
  

 
 
 
 
 

ABSTRACT 
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2019 
  
Dissertation directed by: Professor Shunlin Liang, Department of 

Geographical Sciences 
 
 
 
 
The studies in this dissertation present evaluation of and improvement to parametric 

and machine learning regression methods for estimating evapotranspiration from 

remote sensing. It includes three main parts. The first part is an assessment of 

parametric regression methods for obtaining evapotranspiration from vegetation index 

and other variables. It was found that including more variables tends to improve 

results, but the form of the regression formula does not make a large difference. 

Algorithm performance is not as good for wetland and agricultural sites as for other 

land cover types. Re-training of algorithms for those surface type results in some 

improvement. The second part consists of an evaluation of ten machine learning 

techniques for retrieval of evapotranspiration from surface radiation and several other 

variables. It is found that the best results are obtainable using all available input 



  

variables to train the bootstrap aggregation tree, random kernel, and two- and three- 

hidden layer neural network algorithms. Performance is again found to be weaker for 

wetland and agricultural surface types than for other surface types. However, separate 

training of the machine learning algorithms with data from those surface types does 

not significantly improve performance. The third part consists of further refinement to 

the machine learning algorithms and application of the bootstrap aggregation tree 

method to generate evapotranspiration maps of the continental United States for 2012. 

It is found that separating snow and non-snow data points improves performance. 

Performance for all tested algorithms was similar against the validation data set, but 

best for the bootstrap aggregation tree using an independent test data set. Monthly 

mean maps of the continental United States are generated for the drought year 2012 

using the bootstrap aggregation tree. Evapotranspiration levels are lower than those 

shown in comparison data sets for the growing season in the eastern United States, 

resulting from a low bias at high evapotranspiration values. Retraining with the 

training data set weighted towards higher evapotranspiration values reduces this 

discrepancy but does not eliminate it. It is clear that machine learning 

evapotranspiration algorithm results have a significant dependence on training data 

set composition. 
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Chapter 1: Introduction 

 

Motivation and background 

Some parts of the world are sufficiently dry that reductions in the usual amount of rainfall can 

have severe consequences, including shortages of drinking water (Muller, 2018), increased 

severity of wildfires (Holden et al., 2018), and degraded fertility of the land (Wickens, 1997).   

As a result of predicted changes in global climate and increased population and consumption 

pressures, water resource constraints are expected to become increasingly severe (Schewe et al., 

2014; Vorosmarty, 2000). Present and future water resource limitations are an important 

motivation to understand regional and global water cycles and how they may be changing. 

 

The water balance for the land surface can be represented as  

 

𝑃 = 𝐸𝑇 + ∆𝑆 + 𝑅                                                                (1-1) 

 

where P is the precipitation rate, ET is the evapotranspiration rate, DS is the rate of change of 

subsurface water storage, and R is the rate at which water flows away at the surface or 

underground. Evapotranspiration is the combination of direct evaporation from land surfaces and 

transpiration of water to the atmosphere by plants. Evapotranspiration is expressed in units of 

water depth per time, such as mm/ day.  
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Evapotranspiration is equivalent to latent heat transfer between the surface and atmosphere, and 

as such is a component of the surface energy balance, 

 

𝐿𝐸 = 𝑅* − 𝐻 − ∆𝐺                                                                (1-2) 

 

where Rn is the net radiative heating of the surface, H is sensible heat exchange between the 

surface and atmosphere, and DG is the rate of change of subsurface heat storage. One mm/ day of 

evapotranspiration is equivalent to about 26 W/m2 of latent heat transfer, although this 

relationship varies with temperature. 

 

Measurement of evapotranspiration 

Of the components of the surface water and energy balance equations, evapotranspiration is one 

of the more difficult to measure. At a small scale, it is possible to obtain ET using weighing 

lysimeters. These instruments consist of a container holding soil and plants attached to a scale. 

Changes in the weight of the soil and plants can be compared to measured precipitation rates to 

obtain ET or LE. These measurements are considered accurate enough to be used as a standard 

for comparison to models or other instruments (eg. Upreti and Ojha, 2018, Feng et al., 2018, 

Moorhead et al., 2017), but are also highly localized.  

 

The other ground-based measurements of LE that are commonly available are those from flux 

towers. These towers measure LE, often via eddy correlation, over a larger area of up to a few 

square km. If the area upwind of the flux tower is representative of the surrounding landscape, 

the LE estimate can be considered valid over a larger area. However, it is common that 
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inhomogeneities in the landscape put the representativeness of flux tower measurements into 

question. These inhomogeneities may be part of the cause of a persistent surface energy balance 

closure problem with flux tower measurements, where Equation (1-2) is violated by the 

measured surface energy balance components. The imbalance of flux tower measurements was 

found by Wilson et al. (2002) to be about 20%.  

 

Flux tower measurements have other significant limitations. It would be impractical to fully 

cover a nation or continent with a sufficient number of flux towers to determine trends on that 

scale. The distribution of flux towers is also biased towards the northern hemisphere 

midlatitudes, meaning that tropical and polar climates are underrepresented relative to temperate 

climates. LE measurements on regional and global scales are only possible through remote 

sensing. The flux tower measurements are the most useful we have for validation of remote 

sensing measurements, since flux tower footprints are at sufficiently large scales. 

 

Remote sensing methods for retrieval of LE have been reviewed by Kalma et al. (2008), Wang 

and Dickinson (2012), and  Zhang et al. (2016) Broadly speaking, most of these methods fall into 

a few categories. Energy balance residual models such as SEBAL (Bastiaanssen et al., 1998) and 

ALEXI (Anderson, 1997) and their descendants obtain LE by deriving the other terms in 

Equation (1-2) with LE as the remainder. Other methods, such as that used for the MODIS 

evapotranspiration product MOD16 (Mu et al., 2011) make use of the Penman-Monteith 

formulation of LE as a function of an energy-controlled term and an atmospheric stability-

controlled term  

   	𝐿𝐸 = 	 ∆
(0123)56789(:;2:7	) <7⁄

∆5>(?5<; <7⁄ )
                                                        (1-3) 
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(Monteith, 1965; Penman, 1948). In this formulation, D is the derivative of saturation water 

vapor pressure with respect to temperature, ra is the density of air, cp is the specific heat of air at 

constant pressure, es is the saturation vapor pressure, ea is the actual vapor pressure, g is the 

psychrometric constant, and ra and rs are bulk resistance coefficients for water transfer through 

the atmosphere and from the surface, respectively. 

 

Still other remote sensing methods for LE retrieval make use of the Priestley-Taylor 

approximation: 

	𝐿𝐸 = 𝛼 A ∆
∆5>

B 𝑓(𝑒) ∗ (𝑅* − 𝐺)                                                 (1-4) 
 

(Priestley and Taylor, 1972). In this formula, a is an empirical constant with a value often given 

as 1.26, and f(e) is a function ranging from 0 to 1 representing how close surface conditions are 

to an ideal, well-watered state. Two examples of Priestley-Taylor type LE retrievals are found in 

Yao et al. (2013) and Yao et al. (2015) 

 

There are also methods that make use of a combination of vegetation index and temperature, or 

albedo and temperature, defining a “dry edge” where LE is zero and a “wet edge” where LE is at 

its theoretical maximum for a well-watered surface, in the space of those variables and 

determining LE according to where an observation falls between those edges (eg. Merlin et al., 

2014, Long and Singh, 2012, Price, 1990). Less often used methods include maximum entropy 

production (MEP) based on thermodynamic principles, models that link water consumption to 

carbon cycling, and estimation of ET as a residual of the water balance (Equation 1-1), all of 

which are reviewed in Zhang et al. (2016). The methods that are used in the present study are 
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empirical methods, in which the parameters, or even the formulation, of the relation between LE 

and the input observations is determined through training data sets where both the input 

observations and LE are known.  

 

Remote sensing of LE via empirical methods 

Empirical methods, in which a data set with known LE is used to train algorithms, can take 

different forms. The simplest methods linearly correlate LE with one or more variables (Wang 

and Liang, 2008; Yebra et al., 2013) Other empirical formulas are more complex, based on the 

Penman-Monteith (Glenn et al., 2010; Kamble et al., 2013) or Priestley-Taylor (Yao et al., 2015) 

equations. Yao et al. (2013) use a multi- source formulation, with Priestley-Taylor 

parameterizations of evaporation from the soil surface and from leaf surfaces as well as of 

canopy transpiration. There are many other empirical formulas for LE in the published literature, 

several of which are reviewed in Carter and Liang (2018) (Chapter 2 of this work is based on this 

paper.) All of the formulations reviewed there include a vegetation index as one of the 

parameters, and virtually all of them also include net or incoming surface radiation. The more 

complex formulations also include surface temperatures or other meteorological variables such 

as relative humidity and wind speed.  

 

Empirical methods with specified formulas have advantages and disadvantages. The primary 

advantage is their simplicity. In many cases, they can be used with a small number of input 

variables. The computational and user knowledge base demands of these algorithms are low 

compared to many others. On the other hand, the derived coefficients are most applicable under 

similar conditions to those represented in the training data set. The formulas are also inflexible in 
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their input variable requirements, which could be an issue in situations of limited data 

availability. 

 

Machine learning is an alternative approach to regression that has proved its utility in many areas 

both inside and outside of remote sensing. Unlike the classical regression methods that specify 

the relationship between variables in a formula, machine learning methods do not require a priori 

assumptions concerning the relation between input and output. Instead, the algorithm adjusts its 

state to fit a training data set where input and output values are both specified. The neural 

network, support vector machine, and regression tree methods are well known and are described 

in Hastie et al. (2009)  Other methods such as the extreme learning machine (Huang et al., 2006) 

and random kernel (RKS) (Rahimi and Recht, 2009) methods are more recent inventions. These 

and several other machine learning methods are reviewed in Carter and Liang (2019b). (Chapter 

3 is a more detailed version of Carter and Liang 2019b). 

 

The machine learning methods have their strengths and weaknesses. Their primary advantage is 

their flexibility, since any set of input variables can be used to train the algorithm and the 

relationship between input and output is not specified in advance. However, they can be 

computationally demanding to train and also usually constitute a “black box” where the inner 

workings of the algorithm are not readily accessible to the user. Similar to the specified-formula 

regression algorithms, the best performance can be expected under the range of conditions 

represented in the training data. The potential and limitations of machine learning algorithms are 

explored in Carter and Liang (2019a) and Carter and Liang (2019b). (Chapter 4 of this work is 

based on Carter and Liang 2019a.) 
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Summary of questions to be addressed 

There are three sets of questions addressed by this work.  

 

The second chapter of this work addresses the question of which vegetation index-based 

regression algorithms with specified formulas perform the best for retrievals of LE. Whether 

performance of these algorithms varies by surface type, and how much performance can be 

improved by retraining the algorithm coefficients, are also addressed in that chapter. 

 

The third chapter contributes to an understanding of how several machine learning methods 

perform when applied to the problem of LE retrieval from remote sensing in terms of accuracy 

and computational efficiency. Tests are made of performance for different combinations of input 

data and for different surface types. 

 

The fourth chapter presents further development of ML algorithms for remote sensing of 

evapotranspiration and their use for mapping the continental United States during the drought 

year of 2012. Three different algorithms are tested for snow and non-snow conditions, and one 

algorithm, the bootstrapping aggregation (bagging) regression tree, is selected for making the 

maps. Monthly mean maps generated using this algorithm are compared to three other LE data 

sets. Based on the results of the map comparison, trials are made using reconfigured training data 

sets in an effort to reduce a low bias at high LE values that is especially apparent during the 

growing season in the eastern US. 
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Taken together, these studies contribute to our understanding of a range of statistical methods for 

determining LE from satellite data. It is hoped that these studies will contribute towards both 

further research and operational algorithm development in this area. 
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Chapter 2: Comprehensive evaluation of empirical algorithms for 
estimating land surface evapotranspiration 

 

Introduction 

Background and motivation 

A broad review of LE measurement methods has been performed by Wang and Dickinson 

(2012). Measurements from lysimeters characterize LE on scales of meters, and LE 

measurements from eddy correlation flux towers such as the Fluxnet network (Baldocchi et al., 

2001) typically have footprints on the order of hundreds of meters. However, ground-based 

measurements are limited in their applicability due to their small scale and restricted areal 

coverage, as well as by the significant overrepresentation of northern hemisphere midlatitude 

sites. In addition, there are many sites with temporal records of a few years or less, and where 

there is no ongoing data collection. As a result, there is a great deal of interest in remote sensing 

of ET at larger spatial scales and in more remote areas. 

 

There are many simple regression formulas that have been developed for estimation of ET. Many 

of these regression formulas are based on vegetation indices (VI), as reviewed by Glenn et al. 

(2010). The most frequently used vegetation indices in ET algorithms are the normalized 

difference vegetation index (NDVI) and enhanced vegetation index (EVI). These ratios between 

near infrared, red, and blue band reflectances (rNIR, rred, and rblue respectively) are as follows: 

 

 𝑁𝐷𝑉𝐼 = 	 6JKL26MNO
6JKL56MNO

 (2-1) 



 

 

10 
 

 

 𝐸𝑉𝐼 = 𝐺PQR
6JKL26MNO

6JKL5ST∙6MNO5SV∙6WXYN5Z
 (2-2) 

 

 

The standard EVI product calculated from MODIS data has the constants GEVI, C1, C2, and L set 

to values of 1.0, 6.0, 7.5, and 2.5 respectively. 

 

Vegetation indices have several advantages for use in evapotranspiration algorithms. They are 

available from multiple instruments and at resolutions down to tens of meters. They have a high 

degree of consistency between instruments (Brown et al., 2006; Steven et al., 2003) Vegetation 

indices typically change on time scales of weeks to months, so interpolation can be used between 

observations separated by multiple days with some confidence. Algorithms that include a 

dependence on surface temperature are likely to be more responsive on shorter time scales, but 

the faster rate of change of surface temperature makes interpolation between observations more 

problematic. Overall, vegetation index-based methods have the advantages of simplicity, utility 

under a wide range of conditions, and resilience in the presence of data gaps. However, they may 

not respond well under conditions of stress. 

 

Little work has been done evaluating these vegetation index-based algorithms under different 

conditions or comparing them to each other or to LE values derived through other methods. The 

goal of this paper is to provide a comprehensive evaluation of a range of VI- based 

evapotranspiration algorithms, identifying their strengths and weaknesses relative to each other. 
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Description of VI-based algorithms to be evaluated 

A number of authors have proposed formulas for LE based on vegetation indices, ranging from 

highly simplified, depending only on the VI value with no additional data, to more complex 

formulas requiring ancillary data such as net radiation, surface and atmospheric temperatures, 

and other meteorological variables. All formulas to be evaluated in this paper are summarized in 

Table 2-1 

 

Table 2-1: Vegetation index- based algorithms reviewed and compared, with full algorithm 

names and short names used to identify the algorithms in the figures. Key to variables: NDVI- 

Normalized difference vegetation index, EVI- Enhanced vegetation index, Rn- Net radiation at 

surface, G- Ground heat storage, Ta_avg – Daily average atmospheric temperature, Ta_max- Daily 

maximum atmospheric temperature, Ta_dTr- Daily atmospheric temperature range, Ts_avg- Daily 

average surface temperature, Ts_max- Daily maximum surface temperature, Ts_dTr- Daily surface 

temperature range, LE0- Potential evapotranspiration, Rs- Incoming solar radiation at surface, 

RH- relative humidity, es- Saturation water vapor pressure, ws- Wind speed, VPD- vapor 

pressure deficit. 

Algorithm Short name Reference Required input data 

Yebra direct (ET) YET Yebra et al. (2013) NDVI or EVI 

Yebra evaporative fraction 

(EF) 

YEF Yebra et al. (2013) NDVI or EVI, Rn, G 

Helman exponential HEx Helman et al. (2015) NDVI or EVI 

Helman scaled HSc Helman et al. (2015) EVI, Ts_avg 
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Wang 2007 W07 Wang et al. (2007) NDVI or EVI, Rn, one 

of Ta_avg, Ta_max, Ts_avg, 

or Ts_max 

Wang/ Liang WL Wang and Liang 

(2008) 

NDVI or EVI, Rn, 

Ts_dTr, one of Ta_avg, 

Ta_max, Ts_avg, or Ts_max 

Choudhury/ FAO56 Ch Choudhury et al. 

(1994) 

Allen et al. (1998) 

EVI, LE0 

Kamble/ FAO56 Kmb Kamble et al (2013) 

Allen et al. (1998) 

NDVI, LE0 

Wang 2010 W10 Wang et al. (2010a) NDVI or EVI, Rs, RH, 

es, ws, Ta_avg 

Yao 2011 Y11 Yao et al. (2011) NDVI, Rn, Ta_avg, 

Ta_dTr 

Yao 2013 Y13 Yao et al. (2013) NDVI, Rn, G, Ta_avg, 

Ta_dTr or Ts_dTr,  

Yao 2015 Y15 Yao et al. (2015) NDVI, Rn, G, Ta_avg, 

RH, VPD 

 

 

A total of 12 algorithms, based on 11 separate publications, are reviewed and evaluated in this 

paper. For each algorithm, Table 2-1 gives a short name, the source publication(s), and required 
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input data. Some of the publications listed also include other algorithms that depend on remote 

sensing parameters other than NDVI or EVI, but only the VI-based algorithms are included here.  

 

Two of the algorithms, Yebra ET (Yebra et al., 2013) and Helman exponential (Helman et al. 

2015), depend on the vegetation index alone. These algorithms were trained using 16 Fluxnet 

sites each. The Yebra algorithm sites were distributed over six different land cover types with 

forest and cropland sites most common, while the Helman algorithms were developed 

specifically for Mediterranean ecosystems with cropland and grassland sites most represented. 

The Yebra ET formula 

 

 𝐿𝐸[P\ = 𝑎 + 𝑏 ∗ 𝑉𝐼 (2-3) 

  

is a linear function of a vegetation index VI (NDVI or EVI), while the Helman exponential 

formula 

 

 𝐿𝐸_P` = 𝑎 ∗ exp(𝑏 ∗ 𝑉𝐼) (2-4) 

 

is an exponential function of either NDVI or EVI. For each of these algorithms, regression 

coefficients were found for NDVI and EVI separately. 

 

The Yebra EF formula (Yebra et al., 2013) treats the evaporative fraction  

 

 𝐸𝐹 = 𝐿𝐸/(𝑅* − 𝐺) (2-5) 
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as a linear function of NDVI or EVI, resulting in  

 

 𝐿𝐸[Pf = (𝑅* − 𝐺)(𝑎 + 𝑏 ∗ 𝑉𝐼) (2-6) 

 

The Helman scaled algorithm (Helman et al. 2015), trained with the same data set as the Helman 

exponential algorithm, depends on a EVI and daily mean surface temperature Ts_avg, scaled 

according to: 

 

 𝐸𝑉𝐼g8h = 𝐸𝑉𝐼 − 𝑏 (2-7) 

𝐿𝑆𝑇g8h = 𝑐 − j𝑑 ∗ 𝑇g_mnop 

𝑖𝑓	(𝐿𝑆𝑇 𝑒⁄ ) < 𝐿𝑆𝑇g8h, 𝐿𝑆𝑇g8h = 𝐿𝑆𝑇/𝑒 

 

then obtaining LE as the product of these scaled parameters: 

 

 𝐿𝐸_g8 = 𝑎 ∗ 𝐸𝑉𝐼g8h ∗ 𝐿𝑆𝑇g8h (2-8) 

 

Wang et al. (2007) and Wang and Liang (2008) have published two empirical algorithms: 

 

 𝐿𝐸tuv = 𝑅* ∗ (𝑎? + 𝑎w ∗ 𝑉𝐼 + 𝑎x ∗ 𝑇)  (2-9) 

and 

 𝐿𝐸tZ = 𝑅* ∗ (𝑎? + 𝑎w ∗ 𝑉𝐼 + 𝑎x ∗ 𝑇 + 𝑎y𝑇g_z\<)  (2-10) 
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respectively. Eight sets of coefficients were derived for each of these formulas, for each possible 

combination of MODIS NDVI or EVI, and average or maximum daily surface temperature 

(Ts_avg, Ts_max), or average or maximum atmospheric temperature (Ta_avg, Ta_max). The Wang and 

Liang (2008) formula also includes daily surface temperature range (Ts_dTr) as a proxy for 

moisture availability.  These formulas are based on the maximum correlations between LE and 

other variables measured at eight Bowen ratio tower sites in the US Southern Great Plains, and, 

in the case of Wang and Liang (2008), four additional eddy correlation tower sites also in the 

US. In both studies, the strongest correlation was with net radiation, with VI and temperature 

variables following. 

 

Two of the published formulas parameterize evapotranspiration as a function of the potential 

evapotranspiration ET0, or the equivalent latent heat transfer LE0, defined as the ET that would 

occur from a standardized, well-watered ground cover given a set of atmospheric conditions. LE0 

is often derived from the standard surface conditions and the Penman-Monteith formula for LE 

(Monteith, 1965): 

           

𝐿𝐸 = 	
∆(0123)56789

{|}
M7

∆5>A?5M;M7
B

		                                                 (2-11) 

where D is the derivative of saturation vapor pressure with temperature, ra is the density of air, cp 

the specific heat of air at constant pressure, VPD the vapor pressure deficit (es – ea, where es is 

the saturation vapor pressure and ea is actual vapor pressure), g the psychrometric constant, and rs 

and ra are bulk aerodynamic resistance factors characterizing surface and atmospheric conditions 
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respectively. A frequently-used formula for estimation of ET0 is given in FAO56 (Allen et al. 

1998) After conversion to units of LE, the FAO56 formula becomes 

 

𝐿𝐸u = 26.3 ∗ �
u.yu�∆(0123)5>A

���
��V��B�g∗Q��

∆5>(?5u.xy�g)
�                 (2-12) 

where ws represents wind speed. 

 

Choudhury et al. (1994) combined observations of agricultural fields in an arid climate with 

surface and radiative transfer modeling to obtain a transpiration coefficient as a function of 

vegetation index. Glenn et al. (2010) proposed neglecting the bare soil evaporation in this 

formula, resulting in a formula for LE in terms of LE0: 

 

 𝐿𝐸S� = 𝐿𝐸u A1.0 −
PQR�7�2PQR

PQR�7�2PQR��1
B (2-13) 

 

Choudhury et al. (1994) suggested using EVImax = 0.95 and EVImin=0.05.  

 

Kamble et al. (2013) suggested a linear function of NDVI for obtaining LE based on LE0, and 

derived coefficients based on agricultural sites in the US Great Plains: 

 

                                          𝐿𝐸��� = 𝐿𝐸u(𝑎 ∗ 𝑁𝐷𝑉𝐼 − 𝑏)  (2-14) 
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Wang et al. (2010a) developed their formula based on the approach of Penman (1948), 

estimating LE as consisting of two components, one controlled by available energy and another 

by atmospheric resistance. They developed the regression formula  

 

                                          𝐿𝐸P =
∆

∆5>
𝑅g[𝑎? + 𝑎w𝑉𝐼 + 𝑅𝐻𝐷(𝑎x + 𝑎y𝑉𝐼)]  (2-15) 

𝐿𝐸� =
𝛾

∆ + 𝛾𝑤𝑠 ∗ 𝑉𝑃𝐷
[𝑎� + 𝑅𝐻𝐷(𝑎� + 𝑎v𝑉𝐼)] 

		𝐿𝐸t?u = 𝑎�(𝐿𝐸P + 𝐿𝐸�) + 𝑎�(𝐿𝐸P + 𝐿𝐸�)w 

 

with an energy control component LEE dependent on incoming shortwave flux Rs and an 

atmospheric transmission control component LEA. RHD represents the relative humidity deficit 

(as a function of relative humidity RH in percent: (100 – RH) / 100). This regression formula 

was trained using 64 eddy correlation and Bowen ratio ground stations, with the goal of 

obtaining globally-applicable coefficients. Unlike many of the other formulas, which contain an 

Rn or Rn – G term as a measure of available energy at the surface, the Wang formula uses the 

incoming solar radiation at the surface Rs. Rs may be measured directly, or estimated based on 

Rn, albedo, temperature, and relative humidity through the formula given in Wang and Liang 

(2009).  

