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ABSTRACT

We discuss the asymptotic performance of a multiterminal detection system com-
prising a central detector and two remote sensors that have access to discrete, spatially
dependent, and temporally memoryless observations. We assume that prior to transmit-
ting information to the central detector, each sensor compresses its observations at a rate
which approaches zero as the sample size tends to infinity; and that on the basis of the
compressed data from all sensors, the central detector seeks to determine whether the true
distribution of the observations belongs to a null class II or an alternative class Z. Under
the criterion that stipulates minimization of the type Il error rate subject to an upper
bound e on the type I error rate, we obtain error exponents for four different problems in
the above framework, and contrast our results with the case of simple hypothesis testing

(] = 2] =1).
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1. Introduction

We consider the problem of testing a composite null hypothesis Hy against a composite
alternative Hy on the basis of compressed data from a discrete-time, discrete-alphabet,
memoryless multiple source. In its simplest form, our setup comprises two remote sensors
Sy and Sy which are linked to a central detector. The sensors Sy and Sy observe the
respective components of the random sequence {(X;,Y;)}" , and encode their observations
into a maximum of M,, and N,, messages, respectively. Upon receipt of the two codewords,
thie central detector accepts or rejects the null hypothesis in conformity with the classical
criterion that stipulates minimization of the probability of falsely accepting Hy (type II
error) subject to a fixed upper bound € on the probability of falsely rejecting Hy (type I
error). In other words, for disjoint classes II and = of bivariate distributions on X' x Y, we
wish to test

Hy: Pxy €11 against Hi:Qxy exz.

We assume (asymptotically) zero-rate data compression:

, 1 1
Rx(n) = ElogMn — 0, Ry(n) = ;zlogNn — 0.

In a previous work [1], we studied the corresponding simple hypothesis testing problem
(JIT| = |=Z| = 1). Let us briefly recapitulate the conclusions of this related work. Under a
positivity assumption on the alternative distribution, we showed that the error exponent
(M, N, ¢) of the minimum type II error exists and is independent of the sequences M, N
and the level e. Furthermore, it is possible to specify a sequence of asymptotically optimal
acceptance regions solely in terms of the null distribution P, and thus the alternative
distribution enters the picture only in the computation of the error exponent 6(IM, N, €).

In this paper we ascertain that the above conclusions are of limited validity in the
case of composite hypothesis testing. That is, the error exponent for the above composite
Lypothesis test depends in general on the sequences M, N, and the level e. Furthermore,
the choice of optimal acceptance regions is influenced by both II and E.

More specifically, assuming a uniform positivity constraint on the distributions in Z,
we show the following.

(a) If T and = are arbitrary classes, and the codebook sizes My, N, are allowed to
grow without bound subject to the above zero-rate constraints, then the error exponent
has no further dependence on M, N, and ¢, and is achieved by a sequence of acceptance
regions specified solely in terms of II.



Assuming that the null class II is finite, and that the codebook sizes M, and N, are
fixed at M and N, respectively, we also have:

(b) If no two distributions in II share the same X or Y marginal, then the optimal
acceptance regions and the resulting error exponents depend on II, =, M and N. There
exist threshold values of M and N, above which we can specify optimal acceptance regions
in terms of the null class IT alone.

(c) If two or more distributions in II share the same X or ¥ marginal, then the solution
of the problem depends explicitly on the level € (in addition to II, =, M and N).

In (a) above, we consider the problem in its full generality and derive a compact
expression for the error exponent. To illustrate (b), we produce a complete solution for
the setup in which

ml =2, [E =1, M=2,

and the Sy encoder is nontrivial, i.e., N > 2. To illustrate (c), we consider the situation
in which

m < o, |5 =1, M=2,

and N is greater than a certain threshold. The results in (b) and (c¢) admit extensions
to larger codebooks and classes of distributions, albeit at some expense of compactness
in the characterization of the error exponent. It seems to us that the general problem of
determining error exponents for arbitrary II, =, M and N resists coherent treatment, and
is thus placed outside the scope of this work.

The formulation of the general problem is given in Section 2, together with pertinent
notation. The main results (a), (b), and (c) appear in Sections 3, 4, and 5, respectively.

2. Problem Statement and Preliminaries

(a) General notation. The observations of Sx and Sy are denoted by the sequences
A" = (Xy,..., X)) e X" and Y" = (V3,...,Y,) € Y, respectively, and the alphabets &’
and Y are assumed finite. Since the multiple source is memoryless, the sequence of pairs
(X1,Y1), . (X, Y)) € (X x V)" is 1.1.d. under both hypotheses. In what follows, it will
e convenient to deal with the product space X™ x Y™ instead of (X' x V)", and thus the
observations will be collectively represented by the pair (X, Y ™) € X" x Y™

By virtue of the aforementioned i.i.d. assumption, all distributions of interest can
be specified through bivariate distributions on X x Y. Under the null hypothesis, the
distribution of any pair (X;,Y;) is usually denoted by Pxy, and its respective marginals
by Py and Py. The distributions of X™, Y, and (X",Y™) under the same hypothesis
arc denoted by P, P§ and P%y-, respectively. The i.i.d. assumption then implies that for
all (2”,y™) in A" x Y,

n
Py (a™ y™) = [[ Pxv(@i, ) -
=1

Analogous notation is employed for the alternative hypothesis, with @ replacing P. We
will also have occasion to use distributions Pxy, Pxy and Pxy on & x Y, which will yield
marginals and higher-order distributions in the same manner as Pyy and Qxy-.
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The spaces of all distributions on X, ¥, and X x Y will be denoted by P(X), P())
and P(Y x )), respectively.

The compression of X" and Y™ is effected by encoders f,,, and ¢, respectively, where
fo: XM= {1,....M,}, and gn Y —{1,..., N} .

