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TECHNICAL REPORT

Abstract

Real-time systems must be able to ensure temporally determinate execution of real-time tasks
at run-time. By temporal accuracy, we refer to the timing accuracy with which the execution
of a task can be started at a predetermined time. Temporally determinate execution of tasks
on modern high performance processors is becoming more and more difficult because of the
techniques used by these processors to boost their average performance. This report describes
the experiments we have conducted to measure the temporal accuracy that can be achieved
with the Pentium Pro processor. We present the results of these experiments and analyze these
results to highlight the limitations of temporally determinate execution of programs on modern
high performance processor architectures.

*This work is supported in part by ARPA under contract N66001-95-C-8619 and USAF F30602-96-1-0329. The
views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, U.S. Air
Force or the U.S. Government.
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1 Introduction

The ability to execute a set of instructions with predictable execution time is an important criteria
for programs with hard real-time requirements. Hard real-time systems are characterized by the
presence of stringent timing constraints on the computations carried out by the system. These
timing constraints are often expressed as the start times and deadlines of tasks, as well as the
temporal relationships among the tasks. The goal of a real-time scheduling scheme is to create a
feasible schedule such that the timing requirements of all the tasks in the system are satisfied. The
run-time system must be able to ensure, with high temporal accuracy, a temporally determinate
execution of real-time tasks based on such a schedule. By temporal accuracy, we refer to the timing
accuracy with which the execution of a task can be started at a predetermined time.

Clearly, when we consider such temporal determinacy at the application task level, operating
systems introduce significant variability. Real-time operating systems typically give fast context
switch time and priority based resource management. These are not sufficient for assuring temporal
accuracy. Moreover, modern high performance processor architectures make use of a number of
techniques to boost the average performance, such as multiple execution units, deep pipelines,
dynamic branch prediction and speculative execution, register renaming, on-chip cache, etc. These
techniques make the temporally determinate execution of tasks on such processors very difficult
and thereby making the system less predictable[7, 8].

In this report, we present the results of experiments we have carried out to study the temporal
accuracy of an off-the-shelf modern high performance processor. Specifically, our goal was to
construct a run-time mechanism to achieve temporally accurate execution of programs on such
processors. We choose the Intel Pentium Pro processor, one of the fast processors in extensive use
today, for our experiments.

The rest of this report is organized as follows. In section 2 we provide a brief introduction to the
microarchitecture of Pentium Pro processor. In section 3 we explain our experimental setup and
the methodology adopted. In section 4 and 5 we present the results of the two sets of experiments
we have conducted. We discuss the results of our experiments and how these results will be used
for implementing the next release of Maruti hard real-time operating system in section 6. Finally,
we conclude this report with some comments in section 7.

2 Pentium Pro Processor Microarchitecture

The Pentium Pro processor has a superscalar architecture with 12 stage pipeline. The processor
has an instruction pool coupled with three independent units, viz. the Fetch/Decode unit, the
Dispatch/Execute unit and the Retire unit as shown in Figure-1. A user program is executed by the
Pentium Pro processor as follows (for a detailed description see [2, 5]). The user program instruction
stream is fetched from the instruction cache and decoded into a series of micro-operations (pops)
by the Fetch/Decode unit. Pre-fetching of instructions is speculative, based on a dynamic branch
prediction scheme. The Dispatch/Execute unit speculatively executes the pops in the instruction
pool based on the data dependencies and resource availability, and then temporarily stores the
results. The Retire unit selects, in the original program order, the pops of the instructions that
have completed execution for retirement and commits the results. Dynamic register renaming
technique is used to facilitate out-of-order execution of pops. All the above techniques make it
hard to predict the execution time of an instruction. Moreover, mispredicted branches, interrupts,
breakpoints, traps and faults can cause some or all of the speculative state to be flushed by the
processor [1], thereby adding more unpredictability.
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Figure 1: Pentium Pro schematic (adapted from Pentium Pro Family Developer’s Manual [2])

The Pentium Pro architecture offers two interesting timing mechanisms — a pollable 64-bit
time register called the Time Stamp Counter(TSC) and a 32-bit programmable timer. The TSC
register is incremented at the processor’s clock speed and can be accessed with either one of these
two instruction, RDTSC (Read TSC) or RDMSR. The TSC can also be reset/preset by executing
a WRMSR instruction. The programmable timer is a part of the on-chip interrupt controller
called the Advanced Programmable Interrupt Controller (APIC). The time base for the APIC
timer is derived from the processor’s bus clock through a user programmable pre-scaler (divide
configuration register). The timer can be programmed either in one-shot mode to generate an
interrupt on terminal count, or in periodic mode to generate interrupts at regular intervals. Both
of these timing mechanisms are also available on Pentium processor.

