
RESEARCH Open Access

Genetic assessment of inbred chicken lines
indicates genomic signatures of resistance
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Abstract

Background: Marek’s disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting
chickens. However, the mechanisms of genetic resistance for MD are complex and not fully understood. MD-resistant
line 63 and MD-susceptible line 72 are two highly inbred progenitor lines of White Leghorn. Recombinant Congenic
Strains (RCS) were developed from these two lines, which show varied susceptibility to MD.

Results: We investigated genetic structure and genomic signatures across the genome, including the line 63 and line
72, six RCSs, and two reciprocally crossed flocks between the lines 63 and 72 (F1 63 × 72 and F1 72 × 63) using
Affymetrix® Axiom® HD 600 K genotyping array. We observed 18 chickens from RCS lines were specifically clustered
into resistance sub-groups distributed around line 63. Additionally, homozygosity analysis was employed to explore
potential genetic components related to MD resistance, while runs of homozygosity (ROH) are regions of the genome
where the identical haplotypes are inherited from each parent. We found several genes including SIK, SOX1, LIG4, SIK1
and TNFSF13B were contained in ROH region identified in resistant group (line 63 and RCS), and these genes have been
reported that are contribute to immunology and survival. Based on FST based population differential analysis, we also
identified important genes related to cell death and anti-apoptosis, including AKT1, API5, CDH13, CFDP and USP15,
which could be involved in divergent selection during inbreeding process.

Conclusions: Our findings offer valuable insights for understanding the genetic mechanism of resistance to MD and
the identified genes could be considered as candidate biomarkers in further evaluation.
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Background
Poultry products are main components of our daily life.
The complexity of food safety and quality issues facing
the poultry industry are rapidly escalating, and many
other critical issues (i.e., bioterrorism, environmental
stewardship and global competitiveness) are emerging
simultaneously. Marek’s disease (MD) is a T cell lymph-
oma induced by the widespread and readily transmissible
Marek’s disease virus (MDV) [1]. MD is one of the main
chronic infectious diseases threatening the poultry

worldwide, and interest for its economic importance to
the commercial poultry industry.
MDV transforms mainly CD4+ T cells and causes vari-

ous clinical syndromes in chicken tissues, which include
peripheral nerves, gonad, iris, muscle, viscera, and skin
[2]. MDV is shed and transmitted between birds via epi-
thelial cells of the feather follicle, dander, chicken house
dust, feces and saliva. Vaccines were developed to con-
trol the disease but are not sterilizing allowing the virus
to replicate and spread. Thus, in the last few decades,
field strains of the virus have evolved resulting in new
subtypes that the vaccines may not completely control
[3]. MDV has proven to be a valuable comparative bio-
medical model organism for understanding the princi-
ples of human disease [4] and MD is a natural model for
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lymphomas overexpressing Hodgkin’s disease antigen
[5]. However, there is a shortage of genetic information
about the virus host and etiological process leading to
MDV uptake, dissemination, latency and tumor
formation.
Currently, control strategies for MD predominantly rely

on vaccination of chickens. But the vaccination cannot
provide complete protection because of the changing na-
ture of the disease itself and evolution of MDV with esca-
lated virulence [4]. Recently, studies using integrating
genomic approaches identified genes and molecular
markers associated with MD disease resistance [6].
Genetic makers, quantitative trait loci (QTL) and genom-
ics regions in a large reciprocal backcross (BC) were
discovered between two partially inbred commercial
White Leghorn layer chicken [7] and in an F6 advanced
intercross population of commercial layer chickens [8].
Additionally, gene expression using transcript array [9, 10]
and allele-specific expression analysis using RNA sequen-
cing [11] have been utilized to understand response to
MDV infection and MD genetic resistance.
To determine the genetic components pertaining to

