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The purpose of this dissertation is to evaluate the potential downstream influence 

of the Indian Ocean (IO) on El Niño/Southern Oscillation (ENSO) forecasts through the 

oceanic pathway of the Indonesian Throughflow (ITF), atmospheric teleconnections 

between the IO and Pacific, and assimilation of IO observations.   Also the impact of sea 

surface salinity (SSS) in the Indo-Pacific region is assessed to try to address known 

problems with operational coupled model precipitation forecasts.  The ITF normally 

drains warm fresh water from the Pacific reducing the mixed layer depths (MLD).  A 

shallower MLD amplifies large-scale oceanic Kelvin/Rossby waves thus giving ~10% 

larger response and more realistic ENSO sea surface temperature (SST) variability 

compared to observed when the ITF is open.  In order to isolate the impact of the IO 

sector atmospheric teleconnections to ENSO, experiments are contrasted that selectively 

couple/decouple the interannual forcing in the IO.  The interannual variability of IO SST 



forcing is responsible for 3 month lagged widespread downwelling in the Pacific, assisted 

by off-equatorial curl, leading to warmer NINO3 SST anomaly and improved ENSO 

validation (significant from 3-9 months).   Isolating the impact of observations in the IO 

sector using regional assimilation identifies large-scale warming in the IO that acts to 

intensify the easterlies of the Walker circulation and increases pervasive upwelling across 

the Pacific, cooling the eastern Pacific, and improving  ENSO validation (r ~ 0.05, 

RMS~0.08oC).  Lastly, the positive impact of more accurate fresh water forcing is 

demonstrated to address inadequate precipitation forecasts in operational coupled models.   

Aquarius SSS assimilation improves the mixed layer density and enhances mixing, 

setting off upwelling that eventually cools the eastern Pacific after 6 months, 

counteracting the pervasive warming of most coupled models and significantly improving 

ENSO validation from 5-11 months.   In summary, the ITF oceanic pathway, the 

atmospheric teleconnection, the impact of observations in the IO, and improved Indo-

Pacific SSS are all responsible for ENSO forecast improvements, and so each aspect of 

this study contributes to a better overall understanding of ENSO.  Therefore, the 

upstream influence of the IO should be thought of as integral to the functioning of ENSO 

phenomenon. 
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1 Introduction  

1.1 Statement of the Problem  
 

El Niño/Southern Oscillation (ENSO) is the single most important mode of global 

climate variability on interannual time scales.  Based in the equatorial Pacific, ENSO-

related anomalies impact global atmospheric circulation (e.g. [Lau and Nath, 2003]) and 

cause far-reaching socioeconomic ramifications (see e.g. [Glantz, 2001], [Horel and 

Wallace, 1981]).   It is therefore an important goal to better understand mechanisms that 

could lead to successful extension of useful ENSO predictability.  Despite the large body 

of existing work on ENSO, the state of the art for ENSO prediction still has much to 

improve upon (e.g. [National Academies of Sciences and Medicine, 2016], [National 

Research Council, 2010]).  For example, in June 2014 the consensus forecast from IRI 

(http://iri.columbia.edu/our-expertise/climate/ forecasts/enso/2014-June-quick-look/) 

called for 78% chance for El Niño for December 2014 and the National Oceanic and 

Atmospheric Administration (NOAA) officially issued an El Niño watch 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_jun2014/ensodis

c.pdf ).  Subsurface conditions and heat storage rivaled the big event of 1997.  However, 

in reality this event was so short-lived that it did not even achieve El Niño status (i.e. it 

did not have 5 consecutive 3-month running means with > 0.5oC).  Instead, the big El 

Niño was delayed until December 2015 when the magnitude matched the 1997 event 

with a NINO3 SST anomaly of 2.3oC (http://www.cpc.ncep.noaa.gov/products/ 

analysis_monitoring/ensostuff/ensoyears.shtml).  So why did the expected air/sea 

interaction in the Pacific fail to couple to produce a big El Niño in 2014 as predicted?  

[McPhaden, 2015] suggested that the lack of coupling between the atmosphere and ocean 

http://iri.columbia.edu/our-expertise/climate/%20forecasts/enso/2014-June-quick-look/
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_jun2014/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_disc_jun2014/ensodisc.pdf
http://www.cpc.ncep.noaa.gov/products/%20analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/%20analysis_monitoring/ensostuff/ensoyears.shtml
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was the main reason for this poor forecast.  There are several possibilities for this 

prediction failure which include 1) initial triggering events (i.e. westerly wind bursts) 

were out of sync with an amplifying mode and with the typical El Niño development 

timing (occurring 1 month earlier than for 1997 event), 2) negative feedbacks such as 

upwelling ocean waves may have damped warm ENSO sea surface temperature 

anomalies, 3) stronger trade wind easterlies associated with the cool phase of the Pacific 

Decadal Oscillation (PDO) could have inhibited migration of the precipitation from the 

warm pool eastward thus increasing sea surface salinity, density, and mixed layer depth 

and reducing the impact of wind on ocean, and 4) Indian Ocean (IO) dynamics may have 

anchored deep convection over the Indo-Pacific warm pool rather than allowing it to 

migrate to the east and become coupled with central/eastern Pacific SST anomalies. 

Within this dissertation we focus on the last item for better understanding ENSO 

predictability.  Namely, it is the purpose of this dissertation to help to better understand 

the oceanic and atmospheric impacts of the IO and the role that fresh water flux via sea 

surface salinity may play in extending useful ENSO predictions. 

A major feature of the IO is the dynamic coupled response known as the Indian 

Ocean Dipole Zonal Mode (IODZM) as coined by [Saji et al., 1999].  During the positive 

phase of the IODZM anomalous cold water upwells off Sumatra shoaling the thermocline 

and lowering sea surface heights (SSH) in the eastern IO.  At that same time, warm water 

is found west of 70oE with deeper thermocline and higher SSH.  This anomalous east-to-

west SST gradient reverses the normal westerlies of the Walker circulation to easterlies 

near the equator.   In summer, southeasterlies in the east enhance the local along-shore 

upwelling and in the west, weakened monsoon southeasterlies south of the equator 
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veering into southwesterlies north of the equator lead to weaker upwelling and warmer 

SST off Africa, thus reinforcing the dipole pattern.  In the west, warm SST is associated 

with enhanced convection and unusually abundant rainfall.  In the east, cold SST results 

in drought over the Maritime Continent.  During the positive IODZM phase, anomalous 

easterlies along the equator drive anticyclonic curl off the equator in the Southern 

Hemisphere triggering downwelling oceanic Rossby waves with positive SSH roughly 

straddling 10oS west of 70oE (see e.g. Figure 2, [Webster et al., 1999]).   These Rossby 

waves propagate to the west, reflect to the equator as coastal Kelvin waves, and generate 

downwelling Kelvin waves that eventually act to counteract the upwelling in the east 

after they traverse the basin.  Southeasterlies generated from cold SST south of the 

equator reinforce climatological southeasterlies and enhance upwelling in summer.  

However, in fall and winter these same southeasterly anomalies counteract climatological 

northwesterlies reducing upwelling and leading to warmer eastern IO SST anomalies 

(e.g. [Hendon, 2003]).          

Because the Indonesian Throughflow (ITF) is the only low-latitude pathway for 

warm/fresh water to be transported from the Pacific to the IO, the ITF has been the focus 

of much attention for better understanding ENSO dynamics.  Most of these studies adopt 

the experiment philosophy to either cut off the ITF ([Hirst and Godfrey, 1993], 

[Murtugudde et al., 1998]) and compare model results, closed minus open, or prescribe 

the ITF flow (e.g. [Rodgers et al., 1999]).   These results show that when the ITF is 

closed the Pacific is warmer, fresher with a deeper thermocline, the IO is colder, saltier 

and shallower thermocline and the normal ITF flow is missing across the IO (i.e. 

anomalous counterclockwise circulation in the south IO).  In addition, these studies 



4 
 

conclude that the Pacific is the source for interannual variability of the ITF.  Using the 

same philosophy (i.e. ITF closed-open) [Schneider, 1998], [Wajsowicz and Schneider, 

2001], [Song et al., 2007], and [Santoso et al., 2011] not only confirm the previous forced 

ocean model results using a coupled model, but they also find that the ITF regulates the 

position of the deep convection, surface pressure and winds over the entire tropics.  When 

the ITF is closed, abundant rainfall and westerlies migrate from Indonesia out into the 

central Pacific, negative precipitation anomalies are found over Indonesia/eastern IO, and 

easterlies prevail over the equatorial IO changing the entire character of the Walker 

circulation and ENSO. 

In addition to the oceanic component, many papers address the impact of 

atmospheric coupling in the IO to the functioning of ENSO.  For these studies the general 

approach is to run coupled experiments with regional decoupling accomplished by simply 

forcing the atmosphere using climatological SST rather than interannual values. For 

example, the full Indo-Pacific coupling experiments are differenced with those that only 

couple the atmosphere to surface forcing in the Pacific (e.g. [Yu et al., 2002], [Wu and 

Kirtman, 2004], [Annamalai et al., 2005], and [Annamalai et al., 2010]).  Thus, the 

difference between the full Indo-Pacific minus the Pacific regional coupled experiments 

highlights the impact of the IO atmospheric coupling.  In general, the authors simplify the 

SST structure (e.g. using the first EOF) and then force a simple linear atmospheric model 

to show how particular regional forcing might impact winds and precipitation associated 

with ENSO.  For example, SST anomalies covering the IO and in the Indonesian Seas 

lead to, not only a same-sign local response (i.e. negative SST spawn easterlies over the 

IO), but also have opposite-sign impacts trapped near the equator over the entire Pacific 
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as well enhancing El Niño signal.  On the other hand, the warm western/cold eastern 

dipole pattern of the Indian Ocean Dipole Zonal Mode (IODZM) results in an 

atmospheric response mostly limited to the IO sector.  However, these coincident cold 

SST anomalies over Indonesia force a global precipitation response with negative 

anomalies over Indonesia and positive values near the dateline [Annamalai et al., 2010].  

Unfortunately, both the closed ITF oceanic and atmospheric coupling experiments have 

been run under idealized conditions rather than under realistic hindcast conditions.  

Therefore, examining the oceanic and atmospheric impacts of the IO on ENSO 

predictability under realistic ENSO prediction hindcast circumstances motivates this 

research.   

Many studies have addressed how assimilation can improve ENSO predictions.  

For example, SL (e.g. [Ji et al., 2000]), SST (e.g. [Zhou et al., 2009]), subsurface 

temperature and salinity (e.g. [Yang et al., 2010]) and SSS (e.g. [Hackert et al., 2011]) 

have all been assimilated into initial conditions to improve coupled ENSO predictions for 

either the Pacific or globally (e.g. [Balmaseda and Anderson, 2009]).  However, none of 

these studies have addressed what impact assimilation in the IO might play on extending 

useful ENSO predictions.  Therefore, this dissertation investigates how assimilation of 

SL, SST, subsurface temperature (Tz) and salinity (Sz) in the IO impacts coupled Indo-

Pacific ENSO predictions.   

A component of this study is determining what impact the freshwater flux over 

the Indo-Pacific region plays in ENSO predictability.  Unfortunately tracking changes in 

the fresh water flux using precipitation from coupled models is less than ideal.  For 

example, validation of Climate Forecast System Reanalysis (CFSR - [Saha et al., 2010]) 
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precipitation using satellite estimates (i.e. [Xie and Arkin, 1997] and [Adler et al., 2003]) 

show that the CFSR climate results are too wet over the Inter-Tropical and South Pacific 

Convergence Zones (ITCZ and SPCZ) in the Pacific, too dry over the western Pacific and 

Indonesia, and have the global mean bias of 3.14 mm/day ([Wang et al., 2010]). In 

addition, the CFSR product typically has 25% higher variability than observed in the 

tropical rainy regions over the tropical IO, Indonesia, Pacific warm pool, SPCZ and ITCZ 

([Wang et al., 2010]).  As far as precipitation forecasts go, the positive biases over 

Indonesia, the Pacific ITCZ and SPZC grow over forecast lead times out to 7 months.  

The pattern of the errors remain robust over time and for all initialization seasons 

indicating that the errors are likely caused by model biases ([Dirmeyer, 2013]).  For the 

most recent version of the CFSv2 forecasts, the zonal mean of the precipitation skill 

within 5o of the equator is worse than the initial state (i.e. observed SST forced CFSR) 

and over the entire tropics (30oN-30oS) the correlation between oceanic precipitation and 

observations falls from r=0.3 to r=0.2 by roughly 20 day forecasts [Kumar et al., 2010]. 

Poor representation of the model precipitation in a coupled model could have 

severe implications on coupled forecast results.  Although other factors such as horizontal 

advection ([Foltz and McPhaden, 2008]) play an important role in the tropics, 

Evaporation minus Precipitation (E-P), is the major factor controlling the salinity budget 

in the tropics ([Yu, 2011]) especially in tropical convergence zones such as the ITCZ and 

SPCZ.  Therefore, if precipitation is systematically mis-forecast (like CFSv2 - [Dirmeyer, 

2013]) then the fresh water forcing is suboptimal, ocean sea surface salinity, and salinity 

within the mixed layer will also be incorrectly initialized and then forecasted.   Inaccurate 

salinity would also mean that mixed layer density and upwelling would be inexact and 
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misrepresented in the ocean model.  Systematic precipitation biases in coupled forecasts 

would have ramifications for ocean predictions but might also rectify in coupled 

forecasts.  For example, if precipitation were too great in a given area, then mixed layer 

density would be too low.  This would lead to a mixed layer that was too thin and would 

store too much heat, leading to anomalously warm SST, with atmospheric forecast 

consequences.       

Although precipitation is an important variable to study since it represents the 

communication of SST to the atmosphere and tropical upper-level heat anomalies, it 

would be useful to address the reliance upon less-than-ideal precipitation forecasts and 

directly examine the impact of fresh water flux in the tropical Indo-Pacific by utilizing 

sea surface salinity (SSS).  Therefore, the role that the freshwater budget of the Indo-

Pacific plays in ENSO predictability is diagnosed using SSS in this study.  Variation of 

the western Pacific salt budget associated with either IO regional atmospheric coupling or 

by salt transport of the ITF may impact the heat reservoir available for ENSO.  For 

example,  [Maes et al., 2002] and [Maes et al., 2005] show that the heat stored below the 

salinity stratified layer in the western Pacific is critical to the amplitude of the subsequent 

El Niño as well as the ENSO mean state ([Maes and Belamari, 2011]).  Another way to 

improve vertical density structure in coupled models is via direct assimilation of salinity.  

[Hackert et al., 2011] show that coupled hindcasts of the tropical Pacific are significantly 

improved by assimilation of observed SSS into the initial conditions.  However, there 

remains a gap in the existing research to connect salinity and density improvements and 

concomitant improvements to barrier layer thickness (BLT – defined in Section 1.2.2), 

MLD, sea level, SST, etc. to coupled ENSO forecasts for the Indo-Pacific region. 
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Therefore, it is the purpose of this research to examine the impact of improved 

representation of near-surface salinity and density in the Indo-Pacific on the coupled 

ENSO predictions in a realistic hindcast setting.  

The overriding hypothesis that we wish to test is that the upstream influence of 

the Indian Ocean, both through the oceanic flow of the ITF and the atmospheric bridge 

(as coined by [Alexander et al., 2002]), improves validation statistics with respect to 

observations thus extending useful ENSO predictions.  In addition, the impact of satellite 

and in situ observations in the IO, and the concomitant improvement in the IO 

circulation, will improve ENSO predictions.  Finally, the impact of fresh water flux as 

estimated by assimilation of sea surface salinity along with improved density structure in 

the Indo-Pacific region will improve the near-surface ocean quantities such as mixed 

layer depth (MLD) and barrier layer thickness (BLT) at initialization leading to better 

ENSO predictions.  Our approach is to use a combination of ocean models, data 

assimilation of in situ and satellite analyses, and coupled models to diagnose the impact 

of these various components on ENSO predictability.  

1.2 Indo-Pacific Background State 
1.2.1 Observations of the Indonesian Throughflow  

The main oceanic link between the IO and Pacific is the Indonesian Throughflow 

(ITF) which is important to the global climate system since it moves roughly 15 Sv of 

warm, fresh water from the Pacific [Sprintall et al., 2009] and thus is a major source of 

heat for the IO and a sink for the Pacific.  In particular, ITF water enters the IO at 10oS, 

propagates across the basin between 5-20oS in the South Equatorial Current (SEC) and 

1/3 exits through the Madagascar and Agulhas currents after 10 years residence time 
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[Song et al., 2004].  The remaining 2/3 of the ITF water recirculates to the north and heat 

is eventually released to the atmosphere  [Vranes et al., 2002] or exits south of 30oS 

through the Antarctic Circumpolar Current.  In this way, the ITF contributes to the global 

heat conveyer belt [Gordon, 1986].  

Assuming Sverdrup balance in interior ocean basins and a local balance between 

alongshore winds and pressure gradient at the coasts, [Godfrey, 1989] suggests that the 

line integral of wind stress along the circuit from South Australia, east to South America 

and north to the equator then east to New Guinea, through the ITF back to Australia 

should match ITF flow (known as the Island Rule). The ITF flow estimated using the 

island rule corresponds to about 14 Sv using QuikScat winds ([Wijffels et al., 2008]). 

Following the work of [Wyrtki, 1987], who first suggested that the pressure 

gradient across the ITF could be used to estimate its transport, [Potemra, 2005] utilizes 

SODA model output ([Carton et al., 2000]) and altimetry to create indexes of upper layer 

ITF transport differencing sea level data east of the Philippines and southwest of Java.  

The mean ITF transport is 6-10 Sv using the sea level method, whereas SODA, forced by 

ERA40 ([Uppala et al., 2005]) and assimilating SST, subsurface temperature and salinity 

(but not SL nor SSS), has a value of 12.7 Sv.   

Peak ITF transport can be found during the Southwest monsoon (July-October) 

and minimum during Northwest monsoon confirming the local Ekman seasonal 

contribution.  Although local wind forcing plays a minor role in the interannual 

variability of the ITF, remote wind forcing of equatorial/coastal Kelvin and Rossby 

waves have a major impact (60-90% sea level, 70% thermocline) in interannual 

variability of ITF [Schiller et al., 2010].  Pacific winds force equatorial Rossby waves 
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that hit eastern New Guinea and propagate around the west coast as coastal Kelvin waves 

and down through the ITF along the west Australia Shelf coast ([Shi et al., 2007]).  

 

Seasonal to interannual variability of the ITF is highlighted using the International 

Nusantara Stratification and Transport (INSTANT) mooring data for 2004-2006 

[Sprintall et al., 2009].  Eleven moorings were deployed across the entrance (Makassar 

Strait, Lifamatola Passage but not Halmahera) and exit regions (Lombok, Ombai, and 

Timor) of the ITF and are dispersed to accurately measure each passage’s contribution to 

the ITF. These mooring locations are shown in Figure 1.1 as red diamonds.  Total inflow 

at Makassar is 11.6 Sv and Lifamatola contributes 2.5 Sv (deeper passage, 700-1200 m 

with saltier South Pacific water).  Note that total ITF exit transport corresponds to 15.0 

Sv (varying from 10.7 to 18.7 Sv) and is made up of Lombok (2.6 Sv), Ombai (4.9 Sv) 

and over half the flow comes from Timor (7.9 Sv).   Two thirds of the total transport 

 
Figure 1.1:  Schematic of the ITF.  Schematic of the ITF shows major passages, 
INSTANT mooring locations (red diamonds) and estimates of the flow (in Sverdrup 
from [Sprintall et al., 2009]).  The WOCE line IX01 is indicated by the light blue 
dashed line. 
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comes from the upper 300 m mostly through Timor passage (5.3 Sv, Ombai 3.3 Sv and 

Lombok 2.6 Sv).   

Since there are relatively sparse historical salinity observations, less is known 

about the ITFs role in the global hydrological cycle.  [Talley, 2008] estimates global 

meridional ocean fresh water flux along repeat hydrographic sections using absolute 

geostrophic velocities from [Reid, 2003] and Ekman transports from NCEP reanalysis 

winds from 1979 to 2005 ([Kalnay et al., 1996]).  Assuming an ITF flow of 10 Sv and a 

reference salinity of 34.5 PSU, Talley finds that the net freshwater transport of the ITF 

sums to 0.11 Sv.  Although this number appears small relative to the mass transport, it is 

roughly half the total transport of the southern subtropical gyre of the Pacific (0.23 Sv) 

thus demonstrating that the salinity budget in the Pacific is strongly impacted by the ITF 

flow.        

Various studies attempt to directly measure the flow of the ITF and estimate the 

interannual variability.   For example, [Meyers et al., 1995] measure the mean ITF as 5 

Sv for 1983-1989 using the geostrophic transport calculated from the IX01 WOCE XBT 

data (see Figure 1.1 for location of IX01 line).  [Vranes et al., 2002] use Makassar Strait 

moorings to estimate the ITF (10.8 Sv) from December 1996 to July 1998 and they find 

that heat flux of 0.55 PW (reference temperature 0oC) and 0.41 PW (4oC) is lower during 

El Niño and higher during La Niña.  Thus, the ITF can be seen as a critical source to 

transfer heat from the equatorial Pacific to the southwestern IO.  [Meyers, 1996] finds 

reduced ITF transport  associated with warm ENSO due to low sea level in the western 

Pacific reducing the Pacific-to-Indian pressure head (e.g. note that the normal negative 

SL gradient from the Philippines to Java is reduced during El Niño).  Observations are 



12 
 

assessed along the IX01 XBT track and most of the variability in the transport is annual 

and semi-annual but interannual variability is strongest at the southern end of the track 

(i.e. Australia) corresponding to direct Pacific forcing along New Guinea/west Australia 

wave guide.   

Estimates of the net heat flux of the ITF from the Pacific to the IO varies from 

0.55 PW [Vranes et al., 2002] using mooring data to 1.09 PW [Tozuka et al., 2007] using 

the SINTEX coupled model.  In addition, [England and Huang, 2005] find the mean heat 

transport of 0.74 PW using SODA data but, more importantly, estimate the variability to 

be 0.21 PW.  This variability of the ITF is generally attributed to the Pacific.  ITF lags 

ENSO (as defined by the Southern Oscillation Index of [Trenberth, 1984]) by 5 months 

with r = -0.40 using an integration of our ocean model from 1985-2004 (c.f. Section 2.2.1 

for details).  These values compare favorably with those of [England and Huang, 2005] 

who find that ITF lags ENSO by 9 months with r = -0.32.    

The ITF is generally weaker during El Niño in response to lower western Pacific 

sea level but less is known about the ITF response to the IO.   During the positive 

IODZM, which coincided with El Niño in 2006, there is increased ITF flow in the upper 

230 m increasing the net heat transport of the ITF. However, during the weak El Niño 

(2004), both Makassar and outflow channels are weak in the top 150 m (total ITF 13.8 

Sv) whereas the flow is intensified at the surface during 2006 (a period of weak El Niño 

and positive IODZM conditions - 15.4 Sv).  The ITF should be stronger since the 

Philippines-to-Java SL gradient is intensified during the positive phase of IODZM.  

Modulation of the ITF, via remote Kelvin forcing in the IO, also plays an 

important role in heat transport from the Pacific to the IO and so may be instrumental in 
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the heat buildup prior to ENSO via the recharge paradigm of [Jin, 1997] or via direct 

wave dynamics across the Pacific.   For example, Figure 1.2 illustrates how energy can 

transfer from the IO to the Pacific.  Downwelling Kelvin waves, generated in the IO by 

monsoon transition westerlies or MJO (e.g. [Zhou and Murtugudde, 2010]), reflect off 

Sumatran coast, propagate along the coast through Lombok (< 300m) and then Makassar 

reversing the ITF flow.  In addition, these coastal Kelvin waves continue along Suva 

Islands and penetrate Ombai with both surface and deep reversals and a deep signature in 

Timor.  Using a combination of INSTANT moorings and model results to illustrate the 

IO remote forcing on the functioning of the ITF, [Schiller et al., 2010] find that poleward 

propagating downwelling coastal Kelvin waves cause higher sea level along Java-

Sumatra-Lesser Sunda waveguide, increasing eastward flow of South Java Current, and 

passes northward into the Lombok Strait (0-7 days).   After 14-21 days, the downwelling 

Kelvin wave makes its way into the Banda, Flores, and Java seas through various straits.  

The reflected, downwelling Rossby wave detaches from the Sumatra coast and begins to 

propagate westward (e.g. [Potemra et al., 1991]) into the IO (28-35 days).  After 21 days, 

plots of lagged correlations (right) along the red line (left) are shown in Figure 1.2.  As 

the Kelvin wave propagates along the Sumatra-Java-Lesser Sunda ray path, the 

correlation drops since energy is redirected to Flores Sea (through Lombok), Savu 

(through Ombai) and Timor Seas.  It is interesting to note that the depth correlation drops 

off at the corresponding sill depth of Lombok (500 m), Ombai (800-1000 m) and only 

deeper energy makes it to Timor.   
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Recently [Yuan et al., 2013] showed the important inter-basin exchange between 

the IO to the Pacific for the large IODZM event in 1997.  They utilized gridded fields of 

observed satellite sea level, SST and ECMWF winds and lagged correlation analysis to 

show that there are significant lagged correlations between the southeast tropical IO SL 

and SST (i.e. the eastern dipole of the DMI) in fall and Nino 3.4 values for the following 

summer to fall.  They attributed the significant lagged correlations up to 1 year out to the 

propagation of an upwelling Kelvin wave, associated with the anomalous easterlies of the 

strong IODZM event, from the IO through the ITF into the western Pacific then along the 

equator to the eastern Pacific.   Again using lagged correlation they showed that this 

Kelvin wave propagation was evident in subsurface temperature from TAO moorings as 

well.  Using ocean and coupled models, [Yuan et al., 2011] also showed that the negative 

 

Figure 1.2:  Kelvin passage through ITF. Taken from [Schiller et al., 2010] Figure 1, 
5f.  Left panel shows the Indonesian region with the red line corresponding to one of the 
potential pathways (Sumatra-Java-Australia) of IO Kelvin waves propagating 
into/through the ITF.  The right panel shows the correlation of IO wind stress anomaly 
index from the black box in left panel versus the potential temperature anomaly along 
the red line path shown in left panel. Correlation ranges from -0.5 to 0.5 and E, L, and 
T correspond to Equator, Lombok, and Timor, respectively on both figures.  The 
positive and negative sloping green lines on the right panel correspond to the 
theoretical 1st mode Rossby and Kelvin waves, respectively.  Model results are from 
1/10o resolution Bluelink ReANalysis (BRAN Version 2.1) comprised of MOM4p0 
assimilating all available sea level, SST, subsurface data, and Australian tide gauge 
data forced by combination of ERA-40 and ECMWF analyses. 
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sea level associated with the IODZM in the eastern IO could generate enhanced ITF flow 

by increasing the pressure head from the Pacific to the IO (ala [Wyrtki, 1987]).   

Enhanced ITF flow leads to warm water venting from western Pacific, upwelling of the 

western Pacific thermocline, and initiation of an upwelling Kelvin wave that traverses the 

Pacific. Since these IODZM anomalies can persist for a year, this work suggests the 

importance of oceanic pathway of the ITF and the potential to increase ENSO lead 

forecasts.  This component of how the IO could impact ENSO predictions has received 

little attention in the literature thus motivating this current dissertation research. 

 

1.2.2 Barrier Layer Thickness Observations and Formation  

As its name implies, Barrier Layer Thickness (BLT) is important to the tropical 

mixed layer budget because it acts to inhibit entrainment of deep cooler/saltier water into 

the base of the mixed layer.  The first reference to a barrier layer is attributed to S. 

Godfrey (personal communication, 1987) in the paper by [Lukas and Lindstrom, 1991].  

BLT is generally defined as the depth between an isothermal layer depth (ILD) and the 

depth of constant density (or distance separating the bottom of the Mixed Layer Depth 

(MLD) to the top of the thermocline).   

[Sprintall and Tomczak, 1992] determine the criteria for BLT as the difference 

between an isothermal layer (∆T=0.5oC) and the mixed layer depth (MLD) defined by the 

density criteria (i.e. depth that the ∆density equals the surface density value plus the 

equivalent density change assuming ∆T=0.5oC keeping salinity equal to SSS).  In other 

words,   𝜎𝑡,𝑀𝑀𝑀=𝜎𝑡,0 + ∆𝑇 𝜕𝜎𝑡
𝜕𝜕

 or BLT is the depth difference between the MLD 

determined from density (with salinity held to surface values and ∆density equivalent to 
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the value it would be using the same ∆T as the temperature criterion) and the MLD 

determined using temperature criterion (usually ∆T=0.5oC).   

MLD can either shoal or deepen due to changes in turbulence which is in turn 

caused by potential or kinetic energy.  Potential energy is measured by buoyancy flux 

that is due to density changes brought about by either freshwater or heat flux at the ocean 

surface.  Kinetic energy is input at the sea surface by the action of wind via waves, 

entrainment and horizontal advection by currents.  Presence of BLT means that any water 

entrained into the bottom of the ML is of the same temperature; no heat transfer into/out 

of the ML and so any additional surface heat flux would act to raise the temperature of 

the ML.  

Figure 1.3 shows the BLT statistics calculated from an optimal interpolation of all 

available subsurface temperature and salinity for the tropical Indo-Pacific region.  (See 

Section 2.1 for OI details).  These results are consistent with [Sprintall and Tomczak, 

1992] who used Levitus climatology. Several equatorial regions have persistent BLT.  

These include the western Pacific, the northern IO, and the eastern half of the Indian 

Ocean. For the western Pacific, the BLT is anchored just west of New Guinea (strongest 

in May to July), along 15oN (February to April), and 12oS (August to October) and these 

are associated with the warm pool, ITCZ, and SPCZ precipitation maximums, 

respectively.   The spatial distribution of the ITCZ BLT is explained by the north and 

south migration of the ITCZ.   This is also true for the SPCZ, the January maximum  
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precipitation is at 15oS and by September the SPCZ is located at 10oS and is generally 

oriented southeast to northwest.  A simple model, constructed by [Sprintall and Tomczak, 

1992], estimates that a net surplus of 2140 mm/yr of rainfall into the ocean is required to 

maintain the western Pacific BLT.  Different estimates of evaporation minus precipitation 

(E-P) can easily explain these values.  For example, [Oberhuber, 1988] finds that there is 

an excess of 2400 mm/yr precipitation for the western Pacific and this value adequately 

explains the fresh water content of the observed BLT.  The warm pool in the western 

Pacific is dominated by the interannual signal (Figure 1.3b).  The maximum variability 

 

Figure 1.3:  Observed BLT statistics.  Plots of observed BLT using optimal 
interpolation of temperature and salinity profiles at Levitus levels for a) mean, b) 
interannual variability of the anomaly with respect to the seasonal cycle, and c) 
variability of the mean seasonal cycle.   BLT is defined as the difference between MLD 
determined using the 0.5oC temperature criterion minus MLD depth determined using 
the density criterion (assume SSS and equivalent density change corresponding to 
0.5oC).  The units are meters. 
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regions in the ITCZ and the western south Pacific are split between interannual and 

seasonal amplitudes.   

Other tropical regions of BLT are found in the Bay of Bengal (BOB in August to 

October), Arabian Sea (AS in November to January) stretching south to the equator, and 

just west of Sumatra (May to January).   For BOB and AS the total variability is 

dominated by the seasonal cycle (Figure 1.3c).  The likely source for BOB BLT is the 

river outflow from the Ganges, Brahmaputra, and Irrawaddy that peaks just after the 

summer monsoon season.  Fresh water from these rivers (~2545 mm/yr river flow) flows 

out into the BOB and overrides the saltier eastern IO water, forming the BLT layer.  The 

Indus River supplies fresh water for the AS BLT.  This lags the monsoon peak by one 

season, perhaps due to varying rain-to-river residence times for Indus versus Ganges. The 

variability maximum just to the west of Sumatra is split between interannual and seasonal 

values.  The mechanism for the Sumatra BLT is likely an excess of rainfall, estimated to 

be 1800 mm/yr [Sprintall and Tomczak, 1992].  

For the western Pacific, the mechanism for BLT formation is different.  Along the 

equator, the eastern edge of the warm pool (typically 28oC isotherm) is a demarcation 

region between warm fresh water to the west and cold salty, upwelled water in the central 

Pacific.  A barrier layer is formed in the isothermal layer when either 1) abundant 

precipitation falls in weak wind conditions, 2) salty water is subducted from the east into 

the warm pool due to local convergence and warm fresh water overrides denser water to 

the east, 3) differential deepening of the ILD with respect to the MLD, or 4) vertical 

displacement of Kelvin and Rossby waves [Cronin and McPhaden, 2002].  Weak winds, 

heavy precipitation, eastward advection of low salinity water, westward subduction of 
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salty water and either downwelling Kelvin waves or Rossby waves are all factors that 

contribute to deep BLT formation in the western Pacific during 2000-2007 [Bosc et al., 

2009].   

Prior to El Niño, the warm pool stores heat and is confined to the far western 

Pacific.  During the El Niño, the warm pool expands eastward along with the concomitant 

precipitation and current anomalies because of relaxation of climatological easterlies.  

The fetch of the westerlies is increased during this time, reinforcing the event.  [Picaut et 

al., 1996], [Delcroix and Picaut, 1998] and [Delcroix and McPhaden, 2002] find a strong 

relationship between the east and west migration of the warm/fresh pool and ENSO.  

Using observations, [Maes et al., 2006] show that there is a close positive relationship 

between SSS and SST in the western Pacific and the BLT is instrumental in maintaining 

heat and momentum in the warm pool within the salinity stratified layer.  Later work, 

including Argo floats, confirm the relationship between eastward migration of the warm 

pool during El Niño and BLT heat storage in the western Pacific [Mignot et al., 2007].   

The study by [Bosc et al., 2009] utilizes Argo, CTD and surface-only thermo-

salinographs (TSG) from Volunteer Ships of Opportunity (VOS) to highlight the 

covariability of SSS, BLT, SST and other variables within 2o of the equator in the 

western Pacific (130oE-120oW).   Plots of SSS, SST, ∂S/∂x (zonal salinity gradient) and 

BLT are presented for 2000-2007 (Figure 1.4) and show that there is a close 

correspondence between SSS (identified by 34.7 PSU isohaline), SST (29.5oC), zonal 

SSS gradient (maximum ∂S/∂x), BLT, and the east and west migration of the warm/fresh 

pool.  The warm/fresh pool moves eastward with El Niño (2002, 2004, and 2006) and  
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westward with La Niña (2000-2001, 2007).  In addition, the scaled SOI index (dashed 

line in Figure 1.4c) matches the east/west migration of this front.   Close examination of 

these figures shows that warmest SST occurs just to the west of the salinity front.  In 

addition, analysis of this data set indicates existence of permanent BLT that can be found 

 
Figure 1.4:  Interannual variability of tropical Pacific.  Longitude versus time plots of 
2oN-2oS a) SSS, b) SST, c) ∂S/∂x, and d) BLT.  For all panels the solid black line 
corresponds to the maximum of ∂S/∂x. Thinner solid lines correspond to a) 34.7 PSU, 
b) 29.5oC, c) scaled SOI index.  Units are PSU, oC, 10-7 PSU/m and m for the four 
panels, respectively. From [Bosc et al., 2009] Figure 6. 
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near the front (see Figure 1.4d) with the largest values generally to the west.  Thus, 

warmest SST generally corresponds to deep BLT just to the west of the front.   

