4, COMPUTER IMPLEMENTATION
The algorithm described in this paper was developed in the C++ language for its portability
and object-orientated features. The Matlab software package was then used to graphically
display the workspace. The entire implementation consists of five steps:
1. Define a function, called TestPose, which returns the evaluation result, either

true or false.

2. Implement a search routine to determine the approximate workspace center.
3. Implement a criterion to determine the workspace boundary.

4. Evaluate the workspace volume.

5. Graphically display the workspace.

4.1 TestPose Function

The TestPose function is defined as a Boolean function. The function tests an arbitrary
position and orientation of the platform, or a pose of the platform, for constraint violation.
Boolean = TestPose( T,,T,, T, a, b, g )
The function first computes inverse kinematics and then verifies whether the constraint sets 1,
IT, 1T, & IV are satisfied. If all of the constraints are satisfied, then the function returns a value
of true. If any constraint is not satisfied, it returns a value of false. In other words, if the
TestPose function is true, the given position and orientation of the platform is reachable by the

Hexapod.

4.2 Workspace Search Algorithm

The workspace algorithm conducts a search to determine the workspace of the Hexapod
machine tool with a given platform orientation, say O; = {a,, B,v}. The first step in the
workspace search is to determine the approximate workspace center, a general requirement to

initialize the workspace search. This is done by searching a three dimensional cubic containing

10



positions of the platform within the work volume of the machine. For the position at the center
of the cubic, the TestPose function checks for any constraint violations. Using the results
obtained from testing these central positions, the approximate center of the workspace can be
determined (Figure 5). This center will then serve as the origin of a spherical coordinate system
used to define the actual workspace boundary. The following procedure outlines the major steps
involved in the search process.

As illustrated in Figure 5, a workspace search vector, V, expressed in the spherical

coordinates, V = {p, 0, ¢}, is introduced. The vector, V, is considered to be at or near the

workspace boundary if the following workspace boundary condition is satisfied:

Workspace Boundary Condition

TestPose( p, 6, ¢, 0, ) = True

TestPose( p+¢, 6, ¢, O, ) = False

The process of searching the entire space is accomplished by rotating the search vector in
discrete intervals A8 and Ad. The algorithm is presented by the following pseudocode.

Spherical Search Algorithm

0 = 0 degrees
loop while 8 < 360 degrees
¢ = -90.0 degrees
loop while ¢ < 90 degrees
find the radius that satisfies the Workspace Boundary Condition
p=9¢+A¢

end loop

11
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ABSTRACT

A method is presented to evaluate the workspace variation of a Stewart platform based
machine tool. Four sets of constraints, covering strut lengths, platform spherical joint angles,
base spherical joint angles, and strut collisions, are formulated using inverse kinematics.
Recognizing the need for varying the platform orientation during machining, an algorithm to
efficiently calculate the workspace is developed. Computer implementation provides a powerful
tool to study the dynamic variation of the workspace as the spindle platform rotates away from
the horizontal orientation. A case study is presented on the workspace variation of an Ingersoll
Octahedral Hexapod' machine tool during machining. The results demonstrate the shift in size
and location of the workspace as the platform orientation changes. Guidelines for NC coding are
suggested to maximize the versatility of Stewart platform based machine tools, while avoiding

the violation of constraint conditions on the workspace.

Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and

Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.



1. INTRODUCTION

With the rapid advancement of computer technology, information-based manufacturing is
revolutionizing the process of product development. Improving product quality, reducing
product cost, and shortening the product development cycle are becoming critical for companies
to stay in competition. Thus, there is an increasing need to control machining accuracy while
performing heavy-duty and high speed machining. Such pressing needs pose new challenges to
the machine tool research community and call for redefining the design of machine tools.
Parallel manipulators offer unique solutions to meet these challenges.

Among parallel mechanisms, the six degree-of-freedom Stewart platform has recently been
used in a number of new machine tool designs (Stewart 1965). The Stewart platform is
characterized by high force-torque capacity, high structural rigidity, and high accuracy in motion
and position control. Several prototypes of Stewart-platform-based machine tools, typically
called Hexapods, have been produced by Giddings & Lewis, Hexel Corporation, and Ingersoll.

Although the versatility of Hexapod machine tools has been recognized, their acceptance by
industry as manufacturing equipment has been slow. A major obstacle to this is their current
high cost and unproven performance in a production environment. Furthermore, the fact that
their workspace is not constant, but varies with platform orientation, means that in certain cases
their use is not as straightforward as traditional machine tools.

During the past decade, studies of the workspace of Stewart platforms have been performed
by several researchers (Gosselin 1990; Kumar 1992; Ji 1994; Luh et al. 1996). Most of these
studies focused on the workspace restrictions due to limited strut lengths and/or joint angles.
Few of them have integrated other important constraints, such as strut collisions, into workspace

modeling. In addition, little work has been done on determining dynamic variation of the




workspace caused by changes in platform orientation. Such a study is essential since the
variation of the platform orientation is an integral part of Hexapod machining operations.
Recognizing the need to provide information for the planning of machining operations, this
paper presents a new study to characterize the workspace of Hexapod-type machine tools. In the
analytical aspect, the paper presents the formulation of four constraint sets, including the
consideration of strut collision, using the method of inverse kinematics. In the experimental
aspect, numerical values of the limiting strut lengths and joint angles are taken from an Ingersoll-
made Octahedral-Hexapod machine tool which is currently located at the National Institute of
Standards and Technology. Visualization of the workspace in 3-dimensional and 2-dimensional
space is presented to depict the dynamic nature of the workspace as the platform changes
orientation. To demonstrate the efficiency and robustness of the proposed approach, the
workspaces obtained from the early work done by Gossselin (1990) and Luh et al. (1996) will be

reconstructed.

2. WORKSPACE VARIATION DURING MACHINING

When Stewart introduced his six degree-of-freedom mechanism in 1968, it was suggested by
a reviewer of his paper that the mechanism could provide the basis for a new type of machine
tool. It hag not been until recently, though, that computing power and control algorithms have
reached the level of cost and sophistication necessary to make this idea feasible. The versatility
provided by six degree-of-freedom, parallel manipulators offers unique opportunities to increase
machining performance in regards to accuracy and productivity, as compared to the current
generation of serial-mechanism-based machine tools. Reduction of machining costs from higher
material removal rates and eliminating the need for complex fixtures are among the many
advantages which are evident to the entire manufacturing community. However, efficient use of
Stewart platform based machine tools requires operators and production engineers to have an

understanding of how parallel mechanism machine tools carry out machining operations. In



particular, a basic understanding of the machine’s workspace will allow users to determine the
suitability of Hexapod machine tools to their own machining tasks. This knowledge will also
allow users to identify locations of the machine tool’s work volume where specific machining
operations may take place.

