known, the proposed 

model can be implemented to provide dispatching and redeployment decisions. The model mainly 

focuses on applying and coordinating three common types of emergency vehicles to mimic field 

operations. It can be extended to incorporate other rescue methods, such as helicopters. Land-

based modes of transportation rely heavily on the road network. Scenarios for using helicopters 

exist in some extreme cases, where the patients need access to more specialized hospital rescue 

equipment and professional medicians immediately. The use of helicopters is usually preceded by 

ambulances on-site to provide basic pre-hospital treatments to the patients. When the required 
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input information, such as the request demands and travel time matrix, is well defined, the model 

can provide dispatching guidance for helicopters.  

The proposed model aims to provide proper numbers and types of emergency vehicles for 

medical request demands. The model can be implemented iteratively to find the best fleet size and 

mix of emergency vehicles indirectly. This would involve using the model with several different 

fleet size and mix on the same input data to determine the best fleet size and mix.  
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Chapter 8: Summary, Conclusion, and Future Research 

 

 8.1 Summary 

In this research, the Emergency Vehicle Management System is studied and analyzed. A 

performance evaluation system consisting of various categories of statistics and metrics is 

developed. One of the key practical measurements is response time. Response time not only 

depends on the vehicle dispatching and routing choice but also relies on the configuration of the 

deployment of vehicle fleets. So, a comprehensive dispatching and redeployment decision-making 

model for emergency vehicle operations management is developed in this study. The proposed 

integrated decision-making model can simultaneously give dispatching and redeployment 

decisions within a short time. The proposed model can not only improve rescue efficiency but also 

provide better coverage for the whole area to prepare for the incidents which may happen in the 

future. This model can develop the best dispatching and redeployment strategy based on real-time 

information about the system's state.   

The contributions of this research can be summarized as follows: 

• Heterogeneous emergency vehicle fleets are considered in the system, which are comprised 

of one type of police vehicle, two types of ambulances: Advanced Life Support (ALS) 

ambulance and Basic Life Support (BLS) ambulance, and three different types of fire 

vehicles: Fire Truck, Fire Engine, and Fire Quint. No dispatching and redeployment model 

that makes decisions for these three types of vehicles simultaneously exists in the literature. 

• The model aims to provide different predefined time thresholds of dispatching 

requirements and redeployment limitations for each type of vehicle. According to the 

regulation, two different levels of coverage have been considered for demand zones. 
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• The model attempts to provide basic coverage by using the basic level vehicles for the 

whole region to shorten the first response time and increase the coverage capacity. 

Moreover, the model also attempts to provide more coverage by using advanced level 

vehicles for the critical zones to provide more professional pre-hospital medical treatment 

for the patients. 

• In the model, the whole region is divided into different demand zones. Various strategies 

are examined to generate the importance of each demand zone by using historical medical 

data. A simulation system is designed and implemented using these strategies, and the final 

results are analyzed to compare the performance. 

• The model also attempts to balance the workload between different vehicle crews. A new 

strategy is proposed to restrict dispatching and redeployment actions to avoid excessive 

work.  

• A new mathematical model is formulated and tested in the study that incorporates all the 

above factors and simultaneously makes dispatching and redeployment decisions. 

• A new Discrete Event Simulation (DES) model is developed to test the performance of the 

proposed model with different parameters over a long time horizon.  

• The simulation model is applied in a real-case study to examine the performance of the 

proposed model. Then a comprehensive sensitivity analysis is conducted to test the ability 

of the model to handle various scenarios and its response to extreme parameter changes.  

 

 8.2 Conclusion 

This study conducted comprehensive data analysis on real-case historical medical data. The 

characteristics and features of medical data were extracted. The number of incidents in the zones 
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was used to represent the importance of the zone. The proposed model was applied to the real-case 

data. Three different categories of performance measures were collected and compared to test the 

accuracy of the results. 

• Performance related to the dispatching efficiency: The proposed model makes dispatching 

and redeployment decisions for a heterogeneous emergency vehicle fleet and provides 

route guidance for the crew member at the same time. The following conclusions can be 

drawn from the final results of applying the proposed model to the real-case data.  