[Bosc et al., 2009] find that BLT is present for all periods 2000-2007 and has a 

close correspondence to maximum ∂S/∂x, warmest SST, and east and west migrations of 

the salinity front in accordance with ENSO.  All of the mechanisms for BLT formation 

proposed by [Cronin and McPhaden, 2002] are affirmed.  Namely, high precipitation and 

low wind speeds are coincident with highest BLT; eastward advection of low SSS and 

zonal current vertical shear contributes to BLT formation; and higher differential impact 

on ILD versus MLD of Kelvin and Rossby waves also can form BLT.    The main impact 

of BLT is to maintain a shallow mixed layer allowing an enhanced air-sea coupled 

response (e.g. [Maes et al., 2005]).  In addition, the BLT is the key factor in establishing 

the mean state that is perturbed during El Niño/La Niña [Maes and Belamari, 2011].  

1.3 Modeling Indo-Pacific Interactions 
 
1.3.1 Open/Closed ITF – Ocean Impacts 

From observational studies cited in the previous section, we know that the ITF is 

important for global climate since it is the major route for mass to be transported from the 

western Pacific (~15 Sv) into the IO and a major source of heat (~0.74 PW) and 

freshwater (0.11 SV) for the IO.  In particular, the input from the ITF can only return to 

the Pacific south of Tasmania where the mean temperature is 10oC cooler so an ITF flow 

of 10 Sv would correspond to a net transport of 0.4 PW (assumes 10 Sv and 10oC) from 

the Pacific to IO which may be as high as 60% of the total heat absorbed by the Pacific 

[Hirst and Godfrey, 1993].   In addition, calculations of the freshwater balances indicate 

that ITF water accounts for 0.23 Sv of evaporation within the IO [Talley, 2008].  
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Baroclinic coastal Kelvin and Rossby waves transport heat and fresh water from the 

Pacific into the IO and heat/fresh water is then dissipated over the broad areas of IO 

surface especially southwest of Australia.  On the other hand, variations of the ITF from 

the IO due to equatorial Kelvin waves would modulate the ITF and impact the normal 

transport of heat and fresh water from the Pacific to the IO thus potentially impacting the 

predictability of ENSO. 

Work by [Hirst and Godfrey, 1993] and [Murtugudde et al., 1998] concentrate on 

the oceanic impact of closing the ITF on the Pacific and IO in forced ocean models. They 

conclude that closing the ITF leaves the Pacific warmer and saltier with a deeper 

equatorial thermocline and the IO is colder with a shallower thermocline.  In addition, 

[Rodgers et al., 1999] find that ventilation of Northern Hemisphere water via the 

relatively fresh Mindanao Current into the ITF (through Makassar), is a requirement to 

have the proper observed proportions of Northern Hemisphere versus Southern 

Hemisphere water in the tropical Pacific.   Later work ([Schneider, 1998] and [Wajsowicz 

and Schneider, 2001]) use short coupled experiments to show that the ITF regulates the 

position of the deep convective precipitation, surface pressure and winds, and that these 

impact the entire tropics.   

More recently,  [Song et al., 2007] use a 200 year simulation of the GFDL CM2.1 

coupled model to further point out the impact of the ITF.    Two experiments are 

performed and compared over 200 years with the difference being that the ITF is cut off 

(Lombok, Ombai, and Timor) by land bridges.  Differences between ITFclosed and ITFopen  
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are shown in Figure 1.5.  Barotropic streamfunction (Figure 1.5a) shows decreased flow 

of the SEC in the southwestern Pacific and clockwise rotation over most of the IO 

corresponding to a reduced (i.e. eastward) SEC flow, transport of the Agulhas (i.e. 

northerly anomaly), and Agulhas retroflection currents, and increased southward flow of 

the East Australian current. Heat content from 0 to 300m (Figure 1.5b) is reduced in the 

IO due to surface cooling brought about by closing the ITF and increased in the eastern 

Pacific.  In addition, the western Pacific cools which is inconsistent with previous 

 
Figure 1.5:  Closed minus Open ITF for CM2.1.  Annual mean differences ITFclosed 
minus ITFopen for a) barotropic stream function (Sv), c) SST (oC), e) precipitation 
(mm/day), h) surface winds (m/s), b) 0-300 m average temperature (oC), and f) 0-50 m 
salinity (PSU).  Arrows are added for emphasis of the direction of the differences.  
Taken from Figure 4 [Song et al., 2007].  CM2.1 is made up of MOM4 (50 levels 10 m 
resolution above 220m and 1ox1o resolution down to 1/3o near the equator) with true 
freshwater fluxes and K-profile vertical mixing. The atmospheric component is made up 
of AM2p12b with 24 vertical layers and 2ox2.5o resolution.  (©American 
Meteorological Society.  Used with permission.) 
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modeling studies but is explained by overall weakened trades and deeper thermocline.  

SST (Figure 1.5c) is decreased in the southeastern IO and western equatorial Pacific and 

warmed in the upwelling region in the Pacific serving to reduce the mean zonal SST 

gradient across the Pacific.  Atmospheric pressure is increased over Indonesia leading to 

weaker trades (westerly anomalies, Figure 1.5h) and flatter thermocline in the Pacific and 

anticyclonic circulation in the south IO with easterlies prevailing over the equator.  

Precipitation differences (Figure 1.5e) reflect the fact that as SST warms in the east and 

cools in the western Pacific, the precipitation migrates out away from Indonesia, the 

ITCZ shifts south.  The negative SST over the IO corresponds to deficit rainfall over 

most of the IO.  The source waters for the ITF consist of low salinity north Pacific 

thermocline and intermediate waters so when the ITF is closed the salinity of the IO 

increases and the Pacific freshens (Figure 1.5f).   This results in a reinforcement of the 

Pacific and a decrease in the eastern IO vertical fresh pool salinity gradient.   In this 

region the shallower thermocline leads to reduced barrier layer thickness (BLT) in the 

western Pacific and eastern IO and thus may contribute to changing heat storage for 

ENSO along the lines of [Maes and Belamari, 2011].  Note that the dynamics of the ITF 

is the prominent driver of the salinity differences and not changes in precipitation or 

evaporation minus precipitation.   

[Santoso et al., 2011] extends the work by previous authors by running coupled 

experiments with the ITFopen and ITFclosed.  EOF analysis of the different ENSO 

characteristics shows that for the ITFclosed experiment, the main amplitude of the SST 

signal is confined to the NINO3 region (5oN-5oS, 150oW-90oW) whereas for the ITFopen 

experiment, the highest variability is located in NINO3.4 region (5oN-5oS, 170oW-
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120oW) or to the west of ITFclosed.  Unlike [Song et al., 2007], who conclude that ITFclosed 

had higher variability by examining only the eastern Pacific response, [Santoso et al., 

2011] find that the ITFclosed example has weaker total variability: the interdecadal 

variability is less while the interannual variability is sustained at the same level as 

ITFopen. Differences in plots of variability ITFclosed minus ITFopen for zonal current, 

upwelling, zonal temperature gradient and zonal wind stress all show a dipole pattern, 

negative to the west and positive to the east, consistent with enhanced Bjerknes feedback 

for the ITFopen scenario.   For ITFclosed the Bjerknes feedback is displaced eastward.  The 

decreased amplitude of decadal ENSO in the ITFclosed case can be explained by a 

relatively shorter time it takes to recharge/discharge smaller upper ocean heat content in 

the ITFclosed example.  The oceanic connection is attributed to possible draining of the 

warm pool (and subsequent discharging) of the ENSO via the ITF.  For the IO sector, the 

eastern dipole of the IODZM, exhibits increased variability for the ITFclosed case.  

However, there is no such increase in the western tropical IO so the large negative 

correlation between these two (e.g. Dipole Mode Index) for the ITFopen experiment is 

eliminated thus breaking the dipole response of IODZM relationship [Song et al., 2007].  

In addition, [Schneider, 1998] finds that both IO monsoons were enhanced with ITFclosed.  

The IO impacts the Indo-Pacific region via precipitation and concomitant sea 

surface salinity changes since the normal flow of fresh water to the IO is turned off by 

closing the ITF, resulting in a fresher Pacific (e.g. [Song et al., 2007] and [Santoso et al., 

2011]).  In addition, closing the ITF leads to less rainfall over Indonesia but more rainfall 

in the central Pacific (e.g. [Schneider, 1998] and [Wajsowicz and Schneider, 2001]).  

These changes in salinity in the fresh pool of the Pacific can modify near-surface density 
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anomalies and barrier layer heat storage, which in turn can have an impact on ENSO 

predictability.  For example,  [Maes et al., 2005] showed that the western Pacific barrier 

layer stores heat to amplify ENSO.  However, the impact of these salinity/precipitation 

features on ENSO predictability has not yet been fully addressed within the context of 

hindcast prediction experiments.   

1.3.2 Pacific versus Indian Atmosphere/Ocean Coupling – Wind 

Impacts  

In order to test the impact that the IO atmospheric coupling might have on ENSO, 

[Wu and Kirtman, 2004] use a coupled general circulation model (CGCM) to test the 

impact of the IO on ENSO.  They compare two experiments.  In one, the Indo-Pacific 

(INDOPAC) region atmosphere is coupled.  In the other, the IO is decoupled (i.e. 

DECOUPIO) by setting SST to climatological forcing.  They show that the ENSO 

variability is reduced significantly when the IO is decoupled.  For the INDOPAC control 

experiment, the NINO3.4 variability is 0.56oC whereas the DECOUPIO is only 0.27oC.   

In addition, composite plots of longitude versus time show that the maximum for the 

INDOPAC coupled experiment (195oE) is located to the east of the DECOUPIO (180oE, 

matching [Yu et al., 2002]) and that the eastern upwelling (i.e. Kelvin wave arrival) is 

slightly later (March versus April for INDOPAC and DECOUPIO, respectively).  The 

dominant period of variability is extended by decoupling the IO (2.3 for INDOPAC to 2.8 

years for PACONLY) which is inconsistent with earlier work of [Yu et al., 2002].  The 

influence of the IO is via the convective heating and modulation of the Walker 

circulation.  IO SST can induce anomalous Walker circulation over the eastern equatorial 

IO (EEIO) and western-central Pacific through anomalous heating over the IO.  For 
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example, cold IO SST induces anomalous westerlies in the Pacific that serve to enhance 

El Niño.   

To test why IO SST affects low level winds, a simple 2.5 layer linear atmospheric 

model is employed by [Wu and Kirtman, 2004].  The first EOF (38% explained variance) 

of the JJAS SST of the INDOPAC control is used to force the simple atmosphere (Figure 

1.6a).  This pattern has positive values over the central Pacific NINO3.4 region (0.4oC), 

negative values over most of the IO (-0.4oC) and positive values over the eastern IO 

(0.2oC).  Three experiments are initiated:  full IO plus Pacific SST forcing (Figure 1.6b), 

Pacific only (Figure 1.6c) and IO only (Figure 1.6d).  For the Pacific and IO SST forcing, 

the results show strong westerlies to the east of Indonesia and easterlies to the west (a 

negative Walker circulation).  For the Pacific-only SST forcing the wind anomalies are 

limited to the Pacific region with westerlies over the western Pacific and easterlies over  

 
Figure 1.6:  Simplified coupled model response.  Top) 1st EOF of the JJAS SST (0.2oC) 
anomalies of the INDOPAC coupled model used to force the simple atmospheric model– 
38% of the variance. b), c) and d) panels correspond to INDOPAC, PACONLY and IO-
ONLY SST forcing on zonal winds (0.1m/s).  Taken from Figure 7, [Wu and Kirtman, 
2004].  The coupled GCM of the Center for Ocean-Land-Atmosphere Studies (COLA) 
uses an atmospheric model with T42 resolution.  This is coupled to the GFDL Modular 
Ocean Model (MOM) version 3. Years 71-392 of the fully coupled experiment serve as 
the control.  For the DECOUPIO experiments, climatological SST from the control is 
used to force the IO sector and then these are run for 45 years and the last 40 is then 
used for analysis. (©American Meteorological Society.  Used with permission.) 
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the eastern Pacific.  This pattern reflects the lower level convergence forced by the warm 

SST in the central Pacific.  Interestingly, the wind pattern from the IO negative SST 

forcing (Figure 1.6d) is easterly over the western IO but strong westerlies reside over 

Indonesia extending over the entire Pacific giving the well-known atmospheric Kelvin 

wave pattern.  A westerly node associated with an atmospheric Rossby wave is 

demonstrated by westerlies over the Bay of Bengal.   Therefore, the IO SST forcing 

results indicate a mechanism that can enhance westerlies over the western Pacific 

resulting in more intense El Niño.  

[Annamalai et al., 2010] find that El Niño is much stronger when it occurs with 

IODZM events than when only El Niño occurs.  They call the former class 1 and the 

latter class 2 events.  Plots of CM2.1 coupled model results for class 1 minus class 2 

composite El Niños show cold SST over the EIO and in the Indonesian Seas (110oE-

140oE, 10oS-0o) and the eastern Pacific thermocline deepens and SST warms east of the 

dateline for IODZM + El Niño cases (Figure 1.7a).   Precipitation (Figure 1.7b) is 

decreased from the central IO to 160oE in the Pacific (with minimum off Java and 

Indonesian Seas) and increased just east of 160oE and in the western Pacific.  Note that 

this region corresponds to the same area mentioned by [Bosc et al., 2009] where the fresh 

water front migration is highly correlated with ENSO (from Section 1.2.2).  Winds are 

westerly from 130oE east to 120oW and easterly over Indonesia west over the central IO 

indicating a weaker Walker circulation (Figure 1.7c). 
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Next a simple atmospheric model, the Linear Baroclinic Model (LBM) of 

[Watanabe and Jin, 2003] is utilized by [Annamalai et al., 2010] that is linearized about 

the CM2.1 mean state and forced by SST anomalies in Figure 1.8 in order to highlight the 

impact of the various regions.  The forcing for the regions corresponds to the boxes in 

Figure 1.7a.   EIO forcing generates an atmospheric Rossby wave signature in the eastern 

IO (i.e. easterlies at the equator and westerlies to north and south with the BOB winds 

significantly stronger – Figure 1.8a) but no signal in the Pacific similar to the idealized 

 
Figure 1.7:  El Niño differences with and without IODZM.  Differences between 
class 1 (i.e. Strong El Niño with IODZM) minus class 2 El Niño (i.e. no IODZM) for a) 
SST (oC), b) precipitation (mm/day), and c)  850 mb zonal wind (m/s).  Dashed lines 
are negative.  Boxes in a) represent EIO, Indonesian Seas, and equatorial Pacific 
forcing regions, respectively.  From Figure 2 [Annamalai et al., 2010]. The GFDL 
Climate Model version 2.1 uses climate of the 20th century forcing from 1861 to 2000 
and is GFDL’s contribution to the IPCC AR4.  NINO3 (90oW-150oW, 5oN-5oS) from 
DJF and EEIO (90oE-110oE, 0o-10oS) from JJASON were formulated to define El Niño 
and IODZM, respectively.   Monthly anomalies were formulated with respect to the 
1971-2000 mean seasonal cycle and any trend was removed. (©American 
Meteorological Society.  Used with permission.)  
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forcing of the IODZM in [Annamalai et al., 2005].  The linear experiments for the EPAC 

(Figure 1.8c) forcing also results in weak wind anomalies in the Pacific due to little 

additional generation of precipitation anomalies in this region.  However, the impact of 

the Indonesian Seas on the atmospheric linear model is surprisingly strong and far 

reaching.  Again cold SST forcing in the Indonesian Seas forces strong negative 

precipitation anomalies (see Figure 1.8e) which in turn force an atmospheric Kelvin 

response that is evident by easterlies over Indonesia and strong westerlies to the east over 

 
Figure 1.8:  Linear atmospheric response to regional SST forcing.  850 mb zonal 
wind anomalies (m/s) results of regional SST forcing of the linear atmospheric model 
for the regions defined in Figure 1.7a for a) EIO, b) Indonesian Seas, c) Equatorial 
Pacific and d) total SST forcing. From [Annamalai et al., 2010] Figure 7.  Figure e) 
shows the same as b) but for precipitation in mm/day (from Figure 8b of same paper 
©American Meteorological Society.  Used with permission.) 
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the western equatorial Pacific (Figure 1.8b).  Thus, when IODZM positive phase is in 

place, positive zonal wind anomalies occur over the equatorial western Pacific.  Cold 

SST over the Indonesian Seas 1) reduces the normal east/west temperature gradient 

across the Pacific providing favorable conditions for westerly anomalies to develop, 2) 

suppresses convection over the Maritime continent and the resulting atmospheric Kelvin 

wave forces westerlies to the east, 3) leads to convergence of the westerlies that enhance 

western Pacific precipitation, and 4) results in an increased temperature gradient between 

Indonesia and the dateline further enhancing westerlies.  These westerlies then lead to 

downwelling oceanic Kelvin waves further enhancing the growth of El Niño.  

[Annamalai et al., 2010] conclude that regional IO SST and heating anomalies are not the 

primary cause but serve to enhance the development of El Niño and that IO ocean waves, 

triggered by IO wind anomalies, do not control Indonesian Sea SST but rather local wind 

effects dominate.  

In summary, the IO can have strong influences for ENSO via either oceanic or 

atmospheric pathways.  Enhanced western Pacific westerlies, enhanced precipitation, and 

intense freshening in the central Pacific are in place by closing the ITF.  Regional 

coupling of basin-scale IO and Indonesian Seas SST anomalies force enhanced westerlies 

over the entire Pacific and increased ENSO forcing (Figure 1.6 and Figure 1.8).  In 

addition, precipitation is enhanced in the same region where the zonal displacement of 

the warm/fresh pool is highly correlated with ENSO (e.g. Figure 1.8e).  Keeping in mind 

that western Pacific precipitation is strongly influenced by the IO through both oceanic 

and atmospheric routes, and that precipitation is the major source of SSS anomalies in the 
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tropics, next the relevant research regarding SSS impacts on ENSO Indo-Pacific 

prediction via BLT dynamics is presented. 

1.4 Role of Salinity and Fresh Water Forcing in the Indo Pacific 
Region 

 
1.4.1 Impact of Barrier Layer Thickness on Coupled Predictions   

Using coupled models and tuning the mixing to eliminate BLT for one year prior 

to El Nino, [Maes et al., 2005] show that the heat buildup associated with BLT is a 

requirement for a large El Niño.   These authors use the French coupled model (ARPEGE 

coupled to OPA) to investigate the impact of BLT on El Niño.  Thirty years of model 

experiments show that prior to all El Niño, heat buildup occurs concurrently with the 

existence of BLT in the western Pacific (consistent with the observational findings of 

[Bosc et al., 2009]).  Correlations illustrate that both dynamic height (DH) and BLT are 

thickening in response to strengthened trade winds (i.e. easterlies) that sustain the heat 

buildup in the western Pacific prior to El Niño.  In order to test the impact of BLT on El 

Niño an additional set of experiments are performed by [Maes et al., 2005].  In the first 

stage, mixing is increased in the warm pool (defined as 4oN-4oS and SST > 28oC) at the 

depth of the BLT in the year prior to El Niño so that salinity stratification is eroded.  

Then in the second stage the salinity mixing is returned to its original state and the model 

is restarted using the perturbed (i.e. no BLT) initial state and then run for the following El 

Niño year.  Year 15 of the model, the example used in the paper, has a relatively strong 

El Niño (i.e. a NINO3.4 SST anomaly of 2.5oC).  The control (left) shows more heat 

stored for the top 250 m in the warm pool than for the perturbed (middle) experiment  
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(Figure 1.9 top).  In addition, temperature at the depth of the thermocline is increased for 

the control (i.e. with BLT heat storage) versus the perturbed (BLT removed via mixing - 

Figure 1.9 middle) in the western Pacific.  For the eastern Pacific, the perturbed 

experiment shows higher temperature near the thermocline and at the surface.  During the 

year prior to El Niño (i.e. year 14) the east to west SST gradient is reduced for the 

perturbed experiment, allowing a longer fetch for any westerly wind bursts.  Plots of 

SST, zonal wind stress and D20 (not shown) confirm that equatorial Kelvin waves 

transport heat towards the east along the thermocline for the perturbed case in year 14 

thus expending any heat buildup prior to El Niño. Thus, the net result of removing the 

BLT is to prematurely discharge heat to the east before the onset of El Niño.  

Figure 1.9:  Impact of heat storage and BLT.  October-December mean for the year 
prior to El Niño (i.e. year 14 of the coupled model) minus 30 year climatology for (left) 
control and (right) perturbed for (top) 0-250 m mean temperature and (middle) longitude 
versus depth temperature along the equator( oC).  Right panel shows the following year’s 
El Niño annual predictions (i.e. year 15).  Black (control) and gray (perturbed) lines 
represent all 6 ensembles and heavy line shows the ensemble mean.  From [Maes et al., 
2005] Figures 6 and 7.  The coupled model is comprised of the Meteo-France 
atmospheric and the ocean general circulation models from LODYC.  The AGCM was 
adapted from the ARPEGE forecast model with T31 (3.75o) and 19 levels. The OGCM 
comes from the Ocean Parallelise (OPA) for the Pacific basin with 1o in longitude down 
to 0.5o at the equator with 25 layers in the vertical. (©American Meteorological Society.  
Used with permission.) 
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Coupled forecasts are then initiated by [Maes et al., 2005] and the annual mean El 

Niño year Figure 1.9 (right) shows that forecasts initiated from the control experiment 

(black curves) have a much larger SST signal along the equator than the perturbed 

experiments (gray curves).  The perturbed experiment annual mean El Niño SST is less 

than 0.2oC whereas the mean amplitude of the control is roughly 1oC at 120oW in the 

eastern Pacific.  In other words, the removal of BLT results in an annihilation of the 

strong year 15 El Niño.  The different terms of the mixed layer heat budget for the warm 

pool indicate that 1) the perturbed experiment has a deeper MLD (as expected with no 

BLT), 2) entrainment term is negative (cooling) for the perturbed and its amplitude 

dominates the MLD budget whereas this term is positive and relatively small for the  

control, 3) the atmospheric heating is large for the perturbed due to the increased MLD 

(deeper MLD can gain more solar heat flux), and 4) the reduction of surface currents 

forced by the wind working over deeper MLD for the perturbed experiment leads to 

slightly reduced advection term.   Therefore, the presence of the BLT and the 

concomitant suppression of entrainment from below is a necessary requirement to store 

heat in the western Pacific to fuel the subsequent El Niño.  

[Maes et al., 2005] showed that accounting for the salinity structure is important 

for ENSO prediction.  For this work, better estimates of the BLT lead to basin-scale 

changes in heat storage and corresponding changes in SST.  In an idealized coupled 

model setting, we have seen that basin-scale changes in heat storage can lead to improved 

ENSO forcing predictions.  Therefore, important questions about the role of salinity via 

BLT, heat storage, and SST still need to be addressed thus motivating this aspect of the 

dissertation research.  
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1.4.2 Impact of Salinity Assimilation on Coupled Predictions 

Rather than perturbing coupled experiments as in the previous section, another 

way to investigate the impact of BLT is through assimilation of salinity in forced ocean 

models.  A main focus of the operational seasonal climate prediction centers is the full 

utilization of recently implemented Argo Sz via ocean data assimilation.  In a survey 

paper, [Oke et al., 2009] highlights the relative importance of various observing systems 

to ocean analyses using the Global Ocean Data Assimilation Experiment (GODAE) 

models and they find that Argo is the only observing system that constrains subsurface 

temperature (Tz) and salinity (Sz).  Specifically, the ECMWF ocean reanalysis system 

(ORA-S3) initialized with the atmospheric fluxes from the ERA-40 reanalysis (analyses 

after 2002) shows the impact of withholding different ocean observing systems at 

different locations [Balmaseda and Anderson, 2009].  Their coupled results (i.e. ORA-S3 

coupled to operational global, Integrated Forecast System) indicate that inclusion of Argo 

data significantly improves SST hindcasts for most regions (except the Atlantic) and 

Argo outperforms both altimetry and mooring information for the western tropical Pacific 

i.e. NINO4 region and the entire tropical IO between 10oN-10oS. Earlier work suggested 

that Argo may correct errors in fresh water forcing, circulation, or water mass 

characteristics [Balmaseda et al., 2007].  In this system the mean dynamic topography 

from the previous months ORA-S3 results is used to assimilate sea level.  Assimilating 

altimetry does not significantly improve IO forecasts whereas Argo improves the SST 

forecasts for all IO regions tested. For the Pacific, altimetry assimilation outperforms 

Argo in the NINO3 and across the entire equatorial Pacific but Argo has higher validation 



36 
 

statistics in NINO4 region. Unfortunately, this work does not distinguish between the 

contribution of Argo Tz and Sz. 

Using the NSIPP global Coupled General Circulation Model (the quasi-isopycnal 

Poseidon ocean model is coupled to the NSIPP AGCM - [Vintzileos et al., 2003]), [Yang 

et al., 2010] show that assimilating the subsurface structure of salinity accurately 

contributes to improved prediction of the 2006 El Niño.  In particular, they show that 

assimilating both Tz and Sz into Pacific initial conditions captures the correct warming for 

2006.  The salinity assimilation improves the amplitude of the downwelling Kelvin wave, 

successfully capturing the two-stage deepening of the thermocline and the east/west 

displacement of the warm/fresh pool in the western Pacific.  By swapping out variables 

from different techniques, these authors show that the salinity impact on stratification, 

especially near the thermocline in the western Pacific, is important for successful 

predictions.  

[Hackert et al., 2011] show that assimilation of gridded in situ SSS into initial 

conditions for our Pacific-only Hybrid Coupled Model (see Section 2.2.4 for details of 

similar model) improves the resulting coupled forecasts. Coupled experiments are 

initiated from these assimilation results and run for 12 months for each month, 1993-

2007. The resulting hindcasts show that adding SSS to Tz assimilation improves coupled 

forecasts for 6-12 month lead times (see Figure 1.10a).  The main benefit of SSS 

assimilation comes from improvement to the Spring Predictability Barrier (SPB) period.  

SSS assimilation increases correlation for 6-12 month forecasts by 0.2-0.5 (Figure 1.10b) 

and reduces RMS error by 0.3-0.6oC for forecasts initiated between December and 

March, a period key to long-lead ENSO forecasts.   The positive impact of SSS 
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assimilation originates from warm pool and Southern Hemisphere salinity anomalies.  

Improvements are brought about by fresh anomalies advected to the equator via 

subduction processes.  Figure 1.11a shows both the SSS differences (i.e. with minus 

without SSS assimilation) as colors and the Bernoulli function for density surface 23.5 σ 

as contours.  This panel shows that negative SSS anomalies flow towards the equator 

mostly from the Southern Hemisphere.  Negative values of SSS (i.e. freshening) serve to 

increase the BLT near the equator (Figure 1.11b) which in turn leads to shallower mixed 

layer depth (Figure 1.11c).  Thus, the net effect of assimilating SSS is to increase 

stability, reduce mixing, and shoal the thermocline (Figure 1.11d) which concentrates the 

wind impact of ENSO coupling.  Monthly plots (not shown) indicate that this effect is 

most pronounced in June-August helping to explain the improvement in the SPB.  In 

addition, regional assimilation of SSS determined that the western Pacific and the 

Southern Hemisphere has relatively greater influence on improving coupled forecasts 

 
Figure 1.10:  Coupled improvements due to SSS assimilation in the Pacific.  NINO3 
SST anomaly statistics for a) correlation versus forecast lead time for observation 
persistence (dashed line), coupled experiments initiated from data assimilation of Tz 
(ASSIM_Tz - dotted) and Tz with SSS assimilation (ASSIM_Tz_SSS – solid) for 1993-
2007  (r = 0.31, 95%) and b) start month versus lead time for correlation differences 
between ASSIM_Tz_SSS minus ASSIM_Tz.  Note that inclusion of SSS in assimilation 
for initialization of ENSO hindcasts significantly improves the forecasts after 6 months 
especially for December to March starts From figures 4 and 5 [Hackert et al., 2011].   
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reaffirming the work of [Ballabrera-Poy et al., 2002].  These are the precise regions 

where IO atmospheric coupling impacts the Pacific (see e.g. Figure 1.8e). Therefore, 

subducted off-equatorial and western Pacific salinity anomalies increase BLT along the 

equator in the western Pacific leading to improved MLD and more accurate air-sea 

coupling for ENSO predictions.   

1.5 Objectives and Significance of Research 
 

El Niño/Southern Oscillation (ENSO) has significant impacts on climate 

variability throughout the world and so has been the key focus for improving coupled 

 
Figure 1.11:  Initialization differences due to Pacific SSS assimilation. Mean annual 
values for ASSIM_Tz_SSS minus ASSIM_Tz for (a) SSS (color) and ASSIM_Tz_SSS 
Bernoulli function using 23.5 σ (contours), (b) barrier layer thickness (BLT), (c) 
density criteria mixed layer depth (MLD), (d) depth of the 20°C isotherm (i.e., 
thermocline).  Bernoulli streamlines are contoured every 0.2 cm and flow 
counterclockwise (clockwise) in the Northern (Southern) Hemisphere around low 
values. Missing contours correspond to regions where the 23.5 σ surfaces. MLD and 
BLT are defined using same criteria as used by [Sprintall and Tomczak, 1992]. 
 



39 
 

forecasts for the tropical Indo-Pacific.  Given that El Niño and its related global 

teleconnections have dramatic societal impacts, examination of the role that IO variability 

plays in interannual predictions, both the amplitude and the character of this 

phenomenon, is a major objective of this dissertation.  The analyses presented herein are 

especially critical now in light of the potential for testing recent theories explaining 

shortcomings of operational coupled models.  For example, [McPhaden, 2015] and 

[Santoso et al., 2015] suggested that a potential reason for the poor validation of the 2014 

ENSO forecast was a lack of fully accounting for the impact of the IO on air/sea coupling 

in the tropical Pacific.  The objective of this study is to understand the impact that the IO 

plays in the functioning of the coupled Indo-Pacific system through diagnosis of both the 

inter-basin oceanic and atmospheric teleconnections.  In addition, we are interested in 

determining what impact IO data in general and fresh water flux (as diagnosed by 

salinity) in particular plays in the tropical Indo-Pacific ENSO predictability.  Therefore, 

our research will answer the following questions: To what extent do oceanic and 

atmospheric teleconnections between the IO and Pacific impact ENSO predictability?   

Does inclusion of satellite and in situ observations in the IO improve coupled ENSO 

forecasts?  And what is the role of sea surface salinity, both satellite and in situ, for 

improving near-surface density and what are the corresponding impacts on Indo-Pacific 

ENSO forecasts? 

Given the results of previous idealized studies demonstrating both an oceanic and 

atmospheric teleconnection between the IO and ENSO, the main hypothesis of this 

dissertation is that the upstream influence of the IO plays an important role in advancing 

seasonal to interannual forecast skill of ENSO.  First we present the role that forcing and 
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initial conditions play in the ENSO prediction problem to include the impact of the IO in 

initializing the coupled system.  Specifically, we apply the previous generic/composite 

ENSO techniques for oceanic pathway (e.g. [Song et al., 2007]) and atmospheric 

coupling (e.g. [Wu and Kirtman, 2004]) into the context of real ENSO predictions.  For 

example, the impact of the ITF flow and wind/precipitation anomalies generated by IO 

SST anomalies are diagnosed for retrospective forecasts for 1993-present.   

Next the impact satellite and in situ observations in the IO on ENSO predictions 

are addressed by comparing hindcasts that assimilate satellite SL, SST, SSS, and Tz and 

Sz in the IO with those that do not.  By utilizing forced and coupled experiments and 

diagnosing differences between hindcasts with and without assimilation in the IO, the 

potential added benefits of satellite and in situ information in the IO are isolated and 

identified for improving ENSO predictions.    

Lastly, we examine the impact fresh water flux (as measured by sea surface 

salinity) in the Indo-Pacific region may have on coupled ENSO predictions in light of 

poor precipitation forecasts in operational coupled models (e.g. [Wang et al., 2010]).  In 

the Pacific, previous work of [Maes et al., 2005], [Yang et al., 2010] and [Hackert et al., 

2011] showed the importance of salinity and accounting for heat storage in the BLT for 

ENSO predictions.  However, it has yet to be fully demonstrated how improved salinity 

and mixed layer dynamics impact ENSO predictions.  Therefore, a series of coupled 

experiment pairs are presented that isolate the impact of salinity assimilation versus those 

without.  In addition, the relative quality and abundance of satellite versus in situ SSS 

assimilation has yet to be investigated in terms of ENSO prediction, so pairs of 

experiments are also presented that highlight how in situ salinity assimilation compares 
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with satellite derived SSS product.  With the recent demise of Aquarius, the first NASA 

satellite designed specifically to measure sea surface salinity from space, and the 

questionable future for satellite salinity, it is now even more important to gain an 

improved understanding of the role of satellite salinity for ENSO prediction.  

This dissertation is arranged in the following manner.  The technical approaches 

(including data, model, and data assimilation descriptions) are presented in Section 2.  

Section 3 describes oceanic link of the IO via the ITF, Section 4 provides the results of 

the atmospheric teleconnections of the IO, Section 5 presents the impact of IO 

observations and Section 6 shows how SSS impacts ENSO predictability and compares 

satellite SSS relative to in situ observations.  Finally, Section 7 contains the summary and 

conclusions.  
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2 Technical Approach and Methodology 
 

The purpose of this dissertation is to identify what role the upstream influence of 

the IO plays on extending useful ENSO predictions, via the oceanic flow of the ITF, the 

atmospheric bridge of the IO to the Pacific, and the impact of assimilation in the IO.  In 

addition, we assess the impact that fresh water flux through assimilation of sea surface 

salinity in the tropical Indo-Pacific region has on improving ENSO predictions.   Our 

approach is to use a combination of satellite analysis, ocean models, data assimilation and 

coupled models to diagnose the impact of these various components on ENSO 

predictability.  In this section we summarize these tools and the data that are used to 

isolate the impact of the IO and SSS on ENSO predictability.   

