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Chapter 1: Introduction 

1.1 Motivation 

The motivation for this thesis is to document the construction methods required for 

the manufacture of an all-composite aircraft.  The goal is to create a recipe-like 

manuscript that not only develops the systematic procedures, but also passes 

invaluable experience to the reader.   

 

The methods used for composite manufacturing promise substantial results, yet, 

heavily rely on one’s ability to both carefully and patiently follow the described 

instructions.  To increase first-time success rate, the author is particularly motivated 

towards sharing both good and bad experiences in the Advice Section of each 

Chapter.  The beginner will benefit from this document by understanding and 

following the step-by-step construction.  Meanwhile, advanced builders can use this 

document as a point of reference to refresh or refine their own composite construction 

background.  

1.2 Introduction to Composite Material and Construction 

1.2.1 Definition of Composite Materials  

A composite material is made up of two constituents:  the reinforcement and a binder 

called the matrix.  The reinforcement and the matrix, when combined, work in 

concert to offer mechanical properties far superior than the components by 

themselves.  The matrix has two roles in the composite material: 1) transfer loads to 

the structure, i.e. reinforcement and 2) shield the reinforcement from external and 

environmental hazards.   

 

The reinforcement is the structural component of the composite often responsible for 

its anisotropic property.  This means that a composite material is purposely designed 

to transmit loads along a preferred fiber direction.  As a result, while properties along 

the fiber are superior, load-carrying ability in the transverse direction is minimal.  

Therefore, a composite structure can be specifically designed to carry loads in a 

particular or multidirectional path(s).  Furthermore, a composite laminate may 

employ different materials for each layer; glass fiber – e-glass, s-glass, c-glass; 

carbon fiber – graphite and organic fiber – aramid.  

 

Composites contain materials that are not only chemically different, but also 

generally mechanically separable.  This additional definition further narrows the 

types of materials that qualify to be a composite.  The composite materials discussed 

and used in this project fall under the polymer matrix and fiber reinforcement class of 

composites.  One other term can be applied to composites as defined above.  Since a 
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composite, made of fiber and matrix, is made up of two or more materials, it is 

considered inhomogeneous.  The material properties like density and internal 

structure are varied from point to point within a given sample.     

1.2.2 Why Composite Construction  

Since the first modern application of composites, a glass-reinforced fishing pole 

constructed in 1945, this new class of materials have revolutionized the way products 

are made.  Although well established and backed by hundreds of years of usage, 

metals have been slowly replaced by composites in several industries.  Advancements 

in technology have pushed the physical limits and requirements for materials. Metals 

are in no way being extinct from modern manufacturing methods, but rather sharing 

the workspace with composites that have unique characteristics. 

 

Although the Aerospace Industry has used aluminum and titanium alloys that 

outperform steel, requirements like corrosion and fatigue resistance or high specific 

tensile stiffness have created a niche for composite materials.  Early uses for 

composite were restricted to nonstructural applications since material properties were 

not completely known and were still under testing.  As the decades progressed, the 

advents of new reinforcement fibers and construction techniques have inspired new 

applications for composites.  These applications have combined both aesthetics 

appeal and structural properties into one package. 

 

Typical overall advantages to composite materials are: 

� High strength to weight ratio 

� High stiffness to weight ratio 

� Low density 

� Environmental resistance 

� Design versatility 

� Chemical resistance  

� Quick part turnaround 

1.2.3 Manufacturing Techniques Overview 

Manufacturing techniques for composite construction vary greatly and rely mainly on 

one key trade-off, target mechanical properties versus manufacturing costs.  This 

trade-off profoundly influences the selection and application of one manufacturing 

method over another.  Desired levels of output in production also drive the decision-

making process to favor one method over another.  Methods that offer quick 

turnaround at low costs often fall short in long-term applications, part quality and/or 

labor efficiency.  On the other hand, methods of manufacturing with a higher start-up 

cost and/or skill requirement tend to be more advantageous for long-term high-quality 

high-output applications. 

 

 Typical manufacturing methods include manual wet lay-up, manual prepreg lay-up 

(with autoclaving), vacuum bagging, filament winding, pultrusion, vacuum assisted 

resin transfer molding (VARTM), resin transfer molding (RTM) with matched molds, 
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resin film infusion (RFI) and more.  The manufacturing techniques utilized in this 

project are wet lay-up, vacuum bagging, and VARTM. 

1.3 Aircraft Construction Flowcharts and Gantt Chart 

Each chapter develops a major construction phase of the build (Flowchart 1.1).  The 

contents of each chapter are organized into Flowcharts 1.2 to 1.5.  A suggested 

vehicle construction timeline, during winter months, is illustrated in Gantt Chart 1.1. 

 
Flowchart 1.1. Overall Vehicle Construction Flowchart – collapsed. 
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Flowchart 1.2. Chapters 2, 3 & 4 – expanded. 
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Flowchart 1.3. Chapters 5 & 6 – expanded. 
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Flowchart 1.4. Chapter 7 Part I (Low-Level Assembly) – expanded. 
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Flowchart 1.5. Chapter 7 Part II (High-Level Assembly) – expanded. 



 8 

 

 
Gantt Chart 1.1 Suggested Vehicle Construction Timeline – wintertime construction. 
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1.4 Content of This Thesis 

This thesis concentrates on developing the expertise necessary for fabrication, 

manufacture, assembly and integration of an all-composite aircraft.  The sequentially 

ordered chapters represent the different stages of construction.  

 

Chapter 2 introduces the CAD drawings generated during the design phase of this 

aircraft.  From the overall design of the aircraft, the design of the plugs is realized. 

 

Chapter 3 takes the CAD drawings of the plugs and turns them into real objects.  The 

plugs are milled then prepped for mold making. 

 

Chapter 4 develops the steps necessary to create molds from the plugs.  The high 

quality molds are used to create the various composite parts of the aircraft. 

 

Chapter 5 contains a systematic procedure for manufacturing aircraft parts using 

Vacuum Assisted Resin Transfer Molding.  The high quality parts are the result of a 

vastly efficient molding technique that benefits from the vacuum infusion process. 

 

Chapter 6 introduces the wet lay-up method of construction for wing making.  The 

wings and horizontal stabilizer of the aircraft have a foam core wrapped in a single 

ply of carbon reinforcement. 

 

Chapter 7 encompasses the entire assembly and integration phases of the build.  The 

parts manufactured in previous chapters are joined piece by piece to create a fully 

integrated product.  The first half of the chapter details the low-level assembly of 

parts.  The second half of the chapter finalizes the assembly and vehicle integration. 

 

Chapter 8 presents the completed aircraft.   
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Chapter 2: CAD Drawing 

2.1 Overall Aircraft Drawings 

2.1.1 Mission and Design Competition Parameters 

The mission profile and aircraft requirements, in accordance with the ONR/AIAA 

Design/Build/Fly Competition Rules, defined the design criteria for successful 

entries.  The vehicle discussed in this report was built to satisfy two of the three 

missions listed in the competition rules.  The payload configuration and storage inside 

the aircraft is shown in Figure 2.8.  Each mission involved flying the pattern shown in 

Figure 2.1.   

 

 
Figure 2.1. Competition Flight Pattern. 

 

The first mission required 96 tennis balls to be flown for at least two minutes.  The 96 

balls could be flown at once or in multiple sorties.  This aircraft was designed to carry 

48 tennis balls in its cargo compartment, thus, required to fly two separate flights of 

two minutes each to score points successfully. 

 

The second mission required three flights with three different payloads.  Each 

payload was flown once around the course without an airborne flight duration 

requirement.  The payload was flown once then changed, after landing, by the ground 

crew.  The payloads were 48 tennisballs, two 2-Liter Soda bottles filled with water 

and, lastly, a wood block whose dimensions were specified in the competition rules. 

 

The overall rules required all entries to have a propulsion system that used either a 

brushless or a brushed motor with a NiCad or NiMh battery pack weighing no more 

than three pounds. 
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2.1.2 Aircraft Dimensions, Specs and CAD Drawings 

The vehicle parameters and dimensions are given in Table 2.1 and Figure 2.2, 

respectively.  The airfoils used for the wing and horizontal stabilizer are 

NACA633618 and NACA0012, respectively.  Figures 2.3 to 2.8 contain detailed 

CAD drawings of the aircraft.  

 

Outboard Wing Section 

Outboard Span 46 in 

Section Reference Area 455.4 in
2
 

Section Mean Aerodynamic Chord 9.9 in 

Root Chord 12 in 

Tip Chord 7.8 in 

Taper Ratio 0.65 

Entire Wing  

Wing Span 113.75 in 

Wing Reference Area 1171 in
2
 

Wing Mean Aerodynamic Chord 10.3 in 

Aspect Ratio 11.05 

Empennage 

Horizontal Tail Area 196 in
2
 

Vertical Tail Area 144 in
2
 

Horizontal Tail Volume 5.11 ft
2
 

Vertical Tail Volume 3.57 ft
2
 

Performance Parameters 

CLmax 1.3 

L/Dmax 22.17 

90 ft (max weight) 
Takeoff Distance 

50 ft (empty weight) 

42 ft/s (max weight) 
Stall Speed 

32 ft/s (empty weight) 

Aircraft Empty Weight 13 lbs 

Electronic Systems 

Motor & Gear Ratio NeuMotor 1515/2Y/6.7/F, 6.7:1 

Speed Controller 77 Amp Jeti Opto 

Propeller APC 24 x 12 

Battery Pack 21 Cells, CPB3300SC 

Receiver Futaba FP-R148DP 

Aileron Servos Hitec HS-85MG+ Mighty Micro 

Rudder Servos Hitec HS-225MG+ Mighty Mini 

Elevator Servos Hitec HS-645MG Ultra Torque 

Table 2.1. Vehicle Parameters and Specifications. 
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Figure 2.2. Aircraft Dimensions. 
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Figure 2.3. Detailed CAD Drawing – fuselage structure. 
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Figure 2.4. Detailed CAD Drawing – wing center-section assembly and mounting. 
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Figure 2.5. Detailed CAD Drawing – wing outboard-section assembly. 



 16 

 

 
Figure 2.6. Detailed CAD Drawing – boom and rudder assembly. 



 17 

 

 
Figure 2.7. Detailed CAD Drawing – elevator assembly and mounting. 
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Figure 2.8. Detailed CAD Drawing – payload configurations. 
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2.2 Plug (Male Mold) CAD Drawings 

2.2.1 Sectioning the Aircraft  

There are many patterns available for sectioning the aircraft.  The available options 

directly reflect the complexity of the surface curvature and overall design of the 

aircraft.  The easiest partitioning scheme for a closed shape is to split it into two 

halves.  Most often, a two-section split results in what is intuitively called left/right or 

top/bottom halves.   

 

The design criteria of sectioning a plug in two halves imposes restrictions on the 

complexity of the plug in question.  This is because there is an overall construction 

limitation in molded composite manufacturing.  A plug whose shape does not allow 

de-molding is not suitably partitioned.  In another words, the restriction says that the 

plug and mold must be able to separate from each other.  If the desired plug shape is 

highly complex, the plug may have to be sectioned into various pieces that are 

guaranteed to de-mold.  This subject is developed in detail in the Chapter 3.1.3. 

 

The booms and fuselage for this construction were designed for a left/right plug-

partitioning scheme.  Therefore, no other plug-partitioning scheme sectioned the 

plugs as efficiently as the vertical cut along the center of the fuselage and boom.     

2.2.2 Plug CAD Drawing 

The aircraft was sectioned into parts that would make up the various plugs.  To 

simplify construction, the aircraft was purposely designed so the fuselage and boom 

molds consisted of only left and right sections.  The drawings were modified 

accordingly to generate the CAD representation suitable for plug milling.  The CAD 

drawings of the left-hand plugs sent out for CNC milling are found in Figures 2.9 and 

2.10.  The right halves of the plugs are mirror images of the ones displayed below.  

Two very important features in plug design are the flange and the offset.  Design 

considerations and CNC milling for the plugs are discussed in detail in the next 

chapter.    
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Figure 2.9. Fuselage Plug – left half: front, isometric & side views. 

 

 
Figure 2.10. Boom Plug – left half: front, isometric & side views. 
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Chapter 3: Plug Making 
 

3.1 CNC Machining and Plug Design 

3.1.1 CNC Process 

To create the plugs for the aircraft, Computer Numerical Control (CNC) Milling was 

extensively utilized.  This particular project used a milling machine that had 3 degrees 

of freedom: X, Y and Z axis translation.  More sophisticated CNC milling machines 

may have 5 degrees of freedom where the cutting tool is manipulated in not only 

translation but also angular direction.   

 

The CAD drawings discussed in the previous chapter were saved as Initial Graphics 

Exchange Specification (IGES) files that the CNC milling machine recognizes.  The 

machine shop took the CAD drawings in IGES format and ran a Computer Aided 

Machining Software (CAM) that calculated the path of the cutting bit.  During this 

process, the machinist was able to further diagnose the integrity of the drawings and 

estimate the cutting time/cost. 

3.1.2 CNC Limitations 

It was important to correspond with the machine shop and establish the dimensional 

limitations of the milling machine in two regards: maximum XYZ cut travel lengths 

and cutting table size/interior enclosure.  The size of the table can be a limitation 

because most jobs require clamping the blank block of material.  The clamps 

themselves reduce the actual cutting space of the table (Figure 3.1). 

 

 
Figure 3.1. Sample Picture of CNC Milling – rough cut. 
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Since the mill uses rotary bits, a radius is unavoidable when milling inside corners 

(Figure 3.2 B & F).  If a specific radius of an inside cut is required, the mill will have 

to past over the same area several times with an incrementally smaller radius bit.  

Thus, increasing both machining time and cost.  A sharp internal cut corner is very 

difficult to achieve unless an end mill can be used for the desired cut (Figure 3.2 B).   

 

Considerations for CNC machining are evident in Figure 3.2 and are described in the 

following two cases: 

1) Examples A, D, E & F require CNC milling machines with capabilities 

beyond XYZ Degrees of Freedom. 

2) Examples B & C require CNC milling machines with XYZ degrees of 

freedom only.    

  

 
Figure 3.2. CNC Milling and Plug Design Limitations – cutaway front view. 

 

3.1.3 Plug Limitations and Design 

As discussed earlier, the plug CAD drawings must contain curves that the CNC 

machine can handle depending on the degrees of freedom of the machine.  Angled 

depth/insert cuts must be avoided if the CNC milling machine has only translational 

degrees of freedom.  However, even if a five DOF CNC milling machine is available, 

complex or deep depth cuts should still be avoided because the female mold that will 

be extracted from the plug must have a straight separation path to de-mold.  Deep cuts 

into the plug, although straight, can pose difficulties during separation of the mold 

from the plug.  The arrows in Figure 3.2 show the direction that the mold must be 

pulled to be detached from the plug.  Also in Figure 3.2, the mold is drawn in blue 

and the plug is drawn in orange. 

 

Limits on plug design are exemplified in Figure 3.2 and are described in the 

following cases: 

 

A) A plug may require that the mold be “pulled” at an angle.  Although this is 

possible in theory, in practice this can be much more difficult.  The user 

must understand how to de-mold the part correctly as to avoid damage and 
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unnecessary wear on the mold.  A warning sign accompanies this case to 

indicate that this is possible, yet, requires careful consideration. 

B) A well-designed plug should have an intuitive de-molding process.  This 

mold can be separated straight up without being caught in any other 

feature of the plug.  As mentioned earlier, the insert cut should be 

discussed with the machinist.  It is recommended to have a shallow cut 

depth so the mold can release easily and the part to be generated from the 

mold can tolerate the complex curvature and right angle.  (This is seen in 

the boom molds where the airfoil cutout is located.  This complex inside 

cut causes bridging, a phenomenon described in Chapter 5). This case 

receives a check mark. 

C) This example does not violate the de-molding process.  This case receives 

a check mark. 

D) Two features on the plug render this case unfeasible.  Firstly, given the 

overall shape of the plug, the blister, given its location, on the side makes 

de-molding impossible.  However, there are cases where features similar 

to the blister can be used.  Secondly, the contour of the circular shape 

“tucks in” at the base.  The mold will not separate due to this undesired 

contour.  In this case, the contour is exaggerated for demonstration 

purposes.  In reality, minimal invasion (in the order of 1/64
th

 of an inch) of 

the contour at the base/flange will create de-molding inconvenience or 

failure. 

E) This case fails by inspection.  No part can ever be obtained from this plug.  

This plug requires a different partitioning scheme all together to work. 

F) The angled cut imposes a de-molding direction parallel to it.  However, 

the overall shape of the mold requires an upward de-molding direction.  

This case fails because the mold must be pulled in two directions at the 

same time (which is not possible).             

3.1.4 The Flange 

The flange is the flat area around the curved surface of either the plug or the mold.  

The flange of the plug was transferred to the mold during wet lay up and played an 

important role in the manufacturing of parts.   

 

It may appear attractive to minimize the flange so there is less material used in the 

plugs.  The material and CNC milling costs are significant, but product quality and 

ease of manufacturing depend on how much flange is available to work with.  For 

reasons discussed in Chapter 5, a good mold should have wide flanges.  A good rule 

of thumb is to allow no less than 5 inches of flange around the entire perimeter of the 

contour curve.   

 

In Figure 3.3, the flange of both the plug and the mold is represented in red, the mold 

contour or mold cavity in blue, and the plug offset in dashed orange and red. 
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Figure 3.3. Plug Flange and Offset. 

