# A LINYOLOOICAL INVIGTIGATION OT ACID PONDS WITH PAMTICULAR RERERGWCA TO TEZ FACTORS IMFLUENCING TTE DISTRIBUTION AND ABUNDANCE OF THE PHYTOPLAFITON 

## By

Sidney Rod Galler

# Thesis submitted to the Paculty of the Gradumte School of the University of ryland in partial fulfillment of the requirementa for the degree of Dootor of Philosophy 

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


UMI DP70354
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code


ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Mi 48106-1346

The writer would like to expreas hie appreolimion to Dr. Robert A. Littleford for the malstanoe and guidenoe reoelved in the preparation of the thenis. Thanka are due
 laboratory testa. The writer is the grateful for the oourtasy and oopperation oxtonded by the U. S. Pish and ${ }^{\text {Whiditfe Service }}$ furing these inve日tigetions.

Page
Inx moverion ..... 1
Description of Area nad Topogrephy ..... 3
Aquatio Vegetation ..... 4
Deseription of Ponda ..... 5
 ..... 8
Thermal Conditiona ..... 13
Trmaparency and Turbidity ..... 18
Conduetivity ..... 17
Hydrogen ion ooncentration ..... 19
Garbon dioxide ..... 21
Alkalinity ..... 24
Total Lron ..... 26
silisa ..... 28
soluble Phosphorus ..... 31
0issolved oxycen ..... 34
Acidity ..... 30
Faytopisnktan and Manroplankton ..... 83
Drsudestow ..... 86
sundey AnD CNCLUSIONE ..... 69
 ..... 71
matues ..... 114
PLATES ..... 180
 ..... 138

## Mawnerton

In fresh water biology, just as in most other branehos of biology, many of tha important biolosionl problems are concorned with the study of the belence of life ospecially as regards the production of life, its control end the factors olosely ssocisted with the productive oycles. However, resemrch on the productivity of fresh waters and the associated problens of control are sill relatively far behind similar imestigations in other flelds. (Morthington, 1939).
felch (1935), defines linnology as that brench of scianco wheh deals with the biolonicn productivity of Inland weters wan with all of the casil influences wich detarano it. It is inseresting to note that bhe science of limolory has existed ioss than 50 yens, wila most of the growth in this field hos been accomplishod within the lnst 30 yours, (Melch, 1935). Thus it can be seen that there still exiats wide aress that must be investigated in fresh waters, especielly in cortain categorios of fresh water environnents, in relation to productivity and its aseociatad problens. (Jewell ana Brown, 1924).

Nortiner (1939) definea the produetivity of body of water as the organio matter produced by the phytoplankton. The term phytoplankton refors to the plant plankton of waters (folch, 1935). It is probebly not a completely dequate torm used in this tudy sinco some of the orgenisms included in the investiction are more minnal then plant-like in their charsctoristics. For the sixa of elarity, the torm phytoplankton will bo used in doscriblne the orgenims observed.

Birge na Juday (2911), Meloohe (1938), Tressior (1931), Wiebe (1930) and a host of other investigutora within the past fow decados heve nown thet oertain nutrient salta, men other chamical nd physieal characteristios of water are assooisted with phytoplankton growth. Intensive investigetiona of this nature have been done on minfo onviromants as woll as in fresh waters in general. Only a very mall portion of this work, however, has been oarried out in fresh watera that are oonsietentiy acid in charaeter. It has beon chown that most waters, frowh as woll as wine, tro usully neutral or akeline in neture. In may oaces with kydrogen ion coneentration ranging on the average from 6.8 or 7 to 8 and highor. Harria and silvey (1940), thymond (1957). Sahoffer and Robinson (1939), Chander and Allen (1927). are but few of the workera who have made their inveetigatione in noutral or slymine waters, and it is in waters of this nature thet most of the fundmental contributions have been made, partieularly regarding the interreletionships of phytoplankton with the physieal. ohemionl nd biolozienl factort of the onviroments. mother the principles which have beon formalated from studies of noutral or olkaline waters hold true for weter having eold charmoteriation have not a yet boen fully ascertained.

The problem of ecidity in the conomy of mbody of water was early recognized by Birge ad Juday in their studios on the (isoonsin lakea (1921). Powers (1922). Shelford (1923). Jowell and Brown (1924) also mede parallel atudiea on inlend bodiea of Presh water. Feleh (1936, 1938). Young (1938), and Lackey (1939). were able to demontrete thet acidity could be due to a number of chemisal factore, both organic na inorganic. the result obm tained by the bove workers heve shown thet the chemical, physioul and
biological factors of productivity aro not recessarily the same in acid wetors ms they are in neutral whtors or alkaine wators. Their results hevo also shown wint the manitude of importance of theso foctors, wocordiag to curront concepts, may margo considoreble modimontion in wers
 stuay.

This Envestigetion, whergfore, mat ite mof purpose, whe deterainstion of the ganeral characteristios of the phyopiankton population and the relacionship of the general physio-chemion and biolosioal fators of the environvont to the phytoplentton productivity.

## Descripbion of Area and Topography

The four ponds upon which the following studies were made are located within the phtuxent Research Refuge in Prince Georges and hne Arundel Counties, 緮ryland. The Refuge consists of more then 2,000 neres of woodlands and fields aitunted entirely within the watershod of the Fatuxont Giver. The Patwent River within the Refuge, flows through valley about three niles wide and 150 feet deene she altitude of the Refuge olomg the fivor is mbout 60 foet above sen level, wile slone the west mad south end the aren maches na 2hitudy of 200 fort. The rivar fells 20 to 25 feot in its course through the Refuce mind is foined mone this ourso by several brooks whish arisu just outside of the nefuge. Nost of these vooks aro suill and do not mintain chanmels noross the bottos lends but sproad out on the broad flat sreas. However, Cour of the orooks retan their invegrity and inve bean demmed to form the ponda under study. (Hotehniss, 1040).

Since it inas been demonstrated chat the type or soil prosent in an area directly influences many of the chemical mad blological conditions of

```
Carex lupulina
C. typhin
ENoocharts obtusa
Polygoniua mrifolium
```

Lycopus spp.
Bicens conneta
Juncus spp.

A11 of the above plants havo batn founc althor in the ponds proger, in the
 waters under invsstication. (wotchkias, 1040).

Desoription of the Pords
As already stated, the pour ponds on the fuxent Researon tefuge are marmade. hhey were formod by exonvetine tho brook bads maderecting dirt and stone dams to fmpound the waters in the masavetions. All of the dams have spillways axd ovarflow ohmnels. Constant strans of wer, raching azable proportiong in aprins sud fril, pass over thoso chanels -t tall times.

Gosh Loko is the Inrest ond oluest of the four ponde, haviny ban Tormed in Oatober, 1030 by fmpounine tho wotora of Gab Brenohe It hes an

me next pond formed wss Late Redingtone Thas impoundment was ndeds in boptenbar, 1043 by builuine a daw acroas the southorm boundery git oash Leke and allowing the whea of Cash Brench to back up into an erea of 30.3 acres. Lake hedincton is surrounted on three gides by mixed foreat of onk mad pine, whe southwestern boundary besine exposed for a dstance of about 200 fegt beck of the pond where trees are agin present.

Blue Gill Lake was completed on August, 1044 by impounding very small brook and backing uy the wher into an aren of 2.1 sores. This is the smallest of tho four ponds and samposed on sll four sides, gress erowing olmost to the odge of the water.

Snowden Fond, known also as fodquartors Lake, is tho letest of the ponds to bo construoted, heving baen complated in iby, 1947. This pond oocupias an are of 7.7 acres matms formed by impounding the waters of snowdon brook,
 shore. The pond is shelterted by pine-ond woods on the southwetern boundary end bhe northern bountary, while a sucon atoap riso in bo torrain protacts tha pond alone, the astern edge. It should be noted the the overflow from all foux ponda peas mane the orikinal strean ads and ovontually flow into the Finuxent Rivar. (See Pigure 1).

All of these impoundments wera constructed for the peinary purpose of studying fish propagation methods and have been stocked with fish at varyine intervals. Thus, et this writing, there are fish present in all of the ponds. Blugetil sunfish (Lepomis sacrochirus) have been found in all of the impoundments, कs hove pumpinseed sunfish (Loporais pibbosus). In addition to these sunfish, Cesh Leke conteins bullhends or ortilsh (Ameiurus nobulosus), Eolden ahiners (Hotomiconus crysoleuens), Largemonth bass (Huro selnoides) piokerel (ssox nizor), ulnck arppie (ponoxis niero-moculatus). nod notwer spotes of anfigh, Leponis atorochtrus, su wall a tha weranth, (Chenobryttus eoronerius). Wie Anerianc al and avaral sportas on winnow
 small spiliway pools balow Gash, and it is posible thet they heo antored the pond itself.

All of the formancioned fish have alao been tound in Lnos fedington from which they have been obteined through geiniai in tho course of wese studies. Only the species of sunfish as well as a fow smill bass, eols and pickerel have been seined from eluo Gill Lake. The first stocking of
of fish in Snowden Pond was mide on November 12, 1947, at which time 7,000 bluegill sunfish about three inohes long were placed in the posd. Howover : fow sunfish ware already reproduoing in the pozat where they ontered by wiy of Snowaion Brook.

Thus, it own be seen that aside from the acid character of the waters in these ponds, the atudy of which was the primary purpose of the investigetion, the impoundments were unique in thet they of fered individual and Feried enviroments for intensive 1 inanologionl study in the total area of a few miles of ach other nd but dist noe of alles from the laberatory in Cellege Pariz.
METHODS AND HATERIALS
Pimekton eanplos and water for physicomohexioal examizations were taken from atations so arrangad as to afford an adequate aoverage of emeh pond. Thus. 6 stations wore chosen in carh Lake, based on the possible variability of the whter characteristies at these points. In Laks Redington, 2 min stations and 1 secondary station were chosen, based on the same considerations. In Bluegial Late, 2 故biona wore ohosen end in Snowden Pond, 4 were determined. (see Figures 1, 2 and 3).

> Whtor amplea wore collected from all stations approximately onoe a
 leotions. During the wintar months it wes often impossible to hold to the schedule due to inereasingly ineoesanble roads, partioulariy the rond -47 50 tा" impoundmonts wore too thick to kllow the use of bout and toa thin to support the weight of a min wh the apoensary oquipment. Bowever, in most onses during the winter monthe it was possible to obtain approximetely biweokly samples of witer and planikton for oxamination.
 Rofuge provided a truok for the tranaportation of field equipment and per-
connel in many ocees, at well as bott on ponde for eollecting purposes.

from the pende, oniy oasential reagents wore added to the water anaples
after whioh they wore traseported to the leboratery for complete analyais.

 ponde from whioh they wore takon, until ready for onilysis.

Since prelimin ry andysis showo that it wa unecossury to ase the Eidon-Stewert nodihention tor tho devarmintion of dissolved oxyen,
 Ascociation in stamard Lethods ais atar malysis (193c), was employod. Eree Carbon Diaxide detaranations wera made scooring to the rathod of Theroux, theidge adisallmann (1943), as were the detarainetion of aidity and alkalinity. For the determination of hycrogen-ion ooncentration a Not colorimetric comparator was used in most onses. Howover, few readings of pll were obtained using Coleman glectronatrio pl noter. Conductivity mensurements ware obtelnod in units of rociprocal megohns-percentimeter cube throuch the use of tho vershed Dionic notor feater. Silica was determfned colorinetrionlly with the thed suctested by fing (1531). The solublo phosphorus whs cetormined by Benige's rothod (102l), osditied by the ddition of kismmis rown to the sthadera ta the prosenco of sampes that showod yellow tint. In some cosos ț was nocassary to zurther nodify the mothod by filterint the water sanias fifer the proper rengents ind beon added and the necessmry reaction convleved.

Sotil iron content was deteranned by the method recommanded by Theroux, cldride and allman (1945). Ferrous iron determinations for eomparison purposes were analysed by using the American public llealth Association method (1936). Ferric iron content was calculated from the formala: parts per million total fron minus parts per million ferrous iron oquals the parts por million ferric iron. Iafrequent determinations of nitrote and nifrite iftrogen wore run by the methods as outlined in Tharour, Eldridge and milnem (1943). Tronsparency and the relatod tarbidity were et first deternined by "aochi dist. Loter turbidometor whased in doteraining whe turbinity.
to which the Secohi dizk was attached. For chollow orsas otandard yardstiok was used. Tempersturas, both air and nurfece wet, wore determined with thermometer ealibrated in tenths of a degree Centigrade. A fow
bottom temperature determingtions wore sude with etenderd reversing ther-
moseter. An Eloknen bottem Areage was used for obtaining amples of the

## bottom soils.

All chemical amplez were placed in glase stoppered bottee. oxygen
samples were kept in small reagent bottiea with an approximate cepmoity of eapesity. The rest of the wer mampes for chemios amiysis wore plaeod In magnesia type bottlea with look, glasa stopperk.

Phytoplunkton samples were taken in large glass oonteiners of bout three and half ifter oepacities. Heutrmi formalin wea imadiately added to $a 11$ phytoplanition anmples, after wheh they were traneported to the laborstory and allowed to settle for st leat 2 weoks and in most onses, a month. Concontration of the phytoplankton was coconelishod by aiphon devioe developed in the lebortary.

The working parts of the instrument consiated of vertionliy sliding
mall bore glass tube 14 inches long contalned within a inger bore stan
tionary glase tube 17 inchen loage. The free and of the moviag tube was
enlarged into an inverted fumel-like form with a dimeter of 2 i inchee, place over the mouth of the funnel-lik opening by mons of elantic bands. Although the inner tube wes free moving, awher consisting of 2 inches

minthined an offective vsoum asal between both tubes. During opertion,

in the opposite arm of the siphon devico. (See Plgure 4).
A rubber tube inserted in the opposits arm of the device was used to
draw up the volume of water retessary to ftart the siphon operating, fter


from occuring in the plankton smplo. Daring the actul operation of the
deviee anntact wes mantained between the funcel oponing of the siphon and
the surfece af the smiple by progronsively lowering the moving tobe into
Duçufequr
a weak alphon in ordor to provent the phytoplankton from being disturbod

 In aproxisately 8 to 10 minutea.


## part of the phytoplenkton had been lost duriag the concentration. In a




-0q70




(1940) was amployed.

Fish for possible corollary atudies were collected by seining, using selnes 10 feet long by 3 feet high and 75 foet long by 4 foet high, respectively. Inseet aollections were made and vegetation studies were also ourried out for related inveatigetions whon neoessary.

The first aeries of smples for this study wis obtalned on June 11, 1947, nnd the latit series wat taken on April 5, 1948. The fellowing fleld observation and diseussion are besed upon total of approximately 3,822 field determinatione and wator emples as woll as phytoplankton serpies. In mang ouses, several determinations were mede on en sample in the laboratory in oraer to verify results obtained. were the deepest pointe eneountered during the investigetion, station 1 on


snorivausseo
had a depth of about 15 feot ae did stations 1,3 and 6 on Ceeh Lake. These Lake fedington hes an approximate depth of 9 foet, while stations 2 mdi in

$$
\text { that pond are } 4 \text { and } 3 \text { reet deep reapectively. The most shallow of the }
$$


are approximbely 2 to 2\% foet deop. station 2 and 4 in Cash Lake hevo deptha of about 8 to 4 foot while stetion 5 on On sh is about 5 foet deep. The axaet depthe depend upon the sexson at which soundiage aremac, at
 - totel of 42 inohes over twoweek period beginning June 23, 1947. Foot
of this overflow from Redington ontered can which rose several feet in the same period. Begimins september 17,2947 and extonding over twomweek
period the water level on Leke Redington wes raised aeveral feet with correaponitig fall in the water level of Cash Lake. The water lovel of alue 0112 pond wis lowered about 2 feot in the latter part of Apr11, 1948. smavden pond bas aleo been aubject to minor fluctuations in the water level partioularly at poriod shortiy efter it filled; to whioh time the dam etarted leaking and necossitisted ohangea in the water lovel. From this it can be seen thit only relatively shallow wers wer oncountered during this investigntion.

> Therral Conditions


to note that the lowest temperature recorded， 2 degrees Centigrade，was
registered on burch 3，1948，toward the and of the winter．Most of the
period during which studies were made was notable for rapid and sometime
great variation in air temperature．On June 24，1947，for example，the
air temperature at $1: 00 \mathrm{P}, \mathrm{H}$, was 24 degrees Centigrade but jumped to 31 degrees Centigrade by 11：00 A．W．on June 26，1947．A temperature of 35 degrees Centigrade wat recorded on July $1 ; 1947$ but fell to 27 degrees by July 3，1947．A temperature of 3 degrees was noted at $10: 30 \mathrm{~A}, \mathrm{~K}$ ．and jumped to 24 degrees Centigrade by $3: 30 \mathrm{P} . \mathrm{K}$ ．of the as me day．Similar temperature fluctuation were noted during the entire year．敬tor temperature recordings at the stations in all of the ponds showed that generally they closely jwralled the ar temperatures．When the dir temperature waste at 27 degrees centigrade on july 8， 1047 at 12,30

P．M．，the water temperature was recorded at 26 degrees，in snowdon Fond，
station 2．At 10：30 A． H ．on August 13，2947，the air temperature was
recorded as so degrees and the whiter in Lake Redington at station 1 wat
recorded as 30 degrees．On October 1，1947，the Mir temperature t 10,00


ene between air and water temperatures．On July 1，1947，for instance，the
air temperature was recorded at 35 degree a Centigrade while the water，at
Station 2 in gen like was found to have temperature of 30 degrees．At

grade while the water temperature in station on os ah lake we found to
be 4,8 degrees contigrice．Some differences in weer temperatures between
 in Cash like was found to bo 26.5 degrees，in Blue gill pond it was 24
degrees, in Redington the evernge tompersture of the water was 26 degrees, and in Snowden Pond the tempareture of the weter wes 28 degrees. A groter difference wes noted on october 1,1947 , whioh time the tamperature in Cogh Lake was 26 degreen, in glue Gill Pond, 20 degrees, in Lake Redington, 17 degreos min in Snowden Pond, 21.4 degroes Centigrado. 6eth Lake hed temperature of 3.2 degreas, Blue Gill Pond, 5.4 degrees, Redington, 6.0 degrees ad Snowden, 4.2 degreen Centigrade on Decembor 11. 1947.

Appreaiable iffforences in temperatures of various thtion on the sem ponds were noted. A difference was noted between stilion 6 on Cash Lake with temperature of 28,6 , on August 20,1947 , and stations 3, 4 and 5 on the ame pond, with tomperaturea of 29 degreen Centigrade. Station 1 on Snowden Pond had temperture of 26 degrees on July 8, 1947, while station 2 and 3 had tompernturea of 25 degreen. The mininum tomperture variation between atetion was roted in blue Gill and Redington. Water tempertures varied from maximum of 30.1 degrees Centigrade at tation 2 in Redington, August 7,1947 , to minimum of 2.8 degrees at stetion 1 on Jonuary 10, 1948. In fnowden Pond tho maximum tempertinre ocourred on August 20. 1947, when 31.5 degrees wes noted in all stetions on this pond. The minimum temperture of 3.0 degrees was obtanod from atations 1 nd 4 In Enowdon Fond on Deomber 17, 1947. A meximan of 35 degrees was reoorded at tation 1 on Cosh lake, June 11, 1947. The minimum of 3.0 degrees for Cagh was recorded at' atation I on Jamury 10, 1948. Blue G111 Pond exhibited - maximun temperature or 32 dogrees at both athtione on Auguet 20, 1947, and a mindmum temperature of 2.0 degrees at both stations on february $18,1948$.
 ture bstween the 4 ponds did not ooinoide in most ouses. (See fobles 1, 2, 3 and 4 and Figure 5).

## Transparency and Turbidity

There is an important relationship betwoon tranaparency and turbidity. so when it beoma apparent that the rance of the Jackson turbidometer was not wide enough to ife acour te turbidity readncs of the pond waters, Secchi disk renaines for tronsparency were substituted.

Neximm transparency for Cesh Lnice wes obsurved on Zovember 11, 1947 when rending of 32 inches wes obteined. Tho minimun transproncy on Cash Lake was notad on July 1 , 1 gat with readinc of 6 inohes. Blua Gill Pond hod emexmumbottom transprency ot all times. In whe dedimbon, a raximum trangparaney oi 10 inohes was obtainad on lovaber 10, 10c7. The minimum radinc of 1 inch was racorided on duly 3 , 1047 . Bnowden pond showed a moximum tramprency of 42 inches on july 30, 1047 , and minimum rendine of 17.5 inches on Aucust 15,1347 .

The marked dhfferenees in the transparency between the yonds should be noted. The maximun transpareney of all the ponds occurred in Snowden fond, while the ranimum transparency oceurred in Lake Redington. Variations in transparency were noted between stations in pond. For example, on Februery 23, 1043, station 2 on Cesh Like showed transparency of 20 inches while station 4 thowed tranperency of only 10.5 inches. On fpril 3 , 1943, Gnah station 1 had transprenoy of 15 inches while stetions 3 and 4 exhibited n trensparency of 12 inches. Cabh Laxe showed the prentest derreo of veriation in trensparency betweon stations of all of the ponds. Howavar, 11 of the ponds showed nt lenst slicht stration rarietions in
 tranaparenoy st 111 times, oxminstion on the detn shows that on the whole, transparency incronses towaris the end of 3 mamer was through who fill while
 tareh. Bnowaten bhowod epproeinble difforeneot in the trend of transparenoy from the rest of the pond in that the levol of traneporency mat amye higher than in Redington or Oash. Hurthormore. Snowden did not whow es
 (nd Lake Redington.

