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     Land Surface Radiation Budget (SRB) is responsible for the available energy 

between the Earth and atmosphere system. Net radiation is the driving force for the 

transportation and exchange of all matter at the interface between the Earth’s surface 

and the atmosphere, and therefore, significantly affects the climatic forming and 

change. Accurate estimation of shortwave net radiation (Sn), cloudy-sky allwave net 

radiation (Rn), and daily integrated Sn at high spatial resolution is essential in regional 

and global land surface models.  

     The current SRB products have fine temporal and coarse spatial resolutions not 

suitable for land applications. New hybrid algorithm for Sn estimation has been 

developed in this study. Sn is estimated from MODIS data under both clear- and 

cloudy-sky conditions without requiring coarser resolution ancillary data. Therefore, 

estimated Sn retains the spatial resolution of the raw input data.  

     Surface all-wave (both shortwave and longwave) net radiation (Rn) controls the 

input of latent and sensible heat flux into the atmosphere over the Earth’s surface. 



  

Meteorological datasets are spatially limited and satellite data have the advantage of 

global spatial coverage; however, difficulty in accurately estimating cloudy-sky 

longwave net radiation (Ln) undermines efforts to estimate cloudy-sky all-wave net 

radiation. This study presents methods for estimating cloudy-sky Rn using Sn and 

other surface variables at 1 km spatial resolution.  

     Daily integrated Sn is closely related to carbon, water and energy flux simulations. 

A daily integrated Sn product with a 1-km spatial resolution supports recent high 

resolution numerical climate and ecosystem simulations. This study describes a 

method for estimating daily integrated Sn in 1 km resolution based on instantaneous 

Sn data. 

     All these algorithms have been validated using seven sites of a SURFace 

RADiation budget observing network (SURFRAD) in United States, instantaneous Sn 

is also compared with GEWEX/SRB and ISCCP data.  

     The new hybrid algorithm developed in the study can be easily implemented to 

generate operational global products. These finer spatial resolution datasets capture 

the specific sequence of the redistribution of the available energy at the Earth’s 

surface; therefore, they support recent high resolution land surface models.  
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Chapter 1: Introduction 

     The Surface Radiation Budget (SRB) is a key factor responsible for the 

redistribution of the available energy in the Earth-atmosphere system. The spatial and 

temporal variation of SRB can be estimated from the satellite data because the solar 

radiation at the Earth’s surface is strongly correlated to solar radiation reflected to 

space. 

 

1.1 Background 

 

     Most land surface models rely on incoming radiation, such as those in the Global 

Energy and Water cycle EXperiment (GEWEX) (Pinker et al., 1995; Pinker et al., 

2003), Community Climate System Model (CCSM) (Collins et al., 2006), and NOAH 

land surface model (LSM) (De Haan and Kanamitsu, 2007). The SRB is also required 

by short-term numerical weather prediction models and longer-term simulations for 

climate prediction.  

 

     Two major satellite-derived SRB products are available. One is derived from the 

International Satellite Cloud Climatology project (ISCCP) C1 data (Pinker and 

Laszlo, 1992) and the Earth Radiation Budget Experiment (ERBE) data. ISCCP-FD 

data have been used to estimate global monthly mean Surface Radiation Budget 

(SRB) (Zhang et al., 2004). The other product is derived from the Clouds and the 

Earth’s Radiant Energy System (CERES), on board of the National Aeronautics and 
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Space Administration (NASA) Earth Observing System (EOS) satellites and the 

Tropical Rainfall Measuring Mission (TRMM) satellite (Wielicki et al., 

1998).Current SRB products that are downlodable from websites and that provide an 

assessment of their accuracy are summarized in Table 1-1. I did not include products 

that lack an assessment of their accuracy (e.g. GEWEX Continental scale 

International Project and GEWEX Americas Prediction Project (GCIP/GAPP) surface 

radiation budget data).  

 
Table 1- 1 Summary of SRN products 
 

Products Temporal 
resolution 

Spatial 
resolution 

Accuracy 
(RMSE) 

GEWEX/SRB* 3 hourly 1° Global 81.7 Wm-2 
EWBMS** Hourly 0.4° Continental Undergoing 

CER11 Hourly SSF*** 82.7 Wm-2 
 
*: Global energy and water cycle experiment/ Surface radiation budget 
(http://eosweb.larc.nasa.gov/PRODOCS/srb/readme/readme_srb_rel2_sw_3hrly.txt) 
**: Energy and water balance monitoring system 
***: Single scanner footprint (Earth observing system data and information system) 
(http://eosweb.larc.nasa.gov/PRODOCS/ceres/SSF/Quality_Summaries/ssf_surface_flux_terr
a_ed2B.html) 
 

     These products, however, have fine temporal resolution and coarse spatial 

resolution, which are not appropriate land applications. Routine monitoring (daily to 

weekly) of surface fluxes is recommended (Kustas et al., 2003; Trnka et al., 2007). In 

addition, they do not meet the accuracy required by the user community. The required 

accuracy for surface shortwave downward radiation (S↓) from satellite data is 5 – 10 

Wm-2 at  25 - 100 km (CEOS and WMO, 2000; GCOS, 2006). Several studies have 

determined the accuracy of S↓ estimates in terms of the Root Mean Square Error 

(RMSE) using surface measurements. RMSE of 109 – 210.9 Wm-2 are reported at 4 
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km to 1/8 degree spatial resolution and various time windows (Dedieu et al., 1987; 

Garatuza-Payan et al., 2001; Pinker et al., 2007; Pinker et al., 2003).  

 

     Uncertainty in cloud detection and heterogeneity in surfaces are well-known 

problems in SRB retrieval. The accuracy estimates listed in Table 1-1 are obtained by 

comparing the satellite-derived surface shortwave radiation budget with ground point 

measurements. SRB components can vary on a small spatial scales and land cover can 

vary on an even finer scale than the atmosphere. A well-established method for 

validating a coarser-spatial-resolution satellite dataset is to evaluate the higher-

spatial-resolution dataset using ground point measurements and use a higher-spatial-

resolution dataset to assess the coarse resolution dataset (Goward et al., 2003; Liang 

et al., 2002). In addition, finer resolution SRB components (up to 1km) have been 

being studied in numerical climate and ecosystem simulations (Bromwich et al., 

2005; Guan et al., 2000; Masson et al., 2003; Soci et al., 2006), however, available 

SRB products do not support finer spatial resolution models.  

 

1.2 Need for surface net radiation with high spatial resolution 

 

     Surface shortwave net radiation (Sn) is required to estimate the energy exchange 

between the atmosphere and the land/ocean surfaces. It is the fundamental quantity of 

energy available at the Earth’s surface that drives the processes of evaporation, air 

and soil heating, as well as other, smaller energy-consuming processes such as 

photosynthesis. Sn is also frequently used to estimate all-wave net radiation (Rn) 
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(Jacobs et al., 2004; Jacobs et al., 2002; Samani et al., 2007). Sn influences 

atmospheric circulations as well as surface climate (Whitlock et al., 1995), and is 

used in numerical weather simulation as well as land surface modeling.  

     Studies were, however, focused on coarse spatial and spectral resolution satellite 

data such as Earth Radiation Budget Experiment (ERBE) wide-field-of-view 

planetary albedo in parameterization (Li et al., 1993b; Masuda et al., 1995) and 

narrowband radiances of International Satellite Cloud Climatology project  (ISCCP) 

data with a 280 km spatial resolution (Pinker and Laszlo, 1990; Rossow and Zhang, 

1995; Zhang et al., 2004). These data are too coarse for recent high-resolution land 

applications (e.g. ecosystem simulation, energy balance model, land surface model 

(Kustas et al., 2004; Kustas and Norman, 2000; Kustas et al., 2003; Li et al., 2008; 

Treitz and Howarth, 2000) as well as numerical climate system (Bromwich et al., 

2005; Guan et al., 2000; Masson et al., 2003; Soci et al., 2006). Spatial resolutions 

less than 10 km were required in those studies.  

     Nonlinearities in many surface processes often require that models be applied at 

relatively high spatial and temporal resolution (Marani et al., 1997). Indirect estimates 

of surface fluxes over extensive areas (~1°) based on remote sensing from satellite 

typically involve treating heterogeneous areas in the same way as the homogeneous 

areas used to develop the original algorithms. Uncertainties associated with surface 

and atmosphere heterogeneity are difficult to evaluate because no in situ methods 

exist to measure surface fluxes reliably over such relatively large heterogeneous areas. 

It is spatial resolution that determines the information content and measurement error 

of an image (Atkinson, 1993; Atkinson et al., 1996) and that has crucial relevance for 
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understanding many aspects of the Earth system science (Townshend et al., 1991; 

1994).  

     At such coarse spatial resolution, the capability to monitor the impact of Sn change 

and disturbances on other parameters such as evapotranspiration or heat flux from 

different plant (crop) type is severely hampered (Kustas et al., 2004; Kustas and 

Norman, 2000; Kustas et al., 2003). Landscapes with significant variability in 

vegetation cover, type/architecture, and moisture, the spatial resolution of the remote 

sensing data is crucial for discriminating fluxes for the different land cover types and 

hence avoiding significant errors due to application of a land surface model to a 

mixed pixel containing large contrast in surface physical parameters (Li et al., 2008; 

Moran et al., 1997; Zhan et al., 2000). Surface radiation estimation at finer spatial 

resolution than current products is necessary in order to capture nonlinear surface 

processes and avoid errors resulting from land surface model application.   

     The reanalysis data sets are also used in land applications, but they are usually 

coarse spatial resolutions (> 1°) and fine temporal resolutions such as those from 

NASA Data Assimilation Office (DAO), European Centre for Medium-Range 

Weather Forecasts (ECWMF, ERA-40), and National Centers for Environmental 

Prediction and National Center for Atmospheric Research (NCEP/NCAR). 

Furthermore, there is little known about surface radiation variable accuracies of 

reanalysis data sets and their impacts on applications (Zhao et al., 2006). It was 

reported that National Centers for Environment Prediction (NCEP) reanalysis solar 

radiation data  exceeded surface observations more than 100 Wm-2 (Xia et al., 2006). 

The use of reanalysis data from Global Circulation Model (GCM) in land evaporation 
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algorithm was pointed out as problematic because its accuracy and coarse spatial 

resolution (Nishida et al., 2003a). Therefore, surface radiation budget dataset with 

finer spatial resolution are required to support recent land applications.  