3.1.5 The Offset 

As observed in Chapter 2.2.2, the complex curves of the plugs have an offset from the 

surface plane of the flange.  In another words, the contoured surface was raised a 

certain amount above the flange.  Thusly, the mold extracted from the plug was 

deeper by the offset amount, as observed in Figure 3.3.  The offset was there because 

of three choices made during plug design:  

 

1) Creating an offset allowed the machine shop to mill a radius on the corner 

edge of the perimeter of the contour.  Having a radius along the perimeter 

of the cavity provided some relief on the fiberglass/carbon cloth during 

dry lay-up of the cloth, and facilitated vacuum bagging/resin transfer.  The 

details of Resin Transfer Molding are discussed in Chapter 5.      

2) The offset was necessary based on the method chosen for cutting the 

flange from the part extracted from the mold.  This is discussed in Chapter 

7.2.2. 

3) To save weight, a manufacturing strategy was chosen that allowed the 

parts to be of highest quality and finish; thusly, not requiring painting and 

retaining the original carbon composite “look”.  As a result, the joining 

line of two parts would not be hidden by putty and paint.  The offset 

allowed the flange to be trimmed in a systematic and repeatable fashion.  

Trimming and Joining are developed in Chapter 7.   
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3.2 Milling the Plug 

3.2.1 The Foam Block 

Multiple sheets of high-density foam were used as the core material for the plugs. 

Other materials, like aluminum, could have been used for the plugs.  Important 

factors considered for choosing foam over metal for the plug are discussed in Table 

3.1. 

 

 Foam Metal/Aluminum 

Material Cost Reasonable Expensive 

Machining Cost Reasonable Very Expensive 

Weight Reasonable Heavy 

Durability Fair Very Good 

Reparability Good Moderate 

Reshape/Sanding Possible Very Difficult 

De-molding Cycles 1 - maybe 2 Multiple 

Table 3.1. Material Trade-off for Plug Core. 

 

The material cost, machining cost and weight of aluminum were the main reasons for 

choosing the foam.  However, it was noted that one important factor made aluminum 

very desirable despite the higher costs.  An aluminum plug would be much more 

resistant to the wear and tear due to cycling the plugs.  In another words, if multiple 

sets of molds had been desired, then aluminum molds would have been the safest 

choice.  Since this project only called for one set of molds, the high-density foam core 

remained the more justified choice. 

3.3 Plug Preparation and Coating 

3.3.1 Sanding 

Sanding was required in mostly all preparatory phases of manufacturing.  The use of 

the power sander made the job quicker.  However, the power sander quickly sanded 

away too much of the foam.  Therefore, as a cautionary measure, power sanding was 

done ONLY on the flange areas.  The contoured areas of the plugs were sanded solely 

by hand with 600grit or finer sand paper (Figures 3.4 & 3.5).  The sanding of the bare 

foam plugs was dry unlike wet sanding utilized later on. 

 

The bare foam was porous and easily damaged.  It was important to keep any sharp or 

heavy objects clear from the vicinity of the plugs.  Objects like pencils, pens, 

wristwatch, keys, screwdrivers and even cell phones could ding or stab the foam plug.  

This kind of senseless damage created more work.  Any unwanted features due to 

damage had to be puttied and re-sanded.  Higher density foam would have been more 
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resistant to surface rashes due to accidents.  However, the use of higher density foam 

tooling boards would increase the project costs.  

 

 
Figure 3.4. Sanding the Boom Molds. 

 

 
Figure 3.5. Sanding the Fuselage Molds. 
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Note:  The flange of both the fuselage and the boom plugs were insufficient, a lesson 

learned the hard way, as discussed in the Advice Section of this Chapter and Chapter 

5.  Also, note the lines on the foam plugs.  These lines are also discussed in the 

Advice Section of this Chapter.  

3.3.2 Primer Coating 

The primer coating provided a surface seal for the plug.  The primer was sprayed on 

the plug and hardened to a semi-glossy finish (Figure 3.6).  The spraying of the 

primer coating required patience and skill with the spray gun.  A careful spray job 

required hardly any sanding once the primer dried.  Conversely, any accumulation or 

sags in the primer created the necessity for wet sanding.  From this point forward in 

the construction, wet sanding was used with either water or liquid polishing wax.   

 

 
Figure 3.6. Primer Coated Plugs. 

 

The sanding process was repeated several times, but with recursively finer grit.  In 

most cases, wet sanding paper between 1000 and 2000 Grit was used.  Two key 

“don’ts” were always kept in mind while wet sanding; do not sand down to bare foam 

and renew the water on the both plug and sand paper often.  Sanding the primer coat 
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off completely created the necessity for patchwork.  The purpose for changing the 

water often was to remove the sanded primer dust mixed with the water from the 

surface of the plug.  The entire reason for sanding with finer grit was to remove the 

sanding scratches made from the previous grit.  Not changing the contaminated water 

negated the purpose of using the finer grit, to reduce the “scratched surface look”.  

3.3.3 Polishing 

Since some areas of the primer coated plug were sanded, the scratches made by the 

sand paper had to be eliminated as much as possible.  The polishing process was 

divided into 3 stages: 1) Fine Grit Sanding, 2) Liquid Wax Buffing and 3) Hand Wax 

Coating.   

 

The fine-grit sanding step called for wet sanding with 3000 and 4000 Grit sanding 

pads.  This process used a pneumatic sanding gun and a “thin” liquid wax instead of 

water.    

 

The buffing step used a pneumatic polishing gun and a thick liquid carnauba wax to 

polish the plug.  Since this liquid wax dried after application, it was necessary to 

apply and buff the plug in stages.  Once the entire plug was buffed, the dried liquid 

wax was removed with a clean terry cloth.  In some cases, this step was repeated if 

the results were not achieved.  It was very important to keep clean both the buffing 

pads and the terry cloth.  Any dust or dirt on either the buffing pad or the terry cloth 

resulted in scratches being made on the surface.  

 

Lastly, a final coat of carnauba liquid wax was applied; however, this time a terry 

cloth was used instead of the pneumatic polishing gun.  An even coat of wax was 

spread by hand over the plug surface and allowed to dry.  This step removed some of 

the minutest scratches left from the buffing pad.  The resulting surface was mirror-

like and had little to no scratches. 

 

It is important to note that the sanding and buffing instructions in this chapter also 

apply for the molds as well.  Once the molds were made from the plugs, the same 

sanding procedure described above was utilized as necessary depending on how the 

molds looked.  The superior quality of the surface of the plug transferred to the mold 

being cast from the plug.   

3.4 Materials & Tools Summary 

3.4.1 Materials & Tools Used 

The materials used during the plug making process are listed in Table 3.2.  Basic 

supplies like latex gloves, stir sticks, tyvek suits, eye protection, mixing cups, water 

bucket, acetone bucket, etc. are not explicitly discussed.  The author assumes that the 

reader is aware of such necessities.  
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Materials Description 

General Materials Mixing cups, stir sticks, latex gloves, eye protection, masks, etc 

Packing Tape Tape used for masking areas 

Contact Adhesive Spray adhesive used to bond foam block to base plate 

Primer Polyester coating used for sealing and priming the plug surface 

MEKP Catalyst Hardener used for polyester based systems: gel coat and resin 

High Density Foam Closed cell high density tooling board foam 

Liquid Shine Gel coat clean and shine compound 

Machine Glaze Polishing Compound 

Liquid Wax Surface Wax in liquid form  

Table 3.2. Plug Materials Used. 

 

Several tools were necessary to prepare the plugs for casting the female molds.  The 

tools are listed in Table 3.3.  These tools along with others were repeatedly used in 

various phases of the construction as developed in later chapters.  Nevertheless, one 

tool not listed below that was of overwhelming importance was patience.   

 

Tools Description 

Sand Paper/Pad Abrasive sheet/pad used for adjusting surface quality and features  

Buffing Pads Polishing Pad used for removal of surface scratches due to sanding 

Digital Scale Instrument used for weighing polyester primer 

HVLP Spray Gun High Volume Low Pressure Siphon Gun used for spraying primer 

Pneumatic Sander Pneumatic Device used for efficient sanding of large areas 

Pneumatic Polisher Pneumatic Device used for efficient polishing of large areas 

Paint Booth Closed ventilated area reserved for spraying 

Compressed Air High pressure air line 

Table 3.3. Description of Tools. 

3.4.2 Tools Clean-up 

Aside the buffing pads, which were cleaned with warm water, all other tools were 

cleaned with acetone as necessary.  Any tool that had contact with polyester or/and 

MEKP hardener was thoroughly cleaned immediately with acetone.  The acetone was 

poured in the siphon of the spray gun and sprayed until the acetone sprayed clear.  

Often, the spray gun was taken apart and cleaned as well.  Clean up was done quickly 

since polyester materials mixed with hardener had a finite working time before 

setting.  Tools were squirted with acetone or dipped in an acetone bath before being 

wiped.  

3.5 Advice 

3.5.1 De-molding Criteria  

Sections 3.2 and 3.3 discuss several limitations and considerations for plug design 

and CNC milling.  The cases shown in Figure 3.2 are cutaway views and represent 
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specific body stations of a given plug along its span.  If a plug fails the de-molding 

criterion at any given body location along the plug then most likely the mold will not 

separate from the plug.   

 

The de-molding direction should be as intuitive as possible even if this means 

sectioning the body into more then 2 pieces.  It is desirable to have as few molds as 

possible; however, some shapes cannot be split into left and right halves unless 

designed/drawn that way.  Creating multiple plugs and molds for a complex shape is 

sometimes the best alternative.  After all, a mold and plug that does not separate from 

each other results in total loss.    

 

In summary, the main criterion for plug design is its ability to generate a mold that 

separates successfully and retains the desired features of the plug.  This sounds 

simple, but be mindful not to overlook it.  Furthermore, the parts for the aircraft will 

come from the molds.  In the end, the ease of manufacturing of parts directly tracks 

back to choices made or overlooked during the plug design.    

3.5.2 Plug Surface Quality Trade-off 

The process of preparing/polishing the plugs can be tedious and repetitive.  However, 

every effort at increasing the quality of the plugs results in a superior surface quality 

of the mold.  Often, the difference between fair and superior surface quality translates 

to two or three more passes with the pneumatic polisher and carnauba liquid wax.  If 

the scratches are not vanishing during polishing than most likely, the plug was not 

sanded with fine enough grit or there is dirt on the buffing pad. 

 

If the quality of the mold is poor, every part pulled from this particular mold will 

require attention.  This “attention” often results in hours of sanding.  Evidently, it is 

beneficial to spend the time creating plugs that provide superior quality to the molds 

and, consequently, to every part thereof.    

3.5.3 More Thoughts about the Plug Flange 

As mentioned earlier, taking measures to reduce material (high-density foam board) 

and machining costs was not advantageous.  In this project, due to a limited supply of 

foam, the plugs were machined with very small flanges.  Not only was the surface 

area of the flange small but also its thickness was insufficient (Figure 3.4 & 3.5).  The 

foam plug was mounted on a baseboard for support and additional flange area.   

 

Since the thickness of the flange was insufficient, the bare-foam flange was fragile.  

The surface tension created by the primer caused the thin flange to lift off from the 

base plate in both boom and fuselage plugs.  The contact cement used to glue the 

foam to the board was not strong enough to keep the plug flange from lifting off.  The 

first attempt at fixing the problem was to use Plexiglas rather than ply wood for the 

baseboard.  Although the contact spray glue worked better on Plexiglas, it still did not 

solve the problem (Figure 3.7).   
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To solve the problem, new molds with adequately sized flange would have had to be 

machined.  However, the problem was bypassed by laying down plenty of packing 

tape along the flange edges.  The resulting mold lost some aesthetics along the flange 

area and posed problems during de-molding.  The uneven flange and the step along 

the flange made de-molding the boom mold fairly trying. 

 

 
Figure 3.7. Boom Plug on Plexiglas Base Plate. 

   

 
Figure 3.8. Fuselage Plug with Plywood Flange Extension. 
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After having dealt with the booms and knowing that the fuselage plug flange had 

similar problems, a different approach was taken.  The fuselage plywood baseboard 

was left in place and additional plywood was added.  The additional layer of plywood 

added flange area in the same plane as the foam flange, thus, the fuselage plugs did 

not have the “step” that the boom plugs did (Figure 3.8).  The additional plywood 

layer was installed with its own frame for support.  Packing tape was used to seal the 

bare plywood and cover the gap along the foam/plywood edge (Figure 3.8).      

 

These problems took many days to solve and, to some extent, reduced the quality of 

the flange of the plugs/molds.  Despite a few surface imperfections in the flange, the 

molds extracted from the plugs still performed as expected.  Nevertheless, this ordeal 

highlighted the importance of not cutting cost and corners.   

3.5.4 Damage and Storage  

After many days working on the plugs, the most frustrating event is to damage or ruin 

it carelessly.  A sunless climate-controlled environment free of overhead objects that 

can fall on the plug is the ideal storage location.  Heavily trafficked areas are highly 

discouraged for use as storage.  Curious hands tend to damage and scratch the surface 

that took much labor to perfect.  Special care must be given to plugs that have not yet 

had molds extracted.  Lastly, the plugs must lie on a flat surface.  In time, the entire 

plug will warp under its own weight if not supported evenly on all corners.   

 

 
Figure 3.9. Surface Damage on Fuselage Plug. 

 

The damage shown in Figure 3.9 occurred after the molds were made.  Therefore, 

these scratches did not interfere with the progress of the project or the quality of the 

fuselage mold.  The scratches were a result of mishandling the plugs during transport 

to storage. 
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3.5.5 Thoughts on Project Management  

There are many materials necessary for the construction of the plugs, molds and parts.  

Running out of items like latex gloves, stir sticks or mixing cups can create delays in 

production.  Similarly, other items like polyester gel coat and resin can only be 

ground shipped since these are considered hazardous materials.  The shipping of these 

hazardous items alone can take two weeks.  Often times, it is best to order the 

hazardous supplies by themselves.  There is no need to have non-hazardous supplies 

take so long to arrive.   

 

It is very important keep track of supplies and inventory.  The longer plugs or molds 

sit due to a shortage in materials the more prone they are to sustaining careless 

damage.  This is because the plugs/molds/parts sit in the active work area where other 

unrelated activities may damage them. 

3.5.6 Machining Costs VS Manual Labor  

As observed in Figures 3.4 & 5, there are visible lines running the length of the milled 

foam.  The lines are created by the step-over rate used by the CNC machine shop.  

The CNC milling process was done in stages where several “rough” cuts were made 

followed by “finer” cuts.  It was possible to have the machine shop mill the plugs to 

perfection, but required more milling machine time.  To reduce machining cost, the 

foam plugs were machined to a point where a person could hand sand the small 

ridgelines.  Had the plugs been made of aluminum, there would be no choice other 

than to mill the metal to perfection.  Evidently, hand filing an aluminum plug, 

although not impossible, poses many problems and risks. 

 

Hand sanding the lines did reduce CNC milling costs, but took a few days to sand.  If 

the foam had been of higher density, it would have taken more time to hand sand.  In 

this case, the choice is clearly between available money and time.  Electing to hand 

sand the step-over lines is the only safe money saving alternative (when using foam).  

As discussed earlier, saving material and machining costs by reducing size of the 

blank foam block (minimizing flange area) is highly discouraged.   



 34 

 

Chapter 4: Mold Making 

4.1 Preparation 

4.1.1 Materials and Tools 

The materials used for mold making are listed in Table 4.1. 

 

Materials Description 

General Materials Mixing cups, stir sticks, latex gloves, eye protection, masks, etc 

Strand Mat Random directional chopped strand mat 

Gel coat Glossy polyester mold surface coating 

Gel coat Additive Gel coat thinner and enhancer 

Resin Polyester resin used for reinforcement of matting 

MEKP Catalyst Hardener used for polyester based primers, gel coats and resins 

Release Polyvinyl Alcohol (PVA) release film  

Liquid Shine Gel coat clean and shine compound 

Machine Glaze Polishing compound 

Liquid Wax Surface Wax in liquid form  

Wood 2” by 4” 

Table 4.1. Mold Making Materials. 

 

The tools used for mold making are listed in Table 4.2. 

 

Tools Description 

Cutting Instruments Shears and/or sharp bladed tools for cutting cloth 

Buffing Pads Polishing Pad used for removal of surface scratches due to sanding 

Digital Scale Instrument used for weighing polyester primer 

HVLP Spray Gun High Volume Low Pressure Siphon Spray Gun 

Dump Gun Cup gun used to spray polyester gel coat and resin  

Pneumatic Polisher Pneumatic Device used for efficient polishing of large areas 

Paint Booth Closed ventilated area reserved for spraying 

Compressed Air High pressure air line, adequate fitting, nozzle, etc. 

Table 4.2. Mold Making Tools. 

4.1.2 Labor and Task 

The mold making process was a coordinated group effort organized in two parts.  The 

first phase of this process required only three individuals.  For the second phase of the 

process, it was found that the ideal number of individuals was six.  Although it was 

possible to include more pairs of hands in either phase, management of too many 

people was cumbersome as the room became crowded.  Once proficient, it was 

possible to perform phase two tasks with just four individuals; however, this required 
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a highly experienced group, thorough preparation and, most importantly, knowledge 

of the various quantities to mix.  

 

The subdivisions of tasks for Phases I and II are listed in Tables 4.3 and 4.4, 

respectively.    