3 Experimental Setup and Methodology

In this section, we describe the hardware platform on which our experiments were carried out and
the details of the experiments.

3.1 Experimental Setup

Our experiments were conducted on a 200 MHz Intel Pentium Pro processor based personal com-
puter (PC). The PC we used has a SuperMicro P6DNE motherboard with the Intel 440FX chipset
and 32 MB RAM.

The 200MHz Pentium Pro processor we used has separate 8KB non-blocking L1 caches for data
and instruction, and a 256KB integrated non-blocking L2 cache. The experiments were conducted
with the cache enabled as well as disabled to study the effect of variability introduced by cache
hits and misses. In the latter case, accesses to the cache were prevented by disabling the on-chip
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cache, in addition to invalidating the cache, disabling the MTRR registers, and setting the default
memory type to “uncached”.

Our test programs were run on the bare machine, which was re-booted before each run. A
modified version of the Maruti kernel [6] was used to gain exclusive access to the processor and run
our test code. There was absolutely no operating system or any other program running concurrently
when the test programs were executed. All the hardware interrupts were also disabled during the
experiments. Only the APIC timer was enabled in the set of experiments using the APIC timer.

3.2 Methodology

The basic methodology we used was to write programs that attempt to achieve some pre-defined
timing target and use the processor’s own TSC to measure how close we got to that target. In
general, the goal is to be able to specify the time when an event is to take place, execute a program
to signal the arrival of that time, and then perform that event. In our experiments, the first
instruction of the event is a RDTSC instruction and its result is compared to the target time. The
temporal accuracy is given by the difference between the time measured by RDTSC instruction
and the target time. We studied the variability in the temporal accuracy because if the difference
is a constant, it can be used to make adjustments to achieve the desired target value. We have
used two approaches to calculate the temporal accuracy that can be achieved on Pentium Pro —
one making use of TSC, and the other making use of both the TSC and the APIC timer.

4 Time Stamp Counter based experiments

This is a straightforward approach to measure the temporal accuracy that can be achieved on
Pentium Pro processor. In this set of experiments, we calculate the target time by adding an
integer offset value to the current value of the TSC and then wait in a tight loop reading the TSC
repeatedly and comparing it with the target time. When the specified target time arrives, the loop
falls through, and the first instruction executed after exiting the loop is a RDTSC instruction as
shown in Figure-2. The TSC value read by second RDTSC instruction is used for computing the
temporal accuracy as explained above. Instead of adding the same constant offset to current TSC
value, we have varied the offset over a wide range of values in the actual experiments to study
the effect of variations in target time on temporal accuracy. Fach set of experiments was repeated
many times to assure repeatability.

Figure-3 shows a portion of the data collected during the experiments with cache enabled. It
was observed that the variation of temporal accuracy obtained for increasing target TSC interval
follows a regular repetitive pattern with a periodicity of 32 clock cycles'. Figure-4 shows the
variation in temporal accuracy when the same experiment was repeated with cache disabled. It
is interesting to note the variability that is introduced when the cache is disabled. The range of
values for temporal accuracy also changes from 32 in Figure-3 to 256 for Figure-4.

The cyclic variation in temporal accuracy with increasing target TSC value can be explained as
follows. Two consecutive TSC values that can be read using RDTSC instruction and compared with
the target TSC value in the TSC_loop is at least 31 to 33 clock cycles apart. This is because of the
execution time of the RDTSC instruction and other instructions in the TSC_loop. Therefore, unless
the target TSC value is exactly a multiple of 31 to 33 clock cycles, the loop will take a number
of additional clock cycles (< 33 cyles) before exiting. The periodicity of the cyclic variation in
temporal accuracy was found to increase when a more complex RDMSR, instruction is used to read

'In some experiments we have observed a periodicity of 31 or 33 clock cycles.
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movl %ebx, (_TSC_target_hi)
movl %ecx,(_TSC_target_lo)

TSC_loop:
rdtsc
subl %ecx,%eax
sbbl %ebx,%edx
cmpl $0,%eax
jl  TSC_loop

rdtsc
movl %edx,(_tsc_final_hi)
movl %eax,(_tsc_final_lo)

Figure 2: TSC loop code

TSC in lieu of RDTSC as shown in figure-5. This further confirms our explanation for the cyclic
variation pattern in temporal accuracy with increasing target TSC value.

The alignment of code inside the cache was also found to influence the variations in temporal
accuracy significantly [3]. Figure-6 clearly shows the increase in variations when the TSC_loop was
not aligned to 32 byte boundary compared to aligned code? used in the above experiments.