For conventional machine tools, the concept of workspace is straightforward. It is usually a
cubic volume specified by three indexed numbers representing the maximum machine travel in
the x, y, and z directions. The workspace, or these three indexed numbers, remain unchanged
during machining, except when changes are made to the tool offset. For a Stewart platform,
however, the irregularly shaped workspace varies in volume, shape, and position as the platform
orientation changes. Such differences characterize the advantages and challenges presented to
operators on the shop floor when using this new type of machine tool. For example, Hexapod
users may have to estimate the maximum size of parts able to be machined based on the
complexity of the part geometry presented to them. Therefore, this workspace study is important
in increasing the usability of Hexapod machine tools.

Before we present the algorithm developed in this research to determine the workspace, we
need to define the term workspace as the three dimensional space the tip of the cutting tool can
reach at a given platform orientation. For simplicity, in this research we define the workspace as
the volume of space that the nose of the spindle can reach. The tool offset can be arbitrarily set
in the algorithm by the user for specific workspace studies. Since an infinite number of platform
orientations are possible, it follows that an infinite number of workspace plots may exist for a
specific parallel manipulator. This fact points out the necessity and importance of the work

presented in this paper.

3. FORMULATION OF WORKSPACE CONSTRAINTS
The Ingersoll Octahedral Hexapod machine tool (Figure 1) located at the National Institute of

Standards and Technology serves as a case study for our proposed method of workspace



determination. As illustrated, the machine tool consists of a movable platform supported by six
struts. A cutting tool, such as an end mill, is placed in the spindle of the movable platform. In
this configuration, a part to be machined is fixed on the table and kept stationary during
machining. It is the motion of the platform in three dimensional space which carries out the
machining operation. Unlike most Stewart platforms, however, the Hexapod under study inverts
the 6-DOF movable platform and suspends it from an octahedral space frame. The workspace of
the NIST Ingersoll Hexapod is defined by three constraints:

1. The limiting lengths, or maximum and minimum lengths of the six struts.

2. The limiting angular travel limits of the twelve spherical joints. Among them, six
joints are associated with the stationary base, the other six joints are associated with
the movable platform.

3. Possible collisions between individual struts.

To formulate the three constraint sets determining the workspace, the machine’s inverse
kinematics are calculated. For a given position and orientation of the platform in the three-
dimensional work volume, the corresponding strut lengths and spherical joint angles can be
determined (Fichter 1986). In this research, two coordinate systems, the base and the platform
coordinate systems, are introduced, as illustrated in Figure 2. The position and orientation of the
movable platform can be represented by a position vector and a set of three angles in the base

coordinate system as follows:

T
BASEf [T T T ] and O=(o,B,7)

X y z

where o =roll, B =pitch, Y= yaw. The Euler angle convention assumes that the platform is first

rotated about the x-axis (roll), followed by rotation about the y-axis (pitch), and finally by

rotation about the z-axis (yaw). The composite rotation matrix, R ,, is computed by pre-

opy

multiplication of the individual rotation matrices, R, R, and R, namely,



By Ry R 8 Ry, where
1 0 0 cosf 0 sinf cosy -—siny O
Ry = |0 cosa —sina Rﬂ = 0 1 0 R, = |siny cosy 0
0 sina cosc —sinf3 0 cosf 0 0 1

In addition, the Stewart platform geometry gives us the positions of the six platform joints
relative to the platform coordinate system, P;, along with the six base joints relative to the base
coordinate system, B;, as illustrated in Figure 2. To represent the platform joint position vectors
in the base coordinate system, the transformation calls for rotation and translation of the platform

vectors. The rotation transform is given by:

3

R -
i Ra[}y F

The translation transformation is a sum of the rotated platform vectors and the platform position

vector, giving the position of the platform joints relative to the base coordinate system as

follows:

As illustrated in Figure 3, the strut vectors are determined by:

3 BASE - =
S; = B -B

3.1 Constraint Set I: Limiting Strut Lengths

Strut lengths, L; represent the first major workspace constraint for parallel linked

manipulators.

L= |5 = ‘T+RaﬂyPi - B,
For each of the six struts, its length must adhere to the following physical limits.

Lpin < L < Lpyax fori=1,2, 3,4, 5and 6



3.2  Constraint Sets Il and lll: Spherical Joint Angular Limits

The Hexapod under study has twelve spherical joints that connect the struts to the platform
and base. As illustrated in Figure 2, six of these spherical joints are located on the platform, and
the other six are on the base. These spherical joints allow the struts to freely change orientation
as the platform moves. However, the spherical joints themselves are physically limited to a
maximum angle (Bm,y) due to the physical constraints of the spherical joints and to prevent
collisions with the base structure.

Note that the spherical joint angles of the Stewart platform are measured relative to the
nominal strut vectors. The strut vectors are nominal when the spherical joint angles (both base
and platform) are zero degrees. The nominal strut vector simply provides a reference for
spherical joint angle calculations from the static Hexapod geometry. The six unit strut vectors,

§;, and six nominal unit strut vectors, §; , are determined by:
nom

i

Rl
%]

)
li

=

_— fori=12345and6

lnnm

5 0=
hom

Ly

The magnitude of the base spherical joint angle is determined by:
0; pase = co5 (3 - § i=1,23,4 5and6
i Base = %5 \%i " Siy,, fori=1,234 5an

To determine the platform spherical joint angles and represent them in the base coordinate

system, the following transformation is needed. We rotate the nominal unit strut vectors.

R . N
s . = R s 0
i 0By “liom

The dot product of the unit strut vector and the vector after rotation transformation gives the

magnitude of the corresponding platform spherical joint angle.
0 —cos” (s %5, ) fori=1,2,3,4 5and6
i Platform = 0% \%i" %, fori=12345an

It should be pointed out that the sphere angle of a spherical bearing has its allowable range

because of its structural design. Therefore, the six base sphere angles and six platform sphere



angles represent another important set of constraints to define the workspace of the Hexapod
machine tool. In other words, the base and platform sphere angles must adhere to the following

physical limits. These constraints are given by

‘9 i Platform | < 0 Max Platform fori=12,345and6 Constraint-11

[} < 0.

