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ABSTRACT

We present an empirical study of novel work-optimal par-
allel algorithms for Burrows-Wheeler compression and de-
compression of strings over a constant alphabet. To validate
these theoretical algorithms, we implement them on the ex-
perimental XMT computing platform developed especially
for supporting parallel algorithms at the University of Mary-
land. We show speedups of up to 25x for compression, and
13x for decompression, versus bzip2, the de facto standard
implementation of Burrows-Wheeler compression. Unlike
existing approaches, which assign an entire (e.g., 900KB)
block to a processor that processes the block serially, our
approach is “truly parallel” as it processes in parallel the
entire input. Besides the theoretical interest in solving the
“right” problem, the importance of data compression speed
for small inputs even at great expense of quality (compressed
size of data) is demonstrated by the introduction of Google’s
Snappy for MapReduce. Perhaps surprisingly, we show fea-
sibility of holding on to quality, while even beating Snappy
on speed.

In turn, this work adds new evidence in support of the
XMT/PRAM thesis: that an XMT-like many-core hard-

ware/software platform may be necessary for enabling general-

purpose parallel computing. Comparison of our results to re-
cently published work suggests 70x improvement over what
current commercial parallel hardware can achieve.
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1. INTRODUCTION

A lossless compression function is an invertible function C(-)
that accepts as input a string S of length n over some alpha-
bet X and returns a string of length ©(n) over some alphabet
Y where, on average, fewer bits are required to represent
C(S) than S. A lossless compression algorithm for a given
lossless compression function is an algorithm that accepts S
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as input and produces C(S) as output; the corresponding
lossless decompression algorithm accepts C(S) for some S
as input and produces S as output.

In [5], Burrows and Wheeler describe their eponymous loss-
less compression algorithm and corresponding decompres-
sion algorithm; it has been shown [2, 3] to be among the
best such algorithms, and its operation is reviewed in this
paper. The Burrows-Wheeler (BW) Compression problem
is to compute the lossless compression function defined by
the algorithm of [5], and the Burrows- Wheeler (BW) Decom-
pression problem is to compute its inverse. The algorithm of
[5] solves the BW Compression problem in O(n log® n) serial
time and solves BW Decompression problem in O(n) serial
time. Later work reduced a critical step of the compression
algorithm to the problem of computing the suffix array of
S, for which linear-time algorithms are now known, so both
problems can now be solved in O(n) optimal serial time.

We propose an O(log? n)-time, O(n)-work PRAM algorithm
for solving the BW Compression problem and a O(logn)-
time, O(n)-work PRAM algorithm for solving the BW De-
compression problem. These algorithms appear to be the
first polylogarithmic-time work-optimal parallel algorithms
for any standard lossless compression scheme.

We implement our parallel algorithm and experimentally
validate it. A parallel-algorithmic approach to BW com-
pression may not have been seriously considered in the past
because the fine-grained parallelism provided by such an ap-
proach is difficult for existing computing hardware to ex-
ploit. However, the Explicit Multi-Threading (XMT)! ar-
chitecture developed at the University of Maryland was de-
signed specifically to provide good performance on such al-
gorithms. Using our parallel algorithm in conjunction with
XMT, we obtain speedups of up to 25x for compression and
13x for decompression for small inputs (say, up to 1MB)
where no speedup was possible before. This is especially
important for real-time applications, where single-task com-
pletion time is more important than throughput.

In passing, we note that commonly-used compression pro-
grams divide the input into uniformly-sized blocks and apply
a serial implementation of BW compression to each block
independently. The blocks can be compressed in parallel;
however, this does not solve the BW Compression prob-
lem for the original input and thus is not a parallel algo-
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rithm for solving it. It is worth noting that our parallel-
algorithmic approach is orthogonal to the foregoing block-
based approach, and the two approaches could conceivably
be combined to obtain better speedups than either alone.

One application where our implementation shows a distinct
advantage over existing compression libraries is in compress-
ing data that is sent over a network. In warehouse-scale com-
puters such as those found in data warehouses, the band-
width available between various pairs of nodes can be ex-
tremely different, and for pairs where the bandwidth is low
can be debilitating [17]. A way to mitigate this is to com-
press data before it is transmitted over the network and
decompress it on the other side. This approach is taken,
for example, by Google via their Snappy [15] library. The
goal of Snappy is to compress data very quickly, even at the
expense of less compression, providing a larger increase in
effective network bandwidth than other libraries for all but
very low-bandwidth networks. As shown in Section 5.2, our
implementation outperforms Snappy and similar libraries for
point-to-point bandwidths of up to 1 Gbps.

This technical report augments the theory results of [11]
with experimental speedups. For an extended description of
the algorithms, please see the companion report [11].

1.1 Reéated Work

There are applications where BW compression would be use-
ful but is not currently used because of performance. One
such application is JPEG image compression. JPEG com-
pression consists of a lossy compression stage followed by
a lossless stage. The work [38] considered replacing the
currently-used lossless stage with the BW compression algo-
rithm. For high-quality compression of “real-world” images
such as photographs, this yielded up to a 10% improvement,
and for the compression of “synthetic” images such as com-
pany logos, the improvement was up to 30%. The author
cites execution time as the main deficiency of this approach.