 

     This study uses Moderate Resolution Imaging Spectroradiometer (MODIS) data to 

estimate Sn at a 1 km resolution. MODIS is one of the sensors in the National 

Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Terra 

platform launched in 1999 and Aqua platform launched in 2002. MODIS provides 

comprehensive and frequent global Earth imaging in 36 spectral bands (Table 1-2) 

and at variable spatial resolutions with nadir footprints no greater than 1 km. The new 

hybrid method presented in this study does not require coarse resolution ancillary 

data; therefore the hybrid method produces estimated Sn at 1 km resolution.  

     Previous studies also used narrowband-to-broadband conversion to retrieve 

parameters. Narrowband-to-broadband conversion was used to retrieve surface albedo 

and local planetary albedo (Cess et al., 1991; Cess and Vulis, 1989; Frouin and 

Chertock, 1992; Masuda et al., 1995; Tang et al., 2006). Narrowband to broadband 

conversions in atmospheric anisotropy have been pointed out as error sources in 

retrieval techniques (Noia et al., 1993; Perez et al., 2002; Pinker et al., 1995; 

Schmetz, 1989). In addition, these methods are physically valid at each procedural 

step; however, the possibility exists that errors associated with each step may cancel 

or reinforce each other.  
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Table 1- 2 MODIS spectral band specification 
 
Primary Use Band Central 

wavelength [nm] 
Bandwidth [nm] Spatial 

resolution [m] 

1 645 620 - 670Land / Cloud / 
Aerosols / 2 858.5 841 - 876

250 

3 469 459 - 479
4 555 545 - 565
5 1240 1230 - 1250 
6 1640 1628 - 1652 

Land / Cloud / 
Aerosols 
Properties 

7 2130 2105 - 2155 

500 

8 421.5 405 - 420
9 443 438 - 448

10 488 483 - 493
11 531 526 - 536
12 551 546 - 556
13 667 662 - 672
14 678 673 - 683
15 748 743 - 753

Ocean Color / 
Phytoplankton / 
Biogeochemistry

16 869.5 862 - 877
17 905 890 - 920
18 936 931 - 941

Atmospheric 
Water Vapor 

19 940 915 - 965
20 3750 3660 - 3840 
21 3959 3929 - 3989 
22 3959 3929 - 3989 

Surface / Cloud 
Temperature 

23 4050 4020 - 4080 
24 4465.5 4433 - 4498 Atmospheric 

Temperature 25 4515.5 4482 - 4549 
26 1375 1360 - 1390 
27 6715 6535 - 6895 

Cirrus Clouds / 
Water Vapor 

28 7325 7175 - 7475 
Cloud Properties 29 8550 8400 - 8700 
Ozone 30 9730 9580 - 9880 

31 11030 10780 - 11280 Surface / Cloud 
Temperature 32 12020 11770 - 12270 

33 13335 13185 - 13485 
34 13635 13485 - 13785 
35 13935 13785 - 14085 

Cloud Top 
Altitude 

36 14235 14085 - 14385 

1000 
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     All-wave net radiation (Rn) describes the importance of radiative processes for 

energy exchange at the Earth’s surface and is calculated as the sum of shortwave net 

radiation (Sn) and longwave net radiation (Ln). 

 

                                          Rn= (S↓- S↑) + (L↓-L↑) = Sn + Ln                               (1-1) 

 

where S↑ is shortwave upward radiation, L↓ is longwave downward radiation, and L↑ 

is longwave upward radiation. 

Estimated Rn is often used because Rn measurements are very rare. If meteorological 

datasets are used, it is necessary to validate the calibration coefficients locally. When 

satellite data are used, numerous parameters, such as cloud fraction, cloud base 

temperature, clear air emissivity, and surface temperature, must be retrieved to 

calculate longwave net radiation (Ln) and errors associated with each procedure are 

unknown to cancel or reinforce each other. In addition, cloud top temperature is used 

to estimate Rn instead of cloud base temperature, because it is currently impossible to 

retrieve cloud base temperature from satellite data. Also, ancillary data with different 

spatial resolutions are required to retrieve these parameters. Cloudy-sky Rn estimation 

with 1 km resolution has not been reported yet although modeling community 

requires it (Bromwich et al., 2005; Guan et al., 2000; Masson et al., 2003; Soci et al., 

2006). Method to estimate cloudy-sky Rn at 1 km spatial resolution is developed in 

this study. 
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     Daily integrated shortwave net radiation (Sn) at the Earth surface is a fundamental 

driving variable for simulation of ecosystem carbon, water, and energy fluxes at local, 

regional, and global scales. Meteorological and astronomical datasets are often used, 

however, they are spatially limited. Monthly averaged data are produced when 

satellite-based datasets are used, however, these averaged data eliminate the exact 

sequence of cold-or-warm, wet-or-dry days that is an important factor in processes 

such as vegetation net primary production (Hunt et al., 1991). Therefore, the method 

for estimating daily integrated Sn from instantaneous Sn values at 1 km resolution is 

presented in this study.  

 

1.3 Objectives of this study 

 

     The overall goal of this study is to develop algorithms that estimate surface all-sky 

shortwave net radiation (Sn) and cloudy-sky all-wave net radiation from the MODIS 

data at a high spatial resolution. The definition of high resolution varies depending on 

the times and applications. The applications considered in this study are land surface 

models, numerical weather prediction models, and ecosystem simulations, and they 

require a finer spatial resolution than existing products.  

 

     The first objective of this study is to develop an algorithm to estimate 

instantaneous Sn directly from MODIS Top-Of-Atmosphere (TOA) and surface 

spectral reflectance at finer spatial resolution. This algorithm is composed of two 

parts: 1) a physical part that simulates surface spectral flux and TOA reflectance 
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using radiative transfer code MODerate resolution atmospheric TRANsmission 

version 4 (MODTRAN4) radiative transfer code, and 2) a statistical part that links 

simulated Sn and TOA and surface reflectance. New hybrid algorithm is 

straightforward and does not require coarse resolution ancillary data; therefore it is 

irrelevant to errors in parameter retrievals and raw input resolution is retained.   

 

     The second objective is to estimate cloudy-sky all-wave net radiation (Rn) from Sn 

and to take into consideration surface characteristics. Rn is sum of Sn and longwave 

net radiation (Ln) and previous studies have documented the close relationship 

between Rn and Sn (Diak and Gautier, 1983; Gautier et al., 1980; Ma et al., 2002). 

Difficulty in estimating cloudy-sky longwave net radiation, however, has been 

reported (Ellingson, 1995). Rn is closely related to vegetation type and state because 

vegetation type and state partly determine the fraction of net radiation used for 

evapotranspiration, photosynthesis, and respiration rates. Cloudy-sky Rn, therefore, 

can be estimated by using Sn and vegetation type and status. Ground measurement 

data and surface type are used to generate empirical formulae and the Earth’s surface 

is characterized with Enhanced Vegetation Index (EVI) and Plant Functional Types 

(PFT). Estimating cloudy-sky Rn from this method overcomes the limits in spatial 

coverage of measured Rn and enables estimation of all-sky Rn at finer spatial 

resolution, because the clear-sky longwave net radiation from MODIS data is recently 

estimated with greater accuracy than pre-existing products (Wang and Liang, 2008).  
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     The third objective is to produce daily integrated Sn. Many land surface models 

require integrated Sn at a daily temporal resolution (Alexandrov and Hoogenboom, 

2000; Chen et al., 2007; Wolf et al., 1996). Previous studies have used air 

temperature, other meteorological data sets, or simply substituted data from the 

closest station to estimate daily integrated Sn (Fletcher and Moot, 2007; Hunt et al., 

1998; Rivington et al., 2005; Wu et al., 2007).  The variation of Sn during the course 

of a day is similar to that of photosynthetically active radiation (PAR) (found in 

ground measurement data), therefore, adjusted sinusoidal interpolation for daily-PAR 

integration method is adapted. Adjusted sinusoidal interpolation can be also applied 

to daily integrated Rn. 

 

     The proposed study has the potential to provide three contributions to the scientific 

community. First, the study will produce Sn at finer spatial resolution with 

comparable accuracy to existing SRB products. Finer spatial resolution of Sn will 

capture the specific sequence of the redistribution of the available energy at the 

Earth’s surface. As the result and secondly, Sn derived from this study can support 

high resolution numerical weather prediction and land surface models. Finally, a finer 

spatial resolution Sn will more accurately assess existing coarse-spatial-resolution 

SRB datasets. 
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Chapter 2: Estimating Shortwave Net Radiation Using MODIS 
Data  
 

     The relationship between the solar atmospheric transmittance and the reflected 

radiation field at the top of the atmosphere is affected by the solar zenith angle, 

gaseous and aerosol absorption and scattering, surface reflectivity and clouds.  The 

retrieval of SRB from satellite-observed radiation crucially depends on whether the 

atmospheric absorption can be estimated with sufficient accuracy (Schmetz, 1989).  

     Surface downward radiation is influenced mainly by the atmospheric properties, 

but also to a lesser extent by surface reflectance. It is the integration of spectral flux 

for shortwave region and can be demonstrated by the following equation: 

 

                                                   ∫=
2

1

)()( 00

λ

λ
λ λµµ dFFd                                          (2-1) 

 

where )( 0µdF  is downward solar radiation, λ is wavelength, 1λ  and 2λ  is the 

spectral range of shortwave radiation (0.3 – 3 µm), 0µ is cos(θ0) at the solar zenith 

angle θ0. Spectral downward radiation, )( 0µλF , can be expressed as (Liang, 2004): 
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where )( 00 µF  is the downward flux without any contribution from the surface, rs is 

surface reflectance, ρ  is spherical albedo of the atmosphere, E0 is the extraterrestrial 

solar irradiance, and γ(µ0) is total transmittance (direct and diffuse) in the solar 

illumination direction. The left side of Equation 2-2 represents the surface flux. The 

first term on the right side of the equation is the sum of the direct and diffuse flux and 

the second term is related to multiple scattering. 

     Atmospheric properties can be explained by scattering and absorption. The optical 

properties (e.g. optical depth, single scattering albedo, phase function) of the medium 

are determined by the particles that compose the medium and their properties. If the 

molecular particles in the atmosphere are far smaller than the wavelength, its 

scattering pattern can be calculated by the Rayleigh scattering. If the particle size is 

very close to the length of wavelength, such as most aerosol particles in the 

atmosphere, their scattering behavior can be characterized by Mie scattering. 