[ Max Base

fori=1,234 5and6 Constraint-111

i Base

3.3 Constraint Set IV: Avoiding Strut Collision

Examining Figure 1, the geometry of the Hexapod under study does not preclude the
possibility of collisions between the individual struts during the movement of the platform. To
avoid collisions, limitations on the space in which an individual strut can reach are enforced in
the machine tool design stage. These limitations certainly have significant effects on reducing
the machine’s workspace. Physical interpretation of avoiding strut collision for the purpose of
formulating a corresponding set of constraints, is to keep a pair of struts apart at a certain
distance from each other. A mathematical formulation of such a constraint set is described in the

following procedure:

(1) Model two individual struts as two vectors, namely, &, and i, (Figure 4). By

choosing a platform configuration in the workspace, two vectors (vi, and vyp) are
formed with respect to a strut, say strut 1. Note that vy, is a vector pointing to one
end point of the strut segment and vy, is a vector pointing to the other end point. The

role of vector sum gives # = v, - ¥, . Following a similar procedure, we have

liy = Vy, =Py where v,, and vy, are the two vectors constructed from a chosen

reference point for strut 2.



(2) A cross product of # and @, gives a new vector, i, perpendicular to both #; and

(3) The distance between the two struts is determined by a dot product of the two

vectors, #and 7 1:

Fo=v -

7
21 2a la
Dyp=1y

It should be pointed out that with the geometry of the NIST Ingersoll Hexapod, only strut
collisions between struts 1 & 2, joints 3 & 4, and joints 5 & 6 are a concern. This represents the
formulation of the final constraint set, or constraint IV, on the work volume of the NIST
Ingersoll Hexapod.

{Di2 Dss Dsg } > Duin

3.4  Other Workspace Constraints

In this paper, we have presented the formulation of four constraint sets for determining the
workspace of a particular Hexapod machine tool, considering limitations on the strut lengths,
joint angles, and strut collision. The presented algorithm should be able to include other forms
of workspace constraints. Such constraints could be due to possible collisions of the struts with
the part being machined or other external objects, and/or a different strut/joint arrangements than

the Hexapod machine tool under the current investigation.



6=0+ A0

end loop

4.3 Workspace Boundary Algorithm and Error Analysis

The workspace search algorithm is based upon finding a p that represents the boundary of the
workspace. The algorithm to determine this boundary depends on one assumption made in this
research regarding the geometry of the workspace map. We have assumed that if a point (6,9,p,)
is found to violate the Hexapod machine tool constraints, all points (6,9,p,) such that p,>p  will

also violate the Hexapod constraints. Based on this assumption, the procedure for finding the
boundary can be given by the following pseudocode for a successive approximation approach.

Workspace Boundary Algorithm

p = value outside of the workspace
Ap=p/2
loop while Ap > € desired precision

if TestPose(0,0,p, Q) = true

p=p+A4p
otherwise

p=p-4p
Ap=Ap/2

end loop
In terms of the accuracy at the end of the search process, Figure 6 graphically depicts the
variation of the search vector at the final stage of the search process. As illustrated, the search

vector changes in p until Ap = ¢ is reached, where € is set to 0.001 meters in the current work.

Although this algorithm does not guarantee that the final value for p is inside the workspace, it
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guarantees that the error level of p is within * € of the workspace boundary (Figure 6). The last
step in the procedure is to subtract the final value of p by € to guarantee that V lies within the

workspace boundary. Thus, the possible error introduced by the search algorithm is between

zero and -2¢.

4.4 Evaluation of the Workspace Volume

The workspace map is defined by numerous data points, V, centered about a search origin, C.
Let a sector be defined by four adjacent workspace data points, {Vi, V3, V3, V4} and the
workspace search origin, C, as illustrated in Figure 8. Summing the volume of all unique secfors
determines the total volume of a workspace map. The volume of a sector (Figure 7) is
approximated as a four sided pyramid by the following method:

1. Determine the average length of these four vectors.

 ale ol il

4
2. Approximate the arc lengths as the base and width of the pyramid.

base = A¢ -1

width = Ao - |
3. The height of the pyramid is given by

height = 2 (width2 + basez)

4

4, The volume of a specific sector can be calculated by the known base, width, and
height and is given by

v -V o base X height X width

sector  pyramid 3

5. The total workspace volume is determined by summing the calculated volumes

of all the sectors.
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Vwork.\'pace = 2 ‘/sectm;

The actual error for a workspace map defined by 1200 sectors in the current work is
approximately 0.5%. This value was determined by using the program to calculate the volume of

a sphere with a radius equal to one and comparing it to the analytical solution,

Vephere= 13T =4.1888 wherer =1

Table 1. Sphere Volume Error Analysis

Sectors Volume % Error Runtime
40 3.6962 11.8 to

180 4.0676 29 2t

760 4.1586 0.7 18 t,
1200 4.1695 05 381,

Table 1 displays sphere volume calculations for various sector quantities. From this it can be
concluded that the error of the volume calculation algorithm decreases as the number of sectors
that define a workspace map increases. This is expected as the sectors become finer and increase
in quantity. Although the actual Hexapod workspace maps are far from perfect spheres, we can

expect the error to have a similar order of magnitude.

5. DISCUSSION OF RESULTS

5.1 Hexapod Workspace Plots

Figure 8a presents the workspace of the Hexapod machine tool for a horizontal platform. As
shown in this figure, the upper half of the workspace is predominantly defined by the minimum

strut length limit, Due to the geometry of the Hexapod, the minimum strut length constraint is
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the limiting factor in the height of the workspace. The Hexapod platform is at its maximum
height when all six struts are at their minimum length. The middle section of the workspace is
defined by the base spherical joint angle limits and the bottom of the workspace is defined by
maximum strut lengths. For a horizontal platform, the workspace boundary does not contain
constraint-II, platform joint angles, or constraint-IV, strut collision. These constraints, however,
become prominent for platform orientations with high rotation angles.

Figure 8b gives a workspace simulation for a platform roll of 10 degrees. The general shape
is similar to the previous workspace with the exception of the platform joint limits. This
platform orientation shifts the overall workspace in the positive y direction. This shifting trend
continues with 20 degrees of roll (Figure 8c). In this case, the negative y side of the workspace
becomes mostly defined by platform sphere limits. The Hexapod workspace continues to shift in
the positive y direction as the platform roll deviates from the horizontal orientation.

An important aspect of the Hexapod machine tool is that some sets of platform orientations
lead to workspaces which are not continuous with one another. Figure 9 displays three
workspace plots for three different platform orientations. This discontinuity implies that it is
impossible for the Hexapod platform to move freely during machining operations when three
platform orientations are required, such as (roll = 28 deg, pitch= 0 deg), ( roll = -13.6 deg, pitch=
24.7 deg), and (roll = -13.6 deg, pitch= -24.7 deg), at the same point in space. This fact calls for
special attention in planning machining operations and points out the need to maintain a
minimum deviation of the platform orientation while the platform is traveling between various
regions of the work volume.

