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Abstract

In this paper, we give a summary of recent development of simulation-based algo-
rithms for average cost MDP problems, which are different from those for discounted
cost problems or shortest path problems. We introduce both simulation-based policy
iteration algorithms and simulation-based value iteration algorithms for average cost
problem, and give the pros and cons of each algorithm.
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1 Introduction

Optimization problems with average cost criterion are common in economic, computer and
communication systems. Some examples are inventory control problems and computer and
communication networks, where decisions are made based on throughput rate or average
time a job or packet remains in the system [1]. One approach for solving these optimization
problems is to formulate them in the Markov Decision Process (MDP) framework, by defining
appropriate states, actions, transition probabilities, time horizon, and cost criterion [1]. Due
to the notorious “curse of dimensionality” and “curse of modeling” (the decision maker does
not have access to the exact mathematical model of the MDP) problems, there has been a
lot of interest in simulation-based algorithms for MDP [2]. Two basic algorithms for solving
MDPs are policy iteration and value iteration. Policy iteration includes a sequence of policy
evaluation and policy improvement at each iteration. The policy evaluation step involves
solving linear equations with the same number of equations as the number of states. Value
iteration calculates the optimal cost-to-go successively by turning the Bellman optimality
equation into an update rule. Simulation-based algorithms, accordingly, can be roughly
divided into simulation-based policy iteration (SBPI) and simulation-based value iteration
(SBVI) algorithms.

For problems with average cost criterion, simulation-based algorithms are different from
those for discounted cost problems or shortest path problems, where most of the research
on simulation-based algorithms has been focused. The differences originate from the cor-
responding exact policy iteration and value iteration. First, with average cost problems,
the evaluated costs are the average cost and differential costs, instead of the total costs
used in discounted cost problems or shortest path problems. Second, results and analyses
of simulation-based algorithms on average cost problems depend on the chain structure of
the transition matrices of Markov chains generated by stationary policies, whereas those on
discounted cost problems or shortest path problems do not.

On the basis of the chain structure, MDPs for average cost problems can be classified as
recurrent, unichain, or multichain [1]. An MDP is recurrent if the transition matrix corre-
sponding to every deterministic stationary policy consists of a single recurrent class. Under
this assumption, Cao [3] proposed two single-path algorithms and provided convergence con-
ditions; Tsitsiklis and Van Roy [4] extended the temporal-difference learning algorithm from
the discounted cost case to the average cost case; Konda [5] also gave several actor-critic al-
gorithms, simulation schemes derived from policy iteration, with average cost criterion and
provided convergence proofs. However, the recurrent assumption is often not satisfied by
problems of practical interest.

An MDP is unichain if the transition matrix corresponding to every deterministic sta-
tionary policy consists of one single recurrent class plus a possibly empty set of transient
states, whereas it is multichain if the transition matrix corresponding to at least one station-
ary policy consists of two or more recurrent classes. Under the assumption that the MDP
is unichain and that there is at least one common state that is recurrent under all policies,
Bertsekas [6] converted the average cost problem into a stochastic shortest path problem,



and provided a multi-run scheme and corresponding error bound for SBPI. In this algorithm,
the reference state is the same from iteration to iteration, and the differential costs are ob-
tained by subtracting from expected total cost the product of the average cost and expected
number of transitions. The simulation-based version of value iteration, Q-learning, has also
been studied under the unichain plus common recurrent state assumption, e.g., Abounadi,
Bertsekas and Borkar proved the convergence of Q-learning using the ODE method [7].

In [8] we proposed a simulation-based policy iteration algorithm, in which the common
recurrent state assumption is relaxed. In the proposed algorithm, the average cost is evalu-
ated first and then realization factors [3] (the difference between the differential costs) from
states to a reference state are evaluated, instead of the differential costs directly. In this
way, the problem is also converted into a stochastic shortest path problem. Using the real-
ization factors gives the flexibility of choosing the reference state not necessarily the same
from iteration to iteration, which leads to remove the common recurrent state assumption.
In addition, the average cost is embedded into the stage cost, where the new stage cost
is the original stage cost minus the average cost, and temporal-difference learning scheme
for stochastic shortest path problem in [2] is applied. Thus, the proposed algorithm should
be more computationally efficient than the algorithm in [6]. To improve the performance
further, transient states are selected as the initial states for sample paths, and the inverse of
the visiting time is chosen as the stepsize.

Here we would like to give a brief summary of recent development of simulation-based
algorithms for average cost MDP problems. To be clear, we introduce simulation-based policy
iteration algorithms and simulation-based value iteration algorithms in separate sections.