 

Labor Task Description 

Sprayer Sprays gel coat and issues commands to other members 

Mixer Mixes pre-measured gel coat batch and supplies sprayer as queued 

Observer Aids spray effort, prevents mishaps and points out bare areas 

Table 4.3. Gel Coating (Phase I) Labor Distribution. 

 

Labor Task Description 

Sprayer Sprays resin, issues commands 

Rollers (2) Places mat and rolls reinforcement mat 

Cutter Cuts strand mat 

Mixer Mixes pre-measured gel coat and supplies sprayer as queued 

Observer Aids spray and mat placement efforts 

Table 4.4. Reinforcement Application (Phase II) Labor Distribution. 

 

The Advice Section of this Chapter contains further information on Labor and Tasks. 

4.1.3 Further Plug Preparation – Release 

Once the plug was polished and waxed as described in Chapter 3, the PVA release 

was applied to the plug.  The release was sprayed on with a high volume low-pressure 

siphon gun.  The release was applied with either repeated light coats or one “just 

right” coat.  In due course, different sprayers developed their own preferred 

methodology: one “thick”, two “medium” or three “light” coats.  The sprayed release 

was allowed a couple of hours to dry.  The result was a glossy film barrier that 

protected the plug from the, yet to be sprayed, gel coat.  The Advice Section of this 

Chapter contains several important thoughts on this matter. 

4.2 Making the Molds 

4.2.1 Mold Making – Breakdown and Comments 

The molds were made following the sequence described in Flowchart 4.1. 
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Flowchart 4.1. Mold Making – breakdown and comments. 

 

4.2.2 Phase I – Gel Coating 

Once the PVA release was sprayed and dried, the gel coat was applied evenly with 

the HVLP spray gun.  Although of same make and model, this HVLP was reserved 

for gel coating only.  An additive was mixed into the gel coat before canalization.  

The purpose of the additive was to: 1) thin the gel coat so the HVLP gun could spray 

it, and 2) enhanced the luster and surface quality of the gel coat once dried.   

4.2.3 Phase II – Reinforcement Application 

The random directional strand mat served as a support structure for the gel coat and, 

overall, the mold.  The first strand mat layer was of lighter weight than the following 

layers.  The ¾oz strand mat was desirable as the first layer because it was easier to 

roll out the trapped air bubbles.  The first layer of matting had to support the gel coat 

completely.  Any portion of the gel coat that was not in direct contact with the initial 
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layer could crack or collapse once the mold was placed under vacuum.  A defect of 

this kind could risk the molds ability to release from the part being made not to 

mention produce faulty parts.  This problem did not occur with this project.  

Additional layers of reinforcement used 1.5oz weight strand matting.      

 

The plugs were measured and sectioned into three even parts.  Sectioning the ply into 

three separate pieces allowed the rollers to concentrate their effort on a smaller 

region.  It was possible to blanket the mold with one continuous ply; however, this 

would pressure the rollers to eliminate/roll out trapped air in record time.  For this 

reason, as a cautionary measure, the spraying of resin and placement of matting was 

done piecewise.  The resin was sprayed with a dump gun capable of wetting the 

surface very quickly.  The dump gun used 90PSI; thus, delivered large quantities of 

resin in each continuous burst. 

 

 
Figure 4.1. Strand Mat Sheet placed on bare Gel Coat. 

 

In the case of the boom molds, the front section contained the wing mount cutout, the 

middle section contained the boom extension and the rear section contained the 

rudder.  The mat sheets were cut oversized so each sheet overlapped at least 1 inch.  

The overlapped mat sheets provided additional stiffness to the mold.  The mat sheets 

were placed in the following order: middle, tail and front.  This order was chosen 

based on difficulty.   

 

The middle portion of the boom was the easiest to cover while the front of the boom 

required many relief cuts and patches due to the complex curvature.  Once an entire 

layer of reinforcement was placed, the process was repeated four more times.  The 

first layer used the lighter weight matting while the subsequent three layers used the 

heavier matting as mentioned earlier.  Figure 4.1 shows the first strand mat sheet 
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being placed on the bare gel coat cover.  The technical drawing in Figure 4.2 shows 

the sequence that the layers were applied.  The green layer represents the PVA release 

and the red layer represents the tooling gel coat (Figures 4.2 & 4.3). 

 

 
Figure 4.2. Boom Reinforcement Build-up. 

 

In similar fashion, the fuselage mold reinforcement was placed in sections starting at 

the middle then the ends.  The fuselage mold was easier to work with since its 

curvature did not contain internal cutouts.  The technical drawing in Figure 4.3 shows 

the sequence that the layers were applied.  Since the fuselage flange was wide, 

additional layers were included.    
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Figure 4.3. Fuselage Reinforcement Build-up. 

 

 

The reinforcement side of the molds using this process are shown in Figures 4.4. and 

4.5.  It is possible notice the locations of the overlap in the random directional 

matting sheets. 

 

The Subsection entitled “More on Labor, Tasks and Process” provides a 

comprehensive flowchart highlighting the actions and instructions for Phases I and II 

of mold construction. 
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Figure 4.4. Finished Boom Mold – reverse side. 

 

 
Figure 4.5. Finished Fuselage Mold – reverse side. 

 

4.2.4 Cure Time  

Cure times are mentioned in Table 4.5 of this chapter.  However, the molds only 

reached a full cure after 24 hours.  In all cases, although the molds were dry to the 

touch within six hours, the resin had not yet reached the full cure time suggested by 

the manufacture.  To ensure complete cure, the molds were allowed a minimum of 

three days curing time.  The next chapter develops the techniques used for resin 

infusion and part manufacturing.  
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4.3 De-molding 

4.3.1 Releasing the Mold 

After waiting at least eight to ten hours, the mold was separated from the plug.  The 

primary tool used for de-molding was compressed air.  Initially, compressed air was 

burst between the mold and plug without forcing the two apart.  The air was injected 

along the flange of the mold all the way around.  By placing one hand on the mold, it 

was possible to feel the rushing air inside and judge how much of the mold was 

detached.  A good release cover allowed the mold to “pop” loose almost on its own.   

 

The boom molds were more difficult to release because of the features it contained.  

The airfoil cutout on the boom required patience and methodical air injection.  It was 

important to slowly lift the mold and plug apart straight up as the two detached.  Any 

asymmetrical lifting force on the mold caused the mold to jam and resist de-molding.  

Furthermore, the ridgeline created by the plug along the flange onto the mold posed 

problems.   The step on the perimeter of the flange made it difficult to focus the 

compressed air blast in any one desired place.  The problems surrounding the flange 

were discussed in detail in Chapter 3. 

 

The fuselage molds detached with significant ease.  The most important point to 

remember was to inject the compressed air evenly around the entire perimeter of the 

mold.  The fuselage “popped off” after repeated application of the compressed air. 

4.3.2 Clean-up and Storage 

The de-molding process was somewhat messy since the PVA release film flaked off 

into many pieces.  The PVA release flakes were either swept with a broom or wiped 

with a damp cloth.  The release is water soluble, so a mop was also used for cleaning 

the floor.  The mold was rinsed with a garden hose and dried with a clean cloth 

without scratching the interior mold surface.  The plug was wiped with a damp cloth 

and set aside for storage. 

 

As described in Chapter 3, the tool clean-up involved some variation of rinsing, 

wiping or bathing the tool into acetone.  The HVLP spray gun used for gel coating 

(Phase I) and the dump gun used with resin (Phase II) were both cleaned by spraying 

pure acetone.  The HVLP spray gun used with PVA release was rinsed with water.  

Water was also sprayed to clean the inside of the gun used in the PVA application.   
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Figure 4.6. Boom Mold – support 2” by 4” frame. 

 

In accordance with Chapter 3 storage instructions, the plugs were relocated shortly 

after the molds were released.  A wood frame was constructed for the molds (Figure 

4.6).  The frame was important because it provided a stable platform for the mold to 

rest on.  Furthermore, the frame prevented the mold from warping under its own 

weight over time.   

4.4 Advice 

4.4.1 More on Labor, Tasks and Process 

In both steps to mold making, the person doing the spraying is the group leader.  The 

coordinated effort of the group occurs around the progress of the person spraying.  It 

is not advisable to mix the catalyst to all portions of gel coat or resin at once.  Since it 

takes time to spray, the portions are mixed as the job progresses. 

 

For phase 1, all three of the group members should be able to maintain their hands 

clean at all times.  The first batch of gel coat is mixed and handed to the sprayer.  As 

the sprayer gets down to ¼ of gel coat in the spray-cup, the command is issued to the 

mixer to prepare the next batch.  Once the sprayer runs out, the mixer has a fresh 

batch on standby.  The observer serves as an aid to the spraying effort.  The observer 

constantly looks for bare spots or areas of concern.  Furthermore, the observer 

ensures that nothing touches or drags on the plug while the sprayer concentrates on 

spraying.  The Phase I detailed flowchart is provided in Flowchart 4.2.   
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Flowchart 4.2. Mold Making Gel Coating (Phase I) – detailed flowchart. 

 

The hose supplying pressure to the spray gun can easily drag on the plug if both 

sprayer and observer are not attentive.  Another common mishap occurs when 

clothes, especially the sprayers sleeve, touches the partially sprayed plug.   During 

Phase I, objects touching or dragging on the plug can create two problems: 1) the 

quality of the gel coat surface is compromised or 2) the PVA release film is detached 

or frayed.  If the release film is damaged, the mold may be permanently attached to 

the plug.   

 

Phase 2 of the mold making process requires more discipline.  The sprayer is still the 

group leader and has to manage three more helpers.  The sprayer should make every 

effort to keep both hands uncontaminated.  More cleanup is required if the sprayer is 

messy.  The observer performs the same duties as in phase 1, but with one additional 

duty.  While the sprayer is reloading, the observer aids the rollers by making relief 

cuts to the mat as requested by the roller.  The mixer performs the same task as 

described in Phase 1.  However, the mixer, in this phase, is working with polyester 

resin rather than polyester gel coat.   

 

The cutter is responsible for cutting the strand mat.  Several pieces of strand mat were 

pre-cut during setup.  However, patches and other pieces may need to be cut on the 

spot.  To minimize cleanup, the cutter works only with dry materials and tools and 

should not contaminate either hand with resin.  The rollers have two duties: placing 

the strand mat and rolling out bubbles.  It takes practice to learn how to perform this 

function without contaminating either hand.  The Phase II detailed flowchart is 

provided in Flowchart 4.3. 



 44 

 

 
Flowchart 4.3. Mold Making Reinforcement Application (Phase II) – detailed flowchart. 
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4.4.2 Prepare in Advance 

Preparing in advance is a key factor for the successful completion of any composite 

project.  Poor preparation may result in wasted materials, damaged tools, loss of parts 

and significant stress.  Every detail must be satisfied prior to mixing the catalyst with 

the resin.  The work may seem slow during preparation, but goes quickly once the 

resin working time is counting down.        

4.4.3 Thoughts on Mold Release 

The spraying of PVA release was found to be more difficult than anticipated.  In 

some cases, the plug had to be sprayed several times.  To achieve repeatedly 

successful applications the PVA release, some level of skill was required on the part 

of the person doing the spraying.  If a PVA spray job was bad, the plug was 

wiped/rinsed with water, dried and re-sprayed.  If the HVLP spray gun is atomizing 

the PVA while instantly generating “cobwebs”, the room temperature is below ideal.  

This can be important to note during the winter months. 

 

The PVA release is often considered cumbersome to use because it is destroyed with 

each cycle.  Thusly, a new release coat must be applied with each use.  However, the 

film forming PVA release does provide a water-soluble barrier between the mold and 

the plug.  This can provide some degree of fault tolerance as far as detaching two 

parts since there is a measurable gap, in this case, separating the plug from the mold. 

 

Wax/paste release products are available and commonly used in industry.  These 

waxes vary in chemical content and, when buffed, create a non-stick hard shell on the 

surface.  This kind of product can and will work; however, familiarity with the 

product and its application is mandatory.  A possible drawback to wax or paste based 

release systems is build up.  The wax can accumulate in places both filling in features 

and/or changing the surface contour.  A wax surface coat does require maintenance 

and will require re-application and buffing after 3 or 4 cycles.    

 

Agent release products are found in liquid form and, most often, wiped on with a 

clean cloth.  These release agents can be very effective, yet, tend to be quite costly.  

Commonly, the release agent will be highly flammable, have a potent odor and 

require plenty of ventilation during use.  Most often, the “what you pay is what you 

get” rule does apply to these products. 

 

In general, all external release products follow one rule: more is not always better.  

For example, spraying too much PVA results in sags and runs while too much wax 

results in accumulation/build up.  Agent release products also have an ideal method of 

application.  Too much release agent can cause crystallization on the surface of the 

mold.  The crystals negate the efforts made during sanding and polishing creating a 

rough surface.  Furthermore, the tiny crystals grab the intended counterpart and 

render it impossible to de-mold.  A heavy application of either PVA film or release 
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agent can suffer from uneven dry-out where the top surface is dry while the undercoat 

of the product is still liquid. 

 

Further general considerations for external release products are chemical 

compatibility, temperature range and permanence.  Some release products are only 

chemically compatible with a specific family of epoxies, gel coats and/or resin 

systems.  The temperature range is related to the required cure cycle.  Epoxy or resin 

systems that require autoclaving will also require high-temperature release 

compounds.  Lastly, most waxes and release agents are semi-permanent or permanent 

and may require a special “strip” agent to recondition the surface to original state.  

Otherwise, a permanent release agent can only be removed by sanding it away 

completely. 

  

In summary, the best way to become comfortable with a release system is to practice 

using it with a trial piece.  A good supplier will be willing to share experience and 

pointers about the various release agents.  A trustworthy vendor with good customer 

service can make the difference between success and frustration.  Lastly, any recently 

made plug or mold does have a break-in period.  Often times, it takes repeated release 

applications or overall cycles for a plug or mold to create the best parts, so, be patient.    

4.4.4 De-molding – Troubleshooting 

Using compressed air is the least evasive method of separating the mold from the 

plug or, as explained later, the mold from the part.  It was found that using multiple 

compressed air nozzles worked better than just one.  The rushing air entering from 

opposite locations in the plug generated a lifting cushion.  This was so effective that 

the use of two or more nozzles became standard practice. 

 

Some cases required more effort and called for the use of high-pressure water.  The 

PVA is water-soluble and gets flushed when rinsed.  This can create just the 

necessary room to “wiggle” the pieces loose from one another.  Some arm strength 

was also applied in these stubborn cases.  However, there is always some margin of 

risk when using brute force to separate two pieces.  Forceful intervention should only 

be used in desperate situations, in which case, a decision might have to be made 

wether to preserve the plug or the mold.   

4.4.5 Gel Coating – Troubleshooting   

As mentioned before, the gel coat must be applied evenly over the entire plug.  Prior 

to starting Phase I, it was evident that Phase II (Reinforcement Application) of the 

boom molds would be time consuming.  The airfoil cutout in the boom plug would 

require many relief cuts and custom patchwork as far as the placement of 

reinforcement matting.  Therefore, in an effort to facilitate the Phase II efforts, the 

airfoil cutout in the boom plug was filled more than halfway with gel coat.  At the 

time, this seemed to be an attractive proposition; however, it did more harm than 

good.   
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The gel coat has a shrinkage property sometimes specified by the manufacture.  In 

actuality, the amount of shrinkage may vary from job to job and most companies 

provide this and other information as reference parameters.  The shrinkage of the gel 

coat as it cures can vary due to storage conditions, age, catalyst to gel coat mixture 

ratio, room conditions and overall application/methodology employed by the user. 

 

 
Figure 4.7. Cracked Gel Coat due to Uneven Thickness. 

 

The catalyst initiates an exothermic reaction that releases quite a bit of heat and, 

thusly, hardening the resin.  Filling the airfoil cutout created a concentration of heat in 

that area of the plug.  The gel coat deformed/shrank while curing and caused cracks to 

occur on the surface (Figure 4.7).  This was catastrophic but, fortunately, did not 

damage the plug itself.  The gel coat was carefully peeled off.  The PVA release was 

washed off and re-sprayed.  The next time the gel coat was applied, the sprayer was 

mindful to apply a constant coating no thicker than ⅛
th

 of an inch.   

 

In making the best out of this situation, the solid gel coat with the shape of the airfoil 

was set aside and later used as a template.  The custom cut patches of strand mat used 

to reinforce the inside of the airfoil cutout was cut using the trace made from the solid 

gel coat airfoil.  This gel coat airfoil was also used as a cutting template in Chapter 5.      

4.4.6 PVA and Gel Coat Spraying Tips 

Both PVA and gel coat should be sprayed systematically.  The sprayer should 

maintain the spray nozzle both perpendicular to and 10 inches away from the surface.  

It is important to spray through the ends/edges of the part.  This means that the return 

pass should be initiated outside the piece being sprayed.  Notice Figure 4.1, the gel 
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coat was sprayed on the brown paper covering the table.  To ensure that the entire 

mold piece had a level gel coat, the operator sprayed beyond the edges/flange before 

coming back.  This was particularly important when spraying PVA release.  If the 

corners of the flange are starved of release this can make de-molding very difficult.  

During preparation, the worktable was covered with either newspaper or brown paper 

so spraying onto the table was not a problem. 

 

Although more forgiving than the PVA release, the spraying of gel coat does require 

attention.  Troubleshooting guidelines for gel coat application are listed in Table 4.5. 

