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1.0 INTRODUCTION

With the advent of broadband communications which is characterized by a heterogeneous

traffic mix (e.g. video conferencing applications, ftp, browsing the web....), commonly

held assumptions of traditional traffic models have been put into question. Essentially the

present type of traffic, is of a highly bursty nature, which is not captured by the traditional

traffic models (e.g. Poisson Process). This has a major impact on the design of a network.

New models that characterize this burstiness effect is required for the analysis, design,

planning, engineering and congestion management of broad band networks [1].

Measurements using high-resolution traffic equipments of wide area network traffic, have

confirmed this particular traffic phenomenon. The features shown by the traffic have been

called “self-similar or fractal traffic”. Their important properties are stated below [1] :-

• Distributions of the actual traffic processes decay more slowly (“heavy tailed”, e.g. of

such a distribution is the Pareto distribution) than exponential (“light tailed” e.g. a

Poisson distribution) (see definition of heavy tail and light tailed distribution in the

appendix)

• Correlations exhibit a hyperbolic (“long range dependence”) rather than an

exponential (“short range dependence”) decay.

Traditional traffic models used in queueing analysis assume variations only in limited

time scales while the long range dependent or self-similar processes have fluctuations

over a wide range of time scales. This report tries to present various traffic models that

represent these properties and the important parameters that need to be estimated which

will hopefully enable in the design of an optimum network.
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2.0 MODELING WIDE AREA ETHERNET TRAFFIC

In the paper by Murad Taqqu, Walter Willinger and Robert Sherman [7] mathematical

proof is given as to how by aggregating simple renewal (ON-OFF) processes results in

self-similar behavior. The aggregation of individual ON-OFF sources also allows for the

explanation of observed self-similarity in wide area ethernet traffic.

In this particular case the traffic source is either transmitting packets at a constant rate R

during the ON period or is idle in the OFF period. The time spent during the ON state

(ton) and during the OFF state (toff) is i.i.d and is of a heavy tail distribution e.g. the Pareto

distribution with finite mean and infinite variance (see Appendix A for properties of

pareto distribution).

i.e. P[X > x] ∼ cx-α as x→∞, 1 < α < 2 and c is a finite positive constant.

Figure 1

When a large number of these sources are aggregated it results in traffic having fractal

(self-similar) characteristics and the model is called the Fractional Gaussian Noise

Model.

Given below is a trace of FGN traffic, simulated in MATLAB [13] :-

The results in [7] also provide evidence that for a large number of sources, the self

similarity property observed in wide area ethernet traffic doesn’t depend on the

underlying access schemes used (CSMA/CD, as is the case in Ethernet).
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Figure 2

The Hurst Parameter ‘H’ represents the degree of self-similarity in the observed traffic.

When the value of the Hurst parameter is between 0.5 and 1 the traffic is said to be self-

similar (values of H closer to 1 indicate a high degree of self-similarity). The relation

between H and α is given by H = (3 - α)/2.
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When trying to fit the synthetic generated data to the actual WAN traffic certain

parameters play crucial roles. The first one is α which describes the intensity of self-

similarity, once this is estimated H can be calculated using the above equation.

“The other important parameter is the number of sources (M), since the value of M is

considered to be large it can chosen to be for e.g. 500, 1600 [7]”. Other parameters to be

considered are the rate at which packets are generated during the ON period and the lower

cutoff of the pareto distribution.

As shown in [7], self-similar traffic generated by superimposing a number of ON-OFF

sources, easily passes the visual test of actual Ethernet traffic. The above model has been

implemented in OPNET4.0. A intiutive feel for self-similarity can be obtained by

observing the following traces at various time-scales (the zoom level used was a factor of

2).
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Figure 3
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3.0 MODELING TELNET CONNECTIONS

Network connections such as telnet and TCP traffic can be modeled using the M/G/∞

queue. In the M/G/∞ queue, customers arrive according to a poisson process. The service

time is obtained from a heavy tailed distribution with infinite variance. Empirical

distributions of telnet packet inter-arrival times have shown that they are heavily tailed.