The risising and lowering of the water levals of Lise Recington nad Otsh Lake did not aean to intexmupt mpprecibbly the tranopareney trand duriag this peried. A seen from the mbote obstrytions, the matimend



## Gonductivity



 conductivity tended to incruate commris pesk in the wintor monthe and









siderebly between the four ponds. The conductivity levels of Lake Gedington

inoluding March 17, 1948, whon the eonductitity value was 30.
peak noted, since conductivity rendings showed downward curve up to and revorded on Decenber 17, when poadiag of 40 whe twkoti This wes the lest

Oatober 26, when value of ss mecorded and continuing until November 19,

August 30, with conduetivity reading of 40. This level wes mintinined
beginning July 30 when a vilue of 33 was reoorded. A peek wate reached on


station 1. Lake Redington ramined more or lesa constant during the months

- reading et station 2 showed walue of 33 . The conduotivity valuos at
wha deorease in conductivity foter this ase until farch 17, 194s, when
recorded and resohing ponk of 37 mogohus on Fobrumry 20, 1948. There
stetion 2 was noted beginning on Hoverber 10 , when value of 28 was
downward to rexoh minimuna of 25 on ooteber 1, 1947. An upward trend at
1947, at which time reading of 35 was taken. Conductivity then started
Cash Lake, tation 2, was shown to have conductivity peak on June 11 .
- ATeatqoedsea

Harch 1 and Maroh 17, 1848, with readinge of 29 and 35 reeiprooal megohme,
or less the tronds of the other ponde in that winter perice were noted an
Ootober 16, minimu of 17 wha hown. The rest of the trend followed more
station 1 on October 1 geve conductivity value of 25. However, by
megohne. Blue Gill Pond also had a fall peak, since readings taken from
ranged betweon 30 wa 46 . In ©sh Lako conductivity veriec fron 24 to 36, while in smowden oud there wes renge from 34 to 50 reatrood megohs
 rocipromil mecohns. Anether notewothy obarvetion is the thet ofon thouch the lavels of conductivity in the discorant ponds viriod, the atumi point differenoe in three of the pond was remarkily similsr. For example, Cosh Lake had a vifation ot 12 rectprosta megons from maximum to minimum; Laka Rodington showod a point variation, as uld Snowcan pond. Blue Gill showed the greatest point difference betwen maximum erd minimum, hevine a 22 point variation.

Noteworthy difforences in condiactivity between atations in the smo pond were observed well as int interstins difference tetween penk levels of stations. On june 17, 1047, Osh stetion 1 hs conductivity reading of 35 , but station 2 hod roadinc of 32 . on jun 26 , the readinc
 Similer point differoncas wore obsurved in all of the monds. Athough a
 poak in ststion 1 wos found to oocur on Voverver 20 , 10t7. Tho naximam conductivity value at station 2 on Snowien bond wes found to ocur on Decenber 17, whilo the pobl titation 2, ocourad on Decamber 11. Sirailar difrerences wara notod in the rast of the fmpoundinents.

## Hydrozen ion Concontration

The datig obteinod showed that in a egneral way, similer trend could bo observed in all of the ponds. Thero saened to be a tendonoy for the pis to go up duriag the sumar and foll and beginaine in lete fall to start
downard to wintor low. Toward the following spring an upward pH trend
wat again obsorved. An early fall pouk was obsorved in 3xowdon Pond on Soptember 9, 1947, with an average pil value of 6.2. A minimum pH value
of 5.8 oocurred in snowden Pond on Foberuary 28, 1948, and the early spring value of 5.9 oceurred on maroh 17, 1948. Reding had fall poek on
Hovember 10, 1947 nnd winter low of 5.7 on January 10, 1948. Tho pH
rose to value of 6.0 on March 17 in Lake fodington. It should be noted
 A fall maximum ph velue of 6.3 in Blue asil Pond wes recorded on December 11. 1947. A minimum value of 5.2 wes found on Pebruary 2e, 1948. By march 17, the pli had risen to a level of 8.9. A curther manmum wae also found to ocour in blue aill Pond whon a value of 6.6 wat recorded on July 25, 2047:
Cumh Lake howed a sumaer pook on Auguat 7, 1947, of 6.0, wall poak
of 6.5 on 耳ovember 20,1947 , and Wint or miakime of 5.6 on Junum ry 10,
1948, riaing to a level of 6.2 on Maroh 17, 1948. It can be seen that oven
though there were merked soasonal tronds in all of the ponds, the pointa
of meximan and miniza in the difforent ponde did not corrsspond with one another .
The
The range for pll in the different ponds was noticenbly different.
There wea arge in Cash hake of from 5.6 to 6.6 , while in Redington variation was fourd from pi of 5.4 to 6.45 . The range wea greetost in
 wad found to oscur in Snowden Pond. In thia impoundmont the ph rose from a Low of 5.7 to a high of 6.3 .

Just ws wh the previoug factors, appreatoble difforences betweon the pir values of atations in any pond were rooorded. On Uetober 15, 1947, Gnowten pond, station 1, had pil of 0.0 while stations 2 and 3 had pil of 5.8. In Snowden, station 1 on rebrus ry 27, palu value 5.9 wes observed while station 2 hed p 路 vilue of 5.7. In Blue Gill the verietion, whils mensureble, wes not as pronounoed. On June 18, 1947, the pit at station 1 was 6.0 and at station 2 it wes 6.1 . On Rebruary 27, station 1 had pit of 5.5 and station had valuo of 5.4. Lake kedington showed a few more pronounced pil verittions between stations. On July 23, station 1 in Lek Redington showed pll of 6.0 but stetion 3 had vilua of 6.4 . The rest of the varistbons wore strilur to those found in miac till.
 1047 and on the some dato, station 3 showed phen b.t. similer diffor-

 Figure ).

## Garbon Dioxide

With one or two excoptions, it was observed that begiming in June and proceedine through the sumer, the oarbon dioxide content of the wetorg under study decrensed. Towerds the ond of sumer and throurh the fill and winter, this trend was reversed so that the carbon contont genernily increased in all of the impoundients. At the ond of the winter and in the very emrly spring the exbon dioxide content once agin showed indicetions of doorensing. In Gas. Lata the sumer downoris orend bogan on tune 11 and with an avorego resdin for this body of whar of 9.5 parta por milion of carbon dioxide. Wth the exoption of oupls of mane varistions
during the first part of July, the earbon dioxide dininishod to low point of 3 perts per milison on August 13, 1947. The upward ourge etarted on August 20, with a vilue of 4.5 and oontinusd emerally until maximum value of 14 was obtained on February 23, 1948. The downsward ourve for enfboa dioxide in Cash Lake started onoe gain on Maroh 5, 1948, with a carbon dioxide value of 11 parte per million and on tarch 17 , the value had fallen to 9. Liter data obtained outaide of the oope of this peper indieates that the dowmard trend is oontinuing.

A similar aituation wes noted in Lake Hedington where etarting on June 26, 1947, when the wetor contained 8.5 parta per mililion of free or discolved cerbon dioxide (the lintter term is used in this paper) and continuing through the smane oerbon dioxide content rell to a low of 3.0 on Augurt 13. A sudden secondary peak of 7.0 ocoured on August 27, sfter which the carbon dioxide foll to lowor level of 5.0 parts per million on September 9. and gein resamed the upwrd movement. This situetion oonm timued untli Migh point of 8.5 wis reoorded on Fobritery 18, 1948. Shortiy after thil datie the tread mas onde again revorsed so that by tarch 27, value of 5.0 waf found ir the witers of Like Redington.

The sumer oyele of corben dioxide began on June 18 in Biue Gill Pond. On that date an everage of 6 parta por million diseolved embon dioxide wan found. the level comtinued falling until August 20 when the witer contained an average of 3 parte per mililion. The upward portion of the eyole started on August 27, with m recorded average value of 3.5 and took a sudden surge on Soptember 9, when value of 10.0 wan noted. On Ootober 16. it was noted that the ofrbon diexide had returned to a level of 5.0 but that it wras continuing the upward trend, so that anthor peak of 10 wis found in

Blue aill waters on November 19, 1947. The level dropped to 4.7 parts per million (average) on December 11, 1947, fter which the upward trend started so thet winter penk of 8.3 wsa obtained on Pebruary 18, 1848. This penk continued at level of 8 parts per million until Maroh 5, 1948, when the oycle was reveraed. On 还rch 17, the empon dioxide level had fallon to 5.5.

Snowden Pond ppeared to have siniler omrbon dioxide oyele. However the proportions of the Snowden cyole were noticenbly different. The carbon dioxide fall startod on July 8, 2947 with an average of 8.5 parts per million and ended on July 23, with an avernge of 4.4. On July 30, a slow but ateady upward trend was noted with a sterting value of 5.0. Hot a single, sudicn upward surge or reversal was noted throughout the ammer, fall and mid-winter. The rate of increate wat remarkably regular and $\infty$ ntimud until maximum of aproximoty is parta per mililon oarbon dioxide was recorded on February 27, 1948. Shortiy after, the oyole was reversed eo that low of 5 wae recorded on wroh 17, 1948.

There wea conalderkble variation in therangea between the miniman and xime mong the four bodied of whter. in that Snowden Poed has a range of 10.4 parts per militon dissolved onrbon dioxide; Blue Gill Pond
 parts per million of dissolvea asbon dioxide.

In mome instanees, considerable veriations between the errbon dioxide content of the watera at different tutions in the ame inke were observed. On Pebruary 23, 1943, Genh Lake station 1 witer containod an average of is while water from stiktion 4 wis shown to contain 10.5 parts par million. The same aituation was true in dash Lake on minch 5, 1948, when station 1

7

$$
\text { contained } 11.0 \text { parts per million and water from station } 2 \text { contained an }
$$

average of 5.0. Similar observations were mede on Lake Redington where
it was demonstrated that the variations wore not as large since there were no eased where the carbon dioxide differences between stations exceeded
more than change of 1.5 part: per million. In Blue Gill Pond there was
only one instance when the station variations reached a difference of 1
pert per million. In all other cases on this pond the differences were
confined to approximately 0.5 between stations on any given date of colleenLion.
stations on Snowdon Pond were relatively mall, the greatest difference
occurring in the latter on Pobrusry 27, 1948, when fluctuation of 2.4
parts par million carbon dioxide between stations 1 nnd 4 was recorded. Wort of the other atetion differences on this impoundment were confined

1 part per million or less. (See Tables 17, 18, 19 and 20 and Figure 9). Alkalinity


 22, 23 and 24; seems to indicate that alkalinity measured in parts per
 same level or my chow some decrease during a part of the amer: The
 dropping rapidly during the lat part of the winter and very orly springe. As already indicated there are marked variations from this general cycle mong the four waters studied:

downward trond wae etarted continuing, with the exoeption of a short rise,
this lovel until Hovembar 19, ( 8.5 parte por million) whon a definite oreaned to 12.0 the 26th of Ootober. Alkalinity continued generally at portion of the alkalinity oyole began with masuremont of 7.5 und 2 m to a level of 6.0 both on Auguat 20 and 27. On sopteaber 9, the upward of July, the valuea for alkalinity in lake ledington gradually diminiahed With the exooption of two sharp peaks of briaf duration in the month end on throh 17. 1948, the reading in Snowden Fond was 4.5.
torms of onloium onrbonete wes obtainod. Howover, the poek wes short 1 ived Poeruary 27, 1948, whon a velue of 20 parts per million alkelinity in - value of 5.5 was obtained. An unusually strong upward surge ecoured on A revaral startad on Docomber 17, and continued down to Fobruary 18, whon
upward to amximum alkalinity value of 13.8 (avarago) on Decomber 12, 1947.
 In znowden fell to 8.0 on July 30, 1947. The upwerd trend started on


1948, with an avarage eontent of 6 . The drop oontinued through the 17 th of
Arop in alkalinity which proved to be progreasive etartod on Fobruary 27.
dips through the rest of the sumsor, fall and part of the winter. A whore it was gunerally minteined with $t$ he oxomption of one or two minor

 por million alkulinity as onlefum esrbonto on July 18, 1947. From this


Oenorally, the alkalinity level of Cean Lake reminnod more or lest consmant from June 11, 2947 te Aagust 20, of the ame yeur. During thit period the alkelinity Pluctuated between 21.0 and 21.5 parte per million on the average. A drop to 9.0 was noted on Augut 27 , but Bhortiy afterwarde the upwnid trond egain started and continued to peak of 18.0 on Deoumber 17. The rest of the period of this study anw the sikulinity in Cand drop to low of 7.5 parta per million olcium ofrbonte on March 17 , 1948. It night be af interest to note thet just before this minimun was resched, short but relatively high peak oocurred on wiroh 5, rosulting in - value of 12.4.

Ae with other factera so far obeerwed, the rangea of alkelinity for the different ponds varied. Cash Lake had a range of 18 from the maximan to the minimum. Lake fedington had range of 11 from maximum to minimum. Snowden showed a 18 parte per million range and Blue 6111 pond showed a range of 8.5. (See Tebles 21, 22, 23 and 24 and Figure 10).

Variations betwoen different atatione on the amo body of witer were observed just as was the cuse with provioue ohomioal and physical factors. The smellest veriebility between stations oocurred on Blue Gill Pond where the werage difforence proved to be lesa then 1 pert per million. Smowden proved to have an average station difforeace of silightly more than 1, se did Lnke Redington, while the greatest verisbility between stetions was on Cush Lake, with an serage vilue of proximety 2 parts per million. 2otal Iron

The aesaonal trond for iron in the four ponds studies aeoms to be the letet ig oural of the factera obecrved. Only in the broad seme oun a trond be dosoribed. On the avernge there semed to be e reduction of total 1 ion
occurrins during the sumer oortioulsriy during, the onrly sumber. wo
 the different ponas and show tamdoncy to go up to hi hor lavel and stay at that level until woll into intor, or an it somotimes vanifestod ftself, the fron showed another low period before it startad rise in the foll. Uuring the wintor, two kinda of conditions seomed to preveil, in some cases the iron ramelned wh high level throughout this peoson and obruptly toperec of $f$ durine the lest part of the winter into the oncly spring when it once aginstarted upward. on the othor hand, ing at lanat on of the ponds, the iron suddenly wroped during miduintor, rocoverad, and thon dropped gentn until spring thon ity wis seen to start eho genernl upward trand. Bluo Jill pond illustrates tis loter de tho two eyolos.
 2.5 perta por milion total iron. hing nount ox mon bogan to aimaiat on June 20, (2.0 perts per million) and contimued coma to July 10 , whan an anmysis of the whtor showod 2.0 iron to be prosont. A zalue of 3.0 was obtaingd on July 23 and the level continued upward to fuzast 13 , (3.0 parta per million) when second revorsal ocourred brinting the lron dowa to 0.50 by Detober 1, 1547. On Detober 10, the mount on total iror once agein started to incrense and by Hovewber 19, 2.0 ws recorded in $31 u e$ Gill Pond.

At this point Blue Gill axemplifies the seconcet of conditions, namely, that reversel of the cyole oocurrod resulting in a drop in iron pres at, so ciat by ferfuary 10, 1946, the total iron oontant of the wators was on the averoge o. 5 . kitar this period the level rose nad con-
 renched a lavel of 3.0

Cash Lake illustrates the first of the two conditions previously deseribed. Beginning with value of 4.5 parts per million total iron on June 11, 1947, the anount of iron diminished to low of 2.0 on July 23 , when an upward trend occurred so that alue of 4.0 wns attained on August 13 . From this date until November 20, the iron content was more or less the same level. The cycle reversed itsalf and started own beginning on Decuber 11, 1547, ronching winter minimum of 2.0 by Februery 18, 1948. On februry 23 , wiron content slowly started up and renched into winter peek of 3.5 perts per million on warch 5,1948 .

With the exoeption of a fow incivicual varistions, the eycle for lake Redington generally seems to fall into the same outegory as cash Lake, while Snowden Ponds appers closer to the type exemplified by the iron cycle of blue gill pond.

Observations showed that there was a difference in the iron renges from meximum to minimum for the different bodies of water under study. Snowden was found to have maximum of 5.5 parts par million and a minimura of 0.75 . The maximum for Blue Gill Pond was 3.0 and a ninimum of 0.5 , while the maxime and minima for Cash Lake and Lake kedington was found to vary from 4.5 to 1.5 and 6.0 and 1.5 respectively. As seen from the tables, varintions between stations on the same impoundment acured in $x 11$ of the waters studied, just as wis the cese with other factors, physical snd chemical. (See Tables 25, 26, 27 na 20 nad rigure 11).

Bilica
Silica was another ohemol factor of the waters stuajed which did not follow a sin le trend but showod two separate, if related, cycles. In at least one of the impounanents, the silica was a poak during the late spring and early sumer. Durint the middle of sumer the level slowly
dropped and remained at low point until late sumer or onfy inll at wich period the ailion content of the water gein incrased. This level was mintained for a relntively short period at the and of sumer, when the level once gain wes reversed in downerd movoment until comparatively low point wes renched. This latter velue was manteined with sporadic urbard surses of short auration na low intonsty until aid or lata winter, st the ond of wioh puriod the silica lovel slowly startod to riso mad continued the upward trond into the encly epring.

The othor silion oyclo atarted at raiatively high level ot the beginning at tho sumar and continued to so up through mid-sumor into isto sunar or arly fall. During the early autum, the silica startad to fill ylightly and than lovaled off, still at comparativaly hith lovel. until late atumn. Begiming in late eutunn ard continuimg into niawintar, the silice content of the water slowly dropes to a minimus in late winter, at which time the trend was once again chenged ard the silfoa startod to incrose into the erly spring.

The silice cycle in Cesh Lake seemed on the whole to Ruoturte in $A$ maner sinilar to the first of the two cyoles observed. value of 0.50 milligras per liter or silice was obtained on June 11, 1947. Shortiy after that ote the sillon velue startad to fall until novarage level of 0.25 rilligram fer liter wis renched on tume 26 . A consistent riso wos first noted on July 3 , the continuod until the ortinn twite of 0.60 milligna per Ilter of silice whs renched on july 11 , 1047 . with the excoption of ont short riss, this level was meintaned up to sud incluaine August 13, and continusi through August 20, the silice content of the water of Cesh Lake jumped to 0.75 and then started a acoline oulminmtinc
with minimum concent of less than 0.12 millirmms per liter of silice or trace silicn on December 11, 1047. This minimum oontinued throuch Fobruary 23 , or aid-winter. Deginning arch 5, 1943, tha silien cycla once
 0.25 milizsman per litur of silion.

The silion petbern for Leke Redington apparently followed the second of the two gycles observed. A readinc of this pond taken on June 20, 1947, Indicated content of 0.50 millicrans per liter. On July the level rose to a level of 0.75 milligratis and continued to be incroasod through aueust 20 , at whioh time an alysis ahowed a silion content of 1.0 milligrams por liter of water. On Au ust 20, the trend wes reversed and the silice startad to fall from value of 0.35 milligrams per liter on that day to a minimum of 0.12 through February 1e, 1040. Baroh 1 showed the begiming once egain of an increase in the silica content of the water in Lete Redington, continuing through ikroh 17, with recorded velue of 0.50 milliersms of silice per liter.
the silich trend of Snowden Fond on the whale, seared to follow the pattern of silion in Leke Pedincton, with the axeption of wery short downsmrd tendency recorded in the former impoundant on JuIy 16. Blue Gill Pond sooned to follow the first of the two eycles and generally appared to be similar to Cash Lako in relstion to the silica cycle. No - ownard moroment in blue Gill whs racorded durint the ma-sumer perlod. Instead, the silica content during this period rexained oonstant unill lato summer.

As with other fectors, the silioa ranges for the four impoundments varied. The fluctuation from moximum to minimum in slue Gill pond ranged
through 0.75 milligrams of silies per liter of water. The seme type of range in snowden fond showed pluctuntion of 0.83 milligrsm of silice per liter of whter. For Lake Redington, the velue wes also observed to consist of 0.38 nilligress ger litor, while renco of 0.74 was found in Cosh Lake.

It wes glso observed that the perks for ailice fonerelly somed to ooincide mong the bodies of wotor $\frac{3}{2}$ nvesticeted. Tho ailice noxim in Cosh occurred on wuly 30 nik Aupust 23,2047 . The pents for the other three
 whe not noted whon deeline with the previous factors deseribed. Silice varimbions betwoon different atations on a body of water were observed in a114 ponda. (weo feblea 29, 30, 31, 32 and ingure 12.)

## Soluble Phosphorus

Observations of the phosphate (soluble phosphorus) fluctuetions of waters studiec indicate that here gain peperently more then once cyele occurred. Two of the ponds showed low phosphete level at the beginning of the sumer when slewly rose during the nonth of July and thon sudenly droped by the ond of the wonth or in the arrly pert of fugust. A short tine later it wes noted thet the phosphnte content of tho water onoe agin atarted to incrense, this tine very siowly and with nuacrous minor virimtions, end then droped duetne the foll or only winter. Trom this point on into the midwinter, phoshntes romsing et n low loval hd only stariod to rise, siowly, towne the whe tho minter senson.

In the other phoaphete oycte, the lawol wa relntively high in the early part of tha sumer and thon startad te fall during July. Tho phosphate content gonerally seemed to remin constant through the arly fall.

During late fall and into asrly winter, the phosphates were eiser constant or showed sadea and relatively short surge, fter which a return to a lowar level was obsorved. During the rast af this evole, the value af phosphates in the weter remalned to medtum or low lovel and showed an indication of rising only towerds the end of ninter.