In addition to the Hexapod under study, the method of workspace determination presented in
this paper can be implemented on various other Stewart platforms. The workspace of the INRIA
prototype (Gosselin 1990) for a horizontal platform is presented in Figure 10. This figure was

created by the workspace program using the geometry and workspace constraints of the INRIA
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Stewart platform. This workspace plot compares well with the analytical plot produced by
Gosselin.

The workspace of a Spatial Stewart Platform described in Luh et al.(Luh 1996) is graphed in
Figure 11. This manipulator is used for flight simulator applications and has no joint angle

constraints.

5.2 2-D Area Plots of Workspace
Quantitative insight into the workspace of the NIST Ingersoll Hexapod can be obtained if we

plot the cross section of the workspace at various heights. Figure 12 displays the cross section of
the Hexapod workspace as it rolls from 0 to 20 degrees. These plots represent the cross section
at three different heights, -2.6, -2.1, and -1.6 meters, measured from the base of the manipulator.
Examining the two-dimensional plots, we see that the cross sectional area decreases and shifts its
location in the positive y direction as the platform rolls (rotates about the x-axis). Figure 13 a, b,
and c, display the normalized cross sectional areas of the Hexapod’s workspace as a function of
roll for z levels of -2.6, -2.1, and -1.6 meters, respectively. Inspection of the plots clearly shows
that a rapid reduction in cross sectional area occurs at approximately a roll of 11 degrees. Before
this point, however, the cross sectional area remains more or less constant. This points out the
fact that the available workspace may be significantly reduced when the production of complex
contoured parts calls for large orientation changes of the spindle platform.

The calculations of workspace volume further demonstrate the workspace variation due to
spindle platform orientation changes. Figure 14 plots the workspace volume of the Hexapod
machine tool as a function of roll. For a vertical spindle, the workspace has a volume of
approximately 2.3 meters cubed. The volume remains mostly constant until a roll angle of 11
degrees is reached. Beyond 11 degrees, the workspace volume decreases in a linear fashion.
From examination of the workspace plots, it can be concluded that the drastic decrease in

workspace after 11 degrees is due to the platform spherical joint angle constraint.
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6. CONCLUSIONS

A method to determine the workspace of a Stewart Platform using a numerical spherical
search has been presented and a case study completed using the NIST Ingersoll Octahedral
Hexapod. Workspace plots show that as the platform orientation of the Hexapod increases, the
overall workspace volume decreases. Thus, a tool path that requires high platform rotations will
be more constrained in available workspace than tool paths with near vertical platform
orientations.

The numerical search method was applied to two other Stewart Platforms previously explored
by researchers. Reconstructed workspace plots match the solutions developed by other
researchers. More importantly, this method of workspace determination is beneficial in
designing new Stewart platform based manipulators. The workspace for various platform
geometries may be explored by simply inputting the platform’s geometry. With a runtime of less

than one minute, the workspace plots can be quickly examined.

7. FUTURE WORK

One difficulty in presenting workspace research is that an infinite amount of workspace plots
exist for most Stewart platform based manipulators. However, one cannot expect to examine all
possible workspace figures to gain an understanding of the manipulator. The difficulty lies in
communicating the characteristics of the workspace of a manipulator with the fewest number of
workspace plots. This is essential in order to compare the performance of different parallel
linked mechanisms. For example, if manipulator A has a larger workspace for a horizontal
platform than manipulator B, does this necessarily mean it has a greater workspace at other
platform orientations? Certainly not. A standard method to express the Stewart platform

workspace needs to be developed.
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Figure 1. NIST Ingersoll Octahedral Hexapod (Spindle Motor Not Shown)
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Figure 2. Base and Platform Coordinate Systems




Figure 3. Inverse Kinematic Vectors
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Figure 4. Strut Vectors and Interaction Distance
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Figure 7. Workspace Volume Calculation
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Figure 9. Workspaces for (Roll = 28°, Pitch = 0°), (Roll = -13.6°, Pitch = 24.7°), and (Roll = -

13.6°, Pitch = 24.7°),

0.58 -
0.56
0.54 ~
0.52
~ 0.5
0.48
0.46 —
044 -
0.42 —
0.4

Figure 10. Workspace for INRIA Stewart Platform (Gosselin 1990)
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Figure 11. Workspace for Spatial Stewart Platform (Luh 1996)
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ABSTRACT

Unit commutment, including economic dispatch, is a key com-
ponent of short term operation scheduling of an clectric energy
system. Common industry practice is based on the use of a “pri-
ority list” for generation scheduling and s deterministic model for
power/energy demand. The priority list specifies the next unit to
Lie started or shutdown in response to an increase or decrease in
load. A common problem in the use of priority lists is that the
next unit is improperly sized to meet the actual change in load.

The algorithm proposed here is more accurate than the pri-
otity_list method and much faster than dynamic programming
which can hardly be applied to systems of more 5 machines. For
a system of 41 machines, the algorithm can determine schedules
in 0.1 second which is fast enough to do on-line control. Further-
more, Lhe total generating cost is superior to that obtained by
dynamic programming successive approximations.

1. INTRODUCTION

In this paper we propose a scheduling algorithm (including
economic dispatch) which is fast enough to be used for on-line
scheduling in response to random changes in demand. The algo-
rithm does not represent a radical departure from current prac-
tice. It uses a quadratic function for the fuel cost (heat rate) of
thermal units, and a standard exponential function of the cu-
mulative down time to model unit startup costs. A pumped
storage facility which may be a composite of several (pumped
and unpumped) energy storage systems is included. It uses a
of the priority list, but more comprehensive; and it has an ef-
ficient “off-line” scheduling procedure to compute the optimal
unit commitment/economic dispatch to meet the (deterministic)
expected demand. Based on the solution to the deterministic
scheduling problem, a fast, “on-line” algorithm is applied to ad-
just the commitment and dispatch in response to random fluc-
tuations in demand. The algorithmn requires about 0.1 sec to
reschedule 41 machines (on a VAX 11/780) over 1 time step.
The random fluctuations in load are modeled by white noise or a
(non-stationary) Gaussian-Markov process. In the second case, a
Kalman filter is used to compute the one-step ahead prediction
of the load.

Performance tests for the algorithm are given for systems of
3, 5, 18 and 41 machines. The optimal costs computed are nearly
identical to those computed using dynamic programining {1} or
s modilicd dynamic programuiung successive approxtmations al-
gorithm [2]. The tests show that the CPU times required to set
up the scheduling table and execute the on-line scheduling algo-
rithm grow slower than linearly in the number of machines in the

system.