 

The three Yao et al. formulas considered here (2015, 2013, 2011), like the Wang et al (2010) 

model, are regressions based on pre-existing physical LE models. The Yao 2011 formula, 

developed for drought monitoring from a two-source LE model and data from 22 flux tower sites 

and global radiation and NDVI products, takes the form 
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𝐿𝐸[?? = 𝑅*w(𝑎?𝑁𝐷𝑉𝐼 − 𝑎w) + 𝑅*  𝑎x + 𝑎y𝑇m7¡¢ +
𝑎�
𝑇mO�M

£ + 

	𝑅*𝑁𝐷𝑉𝐼 ¤𝑎� + 𝑎v𝑇m +
m¥

\7_O�M
¦                   (2-16) 

where Ta_dTr is the daily range of near-surface atmospheric temperature. 

 

The Yao 2013 and Yao 2015 formulas are both based on the Priestley-Taylor (Priestley and 

Taylor 1972) parameterization, where rs and ra are combined into an empirically determined 

coefficient a with a value of 1.26 representing a well-covered and watered surface and a value f 

ranging from 0 to 1 representing constraints on LE: 

 

                                                        𝐿𝐸 = 𝛼 A ∆
∆5>

B 𝑓 ∗ (𝑅* − 𝐺)                               (2-17) 

 

The Yao 2013 formula represents each of four separate components of LE through individual 

Priestley-Taylor parameterizations. These are a canopy transpiration component LEc, a soil 

evaporation component LEs, and components for evaporation from wet canopy and soil surfaces, 

LEic and LEws: 

 𝐿𝐸[?x = 𝐿𝐸8 + 𝐿𝐸g + 𝐿𝐸§8 + 𝐿𝐸�g (2-18) 

 

𝐿𝐸8 = 𝛼 ¤
∆

∆ + 𝛾¦
(1 − 𝑓�:¨)𝑓n𝑓\𝑅*8 

𝐿𝐸g = 𝛼 ¤
∆

∆ + 𝛾¦
(1 − 𝑓�:¨)𝑓g�(𝑅*g − 𝐺) 

𝐿𝐸§8 = 𝛼 ¤
∆

∆ + 𝛾¦ 𝑓�:¨𝑅*8 
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𝐿𝐸�g©	𝛼 ¤
∆

∆ + 𝛾¦ 𝑓�:¨
(𝑅*g − 𝐺) 

 

The parameters fsm and fT represent soil moisture and temperature constraints respectively, fv is 

fractional vegetation cover, fwet is relative surface wetness parameterized as the relative humidity 

deficit to the fourth power, Rnc is net radiation to the vegetation canopy, and Rns is net radiation 

to the soil. These variables are in turn parameterized in terms of vegetation index, daily average 

temperature, and daily temperature range. Separate sets of coefficients were derived using 

atmospheric and surface daily temperature ranges. 

 

The Yao (2015) formula, which is similar in its basis to that of Fisher et al. (2008), is also based 

on the Priestley-Taylor equation, in this case with constraints on all sources of LE combined into 

one formulation. It was also developed for global applications, and the coefficients were trained 

with data from 240 Fluxnet sites. 

 

𝐿𝐸[?� = 𝜙 «
«5>

(𝑅* − 𝐺) ¬𝑎? + 𝑎w𝑇m_mno + 𝑎x A
0_
?uu
B
Q��

+ 𝑉𝑃𝐷(𝑎y𝑁𝐷𝑉𝐼 − 𝑎�)­       (2-19) 

 

In summary, a range of formulas for obtaining LE from VI exist with different theoretical bases, 

degrees of complexity, and other input variables required. Some have forms that have a physical 

basis, but all ultimately depend on empirical regression for training of coefficients. In most cases 

they were trained with a limited number of ground sites, so it is desirable to test whether 

improvements can be made to their performance by using a larger training data set. 
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Vegetation index-based regression formulas are of interest because vegetation index and many of 

the other variables used are readily available over periods of years to decades, so they can be 

used to diagnose global and regional trends and anomalies. They are especially useful in 

situations of limited data availability. However, they are likely less useful than other LE 

algorithm classes for rapid drought identification, due to the relatively slow response of 

vegetation index to drying conditions. The focus of this study is to identify patterns of stronger 

or weaker performance within the class of vegetation index- based regression algorithms so that 

users of algorithms within this class will have guidance regarding which of these algorithms will 

be likely to produce the best results.  

 

Data 

Ground-based 

A total of 184 flux tower sites were used, 119 from the Ameriflux network 

(http://ameriflux.lbl.gov) and 65 from the Fluxnet2015 data set 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). All available sites with at least 3 

continuous years of data were included. No screening of the sites was performed to exclude low 

quality or high spatial heterogeneity sites, keeping a large number of sites but possibly including 

some lower quality data. Most of the Ameriflux sites were within the United States, with good 

representation of the latitude range and land cover types of the continental US and Alaska. 

Eleven of the Ameriflux sites are Canadian, one Mexican, and one Brazilian. The Fluxnet2015 

sites are mostly in Europe with some in Asia and Africa, cover a wide range of surface types and 

climates, but have the northern midlatitude bias typical of flux tower records. A total of 1166 
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site-years of data from 184 sites was used. The global distribution of these sites is shown in 

Figure 2-1. The IGBP surface types represented in the combined Ameriflux and Fluxnet2015 

data, the categories used for further analysis here, and the number of sites and total site-years in 

each category are listed in Table 2-2. A list of all of the sites used is given in Supplementary 

Material, Table 2-7. 

 

 

Figure 2-1: Global distribution of flux tower sites used in this study. Colors of points indicate 

number of years of data used from each site. Shapes of points indicate IGBP ecosystem type: 

CRO- crop, CSH- closed shrubland, DBF- deciduous broadleaf forest, EBF- evergreen broadleaf 

forest, ENF- evergreen needleleaf forest, GRA- grassland, MF- mixed forest, OSH- open 

shrubland, SAV- savannah, WET- wetland, WSA- woody savannah 
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Table 2-2: Land cover type categories used for algorithm evaluation, with IGBP classes 

included, number of sites available, and total site-years of data used for each.  

Category Included IGBP 

classes 

Number of sites Total site-years 

Agricultural CRO 23 115 

Grassland GRA 35 181 

Deciduous DBF, DNF, MF 29 228 

Evergreen EBF, ENF 50 392 

Savannah SAV, WSA 13 80 

Shrub CSH, OSH 18 76 

Wetland WET 13 94 

 

 

The flux tower observations were preprocessed to obtain daily values of LE and all parameters 

required by the algorithms except for vegetation indices and albedo. For those days with at least 

40 of 48 half hourly observations available for all variables, daily mean values of all required 

meteorological and energy balance variables were calculated. Adjustment was made to LE 

values to compensate for lack of energy balance closure by assuming a constant Bowen ratio, but 

no correction was made for ground heat storage above the flux plate. No modeled or gap-filled 

data were used, so days with insufficient flux tower data are not represented in our analysis. For 

atmospheric and surface temperatures, daily maximum and minimum values were also found and 

daily temperature ranges calculated. Days with and without snow cover were included in the data 

set. 
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Remote sensing 

MODIS Collection 5 Terra 250m NDVI and EVI products (MOD13Q1, Didan 2015) and Terra/ 

Aqua 500m combined albedo (MCD43A, Schaaf and Wang 2015) time series were obtained for 

each site, for the same time period as the available flux tower data where it overlaps with the 

MODIS record. Subsets of each product were obtained from the Oak Ridge National Laboratory 

DAAC (https://daac.ornl.gov/MODIS/modis.shtml) Standard QC screening was applied. A 1km 

subset size was used, and all pixels that passed QC screening were included in calculations of 

mean NDVI, EVI, and albedo.  (Preliminary testing with 0 km (same pixel), 1 km, and 3 km 

subset sizes indicated very little difference in LE algorithm results. Restricting included pixels to 

those with the same surface type as the central pixel also had a negligible effect.) Under ideal 

conditions VI is available every 16 days and albedo every 8 days, but longer data gaps exist in 

some locations due to insufficient high-quality pixels. VI and albedo were both linearly 

interpolated to generate daily time series. 

Methods 

Each model was first used to calculate LE (LEmod) for each day where sufficient flux tower data 

was available at every site with the original published coefficients then compared against the 

ground observation LE (LEobs). The coefficients for each algorithm were then re-derived using 

Levenberg-Marquardt fitting initialized with the published coefficient values. For purposes of 

algorithm evaluation, the last year of each site time series was reserved for testing and 

coefficients were trained with the remaining data. The algorithm evaluation results shown below 

all use this division of training and test data. In addition, a set of coefficients for each algorithm 

was derived using all available data, with results shown in Table 2-3. The coefficients for each 

algorithm from its original publication are given in Table 2-7 in the Supplementary Material. 
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Table 2-3: Re-derived coefficients for each algorithm using all available data from all sites. For 

the Yao (2013) and Yao (2015) algorithms, a set of coefficients was derived using a variable 

value of the Priestley-Taylor coefficient a and a constant a of 1.26. 
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Algorithm Short 
name 

Version Re-derived coefficients 

Yebra ET YET NDVI a = -0.4589, b = 81.7987 

EVI a = -1.2841, b = 149.9876 

Yebra EF YEF NDVI a = 0.02867, b = 0.6131 

EVI a = 0.04879, b = 1.0316 

Helman exponential HEx NDVI a = 13.3611, b = 2.0344 

EVI a = 17.0592, b = 2.8873 

Helman scaled HSc  a = -1518.3715, b = 0.001387, c = 

33.6520, d = -1.1212,  

e = -4807.2619 

Wang 2007 W07 EVI, Ta_avg a1 = -0.04417, a2 = 0.9481, a3 = 0.006516 

EVI, Ta_max a1 = -0.06821, a2 = 0.9715, a3 = 0.005585 

EVI, Ts_avg a1 = -0.02849, a2 = 1.0189, a3 = 0.004237 

EVI, Ts_max a1 = 0.0004923, a2 = 1.0416, a3 = 

0.001707 

NDVI, Ta_avg a1 = -0.09575, a2 = 0.5815, a3 = 0.007896 

NDVI, Ta_max a1 = -0.1300, a2 = 0.5995, a3 = 0.006939 

NDVI, Ts_avg a1 = -0.09734, a2 = 0.6438, a3 = 0.005862 

NDVI, Ts_max a1 = -0.05442, a2 = 0.6493, a3 = 0.002534 

Wang/Liang WL EVI, Ta_avg a1 = 0.07223, a2 = 0.6681, a3 = 0.009505 

a4 = -0.009441 

EVI, Ta_max a1 = 0.03066, a2 = 0.6862, a3 = 0.008800, 

a4 = -0.009861 

EVI, Ts_avg a1 = 0.08232, a2 = 0.7360, a3 = 0.008243, 

a4 = -0.01089 
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EVI, Ts_max a1 = 0.08224, a2 = 0.7293, a3 = 0.008534, 

a4 = -0.01610 

NDVI, Ta_avg a1 = 0.05191, a2 = 0.3879, a3 = 0.01077, 

a4 = -0.01048 

NDVI, Ta_max a1 = 0.0005417, a2 = 0.4030, a3 = 0.0101, 

a4 = -0.01097 

NDVI, Ts_avg a1 = 0.04231, a2 = 0.4534, a3 = 0.009886, 

a4 = -0.01223 

NDVI, Ts_max a1 = 0.04353, a2 = 0.4484, a3 = 0.01015, 

a4 = -0.01837 

Choudhury/ FAO56 Ch  EVImin = 0.02355, EVImax = 0.6117 

Kamble/ FAO56 Kmb  a = 1.0452, b = -0.08478 

Wang 2010 W10 NDVI a1 = -0.1387, a2 = 1.9938, a3 = 0.1542, a4 

= -2.1872,  

a5 = 54.5977, a6 = -79.8249, a7 = 

67.8465, a8 = 0.6891,  

a9 = -0.001150 

EVI a1 = -0.06988, a2 = 3.1684, a3 = 0.05535, 

a4 = -3.2777,  

a5 = 60.6141, a6 = -99.1790, a7 = 

194.5842, a8 = 0.6498,  

a9 = -0.0009489 
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Yao 2011 Y11  a1 = -0.0009580, a2 = -0.0004328, a3 = 

0.03625, a4 = -0.003210, 

a5 = 2.0066, a6 = 0.5167, a7 = 0.02503, a8 

= -2.7852 

Yao 2013 Y13 Ts_dTr a = 0.7888, NDVImax = 0.7052, NDVImin 

= -0.08551,  

Topt = 32.8330, dTrmax = 30.9849 

Ta_dTr a = 0.9987, NDVImax = 0.9198, NDVImin 

= -0.3712,  

Topt = 25.5854, dTrmax = 22.9378 

Ts_dTr, a 

constant 

NDVImax = 0.6486, NDVImin = -0.2723, 

Topt = 141.0440,  

dTrmax = 10.9068 

Ta_dTr, a 

constant 

NDVImax = 1.1234, NDVImin = -0.4696, 

Topt = 25.7667,  

dTrmax = 15.7136 

Yao 2015 Y15  a = 1.6445, a1 = -0.002953, a2 = 

0.007440, a3 = 0.4299,  

a4 = 0.05653, a5 = 0.01933 

a constant a1 = -0.003854, a2 = 0.009711, a3 = 

0.5611, a4 = 0.07379,  

a5 = 0.02523 
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For each site and algorithm, RMSE, R2, and bias were calculated based on LEmod and LEobs, 

where n is the number of days with valid data available: 

  

𝑅𝑀𝑆𝐸 = ¯∑ jZP�±O_�2ZP±W;_�p
V1

�²T
*

	                                      (2-20) 

 

𝐵𝑖𝑎𝑠 = 	 ∑ (ZP�±O_�2ZP±W;_�)1
�²T

*
                                          (2-21) 
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                   (2-22) 

 

These results were then used to generate boxplots by algorithm. Boxplots were generated using 

all available sites, separately for the initial published and re-derived coefficients. 

 

Similar statistical comparisons between algorithms were also conducted for the individual 

surface types specified in Table 2-2. Based on the results from the analyses with all surface 

types, four relatively well-performing algorithms with different theoretical bases (Yebra EF, 

Wang and Liang, Wang 2010, and Yao 2013) were selected for this evaluation. Coefficients 

were re-derived for each surface type using only data from sites with that type, again reserving 

the last year of each site for testing. Boxplots similar to those for all types were generated with 

the surface type specific coefficients and compared to results from the coefficients previously 
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derived from all available sites in order to evaluate whether use of data from only the same 

surface type improved algorithm performance. 

 

Two additional tests were made of algorithm performance. In order to test whether linear 

interpolation of vegetation index and albedo was artificially improving algorithm statistics by 

introducing large numbers of non-independent data points, a subset of sites was selected and 

only data from the vegetation index composite dates were considered. Statistics from only the 

composite dates were compared to results including all days with sufficient flux tower data for 

each algorithm. An analysis was also performed for agricultural sites to assess whether 

interpolation over periods with sudden changes in vegetation index introduces error. To test for 

this effect, algorithm performance for agricultural sites was evaluated with dates with steep 

vegetation index slope (> 0.015/ day in NDVI or > 0.01/ day in EVI) excluded, then compared to 

agricultural site performance without this exclusion. 

 

Results analysis 

Global comparison of algorithms and coefficient tuning 

Boxplots of RMSE, R2, and bias by site for all surface types and for the original and re-derived 

coefficients are shown in Figures 2-2, 2-3, and 2-4. The algorithms are arranged left to right 

roughly in order of increasing complexity and number of input variables required. Figure 2-2a 

shows that the Yebra ET and Helman scaled algorithms have the highest median RMSEs. It is 

notable that these algorithms are the only ones that do not have any dependence on Rn. The best 
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performing algorithms have median RMSEs that cluster around 25-30 W/m2 with the original 

coefficients.  

 

Figure 2-2b shows the RMSE for all sites with the re-derived coefficients. All algorithms except 

Yao 2011 had similar or improved RMSE performance, with the best-performing models again 

having median RMSE in the 25-30 W/m2 range. The most significant changes were for the Yebra 

and Helman algorithms, which have the simplest form and fewest required inputs. Most of the 

other algorithms had little change in median RMSE values, but RMSE tended to decrease for 

those algorithms that had higher RMSE using the original coefficients.  

 

There are a significant number of outlier sites in the RMSE (Figure 2-2) and bias (Figure 2-4) 

results. Further investigation showed that different sites were outliers for different algorithms 

with the original coefficients (Figure 2-2a, 2-4a), with no systematic patterns apparent. With the 

re-derived coefficients (Figure 2-2b, 2-4b), six sites were responsible for most of the outliers. 

These sites either had 1 km subset areas that were unrepresentative of the area immediately 

surrounding the flux tower or were wetland sites. Wetland sites have greater bias and RMSE than 

other sites, as shown in Figure 2-5. The difference in performance between wetland sites and 

others is discussed in greater detail below. 
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Figure 2-2: RMSE for each algorithm by site for all cover types. a) Using original published 

coefficients. b) Using re-derived coefficients. Key to algorithms: YET - Yebra ET, YEF - Yebra 

EF, HEx - Helman exponential, HSc - Helman scaled, W07 - Wang 2007, WL - Wang and 

Liang, Ch - Choudhury/ FAO56, Kmb - Kamble/ FAO56, W10 - Wang 2010, Y11 - Yao 2011, 

Y13 - Yao 2013, Y15 - Yao 2015 

 

R2 values for each site and algorithm are shown in Figure 2-3, with results for the original 

coefficients shown in Figure 2-3a and for the re-derived coefficients in Figure 2-3b. The median 

R2 values for the best performing algorithms are between 0.6 and 0.7, with others, usually the 

simpler algorithms, having significantly lower values. Unlike the results for RMSE, re-fitting the 

coefficients did not have a strong impact on median R2 or its distribution for any 

 of the algorithms. 

 

 

 

a)                                                              b) 
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Figure 2-3: R2 by site for all algorithms and land cover types. Results for original coefficients are 

shown in Figure 2-4a, and for re-derived coefficients in Figure 2-4b. Algorithm legend on 

horizontal axis is the same as for Figure 2-2. 

 

Bias values for all sites and algorithms are shown in Figure 2-4, with results for the original 

coefficients in Figure 2-4a and for the re-derived coefficients in Figure 2-4b. The patterns here 

are similar to those seen for RMSE, with the simpler algorithms, especially Yebra ET, usually 

having the greatest absolute values of median bias with the original coefficients. Figure 2-4b 

shows that re-fitting the coefficients reduced the absolute value of median bias for many of the 

algorithms and reduced the range of bias values in many cases as well. 

 

 

 

 

      a)                                                              b) 
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Figure 2-4: Bias by site for all algorithms and land cover types. Results for original coefficients 

are shown in Figure 2-4a, and for re-derived coefficients in Figure 2-4b. Algorithm legend on 

horizontal axis is the same as for Figure 2-2. 

 

Evaluation of algorithms by land cover type 

In general, there was little difference in the patterns of RMSE, R2, and bias performance when 

the re-derived coefficients were used between surface types considered individually and what 

was shown in the previous section for all sites together. Exceptions to this overall pattern include 

higher R2 values for agricultural, deciduous, evergreen, and grassland sites than for all sites 

considered together, and lower R2 values for savannah, shrub, and wetland sites. There are also 

differences in bias and RMSE for agricultural and wetland sites. 

 

      a)                                                              b) 
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Bias differences for agricultural and wetland sites, and RMSE differences for wetland sites, are 

shown below in Figure 2-5. Wetland sites (Figure 2-5a), and to a lesser degree agricultural sites 

(Figure 2-5b), showed a consistent low bias across algorithms, with typical bias values of around 

-25 W/m2 for agricultural sites and -50 W/m2 for wetland sites. The Yao 2011, Yao 2013, and 

Yao 2015 algorithms had a less pronounced bias than the others for wetland sites, but not for 

agricultural sites. In addition, RMSE for wetland sites was significantly higher than was typical 

for other surface types, with values of around 40 W/m2 or more not being unusual (Figure 2-5c). 

The Yao algorithms had lower median RMSE, but RMSE was still relatively high for the sites 

where it was greatest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      a)                                                              b) 
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Figure 2-5: Bias and RMSE by site for those surface types where performance differed 

significantly from all sites with globally-derived coefficients. Figure 2-5a: Bias for agricultural 

sites. Figure 2-5b: Bias for wetland sites. Figure 2-5c: RMSE for wetland sites. Algorithm legend 

on horizontal axis is the same as for Figure 2-2. 

Re-training of coefficients by surface type  

For the four algorithms tested (Yebra EF, Wang and Liang, Wang et al. 2010, and Yao et al. 

2013), training with data from sites from only one surface type did not result in much change 

from globally-trained coefficients for most surface types in most cases. (See Figures 2-10 

through 2-12 in the Supplementary Material). The most pronounced exceptions occurred for bias 

and RMSE for agricultural and wetland sites, paralleling the results when comparing those 

surface types to the global results as described above. There were also modest improvements in 

RMSE for deciduous, grassland, and savannah sites (Figures 2-10b, 2-10d, and 2-10e), some 

modest increase in R2 for savannah and decrease in R2 for deciduous sites (Figures 2-11e and 2-

11b) and modest reductions in absolute bias values for deciduous, grassland, and shrub sites 

      c) 
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(Figures 2-12b, 2-12d, and 2-12f). For evergreen sites, bias values became somewhat more 

negative (Figure 2-12c). In all other cases, there was little change to the statistics, or performance 

improved for some algorithms and was reduced for others. 

 

The results of surface type specific training for agricultural and wetland sites are shown in 

Figures 2-6 to 2-9. Figures 2-6 and 2-7 show a decrease in RMSE for agricultural sites and a 

reduction in the maximum RMSE by site for wetland sites, Figure 2-8 shows a decrease in bias 

for agricultural sites, and Figure 2-9 shows a decrease in bias for wetland sites.  

 

Figure 2-6: RMSE for agricultural sites for Yebra EF (YEF), Wang and Liang (WL), Wang et al. 

2010 (W10) and Yao et al. 2013 (Yao13) algorithms. For each algorithm, left box is for training 

with data from all sites, and right box is for training with agricultural sites only. 
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  f    

Figure 2-7: RMSE for wetland sites. Algorithm labels on X axis are the same as for Figure 2-6. 

For each algorithm, left box is for training with data from all sites, and right box is for training 

with wetland sites only. 



 

 

38 
 

 

Figure 2-8: Bias for agricultural sites. Algorithm labels on X axis are the same as for Figure 2-6. 

For each algorithm, left box is for training with data from all sites, and right box is for training 

with agricultural sites only. 
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Figure 2-9: Bias for wetland sites. Algorithm labels on X axis are the same as for Figure 2-6. For 

each algorithm, left box is for training with data from all sites, and right box is for training with 

agricultural sites only. 

 

Test of effect of linear interpolation of vegetation indices 

The possibility that the statistical results of this analysis are being affected by the large number 

of non-independent data points introduced by linear interpolation of vegetation indices was 

tested. This was done using seven stations that each had a long data record, in order to obtain a 

significant number (659) station-days where that were both a composite date and had sufficiently 

complete Fluxnet records. These stations, listed in Table 2-4, also represent seven different land 

cover types. The analysis was conducted for seven of the best-performing algorithms. 