disease resistance, the Avian Disease and Oncology La-
boratory (ADOL) has successfully developed inbred
chicken lines resistant or susceptible to MD as a power-
ful experimental model for investigation of host resist-
ance to this disease, the inbred lines 63 and 72. The
percentage of chickens developing a tumor or tumors in-
duced by a partially attenuated vv + strain of MDV dif-
fered significantly between the two lines of chickens.
Genetic resistance to MD in chickens is commonly eval-
uated with MD incidence post-MDV challenge, which
had been descripted in previous study [12]. Only 0–3%
of line 63 chickens developed tumors 8 wk post infection
compared to 99%–100% of line 72 chickens. Importantly,
19 recombinant congenic strains (RCS) have been devel-
oped using the inbred lines 63 and 72 as progenitor lines.
The tumor incidence differs among RCS either vacci-
nated or unvaccinated. Thus, the varied resistance
among the RCS can provide an ideal model to investi-
gate genomic components that play vital roles in genetic
resistance to MD. Although a previous study has dem-
onstrated some genetic variability among the RCSs by
microsatellite fingerprinting [2], genetic variations
underlying varied susceptibility to MD in the RCS lines
remains poorly understood.
In this study, we hypothesized that differential gen-

omic signatures contribute to MD resistance in the RCS.
Using ten lines, including line 63 and line 72, two hybrid
F1 (F1 63–72 and F1 72–63) and six RCSs representing
various capacity in resistance/susceptibility to MD, we
investigated genetic structure in the chicken lines based
on Affymetrix® Axiom® HD 600 K SNP array. Addition-
ally, homozygosity analysis and genomic signatures were

carried out to explore potential genetic mechanism of
MD disease. Our studies revealed several genes related
to regulation of cell death and anti-apoptosis, which are
probably related to the resistance to MD.

Methods
Experimental population
In total, 30 chickens without treatments were selected
and genotyped in this study. Among them, three were
from each of the line 72, line 63, reciprocal cross F1 hy-
brid 72 × 63, F1 hybrid 63 × 72, and six recombinant con-
genic strains (RCSs) [C, J, M, N, S and X] [11]. RCSs
were developed using line 63 as the parental strain
mated to line 72 and then backcrossed to line 63 twice
followed by full-sib matings for about 20 generations.
Eventually, diverse RCSs were generated and they
contain 87.5% of line 63 and 12.5% of line 72 in the gen-
etic background but with different MD resistance
(Additional file 1: Figure S1) [3, 13]. In this study, six
RCSs above were chosen to check their genetic back-
ground and reveal their particular resistant signatures.

Genotyping and quality control
Genomic DNA from red blood cells was extracted using
the DNeasy Blood & Tissue Mini Kit (QIAGEN). Geno-
typing for the 30 chickens was performed using the
Affymetrix® Axiom® Genome-Wide Chicken Genotyping
Array (600 K) by the Affymetrix service facility accord-
ing to the manufacturer’s protocols [14]. Affymetrix
adopts a preliminary call rate of 90% that is used by de-
fault to pass arrays for further data analysis. Successfully
passed arrays were clustered and final genotypes were
generated using the Axiom GT1 algorithm. Quality con-
trol was assessed in Genotyping Console v4.1.3. All
chosen samples genotyped on Affymetrix SNP array met
the 99% call rate.

Multidimensional scaling and admixture analysis
Quality control were considered using the following se-
lection criteria: MAF ≥ 0.01 (including SNPs with
MAF ≥ 0.01), geno ≥0.1 (including only SNPs with a
90% genotyping rate or higher), and P value of x2 test
for Hardy-Weinberg equilibrium ≥10− 6. To avoid link-
age distortion for the population structure analysis,
SNPs were pruned for linkage disequilibrium (LD)
using pair-wise genotype correction (r2 > 0.2) in 50 SNP
sliding widows with a step of 10 SNPs across the gen-
ome. To look for evidence of population substructure,
we carried out Multidimensional Scaling (MDS) ana-
lysis using 5,064 LD filtered SNPs among all 30 chick-
ens. Two dimensions in MDS analysis were calculated
based on the identity-by-descent (IBD) pairwise dis-
tance among all chickens using PLINK, then MDS was
plotted using the first-dimension values against the
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second-dimension values. To estimate the genetics ad-
mixture within 10 lines, STRUCTURE v2.3 was
employed using the same LD filtered data set with 5,000
replicates and 2,000 burn-in cycles under the admixture
model and correlated allele frequencies [15, 16].

Phylogenetic analysis
Neighbor-joining (NJ) tree was constructed based on the
estimation of IBD. As line 72 shows significantly suscep-
tible to MD compared to the RCS, we used line 72 as the
outgroup for NJ trees analysis. Pairwise genetic distance
(D) between chickens was calculated using PLINK, where
D = 1-[IBS2 + 0.5IBS1)/N]: IBS2 and IBS1 are the number
of loci that share either 2 or 1 alleles identical by state
(IBS), respectively, and the N is the number of loci [17,
18]. Then, phylogenetic tree was generated using FigTree
1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). In addition,
Reynolds’ distance between pairwise inbred lines was esti-
mated using Arlequin version 3.5 [19].