For one-sided zero-rate compression of X™ we assume that N, > |Y|” and
, 1 \
non
and similarly for one-sided zero-rate compression of ¥, we have M, > |X|™ and

N, > 2. limilogh,=0. (2.2)

non
For two-sided zero-rate compression, both (2.1) and (2.2) are assumed.

The central detector is represented by the function
$n:{l,..., Mp} x{1,...,N,} — {0,1} ,

where the output 0 signifies the acceptance of the null hypothesis Hy, and 1 its rejection.
This induces a partition of the original (i.e., non-compressed) sample space X' x Y" into
an acceptance region

A, &t {($n’yn) €A x Y ¢n(fn(mn)7gn(yn)) =0},

and a critical (or rejection) region A¢.

By nature of the encoding process, the acceptance region can be decomposed into M,
rectangles C; x F; in '™ x Y™ that possess disjoint projections C; on A'™. More precisely.
if for every 1 <1 < M, we define

C; = {2" € X" : fo(2") =1} and F, = {y" e Y" :4,(:,9(y")) =0},

then we can write
My,
An = |JCix F,  where (Vi#j) CinC;=0. (2.3)
=1

We can obtain an alternative representation for A, by partitioning V" into IV, sets:

N,
A = |JDixGi, where (Vi#j) DinD;=0. (2.4)

=1



Note that conditions (2.3) and (2.4) jointly characterize all admissible acceptance regions
under two-sided compression with codebook sizes M, (for X”) and N, (for Y™). Taken
separately, the above conditions characterize the admissible acceptance regions under one-
sided compression of X™ and Y, respectively.

(b) Composite hypothesis testing. Let TI and E be disjoint subsets of P(X x Y). For
testing Ho : Pxy € II versus Hy : Qxy € E at a given level ¢, we employ the uniformly
most powerful (UMP) test. Thus for a given level ¢ € (0,1), we seek to minimize the
quantity

sup @y (An)
QEE

over all acceptance regions A, that meet the constraints
(Cl) PRy (AS) <efor all Pxy in II;
and
(C2) satisfy the appropriate compression constraints; namely
e (2.1) and (2.3) for one-sided compression of X";

¢ (2.2) and (2.4) for one-sided compression of ¥
e (2.1), (2.2), (2.3) and (2.4) for two-sided compression.

We use the notation

Bn(My, Nye) &' min sup Q%y(An)
An Qe=

and define the associated error exponent as
(M, N, ) = —hm—log/;’n(Mn,Nn, €,

provided the limit on the right-hand side exists.

(c) Typical sequences. Our proofs rely on the concept of a typical sequence, as devel-
oped in [5]. We cite some basic definitions and facts on typical sequences.

The type of a sequence z™ € X" is the distribution A; on X defined by the relationship

def

(Va € ¥) Me(@) 2 Nialo™),

where N(a|s™) is the number of terms in " equal to a. The set of all types of sequences
in X7, namely {\, : 2™ € X"}, will be denoted by P, (X).

Given a type Py e Pr(X), we will denote by T]{ the set of sequences 2™ € A" of type
Py
ndef{ nEXn'/\x:PX}-
Also, for an arbitrary distribution Py on X and a constant n > 0, we will denote by Tﬁr,,’ the

set of (f"\—, n)-typical sequences in X™. A sequence " is (Px,n)-typical if |Ae(a)—Py(a)] <
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n for every letter ¢ € X and, in addition, A\,(a) = 0 for every a such that ]54\'(0) = 0.
Thus, if || - || denotes the sup norm and < denotes absolute continuity, we have

~ d f ~ ~
Ty, = {a" € X" ||\s = Px|| <n, A < Px} .

In the same manner, we will de.note by T, and T}}m the sets of (Px,n)- and (Px,n)-
(respectively) typical sequences in X™. We will have no need to consider sequences with
exact or approximate type Qx.

The proofs of the following lemmas appear in [5]. As usual, |.4| denotes the size of A.

LEMMA 2.1. The size of P,(X) is at most (n + 1)1“""" For any Py in Pn(V) and Qx
in P(X), i )
(n+1)"¥expnH(Px)] < |TR| < explnH(Px)],
and

(n+ )71 exp[-nD(Px||Qx)] < Q%(T%) < exp[-nD(Px||Qx)] .

LEMMA 2.2. For any distribution Px on X and n > 0,

X
dnn?

Px(Tx,) > 1 -

P -

One can easily modify the above exposition to accommodate pairs (z™,y™) € X" x V"
by reverting to their representation in (X' xY)"™. Thus the type of (™, y™) is the distribution
Azy ot X' x Y such that

helad) = [l (@) = (@8]

and the class Pp(X x V), as well as the sets T;:Y CX"™ x Y™ and T‘Q’Y,n CX™ x Y, are
defined accordingly.

In this and the following sections, we will omit the superscript n from T, as n will
be essentially constant.

The following theorem can be obtained by an argument parallel to the proof of The-
orem 3.1 in [1].

THEOREM 2.3. Fix p > 0 and ¢ € (0,1), and let M, be a sequence of integers
satisfying (2.1). Then there exists a sequence
Vn = V‘"(Pa €, JVIna |"Yla lyl) — 0
such that for every Qxy € P(X x )) that satisfies Q~Xy > p, and every Pxy € P(X X V),
C e X", F € Y" that satisfy either
1—c¢
M,

(IPxy : Px = Px, Py = Py) Pxy(C x F) >



or, more generally,

~ 1—e€ - 1—e¢
P 4 > s
X(C) < ]an ’ P) (F) Z Mn )
the following is true:
Vxv(C x F) > exp[-n(D(Pxy||Qxv) + va] - A

The following notation will be used in the remaining sections.