The phosphate cyele as observed in Cash Leve soemed to bes of the saze genergl phtern the one firet described in thet the walue determined on June 11, 1047, w found to te 0.012 milligrm of soluble phosphetos per liter of water. Tha level rose to 0.025 milligroms on tuly le, and then started to fitll soon fiter so thet by the end of tuly, grinimum of trece phosphetes had beon reohed. On Aurust 10 , $19 a 7$, tho eycle once aghin stmoted anu remed maximum of 0.075 milligrms on otober 20. On Povenbers 10 the trend was reversed, whe phosphate content of 0.000 millierems and onding wh minimum of trace phosphatos on Jenuary 10. With the oxception of minor variations, this minimum point ma mintained
 in the water of Cosh Leke. Another drop wes noted on April 3, but it is doubtful if this reversel wes smothing but monentary pluctuetion.
the phosphate cycle in B1 ce 211 pond fenergily peralleled thet of Cesh Loke, except that in mlu elll the foll and lete foll mine oceurred on Ootober 1, nd Deosmber 17, 1047, with Falues in both instences comsisting of trace phosphetes.

In Leke Redington the phosphete flueturthons semed to follow the second phtarn deacriked peviously. Movsurements teken on Jung 20, 1047, indicoted phosplate ontont of 0.025 milicrams per 14tor. Thia level started to fell soon fiter so tho on July 5 , low of 0.012 wes reachod.
surge was ahort lived and the phosphetea foll to 0.020 on July 23 , and
continued generally et this lovel until Auguat 13, 1947, et which time
the phosphates dropped to 0.012 milligrame and continued a slow downard trend to Votober 1, 1847. On this date an absolute minimum of soro was registered oolorimotrioally. Although the level rase to trace phosphatos soon after, this low point wen minintained through the reat of the winter a inte early Merch. On sarch 17, 1948, the phosphatee once again started to riae, and a value of 0.025 mililigrams of phosphatea por liter wat obtained. Snowden also ahowed a phosphate oyole whioh evidently followed the
second phttorn obsorved. A lone period of minimum phosphates varying from trace to core was obsorved boginning on Auguat 15 , and continuing through ooteber 25, 1247. Shortly after this date the level was inerensed to
0.020 milligrame (Movember 10), and ramained cencrally at this level until Januery. On January 10, 1948, the trend was reversed downward in Snowden, However, this was of very short duration, sinee the phosphete content wes baok to 0.025 on February 18, and rose rapidly to 0.050 on Fobruary 27, 1948. Thie medium level was maintained through warch 17.

 Hilue alll Pond was approximetely 0.070 from maximum to minimum, while in Rediagton a somparable anelysie indicated range of 0.050 milligrame por 1iter. Snowden Pond showed 0.075 milligram per liter fluotuation for soluble (diasolved) phoaphates.

As in all of the provion onses obaorved, marked variation in the soluble phosphete content oscurred at aifferent stations on the amme body of water. In Snowden Pood at atation 2; the water had level of 0.012 milligrams of soluble phosphtes on Decomber 11, 1947, while the area at
 water taken from tation 1 on Lake Zedington, Ootober 1. Indicented the content of phonphntes was sero while whter from station s showed 0.012 milligrams of soluble phesphitea per liter of wher. Similer station variations were noted both in Blue Gill Pond and Cash Lake. (See Tebles 33, 34, 35 and 36 and Plgure 13).

Disacired Oxygen
Although of neoessity kighly generalised, the oxygen oyole moomed to be similar for $\mathrm{m}_{1 l}$ of the ponds, at lesst up to the winter monthe. The oxygen oycle sterted at medium value in the beginning of the sumer and romined at thet genoral level for pert of the sumer. During the mid and late aumer, the oxygen oontent of the water apparently diminishod but inoreased with surprising rapidity in some onses, during the fall. However, fow variations ocearred during the winter. While the oxygen content never dropped to the original level of the oriy aumaer, some falling off from the utum penk wos noted. Thig lowal whs oontrinued
 level tarted to fell. After dissolution of the ice cover, the oxyest iavel in ome canea wan raised imaidimboly un be wigh degree, while in other casea no auden rise ocourred. In one intednce, the level aotually fell towned the ond of winter.

Enowden Pond wes the impoundment showing greatest variation from the generel eyole deseribed. Dissolved oxygen oontent for snewden of

most elonely, From sumen penk of 7.55 parts per million ocourring on


- uotitim sed sqiod zoot para $\mathrm{s}^{*} 6$ jo eiedene uo ueemqeq
teat of 9.79 , on through the wiater, the oxygen continued to fluctuate
of 17.50 wat rea ohed on Decmber 11. 1947. Prom Decomber 17, with con-
couple of violent but chort declines, the late fall-early winter maximam





tinued until lareh 5,1948 , when a sudden rise eent the value up to 9.25. Grsh Lake resulted in velu of 6.00 parta per million. Thie minimem connoted that a depression of the dissolved oxygen content of the weter of Deoamber 17, 1947, which continued until Feiruary 18, 1948, when it was revorsed and eontinued rising to moot mearly winter maximum of 8.35 on at which time the andysis showed low point of 4.46. The trend was soon of 6.70. With minor variations, this level was mantained until August 2\%, 4.92 on July 3. Jy July 11, the level again had resohed a higher value June 11, 1947, hioh inoreased to 7,10 on July 1 , and fell rapidly to


the oxygen stapted to show an upward tront (5.87) whioh continued to in-
prevali throughout the sumaer up through Oetober 1, 1947. Dn October 15,

with an aproximato averace value of 3.5. An utura penk or 0.51 was reoorded on Wovembor 19, 1347, fttor which short dron oocurred on Docmbor 11. An average vilue of aproximately 12.0 parts por million diasolved oxygen was mantained through the winter with tia exoeption of Fobruary which hed an averse oxygen content of bout 8.0 parts dissolved oxygen per million parts of whter. On wroh 17, 1e48, a slight upvard tondsnoy was noted. Lowever, the variation was so small as to constitute an insignifionnt indication of incresse.

All of the ponds showed verietions in the mount of oxyen present In the weter of seversi stetions on sincle impoundent. There wors also differences in the number of perts per nillion dissolved oxyen neeessary to go from maximu to minimum in we wats studied. This name for Mue et11 fond was 0.30; 13.04 for Radington; 5.13 for Cosh Lakes ead 3.01 for $\operatorname{snowdan}$ Fond. (Soo feblea 37, 33, 39 and 40 na picure 14). Acidity
or all of the physicel and chaioal fotors so far oberved, acidity soms to show the most decisive trend. Xurtheraore, with the excyetion of a fow individun variations in the four ponds which ware for the nost part minor, the impoundmonte studed all som to follow sincle potern.

The totel acidity expressed in terms of onlcium carbonte was observed to be at a relatively high level at the beginning of the sumer in 1947. As the sumer progressed, the acidity slowly but consistently, Cell to lower levels until minimum wes renched in the lattor part of the sumner, notebly in mid-August. An upward trend was shortly indicoted ond continued up through fall nd into mid or late wintar. Shortly fter the

Winter maximum had been reched, the dyclo was reversed nd lowering of acidity oontent of the wer begn whioh continued through the mikdie of Barch.

On June 20 , Lake moninton whars were found to contrin an verage of 14.0 perts por mailion total achaty oxpressed in torta of eadeium oerbonate. The downard trend was started on July 1 , when y viue of 12.5 parto per million total acidity was roma in Rodinton ard oontinued in the seme direction, with the exception of a fow ainor reversals through most of the sumar sad into late August with minimum record of 9.9. The beginning of the upward movement was first noted on August 27, 1947, when rending of 15.0 parts per million total seidity wes obtainad. This upward trend continued through Junuary 10,1948 ot which time a level of 23.0 totel scidity wes observed. The prespring domwerd trend started on Fobrunry 18, 1548 , whon a reading of 18.0 was mado and convinued through Warch 17, at which time the lovel hed fellon to 11.0 .

Conh Lek showad stiniler trend. The owrly sumner manum of la. 00 perts per million on June 11, 1047, slowly decrenod to fote sumar minimam of 6.50, on Augut 27, 1947. The fell rise sturted on october 1, 1457,

 the prompring douline was firsi noted when a whuc of 2 z .00 was renched and continued in a dowward direction through warch 17, when 14.0 parts per million totsl acidity was preaent in the waters of cesh Leke.

The sumar pers for acidity in Snowden pond ocurred on duly 7, 13a7, at which tine anslysis of the water showed 22.0 parts per million total

1947, th which time reading of 12.0 was obaterved. The firat indication
of consistent upwird trend was observed on Ottober 1 . at which time an
analywis of the waters in smowdon Pond showed an average value of approximately 17.0 tetml weidity. This upwird oycle centinued through the months
of Jovember, December and part of danury and mened with poak value on January 10, of 29.0. A deoline atincted on Pobruary 18, with a value of 27.5 ard continued through waroh 17, when velue of 11.5 perts per million totel eaidity wes observed.

Blup Gill Fond also seomed to follow tho general aciaty pattern in


 Hovember 25, 1947, when Eall maximua of 25.5 wan noted. During the months of Docomber and Junury, motidty showed an unusull tendenoy to fall
so thet the gonersl average for totel acidity during these two months was approximately 25.0 parte per nillion. A sudden upward trend during the month of Pobruary, 1948, resulted in a total acidity value of 20.0 on Fobruary 18. shortly after this dete, the acidity begen to decline,
finmily reathing low value of 8.90 on timph 17, 1948,
There were noticenble difforonces in the rangea from maximato



wan spereximetely 20.0 and for Blue Gill, the drop covered erage of
19.0 parts per miliion tofllacidity in torme of coleium omrbonte.

As wis the cuse wh tho other chemical and physion faciors observed, varithons between the sotaty content of zater at diferont stationt on the same ody of Water oftan ocoured. In mue inil Pond, station 1 had value or 21.0 parts per aillion on ootober 1,2047 , and on the geme tato, station 2 had a contont of 17.5. Similer fluctuations took place in the other impouncinents observed. On Aucuat 20, 1e47, station 5 in Gas Lake had an acidty contont of 0.5 parta per million while station 2 had lavel of 7.0 . On December 17 , station 1 on Lake Redington was observed to have 20.0 parts per million while at the same tima, station 3 hed a level of 22.0. One of the station variations on Snowden fond took plece on July 23, 1347. At that time station 2 waters had average of 11.5, while station 4 contained 10 parts per million. (See Tobles 41, 42, 43 nnd 44 and Figur 15).

Phytoplanixton and Manoplenltion pistribution
The pollowine phytoplanktars were found in one or mor of the bodios of weter undor invotizetion shd wre listed by spoies under tioir respeotive classes.

Sacillariacase (Diatons)
Diatona
Welosirs
Gyclotella
Stophanodiscus
Maviouls
stauroneis
Amphora
Mitszohia
Synedra
Frafillaria
Astorionslla
Tabollarin
Cymbella
Cymophyoeae (Blue-Green Algme)
Glowoeapsa
Chroococens
Spirulina
Oscillatoria
Anabean
Miozooystis
Charophycean (Green A1cre)
Spirogyra
Mougeotie
Botryooccus
Kirohneriella
favistrodesmue
Coelatrum
Soenedeamus
Crucigenia
Ulothrix
Tribonema
Cladophora
oedogonium
Cosmarium
Arthrodesmas
3tcurastrum
Zygnema
Clostoriun
Phytomasticophora

Trachelomones
Phecus
Astesia
Chilomonse
Uroglena
synura
Dinobryon
Poridinium (Tontative identification)
Glenodinium
Mhizopoda
Areoll.
minlugia
Cillata
Vorticella
stontor

It wan obeorved thet the phytoplankton and nanoplankton in the 4 ponds conaisted of at least 52 epparate geaort grouped under 6 olasees. since one of the primary objeotive of this atudy oonaluted of obtmining quantitative as woll as qualitative deta bout the piankton in the inm peumdmente, it beame most convenient to use sedgewide Rnfter cell for counting tudios. Only medium manifiontions could therefore be utilised with a realting posaibility that sow of the very minute forms may have been overlooked. It should be reiterted thet the studies are primmily ooncerned with the phytoplenkton.

Takea mo claseen, only the most general syolie observations of the phytoplankton could be made on the poade as whole. Numerous variationt oceurred between individual phytoplanctert as woll an in the ponds taken enparately.

Most of the dintom Eonem uemmed te show a peak during the sariy plert of the unsmer ac woll me in mild-iutuman. A relatively om 21 number of genern in the Zacillepineene showed indicatione of having secondery puleen during the late summer and early foll. Hinor pulses miso ocourred during the early winter in fow of the genert. Generinly, diatom minim seemed to appear during the middle of the sumaner and winter.

Conaiderable varigtion wat moted in individual oyoles for the varioua gener of bluegreen aget but on the whole, many of the pulses semed to take place toward eriy spring and into early sumar. Relatively fow petk ocourred duriag the midde of aumer. The level for thege phytoplankters rose rapidly during utwan and in some otean axtended well into winter. A few gonorn showed an inoremee for mort period during August.

Apparenty the general peak for the eroan ligeo took plyce in orly sumar, eapecinlly during June. The gyold then seaned to revarse ftaelf and fall durinc the nid-zumer persod. Ninor p was were recorded during Auguat but the inportant rises bean in the fill and extended into arly wintor, in may ones. On the avorage, eneral drop started during Janus ry, extendod through february and ended with a minum during the onrly portion of warch. The rise started once again in fpril and semed to continue into kay.

A diacsrneble fonoral trend was obsorved only by zrouping all of the clesses of the Protozon together. A eenerily high level of this type of phytoplankter prevailed during June, especielly during the oarly part of this month. The trond wes downwrd beginnine in the last part of june and continuing from July through Sentember but ravarad theelf during the ronths of Dotoker and hovomber th which time tia Frotozon once mein rechod apot. Dur init the winter the oyol started on tha downgrade sad oontinued through the moath of himreh. A hathor ount wis recorded in April and the Protozon surced upward during the month of May mithoh thate the last counts wore man for this atudy, hs has olread beon haplied, may variations were found to o chr in the diffarent genera. In song inetarees relatively short but intense pulees were obsarved durine the sumer, partleularly during the month of August. Dnly those plonkters present in abundence on the 4 ponds will be deseri individumlly throughout this study.

All of the diatoma atudied wore prescont in cosh Lake, however, Glosoonpsa, Ansbaena, and Herocystis of tho blue-green lgae. Ithough present wore only seon in small numbers in this impoundnont. 3eversl of
the green agae wore abent from the watora observed in Cush Lake. Thus. no members of Moureotia, Copleztrus, Cosmerimen Arthrodeanua wore counted in this impoundmeat. All of the Phytomatigophorm and ghizopoda were preant in Cash Loke and whi of the Cillete with the exeoption of Stentor were lso observed thore.

Mosoira varians Agerdh geomed to be one of the most sundent of the diatomeprossnt in C sh Lake, yiolding gemors. ilmporiod count of roughly 12,000 indivicual cells per liter of water. The oount on June 21, 1347. wa approximtely 12, 300 cwila per ilter of weter. This level
 then drepped to a $20 w$ point of 3,708 cells on Auguat 20, 1947. This low point was mintained until December 11, 1947, at whioh time audan pulse sent the lovel up to oount of 63,032 celle per 14ter of water. However, by Jamumy 20, the oyele hed revorsed itealf and a count of 16,000 oelle win observed. A minimum of only 108 oells per lister of winter was reoorded on Haroh 27, 1948 in Cash Lake. The upward trend was first notioed on April 5, 1948, which time the velue wes obeerved to be 8,463 eells of Molosira varians per liter of whter, My 3 , the level hed risen to 30,000 oells per liter of water for Cash Lake. Posks for feloaira were rocorded in early fuly and Deomber, while the minise oocurred during the mid-auman and mid-winter.

 reeord of 5,760 wea abtained and October 31, when 8,622 individuele por 11ter of water wero counted. A minor pulse was recorded on septerber 9 ,
whon the count wes 2.113 cells of Mteschia per litar of water. A sumper minimum of 140 cells par liter was oounted on Angust 7,1949 and ainter minimum of 9 colls per liter of water on Fobruary 23,1948 . No cells of Miteschia were found in the water of Cash Lake on March 5 and haroh 17 , 1948. However, 491 cells were found on April 5, and the level inereased to 1,680 individuals par ilter of weter on $\begin{gathered}\text { why } 3,1948 . ~\end{gathered}$

A sumar maximum of 390 cells of Navicula wis notod in Osh Lake on July 1, 1946, while minimum of 9 cells por litor of wher oceurred on August 13, 1047. The foll pulse storted in November and renched penk on December 17, when the count consistod of 012 aells of hivicula por liter of wer. The minter period vina observed to be period af low productivity for kinvioula, nd eomplote boanog on this phytoplankter was found durine Fobruery and Whrch. Tho upward trend startad in april
 The other diatoma were observed to be preant in f ower numbera in this pond. Tabellaria fonostre Kutang showed pulso on beptember 9, 1947, when analyais of the water of cash lake showed 168 oells per liter of water and a minimum of 5 orgenisms per liter on August 15, 1947. Tabsilaria was not observed during the month of February, while on data $^{5} 5$, 20 cells wor counted in liter of water in this impoundment, indicating a repid rate of increse.

Synedre showed its maximum peok durine the sumar with total of 613 cells per liter in Cash Like on July 16, 1947, and its summer minimum ocourred Ausust 27, with ount of 39 colls per litor. The fill pulse took place on octobar 21, 1947 wion toth of 890 ewlls were found per
liter. This high level continued through the last purt of Decomber nad foll rapidly during January to the minimum winter level. A few oolls of Syodra wer combtad throughout the winter and the fisst reoorded incrense occurred on April 5, 1048 whan $\begin{gathered}\text { m count of } 138 \text { calls por liter wot obtained. }\end{gathered}$ The first spring pulse for 1240 was found on Lify 3 whon 829 colls of Synedra per liter of whtor we counted in Ongh Laine.

Although prosmen, the bluempeen alge were never found in considerable numbers in Cash Luke. A maximum of 47 units of 4 cells of Anobena Hos-aquat Hrobisson was found to ocour on June 17, 1047. This level fall rapidy to mininum on Aurust 27 , whon cells were not observod. Another pank was observed during a part of Janumy with a count of 39 organisms por Ifter of water from Cosh Lake on January 17, 1948. Although sorroe throughout the rost of the winter, fow Anaboena were found in every winter sample with the exception of Fobruary curime mich month none were observed. Oedogonium showed pulse on Junc 11, 1947, when 27 cells were counted, but wss very rere throughout the reat of tho yesr or of Lako. The only period mon Gpiruling major Juteine wes prosent in opprecisble numbers ats on Mugust 27, 1047 when count of 12 cells por 1 :ter of whter was rouni in Cash Leko. Luring the rest of the your this organsm wos rare boing entiroly abent from the somples from Cash Lake from retrary throuth warch 1943.

Microcystis was rare at all times in Cosh Lake but two pulses ware observed, ore in June and the other in Hovember. inuring the rost of the your, 哖crogstis was of ton completely absent, ospocially during the winter months, and to losser degree through the midmumer.

Although groan algo were prosint in Cash Late with the axception of the cenert cited, they were never prosent in relatively reat nbudenoe. Spirogyra was the nost comon of the crean alge noted. On tuns 11, 1847, 240 units of 4 calls ware counted, with an increese to 416 anits of Spirogyra on June 17, 1947. Apparently this constituted the enrly summer peak, because noticesble drop was observed shortly after to manman number of 7 units counted on fugust 7, 1947.

The fall peak ocourred on December 11, 1947, when a count of 373 units of Spirogyra whs observed in Cosh Liks. During the winter, Spirocyra romined at very low rete af production with minimum at $a$ units obteined on Fabuary 23, 1940. During the lattar part of anch, this phytoplakter agoin startec to incronso so thet 400 units per litar ouber was noted on kay 3, 1043.

Ankistrodesmus seomed to have an bundence in angh Lake comprable to that of Spirobyra. Although prosent in relative abuicianes throughout the oerly summer, slight peak was notod on July 1,1347 , when 1,015 cells were counted. Daring August, especialiy lato Auguat, Ankistrodosmus fell rapidly to reach low of 102 on August 27 . The fall maximum cocurred on November 20, whon the count wont to high of 1,750 cells par liter of wator. The downerd curve for this green lage whs considarsbly slower than the trend for Spirogyra, the minimum being reothed 倩rch 17, 1948, when only 7 cells per litor of water ware present. Just as mos the case with Spirogyra and nost of the other green mlee prosent in this body of wher, inkletrodesmus started to inerseo into the wning 0040 , resulting in count of 2,249 cells per liter of wher on 3 , 1548 .

Staurasurum wat of the more abuacunt of the desmids occurring in Cosh Lake. fin omery sumer poniz wes recorded on june 17, 1947, when the count reached 6,424 cells per litter. Staurastrum seonod to vary sonowht from the general pattern in that it wes gresent in some abundence throughout the sumar. Nonever, a minimum of 417 eells per liter wis observed on August 20, 1947. A winter maximum wes recorded during the month of Decmber and appaned to extend through the ontire month. Nowever, the grentast number observed was on inecmbor 11, 1047 , when 5,400 cells per liter wors notad. Althouch stmastrumes proagt throughont the witor,
 liter. Ehorily aftor this mintmum count, the gteurastrum cyole started upward gein and on the last count of this investigationg theon on Nay 3 , 1948, maverage value of 933 organisms per liter of whter was found in Cath Lake.