Differential genomic signature
To investigate genome-wide patterns of genetic poly-
morphism related to susceptibility and resistance during
the inbreeding process, the global FST was calculated for
each single locus using Genepop software across all lines
[20], which measured genetic differentiation between
subpopulations using the approach previously described
by Weir et al. [21]. Genomic signatures, implying diver-
gent selection among inbred lines, can be recognized
when FST values for the adjacent SNPs in a special win-
dow size were estimated to exceed the significant thresh-
old [22]. We estimated average FST values of each
nonoverlap region with 50 SNPs windows size. The top
1% regions were considered as candidate regions. Fur-
thermore, we performed gene annotation based on gen-
ome assembly (Gallus_gallus-4.0) to identify the
candidate genes involved in divergent selection during
the inbred process.

Runs of homozygosity
Runs of homozygosity (ROH) are regions of the genome
where the identical haplotypes are inherited from each
parent. The exploration of ROH can help to identify reces-
sive disease variants and investigate the effects of
genome-wide homozygosity on traits of biomedical im-
portance. To investigate homozygosity distribution in six
RCS lines as well as the parental line 63 and line 72, we
performed ROH analysis with PLINK using a total of
527,021 SNPs [17]. A sliding window of 50 SNPs was used
to identify ROH based on filtered SNPs. Here, homozy-
gous segments were defined as more than 50 homozygous
SNPs spanning larger than 500 kb. To avoid underestima-
tion of ROHs caused by occasional genotyping error or
missing genotype occurring in an otherwise-unbroken

homozygous segment, we used the option --homozyg--
window-het 1 --homozyg-window-missing 2 in PLINK to
allow one heterozygous and two missing calls per window.

Gene Ontology (GO) enrichment analysis
To assess the function of the positive selected genes iden-
tified in top 1% windows regions and genes in the ROH
segments, we performed gene enrichment annotation and
gene functional classification with DAVID (version 6.7)
[23]. The default sets were used in DAVID with gene an-
notations based on Gallus gallus, and GOTERM_BP_FAT,
GOTERM_CC_FAT, GOTERM_MF_FAT were selected
as the functional annotation category.

Results
Summary statistics of SNPs array of QC
The quality of all SNPs in the array met the 99% call rate
(Additional file 1: Figure S2). In the present study, a total
of 527,021 SNPs in autosome chromosomes were kept
for further analysis. Markers with high missing gencall
rate (> 0.1), low MAF (< 0.01) and significant deviation
from Hardy-Weinberg equilibrium (P < 1 × 10− 6) were
excluded, leaving a total of 155,216 autosomal SNPs in
population genetic structure analysis. Distributions in
autosomes for total SNPs and filtered SNPs were pre-
sented in Additional file 1: Figures S3 and S4.

Genetic structure and phylogenetic analysis
MDS analysis revealed the first dimension (C1) and the
second dimension (C2) separated the lines into three
broad non-overlapping clusters, which represent line 72
(susceptibility), line 63 (resistance), RCS lines and F1
(hybrid F1 generation with various level of resistance).
Six F1 chickens clustered together, and they were distin-
guished from both susceptibility and resistance lines. We
also observed 18 chickens from RCS lines were specific-
ally clustered into resistance sub-groups distributed
around line 63 (Fig. 1a). Moreover, we further investi-
gated genetic structure within 18 RCS chickens using
MDS analysis, and observed J lines separated clearly
from others, which indicated a differential genomic signa-
ture in J (Fig. 1b). Other lines also displayed obviously in-
dependent cluster on the MDS plots. Additionally, the
results from heatmap and neighbor-joining (NJ) tree were
consistent with MDS results (Fig. 2), we also found line 72,
next to F1 hybrid lines, were divergent from other lines.
Then, we employed a model-based unsupervised hier-