(1) For a class of distributions on X x ), the corresponding classes of marginals are
denoted by

IIx = {Px € P(X): APxy €I}, and IIy = {Py € P(Y): dPxy € II}.

(i1) In the space P(X), we define a ball of radius n centered at Px by

def

B,(Px) = {Px € P(X): |

PX_PX Sna PX<<PX}7

and we extend the domain of definition to subsets of P(&X') in the obvious way.

(i) If Px, Py, Qxy are distributions on X, Y, and X X ), respectively, we let

d(Px, Py||Q) &' min D(Pxv||Qxv).
Xy

Px=Px, Py=Py

More generally, if A, A and = are classes of distributions on the same spaces (respectively)
as above, then

d(A,A||E) & o nf_ D(Pxvl||Qxv).
Pxy: 15XeA, Py-€A

(iv) Finally, if ® is a subset of P(X), we will write

U Tx and U Tx .y

Pxe® Pxed

U TX and U TX ;

Px €E®NPa(X) Px € B, (2)NPr(X)

for

respectively.

L2l

3. Unboundedly growing codebook sizes.

We consider the composite hypothesis testing problem in which the null class II is an
arbitrary subset of P(X' x V), and the alternative class = satisfies the uniform positivity
constraint et o

inf = inf min xylz,y) > 0. (3.1)
Pinf Ges (x,y)ErX’ny (z,y)
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The above condition ensures that the convex function D(:||-) is bounded on P(X x V) x =
and is thus uniformly continuous. For the codebook sizes, we assume

.1 1
lim —log M, = lim —logN, = 0, and limM, = limN, = oco.

n n

The above size constraint allows each of the two encoders to specify the type of the
observed sequence with arbitrary accuracy. Indeed, if we let

apn = I.]\lrlz/[)qL

then by an elementary geometrical construction we can partition P(X') into at most atl <

M, cells C* of maximum dimension (measured by sup norm) not exceeding a;!'; clearly
a7t — 0 since M,, — co. The same is true for P(Y) with b, replacing a,:

b, = |_erz/lylj-

We denote the P())-counterpart of CI' by FJ', and we write

cr = \J Ix, Fr= {J Tv.

PX ECzn pyefjn

Based on the above partition, we devise a compression/decision scheme as follows.
First, we require that each encoder transmit the cell index corresponding to the observed
type, i.e.,

fa(@™) = 1 iff 2" e O
guly™) = 3 Hf y" € Ff.

Next, we seek an acceptance region A, C A" x V" such that

Av > | TRy, (3.2)

Pxy €1l

for some fixed n > 0. This is because the above set has Pgy-probability that uniformly
approaches unity for all Pxy € II (by Lemma 2.2), and this automatically ensures that
the type I error bound is met for every € € (0,1). We define A,, as the smallest union of
rectangles C7 x FT* that contains

U Tx,g X Ty}g .

Pxy €Il
where ¢ is a multiple of i chosen so as to ensure that (3.2) holds.

7



Since £ is fixed and the dimension of each C* and F 7 shrinks to zero as n approaches
infinity, it is also true that for n sufficiently large,

A, C U Tx 2¢ X Ty2¢
Pxy€ll

By a standard argument based on the definition of typicality, we also have

Tx e x Ty e C U TXY,g .
PXY:
15‘\'=P‘\', f’}r:P}/
where ( is a fixed multiple of £ and 7. We conclude that
A, C U TXY,C .

Pxy:
(3Pxy €I Py=Py, Py =Py

A union bound on Q™(A,) for @ € = can now be established using Lemma 2.1 and
the fact that D(:||-) is uniformly continuous on P(X x Y) x E:

Q(An) < [Pa(X x V)| exp[—n inf (D(Pxy|IQxvy) — '(())]
(3Pxy €I P‘};Y:éX,P,,:PY

< exp[—n P;gI;H(d(PX, Py||@xvy) — ()] ,

where (¢) goes to zero together with ¢ (and hence also ). We therefore have

Ba(Ma, Nuy©) < expl-n,  inf __(d(Px. PyllQxy) = u(O)]

Since ;(¢) can be made arbitrarily small by choice of 7, we conclude that

6(M,N,e) > P\yelllncfgx d(P‘{,Py 1Qxvy) .

To show the reverse inequality, we consider an admissible acceptance region A,. By
(2.3), for every distribution Pxy in II, we can find a rectangle C' x F' C A" x J" such that

Py (C X F) > (1—¢€)/Mn
Applying Theorem 2.3 with p = pins, we obtain a universal sequence v, — 0 with the
property that for every Qxy € &, Pxy € Il and Pxy € P(X x Y) such that Py = Py,

Py = Py, the following is true:

Q% (An) > exp[-n(D(Pxy||@xy)+vn)] -
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We conclude that

3n 'J\/_[7”Nn7€ > - i f ~'r -
/ ( ) - eXp[ " Pxy: (anYEQnﬁnﬁx=PXy ﬁy=PYr(D(P/\§ ||Q‘XY) + )]
XYy €S

and hence
oM, N.e) < inf d(Px, Py .
( ) < PXYEIHIQXYEE (Px, Pr||@xy)

We thus have proved

THEOREM 3.1. If I C P(X x ) is arbitrary, = C P(X x Y) is such that

inf mi vz 0
Qex (x,y)E%ny‘\) (lay) > )

and the sequences M, N satisfy

.1 .1
lim —log M, = lim—logN, = 0, and lim M, = limN, = o

7 n n n

"

then

6(M, N, = inf d(Px, P ). A
( 6) PXYEIE‘IQXYEE ( X YHQXY)

4. Fixed codebook sizes

In this and the following section we assume that the codebook sizes are fixed:
(Vn) M, =M, N,=N.