Aerosols have a shortwave cooling effect at the surface level under clear-sky 

condition and warming effect under cloudy-sky condition (Li and Trishchenko, 

2001). At TOA, aerosols have a shortwave warming effect due to enhanced 

absorption under cloudy-sky condition and a cooling effect under clear-sky condition 

which are 3 – 4 times less than that at the surface level. 

     Molecular or Rayleigh scattering is more important at shorter wavelengths where 

the solar contributions dominate. MODTRAN models the single scatter solar 

radiation accounting for the solar spectrum (Kurucz, 1992; 1994), the curvature of the 

Earth, refractive geometry effects (Ridgway et al., 1982; Callery et al., 1983; Kneizys 

et al., 1983), and a general scattering phase function. Multiple scattering, which is 
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much more difficult to treat accurately, is handled with a plane-parallel atmospheric 

approximation (Andersion, 1982) and a Henyey-Greenstein phase function. Rayleigh 

scattering transmittance also depends on the elevation-related airmass, which are not 

taken into account in radiative transfer simulation, it is considered in section 2.2.4.  

     Absorption is caused mainly by atmospheric gases, such as water vapor, ozone, 

and oxygen, as well as aerosols. The most variable gas that significantly affects 

remotely sensed data is water vapor. It is found mostly in the boundary layer and 

water vapor content varies between 0.42 gcm-2 in sub-artic regions in winter and 4.12 

gcm-2 in tropical regions (Liang, 2004). Even daily fluctuation from 1.0 to 4.0 gcm-2 

has been reported (Holben and Eck, 1990), therefore daily transmittance related to 

water vapor is considered in this study (section 2.2.3). Water vapor absorbs solar 

radiation in the wavelength larger than 0.5 µm and has a shortwave cooling effect at 

the surface level under both clear- and cloudy-sky condition (Li and Trishchenko, 

2001). 

     Major factors affecting downward fluxes under clear-sky condition are aerosol 

and water vapor as well as solar zenith angle. Clouds are the strongest modulators of 

the shortwave radiation fields (Wielicki et al., 1998). Clouds absorb in the near 

infrared, which reduces the water vapor absorption below the cloud since cloud 

reflection and absorption shield the lower levels. Due to this compensation between 

cloud and water vapor absorption, the total absorption of clouds and gases is not 

changed drastically by clouds (Ramanathan, 1986; Schmetz, 1989). It is, however, 

not possible to measure the background clear-sky fluxes under cloudy-sky condition, 

determination of the clear-sky reference value is one of the major sources of 
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uncertainty in SRB estimation under cloudy-sky condition (Pinker et al., 1995). In 

order to reduce this uncertainty, both clear and cloudy-sky conditions were 

considered in each angular bins by using statistical method in this study. 

     The radiative transfer model (MODTRAN4) accounts for absorption by ozone and 

water vapor, multiple scattering by molecules, multiple scattering and absorption by 

aerosols and cloud droplets, and multiple reflection between the atmosphere and 

surface. The vertical profiles of ozone and water vapor densities, temperature, and 

pressure are those of the standard atmospheres (tropical, midlatitude summer and 

winter, sub-arctic winter and summer) (Berk et al., 2003). 

 

2.1 Existing methods for surface shortwave net radiation estimates 

 

    Although some statistical methods estimate surface shortwave net radiation (Sn) by  

establishing the regression relation between satellite-measured brightness and Sn 

measurement (Cano et al., 1986; Hay and Hanson, 1978; Tarpley, 1979), many 

studies estimate shortwave net radiation (Sn) using TOA radiance, atmospheric and 

surface variables (Cess et al., 1991; Cess and Vulis, 1989; Li et al., 1993a; Pinker et 

al., 1985; Pinker and Laszlo, 1992; Rossow and Zhang, 1995; Tang et al., 2006; 

Zhang et al., 2004). The current method retrieves parameters relevant to Sn with a 

radiative transfer model. A set of parameters with a proper degree of increment 

should be taken into account to get a high degree of accuracy, which might lead 

computational load. Solar zenith angle and atmospheric water vapor were found  

significant factors to influence Sn and modest aerosol correction was required for 
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clear sky (Cess and Vulis, 1989). Detailed parameterization of atmospheric 

properties, including surface elevation (surface pressure), ozone amount, aerosol type 

and amount, and cloud height and type (characterized by cloud droplet radius), 

produced more accurate estimates of Sn (Masuda et al., 1995). 

     Li et al (1993a) suggested a Sn estimation method based on radiative transfer 

model simulation: 

                                              rppSn ),(),( µβµα −=                                      (2-3) 

 

where µ is the cosine of the solar zenith angle, p is precipitable water, and r is local 

planetary albedo. Intercept α and slope β are calculated with Equations 2-4 and 2-5:  

 

                        [ ] )0683.00699.0()exp(11)(),( 0 pp −−−+= µ
µ

µαµα              (2-4) 

                                     pp 0216.00273.0),( 0 +−= βµβ                                  (2-5) 

 

The CERES single-scanner footprint (SSF) surface fluxes product uses this method to 

produce clear-sky Sn (Wielicki et al., 1998). Recently, Tang et al (2006) adopted this 

parameterization scheme and presented variable slope and intercept constants 

depending on various surface covers (land, ocean and snow/ice). They suggested a 

narrowband-to-broadband albedo conversion equation to calculate local planetary 

albedo (TOA albedo). The linear conversion formula (Tang et al., 2006) used in local 

planetary albedo (r) is: 
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                        776655443322110 ρρρρρρρ bbbbbbbbr +++++++=            (2-6) 

 

where ρi is TOA narrowband reflectance of MODIS band i and bi is a coefficient 

calculated from the function of the viewing zenith angle (VZA): 

 

                                 ))/))cos(/1exp((1/( 4321 iiiii ccVZAccb −++=                   (2-7)  

 

where c1i – c4i are constants for a given solar zenith angle. 

These methods, however, convert TOA radiance to broadband flux, then surface 

shortwave net radiation is linked. Detailed indications about atmospheric and surface 

properties in multispectral data can be lost in this process. Also, errors associated 

with retrieving each required parameters are unknown to cancel or reinforce each 

other. Estimating these parameters may be more challenging than estimating surface 

net radiation. 

     Another issue related to existing methods is inconsistency in the spatial and 

resolution of ancillary data as well as suitability to coarse resolution data. ISCCP 

global data, for example, are produced by merging the analyses of narrowband 

radiances measured by the network of weather satellites with the TIROS operational 

vertical sounder (TOVS) daily analysis product produced by National Oceanic and 

Atmospheric Administration (NOAA) and some ancillary data (Zhang et al., 1995). 

The main ancillary data sets are: land/water fraction and the mean topography at a 

resolution of 25 km, the surface/vegetation type at a resolution of about 100 km, and 

the weekly snow/ice cover data from NOAA/National Environmental Satellite data 



 

 18 
 

and Information Service (NESDIS) and United States Navy/NOAA Joint Ice Center 

(Rossow and Schiffer, 1991). Moreover, geostationary satellites have limited use at 

high latitude regions due to their restricted viewing geometry.  

 

2.2 Theoretical basis of the new hybrid algorithm 

 

     All-sky surface shortwave net radiation (Sn) is estimated from TOA reflectance 

using a hybrid algorithm at 1 km spatial resolution. The first step is to simulate 

MODIS TOA reflectance and shortwave net radiation (Sn) with the MODIS spectral 

response function and surface reflectance spectra. The second step uses statistical 

techniques to establish the relationship between Sn and MODIS TOA reflectance. A 

flowchart of the hybrid Sn algorithm is shown in Figure 2-1. 
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Figure 2- 1 Flowchart depicting the hybrid algorithm for shortwave net radiation 
estimation. Above the dashed red line indicates physical part of the hybrid algorithm 
and below indicates statistical part of the hybrid algorithm 
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2.2.1 Radiative transfer simulation 

 

     MODerate resolution atmospheric TRANsmission version 4 (MODTRAN4) was 

used to simulate spectral downward flux and MODIS TOA radiances for known solar 

zenith angle and atmospheric conditions (e.g., visibility, aerosol type) (Berk et al., 

1999). Nine solar zenith angles (0°, 20°, 40°, 50°, 60°, 65°, 70°, 75°, and 80°)  and 

seven different visibilities (5, 10, 20, 30, 50, 100, and 1000 km) were used in the 

clear-sky simulation, and four types of cloud were used in the cloudy-sky simulation. 

Five viewing zenith angles (0°, 15°, 30°, 45°, and 65°)  and seven relative azimuth 

angles (0°, 30°, 60°, 90°, 120°, 150°,  and 180°)  were added to create total 315 

angular bins to characterize the Sun-satellite geometry for the MODIS TOA radiance 

simulation. 

 

     Downward spectral flux at a Lambertian surface at the solar zenith angle (θ0) can 

be calculated using Equation 2-2.  

                                     )(
1

)()( 000000 µγµ
ρ

ρµµ E
r

r
FF

s

s

−
+=                              (2-2) 

 

Solving Equation 2-2 for three surface reflectance specifications (0.0, 0.5, and 0.8) 

provides the values of the unknown atmospheric parameters. Downward spectral flux 

was integrated to represent shortwave downward radiation (S↓). S↓ is used in albedo-

based estimation in Figure 2-1. Surface shortwave upward radiation (S↑) was 

calculated by multiplying surface reflectance spectra to surface downward radiation 
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(S↓) and Sn was calculated as the difference between S↓ and S↑. Sn is used in the 

direct estimation in Figure 2-1.   

 
     Equation 2-8 (Liang, 2004) were used to obtain the TOA radiance at viewing 

zenith angle (θ).  
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where ),,( 0 φµµI  is upward TOA radiance, µ = cos(θ) ,φ  is the relative azimuth 

angle, ),,( 00 φµµI  is path radiance without surface contributions, and γ(µ) is the total 

transmittance from the surface to the sensor. All surfaces are assumed to be 

Lambertian reflectors. 

 

2.2.2 Linking TOA reflectance and shortwave net radiation 

 

     Parametric and nonparametric statistical techniques, such as multivariate linear 

regression and Artificial Neural Network (ANN), were used to model the relationship 

between MODIS TOA reflectance and surface shortwave net radiation (Sn).  