2 Background

The basic problem we consider in this paper is the problem of optimizing a stochastic discrete-
time dynamic system with average cost criterion. The dynamic system equation is

Tr1 th(xt,ut,wt), t:O,l,...,T—l, (1)

where ¢ indexes a time epoch; x; is the state of the system; wu,; is the action to be chosen
at time ¢; w; is a random disturbance which is characterized by a conditional probability
distribution P(- | ¢, u;); and 7" is the decision horizon. We denote the set of possible system
states by S and the set of allowable actions in state i € S by U(i). We assume S, U(i), and
P(- | x,ut) do not vary with ¢. We further assume that the sets S and U(7) are finite sets,
where S consists of n states denoted by 0,1,...,n — 1.

If, at some time ¢, the system is in state x; = ¢ and action u; = u is applied, we incur
an expected cost g(x;,u;) = g(i,u), and the system moves to state x;;1; = j with probability
pij(u) = P(x¢41 = J | ¢ = i,uy = u). p;j(u) may be given a priori or may be calculated
from the system equation and the known probability distribution of the random disturbance.
g(i,u) is assumed bounded. This framework containing states, actions, costs, probabilities



and the decision horizon is also known as a Markov Decision Process (MDP).
The objective is to minimize over all policies ™ = { g, i1, ...} with p; : S — U, ps(i) €
U(i) for i and ¢, the average cost per stage

J.(i) = Jim 1E{Tz_lg<xt,m<xt>> =i} o)

T— o0 T =0

A stationary policy is an admissible policy of the form 7 = {u, g, ...}; we denote it by fis.
In an average cost MDP, results and analyses depend on the chain structure corresponding
to stationary policies. For simplicity, we consider only unichain MDPs in this paper. To our
knowledge, there has been no research on simulation-based algorithms under the multichain
assumption.
Under the unichain assumption the following hold for average cost MDPs [1] [6]:

e The average cost per stage associated with an initial state ¢ and a stationary policy
Poos Ju(1), and the optimal average cost from state ¢, J*(i), are independent of the
initial state 7. We denote these by 7, and n*, respectively.

e The optimal average cost n* together with some vector h* = {h*(0),...,h"(n — 1)}
satisfies the optimality equation

0+ h* (i) = mingey ) [9(i, u) + X720 pij(w)h*(4)], i=0,...,n—1. (3)

Furthermore, if () attains the minimum in the above equation for all states, the sta-
tionary policy fio is optimal. In addition, we may set h*(0) = 0 to uniquely determine
the vector h*, which is also called the optimal differential cost.

e Given a stationary policy pio with corresponding average cost per stage 7,, there is a
unique vector h, = {h,(0),...,h,(n — 1)} such that h,(0) = 0 and

M+ hyu(0) = g(i, (i) + 3520 pig (D) (), i=0,...,n—1. (4)
h,, is also called the differential cost associated with a stationary policy fiec.

One method to solve the optimality equation is policy iteration. Policy iteration consists
of two steps: policy evaluation and policy improvement. At each iteration step k, a stationary

policy pk = {u* u* ...} is given.

1. Policy evaluation: obtain the corresponding average and differential cost n* and
h*(i) satisfying (4).

2. Policy improvement: find a stationary policy p**!, where for all 4, u**1(i) is such

that . .
9(i, 1) + 3 pig (Wt @)RG) = minlg(i,u) + 3 p (WA () (5)
Jj=0 usuA Jj=0



If n**1 = n* and hW**1(i) = hE(i) for all 4, the algorithm terminates; otherwise, the process
is repeated with p**! replacing p*.

Under the unichain assumption, the policy iteration algorithm terminates in a finite num-
ber of iterations with an optimal stationary policy. See [1] for multichain problems.

The other method of solving the optimality equation is value iteration. One version of
value iteration for the average cost problem is simply to select arbitrarily a terminal cost
function, say Jy, and to generate successively the corresponding optimal k-stage costs Jy ().
However, this version of value iteration has some drawbacks [6]. An improved version, known
as relative value iteration, takes form:

R = minloti. + 3 pu (R G)] -~ min fo(s,0) + S pu @G (O

One variant [6] of this version can be implemented under the unichain and common recurrent
state assumption.

Recently, Bertsekas [9] proposed a new value iteration method, under the unichain and
common recurrent state assumption, by connecting the average cost problem to a stochastic
shortest path problem. It has the form

,),]k-l—l — 77k 4 akhk+1(n _ 1)

where +* is a positive stepsize. We call this version of value iteration SSP (Stochastic Shortest
Path) value iteration. Computational tests indicate that SSP value iteration substantially
outperforms the standard method for different problems [9].