As proviously mentionod, all of the protozo were observed in Cash Lake, with the axception of stentor. of tile phytomasticophora, Peridinium and Glenodinium were the most commonly observed genera. On July 16, 1947, total of 623 Glenodinium pulvisculus colls was counted In Cash Lake. This mparently constituted sumar pesk since alenodinium fell to minimum of 3 sells per liter of wher on Ausust 13, 13A7, and remained low until the inll. A hither, more prolonged rise took place during the butumn, begiming on Ootober 21 , wth g total of 037 cella and renching the highest level on Novabor 20 , 1947, when the sount whe 2,040 cells per liter of water. Durinc Docmbor, the alenodiniun popultion deoreased very retidly, becomine nlmot now-axistent durine the reminder
of the whinter. The first appreciable number of this Phytomoticomhoran wes obseryed on April 5, 1943, with count of 135 oells per liter of water. Oddy, the level gein tell during tho Ray 5, 1943, Bince only 62 cells of Glonodenium were present psr liter of water.

Peridinium reached poak of 521 cells por liter of water in Cath Lake on June 11, 1947, and then decreased very rapidiy, remaining at a minimum of less than 25 cells on an average throughout the remeinder of the summer, fall and winter of 1ソ47-48. This particular Phytomastogophoran ws centetively identified as Peridiniun. However, it is posaible that this or $\mathrm{g}_{\mathrm{m}} \mathrm{nism}$ may be another speciea of glonodinium. For the sake of clarity, it shall be referred to as Peridiniun in this paper. On $\begin{gathered}\text { and }\end{gathered}$ 5, 1948, the Peridinium population was once more inoreasing since a total of 167 cells per liter of Cash Lake water ws observed.

Euglena wes noted throughout the investigation and semed to follow the eeneral Frotozo pettern. Pulses of Euglene were seen during the month of June as well during the erly part of Dctober, 1g4. Another increase was observed durins the lnst part of Fobrusy and inco aerly Harch, 1947, yielding peak count of 201 cells par liter of water on Aprit 3,1043 , in Oersh Lake.

Aroella and Difflugia of the olass Rhizopoda wore present in Cesh Lako, especially in the early spring, late fall and through the winter. They were never too abundant, however. Arcella vulgaris chrenberg was the more common of the two, reaching peak of 423 cells per iiter in Cash Leke on June 17, 1947, and continuing on high level through July 16. The pulse had greatly diminished by July 30 , and this organism
remained to minimum throughout hueust and September. Another pule was noted on gotober 21, 1947, whioh time 737 cells were counted per liter of wator. The pulse continued on progressively lowar levela through Docember and arly Januery. Durine the rest of the winter nad sarly apring, Arcella wos only ocestonmlly obeerved.

Difilucia constriote Ehrenbers was nlwy present in smell numbors. A minor peak wes recorded on June 11, 1547, in Unsh Leke when 08 incividula were counted. zhis pek wes short livad nat the mumbers ware much lower through the rest of surner snd enrly fall. A flac to 217 oells per 11tar was reoorded on Qetober 21, 1047, and maximun pulso was observed on Decembar 17, when 67 indivicunie were counted in liter of water
 winter and early apring, and ponk wes agin rocorded on may 5.1943 , at which tine 106 celle per liter from Cash Lake were observed.

Vortioella campanula Ghrenbert was first observed in relatively large numbers on July 16, 1947, and continued to inorease in population until peak count of 73 cells per liter of water from Cash Lake whe observed on August 20, 1947. Jp to duly, Vortseelle had been present in numbers never higher then 27 por liter of water. From hugust through the month of October, these organisme were observed in relntive bundence. The pulae dropped during Dacenber asd Vorticella wos only ocosionally observed surthe the rest of wintor ond throuch wisch. An foresse in population ws noted in April and spring penc ocourred in may, yielding 50 oells per liter of watar from cosh Late on May 5, 1040.

Lake Redingtonexhibited phytoplamiton oharacteristles which were genorally simile to that of Uash Lake. It is posaiole thatasion from raprocuction withia Cash Laice, tho lattor obtainow portion of its phytoplnakton population, aspainlly quantitatively, from Lako pecington. A11 of the diatoms recorded $1 n$ Cash Lake were also found to be preaant in Lake fedincton, with similnr pulsaa and peaks, porteularly in luke Aedington. The fenaral level of the diatom population semed to be lower in Lsice Redington than in Cnsh Lise, Nlthough few exooptions oceurred on individual counta, especislly during the sumer.

Wener fensre of Cyonophycoe wore pres nt in Lota Hedington than In Cosh doka and sll of thom in the former impoundment ocourred fin amollar numbers. Mone of the blue-treen fige that had hean vbant from the watars of Cash hate wore found in toke hodington. whus, of the Gynophyceae, only Chroococcus and few Spirulina wore observed. Only one sampla showod tract of uscillatoria and that was tentotive idantlfication since the speciman was in very poor condition. Not as nany of the clorophyouat wre present in Luke hodington es in Cinh Lake. Not only wore wouseotia Coelastrum nd arthrodesmus font from Lise Radington and Cesh Lake but Kirohneriella, 2 ibonema and Closterium were not observad in the formar pond. On the other hand, Arthrodesmus was not observed in fish Loke but fow cells were aon in the waters of fodinfton 1n HO amber.

A11 of the phytorastigophort were observad on Leke kedington, but in fenersily fower numbors. The axceptions wore olenodinium nd paridinium. Vortioclle wes only occesionally seen in this pond thile beentor ws bsent.

Blue Gill Pond presented e rether differtant pieture from the other
 complete liat the followine there were representea in miuc Gilis
 Eelosira, 基vtcula sha Bynodra were founc to be noro sbundntit then in


A meximum ef $89,7 E 9$ Lelosira cells fict liter of water wa observed
 to docur on Noveraber 12, 1947 , wen a count of 3.123 celis per liter of wetar was obteined. The maximum bynedra pulse was soon to oc ur on August 7, 1947, when the population ronchod level of 1,327 cells per litor.

On the other hand, penk of 74 individual Astorionells cells took plsce on tune 17, 1947, in Blue Gill Pand, while the minimum ocoured shortly fortor this on July 1,1947 , as indictad by total of 9 ealls per liter of thue oill water. Tho figures for progillarig showed peak on duly 10, with oount of 143 ealls per liter of wator na minimum on August 27 , whon 27 colls were countod in liter of wher. tre meximun and minimum Tebellaris populetions 1 mo oceurred in July and Ausust with 40 collt and 2 oells per litor at whor respoctively.

All of the gener of cyonogheege previously enumeratod were round In Blue alll fond. Ail of them were slwo found in grador sbundance hers than in any of the other watere studied. Chroogoocus and glopocapsa, as well as Spirulina were espocielly sbunaent.

The Chlorophyceae wer also completely rapresentad in glue aill rond. Spirocyra, Ankistrodesmus, Seenedesmus nd Sougeotin, as well as Stmurastrim,
were the most oomon of the green algae found in klue aill pond. Lowevor, all of the genera were nore numbrous in thia impoundment than in ayy of the other bodies of water obsorved.

Such was not the exse regardine the Protozoa. Trachslyones. Wrociena, Dinobryon and phacue were abundant while the rest of the hesticophore, though presont, did not attin the bundence obsarvod in Cash Leke. Doth Difflugia and froella were presont in roduod numbers in Blue Gill pond. All oithe ciliate were represented in this pond. No specisl ofrort is bein. mad to describe the times on mima ma minima as they fenarelly

 time 37 colla por intar of wator was sbsorvad. The ninimuan nuber of 4 cells per liter of whter was counted on Lscember 10, 1547.

Bnowlen Pond contrined representmive zonert of all of the classes or organism previously anmormted but only few of the forms prosont in the other inpoundmentio were observed. In the Bacillariacase, only the followine Eencra were found to be present: Elosira, Stophanodisous, Havioula, Mitzschia and Synedra. Spirullna and Anabaena wore the only two represontatives of the blue-grean alrae found in Snowden whers and Ankistrodesmus, Scenedesmus, Crucigenin, Steurastrum and Ulothrix wor the only chlorophyceae sexer obsarved to be present. on the other hand, all of the rhytosestigophors except Dinobryon and Uroglen were found in this pond. Only an ocosional Difflugie populetion was encountered from mons the ghizopocia equra. on the whole, the incividual eyclou for theso organame wore amilar to those oncountered in the other ponds, wower,
the populations ware less abundmat than in any of the other wators atudied. For oxmple, Staurestrum show meximua of 2,735 cells per litor on July 1, 1047, in nowden Fond, while sua gill rond wes observed to contain population of 12,309 gteurastrum on tune 11, 20:7.

Trachelomons hispida Stein showed a peat in Snowden pond on november 20, 1247, whe count of 29 odls per liter of water. In mue Gill fond the pool ocourrod on Noomber 12, mith an observed population of 1,804 edlls per liter. 947 pifilucia cells were counted in Lake Redinfton on Decomber 11, 1947, while the peak in Snowden Fond ocourred on wovember 20, 1947, with count of 31 cells per liter of water. On the whole the following general observetione could therefore be mace: Cesh Lake seoned to contein the greatest varisty of phytoplantion espacially true for the diatons. Redincton did not show guite ms much variety as Gash with respact to diatoms and much loas veriety in other categories of phytoplanicton. Blue Gill demonstrated the most corplete
 respact to the Frotozonss. This pond demonstrated the lest vorshtility
 population but had few of the other wotozoms in its waters. Nay of the diatona present in the other watore wers not found in snowden Pond. It was the poorest of the four ponds with respoct to numbers of eenert of green and bluo-green agae prosent.

The number of different phytoplankters present in the water did not necessarily indiente the bundance of these organisms in the water. On the whole, Canh Lake seard to heve the greatest populations of any
of whe ponds with respect to the number of individual diatoms found in the ponds. However, Blue Gill, although it did not contain as many different phytoplankters as cash Lake, showed tho greatest abundance as well as variety of green and blua-green algae. Cagh Lake also soomed to show the greatest maxima for Protozoa, especially in the case of the Phytomasticophora. Blue Gill also sppered to have large populations of a few of the Protozo even the varioty was limited. Lake hedington soomed to contain the largeat populations of Rinizopoda. On the other hand, Snowden fond, lithough shoning large number of different protozoa, especielly of the Phytomestigophora, hed the lowest number of these orgenisms of any of the impoundments studioc.

Another senerel observation thet wes mace on all of the ponds wes the differences in populations of phytoplankton in different stations on the same body of weter. It was found that stations 5 , 3 and 2 , on Cesh Leke contained the lareest populations of phytoplankton in the most general sense. Shis was found to be partioularly true for green and blue-green alge at stations 5 and 2. All of the stations or Cash Lake seomed to contain generally sinilar mounts of diatoms, although stations 3. 4 and 6 aeemed to be the most consistent in this respect. Station 2 , as well as stations 1 and 5 seemed to hold the most consistentiy abundant Frotozoan populetions. Station' 5 semed to show this cheracteristic best for the phytomastirophora and the ciliates.

In Lak Redington, the stations 1 and 2 wore vory moh alike in respeot to reriations in phytoplankton populations. Sthtion 3 sometines showed a greater number of Protozons, but the varistion was not significantly largo. This was glso true for the diatom populations. Relatively,
smaller populations of blue-green nd groen lege were notseed at timeo in stotion 2 but gin, the dircerances from atotions 1 gnd 3 were not signifiontly lerge. In gue Gill fond, stations 1 and 2 were alka in overy respect exopt for Protozon populations that appored to fluctuate from ono station to the other at difforont intervals durine the investigation.

On Bnowden Pond, large variation occurred between stations 1 and 3. Suation 1 appeared to contain the larger manounts of most of the phytom plankton. Little difference was noted between stations 2 nad 3 . Stetion 4 also was observed to oontain populations which were more closely related to station 1. However, the difference between station 1 and station 3 wes not as consistently variable ath from station 1 and 3. Herever possible, the populntions of the difforent stations were sverged togethor in order to give general figuro of productivity. This was especinlly nocessary in Snowden Pond, well win , wsh Linke, whero ocemstonal narked differonces in phytoplenkton popaletions were noted. In all oses, when maximan for a partiouler plinkter wes recorded at one stetion, a similar, although not nocessarily porellel, fluctuation was noted in the other stetions of particular lake.

## DISCUSSTON

One of the most inportant problems which arose in conjunction with these limnologiosl studies, wes the question of why the impoundments were aoid in charactor. Birge and Juday (1911), and Shelford (1923), studied cid waters. They found that generally, an inorenso in acidity whe olosely norrelated with deorease in the dissolved oxygen content of the water. It wes concluad that the acidity was due to high rate of orgnic acid synthesis from products of decomposition. Since oxygen was necesary part of the synthenis, it decrensed ss the rate of acid production ineressed. On the other had, Jowell and Brown (1924), from their studies of celdity in Bly luddy River of Illinots, concluded thet it wa result of the minaral eoids dissolved in the water. They further notieed that there was a large anount of plant material in the etream whioh would auggest an abundant mount of oxygen present in the water. During their invastigations on Vineent Lake, Jewell and Brown (1924), agin concluded that the acidity was organio in character, arising in this ease from the bog-like margins of the lake. The oxygen supply was not deploted in the lako itself, prom viding further evidence that the oxygen oycle does not necesserily have to be depleted during periods of high acidity.

Thus, widity may be due to the preance of orgenic add which in turn may inve been synthesized in the some whters from products of decomposition present in the surface layers or on the bottor. It also follows thet the orgenic ecids myy originate round the margins of the
body of met. (wolch, 1930). Aqustic plats sud animis my produce slight conditions of cidity noted by Jewall and grom (1224). Howevar, it is doubtrul if this last souroo pleys an faportant part in ineressine the acidity of body or water studiod, since the aquatic vegetation is not bundent. Aoid enviroments any lso producod by the presence of miaeral aoids in the waters. Nineral acids my enter the water from mine shafts, oxcavations, or acid water wolls via strems feeding the body of whtor. (Lackey, 1938).

None of the above conditions seomed to explain satisfactorily the acid oheracteristios of the impoundments studied on the patuxent Research Refuge. It is true that the bove ares containg an underiying stratum of Cretacioum material which seems to be acid in charecter. Howevar, the soure is not dequeto nough to explain the zenerally characteristic fluctuations in ecidity thet were observed in these ponds. Acidity producad s result of runoff slso would not show such of a semsonal variability as oacurred in Cosh, Redington, Snowdon and Biue Gill ponds. (Lindemen, 1941). Undoubtediy 11 three of the beve sources contributed in som degree to the noid content of thes bodies of water.

An examination of the ocher physical and ohemicel fectors of these watert seems to afior another possible oxplangtion of their soid ohsracteristics. All of the ponds are relatively ahallow inpoundments that appear to exhibit no thermal or chemioal stratification, being similar in that respect to the bodies of water investigated by Chander (1940). It was also observed thet the conductivity wes relatively low in all 4 of thesa ponds as wes the alkalinity. On the other hand, the
free carbon dioxide and acidity as well as the dissolved oxygen wes relatively high. Finmily, all 4 pond were found to heve very low calcium nd magnesium content, indiceting the waters to be soft. (Tressler and Bere, 1934).

An exemination of the seasonal veriftions of the sove fectora showed, with the exception of short apring nd fall period of fluctum ation, free carbondioxide and eidity ronched their peeks curing the winter and were at their minimum during the sumer. This was also true for oxygen. Conductivity ws at a relative maxinum during the sumer and at minimum during the winter but showed short peaks during the spring and fill. Correlation of these factors seomed to offer a plasible explanation for the characteristio acid conditions of the ponds. (See Figurea 17 and 18).

An exaess of free carbon dioxide wes found to be present in the waters. During the hot sumer months the amount of earbon dioxide presont was naturally at minimum (Juday and Birge, 1935), while the reverse was true during the winter months.

When free or excess arbon dioxide cowbined with water it formed earbonio cid. (Weloh, 1935). If thero mepprecinblo mounts of calcium or manesium orbonates (mono-carbonates) proant in the mater, the carbonic acid combines with the unsoluble mono-oarbonetes to field soluble bicarbonates. In the ponds studied we iind minimum amount of carbonates as indicated by the low alkalinity as well as guantitative tests whioh were un at one period. Thus the earbon dioxide oontent continues to mocumulate within teaperature limiations until there is a
rather high concentration of earbonic acid. Thus there is aireot corralation betwon eerbon dioxide and acidity. As the etdity inereasas the ikelinity sems to cecrease to some oxtont, possibly indiceting thet the small amounts of osrbonates that are present heve been charged to the soluble blemrbontes. This possible explanetion seens to fit the chemical and physion data well as the season variations in acidity observed in the ponds. From the observetion it can be tated that all four ponds followed the same trend, dacounting individual varintions.

Another problem conoerned the extent of the relatiounhip between pH and the total acidity. It was noted that as oidity rose, the pH fell and conversely, when the pH rose the ocidity fell. Again, correlation of the veilable data seened to of fer a satisfectory axplanation.

Cheatum, Longneckor and Metler (1942) showed thet although the acidity content of body of water might bo reletivaly high, the pH did not necesarily have to be low. These nuthors showed that the oruano materiala derived from decaying basio panty vecetation hela the plito a rathor hich level. It should be noted thet when monoearbonates are prosent in natural weters, they my act as buffors bocause the oarbonic acid oombines with the monocarbontes to form soluble bioarbonates. Whon some of the osrbon dioxide is withdrawn during photosynthesis, (Wiobe, 1930) the insoluble carbonate and orbonic acid are gain formed. Later, if more oarbon dioxide is added it combines once again to form soluble bicarbonates. This reaction is known as the buffer effeet and prevents extrem variations in the hydrogen ion concentration. (Tuelch, 1935).

In all pi the ponds on the pretuxent Resaroh pefug soft water conditiona prevailed. This of oourse, implies minimum onount of available nonocarbomeat. In the asane of theso substances with their buffar aotions, complete ionizetion on be broughtabout with a resulting lowering of the pir value. During the wintor when the water
 bonic ala formation results in closely oorrelated lowerint of the pu value. In the ammer tho onrbonia acid content of tho water fell With consequent incremse of the pH level. (Juday nd Birge, 1935).

Still nother problem concerned the poseible roles of pit and aeidity in connection with other general physian and ohenieal characo terisaties of the four impoundmentia.

Do acidity and pildreetly influenoe the other physian mad ohemieel conditions or are they nerely indicetite of other conditionsf
 an index of othor underlying conditions whioh have more direct relstionship with laike biote Judsy, Birge, Kamar and Robinson, (1028) olajmed that there wa no oorrelation betwoen the mount of phomphorous and the oarbon dioxide in the wer.

It wh obsorved chat all of the ponde (Cosh, Redington, slue 0111 and Snowden), were of the oft water type. The conductivity was relttively low th 11 times, partioulariy during wintor. Alkalinity was also observed to be low during the period of investigation. Tranapareney was observed to inorease through the fill and into winter with the axception of short poriod during fall when arop was noted.

Tressler and Bere (1934), found thet soft water was not as productive as hardweter lake. They also found that genersily, dammed streans were productively poor. Juday (1942) also found the productivity of soft waters low. found that the dissolved organic matter are much lower in soft waters than in hard wera. welch (1936) potes thet the rate of conduotivity is elosaly related to the amount of dissolved arganic materisis conteined in the whter. The greater the mount of dissolved orgenic abstances, the greater the amount of electrolytes In the water, with a consequent incrase in the conduotivity level. There is also close association between the amount of dissolved orgicic meterial ad the amount of carbonates in the water. When there is an increase in dissolfed organic material there also aseme to be an increase in the lavel of the carbonetes. An inerease in turbidity is usually associated with an inorease in the mount of dissolved organio substanoe present in the water. Thus, the oonductivity, and to smeller extent, turbicity, way be goneral indication of the level of dissolved organic substances. Lack of carbontes mal a bo an indieation in the inpoundments thet were stuciec.

Thus, if we correlate all of these fetors, sone indicstion of the inportanae and relationships of eidity to other chamical ma physicel factors may be noted. The four soft water ponds contained very small asounts of dissolved orgaio terial. This was shown by the low conductivity rete and the lack of onrbonetes. Increases were noticed in the turbidity level during the sunmer. Mhis obsorvation, plus the observed leck of turbidity during the winter was nother indication that
 minhmum buffer effect as whi as lack af the monooarboratea with whieh to utilize the anounts of oerbonic aoids wisch were being found. Hence, thers whs incroese in acidity as well as deorease in pH level when the cispolved orgenic meterinls on the water deoresed.

Prscipitation, wter movenent and tenperature can aso be correIated wht acidity sad pii. Although no precipitation tables are prom viced, it wes observed that the hesviest and most prolonged periods of ranfall took place in the apring and in the fall of 1947 . During these periods it was also 3002 that tha acialty dropped for short periods and the pll loval was ralad at the ame time thparemtiy the
 direatly on the impoundmants as woll so by the reaulthag inoressed flow of watar lato ponds via the stroams. Ineroased runofita woll as the sources Just eited would serve to bring in a greater anount of dissolved organio atcor thu* inoreasing the mount of buffer warials in the weters and decressing the noidity as well as raising the pil in mother fashion. Inoreased current during this poriod alao eerve to kop the seidity at low level. Fater agitation, ospeoially during moderate and wart deye seens to drive ofi portion of the oxcess emrbon aioxide in the wher nnel provent lerge accumintions of onrbonis aold.

The lowered trimsparency during those periods showed the waters wore more turbid, another indioncion of incressed organio material onterine the water of tha four ponds. Nowever, nox oxess turbidety in - wase, defotes its purposa. seciment can gredunily onuse partor che
covering being buried under the ailt brought in by the streams. (Irvin, 2945). Roolofs (1944), points out that land runoff oan substantially influence the chemical charecteristios of body of water. During the periods of incresed weter flow, the oldity dropped a has been mentioned. This might be another indicetion that organic eolds were not ontering the water in large enough quentities to ouse epreciable difference in the aciaity. It may also be possible that part of any aoid material entering the pond through runoff were being buffered by chomical substances contained in the same runoff. It is therefore felt thet this further indicates that only anall part of the acidity wa due to materials derived from the land soils. It is possible that this source contributed more to future acid condition through sedimentation and consequent losa of available buffer nd ot her necesstry constituents of the water. The abundeney of oxygen which would not slways be present wh moldity wes due to oreanie acids as result of decomposition products of the soil being placed in the water, did not contribute to the totel aoidity of the ponds to any aubstantial degree.