A commonly-used, serial implementation of the block-based
approach noted above is bzip2 [31]; the algorithm it applies
to each block is based on the original BW compression al-
gorithm of [5]. There are also variants of bzip2, such as
pipeline bzip [14], that compress multiple blocks simultane-
ously. However, these variants do not achieve speedup on
single blocks while our approach does. There exists at least
one implementation of a linear time serial algorithm for BW
compression, bwtzip [24]. However, bwtzip is a research-
grade implementation that emphasizes modularity over per-
formance, unlike the focus of this paper.

The survey paper [12] articulates some of the issues involved
in parallelizing BW for a GPU; decompression is not dis-
cussed. The author gives an outline of an approach for mak-
ing some parts of the algorithm parallel and claims that the
remaining parts would not work well on GPUs due to ex-
hibiting poor locality. [28] reports such parallelization, and
indeed was unable to demonstrate a speedup for compres-
sion using the GPU, instead obtaining a slowdown of 2.78x.
Note that our results reflect a speedup of 70x over [28]. Par-
allelization of decompression was left as future work, and
no speedups or slowdowns are reported. Furthermore, no
asymptotic complexity analysis is given, and our own anal-

ysis shows their algorithm to be non-work-optimal. To their
credit, they appear to be the first to formulate MTF encod-
ing (Section 2.1.2) in terms of a binary associative operator.
However, two challenges, (i) work-optimal parallelization of
BW and (ii) feasibility of speedups on buildable hardware,
remained unmet.

A parallel algorithm for Huffman decoding is given in [23].
However, the algorithm is not analyzed therein as a PRAM
algorithm, and its worst case run time is O(n). Our PRAM
algorithm for Huffman decoding runs in O(logn) time.

The rest of the paper is organized as follows: Section 2 gives
an overview of the serial BW compression and decompres-
sion algorithms and Section 3 describes our parallel algo-
rithms for the same along with their complexity analysis,
ending the theoretical part of the paper. The remainder of
the paper is devoted to experimental validation of the al-
gorithms. Section 4 describes the experimental comparison
to bzip2, Section 5 contains a discussion of the results we
obtained, and Section 6 concludes.

2. SERIAL ALGORITHM

In their original paper, Burrows and Wheeler [5] describe
a lossless data compression algorithm consisting of three
stages in the following order: a reversible block-sorting trans-
form (BST)?, move-to-front (MTF) encoding, and Huffman
coding. The corresponding decompression algorithm per-
forms the inverses of these stages in reverse order: Huffman
decoding, MTF decoding and inverse BST (IBST). See Fig-
ure 1.

Given an input string of length n, their original decompres-
sion algorithm runs in O(n) serial time, as do all stages
of their compression algorithm except the (forward) BST,
which requires O(nlog®n) serial time [32]. More recently,
linear-time serial algorithms [19, 26] have been developed to
compute suffix arrays, and the problem of finding the BST of
a string can be reduced to that of computing its suffix array,
so Burrows-Wheeler (BW) compression and decompression
can be performed in O(n) serial time. The linear-time BST
algorithms are relatively involved, so we refrain from de-
scribing them here and instead refer interested readers to
the cited papers.
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Figure 1: Stages of BW compression and decompression.

2This transform is also known as the Burrows-Wheeler
Transform (BWT). We refrain from using this name to avoid
confusion with the similarly-named Burrows-Wheeler com-
pression algorithm which employs it as a stage.



2.1 Compression

Given a string S of length n from an alphabet X, where
|| is constant with respect to n, the compression algorithm
proceeds in three stages as follows.

2.1.1 Block-Sorting Transform (BST)

The BST stage takes S as input and produces as its output
SEST a permutation of S. SP5T is formed by making a list
of all the rotations of S (each of which is also a string of
length n), sorting the list of rotations lexicographically, and
outputting the last character of each rotation in the sorted
list starting with the first. See Figure 2. The BST has two
properties that make it useful for lossless compression: (1)
it has an inverse and (2) SZ°7 tends to have many occur-
rences of any given character in close proximity, even when
S does not. Property (1) ensures that the decompressor can
reconstruct S given only SZ5T and Property (2) allows the
following stages to work effectively.

banana$ $bana,
anana$b a$ban
rotate nana$ba sort ana$b output
banana$ ——— ana$ban ——» anana$y —— annb$aa

na$bana bananal$)
a$banan na$ba
$banana nana$

————
M

Figure 2: BST of the string “banana$”. The sorted list la-
beled M can be viewed as a matriz of characters.

The critical step in the BST algorithm is the sorting of the
list of rotations of S. The BST algorithm given in [5] is ac-
tually a combination of two algorithms: direct comparison
and doubling [32]. The direct comparison algorithm sorts
the list of rotations of S using a comparison-based sorting
algorithm that compares rotations in the list character-by-
character. Therefore, it requires O(nlogn) string compar-
isons, and since comparing two strings of length n requires
O(n) comparisons in the worst case, the direct comparison
algorithm has a worst-case running time of O(n?logn).