     TOA radiance is transformed into equivalent reflectance by normalizing the solar 

irradiance at TOA using Equation 2-9 where the Earth-Sun distance in astronomical 

units is assumed to be one:   
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where I is TOA radiance, θ0 is the solar zenith angle, and E0 is solar spectral 

irradiance (Thuillier’s data 

(http://oceancolor.gsfc.nasa.gov/DOCS/RSR/Thuillier_F0.dat) were used in the 

present study). 

 

     Multivariate linear regression was performed for each angular bin to establish the 

relationship between Sn and MODIS TOA and surface reflectance using Equation 2-

10. 
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where θ0 is the solar zenith angle, θ is the viewing zenith angle, φ  is the relative 

azimuth angle; φθθ ,,0
a , φθθ ,,0

,ib , and φθθ ,,0
,ic  are regression coefficients estimated using 

multivariate regression,  i represents MODIS bands in the shortwave region (1 – 7), 

φθθρ ,,0
,TOAi  and φθθρ ,,0

,iS  indicates TOA and surface reflectance respectively. Each 

angular bin produced contains all-sky condition data that includes both clear- and 

cloudy-sky simulations. Linking between Sn and TOA and surface reflectance was 

also performed with an ANN approach by using Neuroet1 software (Noble and 

Tribou, 2007). The Nueroet1 scheme is shown in Figure 2-2. The inputs to the ANN 

were the simulated Sn and TOA and surface reflectance in MODIS band 1 – 7.  

 



 

 23 
 

                     

Figure 2- 2 Scheme showing the relationship between variable, hidden neurons (HN), 
output neurons (ON), and predicted outputs (Yp) (adapted from Noble and Tribou, 
2007) 
 

     ANN is adjusted, or trained, so that a particular input leads to a specific target 

output. This situation is shown in Figure 2-3. The network is adjusted, based on a 

comparison of the output and the target, until the network output matches the target. 

Many input/target pairs are needed to train a network. 

 

 

Figure 2- 3 ANN working scheme 

 

2.2.3 Water vapor correction 

 

     The uncertainty in Surface Radiation Budget (SRB) components estimation is due 

in part to the uncertainty in water vapor content (Cess et al., 1995; Forster and 
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Output Compare Target 
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Gregory, 2006; Zhang et al., 2004). The default water vapor amount was set in 

radiative transfer simulations. One way of considering water vapor effect is to input 

simulated water vapor amount in regression. Normalized water vapor transmittance 

coefficient was used in this study to reduce simulation and computation time.    

 

     There are many models for calculating water vapor transmittance (Annear and 

Wells, 2007). Three equations were compared in this study. The water vapor 

transmission coefficient (Tw) can be calculated by using 1) Duchon and O'Malley’s 

(1999), 2) Bird and Hulstrom (1981), and 3) a fitted method (Wang, 2008).  

 
     The water vapor transmission coefficient in Duchon and O'Malley’s (1999) 

method is calculated as: 

                                          3.0)(077.01 muTw ⋅⋅−=                            (2-11) 

 

where u is water vapor amount in cm and m is atmospheric mass at surface. The 

optical airmass number (m) at 101.3 kPa is calculated with Equation 2-12.  
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where sθ  is solar zenith angle 

 
     Bird and Hulstrom (1981) calculated the transmittance of the water vapor as  
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     Wang (2008) suggested Equation 2-14 based on the radiative transfer simulation 

and model fitting.  

                                     )lg(07066.08197.0 muTw ⋅⋅−=                            (2-14) 

 

After water vapor transmittance is calculated, water vapor is normalized. Normalized 

water vapor transmittance is defined as: 
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where Tw(u,m) is water vapor transmittance for water vapor amount u in cm, which is 

extracted from MOD05_L2 and Twd(ud,m) is water vapor transmittance at a default 

setting simulation.  

     All three methods were applied and results are summarized in Table 2-1. Methods 

did not show big difference. RMSEs were reduced after water vapor correction by 

0.93% (Wang), 0.83% (Duchon and O’Malley’s), and 0.80% (Bird and Hulstrom). 

Wang (2008) method, which shows best improvement, was applied to this study. 

 

Table 2- 1 Comparison of water vapor transmission calculation 
 

Methods RMSE reduction (%) Bias reduction (%) 
Wang (2008) 0.93 0.48 
Duchon and O'Malley’s (1999) 0.83 0.29 
Bird and Hulstrom (1981) 0.80 0.31 
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2.2.4 Elevation correction 

 

    Elevation was set to zero meters in radiative transfer model simulations. Surface 

elevation controls the atmospheric mass that in turn affects Rayliegh scattering 

transmittance; therefore, I examined the difference between current radiative transfer 

model simulation (sea level setting) and simulations with variable elevation settings 

of 0.5km, 1 km, 1.5 km, 2 km, 3 km, 4 km, and 5 km. To quantify elevation effect, 

normalized transmittance can be defined as: 

                                           
0,

,

ray

zray
n T

T
T =                                                 (2-16) 

 

where Tray,z is the Rayliegh scattering transmittance at an elevation z in km and Tray,0 

is the Rayleigh scattering transmittance at sea level. The application of this method to 

the PAR elevation correction reduced error (Wang et al., 2008b). Surface elevation 

data can be downloaded from GTOPO30 at a spatial resolution 30 arc seconds 

(http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html). Fig. 2-4 shows the 

variation of normalized elevation coefficients with elevation and solar zenith angle.  
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Figure 2- 4 Normalized elevation coefficients depending on solar zenith angle 
 

2.3 Data sets 

 

     A variety of data sets were used in this study to develop and evaluate methods for 

shortwave net radiation (Sn) estimation. The direct estimation method required 

representative surface reflectance spectra to calculate Sn as well as MODIS TOA and 

surface reflectance data. The MODIS albedo data were used for the albedo-based 

estimation method. Surface measurements were used for evaluation. 
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2.3.1 Surface reflectance spectra 

 

     Sn is highly related to surface characteristics; therefore, calculating Sn requires 

representative surface reflectance spectra. Two hundred fifty-six surface reflectance 

spectra were used to calculate Sn. One hundred twenty spectra were obtained from the 

United States Geological Survey (USGS) spectral library (http://speclab.cr.usgs.gov/) 

and Dr. Shunlin Liang provided the rest of spectra. 

 

2.3.2 MODIS products 

 

     TOA reflectance was obtained from two MODIS level 1B dataset: MOD021KM 

and MOD03. The MOD021KM product is calibrated Earth View data at 1 KM 

resolution by the MODIS Characterization and Support Team (MCST), with 

including the 250 m and 500 m resolution bands aggregated to appear at 1 km 

resolution. The MOD021KM products are TOA radiance and reflectances (Toller et 

al., 2006). The first seven spectral bands (Table 1-3) of the MOD021KM were used. 

These channels were selected to consider dominant insolation, aerosol, cloud, and 

water vapor effects in SRB. The MOD03 products consist of geolocation fields data 

calculated for each 1 km MODIS Instantaneous Field of View (IFOV). The 

geolocation fields include geodetic latitude, longitude, surface height above the geoid, 

solar zenith and azimuth angles, satellite zenith and azimuth angles, and a land/sea 

mask for each 1 km sample.  
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     Water vapor amount was acquired from the MODIS level 2 dataset: MOD05_L2. 

The MOD05_L2 products are the near-infrared total precipitable water data 

consisting of column water vapor amounts over clear land areas of the globe, and 

above clouds over both land and ocean. MODIS level 1 and 2 data sets are 

downloadable from Level 1 and Atmosphere Archive and Distribution System 

(LAADS web, http://ladsweb.nascom.nasa.gov).  

     Surface albedo information was acquired from the MODIS Bidirectional 

Reflectance Distribution Function (BRDF)/Albedo product: MOD43B3. The MODIS 

global albedo is operationally produced every 16 days at a 1 km spatial resolution. 

The product is derived in seven spectral bands, as well as in the visible, the near/mid-

infrared and the total shortwave broadbands (Schaaf et al., 2002). The product 

provides the completely diffuse bihemispherical (white-sky albedo) and directional 

hemispherical reflectance (black-sky-albedo). Directional hemispherical reflectance 

in total shortwave broadbands was used in the study. 

     Surface reflectance data was obtained from the MODIS surface reflectance grid 

data: MOD09GHK. The MOD09GHK is a seven-band product computed from 

MODIS level 1B land bands 1 – 7 and provides daily surface reflectance. Data sets 

are available in Land Processes Distributed Active Archive Center (LP DAAC, 

http://edcimswww.cr.usgs.gov/pub/imswelcome/) 

 

2.3.2 Surface measurements 
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     The Surface Radiation Budget Network (SURFRAD) was established in 1993 to 

support climate research with accurate, continuous, long-term measurements of the 

surface radiation budget over the United States. Seven stations are currently operating 

and provide global solar radiation (0.28 – 3 µm) with three minute intervals 

(Augustine et al., 2005). Figure 2-5 shows the seven operating sites. Table 2-1 

summarizes site location information.  

  

Figure 2- 5 Seven SURFRAD sites 

           

 

Table 2- 2 Location of SURFRAD sites 
Station Short Name Latitude Longitude Elevation(m) 
Bondville, IL BON 40.05 - 88.37 213
Boulder, CO TBL 40.13 - 105.24 1689
Desert Rock, NV DRA 36.63 - 116.02 1007
Fort Peck, MT FPK 48.31 -105.10 634
Goodwin Creek, MS GWN 34.25 - 89.87 98
Penn State, PA PSU 40.72 - 77.93 376
Sioux Falls, SD SXF 43.73 - 96.62 473
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2.4 Validation 

 

     Validation is the process of determining the degree to which an estimated 

products/model provides an accurate representation of the real world (Justice et al., 

2000; Salomon et al., 2006). Independent field measurements on the ground or from a 

tower are generally presumed to be “ground truth” and are often taken as the 

reference for validation. While independent field measurements are typically only 

representative of small areas on the Earth, they remain the primary source of ground 

truth data for validation of the estimated products. One of problems in validation of 

estimated products from remotely sensed data is the scale mismatch between ground 

point measurement and satellite measurements because a single satellite measurement 

can measure energy from a very large area relative to field measurements (Wang et 

al., 2004a).  

