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Temporal accuracy and modern high performance processors 21 IntroductionThe ability to execute a set of instructions with predictable execution time is an important criteriafor programs with hard real-time requirements. Hard real-time systems are characterized by thepresence of stringent timing constraints on the computations carried out by the system. Thesetiming constraints are often expressed as the start times and deadlines of tasks, as well as thetemporal relationships among the tasks. The goal of a real-time scheduling scheme is to create afeasible schedule such that the timing requirements of all the tasks in the system are satis�ed. Therun-time system must be able to ensure, with high temporal accuracy, a temporally determinateexecution of real-time tasks based on such a schedule. By temporal accuracy, we refer to the timingaccuracy with which the execution of a task can be started at a predetermined time.Clearly, when we consider such temporal determinacy at the application task level, operatingsystems introduce signi�cant variability. Real-time operating systems typically give fast contextswitch time and priority based resource management. These are not su�cient for assuring temporalaccuracy. Moreover, modern high performance processor architectures make use of a number oftechniques to boost the average performance, such as multiple execution units, deep pipelines,dynamic branch prediction and speculative execution, register renaming, on-chip cache, etc. Thesetechniques make the temporally determinate execution of tasks on such processors very di�cultand thereby making the system less predictable[7, 8].In this report, we present the results of experiments we have carried out to study the temporalaccuracy of an o�-the-shelf modern high performance processor. Speci�cally, our goal was toconstruct a run-time mechanism to achieve temporally accurate execution of programs on suchprocessors. We choose the Intel Pentium Pro processor, one of the fast processors in extensive usetoday, for our experiments.The rest of this report is organized as follows. In section 2 we provide a brief introduction to themicroarchitecture of Pentium Pro processor. In section 3 we explain our experimental setup andthe methodology adopted. In section 4 and 5 we present the results of the two sets of experimentswe have conducted. We discuss the results of our experiments and how these results will be usedfor implementing the next release of Maruti hard real-time operating system in section 6. Finally,we conclude this report with some comments in section 7.2 Pentium Pro Processor MicroarchitectureThe Pentium Pro processor has a superscalar architecture with 12 stage pipeline. The processorhas an instruction pool coupled with three independent units, viz. the Fetch/Decode unit, theDispatch/Execute unit and the Retire unit as shown in Figure-1. A user program is executed by thePentium Pro processor as follows (for a detailed description see [2, 5]). The user program instructionstream is fetched from the instruction cache and decoded into a series of micro-operations (�ops)by the Fetch/Decode unit. Pre-fetching of instructions is speculative, based on a dynamic branchprediction scheme. The Dispatch/Execute unit speculatively executes the �ops in the instructionpool based on the data dependencies and resource availability, and then temporarily stores theresults. The Retire unit selects, in the original program order, the �ops of the instructions thathave completed execution for retirement and commits the results. Dynamic register renamingtechnique is used to facilitate out-of-order execution of �ops. All the above techniques make ithard to predict the execution time of an instruction. Moreover, mispredicted branches, interrupts,breakpoints, traps and faults can cause some or all of the speculative state to be 
ushed by theprocessor [1], thereby adding more unpredictability.