Probably the most importent problem which erose during the inves. tigation was the reletionship betwean cidity and plito phytoplankton distribution an produotivity.

Wes the phytoplankton influenoed direotly or indirectly by the acid enviroment, or was addity and the pll levels merely and indicmtion of other factors which influence the biological motabolism of the pondst Lackey (1838), belioves that an abundant but narrow group of organisms may be upported in highly acid waters. Suspended forman in acid
watera from mine runs adi cid wolls wore rare (Lnokey, 1030). Weloh, (1036) found a divorsity of phytopleniston in the ald whors wison he studied. However, quantitatively, they wore low. Sohef sor and Robinson (1939), found poor populations of phytoplankton in their studies of slightiy acid waters. Rawson (1033) points out that organ ism ona withscand a wide renge of pH. Welch (1933), found more phytoplankton in the waters than sooplankton and olkined that tio laval of productivity was low. Jewell and erown (1924) noted the nosence of fresh water mussels from the acid wators which they studied.

The distribution of phytoplakton in the four impoundments was not as great as has been found in neutral alkeline wators. Chanaler (190), found 86 algal forms, including 40 Chlorophyoene. It 15 possible thet there is direct relationship betwen the low biolocioal productivity of cid waters and the low organio content of soft waters. Phosphorus wes present but never abundent. uitrites and mitrates from ocessionm andyais proved to be very low. Cnlotum madmenesium were vory low. Silica t times was present in large gusntition as was fron.

On the whole, the periods of man for the bove chomical meterinls soened to occur during opring or ourly sumer and also in wumat This was also true for oxyem, conductivity, alkalinity and turbidity. on the whole, the largest number of naximua poaks in the greatest number of phytoplankton geaera also oceurred during similar periods. It seems logiegl to esum that barring adverse physical conditions and other apecial considerations, phytoplankton in ths ponds studied, reached a
maximu populstion at the same time or shortly before or after periods of abundence of nutrient terials. Meloche, ot al, (1938), noted thet at one time diatoma inereased at the same time that silice deareased. At another time diatom increases ocurred while the silice wastill abundant. Domogalla and Fred (1926), said that mincrese in phytoplankton caused decrese in phosphorus.

Although periods were observed wen there seemed to be on increese of phytoplankton taking plece coincident with dearensed but still abundant silica and phosphetes, there were also periods of phytoplaniton when the nutrient meterials had not yet roached their maxima but were sbundant, nevertheless. During the hot sumare months, as woll as during the midwinter period, both phytoplankton nd nutriont metorisls such as silica snd phosphates wer at minimum. This was also true for iron.

There is posibility thet the turbidity mave interfered with the meximum peaks of phytoplankton in some instances. Chander (1942). expounds the theory that aigh turbidity content just before or during a phytopiankton pulse might intorfere with the maximum production of the pulse. Rice (1917), ole ims thet limited phytoplankton population may reach mediun state of abundancy in spite of very mall amount of nitrates and nitrite. Riley (1940), also seens to feel that some degree of productivity will occur even though nitrates are almost sbsent and the phosphetes reduced.

Hutchinson (1941) suggests that forric an forrous iron in suspended state may be souree of iron for the phytoplankton. Pearsall and C. H. Mortimer (1939), olaim that an exeess of iron may take the
the necessary oxygen out of the water. Apparently this dia not oocur in any of the ponds observed. Ensele (1936), takes the iew that iron my procipitate the phosphates nd cuse them to be lost to tho orgundmas. This may take place in ofd waters, however, there is no evidoneo to state definitely that it took place in the four ponda of the Patuxat Researeh Refuge. It is therefore possiblo that the index of phytoplankton productivity in Cash Lake, Lak Redington, Blue Mill Pond and Snowden Pond my be acidity and pH.

A rooppitulation of the probable ovomta that take plaoe an thee ponds
 There is basis for steting that phytoplinton yundanoe dopendie upon the abundance of nutrient matarinls in the water aspoin lly diasolved orgenic matorials. It has boen shown that the dissolved orianio naterinl may contain not only nutrient matarials but al mo chamioal substances which aerve to buffer the water and provent change of pH. It hat also ben oxplenned thet the substanes which serve a buffers also combine with oarbon diaxide to prevent an acoumutation of carbonic aid. The presonce of organio material may be damonstrated by measurement of the electrolytes in the wetar asell as by examinetion of the turbidity of the watar.

If the dissolved orgenic material is lackng it is asumed that the abundnoe of phytoplankton will be 1imitod. At the ane time the absonoe of buffers and substances combining with esrbon dioxide will allow the latter to acomulate nd combine with the wter to form enrbonic acta. other mineral and orgaic wots wy alao bo prescnt. Skno there my not bo ny buffers present in the sosence of dissolved nutrients tho aida will ionize
and the hydrozen ion concantration will change, giving us aidity of a high intensity or low pil. Alkalinity will slso deorease. Lowored temperatures aily result in inereased acicity and lower phi by allowing a Ereater mount of carbon dioxide to acoumulate and thereby conbine with the water to form oarbonic acid. Thus, wo en say that ooidity, together with elosely fluctuating pilmy serve an index of the mount of dissolved organic nutrient material in the water whioh in turn infers that the eidity together with the pH may serve as indiontors of the phytoplankton abundanee.

Jowell and Srown (1924) noted that mollusos were absent from some acid waters baceuse of the haful effect the seldity mey have upon the shells. They further pointed out that the sunfish Lepomis gibbosus enn tolerate wide range of phi. It has miready been pointed out by numerous investicators that some mumance of phytoplankton may ocour but thet number of difierent orgenisms re relatively limited. Thie was notioed
 it is questioneble if the cidity and pll alone act as limiting factor Cor number of different kinds of or ganisms simply beonuse these organisms omot ithstand a wide range of pH. It is more likely chat the watera cannot support linited amount of phytoplankton due to the low content of nutrients. This, long with acidity and pHan other factors such as high turbidity and low temperature, my serve as continued 1imiting factor for some of the less hardy organism.

It seems therefore, quite likely that acidity of relative high intensity (low pif) may serve primarily as an index of other chomion
conditions of the water an well as an index of the bundence of phytom plankton. The acidity may serve secondarily as limiting faoter, probebly together with several other chemical and physionl factora of the waters atudied.

Through oreful examation of the tables and graphs, it can be seon thet on the whole, the nbundence ad distribution of the phytoplankton in the ponds depended upon consistent supply, principally, of nutrients and other favorable physiosi and ohemionl conditiona rather than upon the acidity by itself.

## 

A limnological investipetion with ospecial regard to the digeribution and bundence of phytoplankton in acid waters, was aaried out on four artificial impoundments. The four impoundments had been constructed over a period of ten years by oxcavating brook beds and putting up dams. These ponds ranged in size from 53.3 acres in mrea to 2.1 acres and all gave characteristic soft water acid reaction when tested.

The studies were carried out over a period of eleven months, bem ginning June $194 \%$ and includea examination of the physical, ohemical and biological chmacteristics of the water

Phyalcal examination included studiea of the ar and wator temperatures, transparency, depth, turbidity and oonductivity. Chemical examination included studies of the aidity hydrogen ion concentration, alkelinity, carbon dioxide, oxygen, iron, phosphorus, siliea and periodic tests of the caleium, gnesium, nitrite and nitrates of the waters.

The phytoplankton wes collected nd examined by the Sedgewick rafter mithod. Calculations were aocording to Littleford Neweomb and Shepherd modification.

Sinultaneous investigations were also oarried out on the sooplankton, Insect, fish and plant populations of the area. It was observed that the physical, chemical, and biological factors undergo seasonal as well as other fluotuations such as Iluctuations due to water movement. Approximately 50 different genera of phytoplankton in varying derees of esasonal abundance were oberved.

A total of 3,822 separate samples were obtained during thia investigetion. The data obtained were correlated and are the basis for the following conclusions:

1. It was concluded that the four ponds studied were of the soft water type and showed distinct acic charecterstics.
2. The mount of nutriente present in the mater wa low in comparison with medium or nard waters.
3. There was limited distribution oi phytoplankton present in these waters. Although the phytoplankton showed characteristic poaks, the bundance was not 9 high as in neutral or alialise waters.
4. The acidity and pH of these ponds seemed to serve as indicators of the other chomical and physical conditions occurring in the waters.
5. The intonsity of the acid in the water was probebly due to a lack of buffer and nutrients present in the waters studied es well as an excess of carbon dioxide in the water. There is evidence that other acids, probably organic, as well as chemical in nature, contributed to the total acidity of the impoundrents.
6. It was ooncluded that the acidity and pH arved primarily as an index of the phytoplanizton abundance. Ths intensity of the acidity ( pH ) along with other agents in the wator may act as limiting factor of phytoplankton. There is no conclusive ovidence to substantiate this theory, however.

TAELE 1.
SNOWDIN POND
WATER TGMPGRATURE IN DEGREES CHNTIGRADE

| Deto | Snowden I | Snowrien II | Snowden III | Snowdon IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 26.0 | 25.0 | 25.0 | 25.5 |
| 7/16 | 31.0 | 31.0 | 31.0 | - |
| 7/23 | 28.0 | 27.0 | 26.0 | 27.0 |
| 7/30 | 23.0 | 28.0 | 28.0 | 28.0 |
| 8/7 | 29.00 | 29.50 | 29.50 | 29.10 |
| B/15 | 31.0 | 30.0 | 30.0 | 30.0 |
| 8/20 | 31.50 | 31.50 | 31.50 | 31.50 |
| 8/27 | 23.50 | 28.50 | 28.50 | 28.0 |
| 9/9 | 26.0 | 26.0 | 26.0 | 20.0 |
| 10/1 | 21.40 | 21.40 | 21.40 | 21.20 |
| 10/15 | 19.20 | 19.20 | 19.20 | 19.10 |
| 11/10 | 11.0 | 11.0 | 11.0 | 11.9 |
| 11/19 | 6.0 | 6.0 | 6.0 | 6.0 |
| 12/11 | 4.20 | 4.20 | 4.20 | 4.10 |
| 12/17 | 3.0 | - | - | 3.0 |
| 1/10 | 4.0 | - | - | 4.0 |
| 2/18 | 3.20 | - | - | 3.10 |
| 2/27 | 5.0 | 5.0 | 4.50 | 4.50 |
| 3/5 | 8.30 | 3.30 | 8.30 | 8.10 |
| 3/17 | 11.40 | 10.20 | 11.0 | 10.50 |

TABLE 2.
BLUE GILL POMD
Water tempgrature in dearees cemtigrade
Date
Bluo Gill I
E2ue G11 II
$6 / 28$
24.0
24.0

6/26
25.2
25.2
$7 / 8$
7/16
26.6
26.6

7/23
32.0
32.0

7/50
24.0
24.0
26.4
26.2
$8 / 7$
8/13
8/20
30.2
30.0
30.0
30.0
32.0
32.0

8/27
30.5
30.8
$9 / 9$
27.0
27.2

10/1
20.0
20.0

10/16
17.0
17.0

10/26
14.8
12.0
7.0
5.4
4.0
4.0
4.6
$2 / 18 \quad 2.0$
2/27
$3 / 1$
$3 / 5$
3/17
4.2
6.6
9.0
14.0
2.0
4.3
6.6
9.0
14.0

## TA最 8.

WAK R REDIMCTOM


| Ente | Emington | Redington II | Redington III |
| :---: | :---: | :---: | :---: |
| 6/86 | 25.0 | 25.1 | - |
| 7/1 | 31.0 | 81.0 | - |
| 7/3 | 27.0 | 27.2 | - |
| 7/8 | 26.0 | 26.0 | - |
| 7/16 | 80.0 | 30.0 | - |
| 7/28 | 26.0 | 26.2 | 28.0 |
| 7/30 | 28.0 | 28.2 | 28.0 |
| $8 / 7$ | 80.0 | 80.0 | 30.1 |
| 8/13 | 30.0 | 80.0 | 30.0 |
| $8 / 20$ | 27.0 | 27.0 | - |
| 4/87 | 26.0 | 25.0 | - |
| $\%$ | 84.0 | 24.0 | - |
| 10/1 | 17.0 | 17.2 | 17.0 |
| 10/16 | 18.0 | 18.1 | 18.0 |
| 10/28 | 0.0 | 9.0 | 8.8 |
| 11/20 | 8.5 | 8.6 | 8.4 |
| 11/19 | 4.0 | 4.0 | 4.2 |
| 12/11 | 6.0 | 6.0 | 6.2 |
| 12/17 | 4.0 | - | - |
| 2/10 | 2.8 | - | - |
| 2/18 | 5.0 | 5.0 | - |
| $3 / 1$ | 8.0 | 8.2 | - |
| 8/17 | 12.0 | 12.4 | * |

CASH LAXE
WATER TEMPERATURE IN DEGREES CENTIGRADE

| Date | Cash I | Cash II | Cash III | Cash IV | Cash | Cash VI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11 | 35.0 | 35.5 | - | - | - | - |
| $6 / 17$ | 25.0 | 24.0 | - | - | - | - |
| 6/24 | 26.0 | 26.0 | 26.0 | 26.0 | 26.2 | 26.0 |
| 6/26 | 25.0 | 25.0 | 25.0 | 24.8 | 25.0 | 25.0 |
| 7/1 | 30.0 | 30.0 | 30.0 | 30.0 | 30.2 | 30.0 |
| $7 / 3$ | 27.0 | 27.0 | 27.0 | 26.8 | 28.0 | 27.0 |
| 7/11 | 30.2 | 30.0 | 30.4 | 30.4 | 29.8 | 30.0 |
| 7/16 | 29.0 | 28.0 | 28.0 | 28.2 | 28.6 | 28.0 |
| 7/23 | 26.5 | 27.0 | 27.2 | 27.2 | 27.2 | 27.0 |
| 7/30 | 27.0 | 27.0 | 27.0 | 27.0 | 27.2 | 27.0 |
| 8/7 | 29.0 | 29.0 | 29.0 | 29.0 | 28.8 | 29.0 |
| 8/13 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
| 8/20 | 28.8 | 28.6 | 29.0 | 29.0 | 29.0 | 28.6 |
| $8 / 27$ | 27.2 | 27.0 | 27.0 | 27.2 | 27.2 | 27.0 |
| $8 / 9$ | 23.5 | 23.6 | 23.0 | 23.0 | 23.8 | 23.6 |
| 10/1 | 16.0 | 16.0 | 16.0 | 16.4 | 16.6 | 16.0 |
| 10/20 | 12.5 | 12.4 | 12.6 | 12.4 | 12.6 | 12.4 |
| 11/10 | 9.0 | 9.0 | 9.2 | 9.2 | 9.4 | 9.0 |
| 11/20 | 6.5 | 6.6 | 6.8 | 6.8 | 6.8 | 6.6 |
| 12/11 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 |
| 12/17 | 4.5 | - | - | - | , | . |
| 1/10 | 3.0 | - | - | - | - | - |
| 2/18 | - | - | - | - |  |  |
| 2/23 | 3.8 | 3.6 | 4.2 | 4.2 | 3.6 | 3.8 |
| 3/5 | 6.0 | 6.0 | 6.0 | 6.0 | 5.8 | 6.0 |
| 3/17 | 12.4 | 12.0 | 12.4 | 12.4 | 12.4 | 12.2 |
| 3/31 | 15.0 | 15.0 | 15.0 | 15.0 | 15.4 | 15.0 |
| 4/3 | '14.2 | 14.3 | 14.2 | 14.2 | 14.3* | 14.4 |

TABLE 5.


TABLE 6.
LAKE REDIMGTOI
IHCHES OF TRANSPAREHCY (SECCEI DISK)

| Date | Redington I | Hedington II | Redington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 7.0 | 9.0 | \#o data |
| 7/1 | 4.0 | 3.0 |  |
| 7/3 | 4.0 | 4.0 |  |
| 7/8 | 1.0 | 2.0 |  |
| 7/16 | 4.5 | 5.0 |  |
| 7/23 | 6.0 | 5.0 |  |
| 7/50 | 7.0 | 6.0 |  |
| 8/13 | 7.0 | 8.0 |  |
| 8/20 | 8.0 | 7.0 |  |
| 8/27 | 10.0 | 9.0 |  |
| $9 / 9$ | 14.0 | 14.0 |  |
| 10/16 | 17.0 | 15.0 |  |
| 10/26 | 17.0 | 17.0 |  |
| 11/19 | 16.0 | 16.0 |  |
| 12/17 | - | - |  |
| 1/10 | - | - |  |
| 2/18 | - | - |  |
| $3 / 1$ | 6.0 | 5.0 |  |
| 3/17 | 4.0 | 2.0 |  |

TABLE 8.
SNONDEN POND
transparemcy in inches (secchi disk)

| Dete | Snowden I | Snowden II | Snowdon III | Snowden IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 38.0 | 34.0 | 34.5 | bottom |
| 7/16 | 32.0 | 32.0 | 34.0 | n |
| 7/23 | 35.0 | 36.0 | 35.0 | " |
| 7/30 | 39.0 | 40.0 | 40.0 | " |
| 8/7 | 33.0 | 35.0 | 36.0 | * |
| 8/15 | 17.5 | 25.5 | 30.0 | n |
| 8/20 | 13.0 | 18.0 | 22.0 | * |
| 8/27 | 9.5 | 12.0 | 14.0 | " |
| 9/9 | 25.0 | 28.0 | 30.0 | $\cdots$ |
| 20/1 | 14.0 | 16.0 | 26.0 | * |
| 10/15 | 17.0 | 18.0 | 21.0 | * |
| 11/10 | 23.5 | 27.0 | 27.0 | * |
| 11/19 | 28.0 | 29.0 | 30.0 | * |
| 12/11 | 32.5 | 35.0 | 34.0 | * |
| 12/17 | 32.5 | 35.0 | 34.0 | n |
| 1/10 | - | - | - | - |
| 2/18 | - | - | - | - |
| 2/27 | botton | 29.0 | 35.0 | - |
| $3 / 5$ | 27.0 | 26.0 | 29.0 | bottom |
| 3/17 | 18.0 | 18.0 | 20.0 | * |


| 98 | 28 | ¢ 8 | ¢8. | ¢8 | 98 | LT/8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 98 | 88 | 88 | \&\% | 88 | 9/8 |
| - | - | - | - | $\ddagger$ | \%8 | 82/\% |
| - | - | - | - | L8 | 98 | 81/2 |
| - | - | - | - | 98 | E\& | OT/L |
| 28 | 08 | Tع | $2 \varepsilon$ | 98 | 38 | $4 \mathrm{~L} / \mathrm{T}$ |
| 98 | 98 | 9\% | 9\% | 焐 | S8 | IT/zT |
| E8 | \%8 | 98 | 98 | S8 | 98 | OZ/LI |
| 08 | 28 | OE | OE | 82 | ts | 0t/rt |
| 42 | 62 | 42 | 48 | 98 | 82 | OZ/OT |
| 3 | \%\% | 92 | 92 | 96 | * | T/OT |
| 92 | 92 | 92 | s6 | 92 | \$2 | 8/6 |
| 12 | 92 | 62 | 42 | 42 | 42 | $L 2 / 8$ |
| 42 | 62 | 42 | sz | 86 | 92 | 08/8 |
| 28 | * | 28 | 28 | OE | 28 | 5T/8 |
| 82 | 62 | 62 | 82 | 62 | 82 | 4/8 |
| 62 | 62 | 88 | 8 8 | 88 | 62 | O¢/L |
| 62 | I8 | te | Os | 62 | 08 | 92/4 |
| 82 | 62 | 62 | 82 | 62 | 68 | 91/4 |
| O8 | 62 | 62 | 82 | 08 | 82 | TT/L |
| 96 | 42 | 92 | st | 98 | ¢ | $8 / 4$ |
| Is | 08 | 62 | 62 | 62 | T\& | T/L |
| \% ${ }^{\text {E }}$ | 82 | 08 | 02 | O8 | \% | 92/9 |
| 98 | 28 | * | \% | 78 | 28 | -2/9 |
| - | - | - | - | $2 \varepsilon$ | 95 | LT/9 |
| - | - | - | - | $9 \varepsilon$ | \% | TT/9 |
| 1A प880 | A 4 Em | AI प $=$ E0 | III प*80 | IX 4880 | I 488 | 9791 |

-6 มTมV

| - | 38 | 08 | LT/8 |
| :---: | :---: | :---: | :---: |
| - | 98 | 88 | 1/8 |
| - | 8. | 98 | 81/6 |
| - | - | 98 | 01/T |
| - | - | 0\% | $4 T / E T$ |
| 28 | ge | 98 | Tt/zt |
| 88 | 08 | 22 | 6T/TI |
| 98 | 78 | * 8 | OT/TT |
| 08 | O8 | 98 | 92/0T |
| 97 | 27 | 68 | 9t/ot |
| 27 | 03 | $0 \%$ | 1/or |
| * | 87 | 88 | 8/6 |
| - | \# | Ot | L2/8 |
| - | Ob | 88 | OL/8 |
| - | 07 | 98 | 21/8 |
| 07 | 88 | 98 | L/8 |
| 08 | 98 | 88 | $08 / 2$ |
| 88 | 88 | Os | $82 / 4$ |
| - | 02 | 08 | 9T/4 |
| - | OS | 62 | 8/L |
| - | 38 | 08 | $9 / 1$ |
| - | 恶 | \%8 | 1/4 |
| - | 08 | Os | 98/9 |


| LS | S8 | LT/8 |
| :---: | :---: | :---: |
| 68 | 08 | $9 / 8$ |
| O8 | 62 | $1 / 8$ |
| 92 | 92 | Lz/ $\%$ |
| z2 | 02 | $8 \mathrm{~T} / 2$ |
| 22 | 96 | OT/L |
| 92 | 92 | LT/BT |
| 92 | 92 | TI/ZT |
| 45 | ¢ $\mathbf{T}$ | 6T/TI |
| 02 | 6 T | or/tr |
| 61 | 8 L | 92/01 |
| $L \tau$ | 4 I | 91/01 |
| 92 | 92 | t/ot |
| $\tau$ | 12 | $6 / 6$ |
| $6 T$ | 02 | 22/8 |
| te | 8 T | 02/8 |
| T2 | 81 | 02/8 |
| 12 | 02 | ¢1/8 |
| 88 | t\% | $4 / 8$ |
| 61 | 61 | 08/4 |
| 02 | 02 | $88 / 4$ |
| $4 t$ | 81 | $91 / 4$ |
| 61 | 6T | 8/4 |
| 92 | 72 | 92/9 |
| 42 | 82 | 81/9 |
| Q ontr | ente | eqEa |

PREM 12.