The system's overall performance is greatly improved when using the model for 

dispatching and redeployment decisions. Based on the computational results, the average 

En Route time of ambulances is reduced from 6.9 minutes in the real-case data to 4.8 

minutes. En Route time is reduced by approximately 40 percent. The system coverage is 

significantly improved while increasing the efficiency of the rescue. The ratio of incidents 

that can be reached within 5 minutes increased from 0.45 to 0.65 when the proposed model 

was used, and the ratio of incidents that can be reached within 8 minutes increased from 

0.75 to 0.83. The average total coverage rate of the system was increased from 9.3 to 11. 

These results illustrate that the proposed model can help decision-makers find the optimal 

configuration for dispatching and redeploying emergency vehicle fleets. 

• Performance related to the workload: The model considers the workload balance for crew 

members and vehicles. Applying the proposed model can largely increase the utilization of 

advanced level vehicles and provide more professional pre-hospital treatments to patients. 

The advanced level ambulance utilization will increase from 50 percent to 80 percent. In 

the meantime, the system also ensures a balanced workload distribution between vehicles. 

The standard deviation for BLS ambulances in real-case data is 10.9137, while in the case 
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study is 3.2572. The standard deviation for ALS ambulances in real-case data is 10.0012, 

while in the case study is 7.1861. 

 

Moreover, an extensive sensitivity analysis was conducted on some important parameters to 

test the model's performance. The parameters considered for sensitivity analysis in the case study 

and the results obtained from the analysis are as follows: 

• The importance of zones: Four strategies for generating zone importance were developed 

and tested in the study. The importance of zones not only relies on the frequency of 

incidents in a period but also depends on the severity of the incidents. The results indicate 

that the strategy which uses the frequency of incidents to represent the importance of zones 

can achieve better performance (Strategy 1). This strategy can highlight the characteristics 

of the geographical distribution of incidents while guaranteeing basic coverage of low-

frequency incident areas as much as possible. Except for total coverage improvement, four 

strategies can achieve similar performance in other metrics. 

• Fleet size: To determine the coverage level and rescue efficiency, models with different 

numbers of police vehicles were tested. The results indicated that with 40 police vehicles, 

75 percent of incidents can be reached within 8 minutes, and 55 percent can be reached 

within 5 minutes. Moreover, the average En Route time is about 5 minutes.  

• Congestion level: Different levels of traffic conditions were randomly generated and added 

to the route segments. With the increase in congestion level, the rescue time would increase 

as expected. When the congestion level reached 0.5, the average En Route time increased 

by 21 percent. In some extreme conditions, when the congestion level reached 2, the 

average En Route time increased by 62.5 percent. It is clear that congestion can cause a 

significant increase in rescue time.  
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• Busy factor: This parameter was used to simulate the availability of vehicles in real life. 

Different levels of busy factors were randomly generated and assigned to each vehicle. 

With the increased busy factor, the number of incidents reached within 5 and 8 minutes 

decreased, and the average En Route time increased. 

 

 8.3 Future research 

In this research, various factors and parameters related to real case situations were considered 

and added to the model to reflect the characteristics of the problem. Moreover, some operational 

settings were also taken into account in the model to simulate realistic situations. Even so, future 

studies still need to consider or improve some issues. In this section, some recommendations for 

future studies are discussed. 

8.3.1 Mathematical formulation 

The real-time dispatching and redeployment of heterogeneous emergency vehicle fleets model 

is formulated as a deterministic integer programming model. Various parameters are considered 

to simulate realistic scenarios in real life. Some simplified assumptions are made to deal with 

unknown conditions and improve computational efficiency. In the model, diversions are not 

considered. When the vehicles are dispatched to the incident sites, the destinations of vehicles are 

determined and cannot be changed. Diversions are reasonable measures to reduce rescue time in 

some extreme cases, but they heavily rely on computational efficiency and good communication. 

When an urgent incident happens, the management center needs to respond quickly to make a 

decision. If the model takes too long to compute, the optimal time for diversion may be missed. 

One avenue for future research is to develop efficient models and solution algorithms that allow 

for real-time diversions of vehicles if deemed necessary.  
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Another approach that can be investigated for future studies is to develop a two-stage model. 

The proposed model in this research can simultaneously make dispatching and redeployment 

decisions. There are three measures to control the number of redeployments in making the 

decisions. The first one is adding a constraint to limit redeployment distance. If the redeployment 

distance is longer than a pre-defined value, then the redeployment decision is unsuitable. Second, 

if a station has insufficient space, the vehicles cannot be dispatched to that station. Third, if the 

workload for a vehicle exceeds the limit, then this vehicle is not allowed to be redeployed. 