     When land surface is heterogeneous, a number of ground measurements are 

needed to capture spatial variance of the surface radiation and hence to represent the 

mean radiation value over the region covering a satellite pixel. This, however, poses 

both logistic and practical difficulties for validation (Tian et al., 2002). An alternative 

is to select relatively homogeneous regions for the validation so that the ground 

measurement matches well the mean radiation at the satellite scale. The Surface 

Radiation Budget Network (SURFRAD) (Augustine et al., 2005) were designed to 

provide accurate and continuous measurements of the surface radiation budget and 

the landform and vegetation are relatively homogeneous over an extended region 

around stations. Upward and downward radiation measurements are routinely 
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measured at a temporal resolution of 3 minutes, from which the surface net radiation 

can be calculated. Therefore, SURFRAD sites can provide ground observation to 

verify the satellite-based radiation retrievals. Intercomparison of data products or 

model outputs provides an initial indication of differences and possibly insights into 

the reasons for the differences (Justice et al., 2000), therefore, comparisons with 

GEWEX/SRB and ISCCP data are included in this chapter.  

     Hybrid methods developed in this study were evaluated at seven SURFRAD sites. 

Surface radiation budget product is primary input to numerous applications and its 

uncertainty could affect the application result, to determine product accuracy is 

necessary step. The three-minute surface measurements used for validation were 

those closest to satellite overpass time.  

 

2.4.1 Hybrid algorithm: Direct estimation 

 

     All-sky shortwave net radiation (Sn) was estimated using the hybrid algorithms. 

Multivariate linear regression and Artificial Neural Network (ANN) methods were 

used to link Sn and TOA and surface reflectances. Estimated Sn for the year 2005 was 

compared to the surface measurement data collected at the seven SURFRAD sites. A 

total of 315 angular bin models were developed and evaluated with the multivariate 

linear regression and ANN methods to determine the most effective approach. ANN 

methods showed better fitting results as shown in Figure 2-6, however, multivariate 

linear regression estimates surface measurements more accurately in validation in 

terms of correlation coefficients and Root Mean Squared Error (RMSE). For ANN, it 
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is easy to get a good or excellent result on the in-sample data, but this by no means 

suggests that a good model is found. This overfitting limits the generalization ability 

of predictive models (Zhang, 2007). Therefore, multivariate linear regression was 

used in remainder of the study.  

     Figure 2-7 compares estimated Sn using multivariate linear regression and surface 

measurements collected closest to the satellite-overpass time. Multivariate linear 

regression estimates Sn with RMSEs of 74.9 – 110.9 Wm-2. Table 2-3 summarizes the 

validation results.  

 

Table 2- 3. Validation of estimated shortwave net radiation using hybrid method 
(direct estimation) at 1-km and time closest to satellite overpass 
 

Sites R2 RMSE (Wm-2) Bias (Wm-2) 
BON 0.8357 88.4 -1.4 
TBL 0.7616 110.9 -45 
GWN 0.8029 94.5 2.9 
DRA 0.8111 74.9 -51.8 
FPK 0.8277 93.7 -24.1 
PSU 0.7915 107.3 13.2 
SXF 0.8442 86.7 -6.2 
mean 0.8107 93.8 -16.1 
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Figure 2- 6 Simulated shortwave net radiation fitting using multivariate linear 
regression (top) and artificial neural network (bottom) 
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Figure 2- 7 Validation of shortwave net radiation estimation using hybrid method 
(direct estimation) for the SURFRAD sites 
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2.4.2 Hybrid algorithm: Albedo-based estimation 

 

     Surface shortwave net radiation (Sn) can be calculated with surface albedo (α). 

  

                                                     Sn = S↓(1- α)                                                (2-17) 

 

Surface downward radiation (S↓) was obtained from the MODTRAN4 simulation and 

surface albedo was extracted from the standard MODIS albedo product. The standard 

MODIS albedo products have generally been used as a reference data set to evaluate 

the results from climate models (Roesch and Roeckner, 2006; Wang et al., 2004b; 

Zhou et al., 2003) and land surface albedo products from other sensor such as Multi-

angle Imaging SpectroRadiometer (MISR) (Chen et al., 2008). Spatially continuous 

MODIS albedo products developed by using temporal scaling filter was applied to 

generate ultraviolet albedo (Kim et al., 2008). 

     Figure 2-8 shows the validation results and the results are summarized in Table 2-

4. A large RMSE is noticed in Table 2-4.  The variation in temporal resolution 

between the albedo product and estimated shortwave downward radiation (S↓) as well 

as spatial differences between satellite data and surface measurements are suspected 

as major sources of error. The MODIS albedo product is produced in 16 days to 

obtain enough number of observations to calculate surface albedo and it is not 

retrieved if there is lack of observations to calculate albedo due to cloud cover, 

seasonal snow, and/or instrument problems (Fang et al., 2007). Same albedo value 

was used more than 16 days in albedo-based estimation if there were no available 
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surface albedo. S↓, on the other hand, can be estimated daily if satellite observation is 

available.  

 

Figure 2- 8 Validation of shortwave net radiation estimation using hybrid method 
(albedo-based estimation) for SURFRAD sites 
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Table 2- 4 Validation of estimated shortwave net radiation using hybrid method 
(albedo-based estimation) at 1 km and time closest to satellite over pass 
 

Sites R2 RMSE (Wm-2) Bias (Wm-2) 
BON 0.7810 116.1 12.5 
TBL 0.6696 152.5 -80.9 
GWN 0.7407 118.1 20.9 
DRA 0.7791 84.8 9.5 
FPK 0.7309 133.9 -41.9 
PSU 0.7857 126.3 8.6 
SXF 0.7886 120.1 -1.5 
mean 0.7537 121.7 -10.4 

 

 

     Figure 2-9 shows extracted albedo, estimated S↓, and Sn over PSU sites. 

Discontinuity in MODIS albedo is shown in extracted albedo. The MODIS albedo 

was not observed in the early days of year, therefore larger RMSEs in the albedo-

based estimation are suspected due to the mismatch in temporal and spatial 

resolution. The same albedo values were used for the first 60 days due to a seasonal 

snow cover, and this reduced the estimated variation in Sn. Ground measured Sn 

extended up to 600 Wm-2 during this period of time while albedo-based Sn estimates 

extended only to 260 Wm-2.  The same phenomenon was observed during the last 30 

days of the year. Albedo-based Sn estimates only extended to 170 Wm-2 while ground 

measurements extended to 470 Wm-2. Temporal resolution difference and data gap in 

input data result in large RMSEs. This might indicate that errors in input data could 

affect the final results. 
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Figure 2- 9 Shortwave net radiation estimation using albedo-based estimation over 
PSU sites. Top: albedo values used in albedo-based shortwave net radiation 
estimation, middle: estimated shortwave downward radiation, and bottom: estimated 
shortwave net radiation using albedo-based estimation 
 

 

 

 

2.4.3 Data aggregation using direct estimation 

 

     The heterogeneity effect due to optical depth variability and the horizontal 

transport effect of light moving between cloud columns (usually referred to as 3-D 

cloud effect) affects the accurate estimation of Sn. The 1-D radiative transfer models, 
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ignore the 3-D cloud effects, assuming that clouds are plane-parallel and 

homogeneous. 1-D models, therefore, are unable to accurately describe the radiation 

field at small scales (Barker and Davies, 1992; Cahalan et al., 1994; Loeb et al., 1998; 

Varnai, 2000). The hybrid algorithms do not account for the 3-D cloud effects; 

however, aggregation to a resolution of 9-km could mitigate the 3-D cloud effects. To 

reduce the large variance caused by broken cloud fields, ground measurements are 

averaged over a 30-minute window centered at satellite-overpass time. Figure 2-10 

compares estimated and field measured Sn. Table 2-5 summarizes the statistical 

comparison. RMSEs are reduced to 68.1 – 99.9 Wm-2 by aggregating to a spatial 

resolution of 9-km and a 30-minute time window. 

 

Table 2- 5 Validation of estimated shortwave net radiation using hybrid method 
(direct estimation) at 9 km and 30 minute time window 
 

Sites R2 RMSE (Wm-2) Bias (Wm-2) 
BON 0.8761 76.3 -5.5 
TBL 0.8062 96.7 -40 
GWN 0.8837 71.6 2.6 
DRA 0.8469 68.1 -49 
FPK 0.8686 79.9 -29.3 
PSU 0.8165 99.9 23.7 
SXF 0.9003 68.3 -13.3 
mean 0.8569 80.1 -15.8 
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Figure 2- 10 Validation of estimated shortwave net radiation using hybrid method 
(direct estimation) at 9 km and 30 minute time window 
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2.5 Comparison with other products 

 

     Current products (GEWEX/SRB and ISCCP) and physically-based method is 

compared to ground measurement over the seven SURFRAD sites.  

 

2.5.1 Comparison with GEWEX data 

 

     The data contain 3-hourly global fields of shortwave surface net radiation derived 

with the shortwave algorithm of the NASA World Climate Research 

Programme/Global Energy and Water-Cycle Experiment (WCRP/GEWEX) surface 

radiation budget project. The data were generated on a nested grid that contains 

44016 cells. The grid has a resolution of 1 degree latitude globally, and longitudinal 

resolution ranging from 1 degree in the tropics and subtropics to 120 degrees at the 

poles (Stackhouse, 2004).  

     I extracted grid cells at the seven SURFRAD sites and compared them with 

ground measurements. Release 2.8 data were used and currently data from January to 

June in year 2005 are available. Figure 2-11 compares the estimated and surface 

measured shortwave net radiation. Table 2-6 provides a statistical comparison of the 

estimated and surface-measured Sn. 
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Figure 2- 11 Comparison of shortwave net radiation from GEWEX/SRB data from 
January to June 2005 for the SURFRAD sites 
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Table 2- 6 Comparison of shortwave net radiation from GEWEX/SRB data (1 degree 
resolution) from January to June 2005 for the seven SURFRAD sites 

 
Sites R2 RMSE (Wm-2) Bias (Wm-2) 

BON 0.8489 96.1 37.3 
TBL 0.6815 158.3 -23.6 
GWN 0.8639 93.5 28.1 
DRA 0.8278 118.5 29.7 
FPK 0.8367 99.9 -5.9 
PSU 0.7970 109.4 48.8 
SXF 0.8508 93.5 18.1 
mean 0.8152 109.9 18.9 

 

2.5.2 Comparison with ISCCP data 

 

     The ISCCP FD-SRF RadFlux dataset were used in this comparison. Reprocessed 

data from year 1983 to year 2004 are available on a 280 km equal-area grid (about 2.5 

degrees) and a 3-hour temporal resolution (Zhang et al., 2004). Data from 2004 were 

extracted to provide a comparison of different spatial resolution products. Validation 

results are shown in Figure 2-12 and summarized in Table 2-7.  