2.1 Validation/Assimilation Data 
 

Multi-satellite AVISO sea level data are used for assimilation and validation of 

ocean model and assimilation results (http://www.aviso.oceanobs.com/en/data/products/ 

sea-surface-height-products/global/msla/index.html).  In order to first homogenize the 

data from the different satellites (TOPEX/Poseidon, ERS, JASON 1, JASON 2, Envisat, 

GFO and Cryosat2), the best estimates for corrections, models, and references are applied 

to each satellite observation.  Sea surface anomalies are calculated using each satellites 

repeat orbit mean or from a mean sea surface (MSS) when the satellite orbit does not 

repeat (ERS for April 1994-March 1995, Envisat since November 2010, and Cryosat2).  

A technique that minimizes the cross-over differences between satellites is applied in 

order to reduce the orbit error.  Next, the mapping processing involves optimal 

interpolation (OI) of all available altimetry satellites (up to 4 e.g. Oct 2002-Sep 2005, 

J1+TPN+EN+GFO).  The mapping procedure uses realistic correlation functions and 

http://www.aviso.oceanobs.com/en/data/products/%20sea-surface-height-products/global/msla/index.html
http://www.aviso.oceanobs.com/en/data/products/%20sea-surface-height-products/global/msla/index.html
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covariance functions are included that account for spatial and temporal scales using zonal 

and meridional propagation velocities which are estimated from five years of TP+ERS 

combined maps. In addition, 10% of the signal variance is included to take into account 

the sub-scale variability.   Starting in October 1992 (i.e. start of TOPEX/Poseidon 

mission), research quality data are processed on a 7-day time-scale and typically have 

latency of 6 months.  To acquire the latest data, near-real-time (NRT) daily data are also 

downloaded and averaged weekly to match the research quality data.   All gridded fields 

have 1ox1o resolution from 60oN-60oS.    

Weekly gridded 1ox1o SST data are available via http://www.esrl.noaa.gov/ 

psd/data/gridded/data.noaa.oisst.v2.html and are comprised of in situ data from ships, 

drifting and moored buoys, and AVHRR data from satellite ([Reynolds et al., 2002]).  

Satellite data are first tuned by regression to high-quality in situ SST data for day and 

night separately.  Then OI is applied to the data in order to smoothly combine SST data 

from different sources. The first-guess field is the previous week’s analysis and the 

random errors correspond to 1.3oC, 0.5oC, 0.5oC and 0.3oC for ship, buoy and, daytime 

and night-time satellite data, respectively.  Note that the higher the random error, the 

lower the impact of the particular data source on the resulting OI. The zonal and 

meridional decorrelation scales are 850 km and 615 km, respectively.  The data cover the 

period from November 1981 (i.e. start of AVHRR) to present with approximately 2 week 

data latency.  

 As part of our foundational work for assimilation, flexible software has been set 

up to access any subset of the available subsurface temperature (Tz) and salinity (Sz) data.  

The source data include the Global Temperature Salinity Profile Project (GTSPP), 

http://www.esrl.noaa.gov/%20psd/data/
http://www.esrl.noaa.gov/%20psd/data/
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TAO/RAMA, and World Ocean Database 2009 (WOD09 - [Boyer et al., 2009]) 

observation data.  For the GTSPP “best copy” data set [NODC, 2006] both real-time from 

the Global Telecommunications System (GTS) and delayed mode data received by the 

NODC are included in a continually managed database which maintains all available 

subsurface information removing duplicate entries.  This data set includes profiles from 

instruments such as CTD and XBT measurements from ships, TAO buoys, and Argo 

profiling floats.  Only data classified as “good”, “probably good” or “modified” are 

included in our data set after location, date, gradient, density validation, climatological, 

and profile consistency tests are performed (http://www.nodc.noaa.gov/GTSPP/access_ 

data/gtspp-bc.html).  Daily mean TAO/RAMA data [McPhaden et al., 1998] are also 

included in this data set since mooring salinity data are handled inconsistently in both of 

the other data sets.  All TAO/RAMA data except “lower quality” data were included 

(http://www.pmel.noaa.gov /tao/ data_deliv/).  An additional data source, WOD09, 

includes research quality salinity and temperature profile data on standard levels 

(http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html).  Extensive quality controls 

are performed, and only data of “highest quality” (i.e. depth and salinity/temperature 

error flag=0) are retained in our database.  In addition to the profile data, grids of the 

seasonal cycle for temperature and salinity provided by World Ocean Atlas 2009 

(WOA09 -[Antonov et al., 2010; Locarnini et al., 2010]) are used to formulate anomalies. 

Prior to analysis, each profile is linearly interpolated to Levitus standard depths down to 

1500 m and the closest matching WOA09 climatological value is subtracted to form an 

anomaly profile.  

http://www.nodc.noaa.gov/GTSPP/access_
http://www.pmel.noaa.gov/
http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
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In order to extend the influence of the limited number of temperature and salinity 

profiles, and to remove the residual seasonal cycle after anomalies are formulated, the 

optimal interpolation (OI) technique of [Carton and Hackert, 1989] is employed to 

convert point-wise information to grids. Binning the data effectively removes redundant 

data from different data sources like GTSPP, WOD09 and TAO/RAMA so OI was 

performed on the binned data using decorrelation scales of 15o longitude, 3o latitude, and 

1 month matching the values for SST estimated by [Meyers et al., 1991].   The process is 

repeated for each depth to obtain temperature and salinity anomaly grids with 1ox1ox1 

month resolution at standard Levitus depths.  As a final step the residual mean seasonal 

cycles (from the differences between the gridded observations and WOA09 gridded data) 

are removed for both Tz and Sz gridded OI data so that the EROKF assimilation 

procedure remains stationary. 

In this work two different in situ SSS products are assimilated.  To create the first 

one, all in situ salinity observations shallower than 10 m depth are binned in a 

1ox1ox1month grid, anomalies are calculated using WOA09, and then OI was performed 

in a similar manner as Tz to produce a monthly SSS anomaly field.  This SSS product is 

abbreviated as SSSISMON (for SSS in situ-monthly) and is comparable to satellite SSS 

since SSS errors estimated through cross-validation studies (e.g., performing several 

analyses by randomly withholding 10% data) provide an estimated salinity error of ~0.22 

psu which is comparable to the expected accuracy of 0.2 psu for monthly grids of 

Aquarius retrievals ([Le Vine et al., 2007], [Yueh et al., 2001]). 

The second SSS product is created from in situ salinity in order to capture the 

sampling coverage of Argo profilers with the same temporal resolution as the Aquarius 
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data.  As before, profile anomalies are formulated with respect to the WOA09 

climatology and the shallowest observations of the profile are binned for the tropical 

Indo-Pacific region on a weekly basis using a 10-day window.  Now the OI is performed 

in the same manner as SSSISMON anomalies except that decorrelation scales are 9.5o for 

longitude and 4.5o for latitude matching those estimated using Aquarius SSS. This 

weekly product is differenced from the monthly product by designating it as SSSIS (for 

SSS in situ). Note that gridding salinity data shallower than 10 m as surface observations 

is a reasonable preliminary assumption based on studies that have shown that over 84% 

of the time salinity differences between 1 m and 10 m are less than 0.05 psu for the TAO 

moorings ([Henocq et al., 2010]). 

In addition to the gridded OI product using near-surface in situ salinity, this 

dissertation also utilizes the Aquarius satellite SSS product, the mapped (Level 3) 

Aquarius Version 2.9.1 data (ftp podaac.jpl.nasa.gov, cd L3/mapped/V3/7day/) ([Lilly 

and Lagerloef, 2008]). Since the innovation of the EROKF data assimilation technique is 

comprised of anomalies, these are formulated by subtracting the mean WOA09 SSS 

seasonal cycle from Aquarius data.  In addition, the mean residual seasonal cycle of the 

in situ OI minus WOA09 is subtracted from the Aquarius SSS to remove the bias 

between the in situ and satellite SSS products.   

The NINO3 (5oS-5oN, 90oW-150oW) SST anomaly from [Reynolds et al., 2002] is 

used to validate all coupled and forced model results.    In addition, the NINO3.4 region 

(5oS- 5oN, 120oW-170oW) differentiates the central Pacific from the eastern Pacific 

response of NINO3.   For correlation, the effective degrees of freedom (df) is calculated 

using the technique of [Quenouille, 1952] (pp. 168-170) with the equation: 
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df=N/(1.+2.*ra(1)*rb(1)+2.*ra(2)*rb(2)+2.*ra(3)*rb(3)) where N is original number of 

observations and ra and rb are autocorrelations for time series a and b, respectively for 1, 

2, and 3 months lags (indicated by indices).    After the effective degrees of freedom are 

calculated the Students T test is used to establish significance of correlation values.  For 

all statistics, a probability of p=0.05 that a correlation is not 0. (i.e. the null hypothesis), 

or a significance at the 95% level will be considered significant.   In order to test the 

impact of the various pillars in this dissertation, forecast lead time correlations will be 

compared between different coupled model results.   Since all experiments are validated 

against observed SST anomalies, and so share a common variable, these correlations are 

not independent (known as correlated correlations).  Therefore, the Steiger’s Z-test 

[Steiger, 1980] will be utilized to test the significance of the differences between 

correlations as applied in e.g. [Uehara et al., 2014].   The details follow:                       

𝑍 =  [𝑍𝑎𝑎 − 𝑍𝑏𝑏] ∗ √𝑁−3
√2∗[1−𝑟𝑎𝑎]∗ℎ

 where Zao, Zbo are Fisher Z transformations of rao and rbo 

(the correlation of experiments a and b, respectively versus observations (o), N is the 

number of observations and rab is the correlation between the two forecast experiments, a 

and b,   ℎ = 1−�𝑓∗𝑟𝑟2�
1−𝑟𝑟2 , 𝑓 = 1−𝑟𝑎𝑎

2∗[1−𝑟𝑟2], and 𝑟𝑟2 = 𝑟𝑎𝑎2 +𝑟𝑏𝑏
2

2
.  This technique has the benefit 

of normal standard distribution, so its statistical significance was tested according to the 

condition that |Z| > 1.96 (p = 0.05).  So if the Z-critical value exceeds 1.96 then the 

probability, p < 0.05, passes the 95% significance level.  Correlated correlations 

exceeding the p=0.05 level are denoted by solid lines along the top x-axis (as defined by 

the figure captions).    In addition, the lead time amplitude of the various forecasts will be 

validated against observed NINO3 SST anomaly using root mean square error differences 



48 
 

(RMS).  Standard deviation and forecast mean will also be used to compare different 

forecasts versus observed values.  

2.2 Models and Techniques 
 

2.2.1 Ocean Model 

 
The primitive-equation, sigma-coordinate model with variable depth oceanic 

mixed layer is described in Gent and Cane [1989] and Murtugudde et al. [1996].  This 

ocean model is described and validated in a series of simulation studies of circulation in 

all three tropical ocean basins [Hackert et al., 2001; Murtugudde and Busalacchi, 1998; 

Murtugudde et al., 1996; Murtugudde et al., 1998] and proves accurate in analyzing 

subtropical cells and subduction pathways [Chen et al., 1994a; Luo et al., 2005; Rothstein 

et al., 1998].  Solar radiation (Earth Radiation Budget Experiment - ERBE) and 

precipitation from a combination of Xie and Arkin [1998] and Global Precipitation 

Climate Project - GPCP [Adler et al., 2003] are specified externally. Monthly anomalies 

of the cloud data [NCEP Reanalysis Kalnay et al., 1996] are added to the Interannual 

Satellite Cloud Climatology Project –ISCCP seasonal cycle [Rossow and Schiffer, 1991] 

in order to provide a more realistic mean.     

Our OGCM uses the hybrid vertical mixing scheme of Chen et al. [1994b] which 

combines the advantages of the traditional bulk mixed layer of Kraus and Turner [1967] 

with the dynamic instability model of Price et al. [1986].  This allows simulation of all 

three major processes of oceanic vertical turbulent mixing - atmospheric forcing is related 

to mixed layer entrainment/detrainment, gradient Richardson number accounts for shear 

flow, and instantaneous adjustment simulates high frequency convection in the 
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thermocline.  It is important to note that implementation of this mixing scheme has led to 

accurate simulation of the mixed layer and subduction pathways [Luo et al., 2005].   

Surface fluxes are calculated interactively by coupling the OGCM to a thermodynamic 

atmospheric mixed layer model [Murtugudde et al., 1996] thus allowing feedbacks 

between SST, SSS, and surface fluxes.    

The model configuration used for all simulations covers the tropical Indo-Pacific 

basin (34°E -76°W, 30°N-30°S) with a homogeneous longitudinal grid and a variable 

latitudinal grid (down to 1/3° within 10° of the equator).  This resolution is dense enough 

to allow mesoscale eddies and realistic ITF flow that averages 12 ± 4 Sv which closely 

matches observed values (e.g. [Sprintall et al., 2009]).  The open boundaries are treated 

as a sponge layer within 10° of the north and south borders smoothly relaxing to WOA09.  

The vertical structure consists of a variable depth mixed layer and 19 sigma layers with a 

deep motionless boundary being specified as Tbottom = 6°C and Sbottom = 35 PSU.   

The model is spun up from rest using climatological winds with the initial 

conditions derived from WOA09 data and is allowed to come to equilibrium after 30 

years of forcing by the ECMWF [1994] analysis climatology.   Interannual runs are 

initialized from this climatological spin-up and the wind speeds required for sensible and 

latent heat fluxes are computed from interannual ECMWF wind converted to stress using 

the bulk formula (ρ = 1.2 kg/m3, CD = 1.2x103).  

The Indo-Pacific version of the G+C model is validated in Figure 2.1.  SL, which 

is an integrated response to the entire model thickness, shows a good temporal 

correspondence to observed values.  For the equatorial waveguide (i.e. 5oN-5oS), 

correlation exceeds 0.8 in the Pacific.  In addition to accurately capturing the Pacific 
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ENSO signal, the main interannual feature in the IO, the IODZM, is well represented in 

this model (Figure 2.1a).  Correlation exceeds 0.6 for the western and 0.8 for the eastern 

dipole region of the IODZM, respectively.  The equatorial subsurface temperature RMS 

error between model and observed is presented in Figure 2.1c.  The model and observed 

Tz show a close correspondence with RMS errors rarely exceeding 2oC.  In addition, the 

model (solid) and observed (dashed) mean depth of the 20oC isotherm (representing the 

thermocline) overlay each other.   This model is an improvement upon previous versions 

since riverine fresh water flux has been added using the river flow data of [Dai and 

Trenberth, 2002] .  Figure 2.1b shows this improved correspondence between observed 

 

Figure 2.1:  Ocean model validation.  Validation of the Indo-Pacific ocean model 
experiment forced by ECMWF wind stress, 1993-2014, a) correlation of SL’ versus 
AVISO multi-satellite, b) correlation of SSS versus our gridded OI (detailed in Section 
2.1), c) RMS (in oC) of equatorial Tz,, dashed (solid) lines are the mean observed 
(modeled) depth of the thermocline.   Panel d) shows the ITF transport from this 
configuration of the ocean model (red) and INSTANT observations (blue line) for the 
period of INSTANT observations (January 2004 to December 2006). 
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and modeled SSS temporal signal.  Note that this model is allowed to vary freely as a 

natural boundary condition ([Huang, 1993]) and only relaxes back to Levitus ([Locarnini 

et al., 2010]) within the north and south boundary sponge layers.   BLT will be a key 

element of this study so the good validation of SSS in the important BLT regions (i.e. 

northern BOB, eastern IO, Pacific warm pool, SPCZ, and ITCZ) is a particular 

advantage.  This model also reproduces the flow of the ITF accurately as well.  Figure 

2.1d shows the time series of the ITF measured by the INSTANT moorings (solid) and 

the Sverdrup transport through 114oE, between 21oS-9oS from the model.   The ocean 

model reproduces the observed amplitude along with the intraseasonal to interannual 

variability (r=0.63, RMS=4.5 Sv).  

 
2.2.2 Ensemble Reduced Order Kalman Filter Data Assimilation 

 
As a baseline for some experiments, observations of satellite SL, SST, SSS, and 

in situ SSS, Tz, Sz anomalies are simultaneously assimilated into the model using an 

Ensemble Reduced Order Kalman Filter (EROKF). The equations of the reduced order 

Kalman filter are obtained by projecting the equations of the Kalman Filter upon a basis 

of Empirical Orthogonal Functions (EOFs) of the model from a long free run of the 

model (additional details and bibliographical references can be found in Ballabrera-Poy 

et al. [2001]).  

Preliminary experiments have shown that 30 EOFs provide a reasonable 

compromise between accuracy, overfitting, and computational cost [Hackert et al., 2007]. 

To reduce the pervasive effects of neglecting the complementary of the EOF subspace, 

which underestimates the analysis error covariance (see, for example Cane et al. [1996]), 
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an ensemble technique is used to estimate the analysis error covariance each month. At 

each assimilation cycle, the observations at the middle of the month are assimilated onto 

background states every 5 days. The numerical stability of the scheme is guaranteed by 

adding a constant diagonal matrix, Q (i.e. model forecast error), to the reduced order 

background error covariance which is empirically estimated from the residuals of the 

data-EOF fitting during the same period (see eq. (10) of Verron et al. [1999]).  

An additional QC check to enforce the compatibility between observed and 

forecasted anomalies includes rejecting observed anomalies whose amplitude is larger 

than five standard deviations of the model anomalies at that point. This allows 

assimilating significant climate anomalies while filtering out data that are incompatible 

with the dynamics of the model. Our studies thus far have shown that typically less than 

1% of the data are eliminated by this QC. Observations are projected onto the numerical 

grid. This approach strongly simplifies the forward observational operator, H. Subsurface 

observations are averaged if they fall within the same model grid box.  For the control 

experiments, observational error is assumed to be  3 cm for SL [Busalacchi et al., 1994] 

and  0.3°C for SST.   The error values for the Tz and Sz were optimized by running a 

series of experiments assimilating each variable individually which led to values of 

0.75°C and 0.31 PSU for temperature and salinity, respectively.  For SSS, an 

observational error is chosen to be 0.2 PSU to correspond to the estimated error of 

Aquarius [Lagerloef et al., 2008].  This value is conservative relative to the Version 2.9.1 

Aquarius error estimates of -0.14 and -0.17 psu for the tropical Pacific and Indian 

Oceans, respectively (as reported by us in [Lagerloef et al., 2013]).   
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2.2.3 Atmospheric Models 

 
To investigate the coupled response of the ocean an HCM has been developed 

that couples the OGCM to a statistical atmospheric model (SAM) that estimates wind 

stress (τ) anomalies based on a singular value decomposition (SVD) analysis of the SST- 

τ covariance of a long simulation of the observed SST-forced ECHAM4.5 model ([Zhang 

et al., 2006], [Zhang and Busalacchi, 2008], and [Zhang and Busalacchi, 2009]).  The 

SST anomalies are from the extended SST reconstruction of [Smith et al., 2008]; wind 

stress anomalies are simulated from the Max Planck Institute for Meteorology (MPI) 

Atmospheric GCM (ECHAM4.5; [Roeckner, 1996]).  Wind stress data used to construct 

the τ model are the ensemble mean of a 24 member ECHAM 4.5 simulation for the 

period 1950-1999 with roughly 2.8o resolution and 19 hybrid levels, forced by observed 

SST anomalies.  As demonstrated by [Barnett et al., 1993] and [Syu et al., 1995], the 

seasonality of the atmosphere can have an important effect on the onset and evolution of 

El Niño. Thus, to construct seasonally dependent models for τ, the SVD analyses are 

performed separately for each calendar month, and so consist of 12 different sub-models, 

one for each calendar month. The first five SVD modes provide reasonable amplitudes of 

the wind stress from the model SST anomalies.   

Our previously published coupled model uses the SAM which only provides 

monthly surface wind stress (e.g. [Hackert et al., 2011]).  Unfortunately, this limitation 

does not allow us to assess the impact of high-frequency winds and precipitation 

(intraseasonal to interannual variability) on coupled Indo-Pacific forecasts.  Therefore, a 

more sophisticated atmospheric model is incorporated into our Indo-Pacific coupled 
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ocean model that allows separation of the wind and precipitation impacts of the IO on the 

coupled ENSO system.  This intermediate complexity atmospheric general circulation 

model (AGCM), the International Centre for Theoretical Physics AGCM (nicknamed 

SPEEDY, for “Simplified Parameterizations, primitivE-Equation DYnamics”) [Molteni, 

2003]; [Kucharski et al., 2006] follows our general coupling philosophy since it provides 

quality atmospheric model response yet it is relatively simple enough to be understood 

and efficient enough to allow many experiments to test various theories.  We use 

SPEEDY Version 41 that has global T30 resolution (roughly 3.75o) with 8 standard 

sigma layers (925 – 30 mb) and surface information.  The winds in the tropics have been 

improved by adding cumulus momentum transport (CMT) to the convective 

parameterization code using the technique of [Kim et al., 2008].   This technique 

transports momentum downward within subsidence regions surrounding regions of 

convection.   Adding CMT to the atmospheric model shifts wind and western Pacific 

precipitation anomalies eastward, which are more in line with observations.   In addition, 

the meridional extent of the wind is expanded due to the incorporation of the CMT.  For 

example, [Kim et al., 2008] show that 850 mb westerlies during ENSO expand from 

15oS-0oN without CMT to 15oS-10oN with CMT.   Implementation of CMT has also 

shown to improve intraseasonal precipitation, SST and winds such as those associated 

with e.g. Madden Julian Oscillations [Zhou et al., 2012].   

The winds and precipitation from SPEEDY have similar validation statistics as 

for other atmospheric models and observations.  For example, the mean 925 mb winds of 

SPEEDY over the tropics closely match the European Centre for Medium-Range 

Weather Forecasts reanalysis (ERA - [Gibson et al., 1997]).  For precipitation, all the 
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major features of the observations (CMAP from [Xie and Arkin, 1998]) are reproduced by 

SPEEDY.  However, the SPCZ has less abundant rainfall and relatively more 

precipitation over the tropical IO [Molteni, 2003].  For a full description of latest version 

of SPEEDY see [Kucharski et al., 2013].  The SPEEDY AGCM has been successfully 

coupled with other ocean models for the Pacific (e.g. [Kucharski et al., 2011]), Indian 

([Kucharski et al., 2006]), and Indo-Pacific regions (e.g. [Kroeger and Kucharski, 2011] 

[Bracco et al., 2005]).    Within the tropical Indo-Pacific region, our ocean model SST 

anomaly (SSTA) forces the SPEEDY AGCM.  For the rest of the globe, the observed 

SSTA of HadISST [Rayner et al., 2003] is used (i.e. similar to [Kroeger and Kucharski, 

2011]).   

 

2.2.4 Coupled Models 

 
The ENSO simulation skill of our coupled models are comparable with most  

coupled systems which incorporate sophisticated ocean data assimilation (e.g., [Ji et al., 

1995]; [Chen et al., 2000]).  The overall time scale,  structure, and coherent phase 

relationships among various atmosphere-ocean anomalies are consistent with the 

corresponding observations (e.g., [Zhang and Levitus, 1997]). While more efficient than 

the operational coupled models which use high resolution atmospheric models, the 

coupling of a SAM or SPEEDY allows multiple-sensitivity studies to quantify the impact 

of the ITF, atmospheric bridge, and regional assimilation on ENSO prediction and is 

justified since the atmospheric time scale is much shorter than the ocean’s.  

Our coupled models use the technique of anomaly coupling to couple the ocean 

and atmospheric models.  Figure 2.2 schematically illustrates the SPEEDY coupling  
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technique.  First (a) the initial conditions are formulated using the anomaly of the 

baseline forced ocean experiment (i.e. IC’) added to the climatological mean.  A typical 

example would be the anomaly with respect to the seasonal cycle of the IP_OPEN 

experiment added to the ECMWF climate forced ocean model results.  These initial 

conditions are then used to force the ocean model (OGCM oval - b) for 30 days which 

produces an SST.  The anomaly is formulated with respect to the ECMWF climate 

 

Figure 2.2:  Coupled model schematic.  Schematic describing the SPEEDY coupled 
model.  Ovals and boxes correspond to model and data, respectively.  The light blue and 
light grey shapes correspond to ocean model and SPEEDY model, respectively.  
Superscript ‘ and overbars correspond to anomalies and means.  Ʈ and P are wind stress 
and precipitation, respectively and subscripts x and y stand for zonal and meridional 
components, respectively.   
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experiment (SSTA – c) within the domain of the ocean model (i.e. the tropical Indo-

Pacific) which is then used to force the SPEEDY atmospheric model (SPEEDY oval - d).  

Outside of the tropical Indo-Pacific, the observed HadISST [Rayner et al., 2003] SSTA 

forces the global SPEEDY AGCM.  The atmospheric model is spun up for 1 month and 

the resulting atmospheric model state is used as the initial conditions for the repeat 

SPEEDY experiment using the same SSTA (schematically indicated by double dashed 

arrows - e).  Note that this is a necessary step since the atmosphere takes several weeks to 

spin up from rest.  The SPEEDY model produces zonal and meridional wind stress (τx, 

τy) and precipitation (P).  Anomalies are formulated with respect to the mean seasonal 

cycle of the similarly forced atmospheric model (f).  For the IP_OPEN example, a long 

SPEEDY experiment was completed off-line using IP_OPEN SSTA for forcing for 1993-

2014.  The τx’, τy’, and P’ anomalies are added to the ECMWF seasonal cycle (g) and 

used to force the OGCM for the next 30 days (back to b).  Using this technique, one year 

forecasts are completed for each month for 1993-2014.  The SAM model is simpler since 

the anomaly winds are determined directly by the SSTA values.  The schematic (Figure 

2.2) would have a line directly from the SSTA box to the box designating the forcing for 

the next OCGM step (but without the precipitation).  

Daily wind stress, precipitation, and clouds provided by SPEEDY are important 

for ENSO forcing and these variables allow estimation of moisture flux from the IO to 

the Pacific, which is a key feature of the “atmospheric bridge” aspects of this current 

study.  A disadvantage is that SPEEDY tends to underestimate the zonal winds associated 

with ENSO (e.g. [Kroeger and Kucharski, 2011]’s Figure 9).  The advantages and 

disadvantages of the SAM/SPEEDY atmospheric models are demonstrated in Figure 2.3. 



58 
 

Although the SAM outperforms SPEEDY for the temporal validation (Figure 2.3a) both 

models have significantly better correlation than observation persistence after 4 months 

(not shown).  For the amplitude, SPEEDY (blue) outperforms SAM (red) after 6 months 

(Figure 2.3b) and both outperform observation persistence after 3 months (not shown).     

Because of the advantages/disadvantages for the two different atmospheric models, both 

the SAM HCM along with this more sophisticated, SPEEDY version of the coupled code 

are executed to assess the impact of IO and SSS on ENSO coupled predictability  

depending on the problem being investigated.  Utilizing both the statistical atmospheric 

model and the more complex SPEEDY atmospheric model will provide us an efficient set 

of tools to isolate the modes of the wind and precipitation. 

In order to put our results in the context of operational models, we include the 

Climate Forecast System Reanalysis Reforecast ([Saha et al., 2014]) as a reference 

(Figure 2.3 - black line).  The coupled hindcasts are comprised  of the atmospheric 

 

Figure 2.3:  Validation of SAM and SPEEDY coupled models.  Our Indo-Pacific 
coupled models that assimilate all available satellite (SL, SST) and in situ information 
(SSS, Tz, Sz) for SAM (red) and SPEEDY (blue) are a) correlated and b) RMSD against 
observed NINO3 SST anomaly for Jan. 1993-Mar. 2011. CFSRR coupled model results 
(black) are included to put our HCM results into the context of a more widely known 
coupled model. Individual correlations exceed the 95% significance out to 10.4 (31), 
8.3 (35) and 10 months (34) (effective degrees of freedom) for red, blue and black 
lines, respectively.  Note that our HCM validation statistics are comparable to CFSRR 
system of NCEP and all validate well against observations. 
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assimilation/model with resolution ~38 km (detailed in [Saha et al., 2010]) along with the 

MOM4 ocean model ([Griffies et al., 2004]) with 0.5o resolution within 30oN-30oS and 

the Global Ocean Data Assimilation System (GODAS) ocean assimilation ([Behringer, 

2007]) of all available oceanic in situ data.  The CFSRR model was chosen to 

substantiate our coupled model results since it is a well-known, state of the art, 

operational coupled model (i.e. the reanalysis, reforecast version of CFSv2).   For Figure 

2.3, the SAM results (red) outperform the CFSRR (black) as validated by correlation with 

observed NINO3 SST anomaly.    However, for these long validation runs (i.e. January 

1993 to March 2011), the SPEEDY correlation results (blue) are equivalent with the 

CFSRR forecasts.  For RMSD validation, both the SAM and SPEEDY outperform the 

CFSRR for all lead times.  CFSRR RMSD errors with observed NINO3 SST anomalies 

rise as high as 1.4oC at 10 month lead times whereas SAM never exceed 1.2oC and 

SPEEDY results are only 1oC for the same lead time.  In any case, the point of including 

the CFSRR results is to show that our coupled models validate at least as well as the 

NOAA operational model. 

 

Figure 2.4:   Validation of SAM and SPEEDY for independent period.  Same as 
Figure 2.3 but for January 2000 to March 2011, a period that is independent of 
training period for the SAM model (i.e. 1950-1999).    Individual correlations exceed 
the 95% significance out to 5.5 (19), 2.8 (21) and 4.4 months (20) (effective degrees of 
freedom) for red, blue and black lines, respectively. 
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Since the SAM model uses the period from 1950-1999 for training, the results 

from Figure 2.3a for January 1993 until March 2011 may contain artificial skill.  

Therefore, we include the validation of both SAM and SPEEDY coupled models against 

observations for the independent period, January 2000 to March 2011 in Figure 2.4  Not 

surprisingly, the overall skill is reduced for correlation since this period excludes the 

major ENSO event of 1997-98 and represents a similar degradation in skill as found in 

the IRI suite of operational models for 2002-2011 ([Barnston et al., 2012]).  However, 

both experiments outperform observed persistence after 5 months (not shown) and the 

relative relationship between SAM and SPEEDY remains similar but now the CFSRR 

results are more in line with SAM HCM.  SAM probably outperforms SPEEDY for 

correlation since SAM has fewer degrees of freedom (i.e. only 5 SVD modes) and so 

generates less noise than SPEEDY (a dynamical model) with the same SST’ forcing.  In 

any case, the NINO3 RMS differences for both the SAM and SPEEDY experiments are 

similar and still have lower RMS with observations as compared with the CFSRR model 

results and they both have lower RMS than persistence (after 3 months, not shown).  

As an additional first-order validation of the atmospheric components of the 

coupled models, the atmosphere-only model results for SAM and SPEEDY are correlated 

with observations that had previously been used to force the ocean model.  Both the SAM 

and SPEEDY atmospheric models are forced by ocean model SST results that assimilate 

all available observations (i.e. SL, SST, SSS, Tz, and Sz) for 1993-2014.  For example, 

Figure 2.5a shows the results of the SPEEDY atmosphere results versus ECMWF zonal 

wind.  The correlation is generally high between 20oS-20oN.   On the other hand, highest 

correlation is restricted to between 15oS to 5oN for the SAM results Figure 2.5c and so 
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the ITCZ is poorly reproduced.  Since the SAM only retains 5 modes, only the large-scale 

ENSO wind signal is reproduced.  In any case, both models validate well near the 

equator.  For precipitation (Figure 2.5b), the SPEEDY results are validated against the 

GPCP forcing [Adler et al., 2003].   The eastern Pacific, eastern ITCZ, SPCZ, and 

Indonesian Seas have the highest correlations.  For a more comprehensive validation of 

the SPEEDY atmospheric model versus the European Centre for Medium-Range Weather 

Forecasts reanalysis (ERA -[Gibson et al., 1997] over the period 1981-1990 see [Molteni, 

2003]. 

  

 
 
Figure 2.5:   Validation of SPEEDY and SAM versus observations.  Correlation of 
SPEEDY a) zonal wind stress versus observed ECMWF winds and b) precipitation 
versus GPCP for 1993-2014.  Panel c) same as a) but for SAM zonal wind stress. 
Correlations exceeding r=0.12 are significant at the 95% level for >180 estimated 
degrees of freedom. 
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3 Role of the Indian Ocean Sector – Oceanic Impact on Coupled 
Predictability 

  
 

Even though many operational models typically have relatively high resolution 

for the Indonesian Seas the Indonesian Throughflow (ITF) is not necessarily well 

represented.  For example, the NCEP GODAS (i.e. the ocean model of the CFSv2) has 1o 

x 1/3o resolution [Behringer, 2007]) but represents the ITF as a single channel that flows 

from the Pacific to the IO between Sulawesi and the western tip of Western Papua New 

Guinea, closing the Makassar Strait and with it all the flow through the Banda Sea.   The 

flow of the real ITF is more complicated as shown in Figure 1.1.  In addition, the flow of 

the ITF is poorly observed and thus poorly validated in ocean models ([Susanto and 

Song, 2015]).  Therefore, coupled hindcast experiments are performed with and without 

the ITF in order to test the potential for the oceanic contribution of the Indian Ocean for 

improving coupled ENSO forecasts.   

By artificially closing the ITF, forced ocean and coupled models show the 

important impact that the IO has on the Pacific via the ITF (e.g. [Hirst and Godfrey, 

1993]; [Murtugudde et al., 1998], etc.).   Later work by [Schneider, 1998], [Wajsowicz 

and Schneider, 2001] and [Song et al., 2007] revealed that closing the ITF significantly 

impacts the Indo-Pacific circulation thus effecting ENSO.  By closing the ITF in a 

coupled model, [Santoso et al., 2011] and [Kajtar et al., 2015] suggested an eastward 

shift of the biggest ENSO signal from the NINO3.4 region to the NINO3 region and 

attributed this to changes in the fetch of the Bjerknes coupling.   Contrary to the earlier 

work of [Song et al., 2007], [Santoso et al., 2011] showed that closing the ITF led to 

weaker total variability.  [Yuan et al., 2013] and [Schiller et al., 2010] showed that IO 
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Kelvin waves can penetrate the ITF and the former demonstrated how the IO Kelvin 

wave was significantly correlated with the following season NINO3.4 index.  Thus, 

significant changes in the equatorial Pacific brought about by closing the ITF point 

towards the potential key importance of the IO for ENSO predictions.    Unfortunately, 

all previous studies have focused on the impact of the IO using either forced ocean, 

idealized coupled model experiments or observational statistics.  Therefore, here we 

present experiment pairs that isolate the role that the IO plays in ENSO predictability 

using a realistic hindcast model experiment design and anchoring our results by using 

observed NINO3 SST anomalies for 1993 to 2014.   