Table 2-4: Stations used for comparison of results from all dates to day of composite only. 
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Station Site ID IGBP class 

Audubon Ranch US-Aud Grassland (GRA) 

Blodgett Forest US-Blo Evergreen needleleaf forest (ENF) 

Lost Creek US-Los Wetland (WET) 

Rosemount G21 conventional 
corn/ soy 

US-Ro1 Cropland (CRO) 

Santa Rita mesquite US-SRM Woody savannah (WSA) 

Soroe DK-Sor Deciduous broadleaf forest (DBF) 

Walnut Gulch Lucky Hills 
Shrub 

US-Whs Open shrub (OSH) 

 
The results of this analysis are shown in Table 2-5.  It was found that R2 was higher and RMSE 

lower when only the composite days were used. The bias was a few W/m2 more negative in most 

cases. These results could be because accuracy was lost through interpolation, or because 

composites were taken on clear weather days and the algorithms performed better under those 

conditions. It appears not to be the case that the interpolation artificially improved the apparent 

performance of the algorithms. 

Table 2-5: Results of comparison between all dates and day of composite only. 

Algorithm RMSE all 

days 

(W/m2) 

RMSE 

composite 

days 

(W/m2) 

Bias all 

days 

(W/m2) 

Bias 

composite 

days 

(W/m2) 

R2 all 

days 

R2 

composite 

days 

Yebra EF 

(YEF) 

32.628 28.871 -5.555 -8.038 0.474 0.619 
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Choudhury 

(Ch) 

38.761 37.958 -17.583 -21.059 0.473 0.559 

Wang 2010 

(W10) 

31.243 27.028 -5.581 -7.665 0.523 0.673 

Wang and 

Liang (WL) 

33.279 29.033 -6.809 -8.952 0.454 0.618 

Yao 2011 

(Y11) 

33.850 29.000 6.432 4.137 0.432 0.586 

Yao 2013 

(Y13) 

32.213 28.789 -6.776 -9.805 0.502 0.656 

Yao 2015 

(Y15) 

31.830 26.886 -2.258 -2.914 0.489 0.657 

 

Test of effect of rapid VI changes at agricultural sites 

At agricultural sites, there are periods where vegetation indices change rapidly, notably at 

harvest but also during greenup at the beginning of the growing season. The possibility that the 

vegetation index interpolation might not be as accurate at those times and degrade algorithm 

performance as a result was examined. The significance of this effect was tested using the 23 

agricultural sites and seven algorithms. The median site RMSE, bias, and R2 were found 

excluding those times where absolute value of the slope of NDVI > 0.015/ day, or of EVI > 0.01/ 

day, and compared against the results when all days were included. The results of this analysis 

are shown in Table 2-6. The performance of the algorithms was not much different between the 
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cases, or slightly worse when the steep VI slope periods were excluded. It does not appear that 

periods with steep VI slope are introducing additional error to the results for agricultural sites. 

 

Table 2-6: Median site statistics of 23 agricultural sites, comparing results with and without 

exclusion of steep slope in vegetation indices. 

Algorithm RMSE all 
days 
(W/m2) 

RMSE VI 
slope 
exclusion 
(W/m2) 

Bias all 
days 
(W/m2) 

Bias VI 
slope 
exclusion 
(W/m2) 

R2 all days R2 VI slope 
exclusion  

Yebra EF 
(YEF) 

28.892 29.699 -38.533 -39.340 0.685 0.682 

Choudhury 

(Ch) 

36.017 36.651 -51.922 -54.332 0.622 0.616 

Wang 2010 

(W10) 

23.459 24.557 -7.470 -9.063 0.645 0.647 

Wang and 

Liang 

(WL) 

30.560 31.386 -36.285 -37.540 0.694 0.692 

Yao 2011 

(Y11) 

24.746 25.386 -22.921 -23.666 0.666 0.676 

Yao 2013 

(Y13) 

29.944 31.098 -34.811 -35.823 0.664 0.664 
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Yao 2015 

(Y15) 

24.056 24.125 -25.712 -26.290 0.688 0.688 

 
 

Discussion 

There has been a significant amount of effort devoted to measurement of evapotranspiration at 

regional to global scales, due to the variable’s importance for a wide range of applications. At 

these scales, remote sensing is required for at least some of the input data. A large number of 

remote sensing methods to obtain LE have been developed, and the empirical methods evaluated 

here are just a subset of those available. There has been a significant amount of work evaluating 

different LE data sets at global (Jiménez et al. 2011; Mueller et al. 2011), and regional scales 

(e.g. Mao and Wang 2017; Chen et al. 2014) The focus of these studies has usually been on 

comparing different “families” of data sets (models vs. reanalyses vs. different remote sensing 

techniques), but less work has been done comparing results within each “family”. The work done 

here was performed to fill in this gap for the “family” of regression- and VI-based models. 

 

We found that most of the regression methods yielded useful estimates of LE with errors of 

similar magnitude to the differences in LE values between a wide range of methods according to 

Mueller et al., 2011 and Jimenez et al., 2011. The error levels we found were also consistent with 

the results provided by the original developers of these algorithms (references given in Table 2-

1) and with the evaluation of VI-based LE retrieval methods by Glenn et al. (2010). Aside from 

the effect of inclusion of net radiation as an input parameter, the differences in performance were 

relatively modest, consistent with Mueller et al. (2011), where the two regression-based models 

included in the comparison had similar results. 
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The finding that, while increasing the number of input variables included improved the results, 

the specific formulation of the regression formula did not, was somewhat surprising. However, 

this is consistent with the fact that a broad range of different LE algorithms with different 

theoretical bases are all able to work with some skill, with no particular formulation coming out 

ahead consistently. The finding that formulas that do not include net radiation as a forcing 

variable stand out as performing especially poorly is consistent with Badgley et al. (2015), who 

found that changing the source of net radiation data used by a Priestley-Taylor model resulted in 

a greater change to its results than changing the source of meteorological or vegetation index 

data. In addition, the finding of the high significance of the net radiation variable is also 

consistent with Wang et al. (2007), who found a greater correlation of flux tower LE 

measurements to net radiation than to temperatures or vegetation indices.  

 

The effect of land surface type on the performance of a range of empirical algorithms has not 

been examined in detail before this study. We found that there was some variation in 

performance, which is not unexpected, since different land cover types have different degrees of 

annual variation in vegetation index, and probably different relationships between VI and LE. 

(The differences in ecosystem response of different surface types to moisture stress has been a 

focus of much recent work, including De Keersmaecker et al., 2015; Joiner et al., 2018; and 

Seddon et al., 2016) Performance was weaker for agricultural sites, possibly because individual 

fields with different crop cover and irrigation characteristics occur at sub-pixel scales. 

 

A probable reason for the low bias in wetland sites is that evaporation from the surface makes a 

more significant contribution to LE than for other site types, while vegetation indices are more of 
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an indicator of transpiration. Multiple studies (Allen et al., 2017; Malone et al., 2014; Runkle et 

al., 2014) have shown that H is a much smaller component of the surface energy budget than LE 

for wetland sites, and at least one study (Beigt et al. 2008) indicates that sensible heating can 

make a positive contribution to available energy at a wetland site. High values of LE relative to 

H are also seen in the wetland flux tower energy balance measurements used in this study. In 

addition, S. T. Allen et al. (2017) have shown that release of stored energy from the surface can 

contribute to available energy in the autumn season for a wetland. These sources of energy are 

available for evaporation but not transpiration. Along with higher surface moisture availability, 

these effects can result in high evaporative fraction and high rates of evaporation relative to 

transpiration from wetlands. Vegetation indices are not a good indicator of surface evaporation, 

as in the limiting case of open water where VIs are very low but surface evaporation is high. 

 

The relationship between VI and LE is probably different for wetland and agricultural sites than 

for other surface types, especially so in the case of wetland sites. It appears that in those cases re-

tuning the algorithm coefficients with just data from the same surface type adjusts for these 

differing relationships and produces a better fit. 

 

There are other variables, such as precipitation and soil moisture, that are strongly related to LE 

but not used directly in any of the regression formulas reviewed. (They are parameterized in 

terms of other variables in some cases.) It should be possible to include precipitation and soil 

moisture from surface or microwave measurements, but it would be important to consider scaling 

effects when using these data. Surface precipitation and soil moisture measurements are in effect 

point measurements, limiting the possibilities for upscaling. On the other hand, while the 
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footprint of microwave observations is typically greater than the resolution of vegetation indices. 

For example, the resolution of the microwave-based Global Precipitation Measurement (GPM) is 

about 5 km. Global microwave soil moisture observations are currently available at scales of 

around 25 km, although there are ongoing efforts to downscale remote sensing soil moisture data 

sets, as reviewed by Peng et al. (2017). If precipitation is used as an input variable, a lag effect 

must be considered as the moisture made available in a precipitation event may remain available 

for several days. By contrast, soil moisture is a more immediate measure of water availability 

and a lag effect would not be expected.   

 

Overall, the performance of the VI algorithms is consistent with what has been seen in previous 

work with those algorithms and with other methods for obtaining ET from remote sensing. For 

example, the RMSE values found here are comparable to the differences between ET values 

obtained by various methods as found by Jimenez et al., 2011, Li et al., 2018 and Sörensson and 

Ruscica, 2018 and the magnitudes of sensitivity to different inputs of the MOD16 algorithm 

found by Zhang et al., 2019. Where possible, it is preferable to use algorithms with more input 

data parameters if selecting between the algorithms tested in this study, since the specifics of the 

underlying basis appear to matter little. Simpler algorithms can perform almost as well as more 

complex ones, but it is more important that they be tuned with appropriate training data. At a 

minimum, inclusion of Rn as a parameter along with VI is recommended wherever possible. 

 

Conclusions 

In this study, we have noted certain patterns in the performance of vegetation index- based LE 

algorithms. Increasing the number of variables included in regression formulas tends to improve 
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performance, although the specific form of model used is not as significant. Those algorithms in 

which net radiation was one of the input variables produced much less error than those that did 

not, as demonstrated by the difference between the Yebra (2013) ET (YET) algorithm, and 

Yebra (2013) EF (YEF) algorithms, which are very similar to each other except that YEF has net 

radiation as an input while YET does not. (Figures 2-2, 2-3, 2-4). Tuning of the regression 

coefficients to the global data set improved performance in most cases, which is also 

demonstrated in Figures 2-4. This improvement was most significant for those models with 

fewer input variables. For wetland and agricultural surface types, tuning with data specific to that 

surface type produced improved results (Figures 2-6 to 2-8), but this was not the case for other 

surface types. Any user of VI-based regression methods would be well advised to ensure that the 

algorithms (especially the simpler ones) are tuned appropriately to the data to which the 

algorithms will be applied, and to consider separate tuning by surface type, especially for 

wetland and agricultural sites. 

 

There are multiple opportunities for adaptation and improvement of the methods evaluated here.  

All of the input variables to the regression formulas are potentially available through remote 

sensing (Liang 2007, Liang et al. 2012) or reanalysis, so there is the potential for removing all 

dependence on ground-based observations. The accuracy of these remote sensing only retrievals 

would have a strong dependency on how accurately the remotely sensed quantities are retrieved. 

It is also likely that new empirical formulations will continue to be developed. It would be 

advisable to evaluate them relative to existing formulas like those considered in this chapter 

before using them for regional or global trend and anomaly detection. 
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Supplementary Material 

Table 2-7: List of Fluxnet sites included in this study 
Site code Site name Latitude Longitude IGBP Type 

AR-SLu San Luis -33.4648 -66.4598 MF 

AU-Ade Adelaide River -13.0769 131.1178 WSA 

AU-ASM Alice Springs -22.283 133.249 ENF 

AU-CPR Calperum -34.0021 140.5891 SAV 

AU-Cum Cumberland Plains -33.6133 150.7225 EBF 

AU-DaS Daly River Cleared -14.1593 131.3881 SAV 

AU-DaP Daly River Savanna -14.0633 131.3181 GRA 

AU-Dry Dry River -15.2588 132.3706 SAV 

AU-Emr Emerald Queensland -23.8587 148.4746 GRA 

AU-Gin Gingin -31.3764 115.7138 WSA 

AU-GWW Great Western Woodlands -30.1913 120.6541 SAV 

AU-How Howard Springs -12.4943 131.1523 WSA 

AU-Lox Loxton -34.4704 140.6551 DBF 

AU-RDF Red Dirt Melon Farm -14.5636 132.4776 WSA 

AU-Rig Riggs Creek -36.6499 145.5759 GRA 

AU-Rob Robson Creek -17.1175 145.6301 EBF 

AU-Stp Sturt Plains -17.1507 133.3502 GRA 

AU-Wac Wallaby Creek -37.4259 145.1878 EBF 

AU-Whr Whroo -36.6732 145.0294 EBF 

AU-Wom Wombat -37.4222 144.0944 EBF 
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AU-Ync Jaxa -34.9893 146.2907 GRA 

BE-Bra Brasschaat 51.3092 4.5206 MF 

BE-Vie Vielsalm 50.3051 5.9981 MF 

BR-Sa3 Santarem Km83 Logged Forest -3.018 -54.9714 EBF 

CA-Gro Groundhog River 48.2167 -82.1556 MF 

CA-Oas Saskatchewan Mature Aspen 53.6289 -106.1978 DBF 

CA-Obs Saskatchewan Mature Black 

Spruce 

53.9872 -105.1178 ENF 

CA-OjP Saskatchewan Mature Jack Pine 53.9163 -104.692 ENF 

CA-Qcu Quebec Black Spruce/ Jack 

Pine Cutover 

49.2671 -74.0365 ENF 

CA-SF1 Saskatchewan Forest 1977 

Burn 

54.485 -105.8176 ENF 

CA-SF2 Saskatchewan Forest 1989 

Burn 

54.2539 -105.8775 ENF 

CA-SF3 Saskatchewan Forest 1998 

Burn 

54.0916 -106.0053 OSH 

CA-TP1 Turkey Point 2002 Plantation 

White Pine 

42.6609 -80.5595 ENF 

CA-TP2 Turkey Point 1989 Plantation 

White Pine 

42.7744 -80.4588 ENF 
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CA-TP3 Turkey Point 1974 Plantation 

White Pine 

42.7068 -80.3483 ENF 

CA-TP4 Turkey Point 1939 Plantation 

White Pine 

42.7102 -80.3574 ENF 

CA-TPD Turkey Point Mature 

Deciduous 

42.6353 -80.5577 DBF 

CH-Cha Chamau 47.2102 8.4104 GRA 

CH-Dav Davos 46.8153 9.8559 ENF 

CN-Cng Changling 44.5934 123.5092 GRA 

CN-Du2 Duolon Grassland 42.0467 116.2836 GRA 

CZ-wet CZECHWET 49.0247 14.7704 WET 

DE-Akm Anklam 53.8662 13.6834 WET 

DE-Geb Gebesee 51.1001 10.9143 CRO 

DE-Gri Grillenberg 50.9495 13.5125 GRA 

DE-Hai Hainich 51.0792 10.453 DBF 

DE-Kli Klingenberg 50.8929 13.5225 CRO 

DE-Obe Oberbarenburg 50.7867 13.7213 ENF 

DE-She Selhausen 50.8706 6.4497 CRO 

DE-Tha Tharandt 50.9624 13.5652 ENF 

DK-Fou Foulum 56.4842 9.5872 CRO 

DK-Sor Soroe 55.4859 11.6446 DBF 

FI-Hyy Hyytiala 61.8475 24.295 ENF 
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FI-Lom Lompolojänkkä 67.9972 24.2092 ENF 

FR-Fon Fontainebleau-Barbeau 48.4764 2.7801 DBF 

FR-Gri Grignon 48.8442 1.9519 CRO 

FR-LBr LeBray 44.7171 -0.7693 ENF 

FR-Pue Puechabon 43.7414 3.5958 EBF 

IT-BCi Borgo Cioffi 40.5238 14.9574 CRO 

IT-CA1 Castel d’Asso 1 42.3804 12.0266 DBF 

IT-CA2 Castel d’Asso 2 42.3772 12.026 CRO 

IT-Cpz Castelporziano 41.7052 12.3761 EBF 

IT-Cp2 Castelporziano 2 41.7043 12.3573 EBF 

IT-Col Collelongo 41.8494 13.5881 DBF 

IT-Lav Lavarone 45.9562 11.2813 ENF 

IT-MBo Monte Bondone 46.0147 11.0458 GRA 

IT-Noe Arca di Noe 40.6061 8.1515 CSH 

IT-PT1 Parco Ticino Forest 45.2009 9.061 DBF 

IT-Ren Renon 46.5869 11.4337 ENF 

IT-Ro2 Roccarespampani 2 42.3903 11.9209 DBF 

IT-SRo San Rossore 43.7279 10.2844 ENF 

IT-Tor Torgnon 45.8444 7.5781 GRA 

MX-Lpa La Paz 24.12925 -110.43803 OSH 

NL-Hor Horstermeer 52.2404 5.0713 GRA 

NL-Loo Loobos 52.1666 5.7436 ENF 
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NO-Adv Adventdalen 78.186 15.923 WET 

RU-Fyo Fyodorovskoye 56.4615 32.9221 ENF 

RU-Ha1 Hakasia Steppe 54.7252 90.0022 GRA 

SD-Dem Demokeya 13.2829 30.4783 SAV 

US-An1 Anaktuvuk River Severe Burn 68.99 -150.28 OSH 

US-An2 Anaktuvuk River Moderate 

Burn 

68.95 -150.21 OSH 

US-An3 Anaktuvuk River Unburned 68.93 -150.27 OSH 

US-AR1 ARM Woodward Switchgrass 1 36.4267 -99.42 GRA 

US-AR2 ARM Woodward Switchgrass 2 36.6358 -99.5975 GRA 

US-ARM ARM SGP 36.6058 -97.4888 CRO 

US-Aud Audubon Ranch 31.59073 -110.51038 GRA 

US-Bkg Brookings 44.3453 -96.8362 GRA 

US-Blk Black Hills 44.158 -103.65 ENF 

US-Blo Blodgett Forest 38.8953 -120.6328 ENF 

US-Bn1 Bonanza Creek, 1920 Burn 63.919813 -145.378178 ENF 

US-Bn2 Bonanza Creek, 1987 Burn 63.919813 -145.3782 DBF 

US-Bn3 Bonanza Creek, 1999 Burn 63.92268 -145.7442 OSH 

US-Bo1 Bondville 40.0062 -88.2904 CRO 

US-Bo2 Bondville Companion Site 40.009 -88.29 CRO 

US-Br1 Brooks Field Site 10 41.9749 -93.6906 CRO 

US-Br3 Brooks Field Site 11 41.97472 -93.69357 CRO 
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US-CaV Canaan Valley 39.06333 -79.42083 GRA 

US-Ced Cedar Bridge 39.8379 -74.3791 CSH 

US-ChR Chestnut Ridge 35.9311 -84.3324 DBF 

US-CPk Chimney Park 41.067963 -106.118667 ENF 

US-CRT Curtice Walker Berger Crop 41.6285 -83.3471 CRO 

US-Ctn Cottonwood 43.95 -101.8466 GRA 

US-Dia Diablo 37.6773 -121.5296 GRA 

US-Dix Fort Dix 39.97123 -74.43455 MF 

US-DK1 Duke Open Field 35.9712 -79.0934 GRA 

US-Dk2 Duke Hardwood 35.9736 -79.1004 DBF 

US-Dk3 Duke Loblolly 35.97817 -79.0942 ENF 

US-Elm Everglades Long Hydroperiod 

Marsh 

25.5519 -80.7826 WET 

US-Esm Everglades Short Hydroperiod 

Marsh 

25.4379 -80.5946 WET 

US-Fmf Flagstaff Managed Forest 35.1426 -111.7273 ENF 

US-FPe Fort Peck 48.3077 -105.1019 GRA 

US-FR2 Freeman Ranch Mesquite 

Juniper 

29.94949 -97.99623 WSA 

US-FR3 Freeman Ranch Woodland 29.94 -97.99 CSH 

US-Fuf Flagstaff Unmanaged Forest 35.089 -111.762 ENF 

US-Fwf Flagstaff Wildfire 35.4454 -111.7718 GRA 
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US-GLE GLEES 41.36653 -106.2399 ENF 

US-GMF Great Mountain Forest 41.96667 -73.23333 MF 

US-Goo Goodwin Creek 34.2547 -89.8735 GRA 

US-Ha1 Harvard Forest 42.5378 -72.1715 DBF 

US-Ho2 Howland Forest West Tower 45.2091 -68.747 ENF 

US-Ho3 Howland Forest Harvest Site 45.2072 -68.725 ENF 

US-IB1 Fermi Agricultural 41.8593 -88.2227 CRO 

US-IB2 Fermi Prairie 41.8406 -88.241 GRA 

US-ICh Imnavait Creek Heath Tundra 68.6068 -149.2958 OSH 

US-ICs Imnavait Creek Wet Sedge 

Tundra 

68.6058 -149.311 WET 

US-ICt Imnavait Creek Tussock 

Tundra 

68.6063 -149.3041 OSH 

US-Ivo Ivotuk 68.4865 -155.7503 WET 

US-KFS Kansas Field Station 39.0561 -95.1907 GRA 

US-Kon Konza Prairie 39.0745 -96.5951 GRA 

US-KS2 Kennedy Space Center Scrub 

Oak 

28.6086 -80.6715 CSH 

US-KUT KUOM Turfgrass 44.994989 -93.18628 GRA 

US-Los Lost Creek 46.0827 -89.9792 WET 

US-Me2 Metolius Intermediate Pine 44.4523 -121.5574 ENF 

US-Me3 Metolius Second Young Pine 44.3154 -121.6078 ENF 
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US-Me4 Metolius Old Aged Ponderosa 

Pine 

44.4992 -121.6224 ENF 

US-Me5 Metolius First Young Aged 

Pine 

44.43719 -121.56676 ENF 

US-Me6 Metolius Young Pine Burn 44.3233 -121.6078 ENF 

US-MOz Missouri Ozark 38.7441 -92.2 DBF 

US-MRf Mary’s River Fir 44.64649 -123.55148 ENF 

US-Myb Mayberry Wetland 38.0498 -121.7651 WET 

US-NC1 NC Clearcut 35.8118 -76.7119 OSH 

US-NC2 NC Loblolly Plantation 35.803 -76.6685 ENF 

US-Ne1 Mead Irrigated Maize 41.1651 -96.4766 CRO 

US-Ne2 Mead Irrigated Rotation 41.1649 -96.4701 CRO 

US-Ne3 Mead Rainfed 41.1797 -96.4397 CRO 

US-NR1 Niwot Ridge 40.0329 -105.5464 ENF 

US-Oho Ohio Oak Openings 41.5545 -83.8438 DBF 

US-PFa Park Falls/ WLEF 45.9459 -90.2723 MF 

US-Pon Ponca City 36.76667 -97.13333 CRO 

US-Prr Poker Flat Black Spruce 65.12367 -147.48756 ENF 

US-Ro1 Rosemount G21 44.7143 -93.0898 CRO 

US-Ro2 Rosemount G19 44.7217 -93.0893 CRO 

US-SdH Nebraska Sand Hills Dry 

Valley 

42.0693 -101.4072 GRA 
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US-SFP Sioux Falls Portable 43.2408 -96.902 CRO 

US-Shd Shidler Oklahoma 36.93333 -96.68333 GRA 

US-Slt Silas Little 39.9138 -74.596 DBF 

US-SKr Shark River Slough 25.362933 -81.077582 EBF 

US-Snd Sherman Island 38.0373 -121.7537 GRA 

US-SO2 Sky Oaks Old Stand 33.3738 -116.6228 CSH 

US-SO4 Sky Oaks New Stand 33.3845 -116.6406 CSH 

US-SRC Santa Rita Creosote 31.9083 -110.8395 OSH 

US-SRG Santa Rita Grassland 31.789379 -110.827675 GRA 

US-SRM Santa Rita Mesquite 31.8214 -110.8661 WSA 

US-Syv Sylvania Wilderness Area 46.242 -89.3477 MF 

US-Ton Tonzi Ranch 38.4316 -120.966 WSA 

US-Tw1 Twitchell Wetland 38.1074 -121.6469 WET 

US-Tw3 Twitchell Alfalfa 38.1159 -121.6467 CRO 

US-Tw4 Twitchell East End Wetland 38.10298 -121.6414 WET 

US-Twt Twitchell Disturbance 38.10867 -121.653 CRO 

US-UMB University of Michigan 

Biological Station 

45.5598 -84.7138 DBF 

US-Umd UMBS Disturbance 45.5625 -84.6975 DBF 

US-Var Vaira Ranch 38.4133 -120.9507 GRA 

US-WBW Walker Branch 35.9588 -84.2874 DBF 

US-WCr Willow Creek 45.8059 -90.0799 DBF 
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US-Wdn Walden 40.7838 -106.2618 OSH 