Temporal accuracy and modern high performance processors 3
FETCH LOAD STORE

INSTRUCTION
POOL

RETIRE
UNITUNITUNIT

SYSTEM BUS

DECODE

ops

FETCH/

D-CACHEI-CACHE

L2 CACHE

/EXECUTE
DISPATCH

L1

BUS  INTERFACE  UNIT

L1

µFigure 1: Pentium Pro schematic (adapted from Pentium Pro Family Developer's Manual [2])The Pentium Pro architecture o�ers two interesting timing mechanisms { a pollable 64-bittime register called the Time Stamp Counter(TSC) and a 32-bit programmable timer. The TSCregister is incremented at the processor's clock speed and can be accessed with either one of thesetwo instruction, RDTSC (Read TSC) or RDMSR. The TSC can also be reset/preset by executinga WRMSR instruction. The programmable timer is a part of the on-chip interrupt controllercalled the Advanced Programmable Interrupt Controller (APIC). The time base for the APICtimer is derived from the processor's bus clock through a user programmable pre-scaler (dividecon�guration register). The timer can be programmed either in one-shot mode to generate aninterrupt on terminal count, or in periodic mode to generate interrupts at regular intervals. Bothof these timing mechanisms are also available on Pentium processor.3 Experimental Setup and MethodologyIn this section, we describe the hardware platform on which our experiments were carried out andthe details of the experiments.3.1 Experimental SetupOur experiments were conducted on a 200 MHz Intel Pentium Pro processor based personal com-puter (PC). The PC we used has a SuperMicro P6DNE motherboard with the Intel 440FX chipsetand 32 MB RAM.The 200MHz Pentium Pro processor we used has separate 8KB non-blocking L1 caches for dataand instruction, and a 256KB integrated non-blocking L2 cache. The experiments were conductedwith the cache enabled as well as disabled to study the e�ect of variability introduced by cachehits and misses. In the latter case, accesses to the cache were prevented by disabling the on-chip



Temporal accuracy and modern high performance processors 4cache, in addition to invalidating the cache, disabling the MTRR registers, and setting the defaultmemory type to \uncached".Our test programs were run on the bare machine, which was re-booted before each run. Amodi�ed version of the Maruti kernel [6] was used to gain exclusive access to the processor and runour test code. There was absolutely no operating system or any other program running concurrentlywhen the test programs were executed. All the hardware interrupts were also disabled during theexperiments. Only the APIC timer was enabled in the set of experiments using the APIC timer.3.2 MethodologyThe basic methodology we used was to write programs that attempt to achieve some pre-de�nedtiming target and use the processor's own TSC to measure how close we got to that target. Ingeneral, the goal is to be able to specify the time when an event is to take place, execute a programto signal the arrival of that time, and then perform that event. In our experiments, the �rstinstruction of the event is a RDTSC instruction and its result is compared to the target time. Thetemporal accuracy is given by the di�erence between the time measured by RDTSC instructionand the target time. We studied the variability in the temporal accuracy because if the di�erenceis a constant, it can be used to make adjustments to achieve the desired target value. We haveused two approaches to calculate the temporal accuracy that can be achieved on Pentium Pro {one making use of TSC, and the other making use of both the TSC and the APIC timer.4 Time Stamp Counter based experimentsThis is a straightforward approach to measure the temporal accuracy that can be achieved onPentium Pro processor. In this set of experiments, we calculate the target time by adding aninteger o�set value to the current value of the TSC and then wait in a tight loop reading the TSCrepeatedly and comparing it with the target time. When the speci�ed target time arrives, the loopfalls through, and the �rst instruction executed after exiting the loop is a RDTSC instruction asshown in Figure-2. The TSC value read by second RDTSC instruction is used for computing thetemporal accuracy as explained above. Instead of adding the same constant o�set to current TSCvalue, we have varied the o�set over a wide range of values in the actual experiments to studythe e�ect of variations in target time on temporal accuracy. Each set of experiments was repeatedmany times to assure repeatability.Figure-3 shows a portion of the data collected during the experiments with cache enabled. Itwas observed that the variation of temporal accuracy obtained for increasing target TSC intervalfollows a regular repetitive pattern with a periodicity of 32 clock cycles1. Figure-4 shows thevariation in temporal accuracy when the same experiment was repeated with cache disabled. Itis interesting to note the variability that is introduced when the cache is disabled. The range ofvalues for temporal accuracy also changes from 32 in Figure-3 to 256 for Figure-4.The cyclic variation in temporal accuracy with increasing target TSC value can be explained asfollows. Two consecutive TSC values that can be read using RDTSC instruction and compared withthe target TSC value in the TSC loop is at least 31 to 33 clock cycles apart. This is because of theexecution time of the RDTSC instruction and other instructions in the TSC loop. Therefore, unlessthe target TSC value is exactly a multiple of 31 to 33 clock cycles, the loop will take a numberof additional clock cycles (< 33 cyles) before exiting. The periodicity of the cyclic variation intemporal accuracy was found to increase when a more complex RDMSR instruction is used to read1In some experiments we have observed a periodicity of 31 or 33 clock cycles.