archical clustering across chickens using the program
STRUCTURE. The admixture bar plot results were in
well agreement with above observations with a clear
separation of line 72, F1, line 63 and others, as shown
in Fig. 3 (e.g. K = 3). In addition, as K increases to 4, J
line was separated from other lines. Interestingly, when
K = 10, we found line C, J, N, X were separated from
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line 63 (indicating unique resistance lines). In addition,
the neighbor-joining (NJ) tree was constructed based
on IBD calculated between unambiguously separated
individuals, and line 72 was used as control group
(Fig. 4). The results indicated detailed genetic relation-
ships among 30 chickens as shown in Fig. 2. Three
groups of inbreed lines corresponding to line 72, line
63, F1 could be clearly distinguished in upper, lower

right and lower left, respectively. The results were also
consistent with MDS and Admixture results: three indi-
viduals from different lines were clustered together at
the same branches and individuals from F1 branched in
an intermediary position between line 72 and line 63.
Most importantly, all RCS lines were closely related to
the line 63 MD-resistant lines, which suggesting a
higher influence from the genetics background of line

Fig. 1 a Multidimensional scaling analysis (MDS) based on genome-wide IBS pairwise distances in a total of 30 chickens. b Multidimensional
scaling analysis based on genome-wide IBS pairwise distances within 18 RCS chickens

Fig. 2 Heatmap and hierarchical clustering tree based on the Reynolds’ distance between 10 inbred lines
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63. In addition, we found chickens from line X, N and
chickens from S, M, C, J were readily distinguishable
among RCS lines, which suggested that these lines
could have their unique genetic characteristics as previ-
ously reported [10].

Genomic diverse signatures
To explore the difference of genetic polymorphism re-
lated to susceptibility and resistance during the inbreed-
ing process, we carried out genome scan across genome
using FST approach. After splitting the whole genome to
50 SNP windows, we obtained 10,554 raw windows. We
detected 106 regions (about top 1%) with diverse signa-
tures. To gain insight of the function enrichment of
these regions, we annotated the top 106 candidate re-
gions, and 51 genes were identified to be candidate
genes for the resistance to MD. To better understand
the biological processes and molecular function involved
in MD genetic resistance, we performed GO term ana-
lysis using DAVID. We observed the most represented
molecular function was arylamine N-acetyltransferase
activity (GOTERM_MF_FAT), which included gene
PNAT10 (N-acetyltransferase, pineal gland isozyme
NAT-10), PNAT3 (N-acetyltransferase, pineal gland

isozyme NAT-3), and NAT (N-acetyltransferase, liver
isozyme) (Table 1). The most represented biological
process was regulation of cell death and anti-apoptosis
(GOTERM_BP_FAT). Those genes included AKT1
(v-akt murine thymoma viral oncogene homolog 1),
CDH13 (cadherin 13, H-cadherin), CFDP1 (craniofacial
development protein 1), API5 (apoptosis inhibitor 5),
and ING4 (inhibitor of growth family, member 4).
Furthermore, KEGG_PATHWAY analysis identified
PNAT10, PNAT3, NAT involved pathway caffeine metab-
olism and drug metabolism (Additional file 2: Table S1).
We also detected many overlaps between the candidate
regions with online chicken QTL database (http://
www.animalgenome.org/cgi-bin/QTLdb/GG/index). The
overlapping positions of each region and QTLs related to
MD disease were listed in Additional file 3: Table S2. We
observed 19 regions overlapping with known QTL re-
gions, including 9 regions in chr1 [7, 8], 2 regions at chr2
[8, 24], 5 regions in chr5 and 1 region in chr9 [7, 8].

Runs of homozygosity
In this study, we found many loci had been fixed to homo-
zygous. It is impossible to use them to explain the difference
of MD resistance. However, the completed differentiations

Fig. 3 Admixture analysis using LD filtered 5,064 SNPs in all 30 chickens. Chickens are indicated by thin vertical lines partitioned into segments
corresponding to the inferred membership in K = 2, K = 3, K = 4, K = 6 and K = 10 genetic clusters as indicated by the colors
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(FST = 1) indicates two different homozygous genotypes
existed in populations. To estimate the inbred level across
lines, we also calculated the inbreeding coefficient (F) for all
30 samples using 155,216 high quality SNPs
(Additional file 4: Table S3). We found the top inbreeding
coefficient (F) in line 63, which is over 0.98. Next is line 72,
nearly 0.95. In contrast, the average of F among the RCS is
0.88 ± 0.028. Among them, the average of F values in RCS-S
line is up to 0.94, whereas for lines N and X, F values are
both about 0.86, which suggested there existed slight
different inbred levels among inbred chicken lines.