Under the above constraint, it is no longer possible to encode the type of the observed
scquences with arbitrary accuracy, and the conclusion of Theorem 3.1 does not hold in
general. As we shall see, the optimal system design depends on the distribution classes II
and =, the actual codebook sizes M and N, and (somewhat surprisingly) the value of the
level e.

Throughout the remainder of this work, we will assume for simplicity that the class Il is
finite. As we pointed out earlier, some of our proofs admit cumbersome but straightforward
generalizations to situations in which II is infinite. However, since our aim is to highlight
salient differences from the simple hypothesis testing problem, we choose to restrict our
attention to the simplest possible setups.

Our first observation is that given II finite and E satisfying the uniform positivity
constraint (3.1), there exist threshold values of M and N, above which the error exponent
of Theorem 3.1 obtains. Indeed, if

M > |Ix|+1, N > Iy|+1,



then the Sx encoder can specify which one (if any) of the distributions Px € IIx lies

within distance n from the type of the observed sequence 2"; similarly for Sy. This allows
us to employ an acceptance region

A = |J Txpx Ty

Pxy €Il

Ag in the proof of the positive part of Theorem 3.1, we obtain

8(M,N,¢) > inf _d(Pyx,P .
( ) Pyy€ll Oxy ez (Px, Py||@xy)

The converse part of Theorem 3.1 clearly suffices for this problem. We thus have

THEOREM 4.1. If T C P(X x ) is finite, = C P()Y) is such that

e i o
ot (m,yr)nelf}(nyn(a,y) > 0,
and
M > |Ux|+1, N > |[Iy|+1,

then

(M, N,e) = inf _ d(Px, Pr|lQxvy) . A
( 6) PXYEI%,anyeg ( X 47y HQ\’S)

We now consider the situation in which either one or both codebook sizes M, N are
smaller than the threshold values given in the hypothesis of Theorem 4.1. For simplicity, we
will assume that II consists of two distributions Pyy, Pxy with distinct X, ¥ marginals,
and that the alternative hypothesis is simple, i.e., = = {@xv}. The threshold values are
then both equal to 3, and it clearly suffices to consider two cases: (1) (M,N) = (2,3) and
(ii) (M, N) = (2,2).

We consider case (i) first.

THEOREM 4.2. Let IT = {ny,]sxy}, where Px # Px and Py # Py. If Qxy >0,
then for 0 < e < 1,
6(2,3,¢) = 61 v 92

where

p(1) def d(Ilx, Iy 1]|Q)
and
6 £ d(Px, PyllQ) A d(Px., Pr|Q)

A min {d(Px,Py||Q) Vv d(Px,Py|lQ)}.
PxeP(X)
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PROOF. Positive part. As before, we restrict our attention to encoders that group
sequences of the same type together. Since N = 3, a sensible choice for the Sy encoder is
one that specifies whether the sequence y™ lies in Ty, Ty, or (Ty,; U Ty’n)c.

The choice of the Sx encoder is less straightforward. At first sight it would seem
that since M = 2, the Sx encoder should specify whether or not the type of the observed
sequence z™ is close to either one or none of the distributions Py, Py, i.e.,

Cl = TX,97 U TX,n 3 02 = (TX,n UTX,V})C .

With this choice of encoders, the smallest acceptance region that satisfies the type I
error constraint under both Pyy and Pxy 1s

A(nl) = (Tx,y U Tx) x (Ty,g U Tv,y) -

The Q"-probability of the above set can be upper-bounded in the standard fashion (viz.
the proof of Theorem (3.1):

Q% y (An) < exp[—n(_ min D(Pxy|l@xy) — p(n))]
Px €{Px,Px},Py€{Py Py}

where p1(n) — 0 as n — 0. This yields, since n is arbitrary small,

0(2,3,¢) > 6 = d(Ilx,Ty|Q) . (4.1)

Another (somewhat less prominent) candidate for the Sx encoder is one that separates
sequences of approximate type Px from ones of approximate type Py. Since only two
codewords are available, this separation entails grouping some types in P(X’) together
with Py, and the remaining types with Px. More formally, if

& C P(X)-B,(Px)— B,(Px) and d = P(X)—By(Px)—B,(Px)— @,

then this encoder partitions X'™ into

| = Tx,U |J Tx  and b= (C)° = Tx,uU | Tx. (42
pr@ P‘\'Eé

With this choice of Sx encoder (together with the Sy encoder introduced in the beginning
of the proof), the smallest acceptance region that satisfies the type I error constraint is

AS;Z) = (C] x Ty,) U (Cq x TYJ})

Note that unlike .AS), Af) does not contain T'x , X Ty,«,, or T, X Ty y. It does, however,
contain pairs (z",y") whose marginal type X, is close to neither Py nor Px.

11



To estimate Q"(Aﬁf)), we decompose each of C] and CY into two sets as in definition

(4.2). We then treat AP as a union of four disjoint sets, and upper-bound their Q-
probabilities in the usual way:

Qxy(Tx,y X Ty,y)
Q%y(Tx .y x Tyq)

eXp[*”(d(le,PYIIQ) - p(m)l,
exp[—n(d(Px, Py||Q) — n(n))] ,

IA A

Qky( U Tx xTvy) < expln( inf d(Px, Pyrl|Q) — u(n))] .
Pxe® Pxee

Qv (U Tx xTry) < explon( inf d(Px, Prl|Q) - u(n)] .
Pxecd Pxee

where () — 0 as n — 0.

Thus the error exponent associated with this choice of acceptance region is greater

than or equal to the minimum of the four exponents appearing in the above bounds, namely
the quantity

AP, Pyl|Q) A d(Px,PylIQ) A inf d(Px,PylQ) A inf d(Px,PrlQ).
Pxee Pxed

At this point we should note that by letting n shrink to zero, we have expanded the classes

P and @ in the vicinity Py and Px so that ®U® = P(X)—{Px}—{Px}. This is justified

by continuity of d(-,-||Q), which further allows us to treat ® and ® in the above expression

as constituting a partition of P(.X).