3 Simulation-based Policy Iteration (SBPI)

SBPI originates from policy iteration, and the general structure of SBPI is the same as for
exact policy iteration. There are two differences, however [2]:

e Given the current stationary policy p.., the corresponding average cost and differential
costs are not computed exactly. Instead, an approximate average cost 1), and approx-
imate differential costs ilu(l) are obtained via simulation. Here, two sources of error
are produced. First, the simulation length is finite. Second, noise from simulation
experiments becomes a source of error.

e Once approximate policy evaluation is completed and 7, and ilu(l) are available, we
generate a new policy fie which is greedy with respect to 7, and ﬁu(i), i.e. satisfying
(5). The greedy policy can be calculated exactly, or it can be approximated which
introduces a new source of error.



In most simulation-based policy iteration algorithms for average cost problems so far
(see [3], [4], [8] and [2]) the policy evaluation and policy improvement steps have been
considered separately, with concentration on the ways to generate approximate average cost
and differential costs for a fixed policy via simulation.

Next I would like to describe one of the above algorithms, an algorithm proposed by our
group [8], in detail. Note that our proposed algorithm is realized under the unichain without
common recurrent state assumption.

First, we discuss how to approximate the average cost associated with a stationary policy
loo Via simulation, which by definition can be written as

mzmnhﬁﬁﬁmwmﬂ» 0

t=0

Given a stationary policy, if we run L independent and identically distributed (i.i.d.)
sample paths starting from an arbitrary state, each with length 7', we can obtain an approx-
imation of the average cost via simulation as 7" and L become large. We may also estimate
7, iteratively.

Then let us discuss how to approximate the differential cost via simulation. Given a
stationary policy ps, and assuming the corresponding Markov chain is an aperiodic chain
(can be relaxed), we also have [1]

holi) = Jim £{ 3= (oo ) =) | 0 = i} o

T—oo =0

We may refer to the average cost (8) as the stationary cost, since it represents cost per stage
for a system in steady state. Thus (9) allows interpretation of the differential cost as the
expected total difference between the total cost and the stationary cost. The differential cost
is also known as the bias [1] or the potential [3].

Assume the Markov chain associated with the current stationary policy, starting from
state 7, encounters state j at time epoch T;; the first time, that is, 7;; = min{t : t > 0,z; = j}
(note that Tj; = 0, so that Tj; is not the recurrent time of state 7); then

hu(i) = lim E{ i (g(xs, pe(e)) — nu) + i (g(z¢, pe(ze)) — 77#) | o = Z}

T—o0 t=0 t=T;;

- E{ i (9(xs, pe(x0)) =) | 0 = z} + lim E{ 3 (9(ze, (@) =) [ 2, =3

t=0 Tmoo W2,
= bu(i,j) + hu(j)?

where

bu(i, j) = E{ (9 (e, (@) = ) | 0 = Z}

t=0

|



are called realization factors [3]. This gives us an idea how to approximate h,(7) via simu-
lation.

We know that the unichain Markov chain associated with a stationary policy contains a
single recurrent class and a possibly empty set of transient states, so that each state in the
recurrent class is reached in a finite number of steps from all initial states with a positive
probability. If we choose one such state as reference state r, the differential costs of all other
states can be expressed as

hy (i) = b,(3,7) + h,(r). (10)

If the reference state is simply state 0, the state having the differential cost zero, h, (i) =
b,(i,7) since we set h,(0) = 0; if not, we can first approximate b,(0,7) via simulation and
obtain h,,(7) using h, () = b,(¢,7) — b,(0,r), since h,(r) = —b,(0, 7).

So the task of approximating h,(¢) reduces to approximating b, (7, ), where

bli, ) = E{ > (gl () — 0,) | 20 = }

t=0

for each state i. For brevity, we refer to b,(i,7) as b,(%).

Now the problem is converted into a stochastic shortest path problem, where the new
stage cost is g(x, put(z¢)) — 7, and the new termination state is the reference state. Below,
we apply the temporal-difference learning scheme for the stochastic shortest path problem
2] to our problem.

Consider a trajectory (i, 1,92, . . .,4x) and let m be an integer between 0 and N. We note
that this trajectory contains the subtrajectory (i, im+1,---,ixn). At the end of a simulation
run that generates the state trajectory (ig,1,%s,...,iy), for each m =0,1,..., N — 1, use
the formula

~

6u(im) = 6u(im) + Vi (9 (s Tmr1) — 77#) + o+ (glivo1,in) — 77#) - bu(im))v (11)

where 7, is the stepsize.
Define temporal differences (TD) [2]:

~

oy = ((imy ims1) — M) + byu(ims1) — bu(im), m=0,1,...,N. (12)

Then, following the state transition (i,,,%,+1), the cost update formula can be written
as follows:

u(i2) + Vo i, (13)

by (im) = by (im) + Vi dom

Note that we approximate realization factors instead of differential costs using TD learning.