The doubling algorithm works in O(logn) iterations. Each
iteration applies comparison-based sorting to the current list
of rotations of S as in the direct comparison algorithm. How-
ever, each comparison is limited to the first d characters of
the rotations being compared, with d > 2 a constant, so the
list will not be completely sorted if two rotations begin with
the same sequence of d characters. Afterwards, a new string
S’ is constructed over the alphabet [0,n — 1] such that S;,
0 < i < n, is the rank of the ith rotation in the partially-
sorted list. To complete the iteration, S is replaced by S’.
During the next iteration, up to d character comparisons
are made again as in the first iteration, but now each char-
acter in S’ gives the rank of d consecutive characters in S,
so the character comparisons are spaced d characters apart
to give a new partially-sorted list based on the ranks of the
first d> characters. The spacing increases by a factor of d
each iteration, so after [log,n] iterations, all comparisons
are guaranteed to reach the end of the string. Since d is con-
stant, each comparison takes constant time, so each partial
sort takes O(nlogn) time. Because the partially-sorted list
is in non-decreasing order, ranking its elements can be done

in O(n) time. Therefore, each iteration takes (nlogn) time,
and the overall doubling algorithm takes O(n log? n) time.

The two algorithms can be combined as follows: begin by us-
ing direct comparison, keeping track of cumulative number
of character comparisons that exceed a depth of d. If the cu-
mulative number exceeds some constant value, switch to the
doubling algorithm. This heuristic ensures that the direct-
comparison algorithm never performs more than O(nlogn)
character comparisons before it either completes or is aban-
doned in favor of the doubling algorithm. Therefore, the
overall BST algorithm takes at most O(nlog®n) time.

2.1.2 Move-to-Front (MTF) Coding

The input to the MTF coding stage is the string SZ57.
Given an initial list Lo of the characters in ¥ in arbitrarily-
defined order, the output, denoted by SMTF is a string of
length n over the alphabet of integers X' = [0, |X| — 1]. See
Figure 3. MTF coding exploits property (2) of the BST
to produce a string that can be readily compressed by an
entropy coding technique such as Huffman coding. MTF
coding is performed by scanning the characters of SZ57 in
order of increasing index. For each character ¢ = SZ5T the
output character SMTF is set to the index of ¢ in L;, and
then ¢ is moved to the front of L; to produce L;+1. That is,
L;41 is set to L;, then ¢ is removed from L;;; and reinserted
as the first element of L;;1. Because |X| is constant, the size
of L is constant as well, and each update to L takes O(1)
time. The list is updated n times, so MTF coding takes
O(n) time. See Figure 4.

The purpose of MTF coding is to maintain L as a list of the
characters seen so far in most-recently used (MRU) order.
As a consequence, ¢ will now have an index in L of zero, and
if ¢ is immediately followed by more repetitions of ¢, then
the MTF coder will output zero for each of those subsequent
repetitions. Each run of m repetitions of any character in
SP5T will be converted to a nonzero integer followed by
m — 1 zeros in SMTF. Even if ¢ is not immediately followed
by another occurrence of ¢, there will likely be one nearby.
In that case, since only a few characters are moved ahead of
¢ between the two occurrences of ¢ in ', ¢ will be assigned
an index close to zero.

2.1.3 Huffman Coding

The input to the Huffman coding stage is the string SMTF
and it produces as output (1) the string SPW abinary string
(i.e., a string over the alphabet {0,1}) whose length is ©(n)
and (2) a coding table T', whose size is constant given that
|| is constant. In SMTF smaller integers tend to occur
more frequently than larger integers, even if the characters
in ¥ occur an equal number of times in S. Therefore, SMTF
is amenable to entropy coding, even when S is not. This
means that S®% is typically shorter than any fixed-length
encoding of S (e.g., the way it was originally stored on disk).

Huffman coding proceeds in three steps. In step 1, SMTF
is scanned once to build a frequency table F' indicating how
many times each character in 3 occurs in S™TF; this takes
O(n) time. In step 2, the coding table T is constructed using
a heap-based algorithm that takes only F' as input. Since |X|
is constant, the size of F' is also constant, so this takes O(1)
time. In step 3, SMTF is scanned once more, and for each
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Figure 3: MTF of the string “annb$aa”. C[i] is the set of characters between SPST[i] and its previous occurrence.
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Figure 4: MTF encoding and decoding. Observe that SP5T[i] = L;[SMTF[i]]. In both the encoder and the decoder, the shaded
elements are moved to the front of the list according to the arrows. In the encoder, the shaded element is identified by searching

the list L; for the character SPST[i]. In the decoder, the shaded element is chosen to be the one whose index is j =

no searching is necessary.

character SMTF | the corresponding codeword T'(SMTF) is

written to Spw; this takes O(n) time. See Figure 5. Overall,
Huffman coding takes O(n) time.

0— 10
T=1—11
3— 0

SMTE = (1,3,0,3,3,3,0)
SEW =11010000 10

Figure 5: Huffman table and encoding of SMTY (spaces
added for clarity). Recall that this is, in fact, the compres-
sion of the original string “banana$”.

The output of the entire BW compression algorithm has size
O(n) and consists of Spw and T. The overall run time is
dominated by the BST stage. If a linear-time suffix array
algorithm is used to compute the BST, the overall runtime is
O(n). If the BST algorithm described herein is used instead,
the overall runtime is O(n log® n).

2.2 Decompression

With the exception of the IBST, the decompression algo-
rithm is simply the reverse of the compression algorithm:
given Spw and T, Spsr can be constructed in O(n) time
by applying the respective algorithms with the lookup tables
inverted. The major difference is the IBST, which is simpler
than the BST and consists of two steps. In step 1, the in-
dividual characters of Spsr are sorted using stable integer
sorting, which takes O(n) time. The resulting list of ranks
is equivalent to a linked ring (a linked list whose tail points
back to its head) of the characters in Spgr in the order they

SIMTF [Z],

appear in S; see [5] or [11] for an explanation of why this is
true. In step 2, the linked ring is traversed once, beginning
from the character $, to produce the characters of S in re-
verse order; this traversal takes O(n) time. Therefore, the
IBST, and thus the overall BW decompression algorithm,
has a runtime of O(n).