Temporal accuracy and modern high performance processors 5movl %ebx,(_TSC_target_hi)movl %ecx,(_TSC_target_lo)TSC_loop:rdtscsubl %ecx,%eaxsbbl %ebx,%edxcmpl $0,%eaxjl TSC_looprdtscmovl %edx,(_tsc_final_hi)movl %eax,(_tsc_final_lo)Figure 2: TSC loop codeTSC in lieu of RDTSC as shown in �gure-5. This further con�rms our explanation for the cyclicvariation pattern in temporal accuracy with increasing target TSC value.The alignment of code inside the cache was also found to in
uence the variations in temporalaccuracy signi�cantly [3]. Figure-6 clearly shows the increase in variations when the TSC loop wasnot aligned to 32 byte boundary compared to aligned code2 used in the above experiments.In an e�ort to determine the best case temporal accuracy values that can be achieved, weadded another loop before the TSC loop to introduce an additional delay. The idea was to makethe RDTSC instruction execute exactly at a multiple of 31 to 33 clock cycles ahead of the targetTSC value by delaying the entry to the TSC loop. We found that the variation in temporal accuracycan be reduced if a delay look-up table (indexed by target TSC value % 32) is used for introducingappropriate delay. Figures-7 and 8 clearly show the variations in temporal accuracy without andwith the delay loop respectively. We could achieve a temporal accuracy of 2 clock cycles in thebest case as shown in Figure-8. with a hand-tuned look-up table and with both the loops alignedto 32 byte boundaries. However, we found that this technique is highly sensitive to even minormodi�cations in code and alignment of code and data in memory.5 APIC Timer based experimentsThe APIC timer interrupt can be used to schedule an event in the future at a prede�ned timeinterval from the present time or at regular intervals in a periodic manner. On our test machine,the highest time base that can be derived from the 200MHz bus clock for the APIC timer is 66MHz,without any pre-scaling. Even though the resolution of the APIC timer is not as good as the TSCcounter, an interruptible timer may be used in several ways in a real-time operating system. Theobjective of this experiment was to measure the variations in the APIC timer interrupt latency dueto the non-deterministic nature of the processor state at the time of interrupt. The APIC timerwas set up in the periodic mode to generate interrupts at 100 �s and 15 �s intervals in this setof experiments. In the interrupt handler, after the saving of a few registers by PUSHing them to2For code alignment the .align assembler directive was used with NOP instructions as \pading bytes".
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Figure 3: Temporal Accuracy measurementsusing RDTSC instruction with cache enabled 7.1 7.105 7.11 7.115 7.12 7.125 7.13 7.135 7.14 7.145 7.15
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Figure 4: Temporal Accuracy measurementswith cache disabled
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Figure 5: Temporal Accuracy measurementsusing RDMSR instruction to read TSC withcache enabled 200 250 300 350 400 450 500
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Figure 6: Temporal Accuracy measurementswith cache enabled and unaligned codestack, the �rst instruction executed is a RDTSC to record the start time of the interrupt handler,as shown below.apic_timer: # APIC timer interrupt handler- save registers (pushl)rdtsc- save the TSC value- restore registers (popl)iretThe program running in the background consists of a tight-loop. In order to understand thee�ect of background processing on the APIC timer interrupt latency, we have conducted eachexperiment with either a NOP or a CPUID instruction in the loop. The CPUID instruction is aserializing instruction which will ensure that all modi�cations to 
ags, registers, and memory byprevious instructions are completed and all bu�ered writes have drained to memory before the next
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Figure 7: Temporal Accuracy for increasingTarget TSC values without delay loop 0 50 100 150 200 250 300 350 400 450 500
40

45

50

55

60

65

70

75

Experiment #

T
em

po
ra

l A
cc

ur
ac

y

Temporal accuracy with increasing target TSC value (Cache enabled)