Removing and re-applying the entire gel coat cover is the best solution to fixing 

cracks and/or tackiness problems on the surface.  Any doubts as to the quality of the 

applied gel coat cover needs to be addressed immediately.  Risking continuing on to 

Phase II can be a gamble too costly to take on.   

 

Problem Cause 

Low Gloss Incorrect catalyst ratio, under cure or poorly mixed gel coat 

Uneven Coat Thickness Excessive surges during spraying – operator error 

Tackiness Insufficient catalyst present, under cure conditions, poor mixture 

Sags Excessive thickness and/or air assist, spray nozzle too close to mold 

Cracks Shrinkage, uneven gel coat thickness applied 

Table 4.5. Gel Coat Spray Troubleshooting. 

4.4.7 Manage the Workspace 

The workspace needs to be clear of all potential obstacles no matter how innocent it 

appears.  All furniture not involved with the process should be cleared. Common 

hang-ups and accidents involve chairs, extension cords, and/or the compressed air 

hoses. 

 

The working time can be 20 or 30 minutes, but all it takes is 10 seconds for the gel 

coat or resin to set.  Not having the correct tools and materials handy commonly adds 

stress to the workplace, especially when the resin working time is nearly expired.  It 

is wisest to use these precious working time minutes doing meaningful work rather 

than running around after a new box of latex gloves or negotiating objects that are 

constantly in the way.      

4.4.8 Advice Summary 

Processes described both above and below promise many desirable outcomes.  

However, the integrity or lack thereof ones maintains with the work is the decisive 

factor as to its outcome.  It is difficult to predict if something will come out great or 

superb; yet, easy to predict if it will result poorly or unsatisfactorily.  It is always best 

to error in the side of caution than to remediate the consequences.  
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Chapter 5:  VARTM 
 

5.1 Preparation 

5.1.1 Materials and Tools  

The materials used for Vacuum Assisted Resin Transfer Molding (VARTM) are 

listed in Table 5.1. 

 

Materials Description 

General Materials Mixing cups, stir sticks, latex gloves, eye protection, masks, etc 

Spiral Tubing Tubing used to vacuum air and resin from part, ¼in. or ½in. 

T & Y Connectors Connector fitting for tubing, ½in diameter 

Vacuum Hose Vacuum rated tubing, ½in. diameter 

Hose Clamp Clamp used to secure hose and connectors 

Tacky Tape Vacuum tape used for sealing vacuum bag to mold 

Vacuum Bag Impermeable film cover used to seal mold during vacuum application 

Peel Ply Barrier film/fabric that is removable post cure 

Resin Polyester resin used for reinforcement of matting 

MEKP Catalyst Hardener used for polyester based primers, gel coats and resins 

Carbon Cloth 3K 2x2 Twill 5.7oz/sq Carbon Reinforcement 

Infusion Media Honeycomb infusion mat and diamond shape infusion mesh 

Release Polyvinyl Alcohol (PVA) release film  

Liquid Shine Gel coat clean and shine compound 

Machine Glaze Polishing compound 

Liquid Wax Surface Wax in liquid form  

Table 5.1. VARTM Materials. 

 

The tools used for VARTM are listed in Table 5.2. 

 

Tools Description 

Cutting Instruments Shears and/or sharp bladed tools for cutting cloth 

Measuring Equipment Measuring tape (preferred) and/or yard stick 

Buffing Pads Polishing Pad used for removal of surface scratches due to sanding 

Digital Scale Instrument used for weighing polyester resin 

HVLP Spray Gun High Volume Low Pressure Siphon Spray Gun for PVA 

Resin Trap Container that prevents resin from going into vacuum pump 

Pneumatic Polisher Pneumatic Device used for efficient polishing of large areas 

Paint Booth Closed ventilated area reserved for spraying 

Air Injection Wedge Wedge shaped air injection nozzle 

Compressed Air High pressure air line, adequate fitting, nozzle, etc 

Vacuum Pump Vacuum pump with adequate fittings, hose, etc 

VARTM Tools. 
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5.1.2 Labor and Task 

The vacuum infusion process (VIP) required several people.  To management of the 

available personnel was made efficient by dividing the process into two parts: 

preparation/dry lay-up and infusion.  The labor and task descriptions are provided in 

Tables 5.3 and 5.4.    

 

Labor Task Description 

Sprayer Pre-PVA prep, handles molds, and sprays PVA  

Sprayer Helper Handles molds, aids in PVA preparation and spraying 

Dry Lay-up Crew Cuts materials, reinforcement cloth and infusion dissipation core 
Locates cut materials into mold and assembles vacuum bag (2 to 3) 

Workspace Support Clean-up & Prep Workspace, organize tools 

Preparation & Dry Lay-up (Phase I) Labor Distribution. 

 

Labor Task Description 

Mixer Mixes pre-measured resin batch 

Vacuum Operator Manage vacuum pump 

Infusion Support Assists infusion process (4 to 6 people) 

Resin Infusion (Phase II) Labor Distribution. 

 

Although both phases could be carried out with as little as three people, it was found 

that multiple hands working together increased the chances of making a successful 

part.  During the preparation phase, typically four to five individuals were sufficient.  

However, the infusion phase required more helpers on-site.  The Advice Section of 

this Chapter contains further information on Labor and Task. 

5.1.3 Further Mold Preparation  

The molds were prepped as necessary depending on their quality once de-molded 

from the plug.  In this stage, the mold was polished and waxed as described in 

Chapter 4.  Any polishing work done to the molds followed the same steps and 

procedures used for the plugs. 

 

The PVA release was sprayed in similar fashion as previously done on the plugs.  

However, one additional step was required.  The border of the flange was masked 

with clear packing tape.  Once the mold was sprayed and the sprayer approved the 

job, the packing tape was peeled off.  It was important to peel off the packing tape 

before the PVA fully dried.  If the packing tape is not removed readily, the dried PVA 

will peel off with the packing tape as it is removed.  Thusly, the spray job may be 

ruined and require re-application.  The spraying of PVA followed the same procedure 

as described in Chapter 4. 

 

The sprayer and helper performed the following actions in sequence: moved the mold 

to the spray booth, wiped off any surface dust, masked the flange edges, sprayed PVA 

release, inspected spray job, and removed the packing tape.  If the spray job was 

unsuccessful, the existing film was washed off with water.  The mold was then dried 
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and prepped for another PVA application.  A successful PVA application resulted in a 

shiny film free of sags, bare spots and pools (Figures 5.1 and 5.2).   

 

 
Figure 5.1. Fuselage Mold (Right Half) Sprayed with PVA – tape along flange border 

removed.  

 

The fuselage mold was further prepped with a pinstripe line.  The white line was 

located inside the mold with a template.  The PVA was sprayed on top of the 

pinstripe.  The line created a slight impression on the fuselage part.  The hatch cutout 

was made following the line imprint (Chapter 7).  Once successfully sprayed, the 

packing tape was removed and the fuselage mold was allowed 2 hours to dry 

completely (Figure 5.1). 
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Figure 5.2. Boom Mold (Right Half) Being Sprayed with PVA – with tape along 

flange border. 

5.2 Infusion 

5.2.1 Process Description 

The Vacuum Infusion Process (VIP) uses lower than atmospheric conditions on the 

laminate to propel the catalyzed resin.  The liquid resin, while under vacuum, wets 

the dry reinforcement inside the sealed mold.  In the case of VARTM, the resin is 

infused by vacuum while creating a single-sided finished part.  

 

The single sided Vacuum Assisted Resin Transfer Molding used in this project 

utilized both resin injection molding and vacuum bagging processes (Figure5.3).  The 

laminate retained the exact contour and surface quality of the mold on the finished 

side.  The vacuum bag side of the laminate did not retain a repeatable finish since it 

did not have direct contact to a counter mold.    

 

The single sided resin infusion molding process allowed the reverse side to be 

finished such that it was suited for gluing other laminates post-infusion.  The use of a 

porous fabric, called Peel Ply, allowed the reverse side to be constantly rough; 

therefore, surface –ready for later assembly (Chapter 7).    
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Figure 5.3. Vacuum Infusion Process.  

 

  

 
Figure 5.4. VIP Setup.   
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The Infusion Setup is illustrated in Figure 5.4.  The resin is drawn into the part by 

means of suction provided by the vacuum pump.  The resin trap protects the vacuum 

pump by allowing out flowing resin to drip into the bucket.  The gage on the resin 

trap is used to monitor the vacuum pressure in the system.    

 

Other Resin Transfer Molding (RTM) methods use molds on both sides to provide 

consistent finish in both the exterior and interior faces of the part.  Furthermore, parts 

that are required to have a specific thickness everywhere may also need to have molds 

on both sides. However, the creation of matched male and female molds double the 

time to production time and cost.   

 

5.2.2 VARTM – Breakdown and Comments 

The parts were made following the sequence described in Flowcharts 5.1 and 1.3. 

 

 
Flowchart 5.1. VARTM – breakdown and comments. 
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5.2.3 Phase I - Dry Lay-up 

The dry lay-up phase, as the name implies, represents all portions of the process prior 

to the infusion of the catalyzed resin.  There are many important steps between the 

spraying of PVA release and the infusion of resin.  Any skipped or abbreviated 

actions in this phase may result in loss of part and/or mold.   

 

While the PVA release film dried, two plies of carbon cloth and one ply of infusion 

medium was sized and cut.  The necessary materials and tools were organized and 

laid out in the designated work area. The mold, with a successfully applied and dried 

PVA film cover, was removed from the paint booth.  If other molds needed PVA, the 

spray crew continued on to the next job. 

 

The double-sided vacuum seal tape, called tacky tape, was placed along the outside 

edges of the mold where the clear packing tape once was.  It was found, through 

experience, that placing the tacky tape entirely on top of the PVA release caused 

leaks to occur during the vacuum bagging process.  This was the reason why masking 

the perimeter of the flange was important.  However, the presence of the unprotected 

border of the flange posed new concerns.   

 

Two solutions were found for this problem. Firstly, having a sufficiently large flange 

provided a gap between the reinforcement cloth and the tacky tapeline.  Therefore, 

resin did disperse onto the unprotected edges of the mold since it only traveled where 

cloth was present.  Secondly, in places where the flange was minimal, the tacky tape 

was slightly overlapped with the PVA release film.  This allowed the infused resin to 

touch the tacky tape while not contacting any bare gel coat.       

 

In the case of the boom mold, the tacky tape, with reverse adhesive side still covered, 

was overlapped with the release film line.  The pre-cut infusion media and carbon 

reinforcement were placed in the mold.  The vacuum bag was cut oversized 

widthwise and placed on the mold (Figure 5.5). 

 

The infusion dispersion media between the carbon plies was custom cut to match the 

features of the boom.  Two different media were used in the fabrication of booms.  In 

order to reduce weight in the tail of the aircraft, the rudder was made with a 

lightweight infusion medium.  However, to increase stiffness, the entire boom and 

vertical stabilizer was manufactured with a thicker infusion medium.  Figures 5.6 – 8 

show the placement of the infusion media for the boom.  The red infusion mesh was 

sized to fit inside the vertical stabilizer while overlapping with the hexagonal infusion 

medium.  The rudder was cut from the vertical stabilizer as discussed in Chapter 7.  

The airfoil-shaped cut at the nose of the boom in Figure 5.7 was made with the gel 

coat template mentioned in Chapter 4 (the gel coat template can be seen on the table, 

top left, in Figure 5.8). 
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Figure 5.5. Boom Mold (Left Half) – dry lay-up. 

 

 
Figure 5.6. Red Mesh Infusion Medium – used in vertical stabilizer and rudder. 
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Figure 5.7. Airfoil Cutout – infusion medium airfoil cutout with “walls”.  

 

 
Figure 5.8. Carbon/Infusion Medium/Carbon Sandwich – worked into boom. 
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Small weights were placed inside the boom cavity to assist in the placement of the 

cloth and infusion media.  By using the weights, one person could work the 

reinforcement in place without the assistance of more hands (Figure 5.8).  

Meanwhile, another worker attached the vacuum bag to the tacky tape.  Once the long 

side of the bag was adhered to the tacky tape, a small cut was made for the “T” 

connector used as the suction port.  

 

The dry lay-up process for the fuselage was similar to the boom.  However, the 

fuselage was less cumbersome to fabricate because it did not contain any internal 

features like the airfoil cutout of the boom.  To reduce fuselage weight, the red mesh 

infusion medium was used instead of the hexagonal dispersion cloth.  The mesh did 

require relief cuts so it could conform to the curvature of the fuselage.  In some places 

where the relief cuts resulted in an overlap, the excess mesh was trimmed so it only 

intersected itself.    

5.2.4 Phase I – Inlet and Outlet Lines 

The resin distribution line and the suction port were strategically located to maximize 

wet out.  The distribution setup varied for the boom and fuselage.  Due to the feature 

and size difference between the boom and fuselage, the inlet spiral tubing and outlet 

suction port required different arrangements. 

 

 
Figure 5.9. Boom – inlet and outlet ports detail, no vacuum applied. 
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Figure 5.10. Boom – vacuum bag sealed, no vacuum applied. 

 

For the booms, the resin flowed along a radial path toward the suction port. The spiral 

tubing partially curled around the nose of the boom while almost entirely curled 

around the rudder.  The suction port was essentially a sink located in the center of the 

mold.  The spiral tubing used was ¼-inch diameter while the “T” connector was ½-

inch diameter.  This allowed the spiral tubing to be one continuous piece that slid 

through the connector.  The “T” connectors were prepped with a ring of tacky tape at 

the stem.  Once a hole was made on the vacuum bag and the connector was pushed 

through, the tacky tape ring sealed the bag. Small patches of peel ply were placed 

under the “T” connectors to facilitate their removal once the part was cured (Figure 

5.9).  After the spiral tubing, “T” connectors and peel ply were in place the vacuum 

bag was sealed (Figure 5.10).     

 

The evacuation of air required several helpers since the reinforcement cloth, spiral 

tubing, and ports needed to be held in place during suction.  In the sharp contours of 

the boom, the cloth was tucked in and held in place with a plastic putty spreader.  It 

was necessary to apply and release the vacuum several times to eventually work the 

cloth sandwich into place.  The laminate tucked in some more with each cycle that the 

vacuum was released and re-applied.  Eventually, the laminate took the exact shape of 

the boom and was ready to receive the resin (Figure 5.11).  Lastly, the entire piece 

was scrutinized for leaks along the tacky tapeline.   
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Figure 5.11. Boom – ready for infusion, vacuum applied.  

 

 
Figure 5.12. Fuselage – outlet port detail and “rabbit ear”. 
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Figure 5.13. Fuselage – ready for infusion, vacuum applied. 

 

The fuselage used a different inlet and outlet setup.  The inlet spiral tubing was placed 

inside the fuselage; therefore, peel ply was placed along its entire length.  Without the 

peel ply, the spiral tube would be impossible to remove cleanly, hence, adding weight 

to the aircraft fuselage.  The perimeter of the fuselage was lined with the outlet spiral 

tubing.  A “Y” connector was used on the outlet port since it laid flat on the mold 

flange (Figure 5.12).  The fuselage mold was sealed and vacuumed in similar fashion 

as the boom mold (Figure 5.13).  The fuselage also required several vacuum and 

release cycles until the laminate fully contoured to the mold.     

5.2.5 Phase II – Resin Infusion 

The vacuum-sealed boom and fuselage were injected with 1.25lbs of catalyzed resin 

each (Figures 5.14 & 5.16).  It was possible to track the progress of the resin by the 

color of the carbon cloth.  The carbon laminate turned dark as the resin soaked it.  

Once full wet out was achieved, the inlet hose was clamped off and the part was 

allowed 10 hours to cure (Figures 5.15 & 17). 
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Figure 5.14. Resin Infusion in Progress – right boom half.  

 

 
Figure 5.15. Boom Resin Infusion Complete. 
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Figure 5.16. Resin Infusion in Progress – right fuselage half.  

 

 
Figure 5.17. Fuselage Resin Infusion Complete.  
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5.3 De-molding 

5.3.1 Releasing the Part 

The primary tool used to release the part from the mold was compressed air with a 

wedge shape nozzle.  The compressed air was injected evenly around the flange 

causing the part to “pop” off the mold (Figure 5.18).  To remove the PVA release, the 

mold and part were rinsed off with water (Figures 5.19 & 20).  The mold was re-

prepped for another molding cycle.  The fuselage part was de-molded in similar 

fashion (Figure 5.21).  The resin inlet and outlet ports were removed, the part was 

rinsed with water and the fuselage was ready for trimming.   

 

Troubleshooting for de-molding the part consisted of the same procedures as 

discussed in the Advice Section of Chapter 4.  
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Figure 5.18. Boom – de-molding process (from top left to bottom right). 
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Figure 5.19. Boom – de-molded part with release film. 

 

 
Figure 5.20. Boom Mold and Part – PVA release rinsed off with water. 
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Figure 5.21. Fuselage Mold and Part – with PVA release and outlet port attached. 

5.3.2 Clean-up 

The PVA release film on both mold and part were washed off with water.  The used 

vacuum bag material, tacky tape, spiral tubing, peel ply, resin mixing bucket, “T” & 

“Y” connectors and vacuum hose lines were discarded.  The resin trap was opened 

and the hardened resin was discarded.  The mold was either prepped for another 

infusion cycle or transported to storage. 