3. PARALLEL ALGORITHM

The parallel BW compression and decompression algorithms
follow the same sequence of stages as the foregoing serial
algorithms, but the sequential algorithm of each stage is re-
placed by an equivalent PRAM algorithm. As is the case in
the serial algorithm, the dominant stage of the compression
algorithm is the BST stage. Our PRAM algorithm for the
BST stage, described below, requires the same work as the
serial BST algorithm described above. If an O(n)-work com-
pression algorithm is desired, the work-optimal algorithm of
[30] can be used to compute the BST in O(log®n) time.

3.1 Compression

As in the serial algorithm, the input is a string S of length
n over an alphabet X, where |X| is constant with respect to
n. The overall PRAM compression algorithm consists of the
following three steps.

3.1.1 Block-Sorting Transform (BST)

The BST of a string S of length n can be computed as
follows. Add a character $ to the end of S that does not
appear elsewhere in S. Sorting all rotations of S is equiv-
alent to sorting all suffixes of S, as $ never compares equal
to any other character in S. Such sorting is equivalent to
computing the suffix array of S, which can be derived from a
depth-first search (DFS) traversal of the suffix tree of S (see



Figure 6). The suffix tree of S can be computed in O(log? n)
time and O(n) work using the algorithm of [30]. The order
that leaves are visited in a DFS traversal of the suffix tree
can be computed using the Euler tour technique [34] within
the same complexity bounds, yielding the suffix array of S.
Given the suffix array SA of S, we derive P57 from § in
O(1) time and O(n) work as follows:

SBSTN] = S[(SA[i] — 1) moan],0 < i <n

Overall, computing the BST takes O(log® n) time using O(n)
work.

i o 1 2 3 4 5 6

STi] b a n a n a §
SA[i] 6 5 3 1 0 4 2
S[SA[i]]—1]|a n n b $ a a

Figure 6: Suffix tree and suffizx array (SA) for the string
S = “banana$”.

3.1.2 Moveto-Front (MTF) Coding

Let SijT, 0 < i < j <n be the substring [SZ57 ..., ]B,slT];
SijT is defined to be the null string when ¢ = j. Let oy,;
be the set of characters contained within SZ°" and M; ; be
the listing of the characters in o; ; in order of last occurrence
in SijT (i.e., in MRU order); this is the empty list when
i = j. Denote by x & y the list formed by concatenating to
the end of y the list formed by removing from x all elements
that are contained in y. The key idea behind the PRAM
algorithm for MTF coding is the observation, noted in the
discussion of the serial MTF algorithm, that L; is the MRU
listing of the characters of S(f 27 followed by the remaining
characters of X in their originally defined order. That is,
L; = Lo ® My,;.

Observe that M; ; = M; ;@M1 forall k, ¢ < k < j. This
implies that M;; = @1_}Myks1. By definition, My ri1
is simply the list [SP57]. Furthermore, @ is associative,
and by the assumption that |X| is constant, takes O(1) time
and work to compute. Therefore, My ;, and thus L;, for
0 < i < n can be computed in O(logn) time using O(n)
work by the standard PRAM algorithm for computing all
prefix-sums with respect to the operation @. The prefix
sums algorithm works in two phases:

1. Adjacent pairs of MTF lists are combined using @ in
a balanced binary tree approach until only one list re-
mains (see Figure 7).

2. Working back down the tree, the prefix sums corre-
sponding to the rightmost leaves of each subtree are
computed using the lists computed in phase 1 (see Fig-
ure 8).

Given L;, SMTF is simply the index in L; of S29T, which

a,$,b,n

bn,a,$ a,$

assumed prefix

Figure 7: Phase 1 of prefiz sums: Computing local MTF
lists for “annb$aa” using the operator ®. Fach node in the
tree is the @-sum of its children. For example, the circled
node is (n, a) ® (b, n).

can be found for all characters independently in O(1) time
and O(n) work. Therefore, MTF coding can be performed
in O(logn) time using O(n) work.

3.1.3 Huffman Coding

The PRAM algorithm for Huffman coding follows readily
from the serial algorithm. In step 1, F' is constructed us-
ing the integer sorting algorithm outlined in [7], which sorts
a list of n integers in the range [0, — 1] in O(r + logn)
time using O(n) work. Because r = |X| is constant, step 1
runs in O(logn) time and O(n) work. Step 2 of the serial
algorithm runs in O(1) serial time, so the same algorithm
can be used to construct T from F' in O(1) time and work.
Step 3 is performed in as follows. First, the prefix-sums of
the code lengths |T(SMTF)| are computed into the array
U in O(logn) time and O(n) work. Then, in parallel for
all 4, 0 < i < n, T(SMTT) is written to SB" starting at
position U; in O(1) time using O(n) work. Therefore, the
overall Huffman coding stage runs in O(logn) time using
O(n) work.

The above discussion proves the following theorem:

THEOREM 1. The above algorithm solves the Burrows-
Wheeler Compression problem in O(log®n) time using O(n)
work.