Modeling telnet packet inter-arrival times with exponential distribution underestimates

the burstiness of the traffic for a single connection as well as that of multiplexed traffic.

“The M/G/∞ model implies that multiplexing constant-rate connections that have poisson

connection arrivals and a heavy tailed distribution for connection lifetimes would result in

self-similar traffic [9]”.

The auto correlation function r(k) for the arrival process is as follows:-

ρ = poisson arrival rate, F = distribution of the service time (heavy tailed in this case) and

X(t) is the number of customers at time t.

Therefore applications such as FTP, TELNET and WWW can be modeled in such a way

that the sessions arrive in a Poisson manner and the duration or size of each session has a

heavy tailed distribution. This results in an asymptotically self-similar traffic.

i.e. the auto correlation traffic r(k) ≈ k-(2-2H) L(k) as k → ∞.

This has been implemented in OPNET4.0.

( )( )dxxFktXtXkr
k
∫
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4.0 Hurst Parameter Estimation Methods

4.1 Whittle Estimator

[Beran, 1994] has suggested various methods for maximum likelihood estimation of

different parameters. One of them the Whittle estimator (non graphical method that

provides confidence intervals) is widely used, “it provides asymptotically consistent and

normally distributed estimators of the unknown parameters for both Gaussian [Fox and

Taqqu, 1986] and non Gaussian time series [Giraitis and Surgailis, 1990]. The reliability

of the Whittle estimator was empirically tested by running Monte Carlo experiments by

[Taqqu and Teverovsky, 1997] and [Kokoszka and Taqqu, 1996]”. One important point to

note about the Whittle estimation technique is that, it is assumed, the underlying process

is actually self-similar. It gives an estimate of the Hurst parameter with a certain

confidence. To determine whether the actual time series is self-similar or not, methods

like, the R/S statistic, variance time plot have to be used. This has been explained in [3].

The spectral density (Fourier transform of Eq. 3) is (from [3])
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and λ is the frequency.

Given a data sample of size N, the estimation process essentially involves minimizing the

following function.
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‘θ’ is the parameter H or α when dealing with fractional gaussian noise.

'm' is the integer part of (N-1)/2, λ j  are the Fourier frequencies (λ j  = 2πj/N), the

Whittle estimator is the value of θ which minimizes Q.
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and f(λ) is the fourier spectral density of the model represented in Eq. 4.

Also the variance can be computed as follows:-
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This method also provides confidence intervals.

Another method suggested in [Mcleod and Hipel, 1978] is as follows:-

Given a set of observations z1, z2, ....., zN the log likelihood of µ, σ2 and H in the FGN

model is
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where CN(H) is the correlation matrix and is given by :-
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where zT equals z1, z2, ...., zN is a 1*N vector and 1T equal 1,1, ..., 1 is 1*N vector.

For fixed H the MLE of µ and σ2 are
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The maximized likelihood function of H is
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logLmax(H) can then be maximized using the inverse quadratic interpolation search

method to determine $H, the MLE of H. The variance of $H, is approximately
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By using numerical differentiation the variance can be computed. One drawback of this

approach is that it’s only feasible for small values of N(maximum suggested value of N =

200). The above algorithm is available in MATLAB at [13].
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The trace for aggregated traffic was generated in OPNET 4.0 with parameters alpha = 1.2

i.e H = 0.9, 1000 data values were obtained, about 1000 data values were passed on as

input to the Whittle estimator. Given below is the minimization graph obtained in

MATLAB where H was obtained to be around 0.93.

Figure 4
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4.2 Local Whittle Estimator

The advantage of using this technique is that one doesn’t have to make an assumption of

the underlying spectrum for e.g whether it is a fractional gaussian noise model or not.

The only assumption one is making, is that the trace is long-range dependent which might

be valid, as recent papers have shown that traffic is more bursty than previously assumed.

The above estimators have been known to give incorrect estimates for certain cases, but

these are few and far between. One of the inputs to this function for yielding the estimate

of the hurst parameter in the local whittle estimator is a parameter called the number of

frequencies. The suggested value to be used is = 32.