5.4 Advice 

5.4.1 Inlet and Outlet Ports – Where to Place Them 

It is important to realize that the catalyzed resin tends follow the path of least 

resistance during infusion.  Once the resin reaches the suction port, it will prefer to 

flow in that particular path; therefore, decreasing wet out dispersion rate in other 

portions of the laminate.  A symmetric location of inlet and outlet resin ports may not 

be ideal depending on the features and size of the part.  There are many possible 

setups for infusion and some might require multiple in and out ports along with the 

use of spiral tubing in one, two or all ports.  In this project, for example, two 

completely different successful setups were used to permeate resin into the laminate.  
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For a given part, where locations of ports are not trivial, it may take some trial and 

error to find the ideal setup.  It is highly advised to perform trial and error cycles 

using e-glass rather than carbon.  This will reduce the cost associated with the trials 

and will allow the team to practice with less apprehension towards failure.  Software 

that predicts the flow of resin during the VARTM process is available.  However, 

licensing for such products can be costly.  Acquiring such software is a calculated 

trade-off between project size, cost, time/deadline, required first-time success and 

required production rate.  

 

Simple tricks can be used to manipulate the speed of wet out.  One method of 

controlling infusion involves tilting the mold so gravity can aid or prohibit the flow.  

Raising the catalyzed resin container above or below the mold is another method of 

controlling wet out.  It is important to note that the resin flows slower in 

reinforcement cloth that does not have infusion medium as part of the laminate.  

However, the overall single limiting factor that dictates the dynamics of the resin 

during infusion is its viscosity.  Suitable epoxy or polyester matrix systems used for 

infusion should have a viscosity no greater than 1000 mPa-s or 1000 centipoise (cps).  

In this project, pigment-coloring additives were found to increase viscosity of the 

catalyzed polyester resin; thus, impairing the resins ability to wet out the laminate.    

5.4.2 Work the Laminate 

It is imperative to work the laminate completely into the cavity of the mold.  Failure 

to do so typically results in two kinds defects: blistering or resin bridging.  Trapped 

air on the surface of the mold diminishes the aesthetics of the part while trapped air 

between plies significantly degrades structural properties of the laminate.   

 

Bridging is a natural occurrence inherent to Vacuum Assisted Resin Transfer 

Molding.  It occurs when the laminate does not fully compress into the mold surface, 

especially in molds whose features do not readily allow the cloth to negotiate 

complex curvatures.   During infusion, gaps are filled creating visible resin-rich 

pockets on the surface.  The resin rich pockets not only add unnecessary weight to the 

part but are also subject to cracking, especially if the surface is subject to flexural 

stresses.  Although impossible to avoid along edges with tight radii, it can be 

minimized by systematically working the cloth into place by means of applying and 

releasing vacuum as described earlier in this Chapter.  This requires patience and 

several workers (Figures 5.22 & 5.23).   

 

The bridging phenomenon can be observed in Figure 5.20 at the leading edge of the 

airfoil cutout.  The cloth is unable to accommodate the change of curvature, 

especially in sudden 90-degree transition.  The resin accumulates along the entire 

edge of the airfoil cutout creating a solid rim.  Taking the time to deal with areas 

prone to bridging is highly advisable since resin rich pockets increase the weight 

while scarcely, if at all, enhancing structural properties of the part.  
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Figure 5.22. Working reinforcement into mold cavity. 

 

 
Figure 5.23. Vacuumed part – check for bridging.  
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5.4.3 Working the Vacuum Bag 

The vacuum bag has to accommodate the curvature of the mold without ripping.  To 

aid the elongation demand placed on the vacuum film, pleats or “rabbit ears” are built 

into the seal (Figures 5.12. & 5.13).  The vacuum bag film is widthwise cut oversize.  

The extra material is folded and sealed with tacky tape along the border.  The rabbit 

ear provides the extra vacuum bagging material necessary to drape the mold 

successfully.  Pleats are strategically located to prevent bridging of the vacuum bag.  

Places where the bag does not conform to the cavity jeopardize the entire bagging 

process.  The unsupported vacuum bag may stretch beyond its limits and burst during 

vacuuming.    

5.4.4 Document Important Quantities 

Enough resin has to be mixed to fill both the ½-inch inlet and ¼ inch spiral tubing, 

while wetting out the entire part.  The depletion of the catalyzed resin reservoir while 

not achieving complete wet-out posed two problems: 1) more resin had to be mixed 

“on the fly” and 2) air was injected into the part; thus, introducing air bubbles or 

pockets in to the laminate.  This mistake could compromise both quality and utility of 

the part.  

 

It is better to have resin left over in the mixing bucket than to run out during infusion.  

The next time a part is infused, reconsider the resin batch amount based on how much 

was left over.  To do this, simply weigh the hardened resin and subtract 80% of this 

weight from the weight of the original batch.  The 20% margin is there for insurance 

so there is always some resin left over.  It is impossible not to lose some resin, but 

possible to minimize the waste.   

 

The trial runs, necessary to learn the locations of inlet and outlet ports, are ideal for 

figuring out important quantities.  Such quantities are dimensions of reinforcement 

cloth, infusion medium, and vacuum bag, lengths of spiral tubing, and vacuum 

tubing, and, finally, resin amount for infusion.      

5.4.5 Storage 

Storage considerations for mold and parts follow the same guidelines as previously 

discussed in Chapter 3.  However, the parts require particular attention for these are 

fairly subject to warping.  Recently de-molded parts may be dry to the touch yet not 

fully cured.  If left inadequately supported, the part may permanently warp or bend 

out of shape. 

5.4.6 Summary – VARTM Pros & Cons 

The pros and cons associated with VARTM are summarized in Table 5.5.  This 

manufacturing method offers superior productivity and repeatability.  However, the 

process is unforgiving to mistakes, often resulting in total loss.  There is no size limit 
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on the part being created.  Thus, VARTM is a preferred method for large-scale parts 

and production.   

 

The greatest advantage of VARTM is the unlimited setup time.  Resin infusion only 

takes place after the dry reinforcement is successfully vacuumed and conformed into 

the mold.  The resin intake is minimal (compared to manual wet lay-up) since the 

mold is sealed and already at vacuumed conditions when infusion begins.  This 

reduces weight while maximizing structural properties of the composite. 

 

Good Fiber to Resin Ratio 

Less Resin Waste than Other Methods 

Consistent Resin Usage 

Unlimited (Dry) Setup Time 

Minimal Human Exposure to Resin and Vapors 

Good Parts Reproducibility 

Special Reinforcement Easily Added During Lay-up 

Shorter Production Time than Wet Lay-up 

Identical Parts Created Every Time 

P
R

O
S

 

Quick Turn Around 

Mold Design is Critical - requires skill and experience 

Resin Bridging in Radii or Edges 

Reinforcement Movement During Vacuuming 

Potentially Complicated Setup 

Easy to Ruin Part 

Requires Perfect Vacuum Seal Every Time 

C
O

N
S

 

Trial and Error Process 

Table 5.5. VARTM – Pros & Cons. 
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Chapter 6:  Wing Making 
 

6.1 Preparation 

6.1.1 Materials and Tools 

The materials, used for Foam Cutting and Wet Wrapping, are listed in Table 6.1. 

 

Materials Description 

General Materials Mixing cups, stir sticks, latex gloves, eye protection, masks, etc 

Hot-Wire Nickel-Chromium (Nichrome) Wire for Foam Cutter 24 WG 

Foam Low density foam, 8ft tall x 2ft wide x 4in thick 

Tacky Tape Vacuum tape used for sealing vacuum bag to mold 

Vacuum Bag Impermeable film cover used to seal mold during vacuum application 

Breather/Bleeder Cloth used in vacuum bagging that allows airflow  

Release Film High gloss non-perforated release film (not PVA) 

Vacuum Port Thru-bag vacuum connector 

Hinge Materials High quality hinges, balsa stock, servo control horn 

Spar Tubing Carbon-fiber composite spar tubing 

Structural Inserts Composite laminate insert – part of structure of wing 

Carbon Cloth 3K 2x2 Twill 5.7oz/sq yard Carbon Reinforcement Cloth 

Resin Polyester resin used on carbon 

MEKP Catalyst Hardener used for polyester based primers, gel coats and resins 

Spreader Squeegees or “slicks” for spreading catalyzed resin during wet lay-up 

Packing Tape Tape used to secure release film 

Sanding Paper Sanding paper grits 220 to 400 

MDF Board Compressed wood-dust board 

Wood Dowel Non-tapered wood dowel 

Solvent Denatured Alcohol 

Table 6.1. Wing Making (Wet Lay-Up) Materials. 

 

Tools Description 

Cutting Instruments Shears and/or sharp bladed tools (X-Acto Knives) 

General Tools Pliers, screw drives and Dremel 

Measuring Equipment Measuring tape, metal yardstick (or longer), T-square, digital scale 

Sanding Blocks Support for sanding paper 

Cutting Aids Steel straight edge and large cutting mat 

Foam Cutter CNC Foam Cutter with wing cutting software 

Variac & Wiring Hot wire power supply – provide current to hot wire 

Lay-up Room Well ventilated clean room that contains a wide cutting table 

Vacuum Pump Vacuum pump with adequate fittings, hose, etc 

Power Sander Woodshop power sander 

Other Tools Wood clamps/grips, misc. lead weights 

Table 6.2. Foam Cutting and Wet Wrapping Tools. 
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The tools used for Foam Cutting and Wet Wrapping are listed in Table 6.2. 

6.1.2 Labor and Task 

The division of labor did not occur so much in phases; rather, the effort was divided 

into three main sections and one post-processing section: 1) CNC Wing Cutting, 2) 

structure integration, 3) wet lay-up and pre-assembly.  It is just as possible to have 

one group perform all the work as having three distinct groups performing the 

piecewise tasks in sequence.  The advantage to having multiple groups was that it 

allowed an assembly line type progression to occur.  The wing cutters concentrated 

on making wing cores, while structure integration team outfitted the wing sections 

and, lastly, the wet lay-up crew applied the composite skin.  The post-processing 

actions required just one person and mostly entailed trimming and hinge installation 

duties. 

  

The labor and task descriptions are provided in Tables 6.3.    

 

Labor Task Description 

Group 1 - Wing Cutters CNC hot wire operators (2 to 3) 

Group 2 - Structures  Install internal structure (2 to 3) 

Group 3 - Wet Lay-up Wet wrap and vacuum bagging (3 to 4) 

Post Processing Trimming and Hinging 

Wing Making Groupings and Tasks. 

 

The Advice Section of this Chapter contains further information on Labor and Task. 

6.1.3 Introduction and Foam Blank Preparation 

The construction methods developed in this Chapter involve CNC foam cutting, wet 

lay-up and vacuum bagging processes.  The composite-skinned wings have a foam 

core with embedded carbon tubing for structural support and carry-thru.  The foam 

sheets were cut to length according to the various parts (wings) being manufactured.  

To minimize waste, the cuts were arranged to maximize the number of blanks created 

per sheet.  For example, from a given sheet, one outboard wing, two horizontal 

stabilizers and one wing center-section were generated.   

 

The wing section cut from the foam blank was called the foam wing-core.  The 

remaining foam was called the foam “beds”.  The wing section, wether in bare foam 

or wrapped in composites, was stored inside the beds at all times.  Prior to wet lay-up, 

the beds had a role just as important as the foam wing-core themselves (as explained 

later).  It was important to oversize the blanks chord-wise.  In another words, the span 

dimension of a blank matched the span of the wing-core while the chord of the blank 

was oversize by a few inches.  The oversize in the chord dimension was necessary so 

the wing beds did not collapse (buckle) during vacuum bagging, thus, potentially 

crushing the wing and causing defects on its surface.     
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6.2 CNC Foam Cutter 

6.2.1 Foam Cutter 

The CNC foam cutter required some practice and considerable attention to operate 

successfully.  As with any machining tool, undesirable events could occur at any time 

and needed to be stopped immediately.  The risks, however, are far less than the ones 

involving milling, drilling or turning.  As a cautionary measure, every attempt was 

made to remain clear of the hot wire during operation.  The hot-wire, if set on high 

heat, can burn skin upon contact. 

 

 
Figure 6.1. CNC Foam Cutter. 

 

The machine consists of two towers with independent X and Y translation capability 

Figure (6.1).  The towers are mounted on two rails, which allow the adjustment of 

separation between the towers.  It is important to have the ability to move the towers 

closer to each other since a (needlessly) long hot wire will arch during cutting.  In 

most cases, the distance between the towers was adjusted such that the foam blank 

barely fit between the moving carriages.  The issues of wire arching/lagging are 

discussed further in the Advice Section of this Chapter.  

      

The towers operate by means of a stepper motor installed in each rail.  The corkscrew 

driven by the independent stepper motors translate the carriage either in the plane of 
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the table or perpendicular to the table. The stepper motors are connected to a control 

box that is interfaced with a laptop.  The CNC Foam Cutter operator uses software on 

the laptop to setup and execute the cut (Figure 6.2).  The wing that was cut in Figure 

6.2 was tapered in both leading and trailing edges, had spar hole cuts (main spar and 

rear alignment spar) and weight saving cuts both ahead and behind the spar.   

 

 
Figure 6.2. Laptop Screen – foam cutter software running. 

 

Note: the example in Figure 6.2 is not a wing cut used in the project.  The example in 

Figure 6.2 was chosen because it demonstrates the machine’s ability to create wing 

taper and internal features. 

6.2.2 Wing Cutting 

The CNC cutter was programmed to cut the wings according to the sizing parameters 

listed in Table 2.1 and specified in Figure 2.1.  The wing, in its entirety, consisted of 

the two (left and right) outboard sections and one center-section.  Internal cuts were 

made in both outboard and center-sections as illustrated in Figures 2.3 and 2.4. The 

center-wing also featured cuts necessary to interface the center-wing/boom system to 

the fuselage.  The horizontal stabilizer was a simple NACA0012 wing cut without 

any internal cuts.   

 

Actual wing cutting required practice and attention.  Although details about the 

operation of the CNC Foam Cutter are not explicitly developed, the preparation for 
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the center wing-section is discussed below since it contained the most number of 

embedded structural and interfacing parts.  The procedures described for the center 

wing section apply for both outboard wings and horizontal stabilizer.   

 

The desired, final product bare foam, center wing-section is shown in Figure 6.3.  

(This is how it was done…) 

 

 
Figure 6.3. Bare Foam Wing Center Section – all cuts completed. 

 

The foam blank was set on the cutting workspace and the wing center-section 

program was initialized.  The internal cuts were made first, then the airfoil/wing cut 

and, finally, the structural/interfacing cuts.   

 

The process began by making a (strategically located) ¼in. diameter hole in the foam 

blank.  The wire was fed through this hole/tunnel and connected to either column.   

The wire was switched on and the cut was executed.  At the end of the internal cut, 

the wire was snipped off in either end of the blank foam and the towers were moved 

to a clear location on the table.   

 

A new wire was installed and the towers were moved to the designated airfoil cut 

start point.  The wire was switched on and the outer wing cut was made.  At this 

point, the foam blank is in three pieces: a wing core with internal cuts, an upper wing 

bed and a lower wing bed.  Figure 6.3 shows the center section sitting in its lower 

bed.  At this stage, the cuts that are yet to be made are the fuselage interface/mounting 

thru-holes and the spar end caps notch.  The wing was carefully measured and 

marked with the locations of the cuts (Figure 6.4).   
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Figure 6.4. Wing Center-Section – interface mounting thru-holes marked. 

 

It was important to measure and double measure before doing anything.  In this 

example, a mistake was found.  The left rear mounting thru-hole was misplaced.  The 

error was corrected and new markings were made on the wing as noticed in Figures 

6.5 & 6.6.  The wrong marking was labeled “no good”.   

 

Design side note.  The fuselage longitudinal axis ran parallel to the airfoil chord 

line.  The designed angle of incidence was implemented during vehicle design 

and milling of the boom plugs.  The airfoil-shaped slots in the booms were 

machined (milled) to the required angle of incidence.  However, since this airfoil 

is highly cambered, it generates substantial lift even at zero angle of attack.  

Therefore, the angle of incidence required for level flight at cruise speed is very 

shallow.  As a result, the wing is almost unnoticeably pitched up when the aircraft 

is viewed at a distance.  The wing cutout in the bottom of the fuselage was made 

such that it naturally sat on the center section-wing with both fuselage 

longitudinal axis and chord line parallel.  This facilitated the assembly of the 

fuselage and center wing-section mounting as explained in Chapter 7. 
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Figure 6.5. Center Wing-Section – mounting thru-hole being cut. 

 

 
Figure 6.6. Center Wing-Section – mounting thru-hole done, detail view top right. 
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Figure 6.7. Center Wing-Section – front support-pin cutout, detail view top right. 

 

To make the cuts, the center wing-section was oriented such that the hot wire ran 

perpendicular to the chord line of the airfoil (Figures 6.5-7).  The wire was fed thru a 

hole made with a pin and the cut was executed (Figure 6.6).  The front alignment pin 

for the center wing-section was cut next (Figure 6.7).  At this point, the preparation of 

the bare foam center section was almost complete.  The wing was re-oriented so the 

notches for the spar end caps could be made (Figure 6.8).   

 

Caution. Notice in Figure 6.8 the jagged trailing edge.  A good wing will have a 

perfect trailing edge (TE) fresh from the CNC machine.  The defects found in the 

trailing edge were caused due to careless handling of the foam wing.  The trailing 

edge is especially fragile since it is so thin at the TE and prone to tearing.  