US-WHS Walnut Gulch Lucky Hills 

Shrub 

31.7438 -110.0522 OSH 

US-Wi3 Wi3 Mature Hardwood 46.634722 -91.098667 DBF 

US-Wi4 Wi4 Mature Red Pine 46.739333 -91.16625 ENF 

US-Wkg Walnut Gulch Kendall 

Grassland 

31.7365 -109.9419 GRA 

US-Wlr Walnut River 37.5208 -96.855 GRA 

US-WPT Winous Point North Marsh 41.464639 -82.996157 WET 

US-Wrc Wind River Crane Site 45.8205 -121.9519 ENF 

ZA-Kru Skukuza -25.0197 31.4969 SAV 

Zm-Mon Mongu -15.4378 23.2528 DBF 

 
 
 
 
 
Table 2-8: Original published coefficients for regression algorithms. 
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Algorithm Short 
name 

Version Original coefficients 

Yebra ET YET NDVI a = 37.39, b = 242.3  

EVI a = 5.73, b = 347.77 

Yebra EF YEF NDVI a = 0.2, b = 1.03 

EVI a = 0.087, b = 1.40 

Helman exponential HEx NDVI a = 6.735, b = 3.12 

EVI a = 5.150, b = 6.31 

Helman scaled HSc  a = 2.0, b = 0.1, c = 2.5, d = 0.05,  

e = 30.0 

Wang 2007 W07 EVI, Ta_avg a1 = 0.137, a2 = 0.759, a3 =  0.004 

EVI, Ta_max a1 =  0.114, a2 = 0.778, a3 =  0.0039 

EVI, Ts_avg a1 = 0.114, a2 = 0.778, a3 =  0.0039 

EVI, Ts_max a1 = 0.096, a2 = 0.78, a3 =  0.0039 

NDVI, Ta_avg a1 = 0.1505, a2 = 0.45, a3 =   0.004 

NDVI, Ta_max a1 = 0.106, a2 = 0.49, a3 =  0.0039 

NDVI, Ts_avg a1 =  0.106, a2 = 0.49, a3 =  0.0039 

NDVI, Ts_max a1 = 0.084, a2 = 0.498, a3 =  0.0039 

Wang/Liang WL EVI, Ta_avg a1 =  0.3541, a2 =  0.6257, a3 =  0.0073 a4 =  

-0.0134 

EVI, Ta_max a1 =  0.3315, a2 =  0.6437, a3 =  0.0073, a4 =  

-0.0143 

EVI, Ts_avg a1 =  0.3637, a2 =  0.6634, a3 =  0.0062, a4 

=  -0.0144 

EVI, Ts_max a1 =  0.3383, a2 =  0.6698, a3 =  0.0067, a4 

=  -0.0159 
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NDVI, Ta_avg a1 =  0.3067, a2 =  0.4425, a3 = 0.0086, a4 =  

-0.0141 

NDVI, Ta_max a1 =  0.2749, a2 =  0.4668, a3 =  0.0085, a4 

=  -0.0150 

NDVI, Ts_avg a1 =  0.2925, a2 = 0.4919, a3 = 0.0075, a4 =  

-0.0153 

NDVI, Ts_max a1 =  0.2816,  a2 = 0.4834, a3 = 0.0079, a4 =  

-0.0170 

Choudhury/ FAO56 Ch  EVImin = 0.05, EVImax = 0.95 

Kamble/ FAO56 Kmb  a = 1.4571, b =  0.1725 

Wang 2010 W10 NDVI a1 =  0.476, a2 =  0.284,  a3 =  -0.654, a4 =  

0.264, a5 =  3.06, a6 =  -3.86, a7 =  3.64, a8 

= 0.819, a9 =  0.0017 

EVI a1 = 0.504, a2 = 0.364, a3 = -0.760, a4 = 

0.855, a5 = 2.99, a6 = -3.25, a7 = 7.73, a8 =  

1.00, a9 =  0.0006 

Yao 2011 Y11  a1 =  0.00084, a2 = -0.000978, a3 = 0.3044, 

a4 = 0.0029, 

a5 = 0.284, a6 = 0.1273, a7 = 0.01, a8 =  

0.065 

Yao 2013 Y13 Ts_dTr a = 1.26, NDVImax = 0.95, NDVImin = 

0.05,  

Topt = 25.0, dTrmax = 60.0 
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Ta_dTr a = 1.26, NDVImax = 0.95, NDVImin = 

0.05,  

Topt = 25.0, dTrmax = 40.0 

Yao 2015 Y15  a = 1.26, a1 = 0.1691, a2 = 0.0073, a3 = 

0.4464, a4 = 0.2122, a5 = 0.4079 
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       e)                                                                      f) 
 
 
 
 
 
 
 
 
 
 
 

      a)                                                                    b) 

      c)                                                                    d) 
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      g) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-10: Boxplots of RMSE by site for each cover type, from coefficients derived from 

global data and from data from the same cover type only. For each algorithm, first box is for 

coefficients derived from all sites and second box is for coefficients derived from data from the 

      e)                                                                    f) 

      g)                                                                   
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same cover type only.  a) Agricultural.  b) Deciduous.  c) Evergreen.  d) Grassland.  e) Savannah.  

f) Shrub.  g) Wetland.  
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Figure 2-11: Boxplots of R2 by site for each cover type, from coefficients derived from global 

data and from data from the same cover type only. For each algorithm, first box is for 

coefficients derived from all sites and second box is for coefficients derived from data from the 

      e)                                                                     f)           

      g)                                                                                
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same cover type only.  a) Agricultural.  b) Deciduous.  c) Evergreen.  d) Grassland.  e) Savannah.  

f) Shrub.  g) Wetland.  
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Figure 2-12: Boxplots of bias by site for each cover type, from coefficients derived from global 

data and from data from the same cover type only. For each algorithm, first box is for 

coefficients derived from all sites and second box is for coefficients derived from data from the 

same cover type only.  a) Agricultural.  b) Deciduous.  c) Evergreen.  d) Grassland.  e) Savannah.  

f) Shrub.  g) Wetland. 

      e)                                                                     f)           

      g)                                                                               
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Chapter 3: Development of machine learning methods for estimating 
terrestrial evapotranspiration from remote sensing 

 

Introduction 

Compared to the radiative elements of the surface energy balance, LE can be difficult to 

measure, and there is more uncertainty in the measurements. Measurements of radiation balances 

and vegetation indices are made with global coverage on a daily or more frequent basis, and have 

been combined with other remote sensing data, reanalyses, and ground-based observations in a 

great variety of ways to generate LE data sets at various spatial and temporal resolutions. 

Methods for remote sensing of LE are being developed on an ongoing basis. There is a need to 

test and evaluate new means of obtaining LE as they become available.  Machine learning is a 

relatively novel software technology that has been applied in many areas of remote sensing, 

including retrieval of LE. The goals of the present study are to evaluate the ability of machine 

learning methods to obtain LE from remote sensing data alone and to compare the accuracy and 

computational demand for different machine learning algorithms when applied to the LE 

retrieval problem. 

 

Machine learning (ML) methods are means of extracting patterns from data sets with little prior 

knowledge of those patterns and can be used to address classification and regression problems. 

When used for regression, they are analogous to standard statistical methods, but more 

sophisticated in their ability to model complex relationships between input data sets with little a 

priori knowledge of the form of those relationships. The best-known ML methods include neural 

networks (NN), tree methods, and support vector machines (SVMs), which have all been used 
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extensively for a wide range of applications both inside and outside of the field of remote sensing 

(Camps-Valls et al. 2011; Hastie et al. 2009). Another method, the random kernel (RKS) 

algorithm (Rahimi and Recht, 2009), is less widely known, but has been shown to have great 

potential utility for remote sensing applications (Pérez-Suay et al. 2017). 

 

Machine learning methods have been used a great deal recently for the determination LE for a 

variety of applications. The model tree ensemble machine learning technique has been applied to 

the problem of determining global trends in LE by Jung et al. (2010). Multiple studies have been 

conducted using machine learning techniques for downscaling LE (Kaheil et al., 2008; Ke et al., 

2017, 2016) and drought detection and forecasting (Park et al., 2016; Rhee and Im, 2017). There 

are also a significant number of studies comparing the performance of different ML techniques 

for obtaining LE. Some of them (Dou and Yang 2018b, 2018a; Deo et al. 2016) found little 

difference between the results obtained using different ML algorithms. In other studies, some 

ML algorithms outperformed others, but no single ML method produced the best results 

consistently. In Deo and Samui (2017), a least square support vector machine produced more 

accurate results than three other techniques and Yang et al. (2006) obtained better results with a 

support vector machine than with a neural network or multiple regression. Pandey et al. (2017) 

had the best results obtaining reference evapotranspiration (ET0) using a neural network 

compared to three other methods.  

 

Virtually all of the previous work done with machine learning applications for LE involves 

training with input variable data sets that include ground-based station data only, or ground 

station data in addition to remote sensing. (An exception here is Lu and Zhuang (2010), who 
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obtained all of their input variable data from MODIS.) Most of these studies, with the notable 

exception of Jung et al. (2010), also involve training to measurements of LE from a relatively 

small number of locations (20 or fewer). In many studies just one ML technique was applied. In 

those where comparisons are performed four or fewer methods are compared. Here we endeavor 

to extend the range of algorithms and conditions used in comparative testing of ML methods for 

retrieval of LE, and also to demonstrate the utility of these methods for retrieval of LE from 

remote sensing data only. We focus on comparisons of different ML algorithms both in terms of 

accuracy and computational demand. 

 

The process of training ML algorithms requires three separate training, validation, and test data 

sets, and also requires the tuning of one or more algorithm parameters. All algorithms tested here 

have at least one parameter that must be tuned. It is impossible to do this in an a priori manner, 

so the algorithms must be iteratively trained and validated to fit the parameters appropriately. 

Once the parameter fitting has been done, a final test must be done with a third data set that has 

been held separate from the training and validation data sets, in order to ensure that overfitting 

has not occurred in the process of tuning the parameters. The computational demands of 

performing this procedure vary, depending on the algorithm to be trained, the number of 

parameters within the algorithm that are adjusted, and the size of the training data set. For 

practical reasons, it is desirable to have some estimates of the computing resources required for 

training each ML algorithm as well as its performance.  

 

This study is intended to evaluate the utility of a range of ML algorithms for obtaining LE from 

remote sensing data on a global basis. The algorithms’ relative demands for computational 
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resources were evaluated as well as their accuracy. The initial step performed was to measure the 

length of time it took to perform a single train/ test iteration for each algorithm. This was done 

with a smaller and a larger training data set in order to determine which combinations it was 

feasible to work with further. Then the effects of including different combinations of variables in 

the input data set on accuracy and computational demand were analyzed, as it was considered 

possible that increasing the number of input variables could improve accuracy but also 

significantly increase training processing time. Finally, most of the ML methods considered were 

tuned with the small training data set, and a smaller number with the large training data set. The 

sensitivity of the algorithm results to changes in parameter values was evaluated in each case. 

Methods 

Description of machine learning algorithms 

A total of 14 ML algorithms were subjected to initial timing tests with the smaller training data 

set. The algorithms considered fall into five “families” of related algorithms, each of which is 

discussed in a section below. Based on the results of this timing, 10 of the original algorithms 

were systematically tuned with the smaller training data set and given an initial timing test with 

the larger training data set. Of those 10, 8 were found to run with low enough computational 

demand for systematic tuning with the larger training data set to be feasible. The 14 ML 

algorithms considered are listed below in Table 3-1. Which of the algorithms were trained with 

the small and large data sets are also specified in Table 3-1. 
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Table 3-1: Algorithms used in this study, with corresponding abbreviations. Algorithms marked 

with an asterisk (*) are described in Hastie et al. (2008). Other references are provided with the 

algorithm names.
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Family Full name Abbreviation Tuned with 
small 
training data 
set 

Tuned with 
large training 
data set 

Linear Regularized linear 
regression* 

RLR Yes Yes 

Least absolute 
shrinkage and selection 
operator regression* 

LASSO Yes Yes 

Elastic net 
regularization* 

ELASTIC Yes Yes 

Kernel  Gaussian process 
regression*(Murphy, 
2012) 

GPR No No 

Kernel ridge regression 
(Murphy, 2012) 

KRR Yes No 

Random kernel 
(Rahimi and Recht 
2009, Perez-Suay et al. 
2017) 

RKS Yes Yes 

Variational 
heteroscedastic 
Gaussian process 
regression(Lazaro-
Gredilla et al., 2014; 
Lazaro-Gredilla and 
Titsias, 2011) 

VHGPR No No 

Tree Regression tree* TREE Yes Yes 
Bootstrap aggregation 
(bagging) tree* 

BAGTREE Yes Yes 

Boosted regression 
tree* 

BOOST Yes Yes 

Neural 
network 

Standard neural 
network (1, 2, and 3 
hidden layers)* 

NN Yes Yes 

Extreme learning 
machine (Huang et al. 
2006) 

ELM No No 

Support 
vector 

Support vector 
regression* 

SVR Yes No 

Relevance vector 
machine(Thayananthan 
et al., 2006) 

RVM No No 
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A general property of machine learning algorithms is that they are capable of giving 

results that are too independent of the training data set to yield good predictions with 

new data (underfitting, or high bias), or too closely fit to the training data set to give 

good predictions (overfitting, or high variance). The values of tunable parameters 

may result in overfitting or underfitting, which is reflected in the results when tested 

with a separate validation data set.  

 

For this study, optimum values of the parameters are found by minimizing the root 

mean square error (RMSE) of the algorithm when applied to the validation data set.  

It is possible for the resulting algorithm parameters to represent overfitting to the 

combination of the training and validation data set. Whether or not this has occurred 

is checked by applying the trained and tuned algorithm to an independent test data 

set. The proportions of the originally available data which are allotted to training, 

validation, and test data sets are usually set so that most of the data, typically around 

80%, is in the training data set, and the remainder divided between the validation and 

test data sets. For the purposes of this study, we used one training/ validation/ test 

split of approximately 80%/ 10%/ 10% proportions (69,752 training, 7910 validation, 

and 7910 test), and another of 10%/ 45%/ 45% proportions (7910 training, 35594 

validation, and 35594 test). For some of the algorithms, a single iteration of training 

and validation could not be performed quickly enough to perform the iterative process 

of tuning in a reasonable length of time (10 minutes for a single train/ test cycle), 

even with the smaller training data set. Other algorithms could be tuned in a 
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reasonable amount of time with the smaller training data set, but not with the larger 

one. 

 

Each of the algorithms considered (as listed in Table 3-1) will be described briefly 

below. The implementation in Matlab of all of these algorithms, with the exception of 

the random kernel (RKS), was obtained from package “simpleR” (Lazaro-Gredilla et 

al., 2014). The RKS algorithm code was obtained from 

http://isp.uv.es/code/rks2017.html and is supplemental material to Pérez-Suay et al. 

(2017) .  

 

Linear regression variants 

A standard linear regression to a scalar output fits a set of m coefficients 

Q = (q1 ... qm) to a set of n input vectors (Xn = xn,1 … xn,m) and n output scalars (y1… 

yn). The coefficients Q are found that minimize the mean squared error cost function: 

																																																							𝐽 = ∑ (𝑦§ − Θ𝑋§)w*
§©?                                              (3-1) 

                                                                                                                                                       
For a simple linear regression, there is a single optimum set of coefficients and no 

additional parameters that need to be tuned.  

 

There are three variants of linear regression that apply regularization parameters in an 

effort to prevent overfitting to the training data. In each case, a penalty is applied that 

increases as the magnitude of the regression coefficients increases. The first of these 

linear regression variants, the regularized linear regression, produces a set of 

coefficients Q that minimize the following cost function: 
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																																𝐽 = ∑ (𝑦§ − Θ𝑋§)w*

§©? + 𝜆 ∑ 𝜃¾w�
¾©?                                    (3-2) 

 
This has the potential for underfitting or overfitting, depending on the value of l 

chosen, with higher l tending to produce greater bias and lower l tending to produce 

greater variance.  

 

The second of the linear regression variants, the Least Absolute Shrinkage and 

Selection Operator (LASSO) method, formulates the cost function with a penalty 

applied to the absolute value of the q values rather than their square, resulting in  

 
																														𝐽 = ∑ (𝑦§ − Θ𝑋§)w*

§©? + 𝜆∑ ¿𝜃¾¿�
¾©?                                    (3-3) 

 
Once again, there is a single tunable parameter l. 
 
The third linear regression variant, the elastic net algorithm, includes both a squared 

term and an absolute value term in the cost function: 

 
																		𝐽 = ∑ (𝑦§ − Θ𝑋§)w*

§©? + 𝜆j∑ 𝜃¾w�
¾©? + 𝛼 ∑ |𝜃Á|�

Á©? p                      (3-4) 
 
Here there are two parameters: l, representing the overall degree of regularization, 

and a, representing the weighting between squared and absolute value regularization.  

 

Kernel methods 
 
The kernel methods are based on implicit mapping of the input data to a space where 

a regression problem is more tractable by applying a kernel function to each pair of 

input data points. Tuning was performed here for two kernel methods, the kernel 

ridge regression (KRR) and the random kernel algorithm (RKS).  



 

 

77 
 

 

The kernel ridge regression (KRR) performs a regularized linear regression procedure 

using the “kernel trick” to represent the inner product of each pair of input points Xi 

and Yj in the training data set in a reprojected space. The radial basis function (RBF)  

 

																				〈𝜙(𝑋§), 𝜙j𝑌¾p〉 = 𝑒𝑥𝑝  − ÇÈ�2[ÉÇ
V

wÊV
£                                   (3-5) 

 
is used as the kernel function, where f represents the reprojection (which is not 

explicitly calculated). There are two parameters to be tuned, the weight l assigned to 

the regularization term of the modified RLR and the width s of the RBF kernel.  

 

The random kernel (RKS) function is an approximation of KRR, where the kernel 

function is approximated by a set of randomly chosen functions drawn from Fourier 

transform of the kernel function before being applied to each combination of data 

points in the training data set. The RKS transformation is performed in order to obtain 

an improvement in computational efficiency over KRR while attaining similar 

accuracy. The RKS algorithm is described in detail by Pérez-Suay et al. (2017) , who 

also provide examples of its application to remote sensing problems. 

 

Initial timing tests were made for two other kernel methods, the Gaussian process 

regression (GPR) and variational heteroscedastic Gaussian process regression 

(VHGPR). However, the computational resources required by these algorithms were 

such that tuning could not have been completed in a reasonable amount of time, so no 

further testing was done with them. 
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Regression tree methods 
 
Regression trees are a frequently-used ML method in which the space of input 

variables is iteratively subdivided and an output value given for each subset. Three 

model tree methods are used in this study: the standard model tree, bootstrap 

aggregation (bagging) tree, and boosted tree algorithms. 

 

The basic regression tree algorithm constructs a single tree by iteratively optimizing 

decision points within the range of each input variable. There are two tunable 

parameters in the version of the regression tree tested here. The number of data points 

required in a subdivision of the input space for it to be split can be varied, resulting in 

a tree that models variations of small numbers of input data points more or less 

closely. The other parameter is the degree of pruning, in which some branch points of 

the decision tree are removed and replaced by their parent, in an effort to prevent 

overfitting. Testing variations in these parameters of model trees with the LE data set 

showed very little effect, approximately 0.5 W/m2 RMSE difference between the best 

and worst fits over a range of 25-125 points required for splitting and a range of 

pruning levels from 0 to 20. Therefore, variations in these parameters were not tested 

in the other two more complex tree algorithms. 

 

The second regression tree method tested here is the bootstrap aggregation, or 

bagging, tree algorithm. Bootstrap aggregation is the selection of subsets of the 

original training data set and using each of them to generate a tree, then combining 
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those trees. Other than the parameters internal to the individual trees, two parameters 

need to be tuned for the bagging tree: the fraction of the input data set used to 

generate the bootstrap data sets and the number of trees generated.  

 

The third regression tree method used in this study is the boosting tree. In this 

method, regression trees are generated iteratively, with error information from each 

tree used to generate a refined version in the next iteration by adjusting weights given 

to the input data points. The parameters to be varied are the same as for the bagging 

tree: the number of trees to generate and the fraction of the input data to be used in 

their generation. 

 

Regression trees, bootstrap aggregation, and boosting trees are all discussed in detail 

in Hastie et al. (2009). 

 

Neural networks 
 
The neural network, an algorithm modeled on the interactions of biological neurons, 

is one of the most commonly used ML techniques. The standard neural network (NN) 

consists of numerical values connected by nodes (neurons) arranged so that each node 

computes a weighted combination of each of the outputs from the previous layer, then 

uses an activation function (typically a sigmoid function) to produce its own output. 

Every neural network has an “input layer” corresponding to the input variable values 

and an “output layer” containing the output values, and one or more “hidden layers”. 

The simplest form of a neural network has only a single hidden layer, while multiple 
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hidden layers can be connected to each other to form more complex networks. During 

the training procedure, the neuron connection weights are adjusted to yield the most 

accurate possible fit to the training data. More complexity can be added to a neural 

network by increasing the number of hidden layers or by increasing the number of 

nodes in each layer. In general, more complex NNs offer more detailed 

representations of the input data, but at the expense of increased computational 

demand and a greater possibility of overfitting. For a more detailed review of neural 

networks, see Hastie et al. (2009). 

 

In order to produce a version of the neural network with less computational demand, 

Huang et al. (2006) developed the extreme learning machine (ELM). In the ELM 

procedure, the values of the weights leading from the input layer to the hidden layer 

of a one hidden layer NN are set randomly and held fixed during the NN training 

process. In our trials with the ELM, it actually required more computational power 

than the standard NN and was dropped from further consideration after initial timing 

tests. 

 

Support vector machines 
 
Support vector machines (SVMs) are another ML method that can be applied to 

regression problems. Like the kernel methods, a reprojection of the input data is 

performed implicitly. In the case of the SVM, a regularized linear regression in the 

reprojected space is performed subject to the condition that points with an error e less 

than a given error tolerance e do not contribute to the cost function. Usually the cost 
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function is then linear in the absolute value of e - e. There are three adjustable 

parameters: e, a regularization parameter C, and, if the RBF kernel is used, a kernel 

width s. The Matlab library used in the SVM computations in this study, LIBSVM, is 

available from https://www.csie.ntu.edu.tw/~cjlin/libsvm/. Hastie et al. (2009) and 

Smola and Scholkopf (2004) provide more background about the SVM as applied to 

regression problems. 

 

A variant of the SVM, the relevance vector machine (RVM), was removed from 

further consideration after initial timing trials showed that a single train/test iteration 

was too computationally demanding. 

 

Procedure for testing machine learning methods 

The following procedure was followed in order to test the performance of the ML 

algorithms with the LE data set. Initially, timing of one iteration of training and 

testing was made with default or arbitrary coefficient values. The results of this 

testing do not provide a precise quantification of the computing requirements for each 

algorithm, but they do indicate which of the algorithms are relatively more or less 

demanding. This timing is also a means of identifying those algorithms that are not 

suitable for further testing because the computation time required for enough 

iterations to tune the parameters would render the tuning impractical. 