The design and execution of the algorithm are based on the
(implicit) assumptions that the starting costs ol the generators
are substantially smaller than the operating (fuel) costs. We also
assume that the short term fluctuations in the load are o small
percentage (approximately 4% or less) of the mean load level. The
performance of our algorithm reflects the fact that the sensitivity
of the system operating cost to perturbations in the demand and
“small® changes in the commitment schedule decrease substan-
tially as the number of machines in the system increases. (This
fact was exploited in a different way in [3].) We have used a sim-
ple model for the scheduling problem. Enhancements to include
run time constraints, more complex (Gaussian) load models, and
storage system costs (shadow prices) would not substantially un-
pact the performance of the algorithm. lududiug lransiussion
costs in the scheduling problem would 1equire redesign of the al-
gorithm.

Almost all previous work on unit commitment scheduling has
been based on deterministic load models. Work similar to ours
in spirit includes the paper of Bertsekas et al{3] who use a du-
ality formulation of the optimal scheduling problem, the work of
Turgeon [4] {5] who uses the maximum principle to treat detei-
ministic model similar to the one used here, the thesis of Leguay
(6] who uses “impulse control” methods to treat small scale, de-
terministic scheduling problems, and the recent work of Gonza-
lez and Rofman (7] [8] who use a clever combinational algorithin
to treat modest sized, deterministic scheduling problems includ-
ing costs for the storage systems (shadow prices). Mathematical
treatments of stochastic unit commitment problems were given in
Blankenship and Menaldi {9}, Li and Blankenship [10]. Staraes’s
thesis [2] contains an effective ad hoc algorithm for tieating (de-
terministic) scheduling problem with moie than oue performance
measure (e.g. system security and cost). More details on the
present work may be found in Yan’s thesis {44}

2. SYSTEM MODEL

We consider a system with M machines (thermal or nuclear
units) operating over an interval 0,1} (one day or oue week ).
We assume that the system includes a (composite) energy stor-
age system (pumped hydro). The unit commitment problem is to
schedule the startup, operating level, and shutdown of the thei-
mal units and the pumping and withdrawal of cnergy Lo wnd lrom
the storage system to meet the time varying demand for powar,
L(t), t=0,1,2,...,T, at minimum operatiog cosl. o mathematical
terms the problem is

T M
n‘\i‘_nZZ[CG(t,i) +CS(t,3) (2.1)

Uot=1e=1

subject to the constraints
M
G(e) =) Gt} = Lt} r(t) (2.2)
=1

G(i) £ G(t,4) < G(2)
R<r(t) <R (2.3)
S(t) = min{S,maz{S, S(t — 1) +r{t - 1)}} (2.4)



where G(t,1) is the generation level of the ith machine in time
interval t, r(t) is the energy pumped to (r(t)>0) or withdrawn
from (r(t) <0) storage systems in ¢, S(t) is the total stored energy
at t, and the lower and upper bounds (C(5), G(3), &t, ...) are phys-
ical constraints. The generation cost per unit time is the sum
of the running costs, CG(t,i), and starting costs, CS(t,i), of the
machines. We assume

CG(t,i) = ay () + a(3) * G(6,5) + as (1) » [G(6,3)]F (25)

and

|

CS(,4) = b,(s) * {1 — by(s) * exp{—bs(s) » d(¢,+)]} (2.6)

where all the cost coefficients a,(s),b,(3), etc., are non-negative
and d(t,i) is the cumulative down time of the ith machine at time
t.

. The controls or decision variables for the problem are r(t},
G(t,i), t=0,1,...,T, i=1,..,M, and the generation schedule I, an
M-vector of 0's and 1’s with 1 in the ith position indicating ma-
chine i is on, and a zero indicating off. The power set [(0, 1)|M
is the collection of all possible schedules. Since continuous con-
trols r(t), G(t,i) are bounded and the schedules I{t) are discrete,
the optiinization problem involves a non-differentiable objective
function.

The states of the system are the down time of the machines
d(t,i), i=1,2,...,M, and S(t), the stored encrgy. If u dynamic load
model is assumed (see section 6), then the state variables of that
model must also be included. If a more elaborate machine model
including (minimum} run time constraints or a “banked” state
is used, then these states variables must also be added to the
state vector. Since our primary concern is to develop an efficient
scheduling and dispatch algorithm, we shall not include these
features. They do not change the essential structure of the opti-
mization algorithm.

We shall treat the following types of load models : (1) deter-
ministic loads; (2) loads with a pure random fluctuation (white
noise) about the mean, and (3) loads with a first order Gaussian-
Markov process fluctuation about the mean.

As posed, the problem includes unit commtment (selection
of I{t)) and economic dispatch (setting G{t,i) for on-machines and
r(t)). The dispatch problem is solved by having all on machines
operate at the same incremental cost level

s < deciei] )
d[G(¢,4)]
otherwise, by shifting the load of a higher incremental cost unit
to machines with lower incremental costs, the overall generation
cost could be reduced.
Separating economic dispatch from unit commitment, as was
classically done, does not guarantee achievement of the minimum
short term scheduling cost.

3. SCHEDULING ALGORITHM

Our algoiithm is designed in two stages: First, an cxlen-
sive oll-line computation 18 done to compute a “scheduling ta-
ble,” reminiscient of the priority list in common use in the in-
dustry. This table need be computed only once for each system.
‘Using the table, the deterministic unit commitment problem is
‘solved “off-line.” Then a simple, efficient “on-line” algorithm is
,used to fine tune the schedule in response to unexpected (or pre-
dicted random) changes in load. In effect the off-line algorithm
establishes a rough correspondence between the total generation
G(t) = 1M, G(t,1) required to serve the load, and the individ-
ual generation assignments, G(t,i), in the “first several cheapest
generation schedules” for each given level ot demand. The on-
line scheduling control is then responsible for modest modifica-

tions of the machine schedule (and dispateh) to match the actual
load. It does this by selecting the best schedule among the “first
several chicapest ones” to achieve the optimal tolal cont when
slarling costs are taken into sccount, The nuphat assusmption
constructing the table is that the starting costs associated with
various schedules are substantially less than the fue! costs.

For each load level, the “cheapest” schedules are selected to
achieve the corresponding total generation level, with the individ-
ual generation levels assigned to the points where all on machines
have the same A (2.7) in the candidate schedules.