It remains to find that partition {®,®} of P(X) which maximizes
v(Px) A 5(Px) A inf v(Px) A inf o(Px),
Pxed Pxed
where v(-) gt d(-, Py
that

Q) and o(-) def d(-, Py||Q). This is easily accomplished by noting

i%fv(ﬁx) A i%ff)(f?x) < igf[v(f’x) vV 5(Px)] A igf[v(ﬁx) V 5(Px)]

fevend ; ) 2 < v ]5 {
g [o(Px) v o(Fx)]

= inf  w(Px) A inf _ B(Px).
Px:v(Px)>#(Px) Px:v(Px )<8(Px)

Thus an optimal partition consists of the sets
& = {Px :v(Px) > 9(Px)}, and & ={Py: v(Px) < 5(Px)} ,
and the error exponent associated with the corresponding A?) is given by
#® = d(Px,Py||Q) A d(Px,Pr||Q) )
A min {d(Px,PrllQ) V d(Px,Py]Q)} .

Py EP(.Y)
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We conclude that 6(2,3,¢) > 6®?), and in light of (4.1),

(2,3,¢) > 6V v

Converse part. For fixed n, consider an admissible acceptance region A,,. By nature
of the encoding, A, can be written as

An = (C1 x F1) U (Cy x F)

where C'y and Cy form a partition of A", and at most one of Fy, F; may be empty. From
the type I error constraint

Pxy(An)>1—c¢ and  Pxy(A,)>1-¢,
it follows that two cases may arise.
Case 1. For i and j distinct, we have
Py (Ci x Fy) > Pyy(C; x Fy) and  Pyy(Cix F)) > Py (C; x F)).
This clearly implies that

1- . 1—
26 and  PX(E) > €

PR(Cy) =
for any 15\ € llx, ]5y € Ily. From Theorem 2.3, we obtain

1
—”ﬁ'logQ%y(Cz X Fz) S d(HXaHY|!Q)+Vn = 9(1) +vn 9

where v, — 0 as n — 00, and thus also
1 n (1)
—-ElogQ (An) £ 6 vy (4.3)

Case 2. For ¢ and j distinct, we have
Piv(Ci x Fy) > P3vy(Cj x Fy) and p}éy(Ci x F;) < P‘%Y(Cj x Fj). (4.4)
Using Theorem 2.3 once again, we obtain respectively
1
——log Q%v(Ci x F;) < d(Px,Py{|Q)+ va
n

and

1 . _
~=log Q% y(C; x Fy) < d(Px, Py||Q) + vn .

13



Hence ]
~—7;10gQ"(An) < d(Px,Pyl||Q) A d(Px,PyHQ)—{—un. (4.5)

Relationship (4.4) also implies that

1—¢ 1—c¢

By virtue of Theorem 2.3, the above inequalities can lead to a further upper bound on
Q"(A,) provided there exists a distribution Px € P(X) for which either PE(C;) or PE(C;)
exceeds a fixed value independent of n. But the last disjunction is true for every Py, since
C'; and Cj are complementary events. We thus obtain the upper bound

1 , . .
——log Q%y(Ax) < mlr(lx){d(Px,Px«'llQ) V d(Px, Py||@Q)} + v ,

x €

which, together with (4.5), yields

1
—~;log Q%v(A,) < 62 4 Vp .

Finally, by combining the bound for case 1 (eq. (4.3)) with the above bound for case 2,
we obtain the converse statement

6(2,3,¢) < Vv A

For the system in which both encoders use two codewords, i.e., M = N = 2, we have
the following result.

THEOREM 4.3. Let Il = {Pxy, Pxy}, where Px # Px and Py # Py. If Qxy > 0,
then for 0 < e < 1,
6(2,2,¢) = 69 v ¢

where 81 is as defined in Theorem 4.2, and and 8®) is the supremum, over all partitions

{®, P} of P(X) and {T, T} of P(Y), of the quantity

d(@U{Px}, TU{Py}IQ) A d(@U{Px}, TU{Py}Q). (4.6)

PROOF. Direct part. Since M = 2 as in the previous problem, we consider the same
two candidates for the Sx encoder:

f : C, = TX,77 U Tx)n R Cy = (TX,,, U TX’”)C
and 5 _ N
flo 0= Tx,u |J I, G = TxaV | Tx,

Pxc® Pxed

14



where (@, ®) form a partition of P(X) — B,(Px) — B,(Px) . Observe that in this case
N = 2 also, and thus it is no longer possible for the Sy encoder to specify whether y"
lies in Ty, Ty,y or (Ty,, U Ty,)°. Proceeding as for Sx, we propose the following two
encoders for Sy:

g: B = Ty,UTy,, By = (Ty,UTyv,)

and
g Fl =Tv,u |J v, F=1>Th,u | Ty,
PYE‘I’ PyE\if

where (¥, U) are defined in a similar manner.

Given the above possibilities for encoding Sx and Sy, there are only two reasonable
choices for the acceptance region Ay:

,4511) = Cy x By and ./453) = (C; x F{)U(C) x Fy) .

Note that the region As,l) is identical to the one used in the proof of the previous theorem,
whence we obtain

0(2,2,¢) > 6 = J(IIx,Ty||Q) .