3.2 Decompression
3.2.1 Huffman Decoding

The main obstacle to decoding SBW in parallel is that, be-
cause Huffman codes are variable-length codes, we do not
know where the boundaries between codewords in SEW lie.
We cannot simply begin decoding from any position, as the
result will be incorrect if we begin decoding in the middle
of a codeword. Thus, we must first identify a set of valid
starting positions for decoding. Then, we can trivially de-
code the substrings of SZY corresponding to those starting
positions in parallel.

Our algorithm for locating valid starting positions for Huff-
man decoding is as follows. Let [ be the length of the longest
codeword in T, the Huffman table used to produce SBW; [
is constant because |X| is. Without loss of generality, we
assume that |SEY| is divisible by I. Divide S" into par-
titions of size [. Our goal is to identify one bit in each



a,$,b,n

a,$.b,n
b,n,a,$ a,$
bmn,a,$ a,$.b.n

$.a,b.n a,$
$.a,b.n a,$,b,n
/\ /\

b $.a n,a b a,$ a
b $.a,b.n n,a,$,b bn,a,$ a,$.b.n a,$.b.n
n a a n n $ a a
n b,n a,b,n $.a,b.n a,$.b.n n,a,$,b n,a,$,b bn,a,$ $.b,na a,$.b.n a,$.b.n
—_——— | —— ' — — — — —— =
P I P P A s Pf

Figure 8: Computing the prefiz sums of the output of the BST stage, “annb$aa”, with respect to the associative binary operator
@. The top line of each node is copied from the tree in Figure 7. The bottom line of a node V' 1is the cumulative @-sum of
the leaf nodes starting at the leftmost leaf in the entire tree and ending at the rightmost child of V' (i.e., the prefiz sum up to
the rightmost leaf under V' ). For example, the circled node contains the sum of leaves corresponding to the prefix “nba$annb”.
Observe the correspondence of the labeled lists with Figure 4.

partition as a valid starting position. The computation will
proceed in two steps: (1) initialization and (2) prefix sums
computation.

For the initialization stage, we consider every bit ¢, 0 < i <
|SBW |, in SBW as if it were the first bit in a string to be
decoded, henceforth SPW. In parallel for all i, we decode
SEW (using the standard serial algorithm) until we cross a
partition boundary, at which point we record a pointer from
bit i to the stopping point. Now, every bit 4 has a pointer
i — j to a bit j in the immediately following partition, and
if ¢ happens to be a valid starting position, then so is j. See
Figure 9(a).

For the prefix sums stage, we define the associative binary
operator @ to be the merging of adjacent pointers (that is, ®
merges A — B and B — C to produce A — C). See Figure
9(b). The result is that there are now pointers from each
bit in the first partition to a bit in every other partition.
Finally, we identify all bits with pointers from bit 0 as valid
starting positions for Huffman decoding (see Figure 9(c));
we refer to this set of positions as V. All this takes O(logn)
time and O(n) work.

The actual decoding is straightforward and proceeds as fol-
lows.

1. Employ |[SPW|/l (which is O(n)) processors, assign
each one a different starting position from the set V,
and have each processor run the serial Huffman decod-
ing algorithm until it reaches another position in V' in
order to find the number of decoded characters. Do
not actually write the decoded output to memory yet.
This takes O(1) time because the partitions are of size
O(1).

2. Use prefix sums to allocate space in SMTF for the out-
put of each processor. (O(logn) time, O(n) work)

3. Repeat step (1) to actually write the output to S™7F.
(O(1) time, O(n) work)

These three steps, and thus the entire Huffman decoding
algorithm, take O(logn) time and O(n) work.

3.22 Move-to-Front (MTF) Decoding

The parallel MTF decoding algorithm is similar to the par-
allel MTF encoding algorithm but uses a different operator
for the prefix sums step. In contrast to MTF encoding,
MTF decoding uses the characters of S™7F directly as in-
dices into the MTF list. Therefore, SMT¥ defines a fixed
permutation function that maps L; to L;+1. Denote by F; ;
the permutation mapping L; to L;. Then, Py ; can be com-
puted for all j, 0 < j < n, using prefix sums with function
composition as the associative operator. See Figure 10. A
permutation function for a list of constant size can be rep-
resented by another list of constant size, so composing two
permutation functions takes O(1) time and work. Therefore,
the prefix sums, and the overall MTF decoding algorithm,
take O(logn) time and O(n) work.

3.2.3 Inverse Block-Sorting Transform (IBST)

The parallel IBST algorithm proceeds in two steps, analo-
gous to the serial algorithm. In step 1, the integer sorting
algorithm of [7] is used to sort the characters of S®7. Be-
cause |X| is constant, the characters have a constant range,
and so this step takes O(logn) time and O(n) work. In step
2, and the list ranking algorithm of [8] is used to rank the
linked list in O(log n) time and O(n) work. Finally, the char-
acters of SBWT are written to S according to their rank in
the linked list; this takes O(1) time and O(n) work. Overall,
the IBST takes O(logn) time and O(n) work.

The above discussion proves the following theorem:

THEOREM 2. The above algorithm solves the Burrows-
Wheeler Decompression problem in O(logn) time using O(n)
work.

4. EXPERIMENTAL VALIDATION
41 TheXMT Platform
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Figure 9: Huffman decoding of SBY (from Figure 5).
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(a) SMTE (from Figure 9).