> WuFDEl POHD
> COMDCPIVIT IN RECIPROGN jGMOMRS

| Eate | Snowden | Snowden II | Bnowden ITI | Snowdan IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 36 | 35 | 35 | 36 |
| 7/16 | 33 | 35 | 35 | 30 |
| 7/23 | 30 | 36 | 35 | 35 |
| 7/30 | 36 | 36 | 42 | 40 |
| $8 / 7$ | 35 | 37 | 37 | 36 |
| $8 / 15$ | 34 | 35 | 38 | 40 |
| 8/20 | 33 | 35 | 35 | 35 |
| 8/27 | - | 32 | 36 | 34 |
| 8/9 | 35 | 35 | 35 | 33 |
| 10/1 | 37 | 38 | 30 | 10 |
| 10/10 | 30 | 37 | 37 | 40 |
| 11/10 | 42 | 41 | 40 | 44 |
| 11/10 | 40 | 42 | 30 | 10 |
| 12/12 | 43 | 43 | 43 | 47 |
| 12/17 | 50 | - | - | 50 |
| 1/10 | 35 | - | - | 38 |
| 2/18 | 37 | - | - | 39 |
| 2/27 | 40 | 35 | 35 | 38 |
| 3/5 | 36 | 33 | 34 | 39 |
| 3/17 | 40 | 36 | 35 | 40 |

TABLE 13.
SWOWDG POND
myDROCR ION GMCmmmalo

| Date | Snowden I | Snowden II | Snowden ITI | Snowden IT |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 5.00 | 5.00 | 5.30 | 5.00 |
| 7/1e | 5.90 | 3.90 | 5.90 | 3.80 |
| 7/23 | 5.80 | 5.80 | 6.80 | 8.00 |
| 7/30 | 6.00 | 5.00 | 5.90 | 3.00 |
| $3 / 7$ | 0.00 | 5.90 | 5.80 | 6.30 |
| $8 / 15$ | 5.0 | 5.10 | 5.0 | 5.10 |
| 2/20 | 0.10 | 0.10 | 0.1 | 6.30 |
| $8 / 27$ | 6.0 | 5.80 | 5.50 | 0.0 |
| $9 / 5$ | 6.20 | 8.20 | 0.20 | 0.30 |
| 10/1 | 0.0 | 6.0 | 0.0 | 5.00 |
| 10/15 | 6.0 | 6.80 | 5.80 | 0.0 |
| 11/10 | 5.90 | 6.0 | 8.0 | 0.0 |
| 11/10 | 5.90 | 6.0 | 5.90 | 0.0 |
| 12/11 | 5.90 | 6.0 | 5.90 | 6.10 |
| 12/17 | 5.80 | - | - | 6.0 |
| 12/10 | 5.30 | - | - | 6.0 |
| $2 / 13$ | 5.80 | - | - | 5.80 |
| $2 / 27$ | 5.60 | 3.70 | 5.30 | 6.80 |
| $3 / 5$ | 6.00 | 0.80 | 5.80 | 0.10 |
| $3 / 17$ | 0.90 | 0.0 | 0.10 | 6. 10 |

TABEE 14.
HEDE CIL PONT
IIDROOEN IOR COMCEMTRATIOI

| Ete | ELue 611 I | EIue 611 II |
| :---: | :---: | :---: |
| 6/18 | 6.0 | 6.1 |
| 8/26 | 6.1 | 6.1 |
| 7/8 | 6.8 | 6.2 |
| 7/16 | 6.4 | 6.4 |
| 7/2s | 6.6 | 6.6 |
| 7/80 | 6.4 | 6.8 |
| $8 / 7$ | 6.3 | 6.8 |
| 8/13 | 6.2 | 6.t |
| 8/80 | 6.2 | 6.8 |
| 0/87 | 6.1 | 6.1 |
| 9/9 | 6.0 | 6.0 |
| 10/1 | 6.2 | 6.2 |
| 10/16 | 8.8 | 6.0 |
| 10/26 | 5.9 | 5.9 |
| 11/10 | 6.0 | 6.0 |
| 11/10 | 6.0 | 6.0 |
| 12/12 | 6.3 | 6.8 |
| 12/17 | 6.0 | 6.1 |
| 1/10 | 8.8 | 5.8 |
| 2/18 | 5.2 | 5.2 |
| 2/87 | 5.3 | 6.4 |
| 3/1 | 5.7 | 6.7 |
| $3 / 5$ | 5.8 | 5.8 |
| $3 / 17$ | 5.9 | 8.9 |

TAELB 15.
LAKE REDINGTON
HYDROGEN ION CONCENTRATION

| Date | Redington I | Redington II | Redington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 6.13 | 6.18 | - |
| 7/1 | 6.35 | 6.40 | - |
| 7/3 | 6.45 | 6.45 | - |
| 7/8 | 6.26 | 6.29 | - |
| 7/16 | 6.20 | 6.20 | - |
| 7/23 | 6.6 | 6.6 | 6.4 |
| 7/30 | 6.4 | 6.4 | 6.3 |
| 8/7 | 6.3 | 6.3 | 6.3 |
| 8/13 | 6.2 | 6.1 | - |
| 8/20 | 6.0 | 6.0 | - |
| 8/27 | 5.8 | 5.8 | - |
| 9/9 | 5.7 | 5.6 | 5.6 |
| 10/1 | 5.5 | 5.4 | 5.4 |
| 10/16 | 5.5 | 5.5 | 5.4 |
| 10/26 | 5.8 | 5.8 | 5.8 |
| 11/10 | 6.0 | 6.0 | 5.9 |
| 11/19 | 6.0 | 6.1 | 6.0 |
| 12/11 | 6.2 | 6.2 | 6.2 |
| 12/17 | 6.3 | - | - |
| 1/10 | 5.7 | - | - |
| 2/18 | 5.6 | 5.6 | - |
| $3 / 1$ | 5.6 | 5.5 | - |
| 3/17 | 5.9 | 5.9 | - |



TABLE 17.
CASH LAKE
CARBON DIOXIDE IN PARTS PER MILLION

| Date | Cash 1 | Cath II | Cash III | Cash IV | Cash 7 | Cash VI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11 | 8.50 | 8.50 | - | - | - | - |
| $6 / 17$ | 8.0 | 7.0 | - | - | - |  |
| 6/24 | 7.0 | 6.50 | 7.0 | 7.50 | 8.0 | 7.50 |
| 6/26 | 6.0 | 6.50 | 6.50 | 8.0 | 8.0 | 7.0 |
| $7 / 1$ | 6.50 | 7.0 | 7.0 | 8.0 | 8.0 | 7.0 |
| $7 / 3$ | 6.80 | 6.0 | 6.0 | 6.50 | 7.50 | 6.50 |
| $7 / 11$ | 6.0 | 6.0 | 6.0 | 5.50 | 7.0 | 6.0 |
| 7/16 | 6.0 | 5.0 | 5.5 | 5.50 | 6.0 | 5.0 |
| 7/23 | 5.0 | 4.0 | 4.50 | 5.0 | 5.50 | 4.50 |
| 7/30 | 4.5 | 4.0 | 4.50 | 4.50 | 5.50 | 4.0 |
| $8 / 7$ | 4.0 | 3.5 | 3.50 | 3.50 | 4.50 | 4.0 |
| 8/18 | 3.0 | 3.0 | 3.0 | 3.50 | 5.0 | 3.0 |
| a/20 | 4.50 | 3.0 | 3.50 | 4.0 | 4.50 | 3.5 |
| $8 / 27$ | 5.50 | 4.5 | 4.0 | 5.0 | 5.0 | 4.5 |
| 9/9 | 5.0 | 3.0 | 3.0 | 5.0 | 6.0 | 4.5 |
| 10/1 | 5.5 | 4:0 | 4.5 | 4.5 | 6.50 | 5.0 |
| 10/20 | 6.0 | 5.0 | 5.5 | 5.5 | 6.50 | 5.0 |
| 11/10 | 6.50 | 5.0 | 6.0 | 6.0 | 6.50 | 6.0 |
| 11/20 | 6.50 | 6.0 | 6.0 | 6.0 | 8.0 | 6.50 |
| 12/11 | 6.50 | 6.0 | 6.0 | 6.5 | 11.5 | 8.0 |
| 12/17 | 7.0 | 7.0 | - | - | - | - |
| 1/10 | 8.0 | 9.0 | - | - | - | - |
| $2 / 18$ | 18.0 | 11.50 | $\cdots$ | - | - | - |
| 2/23 | 14.0 | 12.0 | 11.0 | 10.50 | 13.0 | 12.5 |
| $3 / 5$ | 11.0 | 5.0 | 9.0 | 3.50 | 11.0 | 9.50 |
| $3 / 17$ | 9.0 | 6.0 | 6.50 | 7.0 | 10.0 | 8.50 |
| $4 / 3$ | - | - | - | - | - |  |

TABLE 13.
LAKE REDTHGTOH
CARBCN DIOXIDE IN PARTS PER MILLION

| Date | Redington 1 | Redintan 11 | Rodington 111 |
| :---: | :---: | :---: | :---: |
| 6/26 | 8.5 | 8.5 | - |
| 7/2 | 8.0 | 8.5 | - |
| 7/3 | 6.0 | 5.5 | - |
| 7/8 | 5.0 | 5.0 | - |
| 7/16 | 6.0 | 5.5 | - |
| 7/23 | 6.0 | 6.0 | 5.5 |
| 7/30 | 5.0 | 5.0 | 5.0 |
| $8 / 7$ | 8.5 | 3.0 | 3.0 |
| 8/13 | 3.0 | 3.0 | - |
| 8/20 | 5.0 | 4.5 | - |
| 8/27 | 7.0 | 7.0 | 7.0 |
| 9/9 | 5.0 | 5.0 | 4.5 |
| 10/1 | 6.0 | 6.0 | 5.5 |
| 10/16 | 6.0 | 6.5 | 6.0 |
| 10/26 | 6.5 | 6.5 | 6.0 |
| 11/10 | 7.0 | 7.0 | 7.0 |
| 11/19 | 6.0 | 6.5 | 7.5 |
| 12/11 | 6.5 | 6.5 | 7.0 |
| 12/17 | 7.0 | - | - |
| 1/10 | 8.0 | - | - |
| 2/18 | 8.5 | 8.5 | - |
| 3/1 | 8.0 | 8.5 | - |
| 3/17 | 5.0 | 5.6 | - |

TABLE 19.
BLUE GILL POND
Carbon dioxide in parts per million

| Date | Blue GinI I | BIue GIII II |
| :---: | :---: | :---: |
| 6/18 | 6.0 | 6.0 |
| 6/26 | 4.0 | 5.0 |
| 7/8 | 3.0 | 3.5 |
| 7/16 | 4.0 | 4.0 |
| 7/23 | 4.5 | 4.0 |
| 7/30 | 4.0 | 4.5 |
| 8/7 | 3.5 | 3.5 |
| 8/23 | 3.5 | 3.5 |
| 8/20 | 3.0 | 3.0 |
| 8/27 | 3.5 | 3.5 |
| 9/9 | 10.0 | 10.5 |
| 10/1 | - | - |
| 10/16 | 5.0 | 5.5 |
| 10/26 | 6.5 | 6.0 |
| 11/10 | 7.5 | 7.5 |
| 11/19 | 10.0 | 10.0 |
| 12/11 | 4.5 | 5.0 |
| 12/17 | 5.0 | 5.0 |
| 1/10 | 6.0 | 6.0 |
| 2/18 | 8.5 | 8.0 |
| 2/27 | 8.0 | 8.5 |
| 3/1 | 8.0 | 8.0 |
| 3/5 | 7.5 | 8.0 |
| 3/17 | 5.5 | 6.0 |

7abin 0
810012 Polv


| Eate | Snowiter 1 | Enowdon 17 | Browden 1it | Bnowion II |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 8.50 | 8.0 | 8.0 | 9.0 |
| 7/16 | 5.0 | 7.0 | 5.30 | 6.0 |
| 7/23 | 4.50 | 4.50 | 4.50 | 3.0 |
| 7/30 | 5.0 | 5.0 | 4.50 | 5.0 |
| 8/7 | 5.50 | 5.50 | 5.50 | 5.50 |
| 8/25 | 6.0 | 6.0 | 3,30 | 5.0 |
| $8 / 20$ | 6.50 | 6.50 | T. 0 | 7.0 |
| 8/27 | 6.60 | 6.50 | 6.50 | 7.0 |
| $\%$ | 5.50 | 8.0 | 0.80 | 5.0 |
| 10/2 | 7.0 | 7.0 | 7.0 | 7.50 |
| 10\%/18 | 8.50 | 8.50 | 8.80 | 8.0 |
| 11/10 | 0.0 | 9.0 | 0.0 | 9.5 |
| 11/20 | 10.0 | 10.0 | 20.0 | 9.50 |
| 12/12 | 10.50 | 11.0 | 11.0 | 11.0 |
| 12/27 | 11.0 | $\bullet$ | - | 12.50 |
| 1/10 | 12.30 | - | - | 11.50 |
| 2/18 | 12.80 | - | - | 12.0 |
| 2/27 | 13.4 | 18.0 | 12.5 | 11.0 |
| 8/6 | 10,60 | 10.50 | 10.50 | 10.80 |
| $3 / 27$ | 5.0 | 5.0 | . 5.0 | 5.0 |

SWOMDEN POND
ALKALIMITY IN PABTS PER MILLION

| Dite | Snowden I | Snowdon II | Snowden MII | Snowdeni IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | - | - | - | - |
| 7/16 | 10.50 | 10.0 | 11.0 | 10.0 |
| 7/23 | 9.50 | 10.0 | 10.0 | 10.0 |
| 7/30 | 8.0 | 7.50 | 10.5 | 8.50 |
| 8/7 | 9.5 | 10.0 | 10.0 | 10.50 |
| 8/15 | 10.0 | 10.0 | 10.0 | 10.50 |
| 8/20 | 9.50 | 9.50 | 3.0 | 10.50 |
| 8/27 | 10.50 | 10.0 | 10.0 | 10.0 |
| 9/9 | 11.0 | 11.0 | 11.0 | 11.5 |
| 10/1 | 12.0 | 10.5 | 10.5 | 11.5 |
| 10/15 | 10.5 | 12.5 | 10.5 | 10.5 |
| 11/10 | 12.0 | 12.0 | 12.0 | 12.5 |
| 11/19 | 10.0 | 10.0 | 9.50 | 10.0 |
| 12/11 | 14.0 | 13.0 | 13.5 | 13.5 |
| 12/17 | 10.0 | - | - | 11.0 |
| 1/10 | 6.0 | - | - | 6.0 |
| $2 / 13$ | 5.50 | - | - | 5.50 |
| 2/27 | 20.0 | 20.0 | 20.0 | 20.5 |
| 3/5 | 5.0 | 4.50 | 4.50 | 5.0 |
| 3/17 | 4.50 | 6.50 | 7.0 | 5.6 |

2ARE 28.
BuIf gith POED
ALXALIMTTY IT PARTS PER MILLION

| Ento | ELue UIII 1 | Bue ELIT IT |
| :---: | :---: | :---: |
| 6/28 | 18.0 | 12.0 |
| 6/26 | 10.0 | 10.6 |
| T/8 | 9.8 | 10.0 |
| 7/16 | 8.0 | B.0 |
| 7/28 | 4.8 | 5.0 |
| 7/80 | 9.0 | 9.0 |
| $8 / 7$ | 8.8 | 9.0 |
| 8/15 | 9.0 | 9.0 |
| $8 / 80$ | 8.5 | 8.5 |
| 8/27 | 8.0 | 8.8 |
| \% 19 | 7.5 | 8.0 |
| 10/1 | 6.0 | 6.0 |
| 10/16 | 7.0 | 7.0 |
| 10/86 | 8.0 | 8.0 |
| 11/10 | 7.5 | 7.8 |
| 11/10 | 8.0 | 8.5 |
| 12/12 | 8.0 | 8.0 |
| 12/27 | 8.0 | 8.0 |
| $1 / 10$ | 7.0 | 7.0 |
| 2/18 | 7.8 | 8.0 |
| 2/27 | 6.05 | 6.8 |
| $3 / 2$ | 6.0 | 6.0 |
| \%/5 | 5.0 | 5.0 |
| 8/17 | 3.5 | 3.8 |


| - | $5^{*}$ | -* | 15/5 |
| :---: | :---: | :---: | :---: |
| - | 0.\% | $0 \cdot 0$ | 1/ |
| - | 0.9 | $0 \cdot 8$ | 81/2 |
| - | - | 5*9 | OT/t |
| - | * | 0.8 | 4T/ET |
| $0 \times 8$ | $0 \cdot 8$ | $0 \cdot 8$ | TT/at |
| $9 \times 8$ | $0 * 8$ | 9.0 | 6T/T |
| $0 \cdot 0 \mathrm{O}$ | $0 \cdot 01$ | 9*07 | OT/TT |
| **T | $0 \cdot 2 t$ | $\mathrm{s}^{*}$ т | 04/0t |
| eor | s*ot | s*ot | 01/0x |
| $0^{*} 8$ | ** 8 | $9^{\circ} 8$ | V/OT: |
| s* 6 | $0 \cdot 01$ | $9 \cdot 8$ | 6/6 |
| -4 | $0 \cdot 2$ | $0 \%$ | 48/8 |
| - | $0 \cdot 0$ | $0^{*} 0$ | 0\%/6 |
| - | $0 \cdot 2$ | $0 \cdot 4$ | 84/8 |
| $0 \cdot 4$ | $0 \% 2$ | $0 \cdot 4$ | 4/9 |
|  | **8 | $0 * 3$ | $08 / 2$ |
| $9^{*} 8$ | $\mathrm{s}^{\circ} \mathrm{a}$ | 8** | ce/4 |
| - | E.ET | 0.98 | 8t/2 |
| - | $0 \cdot 0$ | 0.0 | $8 / 6$ |
| * | s*or | 0.07 | $s / L$ |
| * | 0*9 | $0 \cdot 8$ | $t / 4$ |
| * | - | $0^{*} 4$ | 98/9 |

TABLE 24.
CASH LAKE
ALKALINITY IH PARTS PER WILLION

| Date | Cash I | Cosh IT | Cash III | Cash IV | Cash | Cash 7I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11 | 21.5 | 12.0 | - | - | - | - |
| $6 / 17$ | 10.0 | 10.0 | - | $\cdots$ | - | - |
| 6/24 | 8.0 | 9.5 | 9.0 | 9.5 | 9.5 | 9.0 |
| 6/26 | 10.0 | 10.0 | 10.5 | 10.5 | 10.0 | 9.6 |
| $7 / 1$ | 10.5 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| $7 / 3$ | 10.0 | 10.0 | 10.5 | 10.5 | 11.0 | 10.5 |
| 7/11 | 10.5 | 10.0 | 10.5 | 10.5 | 10.0 | 10.0 |
| 7/16 | 11.0 | 10.5 | 11.0 | 11.0 | 10.5 | 10.5 |
| 7/23 | 9.5 | 10.0 | 9.5 | 0.5 | 10.5 | 9.5 |
| 7/30 | 11.0 | 10.0 | 9.5 | 10.0 | 3.5 | 10.0 |
| $8 / 7$ | 10.5 | 10.5 | 10.5 | 10.6 | 11.0 | 10.5 |
| $8 / 13$ | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
| $8 / 20$ | 11.0 | 10.0 | 12.8 | 11.5 | 11.0 | 11.0 |
| 3/27 | 9.0 | 10.5 | 9.0 | 9.0 | 9.5 | 9.5 |
| 9/9 | 11.5 | 11.0 | 11.0 | 11.6 | 10.5 | 11.0 |
| 10/1 | 12.5 | 14.0 | 18.0 | 13.0 | 12.0 | 18.0 |
| 10/20 | 15.0 | 14.5 | 14.5 | 14.5 | 35.0 | 14.0 |
| 11/10 | 14.0 | 15.0 | 16.0 | 25.0 | 15.5 | 14.0 |
| 11/20 | 15.0 | 15.0 | 16.5 | 15.5 | 14.5 | 15.0 |
| 12/11 | 16.0 | 19.0 | 17.6 | 17.5 | 17.0 | 17.5 |
| 12/17 | 18.0 | 17.0 | 17.6 | 17.0 | 16.0 | 15.5 |
| 1/10 | 5.0 | 6.5 | - | - | - | - |
| 2/18 | 8.0 | 7.5 | - | - | - | - |
| 2/28 | 7.5 | 7.5 | - | - | - | - |
| 3/5 | 12.4 | 13.0 | 12.5 | 13.0 | 13.0 | 12.0 |
| $3 / 17$ | 7.5 | 5.0 | 7.0 | 7.0 | 7.0 | 7.0 |