To explore the question whether the inbred levels
and homozygosity differences across the genome could
contribute to the susceptibility/resistance for MD, we
conducted homozygosity analysis across all 24 chickens
(hybrid F1 lines were not included in ROH analysis).
We obtained 2,027 ROH segments, and 1,596 of them
were found in RCS lines. The genome wide results from
the ROH analysis indicated obviously different ROH
distributions across the genome within 24 inbred chick-
ens. We identified 406 ROH segments in line 72 and
206 ROH segments in line 63. We also found ROH

Table 1 Gene Ontology annotations of candidate genes identified using FST approach

GO category GO term Gene count P-value List of genes

GOTERM_BP_FAT GO:0006916~anti-apoptosis 4 2.40E-04 AKT1, CDH13, CFDP1, API5

GOTERM_BP_FAT GO:0042981~regulation of apoptosis 5 2.70E-03 AKT1, CDH13, ING4, CFDP1, API5

GOTERM_BP_FAT GO:0043067~regulation of programmed cell death 5 2.89E-03 AKT1, CDH13, ING4, CFDP1, API5

GOTERM_BP_FAT GO:0010941~regulation of cell death 5 2.94E-03 AKT1, CDH13, ING4, CFDP1, API5

GOTERM_BP_FAT GO:0043066~negative regulation of apoptosis 4 3.26E-03 AKT1, CDH13, CFDP1, API5

GOTERM_BP_FAT GO:0043069~negative regulation of programmed cell death 4 3.44E-03 AKT1, CDH13, CFDP1, API5

GOTERM_BP_FAT GO:0060548~negative regulation of cell death 4 3.44E-03 AKT1, CDH13, CFDP1, API5

GOTERM_MF_FAT GO:0004060~arylamine N-acetyltransferase activity 3 5.20E-05 PNAT10, PNAT3, NAT

GOTERM_MF_FAT GO:0008080~N-acetyltransferase activity 3 2.12E-03 PNAT10, PNAT3, NAT

GOTERM_MF_FAT GO:0016410~N-acyltransferase activity 3 2.71E-03 PNAT10, PNAT3, NAT

GOTERM_MF_FAT GO:0016407~acetyltransferase activity 3 3.14E-03 PNAT10, PNAT3, NAT

Fig. 4 Neighbor-joining tree based on genome-wide IBD distances in 30 chickens
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distribution displayed a certain degree of diversity
among the six RCS lines, with the longest ROH de-
tected in line 63 and line N, about 90 Mb. However, in
line 72, the longest ROH was 44 Mb. The detailed sum-
mary statistics for ROH analysis, including ROH number,
length and density (nSNP/kb) and SNPs within each ROH
segment, was shown in Additional file 5: Table S4.
To compare the ROH distributions among 8 diverse

inbred lines, we first merged ROH segments identified
from all individuals for each line into nonredundent
ROH regions based on genomics coordinate. We finally
obtained 58, 71, 59, 64, 65, 63, 58 and 67 ROH regions
in the lines 63, 72, C, J, M, N, S and X, respectively,
while the relative more ROH regions were identified on
chr1 (10 ROHs) in line 72 and chr2 (8 ROHs) in line L.
The most probable reason was both chromosomes cover a
larger proportion of genome size as compared with other
chromosomes. To facilitate the comparison of difference
of ROH regions among lines, genome wide ROH regions
were presented in Additional file 5: Table S4. We found
some shared ROH regions, both among the RCS lines and
between RCS and line 63. The results indicated that ROH
region caused by inbreeding may be involved in the differ-
ent MD resistance. On the other hand, the unique region
from line 72 (susceptibility line) comparing other lines
may offer some clues of genomic homozygosity region re-
lated to susceptibility.
ROH represents regions of genome where the identical

haplotype is inherited from each parent. ROH regions
could likely increase of recessive deleterious alleles to be
co-contributed, and reducing the viability of the organ-
ism. To investigate the differential ROH distribution
among diverse chickens, we further divided 24 chickens
into three groups, representing parental line 63 with re-
sistance, parental susceptibility line 72 group, and RCS
group (including line C, J, M, N, S and X), respectively.
Comparisons of ROH regions based on genomics coor-
dinates among three groups showed that 98.6% ROH re-
gion (902.5/915.0 Mb) were shared by all three groups
(Additional file 1: Figure S5).
In our study, two parental inbred line 63 and line 72