3.1 Forced Ocean and Atmospheric Results: IP_OPEN – IP_NOITF 
 
 

Experiment 
Name 

Period Model Geometry Forcing 

IP_OPEN 1993-2014 

Indo-Pacific, 
1ox1/3o stretched, 
34oE-76oW, 30oN-

30oS, realistic 
coastlines, ITF 

open 

Interannual Wind Stress from 
ECMWF, Precip. from a 

combination of GPCP and 
TRMM, and Clouds from 
NCEP reanalysis anomaly 
added to ISCCP seasonal 

cycle  

IP_NOITF 1993-2014 

Indo-Pacific, 
1ox1/3o stretched, 
34oE-76oW, 30oN-

30oS, realistic 
coastlines, ITF 

closed 

Interannual Wind Stress from 
ECMWF, Precip. from a 

combination of GPCP and 
TRMM, and Clouds from 
NCEP reanalysis anomaly 
added to ISCCP seasonal 

cycle 
Table 3.1:  Open and NOITF Experiment description. Table showing the model 
configuration and forcing for the IP_OPEN and IP_NOITF experiments.  The ocean 
model is forced by ECMWF analysis 10m winds [ECMWF, 1994], NCEP Reanalysis 
cloud cover [Kalnay et al., 1996] and satellite derived precipitation estimates , GPCP 
[Adler et al., 2003] combined with TRMM [Kummerow et al., 2000] after October 2014.  
All these experiments are no assimilation. 
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To highlight the impact of the IO oceanic contribution to ENSO forecast skill, 

forced model results with the ITF closed (IP_NOITF) are subtracted from those with the 

ITF open (IP_OPEN). Henceforth, these differences will be used synonymously with the 

phrase “oceanic contribution” or “oceanic process” of the IO.  These two experiments are 

detailed in Table 3.1 and the results of these differences are shown in Figure 3.1 and 

Figure 3.2.  Figure 3.1a shows the differences for currents.  The flow through the ITF is 

emphasized by the red arrows.  To the north of the Makassar Straight, the Mindanao 

current flows southward.  To the south, the surface signature of the New Guinea coastal 

undercurrent along the New Guinea coast joins with the Pacific South Equatorial Current 

(SEC) to originate the flow into the Indonesian Seas.  The ITF flows south in the 

Makassar Strait and exits into the IO via the Timor Passage.  Note that this model 

configuration combines the outflow of Lombok, Ombai and Timor into a single passage 

as required by the coarse model resolution.   Even with this limitation this model 

accurately reproduces the total and anomalous flow of the ITF (e.g. Figure 2.1d).  After 

exiting the Indonesian Seas, the ITF flow merges with the IO South Equatorial Current 

(SEC).  The current differences, are consistent with earlier work (e.g. [Hirst and Godfrey, 

1993]).  Figure 3.1b shows the corresponding SST differences.  The entire Pacific is 

colder with the minimum centered in the upwelling region of the eastern Pacific.  On the 

other hand, the IO is warmer with the maximum located in the outflow region of the ITF 

in the eastern IO at about 15oS.  This can be explained by the fact that the ITF normally 

transports warm, fresh water from the Pacific to the IO.  When the ITF is closed, the 

warm water remains in the Pacific and the sign of the differences are negative in the 

Pacific and positive in the IO. 
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In order to diagnose the oceanic impacts (i.e. the ITF) on the atmosphere (i.e. not 

coupled), two sets of forced atmospheric model experiments are also completed.  In one, 

the SST anomaly for IP_OPEN is used to force the SPEEDY atmosphere for 1993-2014.  

A similar atmospheric model experiment is forced by the IP_NOITF SST anomaly.  Then 

the resulting winds and precipitation are differenced in the same manner as the ocean 

variables (i.e. IP_OPEN-IP_NOITF) over 1993-2014.  Precipitation and wind stress 

results are presented in Figure 3.1c and d, respectively.    For precipitation, largest 

differences correspond to important regions of convergence and divergence and SST 

anomalies.  For example, the rainfall is mostly deficient in the Pacific.  The rainfall is 

Figure 3.1:  Spatial results of IP_OPEN minus IP_NOITF.  Annual mean oceanic 
contribution for 1993-2014 for a) mixed layer depth currents (red arrows highlight 
major features of the ITF), b) SST, c) precipitation, and d) surface wind stress (heavy 
arrows are added to emphasize wind direction).  Note that wind stress and 
precipitation results are generated by forcing two SPEEDY atmospheric experiments 
with the forced ocean model SST anomalies and differencing the one forced by the 
IP_OPEN minus the IP_NOITF results.  Absolute values exceeding 6.3 cm/s, 0.5oC, 
38.6 mm/mon, and 4.9x10-3 N/m2 are significant for the four panels, respectively.   
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especially lacking over the Inter-tropical Convergence Zone (ITCZ) at 5oN, 140oW and in 

the South Pacific Convergence Zone (SPCZ) at 10oS, 170oW due to the damping effect of 

cooler SSTs in the IP_OPEN versus IP_NOITF case.  On the contrary, the eastern IO and 

Indonesian Seas show unusually abundant rainfall due to the enhanced atmospheric 

convection associated with the large SST anomaly near the outflow region of the ITF at 

120oE, 12oS.  The general character of the pattern of the precipitation differences is 

opposite to the errors found in the CFS.  Namely, the CFS errors show too much rainfall 

over the ITCZ, SPCZ and too sparse precipitation for the Maritime Continent with 

respect to observations ([Wang et al., 2010]).   

In the eastern Pacific, east of the coldest SST, winds are weakly diverging away 

from the equator with northwesterlies to the south and southwesterlies to the north of the 

equator (Figure 3.1d).  To the west of the coldest SST (about 140oW), winds converge 

towards the equator with southeasterlies to the south and northeasterlies up to 1x10-2 

N/m2 to the north of the equator.  In the very far western Pacific, northerly winds flow 

across Indonesia.  Over the eastern half of the IO, the northwesterlies converge towards 

the warmest SST anomaly in the IO located near the exit of the ITF at 120oE, 12oS.  To 

the south of there, southerlies converge towards 10oS.  

Figure 3.2e shows the average temperature between the surface and 300 m.  

Negative values predominate over the tropical Pacific consistent with the idea that the 

ITF carries warm water from the Pacific to the IO and IP_OPEN is thus cooler (i.e. 

negative) with respect to IP_NOITF.  For salinity, the fresh water transported by the ITF 

makes the IO fresher with reduced SSS and at the same time mostly the entire tropical 

Pacific is saltier.  Positive and negative maximum differences correspond to the  
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maximum regions of ITF transport in the western Pacific and in the eastern IO, 

respectively.  The open ITF leaves a shallower mixed layer depth (MLD) for the Pacific 

but the impact is mostly felt just north of the equator in the western Pacific where 

differences are as big as -5 m (Figure 3.2g).  In the IO, the MLD is deeper to the south 

and shallower to the north of the ITF exit due to the relative upwelling and downwelling 

associated with the positive/negative curl of ITF jet, respectively.  Similar plots of the 

barrier layer thickness (BLT) (Figure 3.2h) shows shallower BLT for the open ITF over 

most of the western Pacific especially in regions where BLT are actually observed 

between 140oE-180o, 10oS-5oN (see Figure 1.3a).  The IP_NOITF case allows more fresh 

 

Figure 3.2:  Spatial results of IP_OPEN minus IP_NOITF continued.  Same as 
Figure 3.1 for e) average temperature between 0-300 m (representing heat content), f) 
sea surface salinity (SSS), g)mixed layer depth (MLD) using the equivalent density 
criteria of 0.5oC of [Sprintall and Tomczak, 1992], and h) barrier layer thickness 
(smoothed 5 times).    Absolute values exceeding 0.83oC, 0.3 PSU, 3.9m, and 0.85m are 
significant for the four panels, respectively. 
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water to be trapped in the Pacific due to the land bridge and is thus available to form a 

deeper BLT, hence the negative values.   For the IO, the negative values stretching from 

the mouth of the ITF towards the southwest are attributed to the fact that the IP_NOITF 

model produces a spurious BLT in boreal spring that is not present in the observations 

(Figure 1.3c).   

If the sign is flipped, all of the results presented in Figure 3.1a-d and Figure 3.2e-f 

generally match those found in [Song et al., 2007] Figure 1.5a-f.  Note that the sign 

difference can be accounted for by the fact that Figure 1.5 is oriented NOITF-OPEN and 

Figure 3.1and Figure 3.2 are IP_OPEN - IP_NOITF.  Also note that these results in 

Figure 3.1 and Figure 3.2 use real interannual forcing from 1993-2014 whereas Figure 

1.5 uses 200 year simulation of a freely coupled model (i.e. CM2.1).    For both, flow and 

transport of the ITF are clearly evident.  When open, the ITF normally drains warm fresh 

water of the Pacific into the IO, winds are predominantly easterly over the western half of 

the equatorial Pacific and precipitation is deficient over the tropical Pacific.   The IO is 

generally warmer and fresher, northwesterly winds converge at the mouth of the ITF, and 

precipitation is abundant over Indonesia and at 10oS.  The fidelity between the forced 

versus freely coupled model (i.e. for Figure 3.1, Figure 3.2 against Figure 1.5) shows 

consistent results and so reinforces the patterns for the oceanic impact of the ITF.   

To test if the oceanic contribution of the IO impacts ENSO predictability we first 

investigate if the IP_OPEN – IP_NOITF differences have any relationship with observed 

ENSO.  Therefore, the differences between NINO3 SST anomaly values from 1993-2014 

(red line) are compared to the observed anomaly (blue line) in Figure 3.3.     Although the 

scale of the differences, i.e. ~7% of the magnitude of the NINO3 anomalies, are relatively 
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smaller than those of [Santoso et al., 2011] (i.e. 9% for Ekman to 39% for zonal 

advection terms of the Bjerknes coupled stability index) our results should be smaller 

since we are comparing two experiments forced with observed winds and precipitation 

whereas they use a freely coupled model.  In any case, Figure 3.3 shows the high 

correspondence between the impact of the IO oceanic contribution and the observed 

NINO3 highlighting that the ENSO response of the IP_OPEN amplitude is larger than 

IP_NOITF.  In other words, El Niño and La Niña amplitudes are larger for IP_OPEN 

versus IP_NOITF.  Correlation between the time series is r=0.42 significant at the 99% 

level using 58 for the effective degrees of freedom (see Section 1.5 for details on how 

effective degrees of freedom are calculated).   Thus, the IP_OPEN scenario allows for 

more variability of ENSO events for forced ocean model results and this aspect reinforces 

the work of [Santoso et al., 2011].    

Another way to envision the amplitude of IP_OPEN versus IP_NOITF is to show 

the recharge/discharge plots for the two experiments.  [Jin, 1997] hypothesized that prior 

 
Figure 3.3:   NINO3 SST IP_OPEN minus IP_NOITF anomalies versus observed.  
Time series of NINO3 SST for IP_OPEN anomaly minus IP_NOITF anomaly (red) 
versus observed anomaly (blue).  The correlation between the two lines is r=0.42 
which is significant at the 99.9% level with 58 calculated effective degrees of freedom.   
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to El Niño, heat is built up in the western Pacific and then heat is discharged to the east 

and poleward via both Kelvin and Rossby waves during El Niño.   This process is 

conveniently illustrated using the amplitude of the NINO3 SST anomaly for the abscissa 

and average depth of the 20oC isotherm anomaly for the western Pacific (5oS-5oN, 120oE-

180oE) for the ordinate.  This recharge paradigm is best demonstrated by the big El Niño 

of 1997 (Figure 3.4).  Prior to the big event, from 1995 into 1996 (i.e. light green to 

yellow lines); the equatorial western Pacific recharges its heat and increasing the depth of 

the 20oC isotherm.  Then in 1997 (orange), the El Niño occurs with rising NINO3 SST 

anomalies (sliding to the right on this chart).  At the same time the western Pacific heat 

content discharges (dropping down on the chart) and the values for the western Pacific 

heat content proxy (i.e. depth of the 20oC isotherm) drop precipitously.   After that, from 

1998 until 2000 (deep orange to red line) the ocean recharges itself with the NINO3 SST 

anomaly drifting towards La Niña and the depth of the 20oC isotherm climbing above 

zero.  It is reassuring that the general character for the observations match those of the 

model results – for Figure 3.4, Figure 3.5, Figure 3.6 the right panel generally matches 

the left.  For the purposes of this study, it is particularly interesting to note that the 

IP_NOITF experiment tends to underestimate the amplitude of both El Niño and La Niña.  

For example, the 1998 peak (Figure 3.4a) the IP_NOITF (orange dash line) shows 

weaker El Niño amplitude than the IP_OPEN (solid orange).  The amplitude of 

IP_NOITF is weaker for the strong 2010-2012 La Niña as well (Figure 3.6a).   On the 

contrary, for the weaker El Niños of 2002 and 2009 and La Niña of 2007, the 

relationships between the IP_NOITF and IP_OPEN are less conclusive (Figure 3.5a).   
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Figure 3.4:  ENSO Recharge/discharge plots 1993-2000.  These plots represent the 
recharge/discharge of [Jin, 1997] and shows the NINO3 SST anomaly (abscissa) 
versus the depth of the 20oC isotherm (ordinate) for the western Pacific (120oE-180oE, 
5oS-5oN).  For a) each year is represented by a solid (dashed) line for the IP_OPEN 
(IP_NOITF) for 1993-2000.   Dots and crosses and the year mark the beginning of 
each year for IP_OPEN and IP_NOITF, respectively.  Similar calculations are 
compiled for observations (from the optimal interpolation of all available in situ 
temperature) and similar decades are presented in panels b). 

 
Figure 3.5:  ENSO Recharge/discharge plots for 2000-2010.  Same as Figure 3.4 but 
for 2000-2010. 
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This feature for the 2000’s and the change of the phase relationship seen after 2007 in 

Figure 3.3 may be attributed to lower variability and weaker predictability during this 

period as suggested by [Barnston et al., 2012].   However, the relationship between 

IP_NOITF having weaker ENSO amplitude is broadly confirmed with these plots, 

matching the results of and the overall highly significant correlation of r=0.42 between 

the IP_OPEN – IP_NOITF differences and observed NINO3 SST anomaly.  

One would expect that the IP_OPEN would have larger amplitude events given 

that the MLD is shallower for IP_OPEN (Figure 3.2g) and that both the IP_NOITF and 

the IP_OPEN experiments use the exact same forcing (both wind and fresh water flux).  

Identical forcing acting on a shallower MLD should yield higher amplitude large-scale 

oceanic Kelvin and Rossby waves leading to bigger ENSO signal.  Another way to say 

this is that a thinner MLD would generate oceanic waves more efficiently.  In order to 

test this hypothesis and to rule out that the amplitude of the IP_NOITF is damped due to 

changes in model geometry and large-scale ocean wave processes, a wind stress index 

 

Figure 3.6:  ENSO Recharge/discharge plots 2010-2015.  Same as Figure 3.4 but for 
2010-2015. 
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covering the tropical Pacific (5oN-5oS, 165oE-90oW) is compiled using the anomalies of 

ECWMF analysis winds from 1993-2014 (i.e. those used to force both the IP_OPEN and 

IP_NOITF experiments).  In addition, we have converted the model SL anomalies into 

the Kelvin and Rossby components for the IP_OPEN and IP_NOITF model results using 

the technique of [Delcroix et al., 1994].  The Kelvin currents were differenced, IP_OPEN 

– IP_NOITF, and these were converted into an index for the tropical Pacific using the 

largest available land-free area possible (10oN-10oS, 165oE-90oW). Figure 3.7 shows the 

time series of this tropical Pacific Kelvin wave index versus zonal wind anomaly.  The 

correlation of r=0.38 is significant at the 99.5% level and shows that the Kelvin wave 

differences are attributed to the wind dynamics acting upon the different model states (i.e. 

shallower MLD of IP_OPEN).  In other words, the shallower MLD for the IP_OPEN 

generates higher amplitude Kelvin waves and has larger ENSO response even though the 

forcing is the same for IP_OPEN and IP_NOITF. 

 
Figure 3.7:   Kelvin currents versus index of zonal wind stress.  IP_OPEN and 
IP_NOITF SL results are first decomposed into longitude/time Kelvin/Rossby waves 
using the methodology of [Delcroix et al., 1994] and then differenced.  The resulting 
Kelvin zonal current index (165oE-90oW, 10oS-10oN) in red is compared to the mean 
zonal wind stress anomaly index from the ECMWF analysis over the equatorial Pacific 
(165oE-90oW, 5oS-5oN) in blue.  The correlation, r=0.38, is significant at the 99.9% 
level with 70 calculated effective degrees of freedom. 
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3.2 Coupled Model Results:  IP_OPEN – IP_NOITF  
 

Unlike all previous published research, the oceanic impacts of the ITF influence 

on the coupled ENSO response are tested here in realistic hindcast experiment scenarios.  

In order to isolate the impact of the IO on coupled ENSO forecasts, we compare and 

contrast two experiments, one has the ITF open (IP_OPEN) and the other artificially 

closes the ITF (IP_NOITF).   For both experiments, IP_OPEN and IP_NOITF, the 

forced-ocean anomalies are used to initialize 12 month coupled experiments for each 

month from 1993 to 2014.  The coupled results are validated using anomaly correlation 

coefficient and root mean square error (RMS) with observed NINO3 SSTA in Figure 3.8.  

These standard metrics measure the quality of the forecast pattern and the agreement of 

the amplitude of the anomalies, respectively [Jin et al., 2008].  For the SPEEDY coupled 

model, the oceanic impact of IO has higher correlation from month 2 until month 10 with 

the IP_OPEN (red) generally outperforming the IP_NOITF (blue line) correlation results.  

Specifically, the individual validation of the IP_OPEN versus observations remains  

 

 
 
Figure 3.8:  Validation of IP_OPEN and IP_NOITF coupled results.  Validation 
statistics for a) correlation and b) RMS differences between IP_OPEN (red) and 
IP_NOITF (blue) SPEEDY coupled model results.  The experiments are validated with 
respect to the observed NINO3 SST anomaly for 1993-2014.   Individual correlations 
exceed the 95% significance out to 8 (43) and 7 months (41) (effective degrees of 
freedom) for red and blue lines, respectively. 
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significant from 0-8 month forecasts whereas the IP_NOITF experiment only surpasses 

the 95% level of significance out to 7 months.  However, Figure 3.8a shows that the 

differences between the results initialized by the IP_OPEN and IP_NOITF give 

statistically similar results using the Steiger’s Fisher Z test.   For RMSD (Figure 3.8b), 

the story is similar since IP_OPEN (red) and IP_NOITF (blue) nearly overlay one 

another.    Therefore, all that can be said is that both IP_OPEN and IP_NOITF have 

similar validation characteristics. 

Although the correlation and RMSD differences between the coupled model 

results for IP_OPEN and IP_NOITF appear similar when validating against observations, 

it is important to note that the anomaly coupling technique used here specifically 

excludes the biases between the IP_OPEN and IP_NOITF (i.e. the patterns found in 

Figure 3.1 and Figure 3.2 are unaccounted for in the coupled model comparisons).  In 

other words, the anomaly coupling technique uses internally consistent means for 

formulating initial conditions (see Figure 2.2a), SST anomalies (Figure 2.2c), and for 

creating the forcing anomalies (Figure 2.2f).  

Due to the limitation of the anomaly coupling technique correlation and RMS 

statistics versus observed anomalies do not provide any unique insights.  However, as 

pointed out earlier in Section 3.1 we demonstrated that the thinner MLD of the IP_OPEN 

experiment yields stronger Kelvin/Rossby waves leading to enhanced variability in the 

NINO3 region. To represent this variability, the standard deviation of the NINO3 and 

NINO3.4 region SST anomalies are presented in Figure 3.9a and Figure 3.9b, 

respectively.  Both the standard deviation forecast statistics are larger for the IP_OPEN 

(red) versus IP_NOITF (blue).  These results reconfirm those of [Santoso et al., 2011] 
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who showed that the closed scenario has weaker total variability.  Unlike [Santoso et al., 

2011] and [Kajtar et al., 2015] who found that the region of highest variability shifted 

from NINO3 for IP_NOITF to NINO3.4 for IP_OPEN, the region of highest variability 

remains in the NINO3.4 region regardless of whether the ITF is open or closed for our 

experiments.  An additional unique aspect of this current research is that the IP_OPEN 

experiment does a significantly better job of reproducing the real observed variability (as 

high as ~20% improvement).  For both the NINO3 and NINO3.4 regions (Figure 3.9a 

and Figure 3.9b, respectively), the coupled model variability of the IP_OPEN results 

(red) more closely matches observed variability (signified by the dashed line) of 0.90oC 

and 0.86oC, respectively.   

Although our standard anomaly coupling technique leads to inconclusive 

correlation and RMS of contribution of the IO as validated by observations, we can 

estimate the impact of the IP_OPEN versus IP_NOITF bias by manipulating the 

initialization of our coupled experiments.  For example, we can devise an IP_OPEN 

experiment that utilizes the IP_NOITF mean seasonal cycle to formulate the anomalies to 

 
Figure 3.9:  Standard deviation of IP_OPEN and IP_NOITF results. Coupled model 
standard deviation statistics for SST anomaly for a) NINO3 and b) NINO3.4 regions 
for IP_OPEN (red) and IP_NOITF (blue).  The dashed lines correspond to the 
observed values of 0.9oC and 0.86oC for the observed variability from 1993-2014 for 
the two regions, respectively. 
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initialize the coupled experiments instead of mean seasonal cycle of the IP_OPEN 

experiment.  In other words, we subtract the patterns found in Figure 3.1 and Figure 3.2 

from the IP_OPEN initial conditions at step Figure 2.2a of the coupled process. Among 

many other impacts (detailed in Section 3.1) this has the effect of increasing the MLD in 

the Pacific by roughly 2 m with the pattern defined by Figure 3.2g for initialization.   

After adding the patterns from Figure 3.1 and Figure 3.2 to the mean seasonal cycle, the 

IP_OPEN experiment is executed as before (i.e. same steps as for Figure 2.2b-g).   In this 

way we can diagnose the impact of the NOITF bias on coupled experiments. 

As expected, the variability in the NINO3 region is reduced by imposing the 

IP_NOITF mean state due to the deeper MLD.  The variability of the IP_OPEN 

experiment with IP_NOITF initial conditions is significantly reduced as can be seen in 

Figure 3.10a.  For all months after 1 month lead time the IP_NOITF bias experiment has 

reduced variability by around 0.1oC (or ~15% of the total variability).  In addition, the 

NINO3.4 region has similar results.  Namely, the experiment that excludes the 

contribution of the IO bias has significantly lower variability than the standard IP_OPEN 

 
Figure 3.10:  Standard deviation of IP_OPEN with IP_NOITF bias. Standard 
deviation for IP_OPEN (red repeated from Figure 3.9) and IP_OPEN experiment with 
IP_NOITF bias added to initialization of coupled experiments (blue).  The dash line 
corresponds to the observed standard deviation in the NINO3 region of a) 0.9oC and b) 
0.86oC for NINO3 and NINO3.4 regions, respectively. 
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experiment (Figure 3.10b) by around 0.15oC after 1 month lead time.  For both the 

NINO3 and NINO3.4 regions, the experiment that includes the IP_NOITF bias (blue) has 

lower variability than observed values (dashed) for all lead times with respect to the 

IP_OPEN experiment (red in Figure 3.10a and b).   

These results tend to contradict the idea of [Santoso et al., 2011] and [Kajtar et 

al., 2015] who suggested that the change in ENSO variability was due to an eastward 

shift of the zonal extent of the Bjerknes coupling from the NINO3.4 region for IP_OPEN 

to NINO3 for the IP_NOITF case.  However, our experiments indicate that an oceanic 

cause, namely the changes from the shallower for IP_OPEN to deeper MLD for 

IP_NOITF and the more efficient transmission of Kelvin/Rossby waves explains the 

higher variability and the good correspondence with observed variability for the 

IP_OPEN case.       

3.3 Summary of Oceanic Contribution of the Indian Ocean  
 

In this section, the oceanic contribution of the Indian Ocean to ENSO 

predictability has been highlighted by differencing experiments with the ITF open minus 

those with the ITF closed.  This section has shown that oceanic processes are similar in 

character to previous results (e.g. [Song et al., 2007]).  In particular, the flow of the ITF 

currents from the western Pacific through the Indonesian Seas and beyond is readily 

apparent.  The Pacific is generally cooler with minimum SST located just south of the 

eastern Pacific cold tongue while the IO SST is generally warmer with the maximum at 

the exit of the ITF.  SSS is saltier in the Pacific and fresher in the IO with the largest 

positive and negative values in the entrance and exit regions of the ITF, respectively.  



79 
 

The atmosphere responds to these differences by showing equatorial convergence in the 

western and divergence in the eastern half of the Pacific.  The precipitation is deficient in 

the Pacific and especially abundant over Indonesia and south of 5oS in the IO.  The winds 

over the IO are generally northwesterlies between the equator and 10oS.   The MLD and 

BLT are both shallower especially in the western Pacific, consistent with the idea that the 

ITF carries warm fresh water from the Pacific to the IO.   

The ENSO response is larger for IP_OPEN versus IP_NOITF.  Statistically 

significant high positive correlation between the NINO3 SST observations and the 

differences, IP_OPEN – IP_NOITF, reinforce the idea that IP_OPEN has higher 

amplitude for both El Niño and La Niña.  In addition, plots of recharge/discharge show 

that the amplitude of the ENSO signal is larger for the IP_OPEN scenario than the 

IP_NOITF case.  The Kelvin wave differences across the Pacific are highly correlated 

(statistically significant) with an index of the wind showing that the shallower MLD of 

the IP_OPEN is responsible for the higher sensitivity to the wind forcing versus the 

IP_NOITF experiment.   

Next the coupled model response of the oceanic contribution of the IO at 

initialization was assessed.  Although the IP_OPEN has generally higher correlation for 

coupled experiments and the individual correlation values are significant out to 8 and 7 

months for IP_OPEN and IP_NOITF, respectively, results are too similar to make any 

statistically significant definitive statements about which is better.  The similarity of the 

IP_OPEN versus IP_NOITF coupled validation is explained by the limitations of the 

anomaly coupling technique.  SST anomalies are formulated with respect to the similarly-

forced ocean model so the biases between IP_OPEN and IP_NOITF (as seen in Figure 
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3.1 and Figure 3.2) are left unaccounted for within the coupling process.  It is important 

to remember that both the IP_OPEN and IP_NOITF coupled experiments use their own 

set of various means due to the anomaly coupling technique.  However, the IP_OPEN 

experiment resulted in higher amplitude ENSO variability by as much as 20% and 

IP_OPEN better matches the observed variability in the NINO3 and NINO3.4 regions as 

compared to the IP_NOITF coupled experiment.    These results were confirmed by 

modifying the IP_OPEN coupled experiment by adding the IP_NOITF bias to the 

initialization.  These results also show that the IP_OPEN experiment has higher 

variability in the NINO3 and NINO3.4 regions and are more in line with observed 

variability.    

In this Section real hindcast experiments and validation with observations are 

used for the first time to isolate the role of the IO.  For the ocean, experiments with the 

ITF open minus those without show that the flow of the ITF through the Indonesian Seas 

drains the Pacific of warm and fresh water and reduces the MLD within ~7o of the 

equator.  High correlation between the IP_OPEN minus IP_NOITF and the observed 

NINO3 SST anomaly indicate that El Niño/La Niña and recharge/discharge estimates of 

ENSO are amplified by the oceanic contribution of the IO.  Forced experiments show that 

the driving factor for this amplification is the shallower MLD when the ITF is open.  The 

wind forced Kelvin wave signal is amplified for the IP_OPEN scenario versus IP_NOITF 

because similar forcing acts more efficiently on a shallower MLD.  Even though the 

individual forecast correlation values are significant out to 7 months, unfortunately, the 

anomaly coupling technique used here explicitly excludes the biases between IP_OPEN 

and IP_NOITF at initialization so these coupled results are not statistically significant 
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different.  On the other hand, the variability of the coupled experiments for IP_OPEN 

shows a much closer correspondence to observed variability over 1993 to 2014 and the 

highest variability remains in the NINO3.4 rather than the NINO3 region.   Therefore, the 

ocean impact of the IO via the ITF is to modulate the amplitude of the ENSO signal by as 

much as ~20%.  Unlike [Santoso et al., 2011] and [Kajtar et al., 2015] the NINO3.4 

remains the region with maximum variability.  They indicated that the reason for the shift 

was due to changes in the fetch of most intense Bjerknes coupling.  However, our results 

suggest that the reason is due to the oceanic link.  In particular, the impact of the 

shallower MLD for the IP_OPEN case allows Kelvin waves to be effectively amplified.  
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4 Role of the Indian Ocean Sector – Impact of Atmospheric Coupling  
 

Another way to try to extend our understanding of ENSO is to separate out the 

impact of the IO atmosphere.  In previous work, [Wu and Kirtman, 2004] (see e.g. Figure 

1.6d) and [Annamalai et al., 2005] proposed that cold IO sea surface temperature 

anomalies (SST’) could generate an atmospheric Kelvin wave that would manifest as 

equatorial westerlies over the western Pacific which in turn could impact the thermocline 

in the eastern Pacific via large-scale oceanic Kelvin wave processes (e.g. [Kessler et al., 

1995]) which would then enhance an ongoing El Niño.  In addition, [Annamalai et al., 

2010] attributed Pacific westerlies to cold SST’ in the Indonesian Seas.  However, all 

previous approaches idealized SST’ forcing (either the 1st EOF mode of SST, symmetric 

basin-scale or IODZM SST’ patterns, or differencing El Niño years with and without 

strong IODZM from coupled models) and then diagnosed the impact of these SST 

anomalies with linear atmospheric models.  These techniques only go as far as producing 

an idealized wind anomaly in the Pacific and the authors are limited to conjecture on the 

impact on ENSO predictability due to the IO SST’ forcing.  In any case, all these studies 

fall short of actually addressing the impact of IO atmospheric teleconnections on real 

coupled ENSO forecasts as validated by observations.   

4.1 Forced Ocean and Atmospheric Model Results  
 

In this section we will examine the forced atmospheric response between the IO 

and the Pacific using a similar methodology as [Wu and Kirtman, 2004] but with the full 

(i.e. not idealized) ocean forcing and an intermediate complexity, non-linear, atmospheric 

model.  These SPEEDY atmosphere-only experiments are initiated using different SST’ 
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for the IO basin to isolate the ocean forcing impacts via the atmosphere on the coupled 

Indo-Pacific system.  In this work, the Pacific (abbreviated PAC) is defined as 30oN-

30oS, 130oE-70oW and the Indian Ocean (IO) is defined as 30oN-30oS, 30oE-129oE.  

Outside the tropical Indo-Pacific region, the interannual SST’ from the Hadley Centre 

(HadISST, [Rayner et al., 2003]) is used to force the global SPEEDY model and 

climatological values are used for other atmospheric model boundary conditions such as 

surface albedo, climatological SST, sea ice, snow depth, vegetation, heat flux parameters, 

and soil moisture (matching those described in [Kucharski et al., 2013]).  Within the 

Indo-Pacific region, experiments were initiated that are designed to isolate the impact of 

the IO region surface forcing on the atmosphere. 

Experiment Name Period Model Geometry Indo-Pacific Forcing 

INT_PAC, INT_IO 1993-
2014 Global/Indo-Pacific Interannual SST’ forcing 

for Pacific and IO 

INT_PAC, CLIM_IO 1993-
2014 Global/Indo-Pacific 

Interannual SST’ forcing 
for Pacific, climatological 
seasonal cycle SST for IO 

Table 4.1:  Experiment description for impact of interannual IO SST forcing. Table 
defining the ocean forcing for the various SPEEDY experiments.   The far left column 
describes the experiments, “INT” and “CLIM” stand for interannual and climatological 
forcing and “PAC” and “IO” stand for Pacific (30oN-30oS, 130oE-70oW) and Indian 
Oceans (30oN-30oS, 30oE-129oE), respectively.  The far right column describes the SST 
anomaly forcing (SST’) for the Indo-Pacific region.     In order to isolate the impact of 
the IO, differences between INT_PAC, INT_IO – INT_PAC, CLIM_IO are presented.  
Note that SST’ are formulated with respect to the 1983-2014 mean seasonal cycle using 
[Reynolds et al., 2002] OI SST. 

 
  Table 4.1 shows the experiments used in this study.  The experiments either use 

interannual (i.e. INT) SST’ forcing or climatology seasonal cycle (CLIM) SST separated 

by basin, PAC and IO.   For example, forcing SPEEDY using interannual SST’ for the 

Pacific and IO is abbreviated as INT_PAC, INT_IO.   Following the similar methodology 

of e.g. [Wu and Kirtman, 2004], we subtract the results from these different experiments 
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in order to isolate the impact of the IO sector ocean forcing.  Thus, subtracting INT_PAC, 

CLIM_IO results from INT_PAC, INT_IO will isolate the impact of the IO SST’ via the 

atmospheric teleconnections to the Pacific.   We will use “atmospheric teleconnection” 

“atmospheric impact” or “atmospheric bridge” interchangeably throughout the following 

text for this impact.   

The results of the SPEEDY atmospheric model differences are designed to isolate 

the impact of the IO and are presented in Figure 4.1a-f for zonal, meridional wind stress, 

precipitation, curl and divergence of the wind stress, respectively.  By differencing 

experiments with full coupling in the IO minus those with decoupled IO, the impact of 

the variations in the IO summer monsoon is readily apparent for both precipitation and 

wind stress.  For precipitation (Figure 4.1c), positive anomalies can be seen stretching 

from the equator to 10oN in the eastern Arabian Sea (AS), at 7oN to 12oN in the Bay of 

Bengal (BOB), and 10oN to 20oN in the South China Sea (SCS).   Abundant rainfall is 

consistent with deceleration (i.e. convergence) of the monsoon flow starting south of the 

equator as southeasterlies, recurving to southerlies near the equator and decelerating as 

southwesterlies in the AS, BOB, and SCS (Figure 4.1d and f).  These southwesterlies 

converge into northeasterlies found north of 10oN in the BOB and SCS.  In the Southern 

Hemisphere, between 10oS and the equator, negative precipitation anomalies generally 

predominate west of 95oE.  Again these precipitation patterns are consistent with the 

general divergence of the winds in these regions as they feed into the northward monsoon 

flow.  In addition, positive precipitation is found over the southern Indonesian islands 

between 95oE and 130oE stretching between 12oS to 5oS.  This feature is due to the 

onshore convergence of the westerlies winds found west of 95oE and is consistent with  
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anomalies that are associated with the transition of the northwest to summer monsoons 

(e.g. in February).  In the southwest IO between 25oS-15oS and west of 80oE, a band of 

positive precipitation is evident just to the east of Madagascar and is the result of 

southeasterlies to the south converging with northwesterlies to the north (Figure 4.1f).  