Figure 8: Temporal Accuracy for increasingTarget TSC values with lookup table baseddelay loopinstruction is fetched and executed. The idea of executing a serializing instruction in the loop isto generate the worst case scenario for the APIC timer interrupt handler. On the other hand, theNOP instruction in the loop provides a more or less static environment corresponding to the bestcase scenario. The result of these experiments are shown in �gures-9 and 10. The plot shows thevariations in the interrupt latency as an error (measured at the processor clock cycle resolution)from the estimated TSC value for a set of consecutive APIC timer interrupts. The 11 clock cyclevariation were observed in temporal accuracy with a periodicity of 512 clock cycles as shown inFigure-10. We were able to con�rm that this variation was due to the D-cache miss caused whilestoring the TSC values in a large array inside the interrupt handler by modifying the interrupthandler to store only the erraneous values.The experiments were also conducted with the cache disabled. The results of the experimentswith cache disabled are shown in �gures-11 and 12. A large variation in interrupt latency due tothe variability in memory access time was observed in these experiments with the cache disabled.The e�ect of the instructions executed in the background at the time of interrupt is therefore hardto identify from the experimental results.6 DiscussionWe have used the on-chip Performance Monitoring counters [2] to investigate the reason behindthe periodic pattern found in the experimental results. We have used these counters to monitorevents such as number of clocks during which DRDY is asserted, number of clocks during whichLOCK is asserted, number of mispredicted branches retired, and number of cycles during whichthere are resource related stalls. The results of using the performance monitoring counters in theset of experiments mentioned above did not give us any insight into the cause of the problem.Moreover, the RDPMC instruction used for reading the performance monitoring counters(PMC) isnot a serializing instruction, and hence is not ordered with other instructions [2]. Thus, there is anelement of uncertainty on the instant at which the measurements were taken, because it is quitepossible for the RDPMC instruction to read the PMCs before or after the event(s) we were trying to
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Figure 9: Temporal Accuracy measurementswith cache enabled and CPUID instruction inthe background loop 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 10: Temporal Accuracy measurementswith cache enabled and NOP instruction inthe background loopmonitor. The RDTSC instruction also has the same problem. We have also used the performancecounters to verify that there were no hardware interrupts during the TSC experiments.In the Time Stamp Counter based experiments, we have observed that the instructions executedbefore entering the wait loop can have a tremendous impact on the accuracy with which the loopexits. We were not able to clearly understand this relationship though we have observed someintermittant 100-200 clock cycles long variations in the execution time of small segements of codeexecuted before the TSC loop.In the APIC timer based experiments, the measured APIC timer interrupt latency is found tovary by a considerable amount, especially when the cache is disabled. The important observationwe made is the e�ect of cache and background process on the interrupt latency. We found thatwhen the cache was enabled, the variations in interrupt latency is signi�cantly reduced to someintermittent spikes. We were able to eliminate these spikes (see �gure-10) when no memory accessis made from the interrupt handler. However, an attempt to isolate the RDTSC instruction and thememory access instruction by inserting a large number of other instructions inside the interrupthandler in order to eliminate these spikes was not successful. Moreover, if the working set ofthe background process is static and small, it is possible for the interrupt handler to be alwaysresident in the cache thereby avoiding I-cache misses on interrupt. Similar results were reportedby Koopman [4] based on experiments with Intel 80486 cache.The experiments we have conducted on Pentium Pro processor clearly show that, even in a staticenvironment, it is very hard to achieve a temporal accuracy better than a few tens of clock cycleson a modern superscalar, out-of-order execution processor designed for high average performance.Special conditions have to be set to achieve higher temporal accuracies.6.1 Maruti run-time systemWe have examined how the results of this study can be made use of for improving the temporalaccuracy of next release of the Maruti run-time system. Maruti[6] is a hard real-time operatingsystem which manages resources in time base. In Maruti, resources are explicitly reserved priorto execution and the tasks are executed based on a pre-determined schedule called calendar. This
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Figure 11: Temporal Accuracy measurementswith cache disabled and CPUID instructionin the background loop 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 12: Temporal Accuracy measurementswith cache disabled and NOP instruction inthe background loopapproach can guarantee the stringent timing requirements of hard real-time applications.A Maruti application is made up of one or more modules, each of which consists of one ormore entries, services, and functions. A module maps at run-time to a Maruti task, which containsmultiple execution threads that correspond to the task's entries, services, and functions. Eachthread is further divided into a sequence of non pre-emptable scheduling entities called elementalunits, or EU's. Maruti can deliver high degree of temporal determinacy to the application as longas the underlying timing mechanism is accurate. In order to assure a high degree of temporalaccuracy, Maruti has to be able to start the execution of an EU at a predetermined time. In thecurrent implementation of Maruti, a pollable time register is used at run-time to precisely dispatchthe threads as speci�ed in the calendar. Clearly, the temporal accuracy of such a system dependson the granularity and the accuracy of the pollable time register and the mechanism to access theregister.Our goal is to construct a mechanism, making use of o�-the-shelf modern high performanceprocessors, that can yield a high degree of temporal accuracy that can be guaranteed by Maruti.Based on this study, we have decided to use the TSC for maintaining an accurate system clock ofnano seconds resolution. Two new system calls, readtsc and mdelay are being implemented toread the TSC and to wait for a particular TSC value respectively.A Maruti thread relinquishes control to the run-time system either voluntarily via an EU breakor involuntarily through a time-out interrupt. The new Maruti run-time system will make useof APIC timer for implementing the time-out mechanism. The scheduler will select the next EUfor dispatching and compute it's ready time and deadline. The dispatching operation can beimplemented using either the mdelay function call or the APIC timer interrupt. The APIC timermight be able to provide better temporal accuracy than the mdelay if the timer interrupt handlercode is in I-cache and all the data structures used by the interrupt handler is in D-cache. Weare planning to evaluate the performance of both approaches on actual implementation in orderto select the best approach. We expect that in Maruti environment we will achieve a temporalaccuracy of less than 100 nanoseconds with a latency of at most a few microseconds.