TABLE 25.
CASH LAKE
TOTAL IRON IN PARTS PER MILLION

| Date | Cash I | Cash II | Cash III | Camh IV | Cash V | Cath VI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11 | 4.5 | 4.5 | - | - | - | - |
| $6 / 17$ | 4.0 | 4.0 | - | - | - | - |
| $6 / 24$ | 3.0 | 3.5 | 3.5 | 3.0 | 3.0 | 3.5 |
| $6 / 26$ | 2.0 | 2.5 | 2.5 | 2.5 | 2.0 | 3.0 |
| $7 / 1$ | 2.5 | 2.5 | 2.5 | 2.0 | 2.5 | 2.5 |
| $7 / 3$ | 2.0 | 2.5 | 2.5 | 2.5 | 2.0 | 2.0 |
| 7/11 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| 7/16 | 2.5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| 7/23 | 2.0 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
| 7/30 | 2.5 | 2.5 | 2.0 | 2.0 | 2.5 | 2.0 |
| $8 / 7$ | 3.0 | 3.0 | 2.5 | 3.0 | 3.0 | 2.5 |
| 8/13 | 4.0 | 4.0 | 4.0 | 4.0 | 4.5 | 4.0 |
| 8/20 | 3.5 | 4.0 | 4.0 | 4.0 | 4.0 | 3.5 |
| 8/27 | 3.0 | 4.0 | 3.5 | 4.0 | 4.0 | 3.0 |
| 9/9 | 3.0 | 3.5 | 3.0 | 4.0 | 4.0 | 3.5 |
| 10/1 | 3.0 | 3.5 | 3.0 | 3.0 | 3.5 | 3.0 |
| 10/20 | - | - | 3.0 | 3.5 | 3.5 | 3.5 |
| 11/10 | 3.5 | 3.5 | 3.0 | 3.5 | 3.5 | 3.0 |
| 11/20 | 4.0 | 3.5 | 4.0 | 4.0 | 3.5 | 3.5 |
| 12/11 | 3.0 | 3.0 | 3.0 | 3.0 | 3.5 | 3.5 |
| 12/17 | 3.5 | 3.0 | - | - | - | - |
| 1/10 | 2.0 | 2.5 | - | - | - | - |
| 2/18 | 2.0 | 1.5 | - | - | - | - |
| $2 / 23$ | 3.0 | 3.0 | 3.0 | 3.0 | 3.5 | 3.0 |
| 3/5 | 3.5 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| 3/17 | 3.0 | 3.5 | 3.0 | 4.0 | 4.0 | 3.5 |

TABLIE 26.
LAEE REDINGTON
TOTAL IRON IN PARTS PER MILLION

| Date | Redington I | Rodington 11 | Rodington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 4.0 | 4.0 | - |
| 7/2 | 3.5 | 3.0 | - |
| 7/3 | 3.0 | 3.0 | - |
| 7/8 | 3.0 | 3.0 | - |
| 7/16 | 3.0 | 3.0 | - |
| 7/23 | 2.5 | 3.0 | - |
| 7/30 | 2.5 | 2.5 | 2.5 |
| $8 / 7$ | 1.5 | 2.5 | 2.0 |
| 8/13 | 6.0 | 5.5 | 5.0 |
| 8/20 | 5.5 | 5.5 | - |
| $8 / 27$ | 5.0 | 5.0 | - |
| 9/9 | 5.5 | 5.5 | - |
| 10/1 | 5.5 | 5.0 | 5.0 |
| 10/16 | 5.0 | 5.0 | 5.5 |
| 10/26 | 5.0 | 5.5 | 5.5 |
| 11/10 | 4.5 | 4.5 | 4.0 |
| 11/19 | 5.0 | 4.5 | 5.0 |
| 12/12 | 4.5 | 5.0 | - |
| 12/17 | 4.0 | - | - |
| 1/10 | 2.5 | - | - |
| 2/18 | 2.0 | 2.0 | - |
| 3/1 | 1.5 | 2.0 | - |
| 3/17 | 4.0 | 4.0 | - |

TAREE 27.
BLUE GILL POKD
TOTAL IBON IH PABTS PLR BILLION

| Date | Blue GLII I | Blue G111 II |
| :---: | :---: | :---: |
| 6/18 | 2.5 | 2.5 |
| 6/26 | 2.0 | 2.5 |
| 7/8 | 1.5 | 1.5 |
| 7/16 | 2.5 | 1.5 |
| 7/23 | 2.0 | 2.0 |
| 7/30 | 2.5 | 3.0 |
| 8/7 | 2.5 | 2.5 |
| 8/13 | 3.0 | 2.5 |
| 8/20 | 2.5 | 2.5 |
| 8/27 | 2.5 | 2.5 |
| $9 / 9$ | 2.0 | 2.5 |
| 10/1 | 0.50 | 1.5 |
| 10/16 | 1.0 | 1.0 |
| 10/26 | 1.5 | 1.50 |
| 11/10 | 2.0 | 1.5 |
| 11/19 | 2.0 | 2.0 |
| 12/11 | 1.0 | 2.0 |
| 12/17 | 1.0 | 1.0 |
| 1/10 | 1.0 | 1.0 |
| 2/18 | 0.5 | 0.50 |
| 2/27 | 1.5 | 1.0 |
| $3 / 1$ | 1.3 | 1.50 |
| 3/5 | 2.0 | 2.0 |
| 3/17 | 3.0 | 3.0 |

WATM 28.

SMOSLN POND


| Date | 6nowden I | Snowlen II | Snowden TIT | Snowden IV |
| :---: | :---: | :---: | :---: | :---: |
| $7 / 8$ | 1.50 | 1.60 | 1.50 | 1.50 |
| 7/16 | 1.50 | 1.50 | 1.60 | 1.50 |
| 7/23 | 2.0 | 2.0 | 2.0 | 1.50 |
| 7/30 | 2.0 | 2.0 | 2.0 | 2.0 |
| $8 / 7$ | 3.0 | 2.50 | 2.50 | 2.60 |
| $5 / 15$ | 1.50 | 2.0 | 1.50 | 1.50 |
| 9/20 | 1.0 | 0.750 | 0.750 | 1.0 |
| 8/27 | 1.0 | 1.0 | 1.0 | 1.0 |
| 9/9 | 2.0 | 1.50 | 1.50 | 2.50 |
| 10/1 | 3.50 | 3.50 | 3.50 | 3.60 |
| 10/15 | 3.0 | 0.0 | 5.00 | 5.3 |
| 12/10 | 4.60 | 4.50 | 4.0 | $\therefore .50$ |
| 11/19 | 3.0 | 1.0 | 4.0 | 5.0 |
| $12 / 11$ | 4.0 | 3.50 | 3.30 | 4.0 |
| 12/17 | 3.0 | - | - | 3.50 |
| 1/10 | 2.50 | - | - | 2.0 |
| 2/15 | 1.50 | - | - | 2.0 |
| 2/27 | 1.50 | 1.0 | 1.0 | 1.0 |
| 3/5 | 2.0 | 2.0 | 2.0 | 2.0 |
| $3 / 17$ | 3.0 | 3.0 | 3.0 | 3.5 |

4絾要29。




| OE* | ¢ $6^{*}$ | $L T / \varepsilon$ |
| :---: | :---: | :---: |
| $92^{*}$ | $96^{\circ}$ | $9 / 8$ |
| zT* | 25* | t/ |
| 2T* | 8T* | LZ/z |
| $96^{*}$ | s $6^{\circ}$ | 8T/\% |
| -0exil | -0.0] | OT/L |
| 0 | 0 | LT/GT |
| 8T* | eosxy | TI/ET |
| zt* | 2T* | 6T/TI |
| s2* | 9\%* | OT/tt |
| $92^{\circ}$ | $92^{*}$ | 92/Or |
| os* | $0 \varepsilon^{*}$ | $9 \mathrm{~T} / 0 \mathrm{~T}$ |
| 08* | $9 \varepsilon^{*}$ | t/ot |
| 0** | 0** | 6/6 |
| Os* | 0\%* | L8/8 |
| 09* | Os* | 08/8 |
| $0{ }^{*}$ | 09* | ¢ $5 / 8$ |
| $9 L^{\circ}$ | 94* | $4 / 8$ |
| 94* | $94^{\circ}$ | 08/L |
| 94* | Os* | ع $2 / 4$ |
| $09^{*}$ | 09* | 91/L |
| $9 L^{*}$ | OG* | $8 / 4$ |
| Os* | Os ${ }^{\circ}$ | 98/9 |
| O9* | 09* | 8T/9 |
| ITFO onte | I Tr¢ onta | - 7 m |

TABLIS 31.
LAEE REDINGTON
SILICA IN MILLIGRAMS PER LITER

| Date | Eedington I | Eodington II | Redington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 0.50 | 0.50 | - |
| 7/1 | 0.50 | 0.50 | - |
| 7/3 | 0.75 | 0.50 | - |
| 7/8 | 0.75 | 0.50 | - |
| 7/16 | 0.75 | 0.75 | - |
| 7/23 | 1.0 | 0.75 | 0.75 |
| 7/30 | 0.75 | 1.0 | 0.50 |
| $8 / 7$ | 1.0 | 1.0 | 0.50 |
| 8/13 | 1.0 | 0.75 | 1.0 |
| 8/20 | 1.0 | 1.0 | - |
| 8/27 | 0.85 | 0.75 | - |
| $9 / 9$ | 0.50 | 0.50 | - |
| 10/1 | 0.50 | 0.50 | 0.50 |
| 10/18 | 0.50 | 0.250 | 0.50 |
| 10/26 | 0.250 | 0.250 | 0.250 |
| 11/10 | 0.250 | 0.50 | 0.50 |
| 11/19 | 0.250 | 0.250 | 0.250 |
| 12/11 | 0.250 | 0.250 | 0.250 |
| 12/17 | 0.250 | - | - |
| 1/10 | 0.120 | - | - |
| 2/18 | 0.120 | 0.120 | - |
| $3 / 1$ | 0.250 | 0.120 | - |
| 3/17 | 0.50 | 0.30 | - |


| Date | Cash I | Cash II | Cash IIT | Cash IV | Cash | Cagh ${ }^{\text {rig }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11 | 0.50 | 0.40 | - | - | - | - |
| 6/17 | 0.40 | 0.50 | - | - | - | - |
| 6/24 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
| 6/26 | 0.25 | 0.50 | 0.25 | 0.50 | 0.50 | 0.25 |
| 7/1 | 0.40 | 0.50 | 0.50 | 0.50 | 0.40 | 0.40 |
| 7/3 | 0.40 | 0.50 | 0.30 | 0.30 | 0.50 | 0.30 |
| 7/11 | 0.50 | 0.50 | 0.50 | 0.50 | 0.40 | 0.40 |
| 7/16 | 0.50 | 0.55 | 0.50 | 0.50 | 0.50 | 0.30 |
| 7/23 | 0.50 | 0.75 | 0.50 | 0.75 | 0.75 | 0.50. |
| 7/30 | 0.75 | 0.75 | 0.76 | 0.75 | 0.75 | 0.75 |
| 8/7 | 0.50 - | 0.75 | 0.50 | 0.50 | 0.75 | 0.50 |
| 8/13 | 0.75 | 0.75 | 0.75 | 0.754 | 1.0 | 0.50 |
| 8/20 | 0.75 | 0.55 | 0.50 | 0.50 | 0.50 | 0.50 |
| $8 / 27$ | 0.40 | 0.50 | 0.50 | 0.50 | 0.55* | 0.40 |
| 9/9 | 0.40 | 0.40 | 0.30 | 0.30 | 0.40 | 0.30 |
| 10/1 | 0.25 | 0.25 | 0.25 | 0.40 | 0.40 | 0.40 |
| 10/20 | 0.40 | 0.25 | 0.25 | 0.40 | 0.40 | 0.25 |
| 11/10 | 0.25 | 0.25 | 0.25 | 0.25 | 0.50 | 0.25 |
| 12/11 | Trace | Traoe | 0.0 | 0.0 | 0.0 | 0.0 |
| 12/17 | 0.12 | - | - | - | - | - |
| 1/10 | Trace | 0.12 | - | - | - | - |
| 2/18 | 0.12 | 0.25 | - | - | - | - |
| 2/23 | 0.12 | 0.12 | Trace | 0.12 | Trace | Trace |
| 3/5 | 0.20 | 0.12 | 0.20 | 0.12 | 0.25 | 0.20 |
| 3/17 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| 4/3 | 0.25 | 0.35 | 0.25 | 0.50 | 0.50 | 0.25 |


| $0810^{\circ} 0$ | $0920{ }^{\circ}$ | OZ $10{ }^{\circ} \mathrm{O}$ | $0210^{\circ} \mathrm{O}$ | $0520^{\circ}$ | $0920 \%$ | S／7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0 ¢ 0 \times 0$ | $050 \% 0$ | $090^{\circ} 0$ | $090^{\circ} 0$ | $090^{\circ} 0$ | $090^{\circ} 0$ | $\angle T / E$ |
| $0920^{\circ} 0$ | $050^{\circ} 0$ | $920^{\circ} 0$ | $090^{\circ} 0$ | $090^{\circ} \mathrm{O}$ | $090^{\circ} 0$ | $9 / 8$ |
| $-0.060$ | 0210＊0 | $0310^{\circ} 0$ | $0210^{\circ} 0$ | $0310{ }^{\circ} 0$ | －0270＊O | 玉2／2 |
| － | － | － | － | $0960^{\circ} 0$ | －Osto 0 | $81 / 2$ |
| － | － | － | － | － | 004dy | OT／T |
| － | － | － | － | $0 \mathrm{C} 20^{\circ} 0$ | Og20to | LT／ZT |
| $-210^{\circ} 0$ | $-270.0$ | $0^{\circ} \mathrm{O}$ | $0^{\circ} \mathrm{O}$ | $5560^{\circ} \mathrm{O}$ | $210^{\circ} 0$ | TI／ 3 T |
| $080^{\circ} \mathrm{O}$ | $070^{\circ} \mathrm{O}$ | 675 $0^{\circ} 0$ | $0.8{ }^{\circ} \mathrm{O}$ | $\mathrm{CD} 0^{\circ} \mathrm{O}$ | $070{ }^{\circ}$ | OZ／TI |
| $090^{\circ} 0$ | $840^{\circ} 0$ | $960^{\circ} \mathrm{O}$ | $-090{ }^{\circ} 0$ | 6s0 ${ }^{\circ} \mathrm{O}$ | －0t0\％ | OT／IT |
| $090^{\circ} 0$ | $050^{\circ} 0$ | $920{ }^{\circ} \mathrm{O}$ | －090 0 | $0520^{\circ} 0$ | $0920^{\circ} \mathrm{O}$ | OZ／OT |
| $090^{\circ} 0$ | $090^{\circ} 0$ | $090^{\circ} 0$ | $0920^{\circ} \mathrm{O}$ | $090^{\circ} 0$ | 080 ${ }^{\circ}$ | I／OT |
| $0960^{\circ} 0$ | － $0580^{\circ} \mathrm{O}$ | $0920{ }^{\circ}$ | $0920{ }^{\circ}$ | $0920^{\circ} \mathrm{O}$ | $0980^{\circ} 0$ | 6／6 |
| $0920^{\circ} \mathrm{O}$ | $09880^{\circ}$ | $02 T 0^{\circ} 0$ | －08xu | $0310^{\circ} 0$ | geto 0 | LE／8 |
| $920^{\circ} \mathrm{O}$ | $080^{\circ} 0$ | O80＊ | $920{ }^{\circ} \mathrm{O}$ | $\mathrm{S2O}^{\circ} \mathrm{O}$ | $0980^{\circ} 0$ | 08／8 |
| $920{ }^{\circ}$ | $020^{\circ} \mathrm{O}$ | $080^{\circ} \mathrm{O}$ | $080^{*} 0$ | $070^{\circ} 0$ | $0960^{\circ} 0$ | ET／8 |
| eoexd | － $\mathrm{EIO}^{\circ} \mathrm{O}$ | 00．Ex | etwid | $310^{\circ} 0$ | $\cdots$ | L／8 |
| $310^{*} 0$ | द10＊O | $980^{\circ} \mathrm{O}$ | \％ $10^{\circ} 0$ | $520^{\circ} \mathrm{O}$ | 9084］ | OE／L |
| 02T＊0 | $930^{\circ} 0$ | －0．x要 | $210^{\circ}$ | $920^{\circ} \mathrm{O}$ | $210{ }^{\circ}$ | sc／h |
| $920^{\circ} \mathrm{O}$ | $980^{\circ} 0$ | $920^{\circ} \mathrm{O}$ | $980^{\circ} \mathrm{O}$ | O80 ${ }^{\circ} \mathrm{O}$ | $920^{\circ} 0$ | 9T／L |
| $0760^{\circ}$ | $090^{\circ} 0$ | $920^{\circ} 0$ | $950^{\circ} \mathrm{O}$ | $070{ }^{\circ}$ | $520^{\circ} \mathrm{O}$ | TT／L |
| $210{ }^{\circ}$ | $960^{\circ} 0$ | 210＊0 | $210^{\circ} 0$ | $920^{\circ} 0$ | $980^{\circ} 0$ | $\varepsilon / L$ |
| $090^{\circ} 0$ | $920^{\circ} \mathrm{O}$ | $920^{\circ} \mathrm{O}$ | $960^{\circ} \mathrm{O}$ | $920^{\circ} 0$ | $210^{\circ} 0$ | t／b |
| $310^{\circ} 0$ | $920^{\circ} 0$ | $810^{\circ} 0$ | $210{ }^{\circ}$ | $920^{\circ} \mathrm{O}$ | $920^{\circ} 0$ | 9\％／9 |
| $920^{\circ} 0$ | $920^{\circ} 0$ | $920^{\circ} \mathrm{O}$ | $920^{\circ}$ | $960^{\circ} 0$ | $920^{\circ} 0$ | \％2／9 |
| － | － | － | － | $070{ }^{\circ} 0$ | $920^{\circ} \mathrm{O}$ | LT／9 |
| － | － | － | － | 9T0＊O | $210^{\circ} 0$ | TT／9 |
| IA प885 | A प\＄80 | A1 $4 \times 8$ | III use0 | II पexo | 1 पsen | 2781 |

## TABLE 34.

LARE REDINGTON
SOLUBLE PHOSPEORUS IN HILLIGRAMS PER LITER

| Date | Redington | Redington II | Redington III |
| :--- | :--- | :--- | :--- |
| $6 / 26$ | 0.025 | 0.025 | - |
| $7 / 1$ | 0.012 | 0.050 | - |
| $7 / 3$ | 0.012 | 0.120 | - |
| $7 / 8$ | 0.025 | 0.250 | - |
| $7 / 16$ | 0.030 | 0.025 | - |
| $7 / 23$ | 0.020 | 0.025 | 0.020 |
| $7 / 30$ | 0.020 | 0.025 | 0.025 |
| $8 / 7$ | 0.020 | 0.012 | 0.012 |
| $8 / 13$ | 0.012 | 0.020 | - |
| $8 / 20$ | 0.012 | 0.020 | - |
| $8 / 27$ | 0.0 | 0.0 | - |
| $9 / 9$ | 0.012 | 0.012 | 0.015 |
| $10 / 1$ | 0.0 | 0.012 | Trace |
| $10 / 16$ | Tra0e | Traee | 0.012 |
| $10 / 26$ | Tra0e | 0.012 | 0.012 |

TABLE 35.
BLUE GILL POED
SOLUBLD PHOSPHORUS IN MILLIGHALSS PLR LITER

| Date | Blue Gill 1 | Blue Gill II |
| :---: | :---: | :---: |
| 6/18 | 0.015 | . 015 |
| 0/26 | 0.025 | . 025 |
| 7/8 | 0.025 | . 080 |
| 7/16 | 0.025 | . 025 |
| 7/23 | 0.012 | . 025 |
| 7/30 | 0.012 | . 012 |
| 8/7 | 0.025 | . 050 |
| 8/18 | 0.050 | . 050 |
| 8/20 | 0.075 | . 075 |
| 8/27 | 0.075 | . 075 |
| $9 / 9$ | 0.025 | 0.025 |
| 10/1 | Trace | 0.120 |
| 10/16 | 0.025 | 0.025 |
| 10/26 | 0.050 | 0.050 |
| 11/10 | 0.075 | . 075 |
| 11/19 | 0.050 | 0.050 |
| 12/11 | 0.050 | 0.050 |
| 12/17 | Truce | Trace |
| 1/10 | Trace | Trace |
| 2/18 | 0.012 | 0.012 |
| 2/27 | Traoe | Trace |
| 3/2 | 0.025 | 0.025 |
| 3/5 | 0.025 | 0.025 |
| 3/17 | 0.050 | 0.050 |