 

The timing was initially conducted using the smaller training data set. Algorithms that 

took more than ten minutes for one iteration of training and validation were removed 
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from further consideration. The remaining algorithms were then timed for one 

training/ validation iteration with the larger training data set. Two of the algorithms 

that were tractable with the smaller training data set became too computationally 

demanding with the larger training data set. For those algorithms (KRR and SVR), 

further analysis was carried out with the smaller training data set but not with the 

larger one. The results of the timing procedure are discussed in more detail in the first 

Results section. 

 

The algorithms that took the least time to process the larger data set were the linear 

regression, boost tree, and RKS. Those algorithms were used to test the effects on 

accuracy and computation time of using different combinations of input variables. 

Since the best results were found using all of the input variables, but the computation 

time was found not to vary much with the number of input variables, all the input 

variables were included in the remaining training, validation, and testing. This 

analysis of input variable combinations is discussed more in the second Results 

section.  

 

Once the most viable combinations of ML algorithms and input variables had been 

identified, a tuning procedure was performed for each algorithm. All of the 

parameters for each ML algorithm were varied independently, producing a results 

data set with the same dimensions as the number of parameters. For example, a two 

hidden layer neural network has two parameters: the numbers of neurons in the first 

and second hidden layers. The range and intervals of the tuning parameter values 
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tested were varied in several different trials for each algorithm, in order to come as 

near as possible to the global minimum RMSE value. The ranges, intervals, and 

results described here are from the final trial for each algorithm. 

 

Once optimal tuning parameters with respect to the validation data set (lowest 

validation RMSE) were found for each algorithm, the algorithm trained with those 

parameters was applied to the test data set. This is done in order to ensure that the 

parameter determination with the training and validation data sets did not result in 

overfitting to those data sets. Algorithm tuning and final test results are given in the 

third Results section. 

 

Data 

The data used in this study come from three sources. The remote sensing data used 

are Global Land Surface Satellite (GLASS) radiation data and Moderate-Resolution 

Imaging Spectroradiometer (MODIS) high-level data products. Ground-based Fluxnet 

tower site data were used for validation and for comparison of the results using 

satellite radiation data to those from measuring net radiation at the surface. The data 

variables, sources, and spatial and time resolutions for each data set used are listed in 

Table 3-2. 

 

Table 3-2: Input and validation data used in this study 
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Abbreviation Variable Source Frequency Spatial 

resolution 

LE Surface latent heat Fluxnet  Half-hourly, 

averaged to daily 

Flux tower 

footprint 

Rn Net radiation at 

surface 

Fluxnet Half-hourly, 

averaged to daily 

Flux tower 

footprint 

DSR Downward surface 

radiation 

GLASS Daily 5 km 

PAR Photosynthetically 

active radiation 

GLASS Daily 5 km 

NDVI Normalized 

difference 

vegetation index 

MODIS 16-day, 

interpolated to 

daily 

250 meters 

EVI Enhanced 

vegetation index 

MODIS 16-day, 

interpolated to 

daily 

250 meters 

LAI Leaf area index MODIS 8-day, 

interpolated to 

daily 

500 meters 

FPAR Fraction of 

photosynthetically 

adjusted radiation 

MODIS 8-day, 

interpolated to 

daily 

500 meters 
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Albedo Albedo MODIS 8-day, 

interpolated to 

daily 

500 meters 

NBAR Nadir BRDF-

adjusted reflectance 

MODIS 8-day, 

interpolated to 

daily 

500 meters 

 

The GLASS data set (Liang et al., 2014, 2013) consists of radiative and biophysical 

parameters generated using data from multiple satellite sensors. The products used 

here are the downward shortwave radiation (DSR) and photosynthetically active 

radiation (PAR). The algorithms and data used to generate the GLASS DSR and PAR 

data sets are described in Zhang et al. (2014). GLASS DSR and PAR are generated 

by combining Moderate-Resolution Imaging Spectroradiometer (MODIS) polar-

orbiting sensor with data from four geostationary satellites using a look-up table 

(LUT) method. The LUT was generated after sensitivity analyses using the 

MODTRAN radiative transfer model determined that surface elevation, atmospheric 

water vapor, and surface BRDF had the most significant impact on the accuracy of 

the radiation products. The GLASS data are available at daily time resolution and 5 

km spatial resolution. The nearest neighbor values were used for each station 

location. GLASS leaf area index (LAI) data were also used for trial runs of three of 

the ML algorithms to evaluate the feasibility of using other GLASS data sets in place 

of MODIS in the future. 
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Several parameters obtained from MODIS were also used in this analysis: 

Normalized-difference vegetation index (NDVI) and enhanced vegetation index 

(EVI), LAI, fraction of photosynthetically active radiation absorbed (FPAR), surface 

albedo, and nadir BRDF-adjusted reflectance (NBAR) in seven reflective bands. 

Subsets of all of these MODIS Collection 5 products used were generated centered on 

the coordinates of each flux tower site using the Oak Ridge National Laboratory 

Distributed Active Archive Center (ORNL DAAC) MODIS subset tool and the 

NASA/ USGS Land Processes Distributed Active Archive Center (LP DAAC) 

Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS)   

All MODIS products were linearly interpolated to daily frequency for use in this 

study. 

 

The MODIS MOD13 NDVI and EVI products (Didan 2015) are available at 250m 

resolution at 16-day intervals. They are derived from surface reflectance values from 

the formulas 

														𝑁𝐷𝑉𝐼 = 	 6JKL26MNO
6JKL56MNO

                                                   (3-7) 
 

and 
 

𝐸𝑉𝐼 = 𝐺PQR
6JKL26MNO

6JKL5ST∙6MNO5SV∙6WXYN5Z
                                       (3-8) 

 
For the MODIS products, 𝜌<:z, 𝜌ÌR0, and 𝜌�hÍ: represent band 1, 2, and 3 

reflectances respectively, and the EVI formula constants GEVI, C1, C2, and L are set to 

values of 1.0, 6.0, 7.5, and 2.5 respectively.  
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MODIS LAI and FPAR are available from the MOD15 data sets (Myneni and 

Knyazikhin 2015) as 8-day composite values at 500m resolution. They are 

determined via a LUT based on Sun/ sensor viewing geometry, surface vegetation 

characteristics, and rred and rNIR for a primary algorithm and NDVI for a backup 

algorithm.  

 

The MODIS broadband albedo and NBAR at 500m are elements of the MCD43A3 

and MCD43A4 data products (Schaaf and Wang 2015a, 2015b) They are produced 

from 16-day composite data sets by generating models of the surface BRDF from the 

available observations during the composite period. The 0.3-5.0µm broadband albedo 

and bands 1-7 NBAR are used in this study. The NBAR is an estimate of the surface 

reflectance in each band at a nadir view angle and local solar noon sun angle, 

producing some correction for anisotropy in surface radiation reflection, but retaining 

more information about spectral variation than the broadband albedo. 

 

Flux tower data were used for validation of the LE values calculated from the ML 

algorithms against ground measurements, and also for testing the effects of using 

remote sensing vs. ground-based radiation data as input. A total of 184 flux tower 

sites were used, 119 from the Ameriflux network (http://ameriflux.lbl.gov) and 65 

from the Fluxnet2015 data set (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). 

The half-hourly LE and net radiation (Rn) variables from these data were pre-

processed by removing all data days for which there were not at least 40 of 48 

possible observations present, then averaging the remaining observations. A map of 
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the site locations and information about their distribution across ecosystem types is 

given in Carter and Liang (2018) and shown in Figure 2-1. 

 

In all, a total of 79098 site-days of data were used. They were randomly partitioned 

twice. First, a small training data set of 7910 site-days was drawn from the full 

sample, with the remaining data divided into a validation data set of 35594 site-days 

and a test data set of 35594 site-days. The second partition generated a larger training 

data set of 63278 site-days and validation and test data sets of 7910 site-days each.  

 

Results 

Initial time trials of ML algorithms 

The time in seconds for each algorithm to run a single iteration of training and 

validation with all input variables from the small and large training data sets is shown 

in Table 3-3. If an algorithm took longer than 10 minutes to run a single iteration, it is 

labeled “prohibitive” and no further testing was done for that combination of 

algorithm and training data set. Any algorithm that took longer than 10 minutes to run 

a training/ validation iteration with the small training data set was not timed with the 

large training data set.  

 

The fastest run time for both training sets was found for the RLR. The RKS, BOOST, 

and smaller NN algorithms also took less than 10 seconds for one iteration with the 

smaller training data set. The remaining linear and tree algorithms all completed 
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within 25 seconds. The two algorithms that did complete within 10 minutes but took 

longest to do so with the smaller training data set, KRR and SVR, took over 10 

minutes to complete with the larger training data set. These algorithms were only 

tuned with the smaller training data set in later stages. The RKS timing increased at a 

faster than linear rate with increasing numbers of random functions. Not surprisingly, 

the NN took longer to complete both with increasing numbers of neurons in each 

hidden layer and for the larger training data set, although the additional computing 

time required when adding a second or third hidden layer was relatively modest.  

 

Most algorithms took approximately 5-10 times as long to run with the large training 

data set than with the small training data set, representing a roughly linear increase in 

time required with the number of training data points. The primary exceptions to this 

pattern were the NN trials, which took about 20-25 times as long with the large 

training data set. The TREE trial took over 17 times as long with the larger training 

set, while the BOOST method took less than three times as long. 

 
 
Table 3-3: Time in seconds for one iteration of training and validation for each 

algorithm for small and large training data sets. If time for one iteration exceeded 10 

minutes, it was labeled “prohibitive” and no further testing was done for that 

combination of algorithm and training data set. No timing or further testing was done 

with the large training data set for those algorithms where the computational demands 

were prohibitive with the small training data set. For RKS, “D” represents the number 
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of random functions used in the trial. The number of hidden layers (HL) and neurons 

in each of the NN trials is also indicated. 

Algorithm Small training data 

set (7910 data 

points) 

Large training data 

set (69,752 data 

points) 

RLR 0.0014 0.0087 

LASSO 19.3208 118.1654 

ELASTIC 21.8523 109.0231 

GPR prohibitive  

KRR 219.6609 prohibitive 

RKS, D = 100 0.0945 1.1625 

         D = 400 0.3950 4.7896 

         D = 1000 1.1794 13.026 

         D = 4000 9.1198 91.2732 

TREE 20.2009 351.7759 

BAGTREE 15.9202 114.309 

BOOST (200 trees) 3.1619 9.1393 

NN, 1 HL, 5 neurons 4.0422 102.3333 

        1 HL, 30 neurons 6.2271 207.9746 

        2 HL, 5 x 5 5.5793 108.4992 

        2 HL, 10 x 10 6.0898 131.7211 

        2 HL, 30 x 30 10.0308 436.8679 
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        3 HL, 5 x 5 x 2 4.6199 128.9298 

        3 HL, 10 x 10 x 10 7.8482 153.7699 

        3 HL, 50 x 5 x 2 12.849 prohibitive 

        3 HL, 150 x 30 x 

10 

249.671 prohibitive 

ELM prohibitive  

SVR 41.6029 prohibitive 

RVM prohibitive  

VHGPR prohibitive  

 

Combinations of input variables 

In order to test the effects on speed and accuracy of using different combinations of 

input variables, trials were done with the linear regression, boost tree, and RKS 

methods using the small training data set. The linear regression required no tuning. 

The timing of the boost tree method was conducted for 100 and 1000 trees. The RKS 

method was used with 100 random functions, but the l and s parameters were tuned, 

and timing was conducted for the optimum case. 

 

Several sets of cases were run, and the results are summarized in Table 3-4. Some 

overall patterns are notable. The linear regression ran the most quickly but was the 

least accurate. The RKS ran more quickly than the boost tree method and was more 

accurate. Generally, including more input variables produced results of similar or 

improved accuracy at little additional computational cost, although many of the other 
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variables appear to have redundancy with NBAR. Using radiation information from 

surface measurements produced results of similar accuracy to using the GLASS 

radiation variables. This shows that using the radiation variables from the satellite 

data is a viable alternative to using ground-based radiation data. 

 
 
Table 3-4: Accuracy and timing tests for different combinations of input variables, 

using the linear regression, boost tree, and RKS algorithms. Boost tree RMSE was 

found after optimizing the number of trees. All RKS parameters were optimized 

except for the number of functions, which was set at 100. All timing test results are 

for a single iteration of training and testing. All trials were made with the smaller 

training data set. RMSE is given in W/m2, and timing is given in seconds. 

 
Variables Linear 

regression 
RMSE 

Linear 
regressio
n timing 

BOOST 
RMSE 

BOOST 
timing 
(100 
trees) 

BOOST 
timing 
(1000 
trees) 

RKS 
RMSE 

RKS 
timing 

Rn + 
NDVI 

34.68 6.74 x 
10-4 

32.52 2.71 28.25 31.71 0.17 

Rn + 
NBAR 

31.80 0.0032 29.18 3.15 31.11 28.10 0.20 

Rn + 
NDVI + 
EVI + 
LAI + 
FPAR + 
NBAR + 
Albedo 

31.78 0.0098 28.03 4.33 38.08 28.10 0.20 

        
DSR + 
NDVI 

33.83 8.69 x 
10-4 

33.07 2.70 28.51 31.73 0.17 

PAR + 
NDVI 

33.67 6.72 x 
10-4 

32.89 2.77 27.74 31.84 0.18 

DSR + 
PAR + 
NDVI 

33.66 0.0016 32.84 2.69 28.88 31.19 0.18 
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DSR + 
PAR + 
EVI 

33.29 0.0013 32.23 2.94 28.96 30.41 0.18 

DSR + 
PAR + 
NDVI + 
EVI 

33.21 0.0014 31.62 3.04 28.27 29.78 0.18 

        
DSR + 
PAR + 
FPAR 

33.62 0.0014 32.75 2.99 27.83 31.09 0.17 

DSR + 
PAR + 
LAI 

34.47 0.0016 32.46 2.94 28.31 31.10 0.20 

DSR + 
PAR + 
LAI + 
FPAR 

33.63 0.0014 31.84 2.80 27.85 30.36 0.20 

DSR + 
PAR + 
NDVI + 
EVI + 
LAI + 
FPAR 

32.90 0.0030 30.53 3.28 31.55 29.14 0.20 

        
DSR + 
PAR + 
Albedo 

36.96 0.0015 35.85 2.70 26.92 35.49 0.17 

DSR + 
PAR + 
NDVI + 
EVI + 
LAI + 
FPAR + 
Albedo 

32.89 0.0028 30.26 3.26 31.31 28.95 0.18 

        
DSR + 
PAR + 
NBAR 

31.27 0.0044 29.44 3.46 33.81 28.44 0.19 

DSR + 
PAR + 
NDVI + 
EVI + 
LAI + 
FPAR + 
NBAR 

31.21 0.0058 28.53 3.74 35.94 28.32 0.17 
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The first set of three trials was made with the Rn taken from the ground-based 

measurements. These trials showed that using NBAR as an input produced better 

results than using NDVI. When all of the input variables were included, the boost tree 

algorithm produced better results than with Rn and NBAR alone, but the linear 

regression and RKS did not. 

 

The second set of trials tested the effects of using DSR or PAR or both in 

combination with NDVI and EVI. Using both radiation variables with NDVI 

produced better results than using either of them separately. When using both 

radiation variables, performance using EVI was better than that using NDVI. Using 

all four variables produced the lowest RMSEs at little additional computational cost. 

For all of the subsequent trials, both DSR and PAR were included. 

 

The third set of comparisons tested the use of LAI and/ or FPAR as input variables. 

Using LAI as an input yielded better results than using FPAR for the boost tree, 

worse results with the linear regression, and similar results with RKS. Using both 

LAI and FPAR produced similar results to just using FPAR for the linear regression, 

but better results than either LAI or FPAR alone for the other two methods. Again, 

there was little computational cost associated with using more input variables. 

Finally, combining both vegetation indices with FPAR, LAI, DSR, and PAR 

produced better results yet, with some additional time cost to the linear regression and 

boost tree algorithms but little for the RKS. 
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The fourth set of trials included albedo as one of the input data sets. The first of these 

trials included albedo as the only input other than DSR and PAR and produced the 

highest RMSEs for any of the combinations of input variables considered. Including 

NDVI, EVI, LAI, and FPAR along with albedo improved the results to be similar to, 

or slightly better than, the trial with those four variables but without albedo. 

 

The final set of trials included NBAR as an input, either alone or with all of the rest 

of the input variables. These trials including NBAR produced the lowest RMSEs of 

any combination of variables, with slightly better results for the boost and RKS 

algorithms when all of the other variables were included along with NBAR.  

 

Based on the overall patterns in the results of these trials, further tuning of all of the 

algorithms was conducted using all of the remote sensing input data variables: DSR, 

PAR, NDVI, EVI, LAI, FPAR, albedo, and NBAR. 

 

Tuning of ML algorithms 

Each of the algorithms that ran sufficiently quickly to be iterated for purposes of 

tuning with the small or large training data set was optimized with that data set. In 

some cases, there is only a single parameter and optimization is straightforward. In 

other cases, repeated searches had to be made of portions of the tuning parameter 

space before the optimum parameter values were found. There were also cases where 

increasing a parameter beyond a certain point made the run time for the algorithm 

prohibitive, so the testing was cut off at that point even though it might not be the 
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global minimum. A list of the parameters tuned for each algorithm, the parameter 

values tested in the final set of iterations, and the parameter values that produced the 

lowest RMSE in the validation data set using the small training data set are shown in 

Table 3-5. The equivalent information is shown for those algorithms that could be 

tuned with the larger data set in Table 3-6.  

 
Table 3-5: Adjustable parameters optimized for each ML method using the small 

training data set. Values within ranges were distributed logarithmically unless 

otherwise noted. In many cases individual values are specified. 

 
Algorithm Parameter Value range Optimum value 

RLR l (regularization weight) 0.0 to 1010  1.0 

LASSO l (regularization weight) 0.0 to 10-3  7.54 x 10-5 

ELASTIC l (regularization weight) 0.0 to 0.1 3.29 x 10-4 

a (square vs absolute value 

weighting) 

Values {0.001, 

0.01, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 

0.95, 0.99, 1.0} 

0.001 

KRR l (regularization weight) 10-3 to 10.0  0.251 

s (kernel width) 10-2 to 100.0 1.0 

RKS l (regularization weight) 0.0 to 10,000 1000.0 
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s (kernel width) Values {0.1, 0.25, 

0.5, 1.0, 1.2, 1.5, 

2.0, 3.0, 4.0, 8.0, 

12.0} 

3.0 

D (number of random 

functions) 

Values {100, 200, 

450, 700, 1000, 

1200, 1700, 2000, 

2200, 2700, 

3500} 

2000 

TREE Degree of pruning 0 to 12, intervals 

of 2 

8 

Minimum points for subset 

split 

25 to 200, 

intervals of 25 

150 

BAGTREE Number of trees Values {1, 3, 6, 

12, 25, 50, 100, 

150, 200, 400, 

1000, 1500, 2000, 

2500, 3000, 4000, 

5000} 

5000 

Fraction of training data in 

each tree 

Values {0.1, 0.3, 

0.5, 0.7, 0.9, 1.0} 

1.0 

BOOST Number of trees Values {10, 20, 

50, 100, 150, 200, 

1000 
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300, 500, 1000, 

1500, 2000, 2500, 

3000, 4000, 

5000} 

NN, 1 

hidden layer 

Number of neurons in 

hidden layer 

Values {4, 7, 10, 

13, 16, 20, 25, 30, 

35, 40, 50, 75, 

100, 125, 150, 

200, 250, 300} 

200 

NN, 2 

hidden 

layers 

Number of neurons in first 

hidden layer 

Values {2, 5, 10, 

25, 50, 75, 100, 

125, 150, 200} 

150 

Number of neurons in 

second hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40, 

75} 

3 

NN, 3 layers Number of neurons in first 

hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40, 65, 

100, 150} 

100 

Number of neurons in 

second hidden layer 

Values {2, 5, 10, 

15, 25, 40} 

10 

Number of neurons in third 

hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40} 

5 

SVR C (regularization factor) 0.32 to 10.0 1.78 



 

 

99 
 

s (kernel width) 0.32 to 3.16 1.0 

e (error tolerance) 0.0032 to 10.0 0.18 

 
 
Table 3-6: Adjustable parameters optimized for each ML method using the large 

training data set. Values within ranges were distributed logarithmically unless 

otherwise noted. In many cases individual values are specified. 

 
Algorithm Parameter Value range Optimum value 

RLR l (regularization weight) 0.0 to 1010 0.0 

LASSO l (regularization weight) 0.0 to 0.001 9.10 x 10-6 

ELASTIC l (regularization weight) 0.0 to 0.1 9.24 x 10-6 

a (square vs absolute value 

weighting) 

Values {0.001, 

0.01, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 

0.95, 0.99, 1.0} 

1.0 

RKS l (regularization weight) Values {0.0, 10-6,  

10-5, 10-4, 0.001, 

0.01, 0.1, 1.0, 2.0, 

4.0} 

10-5 

s (kernel width) Values {0.1, 0.25, 

0.5, 1.0, 1.2, 1.5, 

1.0 
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2.0, 3.0, 4.0, 8.0, 

12.0? 

D (number of random 

functions) 

Values {100, 200, 

450, 700, 1000, 

1200, 1700, 2000, 

2200, 2700, 3500 

3500 

TREE Degree of pruning 25 to 125 by 25 75 

Minimum points for subset 

split 

0 to 20 by 2 16 

BAGTREE Number of trees Values: {1, 3, 6, 

12, 25, 50, 100, 

150, 200, 400, 

1000, 1500, 2000, 

2500, 3000, 4000, 

5000} 

5000 

Fraction of training data in 

each tree 

Values: {0.1, 0.3, 

0.5, 0.7, 0.9, 1.0} 

1.0 

BOOST Number of trees Values: {10, 20, 

50, 100, 150, 200, 

300, 500, 1000, 

1500, 2000, 2500, 

3000, 4000, 

5000} 

3000 
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NN, 1 

hidden layer 

Number of neurons in 

hidden layer 

Values {4, 7, 10, 

13, 16, 20, 25, 30, 

35, 40, 50, 75, 

100, 125, 150, 

200, 250, 300} 

125 

NN, 2 

hidden 

layers 

Number of neurons in first 

hidden layer 

Values {2, 5, 10, 

25, 50, 75, 100, 

125, 150, 200} 

150 

Number of neurons in 

second hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40, 

75} 

3 

NN, 3 

hidden 

layers 

Number of neurons in first 

hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40, 65, 

100, 150} 

100 

Number of neurons in 

second hidden layer 

Values {2, 5, 10, 

15, 25, 40} 

40 

Number of neurons in third 

hidden layer 

Values {1, 3, 5, 

10, 15, 25, 40} 

5 

 
 
The overall minimum RMSE results for the validation and test data sets for all 

algorithms tested are shown in Table 3-7.  
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Table 3-7: RMSE for each optimized ML algorithm against validation and test data 

sets when trained with small and large training data sets. Algorithms that are too 

computationally demanding for training with the large data set are labeled 

“Prohibitive”. 

 
 Small training data set Large training data set 

Algorithm Validation Test Validation Test 

RLR 30.55 29.84 31.22 30.23 

LASSO 30.55 29.84 31.22 30.23 

ELASTIC 30.55 29.84 31.22 30.23 

KRR 23.85 23.41 Prohibitive 

RKS 25.35 25.52 22.22 22.10 

TREE 29.19 28.71 25.14 25.45 

BAGTREE 24.50 23.91 19.91 20.15 

BOOST 28.86 28.33 28.21 27.86 

NN, 1 HL 26.42 26.78 23.18 23.48 

NN, 2 HL 25.76 25.20 21.58 22.69 

NN, 3 HL 25.59 25.51 20.94 21.79 

SVR 24.13 23.63 Prohibitive 

 

Linear regression variants 

Except for the RLR with the smaller training data set, the optimum regularization 

parameters for all of the linear regression variants were small, or equal to zero. For 

the RLR with the smaller training data set, increasing the regularization parameter 
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made little difference to the results until a value of 100 was reached, at which point 

increasing the regularization parameter further degraded the results (Figure 3-1). The 

small degree of regularization applied in the optimum cases for the linear regression 

variants may explain why the RMSE values using these optimum parameters vary so 

little between methods. These results show that there is little advantage in adding 

regularization terms to the standard linear regression for either the small or large 

training data set. It is also notable that the linear regression variants performed better 

when using the small training data set, possibly because the linear trend is better 

defined in the small data set. However, this difference is only about 1 W/m2 or less.  