OFF - LINE ALGORITHM

First, we build up a scheduling table with K candidate
cheapest schedules (G(t,i),i=1,...,M) for total generation G(t) to
meet different demand levels. Then given the deterministic de-
mand L(t), t=0,1,...,T, with bar implying the stochastic mean,
we select the initial power transfer r(t}, t=0,1,...,T, to make
G(t)=L(t) + r(t) as flat as possible. Disturbances are added to
r(0),...,r(T) to discover the lowest cost. At each iteration the
individual generation levels G{t,i) required to achieve G(t} (to-
tal mean load at time t) are selected from the scheduling table.
Minor adjustment and compensation of £(0},...,r(T) are made to
match physical constraints and demand and achieve minimum
cost. This limits the computational burden when dealing with o
large number of machines. The final r(t), G(t,i) and G(t) are the
mean transfer rates, individual gencrations and total generation,
denoted by v(¢),G(¢, 1) and G(t), ¢ 1, , T 1, M
ON ~ LINE ALGORITHM

When the load is a random process, on-hne scheduling
is required to compensate the (planned) deterministic genera-
tion and pumping schedule. We regard the stochastic demand
L(t),t=0,1,...,T, as a random fluctuation about the mean demand
L(t). The power transfer r(t) = r(t) + ér(¢) is adjusted to make
G(t) = G(t) + 6G(t) as flat as possible for t=0,1,...,T. By using
7(t) , t=0,1,...,T, as the starting point for the on-line iteration
and searching the scheduling table for close feasible solutions, the
optimal schedule for the actual current load may be found very
rapidly. If the demand fluctuation piocess can be modeled by
Gaussian-Markov process, the Kalman state estimator provides
one-step ahead prediction of the demand. This pernuts a better
(lower cost) control since we can smooth out the fluctuations be-
tween two time intervals {present and next lime steps) by using
the storage system and power trausfers,

The advantage of this algorithin over the conventional pri-
ority list is the consideration of the operating status of “all” the
machines in response to a change in demand. The priority list
indicates the next machine to be turned on or off in response to
an increase or decrease in demand. However, in some cases the
optimal response to an increase in demand is to turn some ma-
chines on while turning others off. The reverse can happen when
demand decreases.

The overal! algorithm is summarized in Fig 1.

4. CONSTRUCTION OF THE SCHEDULING TABLE

A typical scheduling table in shown in Fuguie 20 The total
generation levels G(t) in increments, 0G(y) which can vary iu
size, are listed along the left most column. The individual gener-
ations G(t,i) required to achieve those levels (including economic
dispatch) are listed in the rows of the table, commencing with the
cheapest schedule (ignoring starting costs) and continuing to the
Kth cheapest schedule. Note for this case, the cheapest schedule
to serve level 7420 has machine G1 down and G2 up; the reverse of
the solution at level 7400. The number, K, of candidate schedules
for each level of demand is chosen in one of two ways:
(1) If t{j,k,M + 1] is the cost entry for the (j,k) row schedule

of the table (cost in the right most column), K is chosen in

such a way that t{j,K+1,M +1}-t[j,K,M + 1] is larger than the
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Figure 1. DETERMINISTIC SCHEDULING ALGORITHM

most expeansive starting cost of machines which are allowed
to switch.

Alternately, empirical evidence from simulation or operation
experience may indicate that among the first K cheapest
schedules, only the first 2 or 3 are ever applied. Then K
may be safely reduced to 4 or 5. This enhances the on-line
speed of the algorithm.

The increment of the total generation, §G(j), is chosen by
the rule

(2

~—

8G(3) = min(6G, X(G))
=ty +1,1,0] - ¢[5,1,0| (4.1)
where 6G is a nominal increment (100MW in our examples) and
X[G] is the smallest increment of generation such that G+X{G]}
has a different optimal unit commitment (I(t,i}) from that at level
G. In the example in Figure 2, with §G = 100, the choices are

min(100, X{7300]) = 100

min(100, X[7400]) = 20 (4.2)

since

for j=1 achedule (20,0,40,40,..,600) > commitment (1,0,1,1, .1}
for j=2 schedule (30,0,30,40,...,600)-> commitment {1,0,1,1,..,1)
for j=3 schedule (0,50,60,60,...,600)=> commitment (0,1,1,1,...,1)

The power transfer rates r(t), t=0,1,...,T, ate chosen to as-
sure:

(i) the stored energy is periodic S(t)=S(t+T) which implies:

r
STy o

t—1

(1)

(ii) the total generation G(t) is as ilat as possible, and

(iii) the constraints B < r(t) < I hold.
The key condition (ii) is a consequence of the quadratic form
of the generation cost functions CG(t,i).

G G1 G2 G3 G4 ... GM COST PRIORITY
7300 22 0 44 41 .. 600 18000  fust
0 29 47 41 .. 600 18120 second
30 38 o 45 ... 600 18439 8rd
(i=1)
30 11 0 67 - 600 18700 hteh
7400 34 0 32 49 ... 600 18900
31 0 0 87 .. 600 19240
(=2) .
32 48 48 42 . 600 22320
7420 © 53 62 67 ... 600 24440
(=3)

..... 600

15000 48 42 59 50 65229 first

(j=302} .

Figure 2. A Typical Scheduling Table.

8. DETERMINISTIC SCHEDULING

Seoveral test problems with a determunmtic demand lor power
were treated with the (off-line) algorithm to establish a base line
for the (on-line) stochastic scheduling algorithm. Operating and
starting cost data for the two larger examples, 18 and 41 ma-
chines, are listed in Tables 3 and 4 in the Appendix. These
systems have been treated earlier using a modified dynamic pro-
gramming successive approximations algorithm DPSA (2], and
the performance results were used as a check on the current algo-
rithm. Smaller examples involving 3 and 5 machines which can
be treated by dynamic programming were also used to validate
the algorithm. The overall cost figures obtained in these tests are
shown in Table 1. The differences in costs in the smaller examples
are primarily due to the propagation of quantization errors in the
dynamic programming algorithm. The cost differences in the two
larger examples are primarly due to quantization effects and the
inherent inaccuracy of DPSA.

NO. OF DPSA PRESENT
MACHINES OR DP ALGORITHM
03 0022288.77 0022232.448
03 0030210.63 0030135.504
03 0022283.14 0022251.835
05 0038115.60 0038108.249
18 0461047.00 0459235.710
41 1623799. 00 1584421.308

Table 1. OPTIMAL COST COMPARISON
Execution times for the algorithm in this paper are shown in
Table 2, including the time required to construct the scheduling
table. One day refers to an interval of 24 time steps. The program
is written in PASCAL and the times are obtained on a VAX



11/780 operating under Berkeley Unix version 4.1.