To evaluate the error exponent associated with Aﬁf), we follow the corresponding
procedure for AP in the proof of Theorem 4.2. Since

A®) = < U T x U Ty—>u( U Tx x U Ty) )

PUB, (Px) YUB, (Py) dUB,(Px) TuB, (Py)

we obtain
~lim L log QM AP = d(@ U (Px), 2U{Pr}]]Q) A d(BU{Px), TU{A]Q)

Once again, it is legitimate to assume that in the above equation, {®, ®}, {¥, ¥} constitute
partitions of the entire spaces P(X) and P(Y), respectively. The best error exponent

attainable by a sequence of acceptance regions of the form AP is therefore

8 = sup {d(® U{Px}, TU{Py}|Q) A d(®U{Px}, TU{Py}]|Q)} .

We conclude that
6(2,2,¢) > 8 v ¢

Converse part. In this case every admissible acceptance region A, can be written as
.An = (Cl X Fl) U (CQ X FQ),

15



where Cy, Cy are complementary, while Fy, Fy are constrained by F, € {0,y Ff}. Asin
tlie proof of Theorem 4.2, two cases may arise.

Case 1. For ¢ and j distinct, we have
Py(Cix Fi) 2 Pxy(C;x F;)  and  Pgy(Ci x Fi) 2 PRy (Cy x Fy) .
This is same as Case 1 in the proof of Theorem 4.2, whence we obtain
L og O (1)
——glogQ (A,) < 68 4, .
Note that this case subsumes the situation in which F3 is empty.
Case 2. For 7 and j distinct, we have

PQY(Cl X F,) _>_ P)rfry(C] X F]) and PQY(C, X F,) < P%Y(C] X F]‘) .

We easily deduce that

1—c¢ 1—ce¢
P3(Ci) 2 ——, Py(Fi) 2 ——,
and 4 )
- —€ _ — €
Px(Cj) z —5—, Py(Fy) 2 —— .

Let us define the classes

. . 1 . ~ 1
$,, = {PX : P}}(Cl) > "2“} 3 v, = {PY : PXT}(FL') = 5} )

and 1 1
B, = {Py: BUC) > ). W= (Re: BRE) > 5.

Since € and Cy are complementary, ®;, = ®¢,. For F and Fy, we have either Fy = Ff or
F = Y". In the former case we have again ¥} = ¥, while in the latter, either ¥, or ¥}

is equal to P(Y).

By the foregoing discussion, all marginal distributions Px € &, U {Px}, Py € ¥, U
{Py }, satisfy
1—e¢

PR(Cy) >
T (Ci) > 5

. 1—
and  PI(F;) > —2—5.

Applying Theorem 2.3, we obtain

L oE Qi (Cix F) S d(@aU{Pxh T VIR IQ 40 (&)
Similarly for C; x F; we have

L logQiy(Cy x Fy) < d(@U{Px}, U (P} Q) b ve . (48)

16



We must show that the smaller of the two bounds appearing in equations (4.7) and
(4.8) is less than or equal to 8 as defined in the statement of the theorem. This is

certainly true if U} = ¥¢, since we can then take

{®,2} = {®,, D"} and {9,0} = {¥,,T*}

in the definition of 8. Otherwise, if w.lo.g. ¥* = P()), the same conclusion can be
rcached by taking

(8,8} = {®,,8%} and {0} ={T,, 0} .

Thus we have obtained

1
—~log Q% y(An) < 0% 4 v, .

This, together with our result for Case 1, yields the converse statement

6(2,2,¢) < 8 v B A

REMARKS. (a) It is shown in the Appendix that #() can also expressed in the simpler
form

6 = {D(Px||Qx) A D(Pr||Qy)} Vv {D(Px

[@x) A D(Py||@y)} . (4.9)

This characterization also simplifies the determination of the maximizing classes ® and ¥
in the original definition of ().

(b) The definition of the asymptotically optimal acceptance regions AP and AP in
tae proofs of Theorems 4.2 and 4.3 depends implicitly on the alternative distribution @ xy

through the choice of the optimal classes & and P; this is not the case with ALY,
(¢) Which of the alternative exponents is the dominant one depends on IT and Qxv.

To show this, in what follows we let QQxy be a product distribution on A" x Y, i.e.,
Qxy = Qx X Qy, where Qx > 0, Qy > 0. Then it is quite straightforward to show that

0V = {D(Px||Qx) AD(Px||Q@x)} + {D(Py|lQy) AD(Prl|Qv)} ;
#® = {(D(Px||Qx)+ D(Py|lQv)) A D(Py||Qy)}

v {D(Py||Qy) A (D(Px||Qx)+ D(Py||Qy))} :
6®) = {D(Px|lQx) A D(Py|lQy)} V {D(Px|IQx) A D(Pyr||Qy)} .

Consider first the situation in which Px = Qx and D(Py||Qy) > D(Px||Qx) +
D(Py||Qy). From the above we obtain

60 = D(Py||Qv), 62 = D(Px|lQx)+D(Py]iQy), 6% = D(Px[Qx).

Thus provided all above divergences are positive and distinct, we obtain either 6* >
63 > 6™ or 42 > (V) > g3,
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As another example, consider the case in which all distributions are distinct, and

D(Py

|Q@x) = D(Px||Qx),  D(Py||Qy) = D(Py||Qy) .

Then
60 = D(Px||Qx) + D(PylIQv), 6% = D(Py||Qy),

8 = D(Px||Qx) A D(Py||Qy) .
We thus obtain either 81 > 6(2) » §3) or (1) 5 §(2) = g3)

5. Dependence of the error exponent on e.

Theorems 4.2 and 4.3 were derived under the assumption that the distributions Pxy
and Pxy have distinet X and ¥V marginals. As it turns out, the conclusions of these
theorems are true even if this assumption is not. Indeed, it is easy to show that if Py = Py
or Py = Py, then Aﬁf) is optimal, and 8V dominates both 8(2) and 63,

If [TI] > 2, and the codebook sizes M and N are fixed at levels below the thresholds
given in Theorem 4.1, then it is still possible to derive versions of Theorems 4.2 and 4.3 in
which the acceptance regions A%z) and A(f) are constructed by first grouping distributions
in [Ix and Iy together, and then partitioning P(X') and P()) appropriately. Our final
result illustrates this procedure, and more importantly, it reveals a hitherto unseen aspect
of this problem: specifically, if the marginals of some distributions in II coincide, the error
cxponent may depend on the level e. This is certainly a surprising discovery, considering
the chain of strong converse theorems which have been derived in [1-4], and in this work.