SMTFE 1 3 0 3 3 3
0 1 0 3 00 0 30 30 3
Permutation 1 ><: 0 1 0 1 —»1 1 0 1 0 1 0
function 5 2 1 202 2 12 1 2 1
3-—+3 3 2 3-»3 3 2 3 2 3 2

(b) Initialization: the permutation function defined by S™7¥[i] moves element i to the front of its input list.
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(c) (Left) Prefix sums: composition of permutation functions using a balanced binary tree (here, we show the tree for the

first four elements).
(Right) Computing the @-sum of the leftmost two leaves of the tree. The result is the parent of the two leaves.

SMTFE 1 3 0 3 3 3
0 1 0,43 0,43 0,42 0-—»0 0 1
Permutation 1 >< 0 1 1 1 1 1 3 1 2 1 >< 0
function 5 2 0 2 0 2 1 2 >/<; 3 2 —» 2
3-»3 3/%2  3/%y  3/% 3 1 3 -—»3

(d) Output of prefix sums: composed permutation functions.
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(e) Applying the composed permutation functlons of (d) to Lo to produce L1, Lo, etc.

Figure 10: MTF decoding of SMTE from Figure 9: construction of L; in parallel using composed permutation functions.
The last character of SMTE is not used in this construction because the corresponding list Ly is not needed. Observe the
correspondence of the labeled lists in (e) with Figure 4.



The Explicit Multi-Threading (XMT) general-purpose com-
puter architecture is designed to improve single-task comple-
tion time. It does so by supporting programs based on Paral-
lel Random-Access Machine (PRAM) algorithms but relax-
ing the synchrony required by the PRAM model. The XMT
programming model differs from the strict PRAM model in
two ways:

1. The PRAM model requires specifying the instruction
that will be executed by each processor at each point
in time, but XMT uses the work-depth methodology
([33, 35]), which allows the programmer to specify all
of the operations that can be performed at each point
in time while leaving to the runtime environment the
assignment of those operations to processors.

2. The PRAM model requires instructions to be executed
in lockstep by all processors at once, but XMT pro-
grams follow independence-of-order semantics: paral-
lel sections of code are delimited by spawn-join instruc-
tion pairs, and threads only synchronize when they
reach the join instruction at the end of the parallel
section.

The XMT architecture consists of the following: a number
of lightweight cores (T'CUs) grouped into clusters, a single
core (master TCU or MTCU) with its own local cache, a
number of mutually-exclusive cache modules shared by the
TCUs and MTCU, an interconnection network connecting
the TCUs to the cache modules, and a number of DRAM
controllers connecting the cache modules to off-chip mem-
ory. Each TCU has a register file, a program counter, an
execution pipeline, and a lightweight ALU. Each TCU also
contains prefetch buffers, which can be used by the com-
piler to prefetch data from memory before it is needed, re-
ducing the length of the sequence of round trips to memory
(LSRTM) and improving performance [36]. Each cluster has
one or more multiply/divide units (MDUs), floating-point
units (FPUs), and a compiler-managed read-only cache, all
of which are shared by the TCUs within the cluster. When
a parallel section of code is reached, the MTCU broadcasts
the instructions in that section to all of the TCUs, and each
TCU stores the instructions in a buffer. Virtual threads are
assigned to TCUs using a dedicated prefix-sum network.

An overview of XMT with details relevant to work on appli-
cation can be found in [6].

4.2 Evaluated Configurations

Because XMT is an experimental platform, we establish that
XMT is competitive with single-chip multi-cores and many-
cores currently available on the market by choosing a con-
figuration of XMT that would use resources comparable to
one such commercially-available chip. The most recent com-
parison of XMT with existing chips is [6], in which a 1024-
TCU configuration of XM T with 4 MB? shared cache (herein
called XMT-1024) is shown to use a comparable silicon area
to the NVIDIA GTX 280 GPGPU, which uses 576 mm? of
silicon in 65 nm technology. In [21], XMT-1024 was shown
to remain in the same power envelope as the GTX 280 as
well. Since then, silicon technology has improved, and the
current successor to the GTX 280, the GTX 680, is manu-

31 MB = 220 bytes

File Description Size (bytes)

bible.txt The King James version of the | 4,047,392
bible

E.coli Complete genome of the E. Coli | 4,638,690
bacterium

world192.txt | The CIA world fact book 2,473,400

Table 1: Files in the Large Corpus

factured in 28 nm technology, with a die size of 294 mm?,

just over half that of the GTX 280; however, recall that
nominally 294 mm? in 28 nm technology offers more than
twice the device capacity of 576 mm? in 65 nm technology.

We compare our parallel implementation of Burrows-Wheeler*
compression running on a 64-TCU FPGA prototype of XMT
[37], and also on XMT-1024, against bzip2 running on one
core of the Intel Core i5-2500K CPU with 6 MB of L3 cache.
To obtain results for the XMT-1024 configuration, we used
XMTSim, the cycle-accurate simulator of the XMT architec-
ture. XMTSim and the XMTC compiler are described in [22]
and have already been the basis for several publications in-
cluding [6]. The most recent validation of the cycle-accuracy
of the simulator is [20], which shows that the simulator cy-
cle counts match those of the FPGA except in a minority of
cases, where the discrepancy may be up to 33%, due in part
to interconnect and DRAM technology limitations in the
FPGA prototype that would not exist in an ASIC product.
For BW compression, the difference due to these limitations
is 15%.