NO. OF BUILD UP ITERATION
MACHINES SCHEDULING TO OBTAIN 24
TABLE HOUR OPTIMAL

SCHEDULE

03 000:30 0:42

05 000:50 1:10

18 120:00 1:35

41 200:00 3:50

CPU TIME(MIN:SEC) (OFF-LINE)
Table 2. EXECUTION TIME FOR
DETERMINISTIC CASES
The trend in computational times versus number of machines
is important. Figure 3 shows that both the time required to
build the scheduling table and the unit iteration time for the
deterministic algorithm have less than linear growth as functions
of machine numbers. The search procedure used to construct
the scheduling table was not optimized, and the computational
times for this procedure could be substantially reduced if eflective
search procedures were used.
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curve (1) for DPSA
curve (2) for building table
curve (3) for deterministic load iteration
CPU time is in 100 minutes.
Figure 3. CPU TIME VS NUMBER OF MACHINES

6. ON — LINE STOCHASTIC SCHEDULING

The off-line algorithm determines a schedule and a set of op-
timal transfer rates 7(1),..., 7(T') corresponding to a known, deter-
ministic demand L(t),t = 0,1,...,T. Starting with 7(1),...,7(T)
and G(t,1),7 = 1,2,..., M, the on-line algorithm may be used to
determine the best schedule (including starting costs), G(t,i),
i=1,..,M., and optimal transfer rates r(1),...,0(T) to meet the
actual, observed (random) demand L(t), t=0,1,...,T. The algo-
rithm is fast enough to be used on-line.

In testing the algorithm we used two different models for the
demand. The first was simply

L{t) = L(t) + 6L(t) (6.1)
with 6L(t) a sequence of independent zero mean random variables
uniformly distributed in the interval [—aL(t),aL(t)] with « a
small number. In the tests we used o = 0.04, so the demand

ftuctuations were less than or equal 1o 4% of the mean at all time
steps.

In the second demand model, we assumed that the demand
fluctuations were a first order Gaussian-Markov process

SL{t+1) =ax6L(t) +w(t) (6.2)

with ‘a’ a real constant and w(t),t =0, 1,.... a sequence of zero
mean, independent, identically distributed Gaussian-Markov pro-
cess(i.e. & Gaussian white noise process). We used the model

y(t) = 6L(t) +v(0) (6.3)

with v(t) Gaussian white noise process Lo describe the measure-
ments of the demand fluctuations. We assume

El(tyw(s)] =0 Vs

Efv(£)5L(0)] = 0 = Elw(s)5L(0))
Blw(©)w(s)] = W (1) « b,
Efu(t)u(s)] = V(t) + 4n

B[SL(0)] =0, E[(§L(1))*}=o(1)

5“:{(1), s# L

s=1
(The parameters a,w{t),v(t) and o{t) must be identified from ac-
tual load data.)
The Kalman filter is the best estimator of §L(¢) given y(s),
8 <t — 1. The equations are

Vs (6.4)

(6.5)

SL(t+ t}t) = aw SL(t]t — 1) + K(t) + [y(t) ~ 6L(t]t—)} (6.6)

where SL(t{t — 1) is the best (linear) cstimate of bL(t) given
y(s),s <t—1,and

a+ P(t)

KO= payrviy
_a« P(t) -axP@)*
PU+D =5 v rwin 7

P(0) =0(0)
Both K(t) and P(t) can be computed off-line.

The on-line scheduling algoiithin based on the Gaussian-
Markov load model is shown in Figure 4. the same algorithm
is used for the random fluctuations model, with §L(t 4 ift) in
Lhat Gaussian-Markov model substituted by 8 L{t) in the Figure.

The overall scheduling algorithm is shown in Figure 5.

7.ON —LINE SCHEDULING FOR 41 MACHINES

In conducting the schedule computations 80 days of (syn-
thetic) hourly demand were used to generate the randowmn load
statistics. A break down of the computational times for the algo-
rithm in the two model cases is given in Figure 6. A plot of the
computational times required to find the optimal hourly sched-
ule for the two different random demand models versus number
of machines is given in Figure 7. Note that the rate of increase
is less than linear. The times are longer when the algorithm in-
cludes the Kalman predictor, since time is required to execute
the additional lines of code. (For the 41 machine case 87 seconds
were required to find the optimal schedule for 40 days in 1 hour
increments.)
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G(t1) = G(t1) + BIAS
r(t1) = G(#1) ~ L(¢1)

The algorithm is very effective in smoothing variations in the
demand. In a test where the standard deviation of demand fluctu-
ations was 1.42% the average increase of the unit generation cost
(defined as the total operating and starting costs divided by to-
tal generation in MW) over the deterministic cost was 0.058% for
the random disturbance load model and 0.031% for the Gaussian-
Markov noise model.
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8. CONCLUSIONS

The proposed algorithm provides a fast and effective pro-
cedure for scheduling unit commitment and randomly varying
demand. The speed of the algorithm is a result of the exten-
sive off-line computation done to construct the scheduling ta-
ble. Since this need only be done once for a given system, the
computational expense of this operation is not excessive. The
computational requirements of the on-line component of the al-
gorithm are approximately linear in the number of machines - a
dramatic improvement over DPSA. By taking advantage of the
fact that actual loads different only by a small percentage from
the mean expected load for a given day, an extremely accurate
initial schedule for generation and storage can be computed (off-
line). The (optimal) on-line schedule is essentially a perturbation
of the (mean) deterministic schedule, and, as the number of ma-
chines iucreases, the sensitivity of the cost to small perturbations
in the demand or in the corresponding schedule is substaatially
reduced.

The speed of the scheduling algorithm means that it can be
used ou-line to adjust generation schedules and fine tune dispatch
to minimize cost.
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APPENDIX
Table 3. COST COEFFICIENTS FOR 18 MACHINES
GENERATION COST DATA

G [¢ asli] a2{)f atfi]
1 15 045 0027039  7.4840 0025
2 15 045 0 046586  7.1030 0044
3 15 079 0.041011  7.2710 3986
4 20 053 0.023020 6.8356 42.0
§ 20 053 0.023020 6.8356 42.0
6 30 130 0.011685  5.0250 94.3
7 30 105 0.012176  5.4530 68.6
8 30 105 0.012167  5.4530 68.6
9 30 105 0.121670  5.4530 68 6
10 30 105 0012167  5.4530 686
11 35 167 0.005206 5 6787 89.0
12 35 167 0.005206  5.6787 890
13 35 167 0.005206  5.6787 89.0
14 36 167 0.005206  5.6787 89.0
15 25 388 0.002269  5.8581 68.0
16 60 425 0.000769 4 6860 28.2
17 50 670 0.000827  6.4870 60 4
18 60 670 0.000827  6.4870 60.4