Now let us review other SBPI algorithms under the stronger assumptions. Under the
recurrence assumption, Tsitsiklis and Van Roy [4] extend TD learning for the discounted



cost case to the average cost case. A linear function approximation of the following form is
used to represent the differential costs:

K
h(i,r) =Y r(k)¢u(i).
k=1
If a sequence of states (ig, 1,42, .-,%m,--.,) via simulation is observed, the average cost
estimate is updated according to
Nnt1 = (1 — @m)m + @mG(im; tmi1), (14)

where «,, is a sequence of scalar step sizes. Note that the average cost is estimated iteratively
here. Concurrently, the parameter for the differential cost evolves according to a more
complex iteration:

Tm+1 = Tm T ’Ymdm Z )\mik¢(ik)a (15)

k=0
where the temporal difference d,,, corresponding to the transition from 4,, to 4,,.1 by

A, = (g(ima Z'm—f—l) - 77m) + h(im—i—lu rm) - h(ima rm)' (16)

Further, convergence is established for the case where approximations are generated by linear
combinations of basis functions over a finite state space. If an average cost problem is proved
to be recurrent, this TD learning method is a good choice.

In [3], Cao presented two single-path algorithms, in which the differential costs or real-
ization factors are calculated as accumulated costs of a sample path divided by the visiting
time. There is no learning involved.

In the above algorithms mentioned, the policy improvement step follows that of exact
policy iteration, i.e., using min/max computation. The necessary assumption for that is that
the probabilities of the system are readily available in explicit form, which is not the case
in many circumstance. Besides, in the above algorithms, each policy improvement step will
not be implemented until the corresponding evaluated cost function converges. This implies
the algorithms would be slow if it is desired to guarantee the accuracy of evaluated cost
function. A proposed algorithm, called optimistic policy iteration [2], in which the policy
improvement step is implemented before the convergence of the evaluated cost function, has
been successful in some experimental tests but has no theoretical support.

Recently, Konda and Borkar [5] proposed several actor-critic type simulation-based policy
iteration algorithms and tried to solve the afore-mentioned difficulties. The original idea of
actor-critic emerged from the machine learning community. In actor-critic methods there
is a separate memory structure which is independent of the value function that explicitly
represents the policy. The policy structure is known as the actor or action network, since
it is used to select actions, and the estimated value function is known as the critic or critic
network, because it criticizes the actions made by the actor [10].

In [5], the need to have the policy evaluation recursion converge before implementing
policy improvement is circumvented by two-time scale stochastic approximation. The outer



loop operates on a slower scale and thus see the inner loop as essentially equilibrated, while
the inner loop sees the outer one as quasi-static.
For average cost problem, one version has the following form:

WEFL(i) = (1 =y (R))RE(i) + v(R) 9, u())+h’“(§’“(w())) Ul (17)
(i) = P(7*(0) + ali, k) 6(*(0), h*(-), 9(i,-)) ).
(

We conjecture that the expression for h*1(i) originates from an incremental version of
(4) which is:

WD) o= (1= y(R)RE(0) + (k)9 (i, 1" () + nE_: pi (1" (2))h* (5) = n] (18)

Note that one difference is that the summation involving p;;(u*(i)) is replaced by a
simulated transition according to that probability.

In the expression for 7**1(7), 7**1(i) is a stationary randomized policy updated with
d(+) (critic) which contains information of the differential cost and randomized policy for the
previous stage. P is a projection to guarantee 7771(i) to be a randomized policy too.

The advantages of these actor-critic algorithms are: 1) Just as we mentioned, it is not
necessary to know system probabilities. 2) These algorithms are more efficient since policy
improvement need not wait for the policy evaluation step to converge. 3) convergence is
guaranteed.

One disadvantage of these algorithms is that randomized policies are used, but one usually
desires to implement nonrandomized policies.

4 Simulation-Based Value Iteration

If there is no explicit model of the system and the cost structure, Q-learning, another version
of simulation-based value iteration, proves to be an effective method. It updates directly
estimates of the Q-factors associated with an optimal policy, thereby avoiding the multiple
policy evaluation steps of the policy iteration. Using Q-factor, the optimality equation is

N+ Q6 u) = g(i,u) + XjZg pij(u) ming Q(j, /), i=0,...,n—1. (19)

The first simulation-based value iteration algorithm for average cost problems was R-
learning proposed by Schwartz [11], which is similar to Q-learning. In this algorithm, R-
factor, values of state-action pairs like Q-factor and average cost are updated concurrently
using the immediate reward along with an adjustment factor. The idea is to obtain a good
estimate for the average cost while searching for the optimal policy using a value-iteration
type update. There is no convergence analysis for this algorithm.