 

Figure 3-2 shows the results for the LASSO regression. Similar to the RLR, the 

results do not improve with increasing l, and the performance is better with the 

smaller training data set. The primary difference is that changing the regularization 

parameter made little difference to the results. 
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Figure 3-1: RMSE for validation data set for RLR against regularization parameter l. 

Red: Small training data set. Black: Large training data set. 

 
 

 
 
Figure 3-2: RMSE for validation data set for LASSO regression against regularization 

parameter l. Red: Small training data set. Black: Large training data set. 
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The ELASTIC regression tuning results are shown below in Figures 3-3 and 3-4. The 

results again show that the lowest RMSE values occur for low values of l. There is 

also a modest trend towards better performance at lower values of a, which represent 

a regression formula closer to RLR than to the LASSO formula. Once again, 

performance is better with the smaller training data set. 

 
Figure 3-3: Validation RMSE for varying values of l and a when ELASTIC 

regression is tuned with the small training data set.  
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Figure 3-4: Validation RMSE for varying values of l and a when ELASTIC 

regression is tuned with the large training data set.  

 

Kernel methods 
 
The KRR was only optimized for the smaller training data set since it could not 

complete iterations with the larger data set sufficiently quickly. As shown in Figure 3-

5, it has much more sensitivity to the s parameter than to the l parameter.  

 
 

 
Figure 3-5: RMSE in W/m2 for validation data set for KRR algorithm tuned with 

small training data set. 

 
 

The RKS algorithm could be run with both the small and large training data sets, with 

fitting required for three parameters. In addition to l and s parameters analogous to 

those of the KRR, there is also a parameter (D) representing the number of random 

functions used to approximate the kernel. For the small training data set, RMSE was 
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minimized at a D value of 2000, but for the large training data set a smaller minimum 

RMSE value was found with increasing D up to the maximum value tested of 3500. 

Due to longer computation times for higher D, the iteration was not carried out for D 

values over 3500.  

 

The validation RMSE values for the RKS trained with the small training data set are 

shown in Figure 3-6, and with the large training data set in Figure 3-7. A smaller 

minimum RMSE was found using the large training data set than the small training 

data set. For both the small and large training data set, for low D values the results 

were much more sensitive to the s parameter than to the l parameter. At higher D, 

sensitivity to the l parameter started to show at higher s, with the pattern becoming 

more pronounced as D increased.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a)                                                        b)                               
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Figure 3-6: Validation RMSE for RKS tuned with small training data set. a) D = 100. 

b) D = 450. c) D = 1000. d) D = 2000. e) D = 3500 

 

 

 

 

 

 c)                                                        d)                               

 e)                                                                                       
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 a)                                                        b)                                 

 c)                                                        d)                                 

 e)                                                                                         
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Figure 3-7: Validation RMSE for RKS tuned with large training data set. a) D = 100. 

b) D = 450. c) D = 1000. d) D = 2000. e) D = 3500. 

 

Tree methods 

The tuning parameters for the basic regression tree algorithm are the degree of 

pruning and the number of points required for a subset to be split. As shown in 

Figures 3-8 and 3-9, the results of the tree algorithm are relatively insensitive to these 

parameters, especially the degree of pruning. The performance of the tree algorithm 

was significantly better for the large training data set than for the small training data 

set (minimum RMSE of 25.45 vs. 28.71 W/m2). 

 
 

 

Figure 3-8: Variation in validation RMSE with subset split and pruning parameters 

for TREE algorithm, small training data set 
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Figure 3-9: Variation in validation RMSE with subset split and pruning parameters 

for TREE algorithm, large training data set 

 
 
Due to the insensitivity of the tree algorithm to the pruning and splitting parameters, 

the default settings for those parameters were used when training the more complex 

BAGTREE and BOOST algorithms. The only parameter left to tune for the BOOST 

algorithm is the number of trees to use. Figure 3-10 shows the validation RMSE for 

the small (red) and large (black) training data sets. The RMSE for the small training 

data set reaches a minimum when trained with 1000 trees. With the large training data 

set, the minimum RMSE was reached with 3000 trees and the RMSE did not increase 

much beyond that with higher numbers of trees.  
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Figure 3-10: Validation RMSE vs number of trees used in BOOST algorithm. Red 

line is for small training data set and black line is for large training data set. 

 
 
The BAGTREE algorithm performance improved with the number of trees used for 

both the small and large training data sets, as shown in Figures 3-11 and 3-12. The 

BAGTREE algorithm also performed somewhat better when larger subsets were 

drawn in the bootstrap aggregation, with the best performance occurring when the 

whole input data set was used for each tree. The BAGTREE algorithm produced the 

lowest validation RMSE out of all the algorithms tested when trained with the large 

training data set and optimized. 
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Figure 3-11: BAGTREE algorithm RMSE values vs number of trees and fraction of 

training data set used in bootstrap aggregation, small training data set 

 
Figure 3-12: BAGTREE algorithm RMSE values vs number of trees and fraction of 

training data set used in bootstrap aggregation, large training data set 

 

Neural networks 
 
The validation RMSE is shown for one hidden layer neural networks trained with the 

small and large training data sets in Figure 3-13. When a one hidden layer neural 
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network is applied to the small training data set, validation RMSE fluctuates between 

about 27 and 29 W/m2, with no clear trend with increasing numbers of neurons. With 

the large training data set, the performance of the neural network exhibits a general 

trend towards improvement out to about 100 neurons, then levels off. It is clear that 

adding more neurons to a one hidden layer network is likely not to improve 

performance with either data set once the number of neurons exceeds 100.  

 
 

 
Figure 3-13: Validation RMSE for small (red) and large (black) 1 hidden layer neural 

networks. 

 

The pattern of the two hidden layer neural network RMSE variation with the number 

of neurons in the first layer was similar to the one hidden layer NN results, but with 

greater accuracy achieved. With the small training data set, there are few to no gains 

in accuracy when the number of neurons in the second layer exceeds 10. With the 

large training data set, performance plateaus at higher numbers of neurons in the first 
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layer than for the small training data set, especially when the number of neurons in 

the second layer is relatively small. The validation RMSE for the two hidden layer 

NNs are shown in Figures 3-14 and 3-15 for the small and large training data sets, 

respectively. 

 
Figure 3-14: Validation RMSE for 2 hidden layer neural network trained using small 

training data set. 
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Figure 3-15: Validation RMSE for 2 hidden layer neural network trained using large 

training data set. 

 
The addition of a third hidden layer to the neural network did not greatly improve the 

performance with the small training data set. Validation RMSE tended to decrease 

with increasing numbers of neurons in the first hidden layer, but the results were 

relatively insensitive to the number of neurons in the second and third hidden layers. 

The minimum RMSE achieved in the three hidden layer NN trials with the small 

training data set was 25.59 W/m2, which is only somewhat lower than the 25.76 

W/m2 minimum value for the two hidden layer NN. 

 

Training with the large training data set led to higher accuracy results than with the 

small training data set, but the patterns in performance with parameter variation were 

similar. When trained using the large training data set, the three hidden layer NN 

resulted in an optimized validation RMSE value of 20.94 W/m2, compared to 21.58 

W/m2 for the two hidden layer NN. Performance improved with the number of 

neurons in the first hidden layer, but as the number of neurons in the first hidden layer 

increased, the sensitivity to the numbers of neurons in the second and third hidden 

layers decreased. Figure 3-17 shows the validation RMSE for different numbers of 

neurons in the hidden layers when trained with the large training data set and a three 

hidden layer NN.  
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Figure 3-16: Validation RMSE for three-layer NN trained with small training data set. 

a) 3 neurons in first hidden layer. b) 10 neurons in first hidden layer. c) 25 neurons in 

first hidden layer. d) 100 neurons in first hidden layer. 

 
 
 
 
 
 
 
 

 a)                                                       b)                                     

 c)                                                       d)                                     
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Figure 3-17: Validation RMSE for three-layer NN trained with large training data set. 

a) 3 neurons in first hidden layer. b) 10 neurons in first hidden layer. c) 25 neurons in 

first hidden layer. d) 100 neurons in first hidden layer. 

 

Support vector regression 
 
The support vector regression was only performed with the smaller training data set. 

Validation results show most sensitivity to the e parameter, and relatively little to the 

s or C parameters. 

 a)                                                       b)                                     

 c)                                                       d)                                     
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 a)                                                       b)                                     

 c)                                                       d)                                     

 e)                                                                                            
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Figure 3-18: Validation RMSE for support vector regression. a) C = 0.316  b) C = 

0.750  c) C = 1.778  d) C = 4.217  e) C = 10.0 

 

Trials with GLASS LAI 
 
Three of the ML techniques, the bagging tree, the 2-layer NN, and the RKS with 1000 

random functions, were trained with just the GLASS radiation and either GLASS or 

MODIS LAI, in order to test whether using GLASS data in the place of MODIS is 

potentially viable. The results indicate that similar RMSEs relative to flux tower data 

were obtained through use of GLASS LAI or of MODIS LAI, as shown in Table 3-8. 

There was also little difference in the RMSEs obtained from the three ML methods 

tested. 

 

Table 3-8: Optimized validation RMSEs with respect to flux tower data for ML 

methods trained with GLASS DSR and PAR, plus either GLASS or MODIS LAI. 

 
Method and training data set used GLASS LAI MODIS LAI 

2-layer neural network, small training set 31.20 30.71 

Bagging tree, large training set 30.13 30.58 

RKS, D =1000, large training set 30.79 30.63 

 

Discussion 

Machine learning has been used frequently for estimation of LE from both ground-

based and remote sensing data, but usually only a single method is used or only a few 
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methods are compared in each study. There is not much discussion of the 

computational demands of the various ML techniques in the literature, or of the 

potential tradeoffs between accuracy and computational demand. It is also not 

common to use a global data set or to derive LE from remote sensing data only. Here 

we systematically compared several machine learning methods for obtaining LE from 

a remote sensing only input data set, representing a range of the most commonly used 

types of ML algorithms. We also compared the results of training with a smaller or 

larger training data set in terms of both accuracy and required computing power.  

 

The machine learning method performance differed between the small and large 

training data set. The best results for the small training data set were with the kernel 

ridge regression (KRR), which ran too slowly to be viable with the large training set. 

Three of the other algorithms (RKS, BAGTREE, and multi-layer neural networks) 

were able to produce a lower RMSE with the large training data set than the lowest 

RMSE attained with the small training data set. This implies that although better 

results are likely with more training data, it is also likely that the optimal method to 

use will differ between smaller and larger training data sets. The cloud-detection 

example given in Pérez-Suay et al. (2017)  also demonstrated this dynamic between 

the KRR and RKS methods. Here we also had good performance with the RKS, but 

even better performance with the bagging tree and multi-layer neural network, 

demonstrating the necessity of testing a range of algorithms. 

 
The linear regression variants did not demonstrate much advantage over linear 

regression without any regularization. The RMSE values decreased very little, if at 
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all, when regularization was added and increased dramatically in the case of high 

values of a squared coefficient value regularization term (the RLR algorithm). Adding 

an absolute value regularization term (the LASSO method) increased the computation 

time required with no reduction in RMSE. Combining a squared and absolute value 

regularization (the ELASTIC method) yielded no further advantage. All of the other 

ML methods produced more accurate results than the linear regression variants, 

which is unsurprising, due to the greater ability of the other methods to respond to 

nonlinear signals in the information available in the data. In addition, it is clear that 

the linear regression variants are not capable of converting the greater amount of 

information available from a larger training data set into a more accurate trained 

algorithm. Their use is not recommended unless computational power availability is 

highly restricted. 

 

Other than the linear regression variants, no single family of methods clearly 

outperformed the rest in speed or accuracy. RMSE values less than 25 W/m2 were 

achieved with kernel, tree, neural network, and SVM methods with the smaller 

training data set. However, for those families with more than one method tested in 

this study, some of those methods outperformed others. It is difficult to say why one 

method outperforms another in the same family. Overall, the best results were 

obtained with the large training data set and a tree algorithm, which may be at least 

partially due to the fact that the tree algorithms perform an implicit division of the 

data set into different regimes where the relationships between the variables may 

differ. 
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It has been shown here that machine learning can be used profitably to extract 

information from remote sensing data alone to obtain LE. Use of GLASS DSR, PAR, 

or both resulted in similar performance to use of ground station Rn. It has also been 

shown that, while some of the ML algorithms perform well in terms of both accuracy 

and computational demand, there is also some tradeoff between training efficiency 

and performance. This is seen most clearly in the results with the large training data 

set, where the BAGTREE algorithm produced the lowest RMSE but required more 

run time than the RKS, boost tree, or smaller neural networks. When trials were made 

with just radiation and LAI variables as input and the LAI coming from GLASS or 

MODIS, the results were similar between GLASS and MODIS LAI, indicating that 

use of the ML methods with GLASS data sets alone is likely to be a viable approach. 

 

Conclusions 

A comparison of ten ML methods for obtaining LE from a combination of remote 

sensing data (GLASS and MODIS) was performed in terms of accuracy and speed. 

The results showed wide variation in the time required to perform a single train/test 

iteration, both between algorithms and between a smaller and larger training data set, 

as shown in Table 3-3. Experimentation with different combinations of input 

variables showed that including more variables generally improved the results with 

little or no additional computational cost. This experimentation also showed that 

using the remote sensing GLASS radiation variables produced results comparable to 

using ground-based net radiation measurements. In addition, it was shown that 

inclusion of NBAR as one of the parameters made for a substantial improvement to 
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the results, reducing validation RMSE by 1.5 W/m2 or more over the results with the 

same parameters except NBAR.  

 

Optimization was performed for one or more algorithm parameters for each 

combination of methods and training data sets tested. The best performance with a 

smaller training data set was obtained using the kernel ridge regression (KRR), which 

was too computationally demanding for use with the larger data set. The best 

performance with the larger data set was achieved by the bootstrap aggregation tree 

(BAGTREE) method, followed by the random kernel (RKS) and multiple hidden 

layer neural network (NN) methods. Other than relatively weak performance by all of 

the linear regression variants considered, all “families” of ML methods with similar 

theoretical bases had at least one method that produced validation RMSE values of 

less than 25 W/m2 for daily LE with the smaller training data set. Regression trees, 

RKS, and neural networks all produced validation RMSE values of less than 23 W/m2 

with the larger training data set, with the bootstrap aggregation tree (BAGTREE) 

having the best performance at about 20 W/m2. It is noted here that these performance 

statistics are based on including all sites in training, validation, and test data sets.  

 

Additional work could be done to test the conclusions of this study. It would be of 

interest to perform testing with data from sites independent of the training data set to 

see whether similar performance would be obtained. A more thorough assessment 

could also be made of the effects of using variables that probably have a high degree 

of redundancy, such as DSR and PAR, or NBAR and vegetation indices. In this study, 



 

 

125 
 

sometimes there were apparent gains when using such redundant variables, but it 

would be of interest to further characterize the effects of using or not using them.  

 

Due to the lack of a clear pattern in which techniques had better performance, and the 

difference in results between the small and large training data sets, use of a still larger 

training data set or data from different sources would require further experimentation. 

Trials with additional variables, such as soil moisture or precipitation, that have weak 

redundancy with those already considered could be especially advantageous. 

However, the methods with the best performance here should be included in this 

experimentation. For a training data set of <10,000 data points, the KRR should be 

considered, as should the BAGTREE, RKS, and multi-layer neural network for 

training data sets of sizes >10,000. 

 

There are implications from this study for future work in machine learning for 

evapotranspiration. The performance of the ML algorithms varied, even when using 

the same data set and after tuning for optimal performance. This indicates that 

multiple methods should be tested for any particular application. The performance of 

the algorithms with redundant data inputs varied, with improved performance when 

including multiple radiation variables but little change when adding vegetation index 

to NBAR as inputs, showing that different combinations of input variables should 

continue to be tested in future development of ML methods for evapotranspiration 

retrieval. 
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Chapter 4: Machine learning applied to remote sensing of 
evapotranspiration in the continental United States 

 

Introduction 

With the world facing a changing climate and increasing demands on a limited supply 

of fresh water, monitoring of the hydrological cycle on all scales from local to global 

has great utility. Efforts have been made to deduce regional and global trends in LE 

from flux tower measurements and remote sensing data. Jung et al. (2010) used a 

model tree to upscale LE from the global Fluxnet tower network and combine the 

ground-based data with remote sensing, concluding that there was a global trend 

towards increasing LE between 1982 and 1997 that reversed direction to become a 

decreasing trend from 1998 to 2008. Wang et al. (2010a, 2010b) made use of 

meteorological data, vegetation indices, and a regression formula based on Penman 

(1948) separating LE into energy controlled and atmospherically controlled 

components, reaching the conclusion that global LE increased at a rate of 0.6 W/m2 

per decade between 1982 and 2002. Yao et al. (2013) estimated LE trends in China 

between 2001 and 2010 based on an algorithm derived from the formula of Priestley 

and Taylor (1972) and surface net radiation, vegetation index and surface temperature 

data. They found that LE decreased over most of China during that period, although 

increasing LE was indicated in some regions. 

 

In addition to monitoring of global trends, detection and monitoring of regional 

drought is an important application of LE measurements. There is much recent 
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research into the development and use of remote sensing-based indices for detection 

and monitoring of meteorological and agricultural drought (e. g. Anderson et al., 

2016, Amani et al., 2017, Meng et al., 2016, Roundy and Santanello, 2017) These 

indices sometimes do not represent any physical quantity, although vegetation indices 

that consist of ratios of red and near-IR bands that are sensitive to the presence of 

photosynthesizing vegetation, moisture indices that include SWIR bands sensitive to 

canopy moisture, and temperatures derived from thermal IR measurements are often 

included in the indices in various combinations. Validation of these indices is usually 

against ground-based meteorological measurements or against crop yield data. A time 

sequence of LE maps can be used as an alternative indicator of regional drought. This 

approach has the advantage of representing variations in a physical quantity that can 

be directly validated against ground measurements. However, any comparison with 

drought maps generated by other methods will not be comparing the same quantity.  

 

Machine learning, the use of nonparametric algorithms that change their internal state 

in response to a training data set, has been used in a great many applications both 

inside and outside of the field of remote sensing. Machine learning techniques have 

distinct advantages for application to the problem of remote sensing of 

evapotranspiration. Virtually all existing models or parametric formulas require 

particular variables as input, while any data set can be used as input to a machine 

learning routine. Machine learning formulations make no assumptions regarding the 

form of the relationship between the input and output variables. Some caution is in 

order, though, because the ML methods cannot be expected to perform well outside 



 

 

128 
 

of the range of conditions represented in their training data. ML methods are also a 

“black box”, meaning that the relationships found between the input and output 

variables are not easily characterized in a way that is meaningful to a human user. A 

discussion of the application of machine learning to the problem of detecting 

evapotranspiration is made in Carter and Liang (2019b). The global data sets recently 

produced by Jung et al. (2018) are especially notable because data sets from an 

ensemble of machine learning methods have been made available along with data 

produced by several individual machine learning methods. 

 

Regional mapping provides an opportunity to test many aspects of LE retrieval with 

machine learning. It is of interest whether retrievals validated using point locations 

are applicable over an extended area, and how algorithms trained with global data 

work on a regional scale. Recently, much research has focused on mapping of 

evapotranspiration at local to regional scales (Elnmer et al. 2019, Khand et al. 2019, 

Yi et al. 2018), but little work exists comparing evapotranspiration maps produced by 

different machine learning methods and with different machine learning input data 

weights, a gap which we attempt to address in this study. We also perform some 

examination of the ability of different methods to respond to drought signals by 

performing mapping for the year 2012, a drought year in much of the United States. 

 

Data 

Two sources of remote sensing data are used to derive LE from machine learning 

methods in this study: Global Land Surface Satellite (GLASS) (Liang et al., 2013, 
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2014) and standard MODIS products. The standard MODIS products used are 

combined Terra and Aqua nadir BRDF-adjusted reflectance (NBAR) (the MCD43A4 

product) and Terra normalized difference vegetation index (NDVI) and enhanced 

vegetation index (EVI) (the MOD13C1 product). Data are available from both of 

these sources for the full year 2012. GLASS data have been produced using data from 

both the Advanced Very High Resolution Radiometer (AVHRR) and MODIS 

instruments. GLASS data for the year 2012 were produced from MODIS data. The 

GLASS products used are the downward shortwave radiation (DSR) and 

photosynthetically active radiation (PAR) (Zhang et al., 2014) , leaf area index (LAI) 

(Xiao et al., 2017, 2016), fraction of absorbed photosynthetically active radiation 

(FAPAR) (Shi et al., 2016), and albedo (Qu et al., 2014, Liu et al., 2013). These data 

are on a 0.05 degree by 0.05 degree global grid, with dimensions of 7200 x 3600 for 

global coverage and 1300 x 525 to cover the continental United States. The GLASS 

DSR and PAR data are at daily time resolution, the MODIS vegetation indices are 

available once every 16 days, while the other variables are available for every 8 days. 

The variables with an 8-day and 16-day time resolution were linearly interpolated to 

daily values for this study. 

 

The MODIS NBAR product used in this study, MCD43C4 (Schaaf, 2015b), combines 

data from the MODIS sensors aboard the Terra and Aqua platforms. It is also 

produced globally at a resolution of 0.05 degrees by 0.05 degrees and is available 

daily. The product for each day is produced using surface reflectance data from the 

16-day period centered at that day. The algorithm used to produce the MCD43C4 
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product makes use of BRDF models combined with pixels selected to optimize 

representativeness for the time period, adjusting the observed surface reflectance 

values to approximate the reflectance that would be seen from a nadir view. In the 

MCD43C4 product, NBAR values are given for MODIS bands 1-7, which range in 

wavelength from 0.6 to 2.1 µm (blue to SWIR).  

 

The expectation that including vegetation index as an input would make little 

difference to the results because they would be expected to have high correlation to 

NBAR was tested by conducting trials with and without vegetation index as an input. 

The MODIS vegetation index product used in this study, MOD13C1 (Didan 2015), 

contains normalized-difference vegetation index (NDVI) and enhanced vegetation 

index (EVI) at 0.05 degree by 0.05 degree resolution and is produced every 16 days. 

The MOD13C1 product is a spatial and time composite product, where the highest 

quality observations are selected from the 250m resolution pixels that fall within the 

spatial range and time composite period represented by each MOD13C1 grid cell. 

 

The ground-based LE data used for training and validation in this study are flux tower 

measurements taken from the Ameriflux (http://ameriflux.lbl.gov) and Fluxnet 2015 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) networks. Sites with at least 

three continuous years of data available between 2001 and 2015 were selected. There 

were a substantial number of gaps of varying lengths within these data records, so the 

data were preprocessed to include only those dates for which at least 40 of 48 

possible half-hourly observations were available. Daily mean LE values were 
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determined from these observations. As flux tower sites are known to have an energy 

balance closure issue, the LE values were adjusted by assuming a constant Bowen 

ratio and the energy balance equation 

 
			𝑅* = 𝐻 + 𝐿𝐸 + 𝐺                                                (4-1) 

 
 
where Rn is the surface net radiation, H is sensible heat flux, and G is net heat storage. 

If G was not available, its value was assumed to be zero. Typically, flux tower energy 

balance is within 80% of closure (Wilson et al., 2002), so days with a significantly 

greater imbalance (imbalance was greater than 0.4 times Rn) were excluded. This 

reduced the total number of site days available by about 20 percent. For more details 

about the flux tower sites included in the initial training and validation data sets, refer 

to the “Data” section of Carter and Liang (2018).  