Typically, this damage is not a problem since the composite cloth will cover the 

imperfections.  Furthermore, resin will fill the spots where the foam is missing.  

However, if a missing piece of the trailing edge is large enough, the reinforcement 

cloth will not hide the blemish and, probably, will be weak at that location.  

Damage on the leading edge (LE) tends to be more serious.  The reinforcement 

cloth will form to the contour of the wing and will not hide foam core defects.  

The leading edge may also be weakened because the reinforcement cloth may be 

prone to buckling in the locations where the foam core is already indented.  The 

bottom line is, do not damage the foam core.    
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Figure 6.8. Center Wing-Section – notch being cut for spar end caps, detail view top 

right. 

 

Once the wing had all the necessary cuts (Figure 6.3), it was ready for the integration 

of internal structure. 
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6.3 Foam Wing Preparation – Structure Integration 

6.3.1 Internal Structure 

The parts used for the structure of either outboard or center sections were sized and 

cut separately.  Both outboard and center sections had a fixed spar sleeve with end 

caps.  The carbon tubing, used for the spar sleeves, was cut to size and lightly sanded 

at the ends.  The reason for sanding the ends of the spar tube is that resin adheres 

better to the roughened surface.  The end caps were custom cut with a thru-hole for 

the fixed carbon sleeve.  After, the spar sleeve was slid in place, the tips of the sleeve 

(on the outside) were wetted with catalyzed resin and the end caps were placed.   

 

Caution.  When gluing the spar sleeve and end caps it is extremely important to 

prevent excess resin from dribbling into the spar.  Resin-drops in the sleeve will 

prevent the (long) carry-thru internal spar from sliding through. To help prevent 

resin contamination inside of the sleeve, a couple of sheets of paper towels were 

rolled into a plug and jammed in each tip.  Once the sleeves and end caps were 

placed and glued, the paper towel plugs were removed and a flashlight was used 

to inspect the inside of the spar sleeve.  If any resin seeped into the spar sleeve, it 

was cleared away with either Denatured Alcohol or Acetone by squirting it into 

the tube.  Acetone rinses away resin very effectively, but it also damages the 

foam; therefore, denatured alcohol was the preferred choice.     

 

The rear support inserts in the foam wing-core were custom cut and fitted.  The holes 

for the fuselage mounting bolts were centered on the block, which was already cut 

and test fitted in the foam wing-core.  If the block fitted snuggly and the bolthole was 

correctly made, the blocks were sanded to match the curvature of the airfoil/wing.  

Likewise, the front pin support was also sized, cut, drilled and shaped to match the 

curvature of the wing, in this case the leading edge.  The drill hole made in the front 

support block was intended for the alignment pin/dowel.  These “blocks” were cut 

from a medium density fiber (MDF) board.  The MDF was used because it sanded 

easily with a power sander. (Before reading further, refer back to Figures 2.3. and 2.4 

and take note of what has been accomplished so far.)  

6.3.2 Foam Joining 

The center wing-section did not require foam-to-foam joining because it was 

designed as one piece.  However, the outboard wing was cut in parts; therefore, 

needed gluing/joining together.  In addition, the foam beds of the outboard wings 

were also glued to form one continuous upper and lower bed.  To attach the pieces 

together, acetone-free contact glue was sprayed to the ends of the wing pieces then 

mated together.  The result was a continuous outboard foam wing-core with matching 

upper and lower beds (Figure 6.10 – note the wing beds on the table in the back).   
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6.4 Wet Lay-up 

6.4.1 Process Description and Introduction 

The wet lay-up (hand lay-up) process involved the manual distribution of catalyzed 

resin onto a cloth.  Typically, in molding processes using wet lay-up, the catalyzed 

resin is poured into the mold then the reinforcement cloth is introduced to the wet 

surface.  A roller is used to aid in the spreading and impregnation of the resin onto the 

reinforcement.  Once the user has laid and rolled all of the reinforcement as desired, 

the part is allowed to cure.   

 

The curing process can be open-molded or vacuum-sealed with bagging material or 

other kinds of semi-rigid to rigid coverings.  The application of the vacuum bag 

promotes good consolidation between layers and aids in the removal of trapped air.  

The mold making technique described in Chapter 4 is in a sense a modified hand lay-

up process.  The random directional matting (used in Chapter 4) was both manually 

placed and rolled; however, the catalyzed resin was applied via spray gun and 

allowed an open cure. 

 

For wing making, the wet lay-up process is again modified to fit the application.  The 

catalyzed resin was introduced to the reinforcement and evenly dispersed.  The 

wetted cloth was then wrapped around the wing and placed inside the foam beds.  The 

wrapped wing while packaged inside its beds was subjected to pressure in one of two 

ways: 1) 20lbs weights were stacked on top of the upper bed or the entire bed and 

wrapped wing assembly was placed inside a vacuum bag.  

6.4.2 Wrapping the Wing 

The wing center-section and the horizontal stabilizer were wrapped in a single ply of 

carbon cloth.  The wet lay-up process for these two sections was relatively easy to 

perform since these had constant chord (non-tapered).  For the most part, symmetric 

three-dimensional shapes with constant dimensions are easier to wrap because these 

shapes can be flat-wrapped.  However, since the outboard wing had a trailing edge 

taper, it was more complex to wrap-up.  The taper (span-wise change in chord) 

caused the wing to change dimension not only in the chord length, but also in airfoil 

thickness.   

  

The CNC wing cutting procedures discussed in Section 6.2 focused on the central 

wing section since it contained the most number of features.  For this section, the 

outboard wing-section is the subject of interest since it required the most attention.  

The internal constructs and external application of the reinforcement is illustrated in 

Figure 6.9.  The outboard wing-section had reinforcement “cuffs” in three locations: 

the wingtip, the wing root and the foam joint where the spar sleeve ended (Figure 

6.9). 
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Figure 6.9. Outboard Wing Construction – explode view (see Figure 2.5). 

 

 
Figure 6.10. Outboard Wing-Section – wet lay-up preparation. 

 

The outboard wing-section was cut, assembled and ready to receive the reinforcement 

skin.  Once the carbon cloth was sized and cut, the work area was prepped for the wet 
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lay-up process.  An oversized sheet of release film, taped by the corners, was placed 

on the cutting table.  The dry carbon reinforcement was carefully laid on of the 

release film.  A silver marker was used to mark important locations on the cloth, like 

the location of the foam core wing and locations of the carbon strips (cuffs).  The 

additional carbon reinforcement strips were placed on top of the “big” carbon sheet 

after it was impregnated with catalyzed resin. 

 

The actual wings and surfaces of the aircraft used carbon cloth; however, the wet lay-

up example shown below uses E-Glass with a resin dyed red.  The author has 

purposely done this to facilitate the reader’s ability to see the resin since the contrast 

is red on white.  The release film used is green and is contrasted by the black cutting 

mat.   

 

The dyed catalyzed resin was first poured on the reinforcement cloth then distributed 

with a spreader (Figures 6.11).  The target fiber volume fraction was about 35%.  In 

another words, the overall composite skin, when cured, had a weight distribution of 

35% cloth to 65% resin.  Next, the reinforcement strip was placed then wetted out 

(Figure 6.12). 

 

 
Figure 6.11. Outboard Wing-Section – wet lay-up, detail view top right. 
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Figure 6.12. Outboard Wing-Section – reinforcement strip wet lay-up. 

 

 
Figure 6.13. Outboard Wing-Section – wet out complete, foam core ready to wrap. 

 

Once the hand lay-up was complete, the wing foam-core was ready to be wrapped.  

The leading edge of the wing was placed on the center of the impregnated 

reinforcement cloth.  To facilitate the wrapping process, the bottom bed was placed 

under the wing (under the release film).  The cloth was worked around the leading 

edge and wrapped over the top surface of the wing towards the trailing edge.  

Wrinkles created by the manipulation of the cloth during wrapping were smoothed 

out by hand with a soft cloth.  
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To apply pressure, the packaged wing was either placed in a vacuum bag or pressed 

down with ten 25lbs weights.  When using weights, a scrap Plexiglas sheet was 

placed on top of the encased wing (Figure 6.14).  The purpose of the Plexiglas sheet 

was to prevent the weights from crushing the foam bed, thus, applying uneven 

pressure.  The 25lbs weights proved to produce parts of equal quality as those cured 

with vacuum bagging.  The process was made simple and cheaper by using the 

stackable weights. 

 

 
Figure 6.14. Outboard Wing-Section – wrapped and ready to receive weights. 

6.4.3 Cure and Clean-Up 

All aircraft parts manufactured with wet lay-up were allowed to cure overnight or for 

at least 8 hours.  No special clean up was required for this process; dry materials 

(vacuum bagging materials, release film, etc) were discarded after use along with 

used gloves, stir sticks, mixing cups, etc.   

6.5 Moving Surfaces and Horizontal Stabilizer 

6.5.1 Ailerons and Elevator 

The CNC foam cutting and wet lay-up methods used for the moving surfaces 

(ailerons and elevator) and horizontal stabilizer are similar to those used for the 

wings.  The foam was CNC cut and wrapped with carbon reinforcement similarly to 

the wings; however, the preparation involved varied drastically.   

 

The elevator was a non-tapered cut easily handled by the CNC cutter.  The elevator 

was then repositioned so the balsa-block hinge support cutouts could be made.  The 

balsa blocks were custom cut and sanded to the shape of the elevator (Figures 6.15 & 

6.16).   



 87 

 

 
Figure 6.15. Elevator – hinge support cutout, detail view bottom left. 

 

 
Figure 6.16. Untrimmed Elevator Wrapped in Carbon – detail view top left. 
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The location of the balsa blocks was recorded since, when wrapped in carbon, the 

blocks could not be seen.  The ailerons were manufactured in similar fashion to the 

elevator.  However, due to the taper of the wing, the aileron cut was more 

complicated and required much more attention than the elevator.  

6.5.2 Horizontal Stabilizer 

The horizontal stabilizer was a solid foam core wing wrapped in carbon 

reinforcement.  The wet lay-up for this part was simple since the airfoil was both 

symmetric and non-tapered.  The installation of the elevator to the horizontal 

stabilizer was the same as the installation of the ailerons to the outboard wing-

sections.  This process is discussed in the Section 6.6.2. 

6.6 Pre-Assembly 

6.6.1 Trim Wing to Size 

The trimming process did not vary from part to part.  All wings and moving surfaces 

were trimmed and sanded in similar fashion.  The first step was to reduce the excess 

reinforcement at the tips of the wing.  Most of the excess material at the tips was 

removed with the Dremel then hand-sanded the remaining materials with a straight 

block down to the foam core.   

 

In some cases, depending on how much excess material was present, the operator 

elected to make two passes with the Dremel.  In Figure 6.17, the operator was making 

the first pass; then, a second pass was made to trim the excess material closer to the 

foam.  Once enough material was removed, the manual dry sanding started (Figure 

6.18). 

 

 
Figure 6.17. Outboard Wing-Section – trimming the ends. 
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Figure 6.18. Outboard Wing-Section – sanding the ends. 

 

The trailing edge was trimmed based on the desired tip and root chord lengths; it was 

hand cut with a sharp razor along a steel/aluminum straight edge.  The straight edge 

was secured to the wing by means of 3 small double-sided tape strips. 

 

 
Figure 6.19. Outboard Wing-Section – trimming the trailing edge. 
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Hints: 1) Do not use too much double sided tape, it makes the removal of the 

straight edge difficult and can result in damage to the composite skin or cause de-

lamination of the skin from the foam core.   

2) Place the straight edge on the wing surface and not on the part being 

trimmed, this is important because if the razor slips, it scratches/cuts the piece 

being cut off. 

 

Cutting the cloth by hand required several passes with the knife (Figure 6.19).  

Moreover, several replacement blades were used since the tip dulled quickly.  The 

razor technique was preferred for cutting the trailing edge because it produced the 

sharpest TE quality possible; sharp enough to slice up unsuspecting fingers or hands 

(Figure 6.20). 

   

 
Figure 6.20. Outboard Wing-Section – trimming complete, next wing on queue. 

 

Construction side note:  The foam beds have been invaluable during the entire 

wing lay-up process.  The surface quality of the foam beds, or lack thereof, is 

reproduced onto the wing surface during curing.  Hence, the preservation of the 

foam beds is just as important as the preservation of the bare-foam wing-core 

themselves.  However, once the foam core is wrapped and cured, the wing beds 

serve a different purpose.  The beds do not have to remain unharmed.  As seen in 

Figures 6.17 – 20, the foam bed is used as support for the wing.  During the 

trimming of the trailing edge, the blade digs into the wing bed once it cuts through 

the composite laminate, thus, the wing beds will endure some damaged.  From 
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this point forward, the purpose of the beds is to provide a work support for the 

wings and to encase the wings when stored or transported.  

6.6.2 Moving Surface Hinging and Cutout 

The moving surfaces were first outfitted with the hinges.  The hinges were installed in 

the center of the balsa inserts installed prior to the wet lay-up.  The hinges were 

carefully installed so the travel of the hinge arms were oriented in the correct 

direction.  Measurements were used during the installation of the hinges, but the best 

tool for the job was the “eyeball”  (Figure 6.21).  Once properly aligned, the hinges 

were glued in place. 

 

 
Figure 6.21. Elevator Hinge Installation. 

 

The wings and stabilizer were trimmed so the moving surfaces could be installed.  

Similarly to the trimming of the trailing edge, the moving surface cut-out was 

performed with a bladed instrument and straight edge.  The exposed foam of the wing 

was sanded with a round block whose curvature matched the curvature of the moving 

surface (Figure 6.24).  This allowed the round leading edge of the aileron/elevator to 

fit perfectly with the wing/stabilizer.     

 

The balsa support blocks for the wings/stabilizer were sized, cut and installed to the 

exposed hinge arm.  At this point, the blocks were not glued to the hinge arm (Figure 

6.22).  The wing/elevator was prepped to receive the balsa support blocks.  Once the 

entire process was done and the blocks fit snuggly, the balsa hinge blocks were glued, 

in the proper orientation, to the exposed hinge arm  (Figure 6.23). 
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Figure 6.22. Elevator Hinged and Balsa Support Blocks Prepped. 

 

 
Figure 6.23. Ailerons Hinged with Balsa Blocks Glued. 

 

The moving surfaces were also outfitted with the servo control horn.  A horn was 

installed to each moving surface at its center (Figures 6.22 & 6.23).  The servo 

control horn is attached to the servo push rod as explained in Chapter 7.  Finally, the 

moving surface was test fitted to the wing/stabilizer (Figure 6.25).  
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Figure 6.24. Aileron Hinge Detail. 

 

 
Figure 6.25. Aileron Hinging and Preparation Complete. 

6.6.3 Final Product 

The complete wing sections and horizontal stabilizer are shown in Figures 6.26 - 28 

(with moving surfaces in place).  
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Figure 6.26. Center Wing-Section Complete. 

 

 
Figure 6.27. Entire Wing Complete – outboard and center sections. 
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Figure 6.28. Horizontal Stabilizer and Elevator Complete. 

 

Construction side notes:   

1) The elevator in Figure 6.28 is longer than the horizontal stabilizer with 

good reason.  For that matter, the horizontal stabilizer is also span-wise oversized.  

The reason for over sizing the stabilizer is because it will be inserted into the 

boom, as discussed in Chapter 7.  Similarly, the elevator is oversized because the 

exact length to cut it depends on the rudders.  The spacing between the booms 

provides the upper limit on the length of the elevator; however, the amount of 

rudder “throw” (i.e. rudder deflection) further restricts the length of the elevator 

because of the twin boom setup.  The result is that both rudder and elevator must 

operate freely without any risk of binding with each other.  For now, the elevator 

is left oversized.  

2) The moving surfaces have the hinges glued in, but are not permanently 

installed.  Although assembled, the moving surfaces are not glued into place.  To 

eliminate any chances of damaging the moving surfaces and their hinges, the final 

gluing of the moving surfaces was done after the entire aircraft was wired, 

integrated and fully assembled.  At this point, both ailerons and elevator are 

removable (Figures 6.27 & 6.28).   
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6.7 Advice 

6.7.1 More on Labor and Tasks 

The most important point about division of labor at this stage (Chapters 6 & 7) of the 

construction is to identify individual talents/skills.  For example, group members with 

machining skills are encouraged to perform tasks that involve machining.   From a 

teaching standpoint, it may appear attractive to divide the work evenly so everybody 

learns a bit about everything.  However, in practice this is hardly the most optimized 

group setup.  Individual talents can vary so much that it is often safest to restrict some 

specialized activities to individuals that are either comfortable with or have prior 

experience in performing the specific task. 

 

In cases where members have minimal prior experience, the entire process has to be 

learned from scratch.  For example, cutting foam wings with the CNC cutter is often a 

novelty.  However, once a particular subset of individuals is expert at CNC cutting, 

these workers should be the only ones to perform this duty.  If the need arises for a 

second group to cut wings, at least one member in the new group should be borrowed 

from the original group.  This is important because it ensures repeatability in the 

process while minimizing common errors.   

 

As the project nears the assembly phase, mistakes can cause substantial setbacks 

because parts of the airplane are near completion.  For example, alignment problems 

or erroneous location of a spar hole can completely scrap an entire subsection of the 

aircraft.  For this reason, the workforce, when subdivided, needs to stay consistent.  

Individuals who have specialized in a particular function must execute it from start to 

finish.    