In an effort to determine the best case temporal accuracy values that can be achieved, we
added another loop before the TSC_loop to introduce an additional delay. The idea was to make
the RDTSC instruction execute exactly at a multiple of 31 to 33 clock cycles ahead of the target
TSC value by delaying the entry to the TSC_loop. We found that the variation in temporal accuracy
can be reduced if a delay look-up table (indexed by target TSC value % 32) is used for introducing
appropriate delay. Figures-7 and 8 clearly show the variations in temporal accuracy without and
with the delay loop respectively. We could achieve a temporal accuracy of 2 clock cycles in the
best case as shown in Figure-8. with a hand-tuned look-up table and with both the loops aligned
to 32 byte boundaries. However, we found that this technique is highly sensitive to even minor
modifications in code and alignment of code and data in memory.

5 APIC Timer based experiments

The APIC timer interrupt can be used to schedule an event in the future at a predefined time
interval from the present time or at regular intervals in a periodic manner. On our test machine,
the highest time base that can be derived from the 200MHz bus clock for the APIC timer is 66MHz,
without any pre-scaling. Even though the resolution of the APIC timer is not as good as the TSC
counter, an interruptible timer may be used in several ways in a real-time operating system. The
objective of this experiment was to measure the variations in the APIC timer interrupt latency due
to the non-deterministic nature of the processor state at the time of interrupt. The APIC timer
was set up in the periodic mode to generate interrupts at 100 us and 15 ps intervals in this set
of experiments. In the interrupt handler, after the saving of a few registers by PUSHing them to

2For code alignment the .align assembler directive was used with NOP instructions as “pading bytes”.
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Figure 3: Temporal Accuracy measurements
using RDTSC instruction with cache enabled
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Figure 5: Temporal Accuracy measurements
using RDMSR instruction to read TSC with
cache enabled
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Figure 4: Temporal Accuracy measurements
with cache disabled

Temporal accuracy with increasing target TSC value (Cache enabled)
75 T T T T T

@ @
=) a
T T
L L

Temporal Accuracy
(4]
o

50 B

45t j

40 I I I I I
200 250 300 350 400 450 500

Experiment #

Figure 6: Temporal Accuracy measurements
with cache enabled and unaligned code

stack, the first instruction executed is a RDTSC to record the start time of the interrupt handler,

as shown below.

apic_timer:
- save registers (pushl)
rdtsc
- save the TSC value
- restore registers (popl)
iret

# APIC timer interrupt handler

The program running in the background consists of a tight-loop. In order to understand the
effect of background processing on the APIC timer interrupt latency, we have conducted each
experiment with either a NOP or a CPUID instruction in the loop. The CPUID instruction is a
serializing instruction which will ensure that all modifications to flags, registers, and memory by

previous instructions are completed and all buffered writes have drained to memory before the next
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Figure 7: Temporal Accuracy for increasing Figure 8: Temporal Accuracy for increasing
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delay loop

instruction is fetched and executed. The idea of executing a serializing instruction in the loop is
to generate the worst case scenario for the APIC timer interrupt handler. On the other hand, the
NOP instruction in the loop provides a more or less static environment corresponding to the best
case scenario. The result of these experiments are shown in figures-9 and 10. The plot shows the
variations in the interrupt latency as an error (measured at the processor clock cycle resolution)
from the estimated TSC value for a set of consecutive APIC timer interrupts. The 11 clock cycle
variation were observed in temporal accuracy with a periodicity of 512 clock cycles as shown in
Figure-10. We were able to confirm that this variation was due to the D-cache miss caused while
storing the TSC values in a large array inside the interrupt handler by modifying the interrupt
handler to store only the erraneous values.

The experiments were also conducted with the cache disabled. The results of the experiments
with cache disabled are shown in figures-11 and 12. A large variation in interrupt latency due to
the variability in memory access time was observed in these experiments with the cache disabled.
The effect of the instructions executed in the background at the time of interrupt is therefore hard
to identify from the experimental results.

6 Discussion

We have used the on-chip Performance Monitoring counters [2] to investigate the reason behind
the periodic pattern found in the experimental results. We have used these counters to monitor
events such as number of clocks during which DRDY is asserted, number of clocks during which
LOCK is asserted, number of mispredicted branches retired, and number of cycles during which
there are resource related stalls. The results of using the performance monitoring counters in the
set of experiments mentioned above did not give us any insight into the cause of the problem.
Moreover, the RDPMC instruction used for reading the performance monitoring counters(PMC) is
not a serializing instruction, and hence is not ordered with other instructions [2]. Thus, there is an
element of uncertainty on the instant at which the measurements were taken, because it is quite
possible for the RDPMC instruction to read the PMCs before or after the event(s) we were trying to
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Figure 9: Temporal Accuracy measurements Figure 10: Temporal Accuracy measurements
with cache enabled and CPUID instruction in with cache enabled and NOP instruction in
the background loop the background loop

monitor. The RDTSC instruction also has the same problem. We have also used the performance
counters to verify that there were no hardware interrupts during the TSC experiments.