 
Figure 4.1:  Impact of interannual IO SST forcing.  Differences between two sets of 
SPEEDY experiments for a) zonal, b) meridional wind stress, c) precipitation, d) vector 
representation of a) and b), e)curl and f) divergence of the wind stress.  Differences are 
full SST anomaly forcing over the Indo-Pacific region (i.e. INT_PAC, INT_IO) minus 
the experiment that uses climatological seasonal cycle forcing over the IO (INT_PAC, 
CLIM_IO).  Letters “U” and “D” represent regions of upwelling and downwelling 
favorable winds and absolute values greater than 3.3x10-3 N/m2, 2.7x10-3 N/m2, 13.2 
mm/mon, 0.53x10-9 N/m3, 0.35x10-9 N/m3 are significant at the 95% level for a), b) c), 
e), and f), respectively.   
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Warm SST leads to atmospheric advection, enhanced inflow, convergence and abundant 

atmospheric convection and precipitation.  The patterns in the IO are consistent with the 

anomalies of the monsoon wind and precipitation patterns (i.e. those patterns associated 

with interannual minus climatological seasonal cycle SST forcing in the IO).  These 

patterns from the IO atmospheric teleconnection in the IO are somewhat similar to the 

validation of the CFSR model.  For example, CFSR is deficient by about 30 mm/mon 

with respect to the observed precipitation across the entire IO within a few degrees of the 

equator ([Wang et al., 2010]) and CFSR is too rainy over southern India and Southeast 

Asia by about 15 mm/mon.       

In the Pacific, Figure 4.1c shows generally abundant precipitation differences off 

the equator at 5oN, 15oS centred near 160oW.   In addition, positive anomalies are seen in 

the upwelling region of the eastern equatorial Pacific east of 130oW and in the South 

Pacific Convergence Zone (SPCZ) at 10oS, 160oE.  To the north of 10oN and south of 

20oS, negative precipitation generally predominates.   As stated before, the CFSR is too 

rainy over the Pacific ITCZ and SPCZ and dry over the Maritime continent.     

In the Pacific strong easterlies can be seen between equator and 20oN and south of 

15oS across the entire basin (Figure 4.1a).  North of 20oN, strong westerlies prevail.  

Between 10oS and the equator, wind differences are generally very weak westerly.  The 

meridional winds (Figure 4.1b) converge to roughly 5oS with northerlies to the north and 

southerlies to south especially east of the dateline.  Along 20oN winds are generally 

divergent for the meridional wind plot.  The relatively weak winds near the equator 

match those of [Annamalai et al., 2005] who used a simple linear atmospheric model (i.e. 

the moist linear baroclinic model – LBM of [Watanabe and Jin, 2003]) to show that the 
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atmospheric Kelvin wave of the western dipole of the IODZM cancelled that of the 

eastern dipole (see for example their Figures 8b, 10d).  However, our results show the 

importance of not only the near-equatorial winds but also the off-equatorial zonal and 

meridional winds for the diagnosis of the IO SST’ teleconnections to Pacific ENSO.   

The off-equatorial easterlies represented in Figure 4.1a are a prominent feature 

but are lacking in previous work (e.g. Figure 1.6d and Figure 1.8b).  There are several 

reasons why the simple atmospheric models that were used to highlight the IO 

atmospheric teleconnections to the Pacific (i.e. [Wu and Kirtman, 2004] and [Annamalai 

et al., 2010]) might lack the off-equatorial easterlies like the SPEEDY results shown 

here.  For the previous results, the SST field in the IO is idealized in some way or 

another.  Either the 1st EOF of the coupled model results or the SST differences with and 

without IODZM for El Niño is utilized to simplify the SST forcing.  In addition, these 

models have been linearized about different mean states for specific seasons (JJAS and 

MJ, respectively) so the seasonal cycle remaining in SPEEDY may play a role in forming 

the off-equatorial easterlies.  When we limit the SST’ forcing in the IO to just the 1st EOF 

(not shown but a similar pattern as e.g. Figure 1.6a for the IO) for the forced SPEEDY 

AGCM, the westerly signal near the equator is enhanced (i.e. the atmospheric Kelvin 

wave found in both previous papers) but the easterlies off the equator remain.    

The lack of a strong signal off the equator for the LBM results of the previous 

authors is surprising considering the results of [Watanabe and Jin, 2003].  They used a 

similar model (i.e. LBM) as previous authors and force it with El Niño minus La Niña 

observed SST’ limited to the IO region.  Their Figure 8c indicates that a basin-scale 

cooling in the IO (their M3 region) results in a positive precipitation response symmetric 
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within 15o of the equator that is centered at 140oE.  West of the dateline, the 850 mb 

streamfunction response to this heating shows nearly collocated cyclonic flow and 

easterlies between 10oN-35oN, westerlies for 5oN-10oS, and easterlies between 15oS-30oS 

west of the dateline, which are broadly similar to our results.   On the other hand, our 

precipitation results have this maximum centered to the east, at roughly 160oW (Figure 

4.1c), so this displacement of the precipitation heating might explain the elongated off-

equatorial easterlies found in the SPEEDY results (Figure 4.1a).   

Another potential difference between previous work and the current wind results 

is the amplitude and location of the precipitation anomalies in the Pacific.   For example, 

[Annamalai et al., 2010] (Figure 1.8c) shows the strong positive precipitation anomalies 

centered at 10oS and 5oN centered at 180o, roughly similar to our results.  However for 

these previous results there is also a strong negative anomaly with similar zonal extent 

and amplitude to the west, centered at 150oE that may act to offset any off-equatorial 

signal in the winds.   Our precipitation results (Figure 4.1c) show that there are no such 

offsetting precipitation anomalies to the west of the main positive values located between 

160oE to 160oW centered at 10oS and 5oN.  Therefore, off-equatorial easterlies are not 

opposed by westerlies for the SPEEDY results. 

The last and most likely potential reason for off-equatorial easterlies may be the 

convective scheme within the SPEEDY results.  [Kim et al., 2008] show that 

implementation of CMT leads to enhanced off-equatorial precipitation (i.e. roughly 5o-

15o off the equator) and decreased precipitation between 5oS-5oN.  The wind response to 

implementation of CMT is increased 850 mb westerlies between 10oS-10oN and also 

easterlies poleward of the enhanced precipitation.  However, these results are only valid 
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west of 150oW for the December - February climatological forcing used for the [Kim et 

al., 2008] example.  A fundamental concept of CMT is that upper atmosphere momentum 

is transported to the surface via downdrafts around convection.  In our example, general 

enhanced precipitation (Figure 4.1c) between 15oS-5oN drags westerly momentum from 

upper branch of the Walker circulation to the surface (Figure 4.1a).  At the same time, 

weaker precipitation for the coupled IO with respect to the decoupled IO does the 

opposite leaving enhanced easterlies between 5oN-20oN and south of 15oS.  Thus, 

implementation of CMT within SPEEDY, but not within any of the linear model results, 

may also contribute to the off-equatorial easterlies found in the SPEEDY results.  

Although there are multiple potential reasons for differences between the nonlinear LBM 

and SPEEDY atmospheric results, exploring differences further is beyond the scope of 

the current dissertation, and we proceed analyzing the (presumably more accurate) 

AGCM from SPEEDY.    

The combined impact of the zonal and meridional winds in the Pacific on the 

ocean can be conveniently summarized by diagnosing the differences of the SPEEDY 

experiments using curl and divergence of the wind stress.  On the equator, surface 

convergence of the wind leads to convergence of the surface currents, downwelling in the 

ocean, a deepening of the thermocline, and an increase in sea level values.  The 

divergence of the atmospheric teleconnections is presented in Figure 4.1f and this shows 

pervasive downwelling all along the entire equator.   Off the equator, the curl can be used 

to estimate the sense of Ekman pumping velocity as a measure of upwelling or 

downwelling.  Figure 4.1e shows that upwelling favorable wind (i.e. positive in the 

Northern Hemisphere and negative in the Southern Hemisphere) is predominant between 
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15oS to 10oN in the Pacific.  However, the curl just to the south of the equator between 

160oE-140oW is positive indicating a narrow band of downwelling favorable curl.  North 

of ~10oN and in the southeast Pacific (off Australia) downwelling curl is also prevalent.     

To summarize, atmospheric model experiments were differenced to isolate the 

impact of IO SST’ forcing on the tropical Indo-Pacific atmosphere.  These differences 

highlighted the strong interannual signature of variations in the monsoon that is evident 

in both the precipitation and wind stress difference plots in the IO.  In the Pacific, strong 

easterlies prevail south of 15oS and between the equator to 20oN.  Also differences show 

weak westerlies near the equator between 10oS and the equator.  For the meridional 

component, winds converge towards 5oS especially over the eastern half of the basin with 

abundant precipitation in the eastern Pacific cold tongue region near the equator.  In 

addition, differences show strong positive precipitation anomalies in the central Pacific.  

Convergence along the equator indicates that there is pervasive downwelling favourable 

conditions present at initialization of the coupled system along the equator.  However, off 

the equator between 15oS-10oN the prevailing curl indicates that IO SST’ is generally 

forcing upwelling in this region.  As [Annamalai et al., 2005] noted, the weak winds 

within the waveguide may allow nascent El Niño/La Niña events to grow unencumbered.  

Unfortunately, all previous studies (i.e. [Wu and Kirtman, 2004], [Annamalai et al., 

2005], and [Annamalai et al., 2010], etc.) used idealized SST’ patterns and simplified 

linear atmospheric models to show impacts of the IO on the wind field without assessing 

observed ENSO predictability.  On the contrary, in the next subsection we use a full 

intermediate complexity AGCM (i.e. SPEEDY) and real interannual forcing to diagnose 
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the development of the mean forecast forced by atmospheric teleconnection of the IO to 

the Pacific ENSO.   

In a similar vein as previous work, there are weak westerlies near the equator 

(10oS-0oN) across the entire Pacific.  However, our diagnosis suggests that the 

atmospheric response is more complicated than previously thought and a previously 

unaccounted-for significant signal corresponds to strong easterlies south of 15oS and 

between 0oN to 20oN.  The simplified linear atmospheric models used by previous studies 

lack these easterlies presumably due to the simplification of the full IO SST forcing 

(using either EOF patterns or seasonal phase locking), negative precipitation anomalies 

over the far western Pacific in the linear model that may serve to offset the winds from 

the linear but not the SPEEDY results, or the impact of implementation of CMT within 

SPEEDY.  Since the SPEEDY model is in good agreement with observations and 

operational reanalyses ([Molteni, 2003]) and improved further using the CMT of [Kim et 

al., 2008] and SPEEDY does not suffer from the potential shortcomings of the linear 

model results documented above, we proceed to analyze the impact of the IO SST’ 

forcing on real ENSO prediction via the atmospheric bridge using the coupled model 

incorporating the SPEEDY nonlinear AGCM.     

4.2 Coupled Model Results 
 

A series of coupled experiments designed to isolate the full impact of the 

interannual IO SST’ forcing is executed.  Operationally the same initial conditions are 

used, i.e. the ECMWF-forced experiment, to initialize all coupled experiments since the 

goal is to completely eliminate any potential impacts caused by different initialization.  

However, within the coupling procedure (at step d) in Figure 2.2) we replace the regional 
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SST anomaly with zeros effectively substituting the interannual SST forcing with 

climatological seasonal cycle values.  Following the same nomenclature as Figure 4.1, a 

series of two 12 month coupled experiments were completed for each month from 1993-

2014 (for each experiment a total of 264 12 months runs were completed).  The two 

experiments are 1) INT_PAC, INT_IO (this is identical to the IP_OPEN coupled 

experiment described earlier and has interannual SST anomaly forcing for the Pacific as 

well as for the IO) and 2) interannual Pacific, climatological IO (INT_PAC, CLIM_IO). 

Just like the atmospheric experiments earlier in this section, the experiments with similar 

Pacific forcing are compared, e.g. INT_PAC, INT_IO versus INT_PAC, CLIM_IO.  The 

validation of these two experiments versus observed NINO3 SST’ over all 12 month lead 

times, 1993-2014, can be found in Figure 4.2.  Both experiments individually exceed the 

95% significance versus observations from the beginning of the experiment out to 5.5 

months.  After 3 month lead times, the correlation of the full coupling begins to 

outperform the INT_PAC, CLIM_IO coupled experiment.  Correlation differences climb 

to r=0.16 by 7 month lead times.  At this time the Steiger Z Test ([Steiger, 1980]) shows 

that the differences are significant (thick dashed line on top x axis in Figure 4.2a).   After 

that, the differences drop to about r=0.1 out to 10 month lead times when the differences 

are no longer significant.  The important result of this plot is that the interannual forcing 

of the IO significantly improves coupled forecasts for ENSO.   For the RMS differences, 

Figure 4.2b provides a similar story.  Over most of the forecast period especially between 

2 to 9 month lead times, interannual SST forcing in the IO improves (reduces) the RMS 

differences as measured by NINO3 SST’ observations.   Therefore, including the impacts  
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of the IO atmospheric teleconnection serves to improve the coupled predictability as 

validated with real observations over 1993 to 2014. 

The next step is to examine why the interannual SST forcing of the IO improves 

the coupled forecasts.  Figure 4.3 shows the mean and standard deviation of the NINO3 

SST’ of all the 12 month forecasts from 1993-2014.  The mean plot (Figure 4.3a) shows 

that the experiment with interannual IO forcing has higher mean values (i.e. relative 

warming signal in the NINO3 region) after 3 months.  On the other hand, the INT_PAC, 

INT_IO and INT_PAC, CLIM_IO standard deviation lines in Figure 4.3b practically 

overlay one another.  Therefore, we conclude that the interannual signal in the IO serves 

to warm the mean state in the eastern Pacific after 3 months rather than impact the 

variability.    

In order to further diagnose the source of the warming after 3 months, the mean 

forecast difference, INT_PAC, INT_IO minus INT_PAC, CLIM_IO, is presented for all 

 
Figure 4.2:  Impact of IO interannual forcing on coupled NINO3 SST results.  
Validation statistics for a) correlation and b) RMS differences between coupled 
experiments with full atmospheric coupling (i.e. INT_PAC, INT_IO which is the same 
as IP_OPEN SPEEDY in Figure 3.8) in red and interannual coupling in the Pacific 
and climatological forcing in the IO (i.e. INT_PAC, CLIM_IO) in blue. The coupled 
experiments are validated against observed NINO3 SST anomaly for 1993 to 2014.   
Individual correlations exceed the 95% significance out to 8 (43) and 5.8 months (41) 
(effective degrees of freedom) for red and blue lines, respectively.  The thick black line 
on the top x-axis shows where the red line is significantly larger than the blue line 
using the Steiger-Z test.   
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12 months of lead times.  Longitude versus time plots track the evolution over the 

average forecast in Figure 4.4.  Early in the average forecast difference, prior to month 3, 

easterly winds along the equator between 140oE-160oE and between 180o-140oW (Figure 

4.4c) set off upwelling Kelvin waves (Figure 4.5a), cooling SST’ (Figure 4.4a), and 

inducing westward flow across the entire Pacific (Figure 4.4d).  This is consistent with 

the general upwelling favorable curl in the initial conditions (i.e. Figure 4.1e) between 

15oS-10oN.  After this slight upwelling and cooling in the central Pacific associated with 

equatorial easterlies is spent, the SST in the NINO3 region begins to warm after 3 month 

lead times (Figure 4.4a).    In the east, westerlies centered at approximately 130oW 

generate a downwelling Kelvin wave that arrives at the eastern boundary at month 4 

(Figure 4.5a).  At this time the NINO3 region begins to warm (Figure 4.4a).  In the west, 

westerlies on the equator west of 140oE and near the dateline act in the equatorial Pacific 

setting off a second downwelling Kelvin wave (identified by positive sea level anomaly 

and eastward flow - Figure 4.4b, d and Figure 4.5a) that starts in month 4 that traverses 

the Pacific and arrives at the eastern boundary by month 6.  The cumulative effects of the 

downwelling Kelvin waves after month 5 are to continue to warm the NINO3 region. 

 
Figure 4.3:  Variability of NINO3 SST for impact of interannual IO SST forcing.  
Plots showing the NINO3 SST a) mean forecast and b) variability for INT_PAC, 
INT_IO (red) and INT_PAC, CLIM_IO (blue) for all forecasts from 1993-2014.  
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For month 6 through 8, warmest SST’ is building in the central Pacific between 160oE 

and 140oW.  Westerlies to the west and easterlies to the east converge into this warm 

region (Figure 4.4c) near the dateline.  A weak upwelling Kelvin wave (Figure 4.5a 

dashed line) is initiated that is associated with these easterlies east of the dateline.  At this 

time, the prevailing eastward flow is interrupted and westward currents are found in the 

eastern Pacific between months 6-8 (Figure 4.4d).  The SST’ in the NINO3 region briefly 

cools (Figure 4.4a) in month 7.  At this same time (forecast months 6-8), westerlies 

prevail from the western boundary all the way to the dateline.  The next downwelling 

Kelvin wave is initiated in the west and arrives at the eastern boundary roughly at 

forecast month 9.  As it enters the NINO3 region this downwelling Kelvin wave warms 

 
Figure 4.4:  Hovmöller plots of impact of interannual IO SST forcing. Plots showing 
the mean temporal evolution of the impact of IO atmospheric coupling using longitude 
versus lead time (in months) averaged between 2oN and 2oS for a) SST, b) SL, c) zonal 
wind stress, and d) zonal currents.  The mean is taken for the average forecast 
differences, INT_PAC, INT_IO minus INT_PAC, CLIM_IO, over all months from 1993 
to 2014. 
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the SST’.  The warmest SST’ fills in to the west and by month 10 some of the warmest 

SST’ is located just east of the dateline.  Bjerknes coupling becomes entrenched and 

westerlies to the west of the SST’ maximum converge with easterlies to the east (Figure 

4.4c).   

Careful examination of the equatorial signal and Kelvin/Rossby wave 

decomposition of the ocean waves helps to explain the timing and sign of the differences 

in the mean state in Figure 4.3a.  After 3 month forecasts, downwelling Kelvin waves that 

 
Figure 4.5:  Kelvin/Rossby wave decomposition of interannual IO SST forcing. 
Longitude versus time distribution of the equatorial (a) Kelvin and (b) the first 
meridional mode of equatorial Rossby waves through their signature in zonal surface 
current deduced from the average forecast SL differences, (INT_PAC, INT_IO) – 
(INT_PAC, CLIM_IO). In order to follow possible wave reflections on the western 
(WB) and eastern (EB) boundaries, the Rossby panel (b) is inverted and the Kelvin 
wave pattern is repeated (c). The color scale for the Rossby panel is also inverted since 
reflection on meridional boundaries results in zonal currents of opposite sign. Solid 
lines (downwelling) and dashed lines (upwelling) represent theoretical wave speeds for 
Kelvin (2.5m/s) and Rossby waves (-0.8m/s or ~5months to cross this Pacific basin at 
5oN) on each plot. 
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are forced by westerlies in the western Pacific, start to warm the eastern Pacific.  After 7 

month lead times, the Bjerknes feedback mechanism begins to lock in leading to 

enhanced westerlies over the western Pacific (Figure 4.4c) and enhanced air-sea 

coupling.  The atmospheric impact of including the interannual forcing in the IO is to 

impart a large-scale downwelling favorable signal in the Pacific, increasing the warming 

in the NINO3 region after the 3 months.  By 7 month lead times, the El Niño signal is 

enhanced/reinforced due to Bjerknes coupling. 

To a large part, the previous discussion reinforces the conjecture of e.g. 

[Annamalai et al., 2010] who suggested that the impact of the IO would be to enhance the 

westerlies along the equator and amplify an ongoing El Niño.  However, examination of 

the various fields besides equatorial Hovmöller plots suggests that the initialization and 

growth of the warming in the NINO3 region is influenced by off-equatorial factors and 

by not only zonal but also meridional wind stress.   Therefore, the discussion will now 

focus on the Pacific basin using plots of the mean forecast for 3, 5, 7, and 10 month lead 

times for SST’, sea level anomaly, curl and divergence differences for INT_PAC, 

INT_IO minus INT_PAC, CLIM_IO results (Figure 4.6 to Figure 4.9).  

On the equator, Ekman pumping velocity is undefined (since the Coriolis 

parameter is in the denominator).  However, near the equator the wind stress divergence 

can be diagnosed to infer regions of upwelling or downwelling.  By month 3 of the mean 

forecast, divergence corresponds to upwelling between 140oE-150oW on the equator and 

convergence is found between 140oW-110oW (Figure 4.6d).  Off the equator, 

downwelling favorable curl (i.e. curl <0 in the Northern Hemisphere and > 0 in the 

Southern Hemisphere) can be seen west of 140oW generally within 10o of the equator 
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 (Figure 4.6c).  West of 160oW in the far western Pacific downwelling favorable curl off 

the equator corresponds to positive sea level anomalies off New Guinea (Figure 4.6b).  

This feature is important since it initiates the transition from the upwelling prior to month 

3 across the basin to overall downwelling after that time.  In other words, the off-

equatorial curl initializes a downwelling Rossby wave and positive sea level anomaly in 

the far western Pacific that soon reflects as a downwelling Kelvin wave that begins the 

eventual transition to warm SST’ in the NINO3 region by month 7.   This is an instance 

where the off-equatorial signal (i.e. a downwelling Rossby wave) contributes to 

converting upwelling to downwelling along the equator and so features prominently in 

 
Figure 4.6:  Average 3 month forecast INT_PAC, INT_IO-INT_PAC, CLIM_IO.  
Average forecast values for month 3 for a) SST, b) sea level, c) curl of the wind stress 
(color) and wind stress (vector), and d) divergence of the wind stress (color) and wind 
stress (vector).  The scale of the vector plot is indicated in the bottom left of the panel.  
For the reader’s convenience, regions of upwelling and downwelling are marked by 
letters U and D, respectively. 
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ENSO predictability.   Unfortunately, this downwelling in the west is not well 

represented by the Kelvin/Rossby decomposition plot (Figure 4.5) since it lies west of 

160oE which is the western extent of the land-free symmetric box that is required by this 

decomposition analysis.  However, the subsequent downwelling Kelvin wave (spawned 

from the reflected Rossby wave) in the far west starting in month 4 is well diagnosed.   

To the east, a pair of upwelling-favorable (i.e. negative in the Northern 

Hemisphere positive in the Southern Hemisphere) curl patches are located within 10o of 

the equator between 140oW-110oW (Figure 4.6c).    This feature corresponds with a pair 

of negative sea level anomalies centered at 5oN and 12oS at 130oW and is identified as an 

upwelling Rossby wave in the Kelvin/Rossby diagnosis in Figure 4.5b.  East of 160oW, 

an upwelling Rossby wave at 140oW acts to shoal the thermocline at 5oN and 10oS 

reshaping the meridional gradient to help focus the downwelling Kelvin wave train along 

the equator coming later in the average forecast.    

So to summarize, downwelling Rossby waves forced by wind stress curl off the 

equator in the far western Pacific reflect to downwelling Kelvin waves eventually 

transitioning the NINO3 region to warming.  The upwelling Rossby wave at 140oW at 

month 3 shapes the meridional gradient to focus intensification on the equator.  

By month 5 the downwelling Rossby wave hitting the western boundary in month 

3 has reflected into a downwelling Kelvin wave and this wave has propagated eastward 

across the Pacific as far as ~140oW (Figure 4.7b and Figure 4.5a).   The effects of this 

downwelling Kelvin wave are demonstrated by positive sea level and SST anomaly 

throughout the waveguide (+/- 2o) across the entire Pacific (Figure 4.7a).  The average 

negative values, respectively in Figure 4.7c) and these upwelling features are echoed in  
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forecast upwelling curl signal is still present at 130oW, 5oN and 12oS (positive and the 

negative sea level at 5oN and 10oS at 145oW.  The NINO3 region is warming and SST’ is 

largest at about 120oW on the equator.  It is also interesting to note that the warmest SST’ 

is just south of the equator whereas the sea level anomaly maximum is centered on the 

equator.  Convergence found on the equator and positive curl and downwelling just to the 

south (5oS-0oS, 140oW-110oW) coincide with maximum SST’.   Going from 5oN to 12oS 

along 130oW winds are starting northerly recurving to northwesterlies just south of the 

equator.  West of the dateline and south of 5oS, pervasive positive curl (i.e. downwelling 

favorable) is collocated with positive sea level anomaly against New Guinea and 

Australia coasts.  To the north of the equator, positive curl and upwelling are found with 

negative sea level west of 150oE off the Philippines.   Thus the southeasterlies to the 

south recurving to southwesterlies north of the equator in the far western Pacific act to 

 
Figure 4.7:  Average 5 month forecast INT_PAC, INT_IO-INT_PAC, CLIM_IO.  
Same as previous but for 5 month average forecasts. 
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deepen and shoal sea level, respectively.   So to reiterate, not only are the equatorial 

signals important for the diagnosing the impact of the IO on ENSO, but the off-equatorial 

impacts such as oceanic Rossby wave formation and propagation are also important.  

By month 7 the second Kelvin wave has reflected at the eastern boundary as a 

downwelling Rossby wave as evident by positive sea level at 10oN, 5oS at 120oW (Figure 

4.8b and Figure 4.5b).  Another positive sea level and SST’ maximum is centered on the 

equator at ~170oW (Figure 4.8a, b).  Equatorial westerlies, best demonstrated by the 

westerly wind burst in Figure 4.4c that extends from the western boundary to 160oE (note 

the 2x10-3 N/m2 contour), force this downwelling Kelvin wave.   To the north, 

downwelling curl corresponds to positive sea level and to the south negative sea level is 

collocated with upwelling favorable wind stress curl at 10oN, 10oS at 150oW, 

 
Figure 4.8: Average 7 month forecast INT_PAC, INT_IO-INT_PAC, CLIM_IO.  
Same as previous but for 7 month lead forecast mean. 
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respectively.   Off the equator, west of 160oE the curl is positive to the north and this 

forces upwelling 0-10oN and negative sea level.  It is also interesting to note that 

upwelling curl within 5o of the equator in the NINO3 region (particularly at 120oW) is 

causing weak upwelling and cold SST’ at 5oN driving the warmest SST south of the 

equator (Figure 4.8a).   

By month 10 the Bjerknes coupling has locked in (Figure 4.9).  SST’ is positive 

throughout the equatorial band between 160oE to the eastern boundary.  The negative sea 

level horseshoe pattern is evident off the equator in the west and positive values east of 

160oE near the equator typically associated with a mature El Niño.  On the equator, winds 

are diverging between 150oE-175oE and converging to the east of there between 150oW-

100oW.  To the east of 150oW and off the equator, the curl and sea level are in good 

 
Figure 4.9: Average 10 month forecast INT_PAC, INT_IO-INT_PAC, CLIM_IO.  
Same as previous but for 10 month forecast mean. 
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agreement.  At 10oN, 150oW, downwelling curl corresponds with positive sea level 

anomaly.  At 2oN, 135oW positive curl overlays with a small region of negative sea level. 

Just south of the equator at 135oW, downwelling curl coincides with a maximum of sea 

level and SST’.  Further to the south at 10oS and 140oW upwelling curl and negative sea 

level coincide.  Thus the pattern of upwelling/downwelling curl of the wind maintains the 

meridional sea level gradient east of 160oW.  Off the equator west of 160oW, upwelling 

curl is acting to reinforce the negative sea level off the Philippines and off the coast of 

New Guinea and Australia.  To summarize, the mean forecast by 10 month lead times 

shows winds that are primarily diverging away from the equator west of the dateline (i.e. 

southwesterlies to the north and northwesterlies to the south of the equator) and 

converging towards the equator east of the dateline (with northeasterlies north of the 

equator slowing and turning towards northwesterlies at the equator).  These diagnostics 

of the average coupled forecast reveals that the response of the ENSO system in the 

Pacific is more complicated than simply triggering a westerly wind burst in the western 

Pacific on the equator and setting off downwelling Kelvin waves eventually warming the 

NINO3 region as suggested by e.g. [Annamalai et al., 2010].   

4.3 Summary of Atmospheric Teleconnections  
 

In order to investigate the atmospheric teleconnections of the IO to the Pacific 

ENSO, two experiments were contrasted.  In one, the full Indo-Pacific region atmosphere 

is forced by observed interannual SST anomalies (INT_PAC, INT_IO).  In the other, the 

IO is forced by climatological SST (INT_PAC, CLIM_IO).  Differences between these 

two forced atmospheric model experiments, point out the impact of the interannual 
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forcing in the IO on the Indo-Pacific.   These differences spotlight a much richer wind 

response pattern in the Pacific than previous work that used idealized forcing and simple 

linear atmospheric models.  Weak westerlies are found near the equator between 10oS 

and the equator similar to previous literature (e.g. [Annamalai et al., 2005]).  However, at 

initialization strong easterlies between 30oS to 10oS and 0oN to 25oN and equatorial 

convergence of the meridional winds across the entire Pacific are unique findings from 

this dissertation.  Coupled forecasts that include IO interannual forcing are significantly 

improved relative to the decoupled IO with respect to the 1993 to 2014 observed NINO3 

SST anomaly.  The reason for this improvement comes from the prevailing wind patterns 

in the Pacific generated from interannual IO SST coupling.  Generally these wind 

patterns correspond to large-scale equatorial divergence west of the dateline and 

northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the 

dateline.    In addition, off-equatorial curl impacts large-scale oceanic waves (i.e. Kelvin 

and Rossby waves) in response to the interannual atmospheric forcing of the IO via 

atmospheric teleconnections to the Pacific ENSO.  After 3 months, downwelling Kelvin 

waves increase the NINO3 SST and eventually Bjerknes feedback takes hold in the 

eastern Pacific which allows this warm anomaly to grow.  Therefore, the atmospheric 

impact of the IO is to increase the warming in the NINO3 region for 1993 to 2014 and 

improve coupled forecasts.   
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5 Role of the Indian Ocean Sector – Impact of Observations 
 

Earlier work of [Balmaseda and Anderson, 2009] highlighted the importance of 

observations for SST analyses in the IO.  For example, including Argo data significantly 

improved SST forecasts throughout the tropical IO.  In addition, [Huang et al., 2008] 

show that incorporation of real salinity profiles from Argo, led to improved vertical 

structure and more realistic barrier layer thicknesses in the tropical IO.  More realistic 

mixed layer depths result in better estimates of modeled SST and so should lead to better 

forecasts.  Observations in the IO are also important for measuring the long-term SST 

trend and fixing forced ocean model solutions.   For example, the observed trend 

averaged over the entire tropical IO (20oS-20oN) for 1992-2014 is 1.5x10-2 oC/yr from the 

observed satellite SST product [Reynolds et al., 2002] whereas the model alone (i.e. the 

IP_OPEN experiment) is -0.7x10-3 oC/yr over the same region and time.  When 

assimilation of all available observations takes place (i.e. ASSIM_SL_SST_SSS_Tz_Sz to 

be discussed later in this section), the trend becomes more realistic (0.8x10-3 oC/yr) with 

the correct sign and approximate amplitude.    Therefore observations from satellite and 

in situ observations in the IO help to improve simulation of SST warming in the IO.   

Operational coupled models routinely assimilate most available observations with 

the goal of improving ocean circulation and forcing at initialization.  However, these 

previous results are comprised of model-only experiments and so the potential positive 

impacts of observations in the IO have not yet been fully considered.   In the previous 

section we have seen that the interannual variability of the SST anomalies in the IO have 

a significant impact for improved ENSO forecasts.  Thus, improved initialization of the 

coupled system due to assimilation in the IO may help to constrain the Pacific-to-IO 
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oceanic pathway (via e.g. modulation of the ITF flow) and the atmospheric 

teleconnection from the IO-to-Pacific by improving SST forecasts and the resulting air-

sea coupling throughout the Indo-Pacific region.  For example, [Yuan et al., 2013] and 

[Izumo et al., 2014] suggest that including IO observations (i.e. IODZM events) can 

extend useful ENSO predictions.  Although many forecast studies have focused on how 

assimilation in the Pacific improved ENSO forecasts (e.g. [Ji et al., 2000] and [Hackert et 

al., 2011]), the impact of IO observations on ENSO predictability has been relatively 

neglected.   Therefore, the main goal of this section is to assess the impact of IO 

observations through assimilation of available satellite and in situ data into initialization 

of coupled ENSO predictions.   

5.1 Forced Ocean and Atmospheric Model Results 
 

The most straight forward way of determining the impact of IO observations on 

coupled ENSO predictability is to compare an experiment that is initialized with the full 

impact of observations throughout the Indo-Pacific region (i.e. assimilation of SL, SST, 

SSS, Tz, and Sz abbreviated as ASSIM_SL_SST_SSS_Tz_Sz) versus one that masks 

assimilation in the IO and only assimilates data in the Pacific (i.e. 

ASSIM_SL_SST_SSS_Tz_Sz_MASKIND - for masked IO).  Throughout this section the 

jargon for these model differences is either ‘IO data impact’ or ‘FULL minus MASKED 

IO’.   The longitude, 130oE, is the demarcation between the IO and Pacific for 

assimilation purposes since it marks a convenient narrow passageway of the western ITF.   

Data that are assimilated include the multi-satellite blended sea level data from the 

AVISO using all available altimetry, the OI combination of AVHRR satellite and in situ 
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SST from NOAA, the OI of all available near-surface in situ salinity (using all data 

within 10m of the surface) and individual in situ temperature and salinity profiles.  These 

observations are detailed in Section 2.1.  Experiments were limited to the period, 2002-  

Experiment Name Period Model 
Geometry 

Assimilation 
Data/Region   

ASSIM_SL_SST_SSS_Tz_Sz 
(abbreviated as “FULL”) 

2002-
2014 

Global/Indo-
Pacific 

Anomalies of 
SL, SST, SSS, 

Tz, Sz / for 
Pacific and IO 

ASSIM_SL_SST_SSS_Tz_Sz_MASKIND 
(abbreviated as “MASKIND”) 

2002-
2014 

Global/Indo-
Pacific 

Anomalies of 
SL, SST, SSS, 

Tz, Sz / for 
Pacific only 

Table 5.1:  Experiment description isolating the impact of observations in the IO. This 
Table defines the data assimilation methodology for the various experiments.  The far left 
column is the experiment name.  The data that are assimilated include: SL - the global 
multi-satellite sea level anomaly from AVISO, SST - OI of all satellite and in situ sea 
surface temperature from NOAA, SSS – the OI of all near surface salinity within 10m of 
surface and subsurface temperature and salinity profiles (Tz, Sz) mostly from Argo.   See 
Section 2.1 for full details about the assimilation data. The delineation between the 
Indian and Pacific Oceans for data assimilation is defined as 130oE in the Indonesian 
Seas. Anomalies are formulated with respect to the 1993-2014 mean seasonal cycle.  
 

2014, since the Argo array is only well established during this period and there are 

enough in situ data so that SSS, Tz and Sz are reasonably well populated in the IO.  The 

experiments for this section are defined in Table 5.1, have the same specifications as 

those described in Section 2.2.1 for the model validation and use the EROKF technique 

detailed in Section 2.2.2.   Differences of coupled experiments initialized by the full 

Indo-Pacific minus masked IO assimilation show the impact of IO observations on ENSO 

prediction.   