NOTATION. 1x denotes the set of degenerate distributions on P(.X).
THEOREM 5.1. Let II < oo, M = 2, and N > |Ily| + 1. Also, let {A, A} denote a
partition of Il. If Qxy > 0, then for e € (0,1/2) U (1/2,1), the following is true:

9(2,N,e) = 89 v 6W(e),

where
0 = d(Ix, Iy |Q) ,
(4) . ma’XA,A: Axﬂé—lx=@ T(A_’ A)’ lfo <e< %;
7€) = {max  as  T(AA), ifl<e<,
Axﬁﬁ‘ynl‘s(:O
and

r(A,8) = d(Ax,Av[Q) A dBx,AvIQ)
Ninf{d(Px, Av[|Q) v d(Px, Av]Q)) -

18



REMARK. We have been unable to evaluate (2, N,1/2).

PROOF. Direct part. Once again it is feasible to construct A%l) as defined in the
proof of Theorem 4.2, whence we obtain 6(2, N, ¢) > 6'1).

To construct AP by analogy to Theorem 4.2, we partition the space Ilx into A, A,
and the space P(X) — By(Ilx) into &, . We then have

AP=( U Tx U Ba)u( U Txx U T
Py €dUB,(A) Pxy€ll: PyeA PxeduB,(A) Pxy€ll: PxcA

whicl is readily seen to satisfy the type I error constraint for every e and every distribution

i 11,

Note that instead of partitioning IIx into A and A, one can begin by partitioning II
itself into A and A such that Ax N Ax = §. Then one can write equivalently

AEE) = < U Tx X U Ty;n> U ( U TX X U Ty',n) ,
]SX E‘I’UB,,(AX) pyEAY PX E&’UBn(Ax) P}'EAY
and by the argument given in the proof of Theorem 4.2,
9(27 N7 6) > T(AvA) = d(AXa AYHQ) A d(AXa AY”Q)
/\ij})lf{d(ﬁx,AYnQ) vV d(Px,Av||Q)} .
X

Taking the maximum over all partitions {A, A} of II satisfying Ax N Ax =0, we
obtain for all € € (0,1),

8(2,N,e) > max (A, A) .

AA: AxNAx=0

The constraint Ax NAx = 0 is essential in the above construction of .,4512); 1ts removal
would allow

Cf = U Tx and ¢ = ) Ix
Py €BUB, (Ax) Py edUB,(Ax)

to have nonempty intersection and hence be inadmissible under the given compression
scheme. If, however, 1/2 < e < 1, then it is possible to relax the said constraint to

Ax N Ax N 1x = 0

in the following manner. For every Px that lies in B, (A x N A x) (and hence not in 1x if
1 is properly chosen), we can partition T'x into two sets T;g and T'5 of sizes that differ by
at most 1, and redefine C] and Cj by

C) = U Tx U U Ty

Px€ed UB,(Ax—Ax) PxeB,(AxnAx)
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and
Cy = U Tx U U T)} )
Px€ed UB,(Ax—Ax) PxeB,(AxnAx)
We can then complete the construction of ASE) in the usual manner.

It is easily seen that for every Pxy € Il such that Px ¢ AxNAx, and every € € (0, 1),
PRy (ADY > 1—¢

for n sufficiently large. The same is true for for every Pxy € II such that Py € Ay NAx,
if € € (1/2,1). To see this, let w.l.o.g. Pxy € A. Then

Piy(AD) 2 Piy( | TH xTvy)
pXEBn(PX)

> P | TH+PHTv,) -1

PxeB,(Px)
1 IV
> 5 —Ap+1-— W -1

where A, — 0 since B,(Px ) contains no degenerate distributions. We conclude that for n
sufficiently large,
PRy(AD) > 1-e.

By computing the error exponent as before, we obtain for 1/2 < e < 1,

6(2,N,e) > max (A A) .
Ax nB_:{Ar{lX =9

This concludes the proof of the positive part.

Converse part. As in the proof of the converse part of Theorem 4.2, we express A, as
An = (C1 x F1) U (Cy x Fy),

where C7 and C, form a partition of X", and at most one of Fy, F3 may be empty. Once
again, two cases may arise.

Case 1. For ¢ and j distinct, we have
(VPxy € 1I) P%y(Ci x Fy) > Py(Cj x Fy) .

This implies that

~Z10gQ"(An) < %) +v
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Case 2. The sets A and A defined below form a nontrivial partition of II
A = {PXY e II: P)?Y(Cl X Fl) Z P)Tz'y(CQ X Fz)} y

A ={Pxy € II: Py (Cy x F}) < Py (Cy x F3)} .

We claim further:ohat Ax NAx N1y =0. Indeed, if there exist Pxy € A and Pyy € A
such that Py = Px, then

1—e ~ 1-—
5 PY(Ca) = PR(Ch) > —5—

Since Cy and 'y are complementary and have positive probability under P¢, Py cannot
be degenerate.

P (Cy) =

As in Case 2 in the proof of the converse of Theorem 4.2, we obtain for all € € (0, 1),
1 _
—Elog Q" (An) < T(AA)+ vy .