Singh [12] presented two Q-learning methods for average cost problems: one is based on
R-learning by Schwartz; the other updates the estimate of the average cost in a fashion similar



to Jalali and Ferguson’s deterministic asynchronous algorithm for average cost problem [7].
There are experimental results but no convergence analysis.
In fact, the update formula is the same for all of the three algorithms:

Q" (i, u) = (1= v(R)Q" (4, u) + (k) (g (i, u, 7) + min Q*(j,u) — ). (20)

Note that this formula comes from the incremental version of the optimal equation using
Q-factor (19) with the item having probability replaced by simulation transition.

The difference lies in how to estimate the average cost: in R-learning, the average cost is
updated only when the greedy action is executed, and in Singh'’s first algorithm the average
cost is updated with every action. Singh argued that his algorithm is more efficient since
R-learning seems to waste information whenever a non-greedy action is taken, which is quite
often, especially in the beginning when the agent is exploring heavily [12]. In Singh’s second
algorithm, the average cost is estimated as the sample average of the costs received for
greedy actions. Note that there are few attention on the assumption, different criteria, and
convergence in these algorithms.

Based on above algorithms, Mahadevan [13] gave a nice summary of average cost problems
and pointed out the need to consider the average cost criterion, especially the difference
between gain-optimal and bias-optimal policies. He also gave many experimental results and
suggested directions for future research.

Later, a simulation-based value iteration algorithm based on relative value iteration is
given under the unichain plus common recurrent state assumption [2]:

Q" (i u) = (1 — (k) Q" (i, u) + (k) (9(i,u, j) + min Q°(j,u') — min Q(s,u)). (21)
u'eU(j) u'eU(s)
However, there is no convergence analysis either.

Recently, Abounadi, Bertsekas and Borkar [7] proposed and gave for the first time a
complete convergence analysis of two Q-learning algorithms for average cost problem. The
first one is based on the relative value iteration and its synchronous version has the form:

Q™ (i, u) = (1 = (k)Q (i, u) + v(k)(9(i, u, &,) +min Q (&, u') — £(QY) (22)

The differences between the above two formulas, both of which are based on relative
value iteration, are that “;” in (21) is replaced by “€%” in (22) to emphasize the idea of
replacing the conditional average with respect to the transition probabilities p(i,u, ) by an
actual evaluation at a random variable &;,, with law p(i, u, ) and then “see” the conditional
average by means of the averaging effect of the stochastic approximation algorithm and that
min, cy(s) Q%(s,u') is replaced by a more general function f. In addition, there exists an
asynchronous version.

The second algorithm is based on the SSP value iteration and has the form:

Q (i u) = (1 —~(k)Q" (4, u) +v(k)(g(i, u, &)
+ming Q" (&, w)I{E], # s} —n"), (23)
nktl = n* + a(k) min, Q*(s,u’).



In [7] some important directions are also pointed out: 1) The algorithms need to be
interlaced with some approximation architectures and analyzed, since the state space can be
very large. 2) An analysis of rate of convergence and good speed-up procedures is needed.
3) Extension to the case where the state space is not finite is an open issue.

5 Discussion

So far, we described some simulation-based algorithms for average cost MDP problems. But
what next?

There are many simulation-based algorithms for discounted cost problems or SSP prob-
lems, so one idea is to use these algorithms to solve average cost problems directly. The
difficulty is when to use it. Under the recurrence assumption, Tsitsiklis and Van Roy [14]
provide an analytical comparison between discounted and average cost TD learning with
linearly parameterized approximations. It is shown that as the discounted factor approaches
1, the value function produced by discounted TD approaches the differential cost generated
by average cost TD. This connection suggests that it is possible to use simulation-based
policy iteration for discounted cost problems under the recurrence assumption. Besides, SSP
value iteration under unichain and common recurrent state assumption suggests that some
simulation-based value iteration algorithms for SSP problems may be used for average cost
problems.

However, average cost problems have their own characteristics, so not all the algorithms
can be extended. Now there is still little research on simulation-based algorithms for unichain
(without common recurrent state) or multichain average cost problems (except [8]). And
most simulation-based algorithms can only attain gain-optimality, not bias-optimality.

Another important direction is the implementation of the algorithms on more applica-
tions.
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