 

In summary, known individual strengths/skills must be exploited.  It is too risky to 

allow inexperienced hands to perform critical tasks this late in the construction, 

especially when knowledgeable/experienced individuals are on hand.  Once team 

members learn and become comfortable with a particular duty, these individuals or 

group focus on that portion of the build exclusively.   

6.7.2 CNC Foam Cutter – Hints for Successful Cutting 

The ideal conditions for cutting foam are under low heat and low speed.   This 

guarantees good resolution during cutting, repeatability, and prevents the wire from 

lagging in the center.   The wire, while lagging during cutting, will round sharp 

corners and cause chord variance along the span of the wing.  Lag in the wire is not 

corrected by increasing the heat; rather, is corrected by decreasing the cut speed 

setting on the CNC machine.  Just be patient.     



 97 

 

6.7.3 The Hot Wire Bow 

The 8’x 2’x 4” foam boards were marked and cut into foam blanks intended for wing 

cutting.  This procedure was primarily performed with the Hot Wire Bow Cutter 

(Figure 6.29).  Making these simple gravity cuts with the bow was advantageous 

since it alleviated the work queue for the CNC Foam Cutter. 

 

 
Figure 6.29. Wing Blank Being Cut with the Hot Wire Bow. 

6.7.4 How to Ruin Your Work in Seconds 

There is no other chemical more harmful to foam than Acetone.  It is extremely 

important to keep any Acetone or Acetone-Based fluids away from the foam blanks, 

foam beds, foam wing-cores, etc.  The Acetone will dissolve the foam in seconds.  If 

there is any doubt about chemical compatibility with the foam, just read the label.  

However, the best test is to try some of it on a scrap foam piece.  If the chemical 

reacts, lock it up, warn everyone about it, and keep it away!     

6.7.5 Summary – Wet Lay-up Pros & Cons  

In a general sense, wet lay-up processes have similar advantages and disadvantages 

no matter the variation.  The pros and cons associated with the customized wet lay-up 

(hand lay-up) process for wing making are summarized in Table 6.4.   

 

This process, when used in wing making, can be very effective.  The quality of the 

part can vary from technician to technician; nevertheless, the method can generate 

high quality high output when performed carefully and methodically.  As suggested 
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before, individuals (team members) that demonstrate proficiency in particular areas 

are encouraged to work on those same tasks during the build.  By having the same 

group constructing the wings from start to finish, from a quality control aspect, the 

process repeatability and consistency in overall finish of the wings/surfaces are 

achieved. 

 

Low Capital Investment (compared to other methods) 

Simple and Straightforward Method  

Good Turn Around with Experienced Technicians 

Negligible Molding Costs since Foam Beds are Used 

Foam Beds Perfectly Match the Wings  

P
R

O
S

 

Easy to Setup 

Labor Intensive (wrapping can be tricky) 

Human Exposure/Contact to Resin 

Quality Consistency Requires Experienced Technician 

Reproducibility Requires Experienced Technicians C
O

N
S

 

Easy to Ruin Part 

Table 6.4. Wet Lay-up – Pros & Cons. 

6.7.6 Storage and Inventory  

The completed wing and horizontal stabilizer sections were always stored inside the 

foam beds.  In turn, these were organized in a shelving system where the work-in-

progress and the finalized work were kept separate (Figure 6.30).  
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Figure 6.30. Organized Foam Cores and Finished Wings.  
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Chapter 7:  Assembly 

7.1 Preparation 

7.1.1 Tools and Materials 

The materials, used for vehicle assembly, are listed in Table 7.1. 

 

Materials Description 

General Materials Mixing cups, stir sticks, latex gloves, eye protection, masks, etc 

Resin Polyester resin used on carbon 

MEKP Catalyst Hardener used for polyester based primers, gel coats and resins 

Packing Tape Tape used to secure release film 

Sanding Paper Sanding paper sheets grits 220 to 400, sand paper roll 8in. wide 

Syringe Syringe used to inject resin 

Solvent Denatured Alcohol 

Table 7.1. Assembly Materials. 

 

Tools Description 

Cutting Instruments Shears and/or sharp bladed tools (X-Acto Knives) 

General Tools Pliers, screw drives, drill bit set, etc 

Measuring Equipment Measuring tape, metal yardstick (or longer), T-square, digital scale 

Sanding Blocks Support for sanding paper 

Height Gage Precision table height gage with inscriber tip 

Wood & Metal Shop Shop drill press, band saw and power sander 

Dremel Handheld rotary cutting tool with various cutting bits 

Rotozip Table mounted rotary cutting tool 

Shop Vac Vacuum for dust clean-up 

Level Cutting Surface Marble/Granite cutting top 

Other Tools Wood clamps/grips, misc. lead weights 

Table 7.2. Assembly Tools. 

 7.1.2 Labor and Task 

The division of tasks for the assembly phase was grouped based on individual skills 

and abilities.  The assembly itself was divided into two parts.  The difference between 

the two parts was the level in which assembly and integration was occurring.  Part I 

focused on the finalization of individual pieces of the aircraft.  Part II was a higher 

level of assembly where the pieces came together to make the whole.  The Advice 

Section of this Chapter contains further information on Labor and Task. 

7.1.3 Assembly Flowchart 

See Figures 1.4 (Part I) and 1.5 (Part II) for vehicle assembly flowchart. 
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7.2 Machining and Joining Parts 

7.2.1 Machining 

Two pieces required special machining for this project.  These pieces were used in the 

main landing gear installation (Figure 7.1).  One piece was permanently installed in 

the boom as the interface for the removable gear strut assembly.  The second piece 

was a transition part that allowed the strut extension to thread into the fixed internal 

gear support. 

 

 
Figure 7.1. Main Landing Gear Assembly (see Figure 2.6). 

7.2.2 Trimming, Trial Fitting and Cut Outs 

All of the molded parts required trimming.  The first step to trimming was the 

removal of the planar surface of the flange.  This was done using a band saw.  The 

machinist cut away much of the flange while leaving enough material for the entire 

piece to sit flat on the granite-cutting top.  The pieces of the flange cut by the band 

saw were kept and used as internal structure for the fuselage. 
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Figure 7.2. Trimming Tools and Parts. 

 

 
Figure 7.3. Boom Trimming in Progress – inscribed line detail view, top right. 
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For the pieces to mate to one another, the remainder of the flange had to be removed.  

This was done with a rotary tool using a diamond blade disk.  The cutter was fixated 

on the granite such that the blade was oriented in a parallel plane ¼ inch above the 

granite surface.  Prior to cutting, a line was inscribed on the part with a height gage 

that had an inscriber tip.  The line served as a guide during trimming (Figures 7.2 & 

7.3).   

 

The trimming procedure for the flange was the same for the booms and the fuselage.  

This trimming process was found to be very efficient and repeatable.   The end result, 

when trimmed correctly, required little post processing (fine sanding) and mated right 

away with its the corresponding half. 

 

In cases where the trimmed parts needed further leveling to mate properly, the parts 

were sanded on a continuous sanding paper strip stapled to a butcher-top table (Figure 

7.4).  The parts were sanded and mated to perfection. 

 

 
Figure 7.4. Fuselage Ready for Hatch Cutout – fine sanding, detail view top left. 

 

After trimming the various parts and mating them together, the pieces were ready to 

receive their respective cutouts.  In the case of the fuselage, the hatch cut out had to 

be made.  This cutout was performed by hand using the lines imprinted on the 

fuselage during VARTM.  The hatch cutout guideline can be seen in Figure 7.4. 
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Figure 7.5. Rudder Cutout – free hand cutting, detail view bottom right. 

 

 
Figure 7.6. Rudder Cutout Complete for all Boom Halves. 
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The rudder was cut off from the vertical stabilizer by hand with the Dremel (Figure 

7.5).  The rudder was sized and marked with a straight edge and a pointer.  The 

rudder was then cut free hand following the line just as previously done with the 

fuselage hatch.  The complete set of rubber halves, sufficient for two airframes, is 

shown in Figure 7.6. 

7.2.3 Joining 

The joining processes for the fuselage and hatch were similar.  The booms, however, 

used a slightly different technique. 

7.2.3.1 Joining the Fuselage 

The sanded and mated fuselage halves were trial fitted very carefully to ensure a flush 

seam.  The fuselage halves were held together by packing tape on the outside.  The 

tape was carefully placed so no air bubbles or wrinkles were present at the seam line 

(Figure 7.7). 

 

 
Figure 7.7. Fuselage Joining – taped seam, detail view top right. 

 

The internal surface of the taped fuselage halves was sanded along seam (Figure 7.7).  

It was important to roughen up the inside surface so the joining reinforcement strip 

could adhere better.  A carbon strip was wet laid inside the fuselage along the entire 

seam.  An oversized peel ply sheet was placed on top of the reinforcement strip to 

remove excess resin.  After full cure, the peel ply was removed and the fuselage was 



 106 

 

in one piece (Figure 7.8).  The clear packing tape was also removed from the outside 

perimeter, revealing a flush and gapless seam that required no additional finish.   

 

 
Figure 7.8. Fuselage Joined. 

7.2.3.2 Joining the Hatch 

The fuselage hatch was joined similarly to the fuselage.  The hatch halves were mated 

and joined together via the wet lay up of a reinforcement strip with peel ply.  The 

hatch halves were taped together along the outside surface, sanded in the inside 

surface and, lastly, joined with a reinforcement strip (Figure 7.18). 

7.2.3.3 Joining the Booms 

The boom halves were joined by means of injecting catalyzed resin into the mated 

halves.  The initial preparation involved was similar to that of the fuselage and hatch.  

The boom halves were matched and mated with packing tape along the seam.  As 

previously done, the packing tape held the two halves together and was carefully 

placed such no bubbles or wrinkles were present on the seam itself.  

 

Once prepped, a small batch of resin was catalyzed and poured into a large diameter 

syringe.  The catalyzed resin was injected into the closed part and allowed to flow 

internally along the seam.  The excess resin drained out the front of the boom 

(Figures 7.12 – 14).  However, the preparation for this particular piece required more 

than fine sanding and mating with packing tape.  The main landing gear interface 

needed to be housed in the landing gear fairing as well as the horizontal stabilizer 

cutout.  The necessary preparations for the booms are discussed in the next subsection 

(7.2.4).      
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7.2.4 Before Joining – Horizontal Stabilizer Cutout & Main Landing Gear 

The cutout for the horizontal stabilizer was made on the designated internal boom 

halves.  The location of the horizontal stabilizer was measured and marked 

accordingly.  A bare foam stabilizer was used as a template to aid in the location of 

the stabilizer.  The foam stabilizer was shaped at the ends to the contour of the 

boom/vertical stabilizer.  By doing this, the foam horizontal stabilizer sat 

perpendicular to the surface.   

 

A silver permanent ink marker was used to mark the airfoil shape on the 

boom/vertical.  The horizontal stabilizer centerline was also drawn and measured to 

ensure proper angle of attack.  The cutout was made inside the marked profile with a 

Dremel as to undersize the slot/fit (Figure 7.9).  The cutout was carefully sanded to 

snuggly fit the composite wrapped horizontal stabilizer (Figure 7.9 – top left and 

bottom right detail views).  See Figure 2.7 for technical drawing of elevator assembly. 

 

 
Figure 7.9. Horizontal Stabilizer Cutout – top left and bottom right detail views. 

 

Construction side note:  It was very important to note that the horizontal stabilizer 

cutout established a left and right designation.  The cutouts were made on the 

internal facing boom halves of the twin boom configuration.  Prior to cutting, any 

boom half pair could have been a left or right boom.  It was very important to 

keep track of the work and not end up with two left or two right booms.   

 

The next step was to install the landing gear assembly as illustrated in Figures 7.1 and 

shown Figure 7.10.  To do this, the gear interface was embedded before the boom 

halves were permanently joined.   
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Figure 7.10. Landing Gear Interface – detail view bottom right. 

 

The first step was to trial fit the landing gear interface to the boom halves.  In most 

cases, this required “dremeling” the inside of the gear-strut fairing with a small 

sanding tube attachment.  Once the fairing was properly sanded, the interface sat in 

place flush to the inner surface.  Measurements were taken to ensure proper location 

of the interface and markings were made on the boom with a silver sharpie.  The gear 

strut and wheel were screwed on so a visual inspection of the orientation and 

alignment of the overall assembly could be made.  The strut was removed and top and 

bottom holes in the interface were covered with packing tape.  The holes for the 

fixating screws of the interface were made with a hand drill.  The hole pattern was 

then transferred to the opposite boom half and the boom was taped together.  The 

installation of the main gear strut following the above instructions is shown in Figure 

7.11. 

 

Construction side note:  The top and bottom-treaded hole in the interface was 

taped shut so the injected resin did not plug the hole during joining.  This was 

very important to remember because hardened resin could plug the hole or fill the 

internal thread, thus, making it very difficult to attach the rest of the landing gear 

strut.  The border of the boom halves was roughened with sand paper in the inside 

as well.  For the same reason mentioned before, the roughened surface provided 

the resin a “grip” on the surface.     
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Figure 7.11. Installation of Main Strut Interface (from top left to bottom right). 
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Figure 7.12. Boom Joining – resin being injected (close-up). 

 

 
Figure 7.13. Boom Joining – resin being injected. 
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Once the horizontal stabilizer profile cutout was made and the main gear strut 

interface installed, the boom was ready for joining.  The boom halves were mated 

(taped) together and the screws of the interface were tightened with a nylon lock nut.   

 

At this point, the boom was joined with resin.  The catalyzed resin was injected into 

the horizontal stabilizer cutout (Figure 7.12).  The boom was held at a 45-degree 

angle over a wastebasket.  The excess resin drained out of the main gear fairing where 

the gear interface was installed (Figure 7.13).  The resin wet out could be observed 

through the clear packing tape along the seam as it ran down the boom.  Once the 

working time of the resin expired, the booms were allowed to cure in a safe location 

(Figure 7.14).  The resin was known to have reached its gel stage because the 

remainder inside the syringe was both hot and solidified.     

 

 
Figure 7.14. Left and Right Boom Pair Injected with Resin. 

 

After full cure, the booms were permanently joined.  The tape was not removed until 

the entire aircraft was fully assembled.  The packing tape was left on until the last 

moment so it could protect the finished surface during further handling and assembly.   
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7.3 Internal Structure – Fuselage and Hatch 

7.3.1 Internal Structural Components 

The structural components of both fuselage and hatch are detailed in Figure 2.2. 

7.3.2 Materials used for Internal Structure 

The internal structures of both fuselage and hatch were made from the flange material 

leftover from the fuselage and boom parts.  A template was made and the outline of 

various internal parts was traced on the flange pieces.  The individual structural 

members were cut with a band saw. 

7.3.3 Nose Cutout 

The nose of the fuselage needed to be cut to expose the motor shaft.  Moreover, the 

cutout was made such that there was enough clearance between the spinner back-plate 

and the cowling.  In an effort to simplify the motor installation, the nose cutout also 

included the cooling cutout (Figure 7.15).     

 

 
Figure 7.15. Nose Cutout for Propeller and Cooling. 
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7.3.4 Trial Fitting  

The structural pieces were hand sanded to match the internal contour of either 

fuselage or hatch perfectly.  Several markings were made in both structural parts and 

fuselage/hatch.  The markings were used as a visual guide during gluing.  Figure 7.16 

shows the internal structure in place, but not glued.  A string was taped in either end 

at the top of the fuselage to serve as a centerline.  The motor was installed on the 

firewall and placed in the fuselage (Figure 7.16).   

 

 
Figure 7.16. Internal Structure Trial fit with Simulated Cargo (see Figure 2.8). 

 

7.3.5 Fuselage and Hatch Internal Structure Installed 

Once properly aligned and marked, the internal structure was glued in place.  This 

was done by wet laying strips of carbon cloth along the structure and the 

fuselage/hatch.  Figure 7.17 shows a hatch being joined while at the same time having 

its internal structure installed.  A completed fuselage is seen in the background of 

Figure 7.17.  The front alignment pins of the hatch were glued in place and the 

matching holes of the pins were drilled in the fuselage firewall. 
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Figure 7.17. Hatch and Fuselage with Internal Structure Glued in Place. 

7.3.6 Vertical Stabilizer and Rudder Internal Structure 

The rudder halves were joined in a similarly fashion to the booms.  Catalyzed resin 

was injected into the mated and taped rudder halves.  Balsa inserts were sized and 

shaped to fit in both the vertical stabilizer and the rudder.  The balsa strips “closed” 

the boom and rudder and provided material for the hinges to be installed in to (Figure 

7.18). 

 

Construction side note:  The booms were covered with packing tape  to protect its 

surface from scratches and/or resin contamination.  When working with resin in 

other portions of the boom, it was very easy to unknowingly contaminate the latex 

gloves and make finger print on objects.  To remove the risk of ruining the glossy 

carbon finish, the entire boom(s) was covered with packing tape (Figure 7.18).  

The balsa strip installed in the vertical stabilizer was glued flush to the end of the 

boom while the balsa strip glued in the rudder had its rounded side exposed. 

 



 115 

 

 
Figure 7.18. Vertical Stabilizer and Rudder Hinging Balsa Strip (see Figure 2.6). 

 

7.3.7 Wing and Fuselage Mating 

The fuselage was mounted on the center wing-section via a pin connection in the 

front and two mounting bolts in the rear of the wing (Figure 2.3).  The first step was 

to fabricate the front pin support that was glued inside of the fuselage.  The fuselage-

mounting block, made from MDF Board and shaped to the leading edge curvature, 

was drilled prior to installation.  This hole received the alignment dowel that was 

installed in the leading edge of the wing (Figure 7.19 bottom left detail view). 