In the Time Stamp Counter based experiments, we have observed that the instructions executed
before entering the wait loop can have a tremendous impact on the accuracy with which the loop
exits. We were not able to clearly understand this relationship though we have observed some
intermittant 100-200 clock cycles long variations in the execution time of small segements of code
executed before the TSC_loop.

In the APIC timer based experiments, the measured APIC timer interrupt latency is found to
vary by a considerable amount, especially when the cache is disabled. The important observation
we made is the effect of cache and background process on the interrupt latency. We found that
when the cache was enabled, the variations in interrupt latency is significantly reduced to some
intermittent spikes. We were able to eliminate these spikes (see figure-10) when no memory access
is made from the interrupt handler. However, an attempt to isolate the RDTSC instruction and the
memory access instruction by inserting a large number of other instructions inside the interrupt
handler in order to eliminate these spikes was not successful. Moreover, if the working set of
the background process is static and small, it is possible for the interrupt handler to be always
resident in the cache thereby avoiding I-cache misses on interrupt. Similar results were reported
by Koopman [4] based on experiments with Intel 80486 cache.

The experiments we have conducted on Pentium Pro processor clearly show that, even in a static
environment, it is very hard to achieve a temporal accuracy better than a few tens of clock cycles
on a modern superscalar, out-of-order execution processor designed for high average performance.
Special conditions have to be set to achieve higher temporal accuracies.

6.1 Maruti run-time system

We have examined how the results of this study can be made use of for improving the temporal
accuracy of next release of the Maruti run-time system. Maruti[6] is a hard real-time operating
system which manages resources in time base. In Maruti, resources are explicitly reserved prior
to execution and the tasks are executed based on a pre-determined schedule called calendar. This
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approach can guarantee the stringent timing requirements of hard real-time applications.

A Maruti application is made up of one or more modules, each of which consists of one or
more entries, services, and functions. A module maps at run-time to a Maruti task, which contains
multiple execution threads that correspond to the task’s entries, services, and functions. Each
thread is further divided into a sequence of non pre-emptable scheduling entities called elemental
units, or EU’s. Maruti can deliver high degree of temporal determinacy to the application as long
as the underlying timing mechanism is accurate. In order to assure a high degree of temporal
accuracy, Maruti has to be able to start the execution of an EU at a predetermined time. In the
current implementation of Maruti, a pollable time register is used at run-time to precisely dispatch
the threads as specified in the calendar. Clearly, the temporal accuracy of such a system depends
on the granularity and the accuracy of the pollable time register and the mechanism to access the
register.

Our goal is to construct a mechanism, making use of off-the-shelf modern high performance
processors, that can yield a high degree of temporal accuracy that can be guaranteed by Maruti.
Based on this study, we have decided to use the TSC for maintaining an accurate system clock of
nano seconds resolution. Two new system calls, readtsc and mdelay are being implemented to
read the TSC and to wait for a particular TSC value respectively.

A Maruti thread relinquishes control to the run-time system either voluntarily via an EU break
or involuntarily through a time-out interrupt. The new Maruti run-time system will make use
of APIC timer for implementing the time-out mechanism. The scheduler will select the next EU
for dispatching and compute it’s ready time and deadline. The dispatching operation can be
implemented using either the mdelay function call or the APIC timer interrupt. The APIC timer
might be able to provide better temporal accuracy than the mdelay if the timer interrupt handler
code is in I-cache and all the data structures used by the interrupt handler is in D-cache. We
are planning to evaluate the performance of both approaches on actual implementation in order
to select the best approach. We expect that in Maruti environment we will achieve a temporal
accuracy of less than 100 nanoseconds with a latency of at most a few microseconds.
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7 Comments and Conclusion

In this report we have described the experiments we have conducted to measure the temporal
accuracy that can be achieved on a Pentium Pro processor and the results of these experiments.
Due to the out-of-order and dynamic nature of the execution of instructions, there is an inherent
unpredictability in (1) the instruction execution ordering and (2) the delays in the instruction issue,
execution and retirement phases of an instruction. The measurement techniques we have used in
this study make use of instructions to read TSC and Performance Monitoring counters on such
an environment, and these instructions are executed among other instructions by the processor
in a similar manner. Hence, our measurement results are not only imprecise but also have a cer-
tain amount of uncertainty that can not be eliminated. This fact clearly shows the limitations
of instruction level instrumentation on Pentium Pro processor, and in general the limitations on
temporally determinate execution of programs on such processor architectures. Despite these lim-
itations, we expect to achieve an application level temoporal accuracy of about 100 nanoseconds
when we integrate TSC and APIC based timer interrupts into the Maruti operating system.
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