4.3 Data Sets

We perform our comparison using the Large Corpus from the
Canterbury Corpus [29], a standard set of files used to eval-
uate compression algorithms. We use a block size of 900,000
bytes for both bzip2 and our parallel implementation, and
we obtain speedup results for each block separately since
both implementations compress one block at a time. We
use the notation file.i to denote block i of a file named file.
Because the file sizes are not evenly divisible by the block
size, the last block of each file is smaller than 900,000 bytes,
and such blocks are denoted using parentheses. For compar-
ison purposes with bzip2 implementations, our experimental
results are reported with respect to blocks. It should also
be noted that our fine-grained approach is orthogonal to ex-
isting coarse-grained ones allowing one to benefit from both
in a single implementation.

4.4 |1mplementation Details
441 Prefix Sums

We use a k-ary tree to implement prefix sums operations.
To improve the performance of these operations, we clus-
ter threads in the spawn block immediately preceding each
prefix sums operation into groups of size ¢ and merge them
with the first iteration of the prefix sums operation. Simi-
larly, we merge the last iteration with the following spawn
block. In our code, we fixed ¢ at 256, corresponding to the
8-bit character set used by bzip2.

4.4.2 Run-Length Encoding (RLE)

4 Available at http://www.umiacs.umd.edu/users/
vishkin/XMT/OPEN_SOURCE_ALGS/




To reduce the size of its output, bzip2 adds two run-length
encoding (RLE) stages to the basic BW compression algo-
rithm. We added these stages to our implementation as well.
Since this enhancement is not part of the core compression
algorithm and thus not covered in the theoretical portion of
this paper, we state without proof that the RLE algorithm
we implemented runs in O(logn) time and O(n) work.

4.4.3 Multiple Huffman Tables

Bzip2 also implements a heuristic that switches among mul-
tiple Huffman tables to possibly reduce the size of its out-
put. We are not aware of a parallel algorithm that can
decode data encoded using this heuristic within the bounds
given by Theorem 2. To enable a fair comparison with our
implementation, we modified bzip2 to only use a single Huff-
man table. For the inputs we used in our comparison, this
caused the average size of the compressed output to increase
by 2.75% relative to that of the unmodified bzip2. On aver-
age, the modified bzip2 compression ran 1.5% faster than the
unmodified version, and the decompression ran 7.5% faster.

4.4.4 Block-Sorting Transform (BST)

To provide better practical performance for small inputs,
we use a randomized, recursive variant of shared-memory
sample sort to compute the BST. Although a serial recur-
sive sample sort algorithm is described and analyzed in [4],
there appears to be no prior polylogarithmic-time PRAM
analog of such an algorithm. We describe the sorting algo-
rithm below; after the rotations of S are sorted, SZ7 can
be derived in O(1) time using n processors by having each
processor i, 0 < i < n, output the last character of string 4
in the list of sorted strings.

The initial list of the n rotations of S is passed to a proce-
dure called SAMPLESORT. Let T. be the time, and W,
be the work, required to compare two strings. Given a list L
as input, SAMPLESORT(L) proceeds in five steps. (1) A
subset of n/k splitters, with k& > 1 a constant, is randomly
selected from L and placed in the list L'. (2) If L' contains
more than one element, SAMPLESORT(L') is called re-
cursively. (3) Each element of L is ranked within L’ using
binary search. (4) The elements of L are partitioned accord-
ing to their rank in L’. Because the ranks are integers in
the range [0, n — 1], this partitioning can be done using, e.g.,
the integer sorting algorithm of [16], which runs in O(logn)
time and O(n+/logn) work. (5) The partitions are sorted in
parallel, with a serial comparison-based sort applied to each
partition.

5. RESULTS

5.1 Comparison with bzip2

Speedups for the 64-TCU FPGA prototype are shown in Fig-
ure 11 and are in the range 1.8-2.8x for compression and 0.8-
1.1x for decompression. Speedups for the simulated XMT-
1024 configuration are shown in Figure 12 and are in the
range 12x-25x for compression and 11x-13x for decompres-
sion. The main reason that speedups for 64 TCUs are low,
but then scale up nicely for 1024 TCUs, is the extra work
that our parallel algorithms do beyond the original serial
algorithm.

On the FPGA, speedups for partial blocks are higher than
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Figure 11: Speedups obtained using the 64-TCU FPGA pro-
totype. Partial blocks at the ends of files are indicated with
parentheses.
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Figure 12: Speedups obtained using the XMT-102/4 configu-
ration. Partial blocks at the ends of files are indicated with
parentheses.

for the preceding full blocks in the same file. This is be-
cause the partial blocks fit better than full blocks into the
limited cache size (256 KB®) of the FPGA. The situation is
reversed for XMT-1024, where the partial blocks bible.txt.4
and E.coli.5 exhibit lower speedups than full blocks in the
same file. This is because we tuned our code to provide opti-
mal performance on 900 KB blocks. For smaller inputs, per-
formance can be improved by tuning the code to spread the
work among a larger number of threads, decreasing granular-
ity (at the cost of higher overhead). For example, decreasing
the factor k in SAMPLESORT and the clustering factor ¢
provides up to 1.3x higher speedup for partial blocks.