 

The resulting training and validation data set consists of 79098 site-days from 184 

sites that include 12 IGBP surface types. The snow and non-snow data from each site 

were randomly distributed to training, validation, and test data sets with an 80%/ 

10%/ 10% split. LE data from an additional 14 Ameriflux sites was used to provide 

an independent check on the LE maps. 

 

LE from five data sets were used for purposes of comparison to the 2012 monthly 

mean maps. The North American Regional Reanalysis (NARR) (Mesinger et al., 

2006) is a reanalysis product generated by the US National Center for Environmental 

Prediction (NCEP) covering a portion of the Northern Hemisphere including the 
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United States, Canada, and Mexico at 32 km resolution. Two FluxCom products from 

ensembles of machine learning methods (Jung et al., 2018) were also used for 

comparison. The FluxCom “RS” data set uses input from MODIS only with global 

coverage at 0.0833º. The “RS + METO” data set uses a combination of MODIS and 

meteorological data and provides global coverage at a resolution of 0.5º. A global 

version of the standard MODIS LE product (MOD16) was obtained from 

https://www.ntsg.umt.edu/project/modis/mod16.php (Zhang et al., 2015, 2010). The 

MOD16 product is based on the Penman-Monteith formula and relies on MODIS LAI 

along with meteorological variables as parameters of a biome property look-up table 

(Mu et al., 2011, 2007). Monthly MOD16 data for the year 2012 were obtained at 

0.0833 degree by 0.0833 degree. Finally, an LE retrieval is included in the GLASS 

data sets, at 0.05 degree by 0.05 degree spatial and 8-day time resolution. The 

GLASS data set was produced by Bayesian model averaging applied to five process-

based algorithms, all of which are based on the Penman-Monteith, Priestley-Taylor, 

or semiempirical Penman methods (Yao et al., 2014). 

 
 

Methods 

Machine learning techniques used 

Ten machine learning techniques were tested for the application of evapotranspiration 

remote sensing in Carter and Liang (2019b). The techniques that yielded the best 

results while also running quickly enough to make running many iterations of training 

and testing feasible were the bootstrap aggregation (bagging) tree, the random kernel 
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(RKS) algorithm, and the two and three hidden layer neural networks. Each of these 

methods will be described briefly below. 

 

Bootstrap aggregation tree 

Variants of regression trees, in which the space of input variables is iteratively 

partitioned into sections and each section assigned a value, are used frequently in 

machine learning. Often multiple regression trees are trained and the results from all 

of them combined. Bootstrap aggregation (bagging) is the selection of subsets of the 

input data for use in construction of the model trees. There are two parameters that 

must be tuned, the number of trees and the fraction of the input data used in training 

each tree. The bootstrap aggregation tree is described by Hastie et al. (2009) as part of 

their discussion of regression trees. 

 

Random kernel function (RKS) 

The random kernel method is a variant of the kernel ridge regression in which the 

input data are implicitly reprojected using a kernel function while performing a ridge 

regression. In the RKS algorithm, the kernel is simulated using randomly selected 

functions from its Fourier transform. The radial basis function kernel (RBF) 

 

											〈𝜙(𝑋§), 𝜙j𝑌¾p〉 = 𝑒𝑥𝑝  − ÇÈ�2[ÉÇ
V

wÊV
£                                   (4-2) 

 
is the reprojection formula that is simulated here. There are three tunable parameters 

in the RKS method using the RBF kernel: the number of random functions, a 

regularization parameter l, and the s parameter specifying the width of the RBF 
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kernel to be approximated. The RKS algorithm is described in detail by Pérez-Suay et 

al. (2017) , who also provide examples of its application to remote sensing problems. 

 

Neural networks 
 
The neural network is a well-known machine learning technique in which the input 

data are passed through successive layers of nodes, with each node performing a 

weighted sum of its inputs and passing that sum into an activation function to 

determine its output. The most commonly used form of neural network has only one 

“hidden layer” of nodes between the input and output, but Carter and Liang (2019b) 

found that increasing the number of these hidden layers improved performance on the 

evapotranspiration problem significantly while the computational demand was not so 

great as to make training these deeper networks intractable. A neural network is 

specified by a number of hidden layers and a number of nodes in each hidden layer. 

In this study, the optimum number of nodes in two and three hidden layer networks 

was found for each trial. Neural networks are described in detail in Hastie et al. 

(2009). 

 

Trials with different data sets 

Preliminary experimentation showed that separation of snow and non-snow days 

according to an albedo threshold of 0.4 reduced typical RMSE with the test data sets 

by several W/m2 in the case of non-snow data and over 10 W/m2 for snow data. It 

should be noted that correlation coefficients were very low for the snow data set, as 
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the data were compressed near the low end of the LE range, as illustrated in the 

Results section below. 

 

Three initial sets of trials were conducted with different combinations of training 

data: the GLASS data alone, the MODIS NBAR data alone, and both GLASS and 

MODIS NBAR included. The parameters of each ML model were tuned for snow and 

non-snow days for each of these training data combinations. Those parameters which 

minimized RMSE with the training and validation data sets were checked for 

overfitting with the corresponding test data sets. 

 

Mapping over continental United States 

The BAGTREE algorithm used with both the GLASS and MODIS NBAR data sets 

as input usually produced the lowest error values with the flux tower site test data set. 

Therefore, this combination as optimized in the trials was used to construct monthly 

mean LE maps of the continental United States from 23.75º to 50.0º N and 127.5º to 

62.5º W. Tests were also conducted including MODIS vegetation indices along with 

GLASS and MODIS NBAR data sets. Initial testing showed that inclusion of the VIs 

reduced the RMSE for the global station test data set by about 1 W/m2 (see Results 

section below). Maps were then made with the combination of GLASS, MODIS 

NBAR, and MODIS VIs as input. Monthly mean data from the same subset region 

were also mapped for each of the comparison data sets, mapped onto the same 

geographic (latitude/ longitude) projection at 0.05 degree resolution.  
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Initial results of the BAGTREE and comparison data set mapping indicated the 

likelihood of a low LE bias in the eastern United States during the growing season in 

the BAGTREE data. In an attempt to address this, training data sets were generated 

with different weightings of the station-measured LE values. Histograms of the LE 

values in the original training data sets without and with vegetation index included in 

the input are shown in Figure 4-1. Both with and without VI as an input, low LE 

values of less than 50 W/m2 are most represented in the training data set (Figures 4-1a 

and 4-1e). Four other training data sets were generated by excluding some of the 

points with lower LE values. Three of these were generated with vegetation index 

excluded from the training data, and one with vegetation index included. The training 

data sets without vegetation index included are one generated to produce a flat 

histogram of LE (Figure 4-1b), a “high weighted” data set including only one in ten 

of the points with LE under 100 W/m2 included but all points with LE over 100 W/m2 

included (Figure 4-1c), and a “highest weighted” data set in which most of the points 

have LE > 50 W/m2 (Figure 4-1d). A “highest weighted” training data set where most 

of the points have LE > 50 W/m2 was also generated with vegetation index as an 

input variable (Figure 4-1f). Monthly mean LE maps were generated with the 

BAGTREE algorithm and each of the weighted training data sets. 
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 a)                                                        b)                                          

 c)                                                        d)                                          

 e)                                                        f)                                          
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Figure 4-1: Frequency of flux tower LE values occurring in each training data set. a) 

through d) are for training data without vegetation indices. a) Original. b) Flat 

histogram. c) High weight. d) Highest weight. e) and f) are for training data with 

vegetation indices. e) Original with VI. f) Highest weight, with VI. 

 

In order to gain more insight into the discrepancies that were seen between the 

different BAGTREE generated maps and between all of the LE comparison data sets, 

monthly mean values were extracted from all of the LE maps at the nearest neighbor 

point to 23 Ameriflux stations. These monthly mean values were plotted against daily 

Ameriflux LE, since gaps in the Ameriflux data make it unfeasible to generate 

monthly mean Ameriflux LE. Even with daily Ameriflux LE, generalizations can be 

made about the quality of the fit to each monthly mean time series derived from the 

maps. Three sets of these monthly mean plots were made: one comparing the results 

of the BAGTREE algorithm and training data sets without vegetation index included, 

one comparing BAGTREE results excluding and including vegetation index in the 

training data, and one comparing the LE data from different sources. 

 

Results 

Tuning trials 

Three sets of algorithm tuning trials were performed, using the GLASS data only, 

using the MCD43C4 data only, and using both the GLASS and MCD43C4 data. For 

each case, algorithm training was performed with data separated into snow and non-
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snow with a threshold albedo value of 0.4. The snow and non-snow data were each 

divided using an 80% training/ 10% validation/ 10% test data split.  

 

The statistical summary results of the snow cases using the GLASS data only are 

shown in Table 4-1. Validation RMSE values for all algorithms tested are below 4.2 

W/m2, and test RMSE values are below 5.7 W/m2. However, R2 values are very low. 

This is due to the compression of LE to low values for the data classified as snow, as 

illustrated in Figure 4-2, which shows the retrieved versus measured LE values for the 

test GLASS data snow cases for the BAGTREE (a), RKS (b), 2 layer NN (c), and 3 

layer NN (d), respectively. Figures 4-1b and 4-1d also show that the ML algorithms 

sometimes produce outliers. The best performance was with the BAGTREE 

algorithm, and the RKS algorithm showed the weakest performance. 

 

 
Table 4-1. Validation and test statistics for GLASS data only, snow cases (albedo > 
0.4) 
 
 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 3.958 0.201 -0.283 5.342 0.033 0.308 

RKS 4.108 0.119 -0.164 5.358 0.015 -0.007 

NN, 2 

layer 4.135 0.108 -0.122 5.605 0.002 -0.007 
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NN, 3 

layer 4.077 0.150 -0.317 5.618 0.001 0.309 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
   c)                                                         d)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a)                                                        b)                                          

 c)                                                        d)                                          
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Figure 4-2: Derived versus observed LE for GLASS only snow test data set. a) 

BAGTREE algorithm. b) RKS algorithm. c) Two hidden layer neural network. d) 

Three hidden layer neural network. Dashed line is 1:1 line. 

 

For the GLASS only non-snow cases using the full training data set, test RMSE 

values range from 15.727 W/m2 to 18.808 W/m2, and R2 values range from 0.637 to 

0.739. Test RMSE values exceed the validation RMSE values by about 1 W/m2 or 

less and test R2 values are slightly lower than validation R2 values, indicating that 

some overfitting may be occurring, but the effects are slight. The best performing 

algorithm for the GLASS only non-snow case is the bagging tree (BAGTREE), and 

the weakest is the 2-layer NN. Summary statistics for the GLASS non-snow data are 

shown in Table 4-2, and plots of derived versus measured LE for the GLASS non-

snow test data set are shown in Figure 4-3. In addition to the occurrence of outliers, it 

is also notable that most retrieved and observed values in the test data set are less than 

100 W/m2, and there is some indication of a low bias at high LE values. 

 
 
Table 4-2. Validation and test statistics for GLASS data only, non-snow cases (albedo 

<= 0.4) 

 
 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 15.374 0.681 -0.066 15.727 0.663 -0.076 
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RKS 16.536 0.632 -0.201 16.990 0.611 -0.118 

NN, 2 

layer 16.783 0.619 -0.056 18.808 0.527 -0.084 

NN, 3 

layer 16.161 0.647 -0.094 16.411 0.634 -0.171 

 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a)                                                        b)                                          

 c)                                                        d)                                          
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Figure 4-3: Derived versus observed LE for GLASS only non-snow test data set. a) 

BAGTREE algorithm. b) RKS algorithm. c) Two hidden layer neural network. d) 

Three hidden layer neural network. Dashed line is 1:1 line. 

 
 
With the MCD43C4 data only, results are similar to those with the GLASS data only, 

except that algorithm performance is weaker for the snow case, with test RMSEs of 

about 5 to 6 W/m2, and stronger for the non-snow case, with test RMSEs of about 16 

W/m2 or less for all algorithms. For the non-snow data, R2 values for the MCD43C4 

data were on the order of 0.1 greater than for the GLASS data. The strongest 

algorithm performance for the MCD43C4 data only was with BAGTREE, and the 

three hidden layer NN was the weakest. Summary statistics for the MCD43C4 data 

only are shown in Table 4-3, and plots of derived versus measured LE for the 

MCD43C4 only test data set are shown in Figure 4-4. 

 

Table 4-3. Validation and test statistics for MCD43C4 data only 

a) Snow data (albedo > 0.4) 

 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 5.819 0.077 -0.108 5.853 0.070 -0.215 

RKS 5.706 0.111 -0.006 6.724 0.068 -0.040 
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NN, 2 

layer 5.911 0.054 -0.414 6.272 0.000 0.394 

NN, 3 

layer 5.801 0.086 -0.160 6.048 0.011 0.217 

 

b) Non-snow data (albedo <= 0.4) 

 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 13.584 0.741 0.355 13.632 0.739 0.337 

RKS 14.788 0.694 0.207 14.891 0.690 0.038 

NN, 2 

layer 15.454 0.664 0.361 15.694 0.654 0.200 

NN, 3 

layer 15.016 0.683 -0.051 16.071 0.637 0.362 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a)                                                        b)                                          
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 c)                                                        d)                                          

 e)                                                        f)                                          
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Figure 4-4: Derived versus observed LE for NBAR only test data sets. a) BAGTREE 

algorithm, snow. b) RKS algorithm, snow. c) Two hidden layer neural network, snow. 

d) Three hidden layer neural network, snow. e) BAGTREE algorithm, no snow. f) 

RKS algorithm, no snow. g) Two hidden layer neural network, no snow. h) Three 

hidden layer neural network, no snow. Dashed line is 1:1 line. 

 
 
 
When both the GLASS and MCD43C4 NBAR data were used, results were similar to 

the other cases for the snow data, except that the 3-layer NN had a higher test RMSE 

of 9.378 W/m2. R2 values were again very low for all cases. For the non-snow data, 

test RMSE ranged from 12.376 to 14.089 W/m2 and R2 from 0.728 to 0.792. The 

BAGTREE algorithm demonstrated the best performance and the two-layer NN the 

weakest. Summary statistics for the GLASS and NBAR combined data are shown in 

Table 4-4, and plots of derived versus measured LE for these data in Figure 4-5. 

 g)                                                        h)                                          
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Table 4-4. Validation and test statistics for GLASS and MCD43C4 data combined  

 
a) Snow data (albedo > 0.4) 

 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 5.702 0.113 -0.201 5.346 0.144 0.518 

RKS 5.435 0.194 -0.322 6.010 0.032 0.359 

NN, 2 

layer 5.894 0.073 0.448 5.417 0.118 1.270 

NN, 3 

layer 5.715 0.117 -0.114 9.378 0.031 1.420 

 

b) Non-snow data (albedo <= 0.4) 

 Validation Test 

Algorithm RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

RMSE 

(W/m2) 

R2 Bias 

(W/m2) 

BAGTREE 12.108 0.795 0.173 12.376 0.792 -0.011 

RKS 13.086 0.759 0.249 13.469 0.752 0.061 

NN, 2 

layer 13.150 0.758 0.290 14.089 0.728 -0.509 
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NN, 3 

layer 12.894 0.767 0.227 13.710 0.744 0.138 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a)                                                        b)                                          

 c)                                                        d)                                          
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 e)                                                        f)                                          

 g)                                                        h)                                          
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Figure 4-5: Derived versus observed LE for GLASS plus NBAR test data sets. a) 

BAGTREE algorithm, snow. b) RKS algorithm, snow. c) Two hidden layer neural 

network, snow. d) Three hidden layer neural network, snow. e) BAGTREE algorithm, 

no snow. f) RKS algorithm, no snow. g) Two hidden layer neural network, no snow. 

h) Three hidden layer neural network, no snow. Dashed line is 1:1 line. 

 

 

Due to its stronger performance in the preceeding tests, the BAGTREE algorithm was 

selected for use in further testing. The BAGTREE algorithm was run with each of the 

training data sets with different weightings described in the Methods section: original, 

flat histogram, high weight, and highest weight without vegetation index, and original 

and highest weight with vegetation index. The validation and test statistics for these 

tests are reported in Table 4-5. These results indicate that on a global basis, the 

BAGTREE results most closely matched the flux tower measurements for the original 

training data set that included all available training data. Including vegetation index 

as an input reduced RMSE by about 1 W/m2 for the original weighting and by over 

2.5 W/m2 for the highest weighting. The higher weighted training data sets also 

produced validation and test results with positive biases that are not present with the 

original training data set. 

 

Table 4-5: Summary statistics for BAGTREE tests with differently weighted training 

data sets 
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 Validation Test 

 RMSE R2 Bias RMSE R2 Bias 

Original 12.131 0.794 0.187 12.368 0.792 -0.005 

Flat 

histogram 

17.835 0.640 9.015 17.793 0.648 8.829 

High 

weight 

15.888 0.689 4.329 15.971 0.692 3.946 

Highest 

weight 

17.976 0.628 10.367 17.983 0.635 10.270 

Original 

with VI 

11.243 0.824 -0.024 11.337 0.824 -0.095 

Highest 

weight 

with VI 

15.056 0.696 8.330 15.245 0.693 8.374 

 
 

Mapping over the continental United States 

Monthly mean BAGTREE LE values for each of the training data sets and monthly 

mean LE values from each of the comparison data sets are shown for January (Figure 

4-6), April (Figure 4-7), July (Figure 4-8), and October (Figure 4-9). (Note that the 

scale on the figures is from -20 to 80 W/m2 for January, -20 to 160 W/m2 for April,  

-20 to 200 W/m2 for July, and -20 to 100 W/m2 for October.) Some patterns are 

immediately obvious from these figures. Other than the general patterns of higher LE 

in the eastern US and lower LE in the western US and higher LEs in July, at the 
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height of the growing season, compared to the other months, there is not much 

commonality between the data sets in general. The BAGTREE LEs tend to have 

lower LEs than any of the other products, a pattern which is especially notable in July 

(Figure 4-7). The BAGTREE results with training data sets weighted towards higher 

LEs (subfigures b, c, d, and f in each of Figure 4-6 through 4-9) contain higher LEs 

than the BAGTREE results with the original training data sets (subfigures a and e). 

The BAGTREE cases without VI in the training data sets (subfigures a through d) are 

mostly consistent in geographic pattern, but with higher or lower values overall. The 

same is true of the BAGTREE results with VI in the training data (subfigures e and f). 

The maps generated from the flat histogram training data set (subfigure b) show 

higher LE values in the April and October intermediate seasons than the other 

BAGTREE data sets. Those BAGTREE results with VI included in the training data 

have less contrast between the wetter eastern US and the drier western US than those 

without VI. 

 

 

 

 

 

 

 

 

 

 a)                                     b)                                      c)               
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Figure 4-6: January monthly mean LE. a) through f) are BAGTREE algorithm results. 

a) Original training data set without VI. b) Flat histogram data set without VI. c) High 

weighted data set without VI. d) Highest weighted data set without VI. e) Original 

training data set with VI. f) Highest weighted training data set with VI. g) through k) 

 d)                                     e)                                      f)               

 g)                                     h)                                      i)               

 j)                                     k)                                                   
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are comparison data sets. g) FluxCom remote sensing only. h) FluxCom with remote 

sensing and meteorology input. i) NARR. j) MODIS. k) GLASS. 

 

When comparing the maps generated from LE data sources other than the BAGTREE 

results, other patterns become apparent. Usually, the North American Regional 

Reanalysis (NARR) LE values are higher than those of the other data sets, especially 

in the eastern US, and the MODIS LE values tend to be lower, more similar to those 

from the BAGTREE algorithm. The spatial patterns of the LE values differ 

significantly between data sets as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a)                                     b)                                      c)                   

 d)                                     e)                                      f)                   
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Figure 4-7: April monthly mean LE. a) through f) are BAGTREE algorithm results. a) 

Original training data set without VI. b) Flat histogram data set without VI. c) High 

weighted data set without VI. d) Highest weighted data set without VI. e) Original 

training data set with VI. f) Highest weighted training data set with VI. g) through k) 

are comparison data sets. g) FluxCom remote sensing only. h) FluxCom with remote 

sensing and meteorology input. i) NARR. j) MODIS. k) GLASS. 

 

The July maps (Figure 4-8) are notable as they characterize the peak of the growing 

season in much of the US, and also a time of high drought intensity in the Midwestern 

US. Here the BAGTREE and MODIS results typically have low LE values overall, 

 g)                                     h)                                      i)                   

 j)                                     k)                                                      
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while the NARR values are typically higher. However, there is a region just south and 

west of the Great Lakes where the NARR and MODIS LE values are both lower than 

those of the other data sets, including the BAGTREE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a)                                      b)                                      c)                          

 g)                                      h)                                      i)                          

 d)                                      e)                                      f)                          
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Figure 4-8: July monthly mean LE. a) through f) are BAGTREE algorithm results. a) 

Original training data set without VI. b) Flat histogram data set without VI. c) High 

weighted data set without VI. d) Highest weighted data set without VI. e) Original 

training data set with VI. f) Highest weighted training data set with VI. g) through k) 

are comparison data sets. g) FluxCom remote sensing only. h) FluxCom with remote 

sensing and meteorology input. i) NARR. j) MODIS. k) GLASS. 
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Figure 4-9: October monthly mean LE. a) through f) are BAGTREE algorithm 

results. a) Original training data set without VI. b) Flat histogram data set without VI. 

c) High weighted data set without VI. d) Highest weighted data set without VI. e) 

Original training data set with VI. f) Highest weighted training data set with VI. g) 

 d)                                      e)                                      f)                             

 g)                                      h)                                      i)                             

 j)                                      k)                                                                  
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through k) are comparison data sets. g) FluxCom remote sensing only. h) FluxCom 

with remote sensing and meteorology input. i) NARR. j) MODIS. k) GLASS. 

Monthly mean comparison with flux towers 

A selection of monthly mean mapped LE and daily flux tower LE plots are shown 

below to illustrate what was found in this analysis. Plotting LE obtained from the 

differently weighted training data sets without vegetation index in the input tended to 

show that the higher-weighted data sets matched the flux tower measurements more 

closely because those values tended to be higher overall. Examples of this 

phenomenon are shown in Figure 4-10. There were sometimes discrepancies in the 

timing of mid to late year drops in LE between the BAGTREE and flux tower 

measurements, as shown in Figure 4-11, with the BAGTREE apparently having a 

delayed detection of decreased LE. It is notable that in the case of the Missouri Ozark 

site, the original weighted training data produces a dropoff timing that more closely 

matches the Ameriflux observations. Figure 4-12 shows multiple cases where the 

“flatter” seasonal variation of the flat histogram trained results does not appear to 

match the temporal variation of the ground observations as well as the results with the 

other training data sets. 
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Figure 4-10: Monthly mean time series of bagtree LE from differently weighted 

training data sets (colored lines) and daily flux tower LE observations (black crosses), 

illustrating closer match of higher-weighted training data sets to ground observations. 

Red: Original weighting. Blue: Flat histogram. Green: High weighting. Magenta: 

Highest weighting. 

 

 

Figure 4-11: Monthly mean time series of bagtree LE from differently weighted 

training data sets (colored lines) and daily flux tower LE observations (black crosses), 

illustrating delayed detection of decreasing LE. Red: Original weighting. Blue: Flat 

histogram. Green: High weighting. Magenta: Highest weighting. 

 

 

Figure 4-12: Monthly mean time series of bagtree LE from differently weighted 

training data sets (colored lines) and daily flux tower LE observations (black crosses), 
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illustrating weaker match of flat histogram training set results to temporal pattern of 

flux tower LE. Red: Original weighting. Blue: Flat histogram. Green: High 

weighting. Magenta: Highest weighting. 