4.3 Wavelet Method

Recent research by Feldmann, Gilbert, Willinger have shown that internet traffic over

small time scales is multifractal and the effect of TCP leads to a multiplicative property,

rather than the previously assumed additive property.

In these scenarios to capture the Hurst parameter at these fine time scales a technique

called the wavelet method [by Abry and Veitch,1998] is an efficient(though biased)

approach. The algorithm is available in MATLAB script form (at [13]). Following is a

brief description from [13]:-

“In wavelet method differences in aggregated series is analysed compared to the variance

plot method where aggregated series within a fixed interval was looked into.

Therefore if jY is the aggregated series then

( ) ,..2,1 and  2/,.....,2,1,
2

1
.122

1 ==−= −
+ jjNkYYY j

k
j
k

j
k

Since expectation of Y is zero. In the frequency domain, the variance is equivalent to the

signal energy in a frequency band depending on j. Ej vs 2j is plotted on a log-log scale.
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Linearity is checked for all scales j. Hurst parameter is then calculated by calculating the

slope of the line”.

Comparisons are shown in the next two graph, the first one is log Ej  vs log2j plot of a

poisson process, the Hurst parameter estimated using the above method is approximately

0.45 indicating the traffic is not bursty while the second graph plots the same functions of

an asymptotically self-similar process, the Hurst parameter obtained in this case is

approximately = 0.65.

Figure 5
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5.0 F-ARIMA (Fractional AutoRegressive Integrated Moving Average)

The F-ARIMA process can model both short range and long range dependence.

Observations produced by the ARMA structure shows short range dependence, while the

fractional differencing parameter ’d’ decays hyperbolically hence showing long range

dependence. The F-ARIMA(p,d,q) model can be defined as follows:-

φ(B)∇dXt = θ(B)εt - Eq. 8

where the parameter ’d’ is between 0 and 1/2 and ∇d = (1-B)d is the fractional difference

operator and can be expressed using the binomial expansion as:
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=
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where Γ(x) represents the gamma function.

( ) ( )φ φ φB B Bp
p= − − −1 1 ....  and ( ) ( )θ θ θB B Bq

q= − − −1 1 ....

The parameter d represents the long-range dependence of the process while p and q

models the short-range behavior. The relation between d and Hurst parameter(H) is as

follows:-

H = d + 1/2

The spectral density of F-ARIMA is comparatively simpler than the fractional Gaussian

noise model and is given by [3]:

( )f as
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F-ARIMA models are useful in modeling sequences that do not vary much between

successive observations e.g. VBR traffic.
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5.1 Estimation Techniques

Initial estimation techniques involved a two step approach [5]. The first step involved

estimating the fractional differencing parameter i.e. ’ $d ’ using for example the R/S statistic

[Mcleod and Hipel (1978)], by estimating d, the Hurst parameter can be obtained ( H =

d+1/2). The second step involves transforming the observed series using the estimated

differencing parameter into a series that follows the ARMA(p,q) model. But the problem

is, in reality we only have a finite sample of Xt (in Eq. 8) and by definition ∇d = (1-B)d is

of an infinite realization. Two different procedures (one in the time domain and the other

in frequency domain) have been suggested in [5]. The time domain procedure is given

below [5] :-

say ( )u B Xt
d

t= −1  then

using the Binomial theorem

( ) ( )u
d j

d j
Xt

j
t j=

− +
− +=

∞

−∑ Γ
Γ Γ

( )

10

ut is approximated by using the estimated value of d in the above expression and setting

zt-j = 0 for t-j outside of the sample.

The problem with the two step approach is that the transformed series in the second step

does not have the ARMA model of the ut series, hence the parameters estimated will not

be correct [5].