Of all the stages in the parallel implementation, the BST
in the compression routine is the most time consuming, and
the corresponding inverse BST (IBST) in the decompres-
sion routine is the second most time-consuming step. This
is equally true for bzip2 compression; it may be true for
bzip2 decompression as well, but the stages in the bzip2
decompressor are interleaved, so we could not separate out
IBST. Therefore, improving the performance of these stages
has the greatest effect on overall runtime.

The aforementioned BST and IBST stages have irregular
parallelism and memory access patterns. In addition, all of
the stages in the compression and decompression routines
employ fine-grained parallelism. In contrast to many paral-
lel computing platforms, which have difficulty running such

51 KB = 2'° bytes



algorithms efficiently, the XMT platform is designed with
such algorithms in mind. This is perhaps one reason that
others have overlooked a parallel-algorithmic approach.

In addition to allowing parallelism to be exploited within a
block, our approach has the advantage that it only requires
working space for a single block, as blocks are processed one
at a time. Therefore, all working data fits in cache, and
DRAM is only accessed to read input blocks and write out-
put blocks. In contrast, if we were to compress multiple
blocks simultaneously using a single XMT chip, we would
only be able to process a few blocks in parallel without
spilling working data to DRAM. Therefore, our approach
may have more efficient cache utilization than block-parallel
approaches.

The current embodiments of the XMT platform have the
limitation that memory can only be addressed in terms of 32-
bit words; threads cannot write to individual bytes without
overwriting all bytes within a word. Therefore, if multiple
threads need to be able to write to arbitrary elements of an
array, the elements of that array must be stored as 32-bit
words even if they could otherwise be stored as single bytes.
Commercial-grade platforms, such as the Intel processor we
compare against, do not have this limitation. This means
that our results are conservative relative to a more complete
version of XMT with this restriction removed.

For XMT-1024, our parallel decompression implementation
performs better on E.coli.5 than on any other input. This
is because it is smaller than every other input (by at least a
factor of 3), and thus the working set fits into cache for this
input alone. To verify this, we tested a variant of XMT-
1024 with 16 MB of cache and found that the minimum
speedup increased from 10x to 12x. This suggests that it
may be worthwhile to take advantage of improvements in
silicon technology noted earlier to increase the size of the
shared cache of XMT.

5.2 Using Compression to Increase Bandwidth
We compare our implementation (henceforth xmt-bw) to a
number of other compression libraries by providing as input
the entire (11 MB) Large corpus® and measuring the com-
pression ratio and speed; except for xmt-bw and pbzip2,
all libraries are serial. Figure 13 shows our results. Each
library has two regions. (1) As long as the effective band-
width does not exceed the maximum compression speed, the
effective bandwidth is limited only by the compression ratio
(sloped portion, bandwidth-limited). (2) Once the maxi-
mum compression speed is reached, no further increase is
possible (horizontal portion, compute-limited).

We compare xmt-bw against two classes of compression li-
braries:

e High compression, low speed: zlib [13], bzip2 [31],
pbzip2” [14], and xz [9].

e Low compression, high speed: Snappy [15], LZO [27],
QuickLZ [1], liblzf [25], and FastLZ [18].

6All of the implementations tested here (including our own)
subsequently divide the input into blocks.
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Figure 13: Comparison of mazximum transfer rates over a
bandwidth-limited network using BW compression on XMT
(zmi-bw) and existing compression libraries. The dotted di-
agonal line represents the baseline of no compression.

Of these, QuickLLZ, liblzf and FastLL.Z are dominated by Snappy,
and zlib is dominated by pbzip2. Snappy outperforms LZO
up to 1.46 Gbits/s, beyond which LZO provides 6% more
effective bandwidth. Results for the remaining libraries are
shown in Figure 13.

For network bandwidths up to 3 Mbits/s, xz outperforms
xmt-bw by 4% due to its slightly higher compression ra-
tio. Beyond that, for network bandwidths up to 1 Gbit/s,
xmt-bw is dominant; it is only outperformed by Snappy,
LZO, and QuickLZ at higher bandwidths. Remarkably, this
breakpoint coincides with the peak bandwidth of Gigabit
Ethernet, which is commonly used on commodity systems.
Even on networks with a higher peak bandwidth, the point-
to-point bandwidth depends on network load and may fall
into the range where xmt-bw provides an advantage. Fi-
nally, beyond 3.1 Gbits/s, it is more efficient to transmit
data uncompressed.

6. CONCLUSION

This paper is the first to demonstrate work-optimal algorith-
mic and empirical feasibility of parallel compression which
compromises neither speed nor compression quality. For
small inputs, it provides speedups where no other approach
does. For transmission of data over a network, it provides a
larger increase in effective bandwidth than other approaches
over a wide range of network bandwidths.

Today’s parallel architectures allow good speedups on regu-
lar dense-matrix type programs, but are basically unable to
match this success outside this, including for: 1. irregular
problems/programs; and, 2. strong scaling. Extending par-
allel hardware to address these domains could potentially
lead to phenomenal growth in supercomputing: 1. Nearly
all serial algorithms in the CS curriculum are irregular; how
many more programmers and applications will migrate to
parallel computing if such parallel algorithms will deliver
good speedups? 2. Publication of slow-down results, as in
[28], are extremely rare and reflect an unusual level of inter-
est in a problem. How many more will become interested if
commercial hardware allows speedups?
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