 

When comparing BAGTREE LEs derived with and without VIs as an input at 

different sites, certain patterns occurred. In several cases, including vegetation index 

made little difference unless high weighting was also applied (Figure 4-13). In other 

cases, including vegetation index appeared to reduce the sensitivity to drop-offs in LE 

(Figure 4-14). There were also sites in the western US where including vegetation 

index resulted in substantially higher LEs (Figure 4-15). The three sites shown in 

Figure 4-15 are all at about -105 to -106 degrees latitude. In these cases, the ground-

measured LEs tended to be intermediate between the results with and without 

vegetation index as an input. 

 

 

Figure 4-13: Monthly mean time series of bagtree LE trained with and without 

vegetation index as an input (colored lines) and daily flux tower LE observations 

(black crosses), illustrating cases where including vegetation index had little effect on 
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results. Red: Original weighting, no vegetation index input. Green: Original 

weighting, vegetation index input. Blue: Highest weighting, vegetation index input.  

 

 

Figure 4-14: Monthly mean time series of bagtree LE trained with and without 

vegetation index as an input (colored lines) and daily flux tower LE observations 

(black crosses), illustrating cases where including vegetation index appears to reduce 

sensitivity to a dropoff in LE. Red: Original weighting, no vegetation index input. 

Green: Original weighting, vegetation index input. Blue: Highest weighting, 

vegetation index input.  

 

 

Figure 4-15: Monthly mean time series of bagtree LE trained with and without 

vegetation index as an input (colored lines) and daily flux tower LE observations 

(black crosses), illustrating cases where including vegetation index produces higher 
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LE values. Red: Original weighting, no vegetation index input. Green: Original 

weighting, vegetation index input. Blue: Highest weighting, vegetation index input.  

 

The most common pattern observed when comparing monthly means from all map 

data sources to the Ameriflux LEs was that most of the data were relatively consistent 

with each other and with the Ameriflux LE, except for the NARR, which had a high 

bias (Figure 4-16). Exceptions occurred at the Cook Farm and Sierra Conifer sites, 

where NARR had the highest values but was also most consistent with the Ameriflux 

data (Figure 4-17). When comparing the BAGTREE data with vegetation index as an 

input to the other map data sets, the other data sets appeared to catch drops in LE 

more quickly than the BAGTREE data, but all of the other data had about the same 

lag (Figure 4-18). The MODIS data were a better match to an observed dropoff in the 

Missouri Ozark data than the other map data sets but were significantly biased low for 

the Fermi sites (Figure 4-19). Overall, none of the mapped data sets performed 

consistently better than the others.  

 

 

Figure 4-16: Monthly mean time series of LE from different map data sets (colored 

lines) and daily flux tower LE observations (black crosses), illustrating cases where 
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NARR data are biased high relative to other map retrievals and flux tower 

observations. Black line, open circles: BAGTREE, with VI, original weight. Black 

line, closed circles: BAGTREE, with VI, highest weight. Red: MODIS. Green: 

FluxCom, remote sensing only. Blue: FluxCom, remote sensing and meteorology 

input. Cyan: NARR. Magenta: GLASS. 

 

 

 

Figure 4-17: Monthly mean time series of LE from different map data sets (colored 

lines) and daily flux tower LE observations (black crosses), illustrating cases where 

NARR data are higher than other map observations and closer to Ameriflux LEs. 

Black line, open circles: BAGTREE, with VI, original weight. Black line, closed 

circles: BAGTREE, with VI, highest weight. Red: MODIS. Green: FluxCom, remote 

sensing only. Blue: FluxCom, remote sensing and meteorology input. Cyan: NARR. 

Magenta: GLASS. 
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Figure 4-18: Monthly mean time series of LE from different map data sets (colored 

lines) and daily flux tower LE observations (black crosses), illustrating differences in 

sensitivity to falling LEs. Black line, open circles: BAGTREE, with VI, original 

weight. Black line, closed circles: BAGTREE, with VI, highest weight. Red: MODIS. 

Green: FluxCom, remote sensing only. Blue: FluxCom, remote sensing and 

meteorology input. Cyan: NARR. Magenta: GLASS. 

 

 

Figure 4-19: Monthly mean time series of LE from different map data sets (colored 

lines) and daily flux tower LE observations (black crosses), illustrating closer MODIS 

match to flux tower LEs at Missouri Ozark site and closer match of all other data sets 

at Fermi sites. Black line, open circles: BAGTREE, with VI, original weight. Black 

line, closed circles: BAGTREE, with VI, highest weight. Red: MODIS. Green: 
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FluxCom, remote sensing only. Blue: FluxCom, remote sensing and meteorology 

input. Cyan: NARR. Magenta: GLASS. 

 

 

 

Discussion 

This study has shown that the retrievals of LE using ML algorithms are quite 

sensitive to the composition of the training data set. In the case shown here, initial 

training with the BAGTREE algorithm produced a low bias at higher LE values 

(above 100 W/m2) (Figures 4-3 to 4-5). This leads to the algorithm indicting 

relatively low LE values during the growing season in wet regions, as shown in 

Figure 4-8, because that is where the highest LE values occur. In an attempt to 

address this low bias, trials were made with higher LE values more represented in the 

training data set relative to lower values. Summary statistics indicated better 

performance globally for the original, full training data sets (Table 4-5), with lower 

RMSE and bias values closer to zero than those for the higher weighted training data 

sets. However, the higher weighting of the input data sets and the resulting high bias 

did not appear to resolve the persistent underestimation of LE in the eastern US 

during the growing season when compared to other data sets. 

 

Monthly mean maps were made of the BAGTREE results for the continental United 

States using each of the differently weighted training data sets. Use of training data 

sets with relatively more observed LE values over 100 W/m2 versus under 100 W/m2 



 

 

167 
 

produced higher LE values during the growing season in the eastern US than training 

with all available data (Figures 4-6 through 4-9). The closer match to the comparison 

data sets shows that it is likely that the higher weighted training data are producing 

more realistic results during the growing season in the eastern United States, despite 

the weaker performance against global validation and test data according to summary 

statistics (Table 4-5). Yet it appears that the low bias during the growing season in the 

eastern US persisted even with the higher-weighted input data sets. The smaller range 

of values of the results of the algorithm trained with the original training data set may 

be inaccurate, but at the same time results at lower LE values are probably more 

accurate. However, it is clear that the seasonal cycle pattern often produced with the 

flat histogram training data set, with relatively higher values during the transition 

seasons and relatively lower values at the peak of the growing season, is not a good 

representation of the seasonal cycle as measured at individual sites (Figure 4-12).  

 

Including vegetation index as an input resulted in maps with decreased contrast 

between the wetter eastern US and drier western US. It is unclear whether this 

represents an improvement or degradation in performance. When individual sites in 

the western US where the BAGTREE algorithm produced higher LEs with vegetation 

index as an input were checked against ground station measured LE, the ground 

station LEs were intermediate between the BAGTREE LEs with and without 

vegetation index as an input (Figure 4-15). The vegetation index trials show that 

including input data that are expected to be highly correlated with other input data, as 

the vegetation indices are expected to be correlated with NBAR, can still produce 
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significant differences in the output results. It is unclear why this occurs, and 

counterintuitive as vegetation index maps tend to demonstrate contrast between a 

greener eastern US and a less green western US. Further sensitivity testing could be 

performed by generating BAGTREE LEs with test vegetation index data to see how 

much LE is affected by differences in vegetation index. However, determining why 

any given pattern occurs is difficult when using machine learning methods due to the 

opaque nature of the algorithms. 

 
The higher weighted training data set produced higher LE values during the growing 

season in the eastern US than the full training data set, but those LE values were still 

lower than those from the comparison data sets. This could be because even the 

higher weighted training data sets contain only a few data days with observed LE 

values over 150 W/m2, resulting in little representation of these higher LE values in 

the training data. It is likely that this limited range of the training data is producing a 

limited range to the output. This could be tested by obtaining and using more training 

data with daily flux tower station measured LE values greater than 150 W/m2. 

 

The comparison data sets considered here differ from each other about as much as 

they do from the BAGTREE results, except for the apparent low bias of the 

BAGTREE results at the height of the growing season in the eastern US. This lack of 

consensus between the data sets especially holds for the Midwestern US in July 2012, 

indicating the lack of a consistent drought signal that might be expected for that time 

and location.  There is also not a consistent result when checking which of the data 

sources produces a more accurate time series when checked against individual ground 
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sites. When the BAGTREE results without vegetation index are considered alone, the 

highest weighted training data sets usually produce the closest match to the flux tower 

measurements during the growing season, because they demonstrate less low bias 

(Figure 4-10). All of the BAGTREE products show a lag in sensitivity to drops in LE 

during the growing season (Figure 4-11). However, the higher weighted BAGTREE 

results sometimes show less sensitivity to these drops (Missouri Ozark site in Figure 

4-11).  

 

When considering all of the comparison data sets included in this analysis, no single 

data set more consistently matches the ground-based observations. The NARR data 

set LEs were usually higher than those from the other map products, and often 

demonstrated a high bias relative to the ground observations (Figure 4-16), but 

sometimes the higher NARR values were a closer match to the flux tower LEs 

(Figure 4-17). The MODIS data exhibited a closer match to falling LEs in one case, 

but a significant low bias in others (Figure 4-19).  

 

Overall, the bagging tree mapping of the continental United States presented here has 

substantial room for improvement. It is quite possible that including more variables in 

the input data sets or segregating the input data by land cover type could improve 

performance. The FluxCom data set production (Jung et al., 2018) included more 

input variables and performed separate trainings of ML algorithms by surface type, 

and produced what appears to be a better representation of LE during the growing 

season in the eastern US (as shown in the Results section above). However, the 
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changes in results observed here with different input data set weighting indicates the 

possibility that all ML results, including FluxCom, have similar sensitivity to input 

data set characteristics. 

Conclusions 

This study has shown that the results of ML algorithms for the retrieval of 

evapotranspiration have a significant dependency on the properties of the data set 

used for training. Because of this dependency, these algorithms should be used with 

caution. Overall global statistics are not necessarily a good indication of performance 

in particular situations. The higher weighted input data sets produced a better 

representation of the growing season in the eastern US despite their higher RMSEs, 

lower correlation coefficients, and higher biases on a global basis, although the higher 

weighted inputs still produced low biases during the eastern US growing season. 

Adding vegetation index to the set of input variables resulted in an improvement in 

global statistics that did not indicate clear improvements in performance when 

regional patterns were examined. 

 

Tests including NBAR as input in all cases but with and without vegetation indices as 

input indicate that seemingly duplicative input variables may still have a significant 

effect on outcomes. When vegetation indices were included, the overall geographic 

pattern of the results changed, with decreased contrast between the wetter eastern US 

and drier western US. Including vegetation indices improved global statistics but the 

results for some individual sites went from underestimation without VIs to 

overestimation with VIs. Further experimentation could shed more light on the effect 
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of including or excluding VIs. The NDVI, EVI, and other data fields for individual 

days should be examined before use to generate maps using the BAGTREE algorithm 

for multiple sample days, to see if patterns apparent in the input data are also 

occurring in the output. Sensitivity testing could also be performed by systematically 

altering the VI data fields before generating the LE maps. 

 

The inconsistencies of the comparison data sets examined with each other and with 

the BAGTREE results suggest caution in the use of any LE mapping data. More 

intercomparison work could yield more insight into the patterns of variation between 

different data sources and the causes of those differences. It would be useful to 

examine results for high precipitation as well as drought years. 

 

Direct diagnosis of the reasons for patterns in machine learning output is difficult due 

to the “black box” nature of the algorithms. For application to the evapotranspiration 

problem, further investigation of sensitivity to input data set characteristics for 

different input data types, regions, and climates outside of the midlatitude range 

represented by the continental US could be useful. In addition, the effects of input 

data set selection on drought sensitivity and regional and global trend analysis would 

be of interest.  

 

The most significant finding of this study is the sensitivity of the mapped LEs to the 

weighting of the training data sets. It also appears that limitations in the range of 

values represented in an input data set imposes similar limitations on the output. 
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Further investigation of the properties of LE retrievals generated with input data sets 

with different properties is highly recommended. 
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Chapter 5:  Conclusion 
 

The work carried out in the preceding studies addressed several issues in the remote 

sensing of evapotranspiration. As discussed in the Introduction, measurement of 

evapotranspiration is desirable because ET is an important component of the land 

surface water and energy balances, but ET can be difficult to measure. Remote 

sensing of ET has the capacity to provide information on regional and global scales 

that are impractical to reach via ground-based measurements. Here we have evaluated 

the utility of a number of simple regression algorithms for this purpose, assessed the 

capacity of a range of machine learning methods to address this problem, and applied 

machine learning methods to produce monthly mean ET maps for the continental 

United States for the drought year of 2012. The results show that globally-averaged 

statistics at individual sites indicate performance comparable to that of other methods 

from both regression formula and machine learning algorithms, and that selection of 

the best machine learning method and refinements to ground data use can produce 

improved results, with validation and test RMSEs of around 12 W/m2 on a daily 

basis. However, good performance on global statistical measures does not mean that 

the results are reliable at all places and times. This is especially clear from the results 

of the third part of this study, the regional mapping, which showed a pattern of likely 

underestimation of LE during the growing season in the eastern United States for all 

training data cases considered. Much further work will be required before consistent 

and reliable retrievals of LE are regularly available on a global basis. 
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The first section of this work (Chapter 2) was an evaluation of twelve simple 

regression formulas for determination of LE from remote sensing. These sorts of 

formulas are often used when data availability or computational power are limited. It 

was found that the more complex formulas with more input data variables tended to 

perform better than the others, regardless of the specific form of the regression 

formula. This was most true when using the original published coefficients for these 

formulas, as re-tuning with training data drawn from the same global data sets that 

were used for testing produced more improvement in RMSE and bias for the simpler 

formulas. However, R2 values were not much improved by this tuning in most cases. 

 

Tests were also done to evaluate algorithm performance for different surface types. 

For most surface types, performance was similar to the global case. The most notable 

differences were a low bias for cropland and wetland types, and higher RMSE for 

wetland. In the case of wetlands, it is likely that LE is higher than indicated by the 

vegetation indices used in the regression formulas, since in the extreme case open 

water has a low vegetation index and a high LE. Irrigation may be producing similar, 

though less pronounced, effects for croplands. Four of the algorithms were re-tuned 

with training data with the same surface type only. Testing with these re- tuned 

algorithms improved performance for croplands and wetlands.  

 

The results of the study of simple regression formulas indicate some practices that 

users of these formulas should follow. It is best to use a formula which makes as 

much use as possible of the available data. Especially if a formula with a small 
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number of inputs is used, it is advisable to perform tuning to the particular data set 

being used. Results for wetland and cropland areas should be used with greater 

caution, and separate tuning for those surface types is recommended if possible. Due 

to the study described in Chapter 2, the utility and limitations of simple regression 

formulas for retrieval of LE from remote sensing are better understood and can be 

used with better results. 

 

Evaluation of machine learning algorithms for obtaining LE was carried out in 

Chapter 3 of this work. Ten algorithms of five different types were evaluated. Some 

of the algorithms produced good results with a small training data set of about 8000 

data points but were too demanding of computational resources for tuning to be 

practical with a large training data set of about 70,000 data points. The algorithms 

that were shown to have the best combination of accuracy and computational 

efficiency where the bootstrap aggregation (bagging) tree, the random kernel (RKS), 

and the 2 and 3 hidden layer neural networks. These algorithms all produced RMSEs 

of at least 3 W/m2 lower when trained with the larger training data set than with the 

smaller training data set.  

 

One advantage of the machine learning algorithms is that any combination of 

variables can be used as the input data set. Tests with different combinations of 

variables showed that using more input variables can produce lower RMSE and 

higher R2 values than using smaller numbers of input variables, although NBAR 

appeared to have significant redundancy with the other non-radiation variables. 
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Computational demand was usually not significantly affected by using more input 

variables. Therefore, for the remainder of the study all available input variables 

(downward shortwave radiation, PAR, albedo, NDVI, EVI, LAI, and FAPAR) were 

used. All of these variables were obtained from MODIS or GLASS data sets, showing 

that the machine learning algorithms can be trained, tested, and used with all remote 

sensing data except for the ground- based LE values used for training and validation. 

 

Using all available input variables and the large training data set, the RMSE of the 

best algorithms when checked with a test data set was 19.91 W/m2 for the bagging 

tree, 20.94 W/m2 for the 3 hidden layer neural network, and 22.22 W/m2 for the RKS. 

This represents good performance relative to the simpler regression formulas tested in 

Chapter 2, with the additional advantage of less dependence on ground-based data.  

 

Further evaluation of the machine learning algorithms was performed by testing the 

globally-tuned algorithms with test data of individual surface types, and then tuning 

to the individual surface types. The results of this testing showed weaker performance 

for wetland and cropland sites, and stronger performance for evergreen, grassland, 

savannah, and shrub sites. Unlike the simple regression formulas, tuning to individual 

surface types did not result in significant improvements to algorithm performance. It 

is recommended that, in general, machine learning algorithms be trained with all 

available data rather than restricting to particular input variables or surface types. 

Ideally, experiments should be made with different combinations of input variables to 

test the effect of their inclusion or exclusion. 
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The third study in this work (Chapter 4) is an investigation of the utility of machine 

learning algorithms for generating a time series of regional LE maps. After some 

further tuning of the algorithms, GLASS and MODIS data representing the 

continental United States during the drought year of 2012 were processed using the 

bootstrap aggregation regression tree (BAGTREE) algorithm, then compared to five 

other LE maps of the continental United States, two using other machine learning 

methods, one from the North American Regional Reanalysis, one from a standard 

MODIS product, and one from a GLASS ET product. 

 

Some preliminary refinements were conducted before applying the machine learning 

technique to the continental US data. Tests were conducted using GLASS radiation, 

albedo, LAI, and FAPAR data only as input, using MODIS NBAR only as input, and 

using both the GLASS and MODIS NBAR data. The BAGTREE, RKS, and 2 and 3 

hidden layer NN methods were all tested, but the best results were obtained with the 

BAGTREE method. Snow and non- snow data were separated according to a 

threshold albedo of 0.4, and those data points where the energy balance closure 

adjustment was greater than 0.4 of net radiation were discarded. With these 

adjustments, non-snow RMSE values of about 16-18 W/m2 were obtained for the 

GLASS data alone, about 13-16 W/m2 for the NBAR data alone, and 12-14 W/m2 for 

the GLASS and MODIS NBAR data combined. This represents additional 

improvement in global algorithm performance over the results described in Chapter 3. 

Based on these results, monthly mean continental US maps were produced with the 
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BAGTREE algorithm and the GLASS and MODIS NBAR data as input for the year 

2012. Maps were also produced using MODIS vegetation indices as input along with 

the MODIS NBAR and GLASS data. 

 

The most notable result from the initial maps generated using the BAGTREE 

algorithm was that a low bias at high LE values resulted in a weaker signal of the 

growing season in the eastern US than in the comparison data sets. In an attempt to 

address this bias, the BAGTREE algorithm was retrained with training data sets 

containing a higher proportion of observed LE values over 100 W/m2 than the 

original training data set. This resulted in increased RMSE and bias and lower R2 

when tested with the original test data set but produced a closer match to the 

comparison data sets for the growing season in the eastern US. These results show 

that ML algorithms can have significant sensitivity to the characteristics of the input 

training data set, leading to results that are more or less accurate under different 

circumstances. Comparisons to monthly mean LE maps for the year 2012 from other 

data sources showed little consensus between the data sets. Comparisons with ground 

measurements showed that no single data source was consistently the most accurate. 

 

The differences between the maps generated when vegetation index was included as 

an input in addition to NBAR versus those generated with NBAR only raise 

significant questions. It was not expected that including vegetation indices would 

result in significant differences due to the probable redundancy in information content 

between NBAR and the vegetation indices. When examining results from sites where 
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LE obtained with vegetation index is very different from LE obtained without, the 

tower LE results tend to be intermediate between the two. As a result, it is not clear 

whether the results with or without vegetation index as an input are more accurate. 

Comparison of input vegetation index and NBAR fields to output maps may shed 

some further light on this issue. 

 

The maps generated using the BAGTREE algorithm and from other sources indicate 

the need for extreme caution in the use and interpretation of LE maps, especially 

those generated through machine learning techniques. Good performance in global 

statistical terms does not guarantee good performance at all places and times. 

Machine learning generated maps have significant sensitivity to the characteristics of 

the data sets used for training. In addition, LE maps generated by different methods 

were not shown to converge on a consensus pattern, and evaluation of those maps 

against ground station data did not identify any of the retrievals as clearly superior to 

the others. 

 

In order to resolve these discrepancies between LE retrievals, more comparison to 

ground-based data would be desirable, especially in the regions where the 

discrepancies are the most pronounced. Flux towers should be selected that are 

known to produce high-quality data and are not in areas of high spatial heterogeneity. 

Ground-based LE measurements that are independent in location or time from the 

original training, validation, and test data sets would be especially useful. Daily LE 

values during the growing season in both the eastern and western US should be 
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examined from both the ground-based measurements and the ML data, to identify 

times where agreement is good and where it is poor. Possibilities such as systematic 

underestimation on days where LE is especially high or when precipitation occurs 

should be investigated. If LE retrievals on days with especially high LE are often 

underestimates, retraining with a data set where high LE conditions are more 

represented could improve the results.  

 

This work has produced refinements in simple formula and machine learning 

techniques used for remote sensing of evapotranspiration. It has shown that machine 

learning techniques can be used to derive maps on a continental scale, but also that 

the reliability of these maps is questionable. It has also demonstrated the potential for 

machine learning to detect drought signals in a few cases. However, the results of the 

mapping study also indicate that detection of growing season and drought trends are 

likely to be influenced by the characteristics of the training data set used. These 

results have implications for the potential operational use of these regression 

techniques and also for future research efforts. 

 

The work performed here used data acquired between the years of 2000 and 2015, but 

generation of the data sets used for input in these studies is ongoing. The accuracy of 

the results obtained here is comparable to those of currently operational LE retrievals 

such as the MODIS MOD16 product. Our results show that a range of 

implementations of operational regression retrieval of LE are possible. If only a small 

number of input variables are available or if computational power is limited, simple 
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regression formulas of the type investigated in Chapter 2 can be used. Some of these 

formulas require meteorological data which could be acquired from stations, 

reanalysis, or other remote sensing products. Use of reanalysis or remote sensing for 

this purpose would make retrieval on regional and global scales possible, although the 

mapping study done here indicates that the quality of those retrievals, like those from 

all other methods evaluated, would be open to question.  

 

If data for a large number of input variables and sufficient computing resources are 

available, use of machine learning has advantages over simple formulas. Any 

combination of input variables may be used with machine learning algorithms. Once 

the algorithms are trained, retrieval of LE is usually fast and can be expected to 

perform well on global statistical measurements. To obtain the best possible accuracy 

under the most different conditions, the quality, size and breadth of the training data 

set should first be maximized before any operational use. The characteristics of the 

training data sets should then be evaluated and potentially adjusted due to the 

sensitivity of the results to the input data set used. It is also necessary to be aware that 

performance may vary widely regionally or seasonally, so further testing over 

extended areas is recommended. An improved network of validation sites 

representing locations with high spatial homogeneity across a range of climate and 

ecosystem types would be especially useful for regional coarse resolution product 

evaluation. 
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Since any combination of input data can be used with machine learning algorithms, it 

is theoretically possible to obtain LE from a vast number of combinations of input 

data. However, the relationship between LE and the different input variables is likely 

to vary in strength and type. Some implementations of machine learning algorithms 

can be used to indicate which of the input variables have the most effect on the output 

once the algorithm is trained. Use of this kind of test could provide an indication of 

which available variables are most closely related to LE. These tests could be done 

for data from different kinds of instruments, such as soil moisture sensors and 

sounders, and for data from geostationary as well as polar-orbiting platforms. These 

sorts of experiments, along with other testing similar to what has been done in this 

work, would be useful as efforts towards improving retrievals of LE from remote 

sensing. In turn, these improved retrievals should be more useful as indicators of 

water consumption, crop and ecosystem health, and hydrological cycle trends at 

scales ranging from local to global.  
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