To solve these problems encountered in the two step approach a one step approach where

all the parameters are estimated is suggested in Li and Mcleod (1986) and the other in

Fox and Taqqu (1986). But as noted in [5] and [6] Li and Mcleod’s method is

computationally expensive and is of order n3 while method which Fox and Taqqu uses,

gives a poor estimate if the spectrum of the ARIMA series contains peaks near zero,

which exists for positive values of ’d’.
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In [6] the exact likelihood function based on n observations Yn = (y1,....,yn)T from a

Gaussian ARFIMA (or ARMA) process is given {yt} by

( ) ( ) ( ) ( )
f Y

Y Y
n

n n n

T

n n
; expΨ Ω

Ω
=

− − −











− −
−

2
1 1

2
2 2 1 2

1

2πσ
µ µ

σ

where Ψ=(ΦT,ΘT,d,µ,σ2)T of vector dimension (p+q+3) for ARFIMA processes

Φ = (φ1,...,φp)T, Θ = (θ1,...,θq)T, 1n is the vector of 1’s and σ2Ω is the covariance matrix

of Yn with elements  γ k
y , the autocovariances of {yt} of lag k.

Also, [6] presents an exact likelihood function for estimating the partial regression

coefficients from the ARFIMA(p,d,q) process, by a transformation where computation are

done from a simpler ARFIMA(0,d,0) process. The complexity of the computation is of

order n2.

6.0 SYNTHESIZING SELF-SIMILAR TRAFFIC

Many methods have been proposed to generate self-similar traffic which approximates

the real time data trace. For example, in [7] self-similar traffic is synthesized by

superimposing various individual ON-OFF sources. The packet trains produced by each

individual ON-OFF source was synthesized by an individual processor in a parallel

computing environment.

To produce a synthetic trace of length 100,000, required a massively parallel computer

with more than 16000 processors and the time required was the order of a few minutes.

Fast, efficient and accurate schemes are needed to synthesize this type of traffic. In [8] a

technique to synthesize approximate self-similar traffic using the fast fourier transform

technique is presented. It is as follows [8]: -
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First the assumption is made that the power spectrum of the time series corresponds to a

Fractional Gaussian Noise Model. The second step is to create a series of complex

numbers (zi) corresponding to the FGN power spectrum. Thirdly inverse discrete fourier

transform technique is applied to obtain the time series equivalent.

The difficulty behind this approach is to accurately compute zi which corresponds the

FGN power spectrum. In terms of speed [8], a sample path of 32,768 points took about 11

seconds on a SPARC station IPX and 262,144 sample points took less than 2 minutes.

This method compared to other schemes such as the Random Mid Point Displacement

method was twice as fast. Also in [8], tests were carried for various values of the Hurst

parameter (H) to see if the samples produced, matched what is expected for FGN. Using

the Whittles estimating technique, the data generated using the fast fourier transform

method was consistent with FGN for the desired value of H. In comparison to the random

mid point displacement method (RMD), RMD suffers from biases at certain values of the

Hurst parameter which is not observed in the FFT technique.

The point to note is that, there is speed vs. accuracy tradeoff when synthesizing self-

similar traffic. Aggregation of many ON-OFF sources is more suitable in a parallel

computing environment and the generated traffic is close to the real time ethernet traffic

trace. The FFT and RMD technique is fast but results only in an approximate self-similar

traffic.
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7.0 OPNET SIMULATION

Given below is a simulation conducted in OPNET. The dominant application over the

internet that generates majority of the traffic is surely the WWW; users browsing,

downloading files and doing other interactive stuff can be thought of as a typical scenario.

A typical (although simplified) topology would be as shown in the Figure 6. Users

browsing and downloading files from different servers located in different sites around

the world. The packets travelling to and fro are switched or routed via a gateway to the

respective hosts and servers. The gateway could be thought of as a simplistic view of an

ISP.

Figure 6
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Comparison of various parameters like offered load, the web server throughput etc…

when an exponential and a heavy tail distribution is specified are illustrated. The analysis

of these results is presented below.

7.1 Http Obect Size

Self-Similar nature of WWW traffic has been attributed to the presence of heavy tailed

file-sizes at the server end. This feature has been incorporated into the OPNET models by

specifying the transmitted response size of an application when a user request for a file to

be of heavy tailed.

In [16] analysis of actual packet traces suggests that the response sizes (above 1KB) are

well modeled using Pareto distribution where the parameter ‘α’ is in the range from α =

1.04 and α = 1.14. These were the values used for the simulation.

Show below is the object size in bytes for a heavy tail and an exponential distribution.