The differences at initialization, for the impact of IO assimilation, are displayed in 

Figure 5.1. As expected, the biggest impacts of observations are found in the IO.  For SL 

(Figure 5.1a) the pattern shows negative values in the eastern IO, BOB, and AS and 
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positive values stretching out from the western IO boundary centered at roughly 12oS.  In 

the Pacific west of 160oW, negative sea level predominates with minimum values found 

at 5oS and 8oN just west of the dateline.  Sea level is positive at 15oS, along the equator, 

and 12oN east of 140oW.  One could envision the pattern in the Pacific as an upwelling 

Rossby wave with negative sea level in the western half and downwelling Kelvin wave 

reflecting as a downwelling Rossby wave with positive sea level in the eastern half of the 

basin.  Remember that these differences are only due to the regional assimilation but with 

identical forcing.  For SST (Figure 5.1b), the largest values are found in the IO with the 

maximum at roughly 65oE, 12oS coincident with the location of the largest positive SL 

differences.   These warm SST differences are consistent with the observed warming 

trend in the IO over recent decades (e.g. [Luo et al., 2012]).   

For the Pacific, the differences due to IO assimilation are generally negative.  The 

coolest values correspond to differences less than -0.05oC between 15oS and 10oN with 

minimum values between 130oW-80oW at 10oS, 140oW-100oW at the equator, 

and145oW-130oW at 10oN.  However, all these values are very small compared to the IO.  

For Figure 5.1c, the differences of the observations in the IO generally bring about deeper 

MLD throughout the IO.  For the Pacific, the strong shoaling of the MLD due to the 

influence of assimilation of observations in the IO is evident between 15oS-8oN and west 

of 120oW.  East of there in the far eastern Pacific, the MLD deepens within 10o of the 

equator.     

In the same way as previous sections, the output of the SPEEDY atmospheric 

model forced by FULL and MASKIND data assimilation results are differenced to 
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explain the IO observational impact on the atmosphere at initialization.  Figure 5.1d 

shows the SPEEDY model results (forced not coupled) for wind stress (vectors) and  

 
Figure 5.1:  Differences FULL minus MASKIND at initialization.  The mean 
differences for full Indo-Pacific assimilation of SL, SST, SSS, Tz and Sz (i.e. 
ASSIM_SL_SST_SSS_Tz_Sz) minus the experiment that only assimilates in the Pacific 
(ASSIM_SL_SST_SSS_Tz_Sz_ MASKIND) are presented for all months 2002-2014.   The 
panels show a) sea level, b) SST, c) MLD, d) SPEEDY atmospheric results for 
precipitation (color) and wind stress (arrows), e) curl (color) and wind stress (arrows) 
and f) divergence (color) and wind stress vectors(arrows).   “U” and “D” on panels e) 
and f) represent regions on upwelling and downwelling favorable conditions, 
respectively.  Absolute values exceeding 1.1 cm, 0.1oC, 2.7 m, [6.9x10-3 N/m2; 18.25 
mm/mon], 0.85x10-9 N/m3 and 0.55 N/m3 are significant for the six panels, respectively. 
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precipitation (colors).  This plot shows that weak northeasterlies just north of the equator 

in the IO recurve into northwesterlies converging towards the warmest water as seen in 

Figure 5.1b.   Warm SST’ in the southern IO leads to atmospheric convection, abundant 

rainfall, and convergence of the winds at the surface.  The precipitation pattern shows 

negative values north of 5oS in the IO and positive in the Southern Hemisphere again 

consistent with convergence (Figure 5.1f) towards and positive precipitation anomalies 

over the warmest anomaly.  At initialization downwelling favorable curl (negative in the 

Northern Hemisphere and positive south of the equator) is evident everywhere north of 

the warmest SST in the IO and upwelling can be found south of 10oS (Figure 5.1e).  

Apparent inconsistences between the curl and sea level (e.g. in the northern IO) are 

evident since these plots show the initialization state and coupling of the system has yet 

to occur.  

In the Pacific, there are small areas of westerlies between 20oS-5oS and north of 

15oN west of the dateline.  However, easterly flow predominates throughout most of the 

basin.  This is consistent with the work of [Annamalai et al., 2005] who noted that basin 

warming in the IO (i.e. their “basin-mode SST anomaly”) would lead to easterlies in the 

western Pacific (their Figure 9a,c). The general pattern is abundant precipitation 

extending out from the Maritime continent to about 140oW near the equator again 

consistent with enhanced Walker circulation.  In addition, a feature in the eastern Pacific 

precipitation is the negative values that overlay with the negative SST anomalies found 

east of 140oW.  These patterns of negative precipitation are in line with the overall 

cooling and suppressed convection in the eastern Pacific.  Figure 5.1e shows the curl of 

the wind stress for the differences brought about by observations in the IO.  Over most of 
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the Pacific, upwelling favorable curl (i.e. positive in the Northern Hemisphere and 

negative in the Southern Hemisphere) predominates.  These results document the 

differences in the initial conditions for the coupled experiments.   So to summarize, the 

impact of observations in the IO leads to warm SST over most of the IO basin.  Warm 

SST leads to atmospheric convergence and enhanced precipitation.  The easterly trade 

winds over the western Pacific flow into this IO warm anomaly and the Walker 

circulation is enhanced.  Sea level and MLD are shoaled between 12oS-8oN west of 

140oW concomitant with anomalous easterlies and general upwelling.     

5.2 Coupled Model Results  
 

Results of coupled experiments initialized using assimilation of all available 

observations in the IO (i.e. ASSIM_SL_SST_SSS_Tz_Sz) are contrasted with those 

lacking the influence of observations in the IO (i.e. ASSIM_SL_SST_SSS_Tz_Sz_ 

MASKIND) in order to assess the impact of IO observations on ENSO predictability. 

 

 
Figure 5.2:  NINO3 statistics of IO observations assimilation. Validation statistics for 
SPEEDY coupled model results for a) correlation and b) RMS differences between full 
Indo-Pacific assimilation of SL, SST, SSS, Tz and Sz (i.e. ASSIM_SL_SST_SSS_Tz_Sz 
shown as red curve) and the experiment that only assimilates in the Pacific, masking 
assimilation in the IO (ASSIM_SL_SST_SSS_Tz_Sz_ MASKIND, blue).  The 
experiments are validated with respect to the observed NINO3 SST anomaly for 2002-
2014.   Individual correlations exceed the 95% significance out to 3.7 (23) and 3.5 
months (22) (effective degrees of freedom) for red and blue lines, respectively. 



112 
 

For each month for 2002-2014 12-month coupled forecasts are initialized from these two 

experiments.  As with previous experiments, we validate these two coupled experiments 

using observed SST anomalies in the NINO3 region [Reynolds et al., 2002].  In Figure 

5.2a, both the full assimilation and the experiment that masks assimilation in the IO are 

individually significant only to about 3.5 months.  Correlation differences generally 

remain below r=0.05 but peak at 6 and 11 month lead times.  However, the differences 

never climb to the statistically significant threshold.  In Figure 5.2b the improvement 

brought about by full assimilation is more readily apparent than for the correlation 

validation.  For example, the RMS for the full assimilation is lower by as much as 0.07oC 

and 0.13oC for lead-times of 6 and 9 months, respectively.  Over most of the forecast, the 

RMS values are smaller for the FULL assimilation case.   Although the correlation 

differences are small and thus not significant, the full assimilation still outperforms the 

experiment masking assimilation in the IO for RMS.  In other words, the impact of all 

available observations in the IO slightly improves coupled forecasts as validated by 

NINO3 observed SST anomalies. 

 

 
Figure 5.3:  Impact of IO assimilation for NINO3 mean and standard deviation.  
Forecasts lead-time statistics for SPEEDY coupled model results for a) mean and b) 
standard deviation for the NINO3 region for full Indo-Pacific assimilation of SL, SST, 
SSS, Tz and Sz (i.e. ASSIM_SL_SST_SSS_Tz_Sz shown as red curve) and the experiment 
that only assimilates in the Pacific (ASSIM_SL_SST_SSS_Tz_Sz_MASKIND, blue). 
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In order to diagnose how inclusion of observations in the IO improves upon the 

experiment that masks assimilation in the IO, the mean forecasts for the NINO3 region 

are presented.  The mean for the full assimilation is considerably lower than the coupled 

experiment that masks assimilation in the IO.  Figure 5.3a shows that for all lead times 

the coupled forecasts for the ASSIM_SL_SST_SSS_Tz_Sz (red curve) have lower means.  

For the variability, the two experiments are relatively indistinguishable until roughly 6 

month lead-times.  After that time, the full assimilation has weaker variability of around 

0.48oC as opposed to 0.55oC.  In summary, inclusion of observations in the IO somewhat 

improves the forecast statistics for RMS.  In addition, the mean forecast is substantially 

 
Figure 5.4:  Differences FULL minus MASKIND at 3 month forecast lead time. The 
mean differences for 3 month lead-time SPEEDY forecasts are presented for the full 
Indo-Pacific assimilation minus the experiment that only assimilates in the Pacific.   
Average forecast values for month 3 for a) sea level, b) SST, c) curl of the wind stress 
(color) and wind stress (vector), and d) divergence of the wind stress (color) and wind 
stress (vector).  The scale of the vector plot is indicated in the bottom left of the panel.  
For the reader’s convenience, regions of upwelling and downwelling are marked by 
letters U and D, respectively.  
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cooler but the variability is weaker only after 6 month lead-times for the full versus the 

masked IO assimilation experiments.  

To show how the coupled forecasts develop and how the coupled forecast 

statistics evolve leading to the results of Figure 5.2 and Figure 5.3, the mean forecast 

differences after 3 month lead time, FULL-MASKIND coupled results, are presented in 

Figure 5.4.   Easterlies present in the western Pacific in the initial conditions enhance the 

Walker circulation and continue over the 0-3 month forecast lead times serving to 

effectively decrease sea level the eastern Pacific.  Anticyclonic winds and downwelling 

favorable curl (negative) north of 5oN centered at 160oE over the western half of the 

Pacific combine with downwelling curl (positive) just off New Guinea to deepen sea 

level off the equator in the western Pacific (Figure 5.4a).  These features are identified as 

a downwelling Rossby wave in Figure 5.5b arriving at the dateline in month 3.    At that 

same time diverging winds along the equator (Figure 5.4d) contribute upwelling signal 

east of the dateline in the Pacific.  Upwelling along the equator and just south of the 

equator (Figure 5.4c) corresponds to lower sea level on the equator and cooler SST just 

south of the equator east of the dateline (Figure 5.4a, b, respectively).  The predominant 

upwelling Kelvin waves, driven by the persistent easterlies in the western Pacific and 

diverging winds west of the dateline along the equator, are clearly demonstrated in Figure 

5.5a (dashed lines) and these have propagated from the west serving to cool the NINO3 

region (Figure 5.4b) cooling by as much as 1.5oC.    Hovmöller diagram (not shown) of 

the sea level differences indicate that the upwelling Kelvin wave arriving at the eastern 

boundary in month 3 has its origins in the reflected upwelling Rossby wave identified in 

the sea level at initialization (negative sea level at 5oN, 5oS and 160oE in Figure 5.1a). 
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Traces of this upwelling Rossby wave can also be found in Figure 5.5b and the timing 

matches the reflection into the primary upwelling Kelvin wave in Figure 5.5b to Figure 

5.5c at month ~1.5.  

By 6 month forecasts, warm SST can be found west of 145oE and so the SST 

gradient across 140oW to 140oE in the Pacific enhances the easterlies of the Walker 

circulation (Figure 5.6d) and then Bjerknes coupling fully takes hold in the Pacific.   

 
Figure 5.5:  Kelvin/Rossby decomposition of FULL minus MASKIND results. 
Longitude versus time distribution of the equatorial (a) Kelvin and (b) the first 
meridional mode of equatorial Rossby waves through their signature in zonal surface 
current deduced from the average forecast SL differences, 
(ASSIM_SL_SST_SSS_Tz_Sz) – (ASSIM_SL_SST_SSS_Tz_Sz_MASKIND). In order to 
follow possible wave reflections on the western (WB) and eastern (EB) boundaries of 
the Pacific, the Rossby panel (b) is inverted and the Kelvin wave pattern is repeated 
(c). The color scale for the Rossby panel is also inverted since reflection on meridional 
boundaries results in zonal currents of opposite sign. Solid lines (downwelling) and 
dashed lines (upwelling) represent theoretical wave speeds for Kelvin (2.5m/s) and 
Rossby waves (-0.8m/s or ~5months to cross this Pacific basin at 5oN) on each plot. 
Panel d) corresponds to the IO Kelvin decomposition with the same color scale as a). 
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Differences in the Pacific now strongly resemble the typical La Niña pattern, namely the 

SST is negative in the cold tongue region of the eastern Pacific (Figure 5.6b), the sea 

level has a positive horseshoe shape in the western Pacific and negative values in the 

eastern Pacific near the equator (Figure 5.6a), easterly trades are enhanced along the 

equator west of 120oW.  Downwelling favorable curl (Figure 5.6c) reinforces the positive 

sea level horseshoe pattern 10o off the equator in the western Pacific and wind divergence 

(Figure 5.6d) along the equator reinforces the cold upwelling east of the dateline.  Thus, 

the impacts of observations in the IO at initialization serve to eventually intensify the 

cold tongue and explain the differences in the mean forecast found in Figure 5.3a where 

the mean NINO3 SST’ is reduced by 0.21oC at 6 months relative to the MASKIND 

experiment.  

 
Figure 5.6:  Differences FULL minus MASKIND for 6 month forecast lead times. 
Same as Figure 5.4 but for 6 month forecast lead times.  
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As far as the variability of the NINO3 region is concerned, the differences 

between the FULL and MASKIND experiments in Figure 5.3b can be explained by the 

progression of the MLD plots from Figure 5.1 and Figure 5.7.  The MLD is shallower for 

ASSIM_SL_SST_SSS_Tz_Sz than for ASSIM_SL_SST_SSS_Tz_Sz_MASKIND at 

initialization between 10oN-10oS west of 120oW (Figure 5.1c).  Over time the MLD 

follows the same progression as sea level.  In the western Pacific (west of 180o at ~10oS 

and 10oS) downwelling favorable curl increases sea level as well as deepens the MLD.  

Upwelling on the equator shoals the MLD so that by 3 month forecasts (Figure 5.7a), the 

MLD is shallower in the cold tongue and the western Pacific MLD difference values are 

generally small along the equator.   However, by 6 month forecasts, when the variability 

in the NINO3 region decreases in Figure 5.3b, MLD differences west of 160oW are 

significantly deeper so the Kelvin wave-generating winds are expended on a much deeper 

MLD in the western Pacific.  Thus, after 6 months the variability is reduced.  Another 

way to envision the falling variability in the NINO3 region after 6 months lead times is 

that the Kelvin wave signal in the Pacific is dissipating after 6 month forecasts for the 

mean difference, FULL minus MASKIND, as illustrated in Figure 5.5a.  

 
Figure 5.7:  Forecast evolution of MLD for FULL minus MASKIND. Average Mixed 
layer depth differences ASSIM_SL_SST_SSS_Tz_Sz minus 
ASSIM_SL_SST_SSS_Tz_Sz_MASKIND for a) 3 month and 6 month forecast lead 
times. 
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In the IO, the pattern remains similar as for the initialization (Figure 5.1) but with 

the SL and SST differences decreasing over time.  For example, the maximum SL 

gradient across the IO at 10oS starts at 6.5 cm (Figure 5.1a). By 3 month lead times, this 

gradient has dropped to 4.5 cm (Figure 5.4a) and by 6 month lead time the gradient is 

only 3 cm (Figure 5.6a).  The warm SST found in the initial conditions (0.2oC - Figure 

5.1b) quickly cools to no more than 0.1oC for 3 and 6 month forecasts (Figure 5.4b and 

Figure 5.6b, respectively).   Another major feature to note is the upwelling Kelvin wave 

found in the IO for forecast lead times of 5-6 months (Figure 5.5d).  This Kelvin wave is 

generated by widespread divergence due to the transition of southeasterlies to 

southwesterlies as they cross the equator (Figure 5.6c) and is reflected in the sea level 

since values drop significantly just to the west of Sumatra for month 6 as this Kelvin 

wave arrives at the eastern boundary (Figure 5.6a) of the IO.  

The previous discussion has not yet focused on the impact on the Indonesian 

Throughflow (ITF) brought about by observations in the IO.  Examining the SL forecast 

differences after 6 months, one would envision that the ITF flow should increase for the 

FULL assimilation versus the MASKED IO assimilation case.  Figure 5.6a shows the 

strong positive SL anomaly at the mouth of the ITF just off the Philippines Islands and 

the negative values at the exit region just west of Sumatra.  [Wyrtki, 1987], [Potemra, 

2005] and more recently [Susanto and Song, 2015] all deduced that an increased pressure 

head between the Pacific and the IO would lead to increased ITF flow.   The indices of 

sea level differences, FULL - MASKIND, for the eastern IO (EIO) and the western 

Pacific (WP) are presented for the 0-12 month lead times in Figure 5.8a.  These regions 

are meant to roughly reproduce those used by [Potemra, 2005] to estimate the ITF  
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transport using sea level gradient.  For the western Pacific (red line), the sea level 

differences rise over the entire average forecast period due to the aforementioned sea 

level rise and associated downwelling curl off the equator and converging winds on the 

equator west of the dateline.  For the EIO (blue line), the values remain weak until 

roughly month 6 when the upwelling Kelvin wave (seen in Figure 5.5d and forced by 

upwelling along the equator in Figure 5.6d) arrives in the EIO.  The differences, EIO 

minus WP (black line), lead to an increased pressure head and the experiment that 

includes observations in the IO has a significant jump for the values for the ITF at 6 

month lead time (Figure 5.8b).  In other words, the upwelling Kelvin wave arrives at the 

eastern boundary and traverses the Indonesian Seas carrying westward flow with it, 

increasing the amplitude of the ITF.  After it passes, the ITF has larger westward flow 

(i.e. larger negative values) and the FULL assimilation experiment matches the 

magnitude of the MASKIND experiment after that time.  In this case, the increase in ITF 

magnitude corresponds to both a deeper MLD in the western Pacific and a decrease in the 

 
Figure 5.8:  ITF flow of mean forecast for FULL versus MASKIND experiments. 
Plot a) shows the sea level indices for the western Pacific (red), eastern Indian Ocean 
(blue) and the sea level gradient across the ITF (i.e. eastern IO minus western Pacific -
black) for the ASSIM_SL_SST_SSS_Tz_Sz (i.e. FULL) minus 
ASSIM_SL_SST_SSS_Tz_Sz_MASKIND results.  Plot b) shows the ITF flow for the 
FULL assimilation in the Indo-Pacific region in red and the experiment that MASKS 
assimilation in the IO in blue.  Negative values for a) and b) represent westward flow.  
Regions are defined in the key for a).   
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NINO3 SST variability.  However, these results are at odds with the results of Section 3, 

namely that the IP_OPEN minus IP_NOITF (i.e. the extreme case of larger ITF flow) 

leads to shallower MLD and increased NINO3 variability.   Therefore, in the case of the 

impact of the IO observations for ENSO we judge that the IO atmospheric 

teleconnections to the Pacific ENSO have a bigger influence than the impact of the ITF.   

5.3 Summary of the IO Observation Impact on ENSO 
 

The impact of observations in the IO on ENSO forecasts are diagnosed using the 

output of two experiments.  In one, all the available satellite and in situ observations for 

the Indo-Pacific region are assimilated into the initial conditions for coupled experiments 

(ASSIM_SL_SST_SSS_Tz_Sz).  In the second, observations are excluded from the IO 

region but included in the Pacific sector (ASSIM_SL_SST_SSS_Tz_Sz_ MASKIND).  

Coupled experiments are then initiated from both these experiments for each month from 

2002-2014 and these show that ENSO predictions are improved when observations in the 

IO are incorporated.  ENSO forecasts, validated using observed NINO3 SST values, 

show that RMS is slightly improved and the mean and variability (only after 6 months) 

are reduced when the impact of observations in the IO are accounted for.  Basin-wide 

warming in IO brought about by assimilation in the IO, leads to atmospheric Kevin 

waves with easterlies predominating over the western Pacific enhancing Walker 

circulation.  These easterlies near the equator generate upwelling oceanic Kelvin waves 

that traverse the Pacific leading to upwelling and lower SST’ in the NINO3 region.   At 

the same time downwelling-favorable curl, centered ~10o off the equator in the western 

Pacific, deepens the thermocline and MLD, and raises the sea level and SST in the west.  
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As the forecast continues, warming in the west and cooling in the east 

maintains/enhances the Pacific SST gradient and Bjerknes coupling takes hold.   A La 

Niña-like pattern becomes entrenched with enhanced trades in the tropical Pacific and 

cooling in the cold tongue region.   Although the variability in the NINO3 region is 

reduced after 6 month lead times due to deepening of the MLD in the western Pacific and 

the associated damping of the Kelvin waves, the ITF flow is enhanced at this same time 

as a result of an upwelling (i.e. westward flow enhanced) Kelvin wave from the IO 

entering the Indonesian Seas.   
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6 Impact of Sea Surface Salinity on Coupled ENSO Prediction  
 

In the previous sections we have demonstrated the critical importance of SST and 

mixed layer processes for the impacts of the IO on ENSO predictability.  For example, a 

shallower MLD in the Pacific produces enhanced ENSO variability when the ITF is open, 

interannual SST’ forcing in the IO results in equatorial and off-equatorial teleconnections 

to the Pacific that eventually lead to improved ENSO forecasts, and IO basin-scale 

warming (as isolated by IO observations) causes enhancement of the Walker circulation 

through Pacific SST gradients and enhanced Bjerknes coupling.   However, coupled 

models generally have a hard time producing accurate fresh water flux due to suboptimal 

precipitation forecasts.  For example, SPEEDY, the AGCM component of our coupled 

model, is too dry over the SPCZ and too wet over the tropical IO ([Molteni, 2003]).  In 

addition, operational coupled models such as CFSv2 are known to be lacking in 

forecasting precipitation particularly in the Pacific ITCZ and SPCZ where rainfall is 

overabundant and in the western Pacific and near Indonesia where rainfall is deficient 

([Wang et al., 2010], [Kumar et al., 2010], [Saha et al., 2014]).  Less than ideal fresh 

water forcing from SPEEDY and CFSv2 coupled models could potentially impact SST 

through inaccurate specification of mixed layer density and mixing.  Therefore, we 

attempt to address the potential issues with inaccurate fresh water flux by assessing how 

assimilation of sea surface salinity in the Indo-Pacific region affects ENSO predictability.  

Specifically, the Hybrid Coupled Model (HCM) is utilized  since this statistical 

atmospheric model specifies observed precipitation climatology from GPCP ([Adler et 

al., 2003]) rather than using some suboptimal precipitation forecast. 
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This question of how improved sea surface salinity via data assimilation in the 

Indo-Pacific region affects ENSO predictability has yet to be fully addressed.  In June 

2011, NASA launched Aquarius which is the first satellite that was designed to monitor 

SSS on a global scale.  Up until remote sensing of SSS, achieving a high resolution, 

uniform global view of surface salinity had not been possible due to sparse in situ salinity 

measurements.  The overlaying scientific goal of the Aquarius mission was to quantify 

and understand the linkages among ocean circulation, the global water cycle and climate 

by accurately measuring SSS [Lagerloef et al., 2008].  As in previous sections, a 

combination of ocean models, coupled ocean-atmosphere models, and data assimilation 

of satellite and in situ data, are used to investigate if satellite SSS data help to improve 

short-term ENSO predictions.   (Note that this research has been published during 

Hackert’s PhD candidacy [Hackert et al., 2014]).   

6.1 Salinity Observations and Long-Term SSS Coupled Model 
Validation 

 

The current study extends the previous works of [Hackert et al., 2011] and 

[Ballabrera-Poy et al., 2002] by expanding to the tropical Indo-Pacific region from the 

Pacific and by incorporating assimilation of Aquarius and in situ SSS products.   The 

impact of SSS is assessed by comparing an experiment that assimilates SSS data versus 

one that does not. The reference simulation assimilates subsurface temperature 

(ASSIM_Tz) only.  Previous authors have shown that assimilation of subsurface 

temperature has been shown to produce reasonable coupled ENSO forecasts ([Ruiz et al., 

2005], [Drosdowsky, 2006], [Lima et al., 2009]).   The reference simulation does not 

assimilate SST and SL data, as these variables overly constrain the initialization of the 
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coupled ocean-atmosphere model, and given their covariance with SSS muddle the 

impact of SSS assimilation.   

The purpose of this section is to show how SSS data impact the initialization of 

coupled ENSO predictions in general and how in situ SSS initialization compares to 

Aquarius.  Thus, the role of the SSS data will be investigated using two different SSS 

products.  One is an optimal interpolation (OI) of all available in situ mixed layer salinity 

observations and the other is the satellite SSS product provided by the Aquarius project.    

The general philosophy of this section is to difference coupled model experiments with 

SSS assimilation minus the baseline without SSS assimilation using the NINO3 (i.e. 5oS-

5oN, 150oW-90oW) SST anomaly index as the validation target. 

In addition to the assimilation of subsurface temperature data, weekly gridded 

fields (i.e. Level 3 data) of SSS from both Aquarius Version 2.9.1 (ASSIM_Tz_SSSAQ) 

and our weekly in situ SSS product (ASSIM_Tz_SSSIS) are assimilated to assess the 

impact of SSS on initialization of coupled forecasts.  Gridded SSS products are detailed 

in Section 2.1.  Each SSS data assimilation experiment is initialized using the 

ASSIM_Tz_SSSISMON results for July 2011 and then assimilation of additional various 

SSS data takes place starting from August 2011 to February 2014. The different 

experiments discussed in this section are summarized in Table 6.1 and detailed in the 

following:  the ocean model is run for 30 years using ECMWF climatological forcing.  

Then, starting in 1993, subsurface temperature is assimilated (abbreviated as ASSIM_Tz) 

until February 2014 using realistic interannual forcing (both ECMWF winds and 

GPCP/TRMM precipitation).  Another experiment that assimilates the monthly SSS in 

situ product along with Tz is run from 1993 until February 2014 (abbreviated as 
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Experiment Name Period Assimilation Variables 
 

ASSIM_Tz
 

 

 
Jan 1993 - Feb 2014 

 
Tz 

ASSIM_Tz_SSSISMON* Jan 1993- Feb 2014 

SSS from OI of all available 
near surface salinity with 

depth ≤ 10 m and Tz, 
monthly 

 
ASSIM_Tz_SSSIS 

 
Aug 2011 – Feb 2014 

SSS from OI of all available 
near surface salinity with 

depth ≤ 10 m and Tz, 
weekly 

 
ASSIM_Tz_SSSAQ 

 
Aug 2011 – Feb 2014 

SSS from Aquarius Version 
2.9.1 Level 3 data and Tz, 

weekly 

ASSIM_Tz_SSSAQ@IS Aug 2011- Feb 2014 

SSS from OI of Aquarius 
along-track data 

subsampled at in situ 
locations and times and Tz, 

weekly 
Table 6.1:  SSS assimilation experiments.  Summary of the salinity coupled model 
experiments used in this section.  The first column is the experiment designation, the 
second indicates the period, and the third describes the data used to initialize these 
coupled model experiments.  Tz stands for subsurface temperature.  The asterisk indicates 
that the ASSIM_Tz_SSSISMON experiment is used to initialize all other assimilation 
experiments that assimilate SSS starting in August 2011. 

 
ASSIM_Tz_SSSISMON). Monthly OI is required prior to the Aquarius period due to the 

scarcity of in situ SSS observations (e.g. Argo) early in the record.  Two additional 

experiments that, in addition to Tz, also assimilate weekly gridded Aquarius SSS 

(ASSIM_Tz_SSSAQ) and an OI of in situ SSS (ASSIM_Tz_SSSIS) are initialized from 

July 2011 ASSIM_Tz_SSSISMON results and cover the period from August 2011 until 

February 2014 (30 months).  Anomalies are formulated for each SSS experiment with 

respect to the 1993-2013 mean seasonal cycle of the ASSIM_Tz_SSSISMON experiment 

and then these anomalies are added to the climatological ECMWF results and used as 

initial conditions for coupled experiments.  Then for each month from August 2011 until 

February 2014, free SAM coupled model experiments are initiated from the three forced 
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experiments and are run for 12 months each (for a total of 360 months).  Note that adding 

anomalies to ECMWF climatology model results are required since the SAM needs a 

fixed seasonal cycle of model SST (ref. Figure 2.2). 

 

The period under consideration in this study is from August 2011 until February 

2014.  During this period, the NINO3 index (Figure 6.1) indicates a minor La Niña from 

September 2011 to January 2012 (i.e. NINO3 region SST anomaly less than -0.5oC) with 

a minimum of -1oC in December 2011.  During 2012, the NINO3 SST anomaly rose 

peaking in July 2012 at 0.92oC.  While this warming was taking place, many coupled 

models predicted El Niño for late 2012 (see, e.g., the forecast discussion provided in 

http://iri.columbia.edu/climate/ENSO/currentinfo/archive/201207/SST_table.html).  

However, these El Niño forecasts proved inaccurate.  Instead, cooling returned in the 

eastern Pacific for early 2013 with minimum negative anomalies in January 2013 

of -0.57oC.  After that, cooling subsided in Boreal spring but returned in May to August 

2013 (as low as -0.69oC in June).  The repeated cooling episodes correspond to an overall 

mean weak La Niña state (-0.25oC) for the tropical eastern Pacific from August 2011 

until February 2014. 

 
Figure 6.1:  NINO3 SST anomaly for the Aquarius period.  The observed NINO3 SST 
anomaly is highlighted in red for the Aquarius period (i.e. 8/11-2/14). 

http://iri.columbia.edu/climate/ENSO/currentinfo/archive/201207/SST_table.html
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The mean and standard deviation of the in situ SSS and Aquarius SSS anomalies 

over the Aquarius period (August 2011-February 2014) are presented in Figure 6.2.  

Despite the many similarities between the two products there are important differences 

between the Aquarius satellite SSS and in situ SSS product (Figure 6.2c).  An example is 

the relatively saltier values for Aquarius east of 180o near the equator and east of 120oW 

 
Figure 6.2:  Gridded SSS Observations.  Mean of SSS anomaly for a) OI of all near-
surface in situ data (SSSIS), b) Aquarius L3 gridded product (SSSAQ).  Plot c) shows 
the mean difference between Aquarius minus in situ.  (Note that the color bar is half 
that of the means.) Standard deviation is also presented for d) in situ and e) satellite 
SSS.  Anomalies are all formulated with respect to Levitus SSS. All observations 
cover the period, 8/11-2/14 and all panels have been smoothed for plotting using a 
bilinear smoother. 
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in the Southern Hemisphere.  In addition, Aquarius minus in situ SSS shows negative 

values in the ITCZ between 5oN to 20oN and in the SPCZ in the Pacific.  In the Indian 

Ocean, Aquarius is generally fresher especially from the equator to 10oS and in the 

Arabian Sea with the exception of the Bay of Bengal.    

Although there are significant differences between the mean SSS, most of the 

features of the variability are similar in both the in situ and Aquarius SSS plots (Figure 

6.2d and e, respectively).  High variability in the far western Pacific along the equator 

stretches east and south into the South Pacific Convergence Zone (SPCZ) at roughly 

170oW, 15oS.  Common regions of high variability can also be seen in the eastern/central 

Indian Ocean to the Bay of Bengal and in the far eastern Pacific under the ITCZ and 

especially at 5oN at the eastern boundary for both products.  The other interesting feature 

is that the amplitude of the Aquarius variability is significantly larger than the in situ SSS 

product.  

In order to validate the spin up for the Aquarius-period experiments, coupled 

experiments are completed with and without SSS assimilation for January 1993 to August 

2011.  Figure 6.3 validates the correlation and Root Mean Square (RMS) of the model 

results against the observed NINO3 SST anomaly ([Reynolds et al., 2002]).  The 

experiments reported in Figure 6.3 are ASSIM_Tz (black solid line), 

ASSIM_Tz_SSSISMON (blue dashed line) and the NCEP Climate Forecast System 

Reanalysis Reforecast (CFSRR) results.  The CFSRR coupled hindcasts (Figure 6.3, red 

dotted line) represents operational coupled model forecast skill (see Section 2.2.4 for a 

description of the CFSRR data).   Figure 6.3 confirms that both the CFSRR and our HCM 

results validate well against observations with significant correlations extending to the  
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end of the respective experiments.   In addition, RMS difference validation of our HCMs 

using NINO3 SST anomaly observations is comparable to the CFSRR results after 1 

month lead times.  Note that early in the forecast period the high correlation and low 

RMS for CFSRR are attributed to the fact that CFSRR assimilates SST (i.e. including 

assimilation in the NINO3 region) whereas our coupled models were specifically 

formulated to allow independent SST evolution (i.e. no SST assimilation).  Thus, both 

these models provide useful and independent tools to diagnose ENSO prediction 

improvements brought about by SSS assimilation.  This validation shows that our 

model/data assimilation/coupled model system which are initialized using only Tz and 

 

 

 
Figure 6.3:  Validation of coupled spin up versus CFSRR. Our Indo-Pacific HCM 
experiments and CFSRR coupled model results are validated with observed NINO3 
SST anomaly for January 1993 - March 2011 using a) correlation and b) RMS.  
ASSIM_Tz assimilates all subsurface temperature information (black) and 
ASSIM_Tz_SSSIS additionally assimilates the monthly SSS product (blue dash), whereas 
the NCEP CFSRR (red dotted line) coupled model assimilates SST and in situ salinity 
(Sz) in addition to Tz.  Individual correlations exceed the 95% significance out to 12 
(32), 12 (32) and 10 months (34) (effective degrees of freedom) for blue, black and red 
lines, respectively.   The thick black line on the top x-axis shows where the blue line is 
significantly larger than the black line using the Steiger-Z test.  Note that our HCM 
validation statistics are comparable to the NCEP operational CFSRR results and all 
validate well against observations.  March 2011 (rather than July 2011) is chosen as 
the end of the validation period since this date corresponds to the last available 
CFSRR data. 
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additionally SSSISMON are comparable to other, widely used, operational systems that 

assimilate SST, Tz, and Sz.  It is also important to note that the experiment that 

assimilates gridded monthly OI of SSS (ASSIM_Tz_SSSISMON – blue line in Figure 6.3) 

has persistently higher correlation (significant from 0-4 month lead times) and lower 

RMS than ASSIM_Tz.   These results are consistent with those of [Hackert et al., 2011] 

and foreshadow the positive impact of SSS on ENSO forecasts.  