 

The rear boltholes had already been made on the support blocks that were embedded 

in the center wing-section.  During wet lay-up, the carbon skin covered the boltholes 

(Figure 2.3).  The boltholes were located and the carbon skin was carefully drilled 

out.  The bolt holes were transferred to the fuselage by means of a pointer bolt fitted 

into the holes (Figure 7.19 top left detail view).  In another words, a bolt with a sharp 

point was placed through the center wing and was used to etch the location of the 

bolts on to the fuselage.  The inscribed bolt locations were checked both visually and 

with measurements (Figure 7.19).  Lastly, the rear bolt pattern was drilled through the 

fuselage, thus, allowing the fuselage and center wing-section to be fastened together 

(Figures 7.20 & 7.21).    
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Figure 7.19. Fuselage and Center Wing-Section Mating (see Figure 2.4). 

7.4 Assembly Interim – Part I End, Part II Begin 

7.4.1 Vehicle Lay Out – Trial Fit 

Several major components of the aircraft were now manufactured and partially 

assembled.  At this point of the construction, the various parts were laid out side by 

side on the floor.  Doing this not only allowed the visualization of the finished 

product, but also boosted the team’s enthusiasm.  All of the major components 

available were trial fitted and checked against each other (Figures 7.20 & 7.21).   
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Figure 7.20. Aircraft Major Components Laid-Out. 

 

 
Figure 7.21. Aircraft Major Components Laid-Out.  
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7.5 Wiring and Servo Installation 

7.5.1 Boom Preparation 

The booms had to have the spar and wiring holes drilled prior to wiring.  The load 

transfer spar ran inside the spar sleeves, which were installed in the wing outboard 

sections and the center section during wing fabrication (Figure 7.22).  The load 

transfer spar was a single-piece carbon composite tube and the only structural 

member to cross the boom.  

 

 
Figure 7.22. Load Transferring Spar and Assembly. 

 

The two holes were done on a drill press.  A foam wing template was used to locate 

the spar hole (Figure 7.23).  This process was done by hand with a small piece of the 

spar tubing and a drill bit inside the spar (Figures 7.23 & 7.24 detail view).  The drill 

bit was hand turned and etched a small center point on the boom.  Based on this 

marking, the spar hole was drilled with the adequate spade bit on the drill press.  The 

template guaranteed a perfect spar hole alignment with the outboard wings and center 

wing section.  Furthermore, the process was repeated with success with the remaining 

booms. 

 

The wire access hole was drilled with a hole saw bit.  This hole did not require a 

specific/repeatable alignment.  However, the template was used to locate the wire 
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access hole in a reasonable “ball park” (Figure 7.25).  Once the spar and wire access 

holes were complete, the boom was ready for wiring.   

 

 
Figure 7.23. Spar Hole Template in Place – ready to locate spar hole. 

 

 
Figure 7.24. Spar Hole Marked and Drilled – detail view top right. 
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Figure 7.25. Wire Access Hole Marked and Drilled – detail view bottom left. 

7.5.2 Running String 

A weight, small enough to pass through the small cavities/holes, was attached to the 

end of the string and acted like a plum bob.  The malleable string and weight were 

dropped through the part and rescued (“fished”) out the other end.   The string was 

cut such that at least 12 inches was exposed out either ends.  The loose ends were 

then secured with packing tape. 

 

In the case of the outboard wings, the servo nest had to be made first then connected 

with a wiring “tunnel”.  Similarly, the horizontal stabilizer also had its servo cavity 

made then its wiring access tunnel burrowed.  The stringing and wiring for the wing 

structures are developed below.    

7.5.3 Installation of Servos 

7.5.3.1 Rudder Servo Installation 

The rudder servo was located/hidden immediately below the horizontal stabilizer 

(Figure 2.5).  To install the rudder servo a cutout was made that allowed the servo to 

be seated in the lower portion of the vertical stabilizer.  The servo wire extension was 

taped to the end of the string and “threaded” through the boom (Figure 7.26).  The 

rudder servo was then secured with its mounting hardware (Figure 7.27). 
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Figure 7.26. Rudder Servo Installation – detail view top left (see Figure 2.6). 

 

 
Figure 7.27. Rudder Servo Installation Complete – detail view top left. 
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7.5.3.2 Elevator Servo Installation 

The elevator servo installation followed the reverse sequence of steps as the rudder 

installation.  In the cases of the elevator and ailerons, the servos were first located and 

housed then wired.  The reason for wiring after installation will soon be apparent. 

 

The servo was located such that the control arm was connected to the (span-wise) 

center of the moving surface.  The servo was installed at the center of the moving 

surface to minimize twist of the aileron/elevator when deflected.   

 

Once located, the servo outline was traced onto the wing surface.  Using a straight 

edge and a sharp X-Acto knife, the outlined servo shape was cut out from the carbon 

skin; thus, once peeled away exposed the foam core.   

 

The bare foam was removed with the Dremel and the servo was trial fitted in place.  

The wire tunnel was then drilled through the wing foam core to allow access to the 

servo wire (the wire tunneling and stringing procedures are shown in the next 

subsection).  The servo extension wire was connected to the string and pulled through 

the horizontal stabilizer (Figure 7.28). 

 

Before sinking the servo in place, the servo was turned on.  The servo direction and 

deflection was adjusted accordingly (Figure 7.29).  Finally, the servo was buried into 

its tight foam housing.  Only after the entire aircraft was completely assembled was 

the elevator servo pushrod connected to the elevator control horn. 

 

The servo, once sunk in place, was secured with packing tape.  However, just as 

easily, a well-placed decorative decal can secure the servo and hide it from view.   

   

Construction side notes:  It is of paramount importance to create the servo nest as 

snuggly as possible to the servo.  To sink the servo into the foam core correctly 

requires practice and patience.  This procedure is easy to do, but equally easy to 

mess up.   

 

The depth of the servo bay is equal to the physical dimension of the servo 

depending on the orientation the servo is being installed.  In another words, the 

servo should be flush with the wing/stabilizer skin surface.  The servo, once sunk 

in place, was secured with packing tape.  However, a well-placed decorative decal 

can be used to secure the servo in place as well, thus, almost completely hiding it 

from view.  

 

As mentioned before, the moving surfaces are only permanently glued in place 

once the entire vehicle is completely assembled.  Moreover, the servos are only 

connected to their respective surface once the moving surfaces are glued in place.    

     

 



 123 

 

 

 
Figure 7.28. Servo Installation (from top left to bottom right). 

 



 124 

 

 
Figure 7.29. Elevator Servo Installed – ready for installation into wing foam-core. 

7.5.3.3 Aileron Servo Installation 

The aileron servo was installed in similar fashion to the elevator servo.  However, the 

tunneling process required to allow wiring connection to the servo is described in this 

section.   

 

 The aileron servo was located and nested in place accordingly.  A solid ¼ rod with a 

sharp point was used to tunnel the foam up to the servo cavity.  To complete this 

process successfully, the operator visualized the path necessary to reach the servo 

nest (Figure 7.30).  The sharp-tipped rod was inserted into the wing at the root chord 

and hand turned.  The tunnel was slowly burrowed until the sharp tip was visible in 

the servo bay.  The tunneling rod was then carefully retracted from the wing. 

 

A second smaller diameter rod, with the string attached to its tip, was inserted into the 

wire access tunnel (Figure 7.30 top right detail view).  The string was captured and 

taped to the aileron servo wire extension (Figure 7.30 bottom left detail view).  The 

string was pulled back, from where it came from, while at the same time wiring the 

servo extension inside the wing.  
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Figure 7.30. Hand Made Wire Access Tunnel – detail views diagonal corners. 

 

7.6 Final Vehicle Assembly – Twin Boom Joined 

7.6.1 Considerations Prior to Joining 

The rudder and elevator servos were at this point placed and wired in.  The next step 

in the assembly was to join the twin boom section of the aircraft.  Two aircrafts were 

constructed and both received a slightly different treatment.  The choice here was to 

either leave the servos in place or remove them prior to joining the twin boom body.  

The risk involved was that excess resin could run inside the boom and glue the string 

or wire permanently in place.  As a result, the glued string could not be used to thread 

wire through or the glued wire extension could not be swapped if necessary.   
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7.6.2 Joining Subsections 

7.6.2.1 Twin Boom Joined with Stringing in Place 

For the first airframe, the team sided with caution and removed the servos prior to 

joining.  While removing the servo extensions, the string was threaded through in the 

booms and horizontal stabilizer again (Figure 7.31).  At this point, the twin boom 

assembly was carefully aligned and permanently glued into one piece.  After the resin 

cured, the servo extensions were rethreaded through the booms and the servos were 

reinstalled.  The joining/gluing procedure is detailed in the next subsection.  

 

 
Figure 7.31. Twin Boom Sections Ready to be Joined. 

7.6.2.2 Twin Boom Joined with Servos and Wiring in Place 

The second airframe inspired more confidence; therefore, the twin boom section was 

joined with the servos and wire extensions in place.   The initial step was to fully wire 

the twin boom section.  The servo wire extensions were pulled through the wire 

access port drilled on the center top surface of the center wing section (Figure 7.32). 

 

The tips, soon to be inserted into the booms, of the center wing section and horizontal 

stabilizer were roughed with a 400 grit sand paper.  The sanded surface was lightly 

coated with catalyzed resin and the twin boom assembly was mated into one piece.   
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Figure 7.32. Twin Boom Sections Ready to be Joined. 

 

The most important details were to make sure that the two boom shafts were parallel 

to one another (from a top view) and the vertical stabilizers parallel to one another 

(from a front view).  A precision metal ruler was used to measure the distance 

between the seam of the booms both at the front and at the rear of the twin boom 

assembly (Figure 7.33).  

 

Once the assembly was allowed to set, a bead of resin was laid down along the seam 

of the inserts.  This resin bead gave the twin boom assembly a finished look and also 

sealed the joint line, thus, preventing dust/dirt from entering the twin boom assembly 

(Figure 7.33 bottom right frame & 7.34 left frame).  Since holes or slits along the 

joint seam can generate noise, the resin breadline also prevented the aircraft from 

whistling during flight. 
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Figure 7.33. Twin Boom Assembly Joined. 
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7.7 Moving Surfaces 

7.7.1 Moving Surfaces Final Assembly 

The moving surfaces were permanently glued in place.  The manufacturing and 

assembly work for the ailerons and elevator were completed in Chapter 6 and now 

were ready to be permanently installed.  The first step was to glue the ailerons to the 

wings and install the servo push arm. 

 

The next step was to install the rudders permanently.  The hinges were located and 

glued to the rudder as done before for the other surfaces.  A chrome sticker was 

placed along the hinging balsa strip to provide a finish to the hinge line (Figure 7.34).  

The tail wheel was held in place via an axle with a collar attached to either end 

(Figure 2.5).  Lastly, the rudders were connected to the servo (Figure 7.34 & 35). 

 

 
Figure 7.34. Rudder and Tail Wheel Installed. 

 

The elevator was sized to fit in the span between the two rudders.  Moreover, the 

elevator was trimmed so the rudders, when deflected either left or right, did not 

interfere with the elevator actuation.  The control arm for the elevator servo was 

installed after the elevator was glued in place. 
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Figure 7.35. Almost Completed Aircraft – elevator not installed yet. 

7.8 Final Integration 

7.8.1 Propulsion Hardware Installation 

The motor was fitted to the adjustable motor mount and secured (Figure 7.36).  The 

motor was then installed to the firewall and connected to the speed controller.  The 

main battery was secured to the rear-facing side of the firewall.  Other minor 

electrical hardware was also installed like the main battery fuse holder and the main 

on/off switch.  The propeller and spinner were secured to the motor shaft. 

 

 
Figure 7.36. Motor Mount Assembly. 
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7.8.2 Final Wiring and Electronic Hardware Installation 

The receiver was installed in the rear of the fuselage and its antenna ran outside the 

aircraft towards one of the vertical stabilizer.  All of the servo extensions were 

connected to the receiver in their proper channels.  Both the receiver and receiver 

battery were housed in foam and secured to the aft bulkhead. 

7.8.3 Other Hardware Installation 

The main landing gear struts were also screwed in place and adjusted such that the 

wheels were parallel the aircraft’s longitudinal axis and to each.  The hatch front 

alignment pins were glued and the rear hatch release was installed (Figure 7.35). 

7.8.4 Spar Tube Screws/Tie-Down 

The outboard wings were secured by means of a ¼-inch nylon bolt screwed at each 

end of the spar.  A hole was made through the spar sleeve and half way through the 

carry-thru spar (Figure 7.37).  The bolt threaded to the internal carry-thru spar and 

held the two outboard wings in place.   

 

 
Figure 7.37. Wing Bolt Clearance Hole Made. 
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7.9 Advice 

7.9.1 More on Labor and Task 

The labor and tasks for this phase of the construction are interchangeable.  From a 

project management point of view, three individuals can finish the project just as well 

as twenty can.  The question is, how soon does the airplane have to be in the air?   

 

The root branches in Figure 1.4 (Machining, Joining Parts and Internal Structure) can 

be developed independently.  However, there is still some interplay between the 

different sections, but progress can be made in each branch.  For example, while 

small parts are machined, trimming and trial fitting of vehicle parts can occur and 

fuselage internal structures can be manufactured. 

 

In conclusion, the most efficient way to assemble the aircraft is to finalize each part 

independently and then piece them together in sequence.   It is vital that all 

individuals understand what exactly he/she is working on and how it fits with the 

parts someone else is working on.  The speed in which the assembly phases 

progresses depends on the number of skilled individuals working in various parts at 

the same time, communication between individuals and minimal operator/worker 

errors/mistakes.  

7.9.2 Considerations Prior to Joining  

Before committing pieces together, either in Part I or II, careful consideration must be 

given to ensure a (future) smooth assembly progression.   The most important event 

that must occur before joining parts is the realization of what needs to be done prior 

to joining.  One of the most damaging mistakes made during joining is the realization 

that parts that should have been embedded were not installed and “now it’s too late”.  

This kind of mistake can completely “kill” project momentum, cause on-the-spot 

design changes and/or junk entire vehicle subsection(s).   

 

The only way to be truly immune to this problem is to have experienced workers.  

However, if this is not the case, then one has to settle for the next best option.  If time 

is not too short, it is advisable to assemble the B-Grade vehicle first.  In another 

words, chances are many parts were made in Chapters 5 & 6 and some parts are better 

in quality than others are.  The variance in quality is there because of the learning 

curve involved, especially for first-timers.   

 

The parts that are satisfactory, but otherwise not the best ones, can be used in the first 

go-around of assembly.  This creates a safety net in case mistakes are made or issues 

overlooked.  This kind of cautious approach to assembly alleviates the “zero mistake 

tolerance” mindset, thus, allowing the novice builder to learn the process and gain 

experience without jeopardizing the best-looking parts.  
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The approach mentioned in the previous three paragraphs was put to use in this 

project.  Due to the wide-ranging variance in experience between group members, the 

first vehicle assembled was made up of parts that were somewhat less “gleaming”.  

To differentiate between the various parts, a non-permanent silver marker was used to 

label all of the pieces.  The writing on the pieces is seen in various pictures in this 

Chapter. 

7.9.3 Think First - Let the Solution Present Itself 

The title of this section may seem innocent, but it speaks mountains.  Another likely 

title for this section may have been “Fools Rush In”.  The point here is that when a 

problem surfaces, it must be given adequate contemplation.  At this stage in the 

construction, a misstep can ruin much of the work and delay the assembly process.  

During this project, when an undesirable event happened, often times the best 

solution was not the first solution that came to mind.  The assembly of the airplane is 

connected to itself in many levels and solving one thing without thinking about the 

rest can, by far, be the least desirable course of action. 

 

It is definitely exciting to see all of the pieces come together to form a final product.  

Although very close to the end, it is important to maintain quality control.  The 

details, tirelessly given during the beginning of the construction, must be upheld 

down to the last screw.  In general, once the aircraft is ready for flight it will look as 

good as the least detailed/finished part visible.  
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Chapter 8:  Conclusion 
 

8.1 Complete Aircraft 

The completed aircraft is shown in Figures 8.1 to 8.5.  The final product is not 

painted or coated with gloss.  The reflective carbon composite skin is a result of the 

workmanship and attention given to the various manufacturing techniques described 

in previous Chapters.  Decals were applied to airframe to enhance its appearance and 

aid the pilot’s visual of the airplane during flight.  Figure 8.6 is a team photo. 

 

 

 

 

 

 
Figure 8.1. Completed Aircraft – nose close-up. 
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Figure 8.2. Completed Aircraft – Maryland flag reflection. 
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Figure 8.3. Completed Aircraft – runway access ramp. 
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Figure 8.4. Completed Aircraft – on take-off. 
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Figure 8.5. Completed Aircraft – flyby over runway. 

 

 



 139 

 

 

 
Figure 8.6. Completed Aircraft – team picture. 

8.2 Composite Construction Conclusion 

The composite construction methods were customized to meet the needs of the 

individual parts of the aircraft.  Each method utilized has its pros and cons.  

Furthermore, each method required different levels of care and skill sets. 

 

However, the construction techniques developed in this document, when followed 

attentively, generated a product with superior quality given its cost.   
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