are MD-resistant and MD-susceptible respectively,
while a Recombinant Congenic Strains (RCS) lines were
developed from these two lines showing varying resist-
ance to MD, we observed RCS lines were similar to line
63 based on genetics relation estimation in present
study (Figs. 1, 2, 3 and 4). To further explore whether
homozygous segments segregated with different resist-
ance to MD diseases, all chickens with varying resist-
ance to MD included RCS lines and line 63 chickens
were compared with the line 72 (MD-susceptible). We
obtained one region that is uniquely distributed in line
63 with 513 kb length; eight regions (987 kb in size) in
line 72 groups, and 47 regions totaling 7,719 kb not in

line 72 but in shared by both RCS lines and line 63
(Additional file 6: Table S5).
Subsequently, we observed 56 genes in 47 shared

ROH regions, while only one gene was identified within
line-specific regions in the line 63. We identified eight
unique regions with 13 genes in line 72. Among the 56
genes identified in both line 63 and RCS with different
resistance, we found most of them were enriched in
regulation of apoptosis and regulation of cell death, this
result may indicate their potential association with the
resistance of MD disease.

Discussion
We investigated the genetic characteristics of MD resist-
ance and susceptibility using high-density SNP array in
inbred chicken lines. Genetic structure indicated differ-
ential genomic landscapes during inbreeding process in
the past decades. Using genomic signature and homozy-
gosity analysis, we identified a list of genes that may be
contribute to the MD resistance or susceptibility in the
inbred lines.
Previous studies have explored the genetic changes

at gene expression level [10], epigenetic regulatory
[25, 26], and allele specific expression [11] in the in-
bred chickens. To better understand the genetic
mechanism underlying MD-resistance and susceptibil-
ity, we employed high density SNP arrays to investi-
gate the genetic structure and relationship in 10
inbred lines. Using MDS analysis, we observed diverse
genetic structures among them, which were highly
consistent with admixture analysis and phylogenetic
analysis. These chicken lines with different MD sus-
ceptibilities were separated obviously, while RCS lines
were clustered together near parental line 63 with
similar MD-resistance. Our findings were also consist-
ent with PCA analysis in inbred chicken using expres-
sion array [10], these results indicated similar
influences on MD-resistance and susceptibility caused
by SNPs and gene expression.
Although the limited samples size per line were uti-

lized in the current study, the global FST approach
can properly reflect the potential difference among all
30 birds. Allele frequency based method is likely to
offer some important clues for searching the candi-
date genes involved in the MD resistance. Moreover,
we found some genes related to disease and immune
response. For instance, several genes were significant
enriched including arylamine N-acetyltransferase activity
(AKT1, CDH13, CFDP1, API5) and cell death and
anti-apoptosis (CDH13, ING4, CFDP1 and API5). We also
detected one region located at 51.5 Mb in chromosome 5
with high selection signal (FST = 0.574986) that contained
gene AKT1. AKT1 (protein kinase B, PKB) is a serine/
threonine kinase that plays a critical role in regulating cell
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survival, insulin signaling, angiogenesis and tumor forma-
tion [27–29]. Previous studies in chicken have revealed
AKT1 as one of candidate gene for Salmonella response
[30]. Moreover, subsequent fine-mapping of heterophil
functional response to Salmonella in a highly advanced
intercross revealed the position containing both AKT1
and SIVA may work as heterophil function to explain the
host-resistance properties [31]. Another gene identified in
our analysis was CDH13 was located at 15.6 Mb in
chromosome 11. This gene encodes a member of the cad-
herin superfamily, which is hypermethylated in many
types of cancer. Previous studies have showed that
CDH13 may be a promising candidate gene for Attention
Deficit/Hyperactivity Disorder (ADHD) [32, 33] and plays
a central role in the regulation of brain networks [34]. In-
triguingly, we found an apoptosis inhibitory protein, coded
by gene API5 located at 20 Mb in chromosome. This
apoptosis inhibitory protein prevents apoptosis after
growth factor deprivation and suppresses the transcription
factor E2F1-induced apoptosis, and negatively regulating
acinus, a nuclearfactor involved in apoptotic DNA frag-
mentation. Its depletion enhances the cytotoxic action of
the chemotherapeutic drugs [35].
ROH regions can increase the recessive deleterious