 

Table 2- 7 Comparison of shortwave net radiation from ISCCP data (2.5 degree 
resolution) 2004 for the seven SURFRAD sites 
 

Sites R2 RMSE (Wm-2) Bias (Wm-2) 
BON 0.5887 148.7 41.0 
TBL 0.7062 143.6 -10.0 

GWN 0.7667 116.3 61.1 
DRA 0.8778 92.4 -29.0 
FPK 0.8568 93.0 12.3 
PSU 0.7845 105.8 49.5 
SXF 0.8246 101.2 26.8 
mean 0.7722 114.4 21.7 
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Figure 2- 12 Comparison of shortwave net radiation from ISCCP data (2.5 degree 
resolution) 2004 for the SURFRAD sites  
 
 

 
 
 

 
 
 



 

 46 
 

 

2.5.3 Comparison with a physically based method 

 

     Tang et al (2006) method was implemented in this study to examine how the 

physically-based method works in Sn estimation. Section 2.1 describes this method. 

The data used in implementation were MOD021KM, MOD03, and MOD05_L2 from 

2005. Figure 2-13 compares Sn estimated with the physically-based method to Sn 

measured at the SURFRAD sites. A statistical comparison of the results is provided in 

Table 2-8. The physically-based method produces RMSEs of 103.8 – 153.7 Wm-2 and 

accuracy is less than hybrid method (direct estimation, average RMSE 93.8 Wm-2). 

 

Table 2- 8 Shortwave net radiation estimation validation for the seven SURFRAD 
sites using the physically-based method 
 

Sites R2 RMSE (Wm-2) Bias (Wm-2) 
BON 0.7252 113.3 40.74 
TBL 0.6287 153.7 -5.33 
GWN 0.7416 129.3 65.8 
FPK 0.7241 136.5 11.5 
DRA 0.7537 103.8 -1.8 
PSU 0.7391 129.7 57.9 
SXF 0.8087 118.4 27.0 
mean 0.7316 126.4 28.0 
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Figure 2- 13 Validation results for physically-based method for shortwave net 
radiation estimation  
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2.6 Summary 

 

     A hybrid method to estimate shortwave net radiation (Sn) was developed in this 

study. This method does not require coarse resolution ancillary data; therefore, the 

spatial resolution of the original input data can be retained. The hybrid method 

estimates all-sky Sn was estimated at 1 km resolution with average RMSE of 93.8 

Wm-2. The average RMSE is reduced to 80.1 W m-2 when data were aggregated to a 

resolution of 9-km and ground measurements are averaged over a 30-minute time 

window.  

     Estimated Sn using the hybrid method at 1-km resolution and GEWEX/SRB data 

from January to June in 2005 were compared. The validation results are provided in 

Table 2-8 with ISCCP data from 2004. The hybrid algorithm results at 1 km 

resolution have smaller errors than GEWEX/SRB (1 degree) or ISCCP (2.5 degree) 

data. The hybrid algorithm produces less RMSE and bias by 12% and 2% 

respectively compared to GEWEX/SRB data (half of a year’s data are evaluated). 

Compared to ISCCP data, the RMSE and bias are less by 14% and 4% respectively 

(one year’s data are evaluated). Estimated Sn using the hybrid method at 1-km 

resolution is in much better agreement with surface measurements than 1 degree and 

2.5 degree data due to the improved scale matching. Sn products at less than 1 degree 

resolution are, however, not available currently, Sn estimated by hybrid method is 

recommended to use for finer resolution application. Estimated Sn using hybrid 

method will be used in the remainder of this study.  
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     Implementing the new hybrid algorithm is very straightforward. Figure 2-14 

shows a color composite of MODIS TOA reflectance data and direct-estimated Sn on 

day 99 in 2005 (band combination: band 1 in red, band 4 in green, and band 3 in 

blue).  
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Figure 2- 14 Color composite of MODIS TOA reflectance over southern Lake 
Michigan, acquired on day 99 in 2005 and estimated shortwave net radiation by direct 
estimation. Units are in Wm-2  
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Chapter 3: Estimating Cloudy-sky Net Radiation   
 
     Surface all-wave net radiation (Rn) controls the input of latent and sensible heat 

flux into the atmosphere over the Earth’s surface, therefore, Rn is a factor in 

determining long-term weather and climate. Rn is also a key parameter in computing 

reference evapotranspiration and is a driving force in many other physical and 

biological processes. 

     Rn is the sum of downward and upward components in shortwave and longwave 

radiation as shown by equation 1-1. Measured Rn is available only from well-

equipped weather stations; therefore, Rn measurements of high temporal and spatial 

resolution are scarce (Alados et al., 2003; Allen, 1996). Hence, calculated values of 

Rn are commonly used instead of measured Rn (Samani et al., 2007).  

 

3.1 Background 

 

     When meteorological data are used, linear regression, multivariate regression, and 

physically-based models are applied (Kjaersgaard et al., 2007). Linear regression 

estimation of Rn uses shortwave net radiation (Alados et al., 2003; Kaminsky and 

Dubayah, 1997); multivariate regression estimation of Rn uses mean daily air 

temperature, Earth-Sun distance, and downward solar radiation (Irmak et al., 2003a). 

Physically-based models estimate Rn by calculating the individual terms in equation 

1-1 separately. Sn is calculated by S↓(1- albedo) and longwave net radiation (Ln) 

estimation procedures are often based on the theoretical Stefan-Boltzmann Law that 
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states that the energy radiated from the surface of a black body is proportional to its 

emissivity and the fourth power of its temperature. Equation 3-1 was suggested for Ln 

calculation (Hansen, 2000): 

                                   ))(( 21 c
S
ScLLL

c
csn +

↓
↓↑−↓= ε                                      (3-1) 

 

where sε  is surface emissivity, Lc↓ is clear-sky downward longwave radiation, Sc↓ is 

clear-sky downward shortwave radiation, and c1 and c2 are empirical coefficients that 

require local calibration. The calibration coefficients require local calibration and, 

therefore, are only valid for a spatially limited area or region.  

     When satellite data are used, Jacobs et al. (2004) calculated Ln with Equation 3-2:  

 

                                44 ))1()(1( sscacsn TTCLL σεσεε −−+↓−=                           (3-2) 

 

where  sε  is surface emissivity, Lc↓ is clear-sky downward longwave radiation, aε  is 

atmospheric emissivity, Tc is cloud temperature (cloud-base temperature), C is the 

effective cloud fraction, σ is Stefan-Boltzman constant, and Ts is surface temperature. 

Satellite estimation of Rn has the advantage of global spatial coverage; however, the 

errors associated with input parameters can affect the accuracy of results. Errors at 

each step in the estimation potentially cancel or reinforce each other. Also, the 

resolution of raw data is not retained when satellite-based cloud information is used 

(Garatuza-Payan et al., 2001; Jacobs et al., 2004; Stewart et al., 1999). Cloud -top 
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temperature, instead of cloud-base temperature, is used in Equation 3-2 because 

cloud-base temperature is hard to be retrieved using satellite data.  

     A high-resolution method of estimating cloudy-sky Rn is necessary to support 

recent ecosystem simulations. The method of estimating Rn without using retrieved 

cloud properties was explored because of uncertainties in retrieval of cloud properties 

from satellite data. The goal is to define relationship between Sn and Rn under cloudy-

sky by considering surface characteristics, because energy exchange between the 

Earth and atmosphere is controlled by Rn and Rn is closely related to surface 

characteristics.  

 

3.2 Cloudy-sky net radiation estimation method 

 

     Although there are many applications for Rn, the Rn data are rarely available due to 

the technical and economical limitations inherent in direct measurements (Samani et 

al., 2007). Estimating surface longwave net radiation (Ln) from satellite data is 

especially difficult under cloudy-sky conditions; therefore, empirical formulae for 

estimating cloudy-sky Rn would be extremely helpful to the user community. The 

proposed approach estimates Rn (0.2 – 100 µm) using Sn (0.2 – 4.0 µm) and vegetation 

indices and is based on surface Sn measurements. The FLUXNET sites used to 

develop the formulae to estimate cloudy-sky Rn are listed in Table 3-1. FLUXNET is 

a global network of micrometeorological tower sites that measure the exchange of 

carbon dioxide, water vapor, and energy between the terrestrial ecosystem and 
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atmosphere (Baldocchi et al., 2001). Five or more years of data were collected from 

13 FLUXNET sites with different Plant Functional Types (PFT). 

 

Table 3- 1 Location and plant functional types (PFT) of FLUXNET sites used in 
surface all-wave net radiation study 
 

Station Latitude Longitude PFT 
Audubon 31.60 -110.51 Grass 
Blackhills 44.16 -103.65 Evergreen Needleleaf Trees 
Bondville 40.01 -88.29 Broadleaf Crop 
Fort Peck 48.31 -105.10 Grass 
Goodwin 34.25 -89.97 Broadleaf Crop 
Lost Creek 46.08 -89.98 Deciduous Broadleaf Trees 
Mead (irrigated) 41.10 -96.29 Broadleaf Crop 
Mead (rainfed) 41.10 -96.44 Broadleaf Crop 
MMSF 39.32 -86.41 Deciduous Broadleaf Trees 
Niwot 40.03 -105.55 Evergreen Needleleaf Trees 
Walnut River 31.52 -96.86 Grass  
Willow Creek 45.81 -90.08 Deciduous Broadleaf Trees 
Wind River 45.82 -121.95 Evergreen Needleleaf Trees 

 

3.2.1 Identifying cloudy-sky conditions 

 

     The temporal window of three ground measurements in shortwave downward 

radiation (S↓) is taken during the day ( ,, 21 xx and, 3x ) and assumed to have a linear 

relationship under clear-sky condition (Figure 3-1). Cloudy-skies are assumed if the 

center S↓ datum ( 2x ) satisfies the following equation:   

                                                      σ−
+

<
2

31
2

xx
x                                        (3-3) 

 

where σ is the standard deviation. Setting a threshold in S↓ to identify cloudy-sky 

conditions eliminated cloudy-sky data in winter. Extracted cloudy-sky data were  



 

 56 
 

 

Figure 3- 1 Variation in clear-sky shortwave downward radiation over the course of 
one day 
 

confirmed by daily weather database (http://www.wunderground.com/) if station 

records are available. 