6.2 Impact of SSS Assimilation on Coupled Forecasts 
 

In order to assess the impact of satellite SSS on ENSO predictability we 

distinguish between coupled experiments initialized using Aquarius assimilation 

(ASSIM_Tz_SSSAQ) versus those without (ASSIM_Tz).  The observed NINO3 region 

SST anomaly from [Reynolds et al., 2002] is used as a target to judge the quality of a 

particular forecast.  For all experiments, we calculate mean statistics, correlation and 

RMS differences, over the period August 2011 to February 2014.  Figure 6.4 displays the 

correlation and RMS versus lead time for three simulations, ASSIM_Tz, 

ASSIM_Tz_SSSIS, and ASSIM_Tz_SSSAQ.  For short term forecasts, from month 1 to 

month 3, the experiment that includes assimilation of in situ SSS outperforms 

ASSIM_Tz.  Forecast results are indistinguishable from one another from 3 to 5 month 

lead times.   However, between 5 to 10 month forecast lead times, ASSIM_Tz_SSSIS 

correlations significantly outperform ASSIM_Tz.  The Steiger Z statistic (from [Steiger, 

1980]) indicates that such an increase of correlation is 95% significant for these lead 

times (indicated by blue dotted line along the upper x-axis).  Thus, assimilation of in situ 

OI SSS product significantly improves coupled forecasts with respect to subsurface 

temperature assimilation alone for this period.  



131 
 

These results agree with previous work of [Ballabrera-Poy et al., 2002] and 

[Hackert et al., 2011] who found that SSS did not so much impact short-term coupled 

forecasts, but after 6-9 months SSS information did significantly improve ENSO 

forecasts.  As will be detailed later, the existence of such a lag is explained by the fact 

that anomalies of the salt concentration modulate ENSO Kelvin/Rossby waves especially 

in the western equatorial Pacific via density perturbations above the depth of the 

thermocline.  

The RMS differences between the predicted and observed NINO3 SST anomalies 

are shown in Figure 6.4b.  Although the differences between the curves associated with 

ASSIM_Tz (black line) and ASSIM_Tz_SSSIS (blue dash) are small, assimilation of in 

situ SSS actually degrades the statistics after 5 month lead time forecasts.  This result is 

inconsistent with [Hackert et al., 2011] who found that RMS is reduced when coupled 

predictions are initialized with in situ gridded SSS starting with 3 month lead times.  The 

 

 
Figure 6.4:  NINO3 validation of experiments that assimilate SSS observations. 
Validation of coupled model results for the Aquarius period, August 2011 to February 
2014 using a) correlation and b) RMS versus observed NINO3 SST anomaly. The solid 
black curve is initialized using assimilation of subsurface temperature (ASSIM_Tz), the 
thick dotted red curve from Tz and Aquarius SSS (ASSIM_Tz_SSSAQ) and the dash blue 
curve from Tz and weekly OI of all available near-surface salinity (ASSIM_Tz_SSSIS). 
The thick red (blue) lines on the top x-axis show where the ASSIM_Tz_SSSAQ 
(ASSIM_Tz_SSSIS) significantly outperforms the control.  The black line shows where 
ASSIM_Tz_SSSAQ is significantly bigger than ASSIM_Tz_SSSIS using the Steiger-Z test. 
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degradation of ASSIM_Tz_SSSIS RMS versus ASSIM_Tz is also inconsistent with the 

longer assimilation experiments shown in Figure 6.3b.         

Figure 6.4 also highlights the impact of Aquarius SSS data (ASSIM_Tz_SSSAQ - 

red dotted line).   Like the weekly gridded in situ SSS results, inclusion of Aquarius SSS 

improves the correlation of the coupled forecasts.  This is especially evident by month 6, 

when the correlation for ASSIM_Tz_SSSAQ versus observed NINO3 SST anomaly is 

r=0.46 while the ASSIM_Tz experiment correlation is only r=0.25.  By month 9, the 

results have bifurcated further since ASSIM_Tz_SSSAQ remains at r = 0.40 while the 

ASSIM_Tz results falls to r = 0.0.  In this case the differences between 

ASSIM_Tz_SSSAQ and the baseline (i.e. ASSIM_Tz) are highly statistically significant.  

The Steiger Z statistic shows that the experiment that includes Aquarius SSS is 

significantly larger than the baseline between 5-11 month lead times (solid red along 

upper x-axis).  The impact of the SSS assimilation is felt after 5 months and differences 

peak at 9 month lead times matching previous work (e.g. [Ballabrera-Poy et al., 2002]).  

Therefore, inclusion of assimilation of satellite SSS significantly improves the temporal 

evolution of coupled forecasts after 5 month lead times.  

Unlike ASSIM_Tz_SSSIS, now the RMS results for ASSIM_Tz_SSSAQ are 

consistently lower than ASSIM_Tz for all lead times (Figure 6.4b).  Prior to month 5 

these differences are small.  However, after 5 month lead times the differences climb to 

an average of roughly 0.3oC with ASSIM_Tz_SSSAQ having a lower RMS than 

ASSIM_Tz by 0.45oC at 9 month lead times.  For each lead time the ASSIM_Tz_SSSAQ 

results (red dotted line) have lower RMS and thus outperform the ASSIM_Tz 

experiments.     
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A key result of this study to this point is that not only does satellite SSS 

significantly improve coupled forecasts in general, but that Aquarius gives better results 

than the in situ SSS product alone.  Figure 6.4 shows the validation versus observed 

NINO3 SST anomalies of both ASSIM_Tz_SSSIS (blue dash) and ASSIM_Tz_SSSAQ (red 

dotted).  The correlation plots show that Aquarius outperforms the in situ SSS 

assimilation for five month lead forecasts.  Correlations of ASSIM_Tz_SSSAQ exceed 

ASSIM_Tz_SSSIS by an average of roughly r = 0.15 for months 6.5 to 10.5.  During this 

period the significance of the differences, as measured by the Steiger Z test (black line 

along top x-axis), exceeds the 95% significance level.  Therefore, coupled experiments 

that account for satellite SSS (i.e. Aquarius) significantly improve coupled forecasts for 6 

to 10 month lead times with respect to assimilation of in situ SSS.   The improved 

statistics for satellite versus in situ SSS assimilation is similar for validation using RMS 

differences with observed NINO3 SST anomalies.   Even though the RMS is similar prior 

to 5 month lead time forecasts, Figure 6.4b shows that after 5 month lead times, the 

assimilation of satellite SSS outperforms the in situ SSS by an average of 0.4oC RMS 

(compare red dotted to blue dash lines).   

In order to diagnose why assimilation of SSS improves coupled forecasts, mean 

differences between the ASSIM_Tz_SSSIS, and ASSIM_Tz data assimilation results (i.e. 

the initialization of the coupled models over August 2011 until February 2014), are 

presented.  It is important to note that these differences include not only the short-term 

impact of weekly SSS assimilation (i.e. August 2011 to February 2014), but also the 

long-term (January 1993 to July 2011) bias between assimilation scenarios built into the 

initial conditions.  Remember that ASSIM_Tz was initialized from its continuing, 
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identical long-term experiment whereas ASSIM_Tz_SSSIS was initialized in August 2011 

using the July 2011 ASSIM_Tz_SSSISMON experiment.  In other words, these differences 

contain both the long-term bias between experiments, but also the differences due to 

assimilation of salinity for August 2011 to February 2014. 

 

In Figure 6.5a, the model SSS for ASSIM_Tz_SSSIS minus ASSIM_Tz is 

presented.  The SSS assimilation experiment is fresher over most of the Indian Ocean 

with the exception of the Bay of Bengal.  Over the Indonesian Seas, in a zonal band 

between roughly 100oE and 140oE, assimilation of in situ SSS produces anomalous 

salting with respect to the ASSIM_Tz experiment.  In the Pacific, both in the ITCZ (east 

 
Figure 6.5:  Initialization difference between ASSIM_Tz_SSSIS minus ASSIM_Tz.  
Results of the mean difference between ASSIM_Tz_SSSIS minus ASSIM_Tz initial 
conditions for a) SSS, b) mixed layer density, c) SST and d) sea level for August 2011 
to February 2014.   Units are psu, kg/m3, oC and cm, respectively.  Absolute values 
exceeding 0.52 PSU, 0.42 kg/m3, 0.68oC and 3.2 cm are significant for the four panels, 
respectively. 
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of 160oE, between the equator and 10oN) and in the South Pacific Convergence Zone 

(SPCZ) (5oS-15oS from the coast of New Guinea to 140oW) negative differences show 

that the ASSIM_Tz_SSSIS is fresher than the ASSIM_Tz experiment. 

Inclusion of in situ SSS leads to density changes in the mixed layer.  Figure 6.5b 

shows that density differences generally mirror those of SSS.  However a major 

difference can be seen within 5o of the equator between 160oE and 140oW.  This feature, 

with higher density, corresponds with reduced buoyancy and enhanced mixing.  The 

mixing of cooler water from below is evident in the SST plots (Figure 6.5c).   For 

example, note the negative region, reminiscent of an equatorial upwelling Rossby wave, 

between 160oE to 140oW.  Here ASSIM_Tz_SSSIS has lower SST than ASSIM_Tz with 

lowest values (lower than -0.5oC) located in a zonal band roughly 5o off the equator.   

This feature is also found in the sea level ASSIM_Tz_SSSIS minus ASSIM_Tz difference 

plot (Figure 6.5d).   The main feature here is again suggestive of an upwelling Rossby 

wave with negative values at 5o straddling the equator near the dateline.   South of the 

equator, the minor asymmetric values peak at -2 cm whereas the Northern Hemisphere 

values are -4 cm.    

The feature in the mean fields of SL and SST that looks similar to a Rossby wave 

is actually the result of two separate Rossby waves during our study period.  The first is 

spawned in the far eastern Pacific in December 2011 to February 2012.  This feature, 

evident in a longitude versus time analysis (not shown) as negative SSS 

ASSIM_Tz_SSSIS minus ASSIM_Tz differences, travels west starting from 120oW to 

100oW along 3oN and arrives at the dateline by June/July 2012.  A weaker but symmetric 

fresh SSS feature can be found in the Southern Hemisphere.  As the negative SSS Rossby 
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wave traverses west, the surface layer density and model thickness is reduced with the 

biggest impact between 170oW and 130oW at 3oN for April to July 2012.  Somewhat 

lagging the reduction in the model surface layer thickness, sea level shoals between 

160oE to 150oW at 3oN for May to August 2012.  The timing and location of the SST 

signal is well synchronized with SL and SSS diagnoses.  During this period, SST is 

primarily negative with the biggest signal between 160oE to 170oW at 5oN coinciding 

with the upwelling SL signal.  For all these variables the timing of the symmetric feature 

in the Southern Hemisphere brought about by SSS assimilation is similar but the 

amplitude is somewhat weaker.   Later in the study period, a second Rossby wave is 

initiated due to SSS assimilation in February 2013.  These features along with the relative 

positive SSS values in the NINO3 region are important components of the coupled 

forecast improvements brought about by SSS assimilation and so will be discussed in 

more detail later.  

A similar set of plots as the previous figure is presented for the differences 

between the Aquarius assimilation (ASSIM_Tz_SSSAQ) minus ASSIM_Tz for August 

2011 to February 2014 (Figure 6.6).  Mostly all of the features are similar for salinity 

differences, Figure 6.6a and Figure 6.5a.  Namely, negative salinity differences are seen 

over most of the Indian Ocean except the Bay of Bengal, negative values can be seen in 

the ITCZ and SPCZ in the Pacific, and positive salting in the southeast Pacific.  Again the 

density pattern for the ASSIM_Tz_SSSAQ minus ASSIM_Tz (Figure 6.6b) generally 

matches those of SSS.  Lower density in the ITCZ and SPCZ regions of the tropical 

Pacific matches regions of lower SSS from Figure 6.6a.  However, the main feature to 

focus on is the higher density water in the mixed layer within 5o of the equator and 
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between 160oE and 150oW.  This region of higher density corresponds to enhanced 

mixing (not shown), and colder SST.  This feature for the ASSIM_Tz_SSSAQ minus 

ASSIM_Tz SST results (Figure 6.6c), is clearly evident by the meridional banding with 

differences colder than -0.5oC at 5oS and 5oN with minimum values at 180o and 150oW, 

respectively.  This pattern, that strongly resembles an upwelling Rossby wave signature, 

generally matches the corresponding SST differences in Figure 6.5c.  Higher density 

leads to enhanced mixing and upwelling of cooler SST from below.  This leads to 

shoaling of the mixed layer and thermocline and so the sea level shoals as well.  Negative 

sea level differences, corresponding to this upwelling can be seen in Figure 6.6d  

 

 
Figure 6.6:  Initialization differences for ASSIM_Tz_SSSAQ minus ASSIM_Tz. 
Results of the mean difference between ASSIM_Tz_SSSAQ minus ASSIM_Tz initial 
conditions for a) SSS, b) mixed layer density, c) SST, and d) SL for August 2011 to 
February 2014.   Units are psu, kg/m3, oC, and cm respectively.  Absolute values 
exceeding 0.51 PSU, 0.36 kg/m3, 0.61oC and 3.4 cm are significant for the four panels, 
respectively. 
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straddling the equator near the dateline representing an upwelling Rossby wave in these 

mean difference plots. 

Besides showing the impact of the individual SSS products another goal of this 

dissertation is to show the potential added benefit of satellite versus in situ SSS.  The 

main differences between Figure 6.6a and Figure 6.5a are found in the off-equatorial 

western Pacific and in the Indonesian Seas region where assimilation of Aquarius gives 

fresher results than the in situ product.  In addition, ASSIM_Tz_SSSIS is significantly 

fresher than ASSIM_Tz_SSSAQ in the NINO3 region of the eastern Pacific just north of 

the equator.  A more convenient way to highlight the differences between SSS 

assimilation experiments is to difference these directly.  Figure 6.7a shows the 

ASSIM_Tz_SSSAQ minus ASSIM_Tz_SSSIS differences.  Here the differences in the 

 
Figure 6.7:  Initialization differences ASSIM_Tz_SSSAQ minus ASSIM_Tz_SSSIS. 
Same as Figure 6.6 but for mean difference, ASSIM_Tz_SSSAQ minus ASSIM_Tz_SSSIS.  
Absolute values exceeding 0.17 PSU, 0.15 kg/m3, 0.23oC, and 2.2 cm are significant for 
the four panels, respectively. 
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Indonesian Seas and off equatorial western Pacific are evident with ASSIM_Tz_SSSAQ 

having a fresher mean than ASSIM_Tz_SSSIS results.  The other significant region is the 

eastern Pacific north of the equator (0o-5oN, 140oW-90oW) where ASSIM_Tz_SSSAQ is 

saltier than ASSIM_Tz_SSSIS assimilation results by as much as 0.15 psu.  It is reassuring 

to note that in the Pacific our data assimilation differences (i.e. Figure 6.7a) are 

qualitatively consistent with observation differences of Aquarius minus in situ SSS found 

in Figure 6.2c.  

The ASSIM_Tz_SSSAQ experiment is warmer than ASSIM_Tz_SSSIS over most 

of the western/central Pacific between Indonesia and 130oW with maximum positive 

differences at 10oN and 5oS at 155oW and at the western boundary.  An exception is the 

weak negative pattern (-0.05oC) at the eastern edge of the warm pool centered along the 

equator at 170oE. East of 130oW, the ASSIM_Tz_SSSIS experiment SST is warmer than 

the ASSIM_Tz_SSSAQ experiment (compare Figure 6.5c to Figure 6.6c) and these 

differences manifest as a cold La Niña pattern with negative values within 10o of the 

equator east of 140oW in the eastern Pacific (Figure 6.7c).  Just considering the equator in 

the eastern Pacific, strong east to west gradient of SST differences (ASSIM_Tz_SSSAQ 

minus ASSIM_Tz_SSSIS) should lead to relative enhanced easterlies, Bjerknes feedback, 

and cooling in the upwelling region of the eastern Pacific.  We shall see that these SST 

differences and the resultant relative SST gradient across the equatorial Pacific are 

critical for improved Aquarius forecasts as opposed to assimilation of in situ SSS.   

The ASSIM_Tz_SSSAQ minus ASSIM_Tz_SSSIS has positive SL in the equatorial 

western Pacific stretching east all the way to the eastern boundary within 3o of the 

equator (Figure 6.7d).  In addition, negative values (i.e. lower SL for ASSIM_Tz_SSSAQ 



140 
 

versus ASSIM_Tz_SSSIS) are present in the western half of the Pacific at 8oN connecting 

negative values at 5oN, 140oW in the eastern half.  In the Southern Hemisphere, the 

negative values stretch across most the basin and the minimum is centered on 10oS, 

150oW.  The overall pattern of Figure 6.7b can be envisioned as a downwelling Kelvin 

wave being followed by an upwelling Rossby wave whereas Figure 6.5b and Figure 6.6b 

look more like an upwelling Rossby wave centered just east of the dateline.  

In order to examine the impact on ENSO forecasts, the temporal evolution of the 

mean forecast difference ASSIM_Tz_SSSIS minus ASSIM_Tz is presented.   For each 

month from August 2011 until February 2014 the average of all 1 month, 2 month, and so 

 
Figure 6.8:  Evolution of mean forecasts for ASSIM_Tz_SSSIS minus ASSIM_Tz. 
SST results for ASSIM_Tz_SSSIS minus ASSIM_Tz forecast means for a) 1 month, b) 2 
month, c) 3 month, d) 4 month, e) 5 month and f) 6 month forecast lead times averaged 
over all start months, August 2011 to February 2014.   Units are in oC. 
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on to 6 month forecast differences are presented for SST (Figure 6.8a-f).    Recall that 

Figure 6.4a showed that ASSIM_Tz_SSSIS had improved forecast validation with respect 

to ASSIM_Tz only after 7 months.  The evolution of the mean forecast differences 

provides an explanation about the reason for this lead time in NINO3 forecast 

improvement.  In month 1, SST in the NINO3 region for ASSIM_Tz_SSSIS is warmer 

than for ASSIM_Tz with SST differences as large as 0.3oC (Figure 6.8a).  The negative 

differences over the central Pacific straddle the equator with values lower than -0.3oC, 

but dissipate with time.  On the contrary, the once-positive values in the NINO3 region 

have cooled with values reduced to near 0oC (Figure 6.8f).  

 
Figure 6.9:  Evolution of mean forecast for ASSIM_Tz_SSSAQ minus ASSIM_Tz. 
SST results for ASSIM_Tz_SSSAQ minus ASSIM_Tz forecast means for a) 1 month, b) 2 
month, c) 3 month, d) 4 month, e) 5 month, and f) 6 month forecast lead times averaged 
over all start months, August 2011 to February 2014.   Units are in oC. 
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Similar plots for ASSIM_Tz_SSSAQ minus ASSIM_Tz (Figure 6.9) show a more 

dramatic story.  Propagation from the central to eastern Pacific and amplification in the 

eastern Pacific is readily apparent (resembling La Niña cooling).  For SST (Figure 6.9a-f) 

the time sequence looks very much like an upwelling Rossby wave reflecting at the 

western boundary into an upwelling Kelvin wave arriving at the eastern boundary in 

month 6 (Figure 6.9f).  For Figure 6.9a the NINO3 SST starts out weak and near 0.oC in 

month 1.  As time progresses, the negative differences drop in month 6 (Figure 6.9f) with 

contours as low as -0.35oC.  Also note that the coolest contours arrive in the eastern 

tropical Pacific at the very time when the coupled forecast begins to show significant 

improvement from Figure 6.4a, b in month 5.  As we shall see, the impact of satellite SSS 

assimilation is to pull the forecast more towards the observed weakly negative conditions 

rather than towards an El Niño condition as is the tendency without SSS assimilation. 

Another way to envision the relative impact of SSS assimilation is to examine the 

longitude versus time history of the equatorial mean of the differences averaged over all 

start months.  Figure 6.10 shows the Hovmöller plot averaged within 2o of the equator for 

SST and the resulting differences in zonal wind stress anomaly from the coupled model 

statistical atmospheric model (SAM).  Figure 6.10a shows that early in the mean forecast, 

ASSIM_Tz_SSSIS minus ASSIM_Tz SST is positive east of 135oW peaking at 110oW 

prior to month 3.  By month 5 the positive values have diminished and after month 7 the 

values in the NINO3 region begin to turn negative.  In the central Pacific, the negative 

values of SST centered at the dateline dissipate from months 6 to 9.  The corresponding 

plot of zonal wind stress (TAUX) is presented in Figure 6.10b.  As expected, winds react 

to the SST differences by converging into warm water and diverging from cold SST   
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differences.  During the strongest west-to-east zonal gradient from month 0 to month 5, 

westerly winds, just to the west of the warmest water, converge into the NINO3 region 

and easterly winds just to the west of the coldest differences are seen west of the dateline.  

In this case, the downwelling signal associated with the east Pacific SST gradient should 

somewhat offset any western Pacific upwelling signal.  However, this coupling in the east 

breaks down by month 6 and the winds die down leaving the NINO3 region slightly 

cooler for the ASSIM_Tz_SSSIS experiment versus ASSIM_Tz.   After forecast lead time 

of 5 months the relatively cooler waters in the central and eastern Pacific are reinforced 

by weak easterlies east of the dateline. 

 
Figure 6.10:  Hovmöller plots of mean forecast evolution. Equatorial Indo-Pacific 
longitude versus time sections for forecast mean of ASSIM_Tz_SSSIS minus ASSIM_Tz 
for a) SST and b) zonal wind stress within 2o of the equator.  The x-axis is longitude 
and the y-axis is forecast lead time (increasing length forecasts up).  On the right is the 
same for ASSIM_Tz_SSSAQ minus ASSIM_Tz for c) SST and d) zonal wind stress.   
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The forecast trajectory is quite different for the longitude-versus-time plots of the 

ASSIM_Tz_SSSAQ minus ASSIM_Tz results in Figure 6.10c (SST) and Figure 6.10d 

(TAUX).  Here the small area of positive SST differences in the NINO3 region vanishes 

by month 3.  In this case the upwelling in the west/central Pacific grows unencumbered 

by any downwelling signal in the east (as is the case for the ASSIM_Tz_SSSIS minus 

ASSIM_Tz).  As time progresses, negative values intensify so that by month 8 the 

negative values for ASSIM_Tz_SSSAQ minus ASSIM_Tz are less than -0.5oC.   Note that 

the start of the coldest anomaly in the NINO3 region, i.e. month 9, is the same forecast 

lead time that corresponds to the most significant improvement brought about by satellite 

SSS assimilation as seen in Figure 6.4a.  Not coincidentally month 9 also corresponds to 

the maximum relative upwelling signal below the mixed layer (not shown). The wind 

response shows weak easterlies at the beginning of the mean forecast period 

strengthening and migrating slightly eastward (from 170oE to roughly 170oW).  The 

coupled response of the ASSIM_Tz_SSSAQ minus ASSIM_Tz is typical of a relative 

growing La Niña pattern. 

In summary, the general impact of the assimilation of SSS during this period is to 

cool the NINO3 region.  Figure 6.8f, Figure 6.9f, Figure 6.10a and Figure 6.10c all show 

that assimilation of SSS cools the eastern Pacific to some degree.   In particular, the 

assimilation of satellite SSS from Aquarius (ASSIM_Tz_SSSAQ) is more effective at 

cooling the NINO3 region than the in situ product.  

In order to highlight the impact of SSS assimilation on coupled forecasts, the 

mean forecast for all start months, August 2011 to February 2014, is presented.  Figure 

6.11 shows the NINO3 SST anomaly results for all coupled experiments discussed  
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previously (ASSIM_Tz – black solid, ASSIM_Tz_SSSIS – blue dash, and 

ASSIM_Tz_SSSAQ – red dotted).  In addition, we present the dynamical model mean 

from the IRI web site (http://iri.columbia.edu/climate/ENSO/currentinfo/archive/ 

index.html – solid green line) for the NINO3.4 region (5oN-5oS, 120oW-170oW) and 

NOAA operational forecast results, CFSv2, for all forecasts initiated for the Aquarius 

period.   Although referring to a slightly different region, these results are included to 

show general features of community forecasts and the specific example of the national 

forecast (i.e. CFSv2) for this period.  All our HCM results along with the IRI mean and 

CFSv2 tend towards warming over time in the eastern Pacific.  The extreme example of 

this is the mean forecast for ASSIM_Tz which rises past 0.4oC by 12 month forecasts.  

After 10 month lead forecasts, ASSIM_Tz_SSSIS is a slight improvement on ASSIM_Tz 

tending more towards the real observation mean of -0.25oC over this period (thin 

 
Figure 6.11:  Mean forecasts for different coupled experiments.  Mean forecast for 
NINO3 SST forecast anomaly (oC) from August 2011 to February 2014 for ASSIM_Tz 
(solid black), ASSIM_Tz_SSSIS (blue –dash) and ASSIM_Tz_SSSAQ (red – dotted).  In 
addition, the IRI dynamical model mean for NINO3.4 region is provided (solid green 
line to show the model consensus) along with  the NOAA operation model, CFSv2, 
results (green dash).  The one standard deviation about the mean for IRI is illustrated 
by the green error bars.  All these mean forecasts are normalized using the long-term 
mean, 1993-2013, for our HCM results and presumably 1970-2000 for IRI and CFSv2.  
The horizontal black dashed line corresponds to the mean observation anomaly over 
this period, -0.25oC. 

 

http://iri.columbia.edu/climate/ENSO/currentinfo/archive/%20index.html
http://iri.columbia.edu/climate/ENSO/currentinfo/archive/%20index.html
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horizontal black dashed line in Figure 6.11).  Overall the most realistic forecast is the 

ASSIM_Tz_SSSAQ result that overlays ASSIM_Tz until about 3 month forecast lead 

times.  After that, ASSIM_Tz_SSSAQ clearly diverges from ASSIM_Tz approaching the 

slightly negative mean conditions that prevailed over this period (i.e. -0.25oC).   In 

addition, this representation shows the clear bifurcation of the forecast trajectories for 

ASSIM_Tz_SSSAQ versus ASSIM_Tz_SSSIS.  The Aquarius assimilation tends more 

towards the cooler/neutral conditions after about 5 months, while ASSIM_Tz_SSSIS starts 

tending away from -0.25oC and more towards warmer NINO3 reiterating the timing and 

sense of the results of Figure 6.4a.  

6.3 Role of Aquarius Data Sampling 
 

The high correspondence between in situ and Aquarius observations ([Lagerloef 

et al., 2013]) would lead one to assume that the gridded fields of in situ SSS should look 

similar to the satellite SSS.  However, there are clear differences between the mean 

salinity patterns.  To address the question of whether the sampling of the relatively sparse 

in situ observations impacts the mean fields, the Aquarius Version 2.9.1 data have been 

subsampled along-track (i.e. Level 2 data) using the nearest collocation to available near 

surface in situ observations.  Data were rejected if any Aquarius radiometer flag failed at 

the moderate level (e.g. RFI, rain, land, ice, etc.) matching the validation data flagging of 

[Lagerloef et al., 2013].  Only the closest Aquarius data point was included if it fell 

within 1o and within the same day of the in situ observation.  After subsampling the 

Aquarius data at in situ observation times and locations, the data were gridded using the 

same technique as for the weekly in situ data.  The results of this OI of Aquarius data at 
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in situ collocations are presented for the mean and standard deviation in Figure 6.12a and 

b, respectively.  

 

The gridded fields of Aquarius SSS subsampled at in situ locations/times (Figure 

6.12a) reproduce much of the patterns found in the original Aquarius fields (Figure 6.2b).  

For example, the subsampled Aquarius product has positive SSS anomalies along 

theequator with the maximum just to the west of the dateline, negative values in the 

SPCZ (180o-100oW, 10oS-20oS), western Pacific (west of 160oE), in the IO, and at the 

eastern boundary of the Pacific at 5oN.   However, the mean for the subsampled OI of 

Aquarius is quite different from the original Aquarius data product along the equator 

especially in the eastern Pacific.  For the full Aquarius L3 data, the maximum of the 

NINO3 region is greater than 0.2 psu (Figure 6.2b).  In this same region, the subsampled 

product is more in line with the in situ product shown in Figure 6.2a having slightly 

negative values to the north and positive SSS anomaly to the south of the equator.  In 

other words, subsampling Aquarius data at the in situ locations fails to reproduce the key 

salty anomaly in the eastern Pacific.  Note that although visual inspection of the data 

coverage maps of the in situ locations reveals relatively consistent coverage from one 

 
Figure 6.12:  Gridded SSS for Aquarius subsampled at in situ locations/times.  SSS 
a) mean and b) standard deviation of OI anomalies of Aquarius along-track data 
subsampled at nearest collocation with in situ observations. 
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week to the next, the overall number of observations is small relative to Aquarius satellite 

coverage.  For example, only 5-8% of the bins have in situ data for the NINO3 region for 

any particular week.  Therefore, the general similarity between the subsampled Aquarius 

data (Figure 6.12a) and gridded in situ data (Figure 6.2a) suggests that differences 

between the full Aquarius gridded and in situ products are mostly due to the sparse 

distribution of in situ data. 

 

To test what relative impact the subsampled Aquarius product would have on 

ENSO predictions, we completed an additional assimilation experiment using the optimal 

interpolation product that subsampled Aquarius SSS at the in situ locations and times.   

Comparing the results of this experiment versus the full Aquarius gridded product would 

highlight the impact of satellite versus in situ data coverage and comparing the 

subsampled Aquarius against the in situ product would point out the impact of the 

 

 
Figure 6.13:  Validation of Aquarius subsampled at in situ locations. Validation of 
coupled model results for the Aquarius period, August 2011 to February 2014 using a) 
correlation and b) RMS versus observed NINO3 SST anomaly. Dashed blue curve is 
initialized from the experiment that assimilates weekly OI of all available near-surface 
salinity and subsurface temperature (ASSIM_Tz_SSSIS), solid black curve is the 
experiment that assimilates the OI of Aquarius data at the closest collocation with in 
situ and subsurface temperature (ASSIM_Tz_SSSAQ@IS) and the dotted red curve is 
initialized using weekly gridded Aquarius SSS and subsurface temperature 
(ASSIM_Tz_SSSAQ).  The thick red (blue) lines on the top x-axis show where the 
ASSIM_Tz_SSSAQ (ASSIM_Tz_SSSAQ@IS) is significantly bigger than 
ASSIM_Tz_SSSAQ@IS (ASSIM_Tz_SSSIS) using the Steiger-Z test. 
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different data sources.  The subsampled-Aquarius at in situ locations experiment is 

abbreviated as ASSIM_Tz_SSSAQ@IS (for Aquarius at in situ locations).  Just like the 

other experiments, the assimilation results were used as initial conditions and the coupled 

experiments were run for 12 months for each month from August 2011 until February 

2014.  The results indicate that ASSIM_Tz_SSSAQ@IS is degraded with respect to the 

ASSIM_Tz_SSSAQ experiment.  For correlation, the ASSIM_Tz_SSSAQ@IS and 

ASSIM_Tz_SSSAQ are indistinguishable until about 6 months (Figure 6.13a).  After that 

time the Aquarius subsampled SSS product (ASSIM_Tz_SSSAQ@IS) is significantly 

degraded for all lead times.   The Steiger Z test indicates that the significance of the 

difference exceeds the 95% confidence limits (thick dashed red line on the top x-axis on 

Figure 6.13a).  On the other hand, the subsampled Aquarius gridded product 

(ASSIM_Tz_SSSAQ@IS) has a higher correlation than the in situ product 

(ASSIM_Tz_SSSIS) after 6.5 month forecast lead time.  Again the Steiger Z test indicates 

that ASSIM_Tz_SSSAQ@IS is higher than ASSIM_Tz_SSSIS and the significance of the 

differences generally exceed 95% from 6.5 to 10 month lead times (thick blue line on top 

x-axis in Figure 6.13a).  The RMS differences presented in Figure 6.13b reiterate the 

conclusion that the subsampled Aquarius product has forecast statistics that are degraded 

with respect to ASSIM_Tz_SSSAQ, but still outperform the ASSIM_Tz_SSSIS.  Therefore, 

we conclude that both the spatial resolution afforded by satellite SSS and the quality of 

individual Aquarius observations is what makes initialization of Aquarius superior to the 

in situ product for coupled predictions.  However we note that the degraded Aquarius 

product is still superior to the in situ results. 
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6.4 Summary of Impact of SSS 
 

To summarize, adding SSS to Tz assimilation generally improves the forecast skill 

of coupled forecasts versus observed NINO3 SST anomalies.  Correlation is improved 

when the in situ SSS product is assimilated (i.e. ASSIM_Tz_SSSIS).  In addition, when 

Aquarius SSS is assimilated into the initial conditions (ASSIM_Tz_SSSAQ), both the 

correlation and RMS are improved with respect to the ASSIM_Tz experiments.    When 

testing the relative improvement of SSS assimilation, satellite SSS outperforms in situ 

SSS for correlation with the significance of the differences exceeding 95% for months 6.5 

to 10.5 and RMS is lower for all lead times after 5 months.    

In general, SSS assimilation gives cool, upwelling in the central Pacific which 

manifests as an upwelling Rossby wave.  This feature is consistent for both experiments 

that assimilate SSS and is present in the initial conditions for ASSIM_Tz_SSSIS (Figure 

6.5b, c) and for ASSIM_Tz_SSSAQ (Figure 6.6b, c).  For example, the relative upwelling 

(i.e. ASSIM_Tz_SSSAQ – ASSIM_Tz) is strong and positive early in the mean forecast 

whereas ASSIM_Tz_SSSIS – ASSIM_Tz is near zero at the base of the mixed layer.  After 

month 2 lead times, the vertical velocity is positive (i.e. upwelling) for both SSS 

assimilation scenarios relative to ASSIM_Tz with Aquarius tending towards stronger 

upwelling than in situ SSS assimilation.  As the forecast develops, this upwelling signal 

makes its way to the NINO3 region (Figure 6.8, Figure 6.9a-f) where it reduces the 

tendency for the HCM to forecast too-warm NINO3 SST anomalies.  This tendency for 

warm NINO3 forecast is not only a problem for our ASSIM_Tz forecasts, but is also 

habitual for coupled models in general as is evident by the warm forecasts for the IRI 
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dynamic mean and the CFSv2 results in Figure 6.11 (solid, dashed green line, 

respectively).   

The two SSS assimilation experiments differ in that the eastern Pacific is 

relatively warmer for ASSIM_Tz_SSSIS than ASSIM_Tz_SSSAQ (compare Figure 6.10a 

to c) at the forecast initialization.  Thus the more intense SST gradient for 

ASSIM_Tz_SSSIS from the dateline to the eastern boundary leads to stronger westerlies 

and a relative downwelling signal (compare Figure 6.10b to d).  This downwelling signal 

offsets the upwelling in the central Pacific leading to a muted cooling for 

ASSIM_Tz_SSSIS with respect to ASSIM_Tz_SSSAQ for the NINO3 region (see Figure 

6.10a and c).  Another way to look at it is that ASSIM_Tz_SSSAQ has a larger east to west 

SST gradient (see especially Figure 6.7c) leading to enhanced easterlies, enhanced 

Bjerknes coupling, and more intense NINO3 upwelling. Therefore, the mean forecast for 

ASSIM_Tz_SSSAQ is closer to the observed conditions than ASSIM_Tz_SSSIS due to this 

enhanced cooling in the eastern Pacific (Figure 6.11) counteracting the general tendency 

towards warm ASSIM_Tz NINO3 for this period.   