STARTING COST AS A FUNCTION OF DOWN-TIME

M Cs(1)  ©Cs(2) ©S(s) cCS(4)  CS(5)  Cs(e)
01 083 163 242 318 392 464
02 083 164 242 318 202 464
03 065 149 220 200 357 424
04 040 080 114 149 182 214
VL3 040 080 114 149 182 214
08 133 258 376 486 590 688
07 181 330 454 555 839 709
08 039 077 114 160 185 220
09 039 077 114 150 185 220
10 0585 069 102 135 167 299
11 156 309 457 602 743 8381
12 156 309 457 602 743 881
13 156 309 467 602 743 881
14 156 309 457 602 743 881
15 9908 9099 9999 9999 9999  9udy
16’ 9998 9990 9989 9999 9999 9999
17 9998 9999 9999 9999 9999 9999
13 9998 9999 9999 9999 9999 9999

GENERATION COST DATA

Table 4. COST COEFFICIENTS FOR 41 MACHINES

©ENC MR W N~

[e]

8 bet01
3.56+01
3 be+01
3.5e+01
2.5e+01
2.5e+01
2.5¢+01
2 Se-+01
2.5e+01
2 5e+01
2.6e+01
2.5¢+01
2.5¢+01
2.5e+01
1.3¢+02
1.3e+02
2.5e+02
2.5e+02
8.5¢+01
8.5e+01
6.5¢+01
6 So+-01
5.0¢+01
5.0e+ 01
5.0e+01
2.5e+02
2.504+02
2.0e+02
2.0e+02
2.0e+02
1.2¢+02
1.2e+02
3.2e+02
2.0e+02
2.0e+02
2.0e+02
4.0e+02
4.0e+02
4.0e+02
4.0e+02
6.0e+02

G

1 Te-+02
1.7¢+02
1 7e+02
1.7e+02
1.0e+02
1.0e4-02
1,0e4+02
1.0e+02
1.0e+02
1.0e+02
1.0e+02
1.0e+02
1.0e+02
1.0e+02
3.9¢+02
3.9¢+02
5.5e+02
5.5e402
2.6e+02
2 be+02
2.5¢+02
2.66+02
2.0e+02
2.0e+02
2 Oe+02
6.7e+02
6.7e+-02
5.0e+02
5.0e-+02
§.0e+02
3.6e+02
3.5¢402
7.5¢+02
4.3e+02
4.3e+02
4 3e+02
8.0e+02
8.0e+02
8.0e+02
8.0e+02
1.2e+08

a3y

000621
0.00521
0.00521
0.00521
0.00458
0.00458
0.00458
0 00458
0.00458
0.00458
0.00458
0.00458
0.00458
0.00458
0.00227
0.00227
0.00197
0.00197
0.00408
0.00406
0.00405
0.00405
0.00354
0.00354
0.00354
0.00083
0.00083
0.00064
0.00064
0.00064
0.00081
0.00081
0.00061
0.00077
0.00077
0.00077
0.00095
0.00095
0.00095
0.00095
0.00063

a2[1

5.67900
5.67900
5.67900
5.67900
6.69200
6.80200
8.59200
6 59200
6.59200
6.59200
6.59200
6.569200
6.59200
6.59200
5.85800
5.85800
6.41700
6.41700
6.35400
6.35400
6.35400
6.36400
6.14200
6.14200
6.14200
6.43700
6.48700
7.07600
7.07600
7.07600
6.80900
6.89900
6.70400
6.68600
6.68600
6.68600
4.65100
4.55100
4.55100
4.55100
3.95100

alfi]
89.00000
89.00000
89.00000
89 00000
35.00000
35.00000
35.00000
35.00000
35.00000
35 00000
35.00000
35.00000
35.00000
35.00000
162.00000
162.00000
275.00000
275.00000
250.00000
250.00000
250 00000
250.00000
80.000000
60.000000
60.000000
360.00000
360.00000
185.00000
185.00000
185 00000
149.00000
149 60000
410 00000
128.00000
128.00000
128.00000
390.00000
390.00000
390.00000
390.00000
§86.00000

STARTING COST AS A FUNCTION OF DOWN-TIME

M Cs(1) C©s{2) ©S(3) CS(4) CS(5)  CS(6)
1 156.39 308.82 457.39 602.21 743 35 880.93
2, 56.39  308.82 457.30 60221 74335 88093
3 156.30 30882 45739 60221 74845  8BU Y3
4. 156.30  308.82  457.39 60221 74335  880.93
5. 180.96  330.34  453.66  555.45 63948  708.85
6. 180.96  330.34  453.66  555.45  639.48  708.85
7. 180.96  330.34  453.66  555.45  639.48  708.85
8. 180.96  330.3¢ 45366 55545 63048  708.85
9. 180.96  330.3¢  453.66 55545  630.48  708.85
10. 180.96 33034  453.66 55545  630.48 70885
1. 180.96  330.34 45366 55545 03048  708.85
12. 180.96  330.34 45366 55545 63948 708 85
13. 180 96 430.34 453 66 555 45 439 48 TU8 86
14, 180.96 330 34 453.66 556.45 649.48 708 85
15. 35.710  70.850 10542  139.44 17292  205.86
16. 85710  70.850 10542 13944 17292 20586
17. 260.00 800.00  390.00 55000  660.00 77000
18. 260.0 3800.00 390.00 550 00 660 00 770 00
19, 156.3  308.82  457.39  602.21 74335 88093
20. 1563 308.82  457.30  602.21  743.35 88094
21. 156.3  308.82  457.390 60221 74335  880.93
22 156.3 308.82 457.39 602.24 743.35 880 93
23, 118.2 22164 32527 42438 51918  609.85
24. 113.29  221.64 32527 42438 51918  609.85
25. 113.29 221.64 325.27 424.38 519.18 609.85
26. 9997.77 9999 9999 9999 9999 9999
9997.77 9990 9989 9999 9999 999y
28. 6320.67 8645 8501 4815 9931 9974
20 6320.57 8645 . 9501 9816  wu3l 9974
30. 6320.57 8646 9501 9815 9yl 9u74
31, 9097.77 9090 9999 0999 9999  9Yu
32, 9007.77 9999 9999 9999 9999 9y
33, 999777 9999 9999 9999 9999 9993
34 9907.77 9999 9999 9999 9999 9999
35. 9997.77 9009 0999 9993 0999 9999
38 0907.77 9909 9999 9999 9995 9999
37. 9997.77 9999 9999 8999 9999 99y
38 9997.77 9999 9990 9999 9999  9v99
39. 9997.77 9090 9900 9999 9999 9999
10 9997.77 9999 9999 9999 99vy 9999
11 9997.77__ 9999 9999 9999 9999 9999