Otherwise, redeployment decisions will be made to improve the total coverage for the system, 

even if the improvement is minimal. Sometimes the benefits of system coverage enhancement may 

be less than the costs associated with redeployments. An approach to tackle this problem could be 

using a two-stage problem. In the first stage, the dispatching and redeployment decisions are made 

when the events come into the system. In the second stage, the coverage improvement can be 

calculated to evaluate whether redeployments are beneficial.  

The third approach that can be investigated for future studies is to define more precise 

parameters in the model. This study assumes all stations have the same capacities for a specific 

type of vehicle. An approach to handle this issue would be to incorporate more precise parameters. 

 

8.3.2 Simulation model 

In this study, a discrete event simulation (DES) system was developed to mimic the entire 

operation of an emergency response system over a long time horizon. However, some parts are 

missing in the simulation model due to the absence of data and assumptions.  

First, due to the limitation of real-case data, only emergency medical vehicle information and 

incident requests are accessible. Real operational information about police vehicles and fire 
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vehicles is not available. For the police vehicles, the basic dispatch and patrol logic is not clear. 

This study assumes that police vehicles can reach any zones and patrol around that area. This 

assumption can lead to the concertation of police vehicles in certain areas, such as downtown. In 

the future, approaches to handle this issue could be using more comprehensive real-case data or 

establishing a more realistic dispatching and redeployment logic for police vehicles.  

Second, some assumptions about the medical vehicles need to be made to continue the study. 

In this study, it is assumed that ambulances can only be redeployed to other stations. In future 

studies, it can be assumed that ambulances can be located at any station and hospital if capacity 

allows. This measure can add more flexibility to the system and enlarge the coverage of the system.  

Third, because historical traffic information is not available, the travel time matrix used in the 

computation cannot reflect the real situation. Two methods were used in this study to tackle this 

issue. First, the shortest travel times without considering traffic conditions were calculated by 

implementing Dijkstra’s algorithm using a Python package. Dijkstra’s method is a simple but 

powerful algorithm to calculate the shortest path. Other shortest path algorithms can be 

investigated in future research, and the best algorithm can be selected to generate the travel time 

matrix. Second, different congestion levels were generated and added to the model to test the 

model's performance and check the effect of the traffic condition. However, during the random 

congestion information generation, generating the corresponding traffic condition information for 

a specific road segment at a particular time is impossible due to the insufficiency of historical data. 

More sufficient data can be collected and used to handle this issue in future research. Accurate 

traffic data or the congestion distribution at different zones or road segments throughout the period 

can be obtained at the moment of the incident. 
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8.3.3 Sensitivity analysis 

A sensitivity analysis is conducted on some critical parameters in this research. Some 

parameters that may affect the model's performance still need to be tuned, such as the penalties for 

deficiency of all kinds of vehicles for dispatching and redeployment and penalties for late arrival. 

The values of these parameters affect decision-making. For example, if the penalty for coverage 

deficiency is too large, keeping the vehicles on standby at the stations would be preferred. If the 

penalty for late arrival is larger than the penalty for deficiency of dispatching, then keeping the 

vehicles at the stations would be preferred if the En Route time is larger than the predefined values. 

Therefore, these parameters must be appropriately set to ensure the smooth operation of the entire 

system. A more extensive sensitivity analysis on important parameters and their combinations can 

be conducted in future studies.  

 

8.3.4 Crew scheduling 

The crew scheduling problem is a part of the vehicle assignment problem. This research 

considers some basic assumptions and preferences related to the crew and workload balance, but 

combining vehicle assignment and crew scheduling problems is complex and challenging. This 

issue can be taken into account in the model in future research. 

8.3.5 Economic analysis 

The core of the proposed model is finding the best configuration for deploying all vehicles to 

obtain maximum system coverage. This practice will increase the working time of the vehicles and 

crews. In the workload balance analysis, only the redeployment numbers and cumulated work 

hours have been considered in the model. The corresponding economic analysis of the tradeoffs 

between the benefits of coverage improvement and operational cost needs to be conducted in future 

studies.  
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