     After extracting cloudy-sky data, the relationship between Rn and Sn is established 

using Equation 3-4. Figure 3-2 shows this relationship.  

 

                                                      SnRn ⋅+= 8347.01898.20                                (3-4) 

 

It shows that they are related (R2 is 0.9469) in RMSE 35.6 Wm-2. 
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Figure 3- 2 Field cloudy-sky all-wave net radiation and shortwave net radiation 
 

 

 

3.2.2 Multivariate regression analysis 

 

     Net radiation controls the total energy exchange between the atmosphere and the 

Earth’s surface and it is closely related to surface characteristics. PFT is used to 

categorize the surface. PFT can be extracted from MODIS land cover classification 

products (MOD12Q1). Table 3-2 lists the PFT types from MOD12Q1. After grouping 

cloudy-sky ground measurements into PFTs, the Enhanced Vegetation Index (EVI) is 

used to describe surface vegetation status. EVI is extracted from MODIS vegetation 

indices products (MOD13A2). Two vegetation indices are included: One is the 

standard normalized difference vegetation index (NDVI), which is referred to as the 

“continuity index” to the existing National Oceanic and Atmospheric Administration 
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(NOAA)-Advanced Very High Resolution Radiometer (AVHRR) derived NDVI. The 

other is an EVI with improved sensitivity in high biomass regions and improved 

vegetation monitoring through a de-coupling of the canopy background signal and a 

reduction in atmosphere influences. Both indices were applied, and EVI produced 

better results. EVI and Sn are used to estimate Rn with equation 3-5.  

 

                                   EVISnaSnaEVIaaRn ⋅+++= 3210                                 (3-5) 

 

     Rn estimation is improved when surface characteristics are considered except for 

grass surfaces (Table 3-2). Surface characterization does not appreciably improve 

accuracy for grass because EVI in grass is usually low and less improvement by 

surface characteristics is observed. In addition, exposed soil and dead grass could 

increase the outgoing thermal radiation and decrease accuracy (Fritschen and Ping, 

1992). 

 
Table 3- 2 Regression coefficients used to estimate cloudy-sky all-wave net radiation  
 

PFT a0 a1 a2 a3 R2 RMSE
Broadleaf crop -18.57 8.05 0.76 0.19 0.9729 27.4
Evergreen 
        needleleaf -11.84 -6.19 0.86 0.03 0.9736 28.9

Grass -35.46 36.39 0.66 0.46 0.9339 43.1
Deciduous  
        broadleaf -14.40 -15.32 0.74 0.24 0.9605 31.9
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Figure 3- 3 Cloudy-sky all-wave net radiation fitting dependant on plant functional 
types 
 

 
 

 
 

3.2 Validation results 

 

     Two SURFRAD sites are classified broadleaf crop: Bondville (IL) and Penn State 

(PA). Coefficients from broadleaf crop in Table 3-2 are used in cloudy-sky Rn 
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estimation by Equation 3-5. The described procedures were implemented and 

validation results are shown in Figure 3-4. 

     CERES/ARM Validation Experiment (CAVE) Clouds & Radiative Swath (CRS) 

footprint validation under overcast for Bondville and Penn state sites (Table 3-3, 

http://snowdog.larc.nasa.gov/cave/pages/valplot.html) is provided because I failed to 

find any papers that reported errors for cloudy-sky Rn explicitly.  Table 3-3 does not 

provide cloudy-sky all-wave net radiation directly, and it is too complex to know how 

error terms related in shortwave and longwave work in all-wave net radiation. Table 

3-3 illustrates basic concepts of radiation estimation under cloudy-sky conditions. 

Average RMSEs of 107.6 and 49.3 Wm-2 are shown in S↓ and S↑, and 18.2 and 17.7 

Wm-2 in longwave downward radiation and in longwave upward radiation 

respectively. 

 

Figure 3- 4 Validation of all-wave net radiation estimation under cloudy-sky for 
broadleaf crop plant functional type 
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Table 3- 3 Errors related to surface radiation budget components estimation under 
cloudy-sky: (a) Bondville, IL and (b) Penn State, PA 
 
(a) Bondville, IL 

 

(b) Penn State, PA 

 



 

 62 
 

Chapter 4: Daily Net Radiation Estimation 
 

     Studies have shown that integrated Sn is required in land surface models at daily 

temporal resolution. Studies have used air temperature, other meteorological data 

sets, or simply substituted one from the closest station in estimating daily integrated 

Sn (Fletcher and Moot, 2007; Hunt et al., 1998; Rivington et al., 2005; Wu et al., 

2007). Daily integrated Sn is major input parameter in land surface models, therefore, 

errors in estimation of daily integrated Sn can lead significant distortion of model 

output. 10 to 30% of errors in crop yield due to the errors in integrated Sn were 

reported (Trnka et al., 2007).  

     Two methods exist to estimate daily solar irradiance: 1) estimation with 

meteorological datasets (Friend, 1998; Winslow et al., 2001), and 2) estimation with 

satellite data (Pinker and Laszlo, 1992; Gu and Smith, 1997; Lefevre et al., 2007). 

Limited spatial coverage is a major drawback when meteorological data sets are used. 

Daily integrated net radiation using satellite data is not currently reported and 

monthly average Sn is used in studies. Data averages, however, eliminate the exact 

sequence of cold-or-warm, wet-or-dry days that is an important factor in processes 

such as vegetation net primary production (Hunt et al., 1991). Therefore, this is the 

first effort to estimate daily integrated Sn from satellite data and a method is described 

in this section.  
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4.1 Estimation algorithm 

 

     The following equations are used in current method to estimate daily integrated Sn. 

If a solar radiation measurement is not available, it can be estimated from 

extraterrestrial radiation (Samani et al., 2007).   

 

                                        ar RTTKSRBDaily 5.0
minmax )( −=                                (4-1) 

 

where Tmax and Tmin are daily maximum and minimum air temperature  (°C), Ra is 

extraterrestrial radiation on daily basis and is calculated by procedures developed by 

Duffie and Beckman (1980, 1991) as  

 

               [ ])sin()cos()cos()sin()sin(1440
ssra GdR ωδφδφω

π
+=                       (4-2) 

 

where G is the solar constant (0.082 MJm2/min), dr is the inverse relative distance 

from the Earth to the Sun, φ is latitude, and ωs is the sunset hour angle (rad).  

Kr is suggested by Allen (1995) to be:  

                                                        5.0

0

)(
P
PKK rar =                                           (4-3) 

 

where P is the mean atmospheric pressure at the site (kPa), P0 is mean atmospheric 

pressure at sea level, and Kra is an empirical coefficient equal to 0.17 for interior 
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continental regions and 0.2 for coastal regions. When the above equations are applied 

to estimate daily integrated Sn, RMSEs of 3.42 – 5.88 MJm-2 are reported.  

 

     Method for calculating daily-integrated Sn uses instantaneous Sn data as the input 

with the assumption of sinusoidal curve behavior during the daytime. This is called 

‘adjusted sinusoidal interpolation method’(Wang et al., 2008a).This method is applied 

to calculated daily integrated photosynthetically active radiation (PAR). The behavior 

of Sn is similar to that of PAR as shown in Figure 4-1, so adjusted sinusoidal 

interpolation is applied to calculate daily integrated Sn.  

 

Figure 4- 1 Variation in ground measurements of photosynthetically active radiation 
(PAR) and shortwave net radiation (Sn) in Fort Peck, MT over the course of five days 
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     Given one instantaneous Sn estimation at satellite overpass time (Toverpass), the 

instantaneous Sn value at any daytime t can be interpolated as: 
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where π is the Archimedes’ constant and Tsunrise and Tsunset is the time of local sunrise 

and sunset at the location. If there are two observations at T1 and T2, the Sn 

distribution functions derived from the two observations using Equation 4-4 are 

InstSnT1(t) and InstSnT2(t) respectively. From sunrise to T1, the Sn function is 

expressed as InstSnT1(t), and from T2 to sunset, the Sn function is InstSnT2(t). Linear 

interpolation of the two sinusoidally interpolated values is used to calculate Sn 

between T1 and T2 using Equation 4-5: 
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Once the instantaneous Sn function is known, daily-integrated Sn is calculated by 

using Equation 4-6. 
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If N observations are available (T1…TN), Equation 4-5 is inserted in Equation 4-6: 
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4.2 Validation 

 

     Estimated daily integrated shortwave net radiation (Sn) based on the method 

described above is compared with measurements from SURFRAD sites. The unit of 

instantaneous Sn is Watt per square meters and a time unit is added when Sn is 

integrated. Watts are converted to Joules per second, which changes the unit of 

integrated Sn to Joules per square meter. The numbers in Table 4-1 are in mega Joules 

per square meter. The results are also shown in Figure 4-2. 

     SURFRAD sites have a three-minute temporal resolution and there are three 

instantaneous Sns maximally per day. Inconsistency in temporal resolution as well as 

spatial resolution causes these errors. The results show RMSEs of 2.8 – 4.0 MJm-2,  

 

Table 4- 1 Validation of daily integrated shortwave net radiation, in Joules per square 
meter, at seven SURFRAD sites 
 

Sites R2 RMSE Bias
BON 0.8773 2.8 1.3
TBL 0.7560 3.8 0.4
GWN 0.8242 3.3 -0.6
FPK 0.8100 3.5 -0.4
DRA 0.7366 3.4 -0.5
PSU 0.7809 4.0 1.3
SXF 0.7624 3.7 0.6
mean 0.7925 3.5 0.3
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Figure 4- 2 Validation of daily integrated shortwave net radiation at seven SURFRAD 
sites 
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which are better than existing method (3.42 – 5.88 MJm-2). As shown in Equation 4-

7, the more observation, the better agreement to surface measurements are expected. 