Temporal accuracy and modern high performance processors 107 Comments and ConclusionIn this report we have described the experiments we have conducted to measure the temporalaccuracy that can be achieved on a Pentium Pro processor and the results of these experiments.Due to the out-of-order and dynamic nature of the execution of instructions, there is an inherentunpredictability in (1) the instruction execution ordering and (2) the delays in the instruction issue,execution and retirement phases of an instruction. The measurement techniques we have used inthis study make use of instructions to read TSC and Performance Monitoring counters on suchan environment, and these instructions are executed among other instructions by the processorin a similar manner. Hence, our measurement results are not only imprecise but also have a cer-tain amount of uncertainty that can not be eliminated. This fact clearly shows the limitationsof instruction level instrumentation on Pentium Pro processor, and in general the limitations ontemporally determinate execution of programs on such processor architectures. Despite these lim-itations, we expect to achieve an application level temoporal accuracy of about 100 nanosecondswhen we integrate TSC and APIC based timer interrupts into the Maruti operating system.AcknowledgmentAuthors would like to thank Frank Binns, Architecture group, Intel Corporation, OR for thecomments and suggestions and Jan Morales for participation in the initial stages of this study.Pentium, Pentium Pro and Intel 80486 are registered trademarks of Intel Corporation.References[1] Intel Pentium Pro Processor Presentation. Web page URL: http://www.intel.com/procs/ppro/info/isscc/index.htm. accessed on Feb 05 16:34:46 EST 1997.[2] Pentium Pro Family Developer's Manual, volume 1-3. Intel Corporation, Mt. Prospect, IL,1996.[3] Optimizations For Intel's 32-Bit Processors. AP-526 Application note. Intel Corporation, Mt.Prospect, IL, October 1995.[4] P. Koopman. Perils of the PC Cache. Embedded Systems Programming, 6(5):26{34, May 1993.[5] Robert P. Colwell and Randy L. Steck. A 0.6um BiCMOS Processor with Dynamic Execution.In Proceedings of IEEE International Solid-State Circuits Conference (ISSCC). IEEE, February1995.[6] M. Saksena, J. da Silva, and Ashok K. Agrawala. Design and Implementation of Maruti-II. InSang H. Son, editor, Principles of Real-Time Systems. Prentice Hall, Englewood Cli�s, N.J.,1995. Also available as University of Maryland CS Tech Report CS-TR-3181.[7] John A. Stankovic and Krithi Ramamritham. Editorial: What is Predictability in Real-TimeSystems? The Journal of Real-Time Systems, 2:247{254, 1990.[8] Clyde E. Taylor and Ronald N. Schroeder. Are RISCs ready for real-time control? InTech,43(12):45{48, December 1996.