It remains to show that if € € (0,1/2), the above bound is also valid for a partition {Q,Q}
of II such that Qx N Qx = 0. To construct such a partition, we argue as follows.

For Px € Ilx, we consider the set H(Px) of distributions in II that have Px as
X-marginal:
de
H(Px) ———{ {PXY e II: Ps( = Px} .

We let A > 0 be independent of n, and we assume for the moment that for every Px € IIx,
we can find 1 € {1,2} such that

(VPxy € H(Px))  Piy(Cix Fi)>\. (5.1)

If so, then we can partition IIx into Ay and Ay by placing each of the members Py of TIx
in A; iff 7 is the smallest index for which the above relationship holds. This in turn yields
a partition ©,Q of II through

0 = U H(Px) and Q = U H(Px)

PxeAy Px €Ay

Clearly Qx = A1, Qx = Ay, and from the definition of A; and relationship (5.1), we obtain
the desired bound

—%mgczwn) < r(Q,0) 4 vm -

Thus the issue is to prove that for suitable X > 0, every Px € Ilx is such that (5.1)
lolds for 7 = 1 or ¢ = 2. By definition of the classes A and A, this is true for Py € Ax—~Ax
and Py € Ax — Ax. To show that it is also true for Px € AX N Ax, assume the contrary,
nalnel'\ that there exists Pxy € A and P\y & A with PY = Py and

P}}Y(Cl XF1)</\, P‘\n'Y(CQXFz)<A
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This implies that

PR(Cy) > Piy(CiyxFy) > 1—e— ),
P‘%(Cg) > P)%ll(CQXFQ‘) > 1—e—A

?
ard hence

PQ(CQ—F—P}Z(CQ) > 2—-2e—2)\.

Thus if € < 1/2, we can set A = (1 — 2¢)/3 > 0 to obtain the desired contradiction:

PR(Cy) + PR(Cy) > 14 ). A

As a final remark, the dependence of 8*)(¢) on € is nontrivial. If we consider the
simple setup in which II = {ny,PXy,fDXy} with Py = Py and Py = I:’y, then it is
possible to choose the above distributions so that the error exponent for 0 < ¢ < 1/2 is
strictly less than for 1/2 <e< 1.

6. Concluding remarks

The positivity assumption on the alternative hypothesis was essential for the derivation
of the converse results in this paper. As was mentioned in [1], without this assumption,
we could not have applied the blowing-up lemma in the proof of the pivotal Theorem 2.3.
We hope that this obstacle will eventually be removed.

APPENDIX
If we let, for all ® C P(X) and ¥ C P()),
a(®,v) & inf d(Px,Py||Q) ,

(Px ,Py)e(@xT)U(Pex¥e)
then the definition of 8(®) becomes
8 = sup a(®. ) . (A1)
(PX,Pq;‘)I’G:(bX‘IJ,
(Px,Py)edcxwe

We must show that 8(3) can be expressed as in (4.9), or equivalently, that 633) = @', where

o L' (D(Px

Qx) A D(Pr|lQv)} Vv {D(Px|IQx) A D(Pr{lQv)} .
(i) To show that () > @', let & = {Px} and ¥ = {Py}°. Then

6 > a(®,¥) = d(Px,{Py}°|lQ) Ad({Px}", P¥|IQ)
= D(Px||@x) A D(Pr||Qy) (A2)
where the last equality follows by continuity of divergence. Similarly, if & = {Px1}¢ and
U = { Py}, we have

9 > D(Py||Qy) A D(Px||Qx) . (A.3)
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Combining (A.2) with (A.3) we obtain 6¢) > ¢'.

(i) To show the reverse inequality 8(3) < ', let
A =c® A= c®, B =c¥, B = ¥ ,
where cl denotes closure under sup norm. Then by continuity of divergence,

a(®¥) = min  d(Px,Py|Q).
(Px,Py)e(AxB)U(Ax B)

We must show that a(®, ¥) < ¢' for every ® and ¥. Thisis trivially true if (Qx, Qy) €
(4 x B)U (A x B), in which case we have

o(®,¥) = dQx,Qv|lQ) = 0.

Hence we may assume that

(Qx,Qy)€(AxB)U(AXB). (A.4)

We provide an upper bound a(®, ¥) as follows. First we note that

(ANA)xP(Y) Cc (AxBYU(AxB),

so that ..
a(®,¥) <  min d(Px, Py||Q)
(Px ,Py)E(ANA)xP(Y)
= min _D(J-:’XyHQXy) }

(Px,Py): st ECANA

Using the log-sum inequality, we can show that above minimum is equal to

_min _D(I:’XHQX) )
Px €ANA

By symmetry we conclude that

o(®, %)< min D(Px||Qx) A min D(Py||Qy) . (A.5)
Px€ANA Py €BNB

Two cases may arise, according to whether Qx lies in A or A (note that it cannot lie

in 4N A by (A.4)).
Case 1. Qx € A: Since Py € A, there exists A € (0,1] such that

Px = Px+(1-MQx € AnA.

23



This yields
min _D(Px||Qx) < D(Px||Qx)

PyeAnA
< AD(Px||Qx) + (1 = \)D(Qx||Qx)
< D(PXHQX) )

where the last inequality follows by convexity of divergence.

From (A.4), we also have that Qy € B. An analogous argument for Qy € B and
Py € B yields

_min _D(Py||Qy) < D(Py||Qy) .
Py €BnNB

From (A.5), we conclude that

a(®,9) < D(Px||Qx) A D(Py||Qy) . (A.6)

Case 2. Qx € A: Again (A.4) implies that Qy € B. As in Case 1 above, we obtain
«(®,¥) < D(Px||Qx) A D(Pr|IQy) . (A7)

From (A.6) and (A.7) we conclude that o(®,¥) < ¢, and hence also 63 < ¢, A
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