Therefore, the use of geostationary satellite data is recommended. 
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 Chapter 5: Conclusions and future research 
 
 

5.1 Estimating shortwave net radiation using MODIS data 

 

     A hybrid method has been developed to estimate instantaneous shortwave net 

radiation (Sn). The hybrid method, composed of a physical part and a statistical part, 

estimates shortwave net radiation without separating cloudy- or clear-sky conditions. 

The hybrid method estimates all-sky condition Sn and does not require ancillary data 

that typically have different spatial and spectral resolution; therefore, the spatial 

resolution of raw input data can be retained.  

     Two approaches are attempted in the hybrid method: 1) direct estimation, and 2) 

albedo-based estimation. The direct estimation method more accurately estimates 

surface-measured data. The standard MODIS albedo product were used in albedo-

based method and inconsistence in temporal resolution between estimated downward 

radiation (S↓) and albedo product is suspected as a major source of error. Estimated 

Sn by direct estimation is used for cloudy-sky all-wave net radiation (Rn) estimation 

and daily integrated Sn. 

     Estimated Sn using the hybrid method at 1-km resolution is in better agreement 

with surface measurements than pre-existing products like 1 degree resolution 

GEWEX/SRB and 2.5 degree ISCCP dataset due to the improved scale matching. The 

hybrid algorithm produces a lower RMSE and bias by 12% and 2% respectively 

compared to GEWEX/SRB data and by 14% and 4% compared to ISCCP data sets. 
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Clearly, the spatial resolution of the remotely sensed data is crucial for discriminating 

surface net radiation for the different landscapes with significant variability in 

vegetation cover, type/architecture, and moisture. Sn at finer resolution can help 

avoiding significant errors due to application of a land surface model to a mixed pixel 

containing large contrast in surface. (Kustas and Norman, 2000; Moran et al., 1997). 

 

5.2 Estimating cloudy-sky all-wave net radiation   

  

    All-wave net radiation (Rn) is the sum of shortwave net radiation (Sn) and longwave 

net radiation (Ln). Cloudy-sky conditions make estimating longwave net radiation 

from satellite data difficult. Therefore, cloudy-sky Rn estimation method from Sn and 

surface characteristics has been developed.  This is the first effort to estimate cloudy-

sky Rn by using vegetation type and status and Sn. Surface characteristics are 

considered by plant functional type and enhanced vegetation index from MODIS land 

cover type and vegetation indices product. The fitting is improved when surface 

characteristics are considered, and validation indicates that this method of estimating 

cloudy-sky Rn has a RMSE of 73.5Wm-2. Comparison with other methods is difficult 

because no paper reported errors for cloudy-sky Rn explicitly. 

 

5.3 Estimating daily integrated shortwave net radiation using MODIS data 
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     This study describes a method of estimating daily integrated shortwave net 

radiation (Sn). The adjusted sinusoidal interpolation, used to estimate daily integrated 

photosynthetically active radiation (PAR), is adapted to estimate daily integrated Sn 

because Sn variation, over the course of a day, is similar to PAR variation. This is the 

first effort to estimate daily integrated Sn at a 1 km spatial resolution from MODIS 

data. Validation shows larger errors compared to instantaneous Sn estimation due to 

differences in spatial and sampling resolution between satellite data and SURFRAD 

sites. However, the validation results indicate an average RMSE of 3.5 MJWm-2 that 

is comparable to other method. Another advantage of the suggested method is that it 

has greater spatial coverage compared to meteorological data.  

 

     All products estimated by method described in this study have a 1 km spatial 

resolution and comparable accuracy to pre-existing methods. These high resolution 

products are expected to support recent high resolution simulations in numerical 

weather and ecosystem models. The spatial resolution of the remotely sensed data is 

crucial for discriminating SRB for the different land cover types. Townshend and 

Justice (1988) degraded Land Remote Sensing Satellite (Landsat) imagery collected 

over a variety of landscapes to proposed pixel resolutions (250 m to 4 km) of the 

MODIS and show that for accurate assessment of land cover changes (which is 

related to Sn), a pixel resolution of 500 m or less is necessary (Townshend and 

Justice, 1988).  

     In addition, up-scaling from ground point measurements to the MODIS resolutions 

(1 km) using finer-resolution remotely sensed data is suggested  because ground point 
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measurements may not be sufficient to validate the estimated measurements at 

MODIS resolutions even if surface is large and homogeneous or sufficient number of 

point measurements can be made during the satellite over pass (Liang et al., 2002). 

Therefore, downscaling of hybrid method seems necessary. The Landsat and the 

Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) provide 

the spatial resolution less than 100 m, but routine application is hindered by the low 

frequency of repeated coverage (~ 16 days). If satellite data at finer spatial resolution 

were available, the first step to apply hybrid method is to obtain Top-Of-Atmosphere 

(TOA) reflectance and surface radiation corresponding to finer satellite data using 

radiative transfer simulation. This leads to the step for establishing relationship 

between them, estimation can be easily implemented once the relationship is 

established. However, it should be noted that selected channels in simulation have 

enough information to influence SRB such as aerosols, clouds, water vapors and other 

gases. There is no computational or technical limitation to apply hybrid method to 

finer sensor data than 1 km, however, consideration on space and time mismatch and 

atmospheric heterogeneity issue should be seriously taken. Optical depth variability 

and the horizontal transport effect of light moving between cloud columns (usually 

referred to as 3-D cloud effect) affects the accurate estimation of SRB. As shown in 

section 2.4.3, aggregation to 9 km resolution mitigates 3-D cloud effect.  

 

 

5.4 Future research issues 

 



 

 73 
 

     The new hybrid method developed in this study is validated at seven operating 

SURFRAD sites. These sites represent various land cover types in the United States; 

however, an evaluation process on other land cover types, at a greater range of 

geographical location, and at various elevations is necessary. The new hybrid method 

is easily implemented to generate regional and global products at a finer resolution 

and the scheme is applicable to other sensors like Geostationary Operational 

Environmental Satellites (GOES).   

     In addition to the expanded evaluation of the hybrid method of estimating Sn, more 

validation in cloudy-sky Rn is also recommended. Then cloudy-sky Rn can be 

combined to the estimated clear-sky Ln from satellite data to produce all-sky Rn at 

finer resolution, which will be valuable in numerical weather and land surface 

models. The finer resolution data can be used to validate coarser resolution datasets.  

     Daily integrated Sn has comparable accuracy with the existing method, however, it 

overcomes limits in spatial coverage of the existing method. An increase in the 

number of instantaneous estimations of Sn will increase the accuracy of the adjusted 

sinusoidal interpolation; therefore, use of geostationary satellite data with more 

observations per day is suggested.  

     Diagnosing surface radiation budget that constitute the land surface water and 

energy budget is important and Surface Radiation Budget (SRB) product at high 

spatial resolution is necessary specifically in land applications because current 

products have fine temporal resolution and coarse spatial resolution. The ability to 

obtain accurate estimates of large-scale geophysical variables from remote sensing 

observations is especially important since the ground-based data needed for forward 
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modeling is sparse in many regions of the globe. Heterogeneity in many surface and 

surface processes often require that models be applied at relatively high spatial and 

temporal resolution. Also research questions focusing on change detection and 

variability as well as validation require high spatial resolution and spatial resolution 

of the product developed in this study may not be fine enough. One of approaches to 

obtain surface radiation at finer spatial resolution is to use data assimilation method to 

downscale the coarser product. It can be done by combining all available information 

essentially consisting of observations and physical laws which govern the evolution 

of the system. The selection of a data assimilation procedure appropriate for a given 

application is a balance between making the best use of available information, 

computational efficiency, flexibility, and robustness (Reichle et al., 2002). Recent 

applications have shown that the Ensemble Kalman Filter (EnKF) is an attractive 

option for land surface data assimilation based on its modular structure and flexibility 

in comparison to other techniques (Margulis and Entekhabi, 2003; Margulis and 

Entekhabi, 2004).  

     Finer spatial resolution SRB product with improved accuracy will be able to 

support to estimate Net Primary Production (NPP)/ Gross Primary Production (GPP) 

and to capture variability of surface energy flux such as evapotranspiration. 

Assumptions concerning the source and magnitude of error should be considered 

carefully when data assimilation and use of assimilated data to land surface model.  

Because inappropriate model error assumptions can lead to circumstances in which 

assimilated observation actually degrades the performance of land surface model 

(Crow and Van Loon, 2006). Numerical investigation of SRB impact in those land 
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surface and climate model should be followed and this will help to understand the 

sensitivity of land surface and the earth’s climate, further, to predict their change.  
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Acronyms 

ANN – artificial neural network  
CAVE – CERES/ARM validation Experiment  
CEOS – Committee on Earth Observation Satellites 
CERES – Clouds and the Earth’s Radiant Energy System 
CRS – Clouds and Radiation Swath  
ECWMF – European Centre for Medium-Range Weather Forecasts 
EOS – Earth Observing System  
ERBE – Earth Radiation Budget Experiment 
EVI – enhanced vegetation index 
GCIP/GAPP – GEWEX Continental scale International Project and GEWEX 
Americas Prediction Project 
GCOS – Global Climate Observation System 
GEWEX – Global Energy and Water Cycle Experiments  
GOES – Geostationary Operational Environmental Satellites 
ISCCP – International Satellite Cloud Climatology project  
Ln – surface longwave net radiation   
MISR – Multi-angle Imaging SpectroRadiometer  
MODIS – Moderate Resolution Imaging Spectroradiometer 
MODTRAN4 – Moderate Resolution Transmittance Code Version 4 
MCST – MODIS Characterization and Support Team 
NASA – National Aeronautics and Space Administration (NASA)  
NCAR – National Center for Atmospheric Research 
NCEP – National Centers for Environmental Prediction  
NESDIS – National Environmental Satellite Data and Information Service 
NOAA – National Oceanic and Atmospheric Administration 
PFT – plant functional type 
RMSE – root mean squared error 
Rn – surface all-wave net radiation 
S↓ – surface shortwave downward radiation 
S↑ – surface shortwave upward radiation 
Sn – surface Shortwave Net Radiation 
SRB – surface radiation budget  
SURFRAD – Surface Radiation Budget Network 
TIROS – Television and InfraRed Observation Satellite  
TOA – top of atmosphere 
TOVS – TIROS Operational Vertical Sounder   
TRMM – Tropical Rainfall Measuring Mission 
WCRP – World Climate Research Programme  
WMO – World Meteorological Organization 
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