alleles to be co-contributed, and reduce the viability
of the organism. Differential ROH segments across
lines may contain potential candidate genes related
to MD resistance. In this study, 5 genes (SIK, SOX1,
LIG4, SIK1 and TNFSF13B) within ROH region were
found in resistant group (line 63 and RCS), and
these genes have been previously reported that may
be related to immunology and survival. Previous
studies demonstrated that SIK1 gene plays critical
role in promoting survival of skeletal myocytes using
mouse model [36] and involve with regulation of its
abundance and stability for myogenesis [37]. Sox1 as
a part of the Sox-B1 group of transcriptional regula-
tors in neural progenitor cells is sufficient to induce
neuronal lineage commitment [38]. Also, it promotes
neuronal cell fate determination and differentiation
by integrating multiple independent pathways. In hu-
man, the GG genotype of LIG4 was found to be as-
sociated with higher IgE levels to Ascaris [39]. Also,
gene TNFSF13B, as one of BAFF receptors, was
proved to be a key survival factor during B-cell mat-
uration [40, 41].
Interestingly, we identified one unique ROH region

(at 110 Mb in chromosome 2) in line 72, which contains
five genes LYN, MOS, PLAG1, TGS1 and TMEM68.
Among them, LYN regulates survival and responsive-
ness of tumor cells by a BCR-ABL1 independent
mechanism. In various hematopoietic cells, LYN has
emerged as a key enzyme involved in the regulation of
cell activation. In these cells, a small amount of LYN is

associated with cell surface receptor proteins, including
the B cell antigen receptor (BCR) [42], and CD40 [43].
PLAG1 (pleiomorphic adenoma gene 1) was found fre-
quently rearranged and activated in human salivary
gland pleomorphic adenomas. It encodes a develop-
mentally regulated transcription factor [44]. Ectopic
overexpression of PLAG1 has been proposed to play a
crucial role in tumorigenesis of salivary gland pleo-
morphic adenomas. It was reported that PLAG1 can ac-
tivate the transcription of insulin-like growth factor 2
(IGF2), functioning as a proto-oncogene [45]. PLAG1 is
a proto-oncogene whose overexpression is a crucial
oncogenic event in salivary gland pleomorphic aden-
omas (PA), and in carcinoma ex pleomorphic adenoma
(CA-ex-PA). Our results provided some important in-
sights for understanding the molecular mechanisms of
MD resistance. Moreover, we identified gene USP15
(ubiquitin-specific protease 15) in line 63, which may
indicate its potential role for MD resistance. USP15
have been reported that have an essential role for regu-
lation of caspase-3 during Paclitaxel-induced apoptosis
[46] and TGF-β pathway in human studies [47].

Conclusions
We investigated the genomic characteristics of inbred
chicken lines using high density SNP array by integrating
genomic signature, ROH analysis. Our findings revealed
that several candidate genes including AKT1, CDH13,
CFDP, API5, and USP15 for MD susceptibility. Future
studies with large sample size and fine mapping of the
genetic variants using powerful association statistics
would elucidate the complex genetic mechanisms of
resistance/susceptibility to MD.
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Additional file 1: Figure S1. Histogram plot of MD incidence (%) rate.
MD resistance in chickens is generally evaluated with MD incidence
(induced gross tumors by MDV) and survival day post MDV challenge, and the
extent of resistance is dependent of the virulence of challenge viruses and
other factors. Figure S2. Barplot show the call rate for 30 chickens on
Affymetrix chicken SNP genotyping array. X axis represent the call rate values,
and Y axis represents the chicken individuals. Figure S3. Frequency
distribution in autosomes for a total of 527,021 SNPs on the Affymetrix chicken
SNP genotyping array. Figure S4. Frequency distribution in autosomes for
155,216 SNPs on the Affymetrix chicken SNP genotyping array. Figure S5.
Comparison of ROH regions among three groups, line 63, line 72, lines RCS (C,
L, M, N, S, X). The overlap length of ROH was indicated in kb. (DOCX 35 kb)

Additional file 2: Table S1. GO analysis for 51 genes in 106 identified
candidate regions. (XLSX 20 kb)

Additional file 3: Table S2. The overlapping positions for 106 identified
candidate regions with QTLs related to MD disease. (XLSX 12 kb)

Additional file 4: Table S3. The inbreeding coefficient (F) for all 30
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Additional file 5: Table S4. Summary statistics and ROH distributions
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