So why it is that ASSIM_Tz_SSSAQ has cooler SST in the NINO3 region and 

warmer SST in the far west than ASSIM_Tz_SSSIS?  As is shown in Figure 6.2c and 

Figure 6.7a, Aquarius SSS is saltier in the eastern Pacific and fresher in the far western 

Pacific.  In the NINO3 region this relatively high SSS leads to a density increase and 

decreased buoyancy forcing.   Vertical mixing is increased leading to increased 

entrainment of cold water from the bottom of the mixed layer resulting in decreased SST 

in the NINO3 region.  In the west, the opposite is true.  Relatively fresher SSS leads to 

increased stratification decreased mixing, and warmer SST when Aquarius SSS is 
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assimilated.  The increased east to west SST gradient at the initialization of the forecasts 

leads to broadly enhanced easterlies for the forecast period and enhanced upwelling in the 

east. 

Lastly, the relative impact of the spatial sampling versus the observation quality 

of Aquarius was tested against in situ observations by producing a subsampled version of 

the Aquarius data.  These plots showed that the subsampled Aquarius outperformed the in 

situ results but was degraded with respect to the full Aquarius gridded product.   
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7 Summary and Conclusions 

 

Variations in El Niño/Southern Oscillation (ENSO) impacts atmospheric and 

oceanic circulation across the globe (e.g. [Ropelewski and Halpert, 1987]) and so has 

widespread socioeconomic ramifications ( [Glantz, 2001]).  Therefore, it is a worthwhile 

goal to try to better understand the factors influencing ENSO predictability.  In 2014 

coupled forecasts called for a strong El Niño matching the unprecedentedly strong 1997 

event.  However, operational forecasts such as CFSv2 predicted ~2.5oC for the NINO3.4 

SST’ for November from April 2014 but did not validate as an El Niño peaking only at 

0.6oC [Zhu Jieshun et al., 2016].  [McPhaden, 2015] and [Santoso et al., 2015] suggested 

that the fundamental reason for this suboptimal forecast was that air/sea coupling and 

precipitation did not follow the strong SST anomalies in the central Pacific as envisioned 

by [Bjerknes, 1969] and one factor that may have been important was that precipitation 

anomalies in the Pacific were anchored near the Maritime Continent due to the influence 

of the IO.  Another factor that may impact this recent forecast is the inadequate validation 

of precipitation in operational coupled models.  In particular , [Wang et al., 2010] showed 

that CFSv2 was particularly poorly validated in the western Pacific and regions of large-

scale atmospheric convergence.  Therefore, we further explore how the IO may influence 

ENSO predictability and examine if sea surface salinity can provide surrogate 

information for less-than-ideal coupled model precipitation.   

Although operational modeling groups now generally use global model 

configurations, the contribution of various ocean basins, particularly the IO, has yet to be 

fully explored.  For example, the ITF is relatively poorly resolved in ocean models (e.g.  
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Table 7.1:  Dissertation Summary:  Summary of all hypothesis components covered 
in this dissertation.  

Hypothesis 
Tested Technique ENSO 

Validation Impact on ENSO  Comments 

Oceanic 
impact of IO 

improves 
ENSO 

predictions 

IP_OPEN minus 
IP_NOITF 

Weak positive 
impact (not 

significant) on 
ENSO 

correlation after 
3 month lead  

times 

IP_OPEN has 
improved 

variability for both 
NINO3 and 

NINO3.4 regions 
due to a shallower 

MLD for the 
IP_OPEN case 

If the IP_NOITF 
bias is imposed 
on IP_OPEN 
initialization, 

the validation is 
significantly 

degraded 

Atmospheric 
impact of IO 

improves  
ENSO 

predictions 

Fully coupled for 
Indo-Pacific minus 

IO atmosphere 
decoupled from 

ocean  

ENSO 
predictions are 
significantly 
improved 3-9 
months with 

peak 
improvement at 
7  month lead 

times 

IO atmospheric 
coupling increases 
NINO3 mean after 
3 months with peak 

at 7 month lead 
times 

Off-equatorial 
large-scale 

downwelling 
curl in the 

Pacific leads to 
downwelling 
Kelvin wave 

warming 
entering NINO3 

region with 
maximum 

warming for 7 
month forecasts 

Data 
assimilation in 

the IO 
improves 

ENSO 
predictions 

Full assimilation of 
SL, SST, SSS, Tz, 

Sz in the Indo-
Pacific minus 

assimilation only in 
Pacific 

ENSO 
predictions are 

slightly 
improved (not 

significant) 
after 5 months 

Significant cooling 
in NINO3 mean 
(cooling by as 
much as 0.2oC) 

Basin-scale 
warming in the 

IO leads to 
enhanced trades 

in the Pacific 
and La Niña-
like Bjerknes 

coupling  

Assimilating 
SSS improves 

ENSO 
predictions 

Assimilate SSS 
minus without  

SSS assimilation  
 

1) Assimilating 
any in situ or 
satellite SSS 
significantly 

improves ENSO 
skill after 5 

months 
2) satellite 

significantly 
outperforms in 

situ SSS 

Including SSS 
impacts mixed 
layer density 

serving to enhance 
upwelling near the 

dateline, which 
propagates to the 
east, eventually 

cooling the NINO3 
region offsetting 

the pervasive 
warming for this 

period 

Satellite 
outperforms in 
situ SSS due to 
both Aquarius 

observation 
quality and 
improved 
satellite 

sampling 
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GODAS with 1/3o resolution and a single ITF passageway) as part of operational coupled 

model systems and so the impact of the oceanic contribution of the IO may be 

suboptimal.  In addition, observations of the ITF are sparse (due to Argo grounding and 

mooring vandalism) and so the model ITF flow is poorly validated ([Susanto and Song, 

2015]).   In addition, constraining near-surface density using satellite SSS is still largely 

unexploited within operational coupled models.  Therefore, the potential for in situ and 

Aquarius SSS to improve coupled forecasts is also assessed.  

The IO impacts ENSO via an oceanic pathway through variability of the 

Indonesian Throughflow (ITF) as well as by forcing atmospheric teleconnections 

modulating the Walker circulation across the entire Indo-Pacific region.  Rather than 

attempting to track the air/sea coupling and the impact of fresh water flux over the Indo-

Pacific using  model forecast precipitation (which is known to be suboptimal e.g. [Wang 

et al., 2010]), we test the potential for improving ENSO forecasts by constraining near-

surface density by specifying sea surface salinity (SSS) using data assimilation.  The 

main results of the oceanic impact via the ITF, the atmospheric teleconnections of the IO, 

and the impact of data (including SSS) in the IO on ENSO hindcasts are summarized in 

Table 7.1 

Previous work of [Santoso et al., 2011] and [Kajtar et al., 2015] comparing 

experiments with open ITF versus artificially closed ITF indicate that changes in ENSO 

variability are due to differing fetch of the Bjerknes coupling and the highest variability 

shifts eastward from NINO3.4 to NINO3 regions when closing the ITF.  These results 

point out the potential of the ITF circulation to help improve ENSO predictions.  
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Following a similar methodology but in predictive mode, we find that the oceanic impact 

of the ITF is to slightly improve coupled forecast validation as validated by observations.  

Although this impact of the open ITF circulation is not significant for correlation 

validation, the strong model biases, with versus without the ITF circulation, help to 

explain that the ENSO forecast variability is significantly stronger for the ITF open case 

(as much as a 20% increase in the variability) and better matches the observed values.  

When the ITF is open, warm and fresh water drains from the Pacific, shoaling the MLD, 

and amplifying the impact of wind stress on large-scale oceanic Kelvin and Rossby 

waves.  Thus, we conclude that a shallower MLD in the IP_OPEN case is the cause of the 

improved variability and not the extended fetch of Walker circulation.   

Judging by the substantial impact of the ITF on ENSO variability, a major 

recommendation for the oceanographic community and operational centers would be to 

optimize technology to better observe the ITF.  For example, incorporation of high 

resolution altimetry into ocean data assimilation procedures could be used to improve 

estimation of the flow of the ITF.  The Surface Water & Ocean Topography (SWOT – 

expected to be launched in 2020) will provide cross-track, high resolution (120 km swath 

and roughly 10 km resolution) sea level.  These observations will provide high enough 

resolution SL to estimate geostrophic currents within the Indonesian Seas providing 

observations to validate model simulations and data to improve data assimilation 

reconstructions of the ITF.  Currently no such in situ data exist ([Susanto and Song, 

2015]), so satellite observations such as these should be included in operational coupled 

data assimilation initialization (as they become available) to provide improved 

observational coverage of the ITF.   
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Another key potential source of improvement for ENSO predictions is the impact 

of atmospheric teleconnections originating from the IO.  In order to isolate the impacts of 

atmospheric teleconnections from the IO to the Pacific, several previous researchers (e.g. 

[Wu and Kirtman, 2004]) contrasted experiments that allow coupling throughout the 

Indo-Pacific region with those that only allow coupling in the Pacific and decouple the IO 

by utilizing climatological SST forcing in the IO.  However, they only go as far as to 

characterize ENSO in general terms and simplify the atmospheric impact using linear 

atmospheric models and idealized SST anomaly forcing patterns.  They generally find 

that Pacific wind anomalies, generated by idealized IODZM SST anomaly patterns tend 

to cancel one another.  For example, opposite sign SST anomaly in the western and 

eastern IO generate atmospheric Kelvin waves that tend to cancel one another.  On the 

other hand, idealized basin-scale anomalies in the IO, force opposite sign wind anomalies 

in the Pacific.  For example, negative SST in the IO generate prevailing westerlies 

between 20oS to 20oN in the Pacific (see e.g. [Wu and Kirtman, 2004] and Figure 1.6a, 

d).   However, coupled experiments described herein that are initialized with the full 

observed SST forcing and utilize a nonlinear atmosphere indicate that this atmospheric 

response in the Pacific to interannual IO forcing has more details.  Like earlier authors, 

we find that winds are weak westerly between 10oS to the equator for the differences 

between coupled minus decoupled IO forced experiments.  However, unlike preceding 

research, trade winds are enhanced off the equator and strong easterlies prevail between 

30oS to 15oS and the equator to 25oN.   The differences between the previous linear 

atmospheric model and our AGCM (i.e. SPEEDY) results may be due to either 

simplification of IO forcing, displacement of precipitation (and heating) to the east with 



158 
 

no compensating anomaly, or most likely, the convective momentum transport in 

SPEEDY.  These off-equatorial winds have profound impact in that they generate wind 

stress curl that act to amplify the oceanic Rossby wave signal which eventually impact 

the eastern Pacific by way of reflected Kelvin waves.   

Differences between coupled experiments show that including the impact of 

interannual teleconnections from the IO have significantly higher ENSO correlation 

(exceeding the 95% significance level from 3-9 months) and lower RMS validation 

statistics.  The reason for this is a combination of equatorial and off-equatorial coupling 

that eventually warms the NINO3 region.  Early in the forecast period, prior to 3 month 

lead times, equatorial upwelling in the western Pacific weakly cools the NINO3 region 

via propagation of upwelling Kelvin waves.  After that time, off-equatorial downwelling 

favorable curl in the western Pacific helps to amplify the transition from cooling to 

warming in the NINO3 region by way of reflected downwelling Rossby to downwelling 

Kelvin waves.  Downwelling Kelvin waves, amplified by equatorial convergence, warm 

the eastern Pacific and improve correlation validation after 3 month lead times with 

respect to observations.  The improvement in correlation peaks at 7 months which 

corresponds with the time it takes for the transmission of the reflected downwelling 

Rossby wave to reflect into the downwelling Kelvin wave then to propagate across the 

Pacific into the NINO3 region.  Therefore, a main conclusion from these results is that 

the interannual variability of IO SST forcing is responsible for overall somewhat lagged 

widespread downwelling in the Pacific, assisted by off-equatorial curl, leading to warmer 

NINO3 SST anomaly and improved validation after 3 month lead times. 
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Currently ENSO forecast discussions (e.g. http://origin.cpc.ncep.noaa.gov/ 

products/GODAS/ocean_briefing_gif/global_ocean_monitoring_current.ppt ) include 

descriptions of large-scale ocean waves present in the initialization of coupled forecasts.  

However, these discussions only assess the state of the oceanic Kelvin wave (using the 

Ocean Kelvin Wave Index, an extended EOF technique) and this would suggest a lack of 

emphasis on off-equatorial processes in coupled model initialization.  On the contrary, 

the results of the impact of the teleconnections from the IO to the Pacific (i.e. Section 4) 

presented herein demonstrate the important significance of the off-equatorial processes 

that generate oceanic Rossby waves.  Therefore, we recommend that the impact of the 

Rossby waves on ENSO should be included in forecast discussions.  We have shown that 

the impact of the IO atmospheric teleconnections to ENSO significantly improve coupled 

forecasts from 3-9 month lead times so these off-equatorial processes should be 

considered/included as an important ENSO forecast tool.    

In addition to assessing the oceanic pathway and atmospheric teleconnections of 

the IO to ENSO, the impact of observations in the IO is tested for the first time.  The 

main feature for the impact of all available satellite and in situ observations in the IO is 

the strong basin-scale warm SST anomaly in the subtropical southern IO at initialization.  

This SST anomaly forces an atmospheric Kelvin wave signal that enhances easterly 

winds of the Walker circulation in the Pacific especially west of the dateline.  These 

easterly winds drive upwelling oceanic Kelvin waves that propagate to the east eventually 

serving to cool the NINO3 region.  After 3 month forecasts, the IO SST anomaly 

dissipates.   However, the east-to-west temperature gradient in the Pacific is enhanced 

due to upwelling and associated cool SST reaching the far eastern Pacific.  At that same 

http://origin.cpc.ncep.noaa.gov/%20products/GODAS/ocean_briefing_gif/global_ocean_monitoring_current.ppt
http://origin.cpc.ncep.noaa.gov/%20products/GODAS/ocean_briefing_gif/global_ocean_monitoring_current.ppt
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time, off-equatorial downwelling curl serves to warm the western Pacific.  When 

comparing the experiment that accounts for all available observations in the IO and the 

one that masks assimilation in the IO, the net result is that the validation statistics, 

correlation and RMS, are slightly (not significantly) improved.  However, the mean 

forecast anomaly is dramatically reduced (by about 0.2oC) and the full IO assimilation 

experiment is in better agreement with observed values.   Thus, more accurate attribution 

of the warming SST trend in the IO via data assimilation of all available observations 

leads to cooling the NINO3 region and slightly improved ENSO validation.   

Besides assessing ENSO predictability, a better understanding of the upstream 

influence of the Indian Ocean sector may also shed light on longer time-scale Indo-

Pacific interactions.   For example, [Lee et al., 2015] used output of an ocean model 

(CESM1 - [Danabasoglu et al., 2012]) and observations from the World Ocean Atlas 

2013 ([Locarnini et al., 2013]) to investigate the impacts of decadal change in the Pacific.   

The global ocean heat content for 0-700 m (OHC700) from observations and the model 

has steadily increased over the last three decades ([Lee et al., 2015]).  Although the 

Pacific OHC700 rose steadily from 1983 until 2003, it actually decreased in the latest 

period from 2003-2012 corresponding to the multiple occurrences of La Niña.  On the 

other hand, the IO OHC700 was steady and near zero prior to 2003 but it rose dramatically 

from 2003 until 2013.   The ocean model budget analysis of OHC700 in the IO indicates 

that the primary driver of the warming was the horizontal advection term leading to the 

conclusion that ITF transported excess heat in the latest decade from the Pacific to the IO 

via the ITF.  Our model (i.e. IP_OPEN) shows that ITF trend is -0.04 Sv/yr where 

negative values indicate an increase in the normal westward ITF flow.  In addition, 
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observations of the ITF generally support the idea of increased ITF transport over time.  

The observed ITF from 2004-2006 of ~15 Sv ([Sprintall et al., 2009]) was greater than 

that estimated to be 10.8 Sv ([Vranes et al., 2002]) in 1997 (but the ITF is known to be 

weak during El Niño).   In summary, [Lee et al., 2015] show that the latest hiatus in 

Pacific warming is due to an increase in ITF flow transporting an increased amount of 

warm water from the Pacific and storing it in the top 700 m of the IO.   This matched our 

results to the extent that the impact of the ITF was to cool the NINO3 region.     

A better appreciation of the role that observations in the IO sector and inter-basin 

teleconnections play may also improve our understanding of decadal time-scale Indo-

Pacific interactions.  For example, [Luo et al., 2012], found that the IO was warming 

faster than the Pacific from 1983-2013 (0.1oC/decade versus 0.037oC/decade, 

respectively) using NOAA SST [Reynolds et al., 2002].  In addition, for 1993-2014 

Pacific easterlies have intensified (i.e. Figure 3.7 trend = -6x10-3 N/m2/yr with 99.9% 

significance using a Monte-Carlo technique) over the tropical Pacific trending towards La 

Niña conditions with cooler SST in the NINO3 region (trend = -0.05oC/yr).  Thus, 

changes in the last decade (i.e. 2000-2009 anomaly with respect to 1983-2006) resemble 

La Niña with increased Walker circulation, increased thermocline slope, and enhanced 

upwelling in the eastern Pacific and cooler NINO3 SST [Luo et al., 2012].  This paper 

used a similar methodology as our impact of observations experiments (they assimilated 

the observed SST trend into their coupled model for the IO between 20oN-20oS, and 

relaxed to climate conditions elsewhere) and found a similar result as Section 5, namely 

that adding the observed warming trends in the IO SST for 2000-2013 lead to enhanced 

easterlies in the western Pacific, and La Niña-like response.  They also performed 
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experiments using prescribed SST trends in the IO varying from 0.025 to 0.1oC/decade, 

representing a range of warming differences between the IO and Pacific.   Again multi-

decadal warming differences between the IO and the Pacific enhance the Walker 

circulation and produce a La Niña–like state.  Our results from Section 5 and these results 

from [Luo et al., 2012] confirm that the IO/eastern Pacific SST differences in the trends 

are the likely cause of the predominant La Niña state for the recent decade.   

Recent theory has suggested the general circulation, including the Walker 

circulation, would weaken under a global warming scenario (e.g. [Vecchi et al., 2006]).  

However, analysis of recent coupled climate models suggests that this is not the case.  

For example, [Luo et al., 2012] examined 163 CMIP3 and CMIP5 with various 

greenhouse gas forcing and representative concentration pathways (RCP) scenarios.  

They found that Pacific warming was proportional to anthropogenic forcing but there was 

no clear relationship between anthropogenic forcing and Pacific trades.  However, they 

found that there was a strong relationship between the temperatures in the eastern Pacific 

(200-280oE, 20oS-20oN) minus the IO SST (40oE-120oE, 20oS-20oN) trends and the trend 

of the Pacific trades (150oE-240oE, 10oS-10oN).  Therefore, under climate change 

scenarios, Pacific wind changes, the strength of the Walker circulation, and ENSO are 

related to the gradient of SST between the IO and the eastern Pacific rather than the 

global SST trends.   

Besides the contribution of downstream influence of the IO, the improved 

characterization of mixed layer density via prescription of SSS plays an important role in 

ENSO predictability.  In a series of coupled experiments, the impact of SSS is assessed 

for the Indo-Pacific region.  Any SSS product, either in situ or Aquarius satellite, 
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significantly improves coupled forecasts with respect to a coupled experiment that lacks 

SSS assimilation.  The mechanism that allows SSS to improve coupled forecasts is 

described in the following:  SSS assimilation improves the near-surface density field.  

Relatively saltier/denser water straddling the equator in the central Pacific near the 

dateline results in enhanced mixing leading to cooler SST in the central Pacific.  This 

cooler water first migrates west as an upwelling Rossby wave then reflects as an 

upwelling Kelvin wave propagating to the east. Once these Kelvin waves arrive in the 

NINO3 region, Bjerknes feedback takes hold leading to substantially cooler NINO3 SST 

anomalies.  During this period, the IRI dynamic model mean, CFSv2 operational 

forecasts, and our forecast lacking the influence SSS (i.e. ASSIM_Tz) show a warming 

trend over the mean forecast (see Figure 6.11).  Thus, the beneficial impact of Aquarius 

SSS assimilation is to improve the mixed layer density, enhance mixing, and setting off 

upwelling that eventually cools the eastern Pacific after 6 months, counteracting the 

pervasive warming and improving ENSO validation.   Aquarius data are more efficient at 

improving the coupled forecasts than the OI of in situ SSS due to both the quality of the 

individual observations and the spatial and temporal resolution advantage of the satellite 

SSS.      

In order to put these impacts of SSS assimilation into the perspective of global 

operational coupled models that typically do not include the impacts of SSS, our coupled 

experiments, with minus without Aquarius assimilation, are compared to the 

observational/CFSRR bias.   Exploiting the CFSRR product as an example of an 

operational model is justified since it uses the same version of the coupled model, i.e.   
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CFSv2 as the current operational setup at NCEP except the Reanalysis 2 state is used for 

initialization.  (The CFSRR model is detailed in Section 2.2.4.) 

Figure 7.1 shows the impacts of Aquarius assimilation for SSS and density (top) 

versus the observational bias of the CFSRR model (bottom).   For ease of comparison, 

the operational coupled model bias plots are formulated such that the sign matches the 

sense of the coupled model difference plots for those with SSS (i.e. observations and 

ASSIM_Tz_SSSAQ) minus those without SSS (i.e. CFSRR and ASSIM_Tz).  Although 

the observation/CFSRR biases are displaced somewhat southward and correspond to a 

 
Figure 7.1:  Impact of SSS and operational model biases. Top panels show impact 
of including SSS in initialization for 1 month SPEEDY forecast differences, 
ASSIM_Tz_SSSAQ – ASSIM_Tz for a) SSS and b) density in the mixed layer for Sep. 
2011 – Oct. 2014.  Bottom panels show the corresponding observational/CFSRR 
([Saha et al., 2014]) model biases for Jan. 1993 – Mar. 2011.  The mixed layer 
density observations are derived from the 10 m OI of salinity and temperature from 
all available in situ observations (see Section 2.1 for details).  Also note that the color 
scale for d) is twice that of b).    
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different period, our results from the top panels generally contain similar features as the 

operational model biases (bottom panels).   For both, fresh SSS differences span most of 

the Pacific between the equator and 10oN.  In addition, both Figure 7.1a and Figure 7.1c 

have negative values over the southwest subtropical Pacific in the region of the SPCZ.  

For density, the impact of SSS (Figure 7.1b) looks similar to the 

observational/CFSRR biases (Figure 7.1d) as well.  For example, the negative zonal band 

under the ITCZ and SPCZ are common to both.  Most importantly the key region with 

positive density differences near the dateline (roughly 160oE-140oW, 5oS-5oN) is evident 

in both figures.  Recall that this positive density feature for the impact of Aquarius results 

(Figure 6.6b) is the driving impetus behind enhanced mixing and upwelling of cold water 

to the surface that eventually makes its way to the eastern Pacific and improves the 

coupled forecasts (as discussed in the previous Section 6.2).  Also it is important to note 

that the CFSv2 forecast results have an unrealistic warming trend for the NINO3 region 

(i.e. green dashed line Figure 6.11).  Since the CFSv2 model generally drifts towards too 

warm NINO3 SST anomalies, SSS assimilation cools the eastern Pacific, and our coupled 

model differences caused by SSS assimilation look similar enough to the 

observation/CFSRR biases, we are encouraged to believe that SSS assimilation will 

improve the CFSv2 ENSO forecasts.   Therefore a major prediction of this dissertation is 

that operational coupled models will benefit from imposing an improved fresh water flux 

by specifying SSS, constraining near-surface density, and cooling the NINO3 region, 

offsetting the pervasive and unrealistic warming of the operational CFSv2 model 

forecast.    
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Finally, the purpose of this dissertation is to test the hypothesis that the upstream 

influence of the Indian Ocean, through the oceanic flow of the ITF, the atmospheric 

teleconnections forced from the IO to the Pacific, and observations in the IO, all play an 

important role in extending useful ENSO predictions.  In addition, improving the fresh 

water flux estimation by assimilating sea surface salinity in the Indo-Pacific region 

improves the near-surface ocean quantities, such as density, leading to better ENSO 

predictions.   Each principle of this hypothesis has been isolated by comparing coupled 

experiments with and without each particular feature and these results have been 

validated using correlation and RMS against NINO3 observations.  For example, the 

impact SSS has been isolated by validating experiments with SSS assimilation versus  

 

 
 
Figure 7.2:  Summary of impacts of IO and satellite SSS assimilation. This Figure 
shows differences for a) correlation and b) RMS NINO3 validation between the various 
experiments designed to isolate the IO oceanic impacts of the ITF (i.e. IP_OPEN – 
IP_NOITF – green for 1993-2014), the atmospheric teleconnection of the IO to ENSO 
(i.e. INT_PAC, INT_IO – INTPAC_CLIMIO – blue dash for 1993-2014), impact of 
assimilation in the IO (i.e. ASSIM_SL_SST_SSS_Tz_Sz - 
ASSIM_SL_SST_SSS_Tz_Sz_MASKIND – black dotted for 2002-2014) and impact of 
Aquarius SSS assimilation (i.e. ASSIM_ Tz _SSSAQ – ASSIM_Tz – red line for Aug. 
2011-Feb. 2014). For example, the green curve represents the differences, IP_OPEN 
minus IP_NOITF curves in Figure 3.8.  For correlation, positive differences 
correspond to ENSO validation improvement. Especially thick sections denote 
differences which pass the 95% significance test using the Steiger Z technique.  For b) 
RMS values below zero represents improvement brought about by the various impacts 
of the IO or SSS. 
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those without SSS assimilation (i.e. in Figure 6.4).   A convenient way to visualize and 

summarize all the impacts of the various principles is to simply difference the correlation 

that includes the impact of a particular component minus the correlation lacking it.  Any 

correlation difference greater than zero would mean that particular component would 

improve ENSO forecasts.  For example, the ASSIM_Tz_SSSAQ – ASSIM_Tz correlation 

differences correspond to the red line in Figure 7.2.  If this red line is above zero that 

would mean that ASSIM_Tz_SSSAQ has higher correlation so the impact of SSS is to 

improve ENSO forecast predictability.  In a similar way, any line below zero for the 

RMS differences would mean that particular component improves ENSO forecasts.  

Examination of Figure 7.2a and b shows that mostly all the components positively 

enhance ENSO predictability.   In other words, mostly all the lines fall above for 

correlation and below the zero line for RMS. Although the various contributions of the 

IO generally account for ENSO predictability improvements, the biggest contributor is 

clearly the impact of specifying fresh water flux via salinity assimilation that significantly 

improves correlation by as much as r=0.4 and almost 0.5oC for RMS at around 9 month 

forecast lead times.  So in summary, the hypothesis that the influence of the IO region 

and SSS improves coupled ENSO predictability has been affirmed.   

Global operational coupled models now include the impacts of the IO via both the 

oceanic pathway (with less than ideal ITF flow) and the atmospheric teleconnections 

(with realistically forced dynamical atmospheric models).  Both these impacts along with 

the influence of assimilating oceanographic data in the IO have proven to improve 

coupled ENSO forecasts to varying degrees.  Herein we detail to what extent the IO 

impacts ENSO forecasts.  However, most operational coupled models have yet to 
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incorporate satellite SSS into their routine forecasts.  We provide evidence that 

operational centers could benefit from assimilating sea surface salinity into their coupled 

models and the concomitant relative cooling due to improved density specification at 

initialization.  The impact of assimilating SSS serves to counteract the warming tendency 

currently found in operational coupled models (as represented by CFSv2 results).    In 

addition, initialization of coupled models “fixing” the fresh water flux via SSS 

assimilation would help to address known problems with precipitation in the e.g. CFSR 

coupled model.  Therefore, a main prediction of this dissertation is that operational 

coupled models will benefit from including SSS assimilation into their routine 

initialization procedure.   

7.1 Future Research Interests 
 

The Tropical Ocean Global Atmosphere (TOGA) experiment led to a better 

understanding of the tropical Pacific and ENSO dynamics ([McPhaden et al., 2010]).  

However, it is proving more and more challenging to sustain the tropical Indo-Pacific 

observing system.  To address this issue, a workshop was held to evaluate the observing 

system requirements to continue to support ENSO modeling research and forecasting 

[Anderson and Suga, 2014].   The key conclusion of this meeting emphasized the 

overarching and persistent importance of long-term climate observations near the 

equator.   The goals of this project, known as Tropical Pacific Observing System 2020 

(TPOS 2020) are to “1) define the best observing system to monitor, observe and predict 

the state of ENSO and advance scientific understanding of its causes, 2) determine the 

most efficient method for sustained observations to support prediction systems, 3) 
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advance the knowledge of the predictability horizon of the tropical Pacific variability, 

and 4) determine interannual and multi-decadal variability” [Anderson and Suga, 2014].  

However, it remains an open question which observing systems give the best return on 

investment for observing, monitoring and predicting ENSO.  Although TPOS 2020 is 

focused only in the Pacific, we plan to provide comparable and complementary 

information for the IO. Therefore, we will evaluate how the observing system in the IO 

impacts ENSO monitoring and forecasting.    

Observing system simulation experiments (OSSE) will be performed to isolate the 

impact of various components of the IO observing system on ENSO predictions.  This 

work follows the same goals as the TPOS 2020, but we extend the evaluation of the 

observing systems to the IO to determine how each component of the system impacts 

ENSO monitoring, forecasting, and improving our understanding of fundamental ENSO 

mechanisms.  For each data type – SL, SST, SSS from satellite and SSS, Tz and Sz from 

in situ (Argo and RAMA moorings), we will assess how these observations (combined 

together and individually) will impact ENSO predictions by utilizing salt/heat/eddy 

kinetic energy (EKE) budget analysis to determine the impact of heat/salt/momentum 

storage, advection, etc. in the mixed layer.  Changes in the mixed layer and barrier layer 

formation will in turn impact buoyancy forcing and SST in the Indo-Pacific and we will 

determine how these changes impact ITF flow and air-sea coupling associated with 

ENSO. 

Next we plan to examine the specific impact of salinity in the IO on coupled 

ENSO predictions.  In the Pacific, previous work of [Maes et al., 2005], [Yang et al., 

2010] and [Hackert et al., 2011] all showed the importance of salinity and accounting for 
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heat storage in the BLT for ENSO predictions.  In addition, [Huang et al., 2008] and [Seo 

et al., 2009] demonstrated the impact of salinity assimilation for constraining SST in the 

IO for monsoon prediction.  However, no one has yet shown how improved salinity and 

BLT in the IO could impact ENSO predictions.  In light of the significant impact of 

salinity assimilation for the Indo-Pacific region described herein, we will show how 

observation-constrained salinity in the IO will lead to improved ITF flow (via adjusted 

density and SL) and more accurate inter-basin atmospheric coupling (via improved SST).  

We will execute a series of forced and coupled experiment pairs that differentiate the 

impact of salinity assimilation in the IO.  These pairs of experiments will also highlight 

how assimilation of salinity in the IO interacts with other satellite observations such as 

SL.  (This future research has been recently funded by NASA Physical Oceanography 

Grant NNX16AH62G.) 

Although the conceptual ENSO models of [Jin, 1997] and [Schopf and Suarez, 

1988] provide a good reference, ENSO development is rarely so well behaved in nature.  

The often confusing juxtaposition of conflicting Kelvin and Rossby waves, heat storage, 

and triggering wind events make a definitive forecast often difficult.   For example, in 

June 2014 the consensus forecast from IRI called for El Niño for December 2014 

prompting NOAA to issue an El Niño watch.  Subsurface conditions and heat storage 

rivaled the big ENSO event of 1997.  However, in reality the 2014 event fizzled out.  

[McPhaden, 2015] suggested that the lack of coupling between the atmosphere and ocean 

was the main reason for this poor forecast and one possibility (besides the impact of the 

IO or SSS) for this prediction failure was negative feedbacks such as upwelling ocean 

(i.e. Rossby) waves may have damped warm ENSO sea surface temperature anomalies.   
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Thus, a future research goal is to focus on isolating the impact of the large-scale 

ocean/atmospheric coupled processes play in extending useful ENSO predictions through 

analysis of heat content and ocean waves.     

  [Zhu Jieshun et al., 2016] tested the impact of off-equatorial SST anomalies in 

the operational CFSv2 – ([Saha et al., 2014]) ENSO forecast  system by substituting 

April initial conditions into the coupled model forecast in June of 2014.  A particular 

problem of the CFSv2 is that in June 2014 the SST anomaly was too cool in the 

northwest Pacific due to too strong winds (their term is wind-evaporation-SST feedback) 

and too warm in the southeast Pacific due to a lack of  stratus clouds. Their hypothesis 

was that known problems with the model stratus clouds and winds lead to erroneous SST 

anomalies and correcting such should lead to improved ENSO forecast.  However, 

correcting the SST anomaly only improved the forecast by 40% so much of the forecast 

error remains unexplained.   This result would imply that problems with the CFSv2 

initialization are more than just related to SST.  Thus, our hypothesis is that unaccounted-

for heat content anomalies and large-scale ocean waves in the CFSv2 initialization 

impacts mixed layer processes and SST and contributes to the degraded 2014 ENSO 

forecast.   Therefore, we plan to diagnose how well coupled systems account for large-

scale ocean heat content and ocean waves using a combination of all available satellite 

and in situ observations, ocean models, data assimilation, coupled models, and CFSv2 

ocean and coupled model results.  

Differencing experiments with real initialization of the ocean state (through data 

assimilation) minus ocean experiments initialized with the climatological mean state 

isolates the impact of the ocean initial state on ENSO development.  Next the statistical 
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atmospheric model (SAM) is applied to these differences (illustrating the passive 

response of the atmosphere) as well as applying an intermediate coupled model (i.e. 

SPEEDY, defining the active atmospheric response of the ocean initial conditions).  

Comparison of both the passive and active atmospheric response to the real (observed) 

atmospheric winds and precipitation during the ENSO event allows us to diagnosis to 

what degree initialization of the coupled system impacted the success of a particular 

ENSO forecast.  In addition, analyzing the NOAA operational initialization and 

atmospheric model results (i.e. GODAS and CFSv2, respectively) in a similar manner 

puts these results into the context of real operational ENSO forecasts.  The objective of 

this project is to diagnose potential issues in the initialization and forcing of retrospective 

ENSO forecasts using all other available ocean observations with the ultimate goal of 

improving operational coupled ENSO forecasts.   (All the proposed research contained in 

the previous three paragraphs has been submitted to the NASA ROSES 2016 OSTST 

Solicitation.)  
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