TABLE 36.
SNOWDER POND


| Date | Snowden I | Enowden II | Snowden III | Snowden IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 0.050 | 0.050 | 0.050 | 0.050 |
| 7/16 | 0.030 | 0.030 | 0.030 | 0.030 |
| 7/23 | 0.0120 | 0.0750 | 0.0250 | 0.050 |
| 7/30 | 0.0120 | 0.0120 | Trace | 0.0120 |
| 8/7 | 0.0120 | Trace | Trace | 0.0120 |
| 8/15 | Trece | Trace | Traoe | Traoe |
| 8/20 | 0 | 0 | 0 | 0 |
| 8/27 | 0 | 0 | 0 | 0 |
| 9/9 | 0 | 0 | 0 | 0 |
| 10/1 | Prace | Trace | Trato | 0.0120 |
| 10/15 | Frace | Trace | Traoe | Trace |
| 11/10 | 0.0250 | 0.0120 | Trae | 0.0120 |
| 11/19 | 0.0250 | 0.050 | 0.0250 | 0.050 |
| 12/11 | 0.0250 | 0.0180 | 0.0250 | 0.030 |
| 12/17 | 0.0120 | - | - | 0.0250 |
| 1/10 | Irace | - | - | 0.120 |
| 2/18 | 0.0250 | - | - | 0.0120 |
| 2/27 | 0.050 | 0.0250 | 0.0120 | 0.050 |
| 3/5 | 0.050 | 0.0250 | 0.050 | 0.050 |
| 3/17 | 0.050 | 0.050 | 0.050 | 0.050 |

TABLE 37.
SNOWDEN POND
DISSOLVBD OXYGEN IM PARTS PER MILLION

| Date | Snowdon I | Snowden it | Snowden III | Snowden IT |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 5.03 | 4.89 | 5.03 | 5.03 |
| 7/16 | 6.15 | 6.00 | 5.54 | 5.60 |
| 7/23 | 5.59 | 5.65 | 5.50 | 5.31 |
| 7/30 | 5.87 | 5.79 | 5.87 | 5.87 |
| $8 / 7$ | 5.59 | 5.50 | 5.45 | 5.50 |
| 8/15 | 5.31 | 5.45 | 5.20 | 5.03 |
| 8/20 | 5.31 | 5.31 | 5.20 | 5.25 |
| 8/27 | 5.20 | 5.26 | 5.26 | 5.20 |
| 9/9 | 5.26 | 5.40 | 5.15 | 5.26 |
| 10/2 | 5.03 | 5.00 | 4.85 | 5.03 |
| 10/15 | 5.87 | 5.26 | 5.20 | 5.80 |
| 11/10 | 6.71 | 6.90 | 6.15 | 6.89 |
| 11/19 | 7.27 | 7.20 | 6.85 | 7.85 |
| 12/11 | 8.39 | 7.95 | 7.93 | 8.39 |
| 12/17 | 9.79 | 9.55 | 9.51 | 9.81 |
| 1/10 | 9.85 | 9,85 | 9.79 | 9.85 |
| 2/27 | 9.79 | 7.85 | 6.55 | 9.90 |
| $3 / 17$ | 10.1 | 10.1 | 9.92 | 10.8 |



TABLE 39.
LAKE REDIMGTOM
DISSOLVED OXYGEN IN PARTS PER MLLLIOM

| Dete | Hedington I | Rodington II | Hedington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 10.00 | 10.00 | - |
| 7/1 | 10.00 | 10.00 | - |
| 7/3 | 10.50 | 10.50 | - |
| 7/8 | 5.98 | 6.00 | - |
| 7/16 | 5.70 | 5.75 | - |
| 7/23 | 7.61 | 7.58 | 7.53 |
| 7/30 | 6.82 | 6.91 | 6.91 |
| 8/7 | 6.43 | 6.46 | 6.46 |
| 8/13 | 5.98 | 6.05 | - |
| 8/20 | 4.64 | 4.70 | - |
| 8/27 | 3.86 | 8.90 | 3.90 |
| 9/9 | 4.42 | 4.82 | 4.47 |
| 10/2 | 8.70 | 8.82 | 8.94 |
| 10/16 | 8.39 | 8,45 | 8.45 |
| 10/20 | 9.05 | 9.10 | 9.22 |
| 11/10 | 16.80 | 17.05 | 17.82 |
| 11/19 | 9.50 | 10.00 | 9.50 |
| 12/11 | 17.50 | 17.50 | 17.50 |
| 12/17 | 9.79 | - | - |
| 1/10 | 10.05 | - | - |
| 2/18 | 10.20 | 10.20 | - |
| $3 / 2$ | 9.55 | 0.55 | - |
| 3/17 | 9.40 | 9.40 | - |

CASH LAKE
DISSOLVED OXYGEN IN PARTS PER RILLION

| Date | Cash I | Cash II | Cash III | Cash I\% | Cash V | Cash VI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 11$ | 5.81 | 5.70 | 5.85 | 5.85 | 5.80 | 5.80 |
| 6/17 | 6.45 | 6.43 | 6.45 | 6.45 | 6.40 | 6.45 |
| 6/24 | 6.75 | 6.72 | 6.75 | 6.75 | 6.70 | 6.75 |
| 6/26 | 5.70 | 5.70 | 5.70 | 5.75 | 5.70 | 5.70 |
| 7/1 | 7.10 | 7.10 | 7.20 | 7.20 | 7.10 | 7.20 |
| 7/3 | 4.92 | 4.90 | 4.90 | 5.00 | 4.80 | 4.93 |
| 7/11 | 6.70 | 6.71 | 6.70 | 6.70 | 6.70 | 6.70 |
| 7/16 | 5.58 | 5.59 | 5.60 | 5.60 | 5.56 | 5.60 |
| 7/23 | 6.10 | 6.15 | 6.10 | 6.10 | 6.10 | 6.12 |
| 7/30 | 6.41 | 6.43 | 6.45 | 6.50 | 6.40 | 6.40 |
| 8/7 | 6.15 | 6.15 | 6.15 | 6.20 | 6.15 | 6.15 |
| 8/13 | 6.00 | 6.10 | 6.10 | 6.17 | 6.03 | 6.10 |
| 8/20 | 5.00 | 5.03 | 5.00 | 5.07 | 5.00 | 5.00 |
| 8/27 | 4.46 | 4.64 | 4.66 | 4.75 | 4.46 | 4.70 |
| 9/9 | 4.45 | 4.47 | 4.50 | 4.50 | 4.40 | 4.50 |
| 10/1 | 6.57 | 6.71 | 6.70 | 6.70 | 6.63 | 6.70 |
| 10/20 | 6.89 | 6.99 | 7.00 | 7.03 | 6.91 | 6.80 |
| 11/10 | 7.80 | 7.83 | 7.85 | 7.85 | 7.80 | 7.80 |
| 11/20 | 8.40 | 8.39 | 8.40 | 8.43 | 8.40 | 8.40 |
| 12/11 | 8.30 | 8.28 | 8.31 | 8.35 | 8.30 | 8.35 |
| 12/17 | 8.35 | 8.39 | - | - | - | - |
| 1/10 | 8.00 | 8.00 | - | - | - | - |
| 2/18 | 6.00 | 6.04 | - | - | - | - |
| 2/23 | 6.70 | 6.71 | 6.71 | 6.70 | 6.70 | 6.73 |
| 3/5 | 9.25 | 9.23 | 9.29 | 9.27 | 9.25 | 9.33 |
| $3 / 17$ | 9.30 | 9.29 | 9.38 | 9.35 | 9.25 | 9.30 |
| 3/31 | 9.40 | 9.43 | 9.40 | 9.43 | 9.40 | 9.43 |
| 4/3 | 9.57 | 9.57 | 9.59 | 9.60 | 9.57 | 9.60 |

CASE LAEE
GOTAL ACIDITY IN PARTS PER MTLLION

| Date | Cash I | Cash II | Cash ili | Cash IV | Cash | Cash VI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8/11 | 16.50 | 16.50 | - | - | - | - |
| 8/17 | 16.0 | 16.0 | - | - | - | - |
| 6/24 | 25.50 | 15.0 | 15.0 | 15.0 | 16.0 | 15.0 |
| 3/26 | 14.50 | 14.50 | 15.0 | 15.0 | 25.0 | 15.0 |
| $7 / 1$ | 16.50 | 26.0 | 16.0 | 16.0 | 16.50 | 26.0 |
| $7 / 3$ | 14.0 | 14.0 | 14.50 | 14.50 | 14.50 | 14.50 |
| 7/11 | 13.0 | 13.50 | 14.0 | 14.50 | 14.0 | 1\%.0 |
| 7/16 | 11.50 | 12.0 | 11.0 | 11.0 | 11.50 | 11.0 |
| 7/23 | 9.0 | 8.0 | 9.50 | 0.50 | 9.50 | 9.50 |
| 7/30 | 9.50 | 9.50 | 9.50 | 9.50 | 10.0 | 9.50 |
| 8/7 | 9.50 | 0.0 | 9.0 | 9.0 | 9.50 | 9.50 |
| $3 / 13$ | 8.50 | 8.50 | 8.50 | 8.50 | 8.50 | 8.30 |
| 8/20 | 8.0 | 7.0 | 7.0 | 7.50 | 9.50 | 3.0 |
| 8/27 | 6.50 | 6.0 | 6.0 | 5.0 | 7.0 | 6.50 |
| 8/9 | 7.60 | 7.50 | 7.50 | 7.50 | 7.50 | 7.50 |
| 10/1 | 10.0 | 9.50 | 9.50 | 9.50 | 10.0 | 9.50 |
| 10/20 | 13.0 | 12.0 | 12.50 | 12.50 | 13.50 | 12.50 |
| 11/10 | 13.50 | 13.50 | 13.50 | 13.50 | 13.50 | 13.50 |
| 11/20 | 13.0 | 13.0 | 13.0 | 13.50 | 13.50 | 13.0 |
| 22/11 | 12.0 | 11.50 | 11.50 | 11.50 | 12.0 | 11.50 |
| 12/17 | 16.0 | 16.0 | - | - | - | - |
| 1/10 | 17.50 | 17.50 | - | - | - | - |
| 2/18 | 25.50 | 26.0 | - | - | - | $\cdots$ |
| 2/23 | 22.50 | 22.50 | 22.50 | 22.0 | 23.0 | 22.50 |
| 3/5 | 14.0 | 14.0 | 14.50 | 14.50 | 10.0 | 14.0 |
| 8/17 | 14.0 | 12.0 | 12.0 | 12.0 | 15.0 | 12.50 |

TAELE 42.
LAEE REDINGTON
TOTAL ACIDITY IN PARTS PER MILLION

| Date | Redington I | Rodington II | Redington III |
| :---: | :---: | :---: | :---: |
| 6/26 | 14.0 | 14.0 | - |
| 7/1 | 12.50 | 12.50 | - |
| 7/3 | 14.0 | 14.50 | - |
| 7/8 | 13.50 | 12.50 | - |
| 7/16 | 12.0 | 12.50 | - |
| 7/23 | 10.50 | 10.50 | 10.50 |
| 7/30 | 10.0 | 10.50 | 10.50 |
| 8/7 | 8.0 | 8.0 | 8.0 |
| 8/13 | 8.0 | 8.0 | - |
| 8/20 | 8.0 | 9.0 | - |
| 8/27 | 15.0 | 16.0 | 16.0 |
| 9/9 | 13.50 | 15.00 | 15.00 |
| 10/1 | 15.0 | 16.50 | 10.00 |
| 10/16 | 15.50 | 15.50 | 15.50 |
| 10/26 | 16.0 | 18.00 | 16.00 |
| 11/10 | 16.0 | 16.50 | 16.00 |
| 11/19 | 16.50 | 17.50 | 17.50 |
| 12/11 | 18.50 | 18.00 | 19.00 |
| 12/17 | 20.0 | - | 22.00 |
| 1/10 | 23.0 | - | - |
| $2 / 18$ | 18.0 | 21.00 | - |
| $3 / 1$ | 15.0 | 16.00 | - |
| $3 / 17$ | 11.0 | 11.5 | - |



TABL: 44.
SNOWDEN POND
TOTAL ACIDITY IN PARTS PGR MLLLION

| Date | Snowden I | Snowden II | Snowden III | Snowden IV |
| :---: | :---: | :---: | :---: | :---: |
| 7/8 | 22.0 | 22.0 | 22.0 | 22.0 |
| 7/16 | 15.0 | 15.5 | 15.5 | 14.0 |
| 7/23 | 10.5 | 11.5 | 11.0 | 10.0 |
| 7/30 | 11.5 | 11.5 | 12.0 | 21.0 |
| 8/7 | 13.0 | 13.0 | 14.0 | 12.5 |
| 8/15 | 15.0 | 15.0 | 15.5 | 15.0 |
| 8/20 | 12.0 | 13.0 | 13.0 | 11.5 |
| 8/27 | 15.0 | 15.0 | 13.0 | 15.0 |
| 9/9 | 12.5 | 12.0 | 14.0 | 12.0 |
| 10/1 | 16.5 | 17.5 | 18.0 | 16.5 |
| 10/15 | 17.0 | 17.0 | 17.5 | 17.0 |
| 11/10 | 20.0 | 20.0 | 21.5 | 20.0 |
| 11/19 | 23.0 | 23.0 | 24.0 | 22.0 |
| 12/11 | 24.0 | 24.0 | 24.0 | 24.0 |
| 12/17 | 22.0 | - | - | 23.0 |
| 1/10 | 29.0 | - | - | 29.5 |
| 2/18 | 27.5 | - | - | 28.0 |
| 2/27 | 27.0 | 27.0 | 27.5 | 27.0 |
| 3/5 | 18.0 | 18.0 | 18.5 | 18.0 |
| 3/17 | 11.5 | 11.5 | 12.0 | 11.0 |



Toux 1 A 2
A map of the Prituxent Resourch Hefuge moning the location of the four impoummente in relation to the futuxent River drainage ystem as well an showing relationahip between Lake fiedington and Conh Lake.

'Figure 2a
An enlarged view showing the locations of the stations on Gash Lake and Lake Redington.


SNOWDEN POND

Figure 3
A map showing the contours and location of the stations on Snowden Pond.


FIGKHA 4






 durine oporatian. I is stopoocic regulating flew of wber through 程


Monas *。


Freven s



## Marat

##   novalew reme.



Heut \%
 Lalm kedkngton, Slue Gll Fond and Snowden Pond.


FICWRE 10
 nedington, Blue Gill Pona and mowaton Pond.

## TOTAL IRON



## FIOvnz 11





FITETRE 12
 Redington, Blue GL21 Fond ani smomen Pomd.

## PHOSPHATES



TICORX 18












Soreground.


PLATHE

Fecing northwest on Snowden Ponci. Stetion 4 is in laft foreground. station ${ }^{\text {s is in widde of pond. Noto island }}$ in left buckground.

phati 4
Faoing southoset on sumbion Pond. Ininnd is hidden by donse vegetation sifethy to loft in plate. Station 2 in the impoundment is lochted slighty to right of evater.


PLATE 6
Felng couthwpet on Cosh lake. Stution 2 appene in left fereground off pelat just howing in extremo inf of plite. Etation $Z$ is loontad mproximately in oenter and stmeion 4 in in upper right region af pend as shown in plate.


PLATE 6
Faeing due south on Cash Lake. Station 5 is loodted in upper laft region, while station 3 is in upper right of plate. Station 6 is in center of plate. Station 1 is in lower left aren of lake, just outside of soope af plata.






mhes a
Lase Redington, facsuy suthwat. Stetion 1 is shove in lower pizht remion of plate. Station 2 is in midede end


## LTMCNATRE OTEEB

Allan, ninfred 2 2927. Gantithtive Studios on Insiore inrino Diatoms and Dino 1 agellates of Southern Giliornia in 1921 and 1022. Bulletin of the Seripps Institution of Ocomorraphy. University

Aacrican Public Honlth Association. 1936. Standard tethods of water halysis. 309 pp. Hew Yors.

Chancler, D. C. 1942. Limoloricel Studies of festern Lexy rie. III. Phytoplanirton and Physionl-Chemical Data from Novembor, 1939, to November, 1940. Ohio J. Boi., XLII: (1) 24.

Chander, D. C. 1940. Limnolofienl Stucios of westera inte Eria. I. Plankton and Certain Physical-Chemical Data of the Bass Islands Region, From septomber, 1938, to November, 1930. Ohio J. Eci., XL: (6), 291.
Chentum, E.P., Longnecker, 府, and hetler, A. 1942. Limological Obaervations on m Bat Texas Leke. Trans. Am. Wio. Soo., LXI: (4), 309.

Domognile, B. P. and Frec, is. i. 1926. Ammonia ond Mitrate Studies of Lakee Near Ladison. Wis. J. Am. Boc. Agron. 18: (10), bot.
 Gontribution from the Patuxant Rosearch Zotuge, 1:1-34.
 anine of Intermodinry "etabolist in. Strotiofad Lhon. Eel. Monorr., 11:21.

Irwin, M. H. 1045. Mevioda of Preciptoting Colloidal Boil particles
 College, 42:(11) 3-16.

Jewell, k. E. and Srow, H., 1024. The Fishes of An Acid Lake. Trans. AmMe. Soc., XLIII: 77.

Judy, C., Birge, A. A., Kemmerer, G. I., ank fokincon, S. J. 1023. Phosphorus Content of Lake Maters of Mortiosstern iisconsin. grans. Wisc. Acad. 301., 23:233.

Judey, C. and Birge, E. A. 1931. A Sacond Eeport on the Phosphorus Content of Wisconsin Lako Waters. Trans. hisc. Aoad. Soi., 26: 353.

Juday, C. and Birge, a. A. 1932. Disaolved Oxygen and Dxygen Consumed in the Lake Weters of Morthensterin Misconsin. prens. Wis. Mond. Sef. $27: 415$.
 and Hydrogen Ion Content of the Leks waters of Northonatern Misconsin. Irans. Mis. Koma. Sei., 29il.

Judey, C, 1942. The Sumer Standing Crop of Plants mad Animels in Pour wiaconsin Lakes. Trans. Fis. Aosd. Scj.. $34: 103$.

Lackey, J. B. 1938. The Hork and Foun of Surface winers Polluted By Acid inino Dreingee publice janlth zope, 53:(34), 1-9.
Ludomen, R. L. 1941. Semsonkl Food-Cycle Dynmies in Senesoent Lake. Am. Hidlend Mat., $26:(3)$, 63s.
Littlaford, R. A., Wemombe, C. Le, and Shepherd, B. D. 1940. An Experimertel stuay of Certein gantitntive Plenkton Kethods. Soclom, is: (3), 309.

Moloche, V. W., Lemder, G., SafransL1, L., wne Juday, C. 1033. The Silion and Diatom Contort of Late wendota Water. Trang. Mis. Acad. Sef. $31: 363$.

Mortimer, C. H. 1939. Fhysieal and Chemieal Aspects of Organio Production in Likes. Annslg of Applied Biol., 26:(1). 167.
pearsell, W. H. snd C. H. 解ortmer. 1039. Oxidation-Reduction Potentials In Watorloged Soils, Notural Waters and fuds. J. Eool., 27:2.

Powers, E. E. 1921, Experimenta and Observetions on the Behavior of Marine Fishes toward Hydroen Ion Concentration of Sea fater in Relation to Their Migratory movemonts mi Hinitat. Puget Sound Biol. Sta., 3:1-22.

Rawson, D. S. 1936. Physioal and Chemical Studies in lakes of the Prince Albert Park, Saskatohewan. I. Biol. Bd. Can. 2:(3), 227.
 tion Forming harl Lake. Trans. Am. Mic. Soc., 56:4,405.
Hewson, D. S. 193s. Some Physicel nd Chemiol Fretors in the Ketnbolism of Lakes. Am. Assoo. Adr. Sci*: 10:9.
Riley, o. A. 1940. Limnolowienl studiss in Connocticnt. cool. Monogr., 10:279.

Hoelois, W. W. 1044. Whter Soils in Relation to bke pronuctivity. Hioh. Stete As. Exp. Sts. 190:1-31.

Shelford, V. E. 1923. The Determinetion ci Eyerogen Ion concentration in Connecion with Fresh-weter Piologiol Studigs. Ill. State Mat. Hist. Survey Bull., 14:(v).

Shoup, C. S. 1oko. Biological and Chemical Characteristics of the Draing of the Sig South Fork of the Cumberland Ziver in fanessee. Rep. Soelfoot Lako Biol. Sta.. 4:76.
 the quette River Watershed. Suppl. 23 rd Annual Rep. N. Y. State Conserv. Dept., No. 8, 222.

Tressler, F. L. and Bere, R. 1933. A Limnologionl study of Chautauqua Lake. VIII. Supp1. 27th Ann. Rep., 1038, 最. Y. State Cons. Dept.

Tressier, W. L. 1939 The Zooplankton in Relation to the Letabolism of Lakes. Amp Assoc. Adv. Sof., 10:79-93.

Tressler, W. L., Wagner, L. G. and Bere, B. 1940. A Limnological Study of Chmuteuqua Lake. II. Seasonml Varistion. Trans. Am. Macro. Soc. LIX:1,12

Weloh, P. S. 1935. Limology. MeGraw-Hill, N. Y.
Welch, P. 8. 1936. Limnological Investigation of Strongly Basic Bog Lake Surrounded by an hatensive Acid-forming Bog Mat. Papers Mich. Acad. Sel., 21:727.

Weloh. P. S. 1936. Limnologicel Study of A Small Sphagnum-LentherleafBlack Spruce Bog Lake with Speoiel Eeforence to its Plankton. Trans. Am. Hic. Soo., 55: No. 3, 300.

Weloh. P. S. 1938. A Limnologion Study of Retrogroding Bog Lake. 3cology, 19: No. 3, 435.

Wiebes A. H. 1930. Investigations on Planicton Production in fish Ponds. Bull. Bu. Fish. XLVI:137.

Young, K. T. 1938. The $n$. of pH and Distilled witer on Fish. Ecology, 19:(1), 126.
 5:91.