Clear distinction can be observed when the object size is of a heavy distribution (Figure

7) where the traffic is more bursty, compared to the exponential case (Figure 8) where it

is less so.

A WWW page usually consists of various objects for example images, audio files, text

…etc. The size of these objects represents the page size. By setting the object sizes to be

of a heavy tailed distribution, translates to a page which is of the same distribution.

Various other attributes relating to the page size such as number of pages per file, typical

user charactersitics such as low, medium or heavy intensity browsing can be specified as

attributes in the simulation.
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Figure 7

Figure 8



22

7.2 Server Throughput

The Server throughput (in terms of packets) is much lower when files sizes are of a heavy

tailed distribution (Figure 9) compared to that of an exponential case (Figure 10). This

could be possibly explained by the fact that the queues in the gateway are getting

congested and therefore the server has to back off (probes should be created to analyse the

more interesting efects in the gateway e.g delay, variation in queue depth etc.)

Figure 9

Figure 10
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8.0 FUTURE WORK

Various researchers have claimed that high speed network traffic including traces

obtained from a host to host TCP connection is actually “multi-fractal” rather than just

being long range dependent. Long range dependency only captures the low frequency

content of traffic(i.e. at large time scales) while multi fractal is about analyzing the high

frequency content i.e. the property is observed when studying traffic over small time

scales. The effect of TCP flow control and such actually exaggerates the multiplicative

effect. This would be an interesting area to look into. Answers to questions like what

parameters other than the Hurst parameter would be appropriate in capturing this effect

and how this effect queue sizes and so on would be interesting.

In [15] a parameter called the Holder exponent is estimated using wavelet techniques, this

parameter captures the burstiness at both large and small time scales. Also from a given

multifractality can be detected by plotting a log – log plot of mean and block size ‘m’ for

different values of ‘q’

( ) ( ) ......2,1,)(
1

1

=== ∑
=

miX
m

EXEq
qm

i

qmmµ

If the plot reveals linearity in different values of q then we can assume that the

multifractal approach is suitable. Further explanation is provided in [15].

Suggested methods for the construction of multifractals is by using cascades. The Hurst

parameter can be estimated using discrete wavelet transform method suggested by Abry

and Veitch in 1998.
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9.0 APPENDIX
APPENDIX A

p.d.f of light tailed distribution

P[X>x] = L1(x)e-x as x→ì where L1 is slowly varying at infinity

c.d.f

( ) =xF [ ] xexXP λ−−=≤ 1

taking the inverse 
λ

)1ln( y
x

−−=

p.d.f of heavy tailed distribution

P[X>x] = L2(x)e-α as x→ì

c.d.f

( ) [ ]
βα






−=≤=

x
xXPxF 1

taking inverse

( ) 1−−= βββα xxf

for 2≤β the distribution has infinite variance, for 1≤β distribution has infinite mean.

mean = 
β

αβ
−1
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APPENDIX B

Fractional Gaussian Noise

Fractional Gaussian Noise is an increment of fractional Brownian motion {BH(t), t ≥ 0}

with mean 0 and variance EBH
2 H( )t t= 2  and covariance [3]: -

[ ]EB t B t t t t tH H
H H H( ) ( ) ( )2 1

2
2
2

2 1
2

1
21

2
= − − +σ  - Eq. 1

The covariance of increments in two non-overlapping blocks is given by:-

[ ] [ ] [ ] [ ] [ ]E B t B t B t B t E B t B t E B t B t E B t B t E B t B tH H H H H H H H H H H H( ) ( ), ( ) ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( )4 3 2 1 4 2 4 1 3 2 3 1− − = − − +

( ) ( ) ( )[ ]= − − − + − − −
1

2
2

4 1

2

3 1
2

3 2

2

4 2

2
σ t t t t t t t t

H H H
( ) H  - Eq. 2

In the discrete situation substituting the increments t1, t2, t3 and t4 by n, n+1, n+k &

n+k+1 respectively in Eq. 2 and dividing by σ2 we have

( ) ( )[ ]HH
k kkk 2H22 121

2

1 −+−+=ρ - Eq. 3

This increment sequence is called Fractional Gaussian Noise


