
Abstract

Title of dissertation
Towards Markerless Motion Capture: Model

Estimation, Initialization and Tracking

Aravind Sundaresan, Doctor of Philosophy, 2007

Directed by Professor Ramalingam Chellappa

Department of Electrical and Computer Engineering

Motion capture is an important application in diverse areas such as bio-mechanics,

computer animation, and human-computer interaction. Current motion capture

methods use markers that are attached to the body of the subject and are there-

fore intrusive. In applications such as pathological human movement analysis,

these markers may introduce unknown artifacts in the motion and are, in general,

cumbersome. We present a computer vision based system for markerless human

motion capture that uses images obtained from multiple synchronized and cali-

brated cameras. We model the human body as a set of rigid segments connected

in articulated chains. We use a volumetric representation (voxels) of the sub-

ject using images obtained from the cameras in our work. We propose a novel,

bottom-up approach to segment the voxels into different articulated chains based

on their mutual connectivity, by mapping the voxels into Laplacian Eigenspace.

We prove properties of the mapping that show that it is ideal for mapping voxels

on non-rigid chains in normal space to nodes that lie on smooth 1D curves in

Laplacian Eigenspace. We then use a 1D spline fitting procedure to segment the

nodes according to which 1D curve they belong to. The segmentation is followed

by a top-down approach that uses our knowledge of the structure of the human

body to register the segmented voxels to different articulated chains such as the

head, trunk and limbs. We propose a hierarchical algorithm to simultaneously ini-

tialize and estimate the pose and body model parameters for the subject. Finally,

we propose a tracking algorithm that uses the estimated human body model and

the initialized pose for a single frame of a given sequence to track the pose for the

remainder of the frames. The tracker uses an iterative algorithm to estimate the

pose, that combines both motion and shape cues in a predictor-corrector frame-

work. The motion and shape cues complement each other and overcome drift and

local minima problems. We provide results on 3D laser scans, synthetic data, and

real video sequences with different subjects for our segmentation, model and pose

estimation algorithms.

Towards Markerless Motion Capture: Model

Estimation, Initialization and Tracking

by

Aravind Sundaresan

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2007

Advisory Committee:

Professor Ramalingam Chellappa, Chair

Professor William S. Levine

Professor Ankur Srivastava

Professor Larry S. Davis

Professor John Jeka

c© Copyright by

Aravind Sundaresan

2007

To my parents,

For their love, support and sacrifice

over the years.

ii

Acknowledgments

I am indebted to my advisor, Prof. Rama Chellappa, for offering me the opportu-

nity to work at the Center for Automation Research at the University of Maryland

and his generous support and advice throughout the duration of my graduate stud-

ies. I am grateful to Prof. William Levine, Prof. Larry Davis, Prof. John Jeka and

Prof. Ankur Srivastava for serving on my dissertation committee. I am partic-

ularly grateful to Prof. Levine for carefully proofreading the entire dissertation

and providing valuable feedback both at the time of the proposal as well as the

final oral defense. I would also like to thank Prof. Min Wu who served on my

dissertation committee during the dissertation proposal but was unable to serve

on the final dissertation committee. I would also like to acknowledge the National

Science Foundation, who supported much of the research in this dissertation.1

I am thankful to Prof. Thomas Andriacchi, Dr. Eugene Alexander, Dr. Lars

Mündermann, Dr. Ajit Chaudhuri and Dr. Stefano Corazza at Stanford Univer-

sity for helpful discussions and providing access to the excellent facilities at the

Stanford Biomotion Laboratory. Gene, Lars, Ajit and Stefano were quite gener-

ous with their time and provided the biomechanical perspective of the markerless

motion capture problem. A special thanks goes to James Sherman Jr. along with

whom I was able to design and set up Hydra, the portable multi-camera facility

for motion analysis. James also assisted me in several data capture sessions both

at the Keck Laboratory at the University of Maryland and at the Biomotion Lab-

oratory at Stanford University. James has been an integral part of the markerless

motion capture project and his enthusiasm both inside and outside the laboratory

was much appreciated. Fritz McCall, Mark Goh, Brad Erdman, Wesley Madoo

and other members of the UMIACS staff were instrumental in renovating the aging

Keck laboratory multi-camera system and were a huge help in designing Hydra.

Fritz, in particular, was always on hand and extremely generous with his time

1The research was supported in part through NSF ITR 03-25715.

iii

iv

to offer technical support and trouble-shoot the system during its many hiccups.

I would also like to thank Fritz, Janet He, and the UM Institute for Advanced

Computer Studies staff for the excellent and flexible computing facilities which

eased the huge data storage, back-up and retrieval as well as data processing re-

quirements of the multi-camera image acquisition and motion capture algorithms.

I would also like to thank James Davis and Héctor González-Banõs, then at the

Honda Research Institute, with whom I worked on a marker-based motion cap-

ture system. The experience was useful as it provided a contrast to the markerless

system presented in this thesis. I also gained useful experience with multi-camera

systems during the time I spent at HRI.

Individually acknowledging all my friends and colleagues during my life as a

graduate student is impossible. I am thankful to the faculty, student, and staff

members at the Center for Automation Research, the University of Maryland

Institute for Advanced Computer Studies and the Department of Electrical and

Computer Engineering. In particular, I would like to thank Amit Roy-Chowdhury,

Volker Krüger, Amit Kale, Francesc Romà i Frigolé and Naresh Cuntoor with

whom I worked on the Human Identification at a Distance project, which was

the precursor to the Markerless motion capture project. Francesc was my Linux

guru and I am indebted to him for introducing me to Linux and the concept of

Free Software. I would also like to thank other colleagues and friends at CfAR:

Ashok Veeraraghavan, Gaurav Agarwal, Aswin Sankaranarayan, Narayanan Ra-

manathan, Mahesh Ramachandran, Gaurav Aggarwal, Himaanshu Gupta and

Amit Agrawal for providing a collegial and enjoyable environment at work.

Deepak Iyengar and Deepak Malghan were my apartment-mates and fellow

graduate students for the first four years of my life in the United States and were

a huge influence and source of support. I would like to thank my brother, Srikanth

and my cousins, Amaresh, Swarupa and Karthik, all of whom were also fellow

graduate students. Srikanth has been a constant source of support especially in

the last two years of my dissertation.

Finally, I am greatly indebted to my parents for their constant encouragement

and unstinting love and sacrifice in all my endeavors, academic and non-academic,

over the years. To them, I dedicate this dissertation.

Contents

Acknowledgments iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Markerless motion capture system 3

1.2.1 Input to the system . 3

1.2.2 Output of the system . 4

1.2.3 Data processing and algorithms 4

1.3 Contributions of the dissertation 8

1.4 Organization of the dissertation 10

2 Related work 11

2.1 Segmentation of human body volume data 12

2.2 Human pose estimation from 3D data 13

2.3 Human pose tracking . 15

3 Input data and output variables 19

3.1 Input data . 19

3.1.1 Image acquisition . 19

3.1.2 Computing silhouettes . 20

3.1.3 Computing voxels . 21

3.2 Human body model and pose . 22

3.2.1 Human body model . 22

v

Contents vi

3.2.2 The modified super-quadric segment 24

3.2.3 The pose vector . 25

4 Segmentation in Laplacian Eigenspace 29

4.1 Mapping to Laplacian Eigenspace 30

4.2 Properties of Laplacian eigenvectors 33

4.2.1 Eigenvectors of extended star graphs 33

4.2.2 Eigenvectors of grid graphs 41

4.3 Comparison with other manifold techniques 43

4.4 Human body segmentation in Laplacian Eigenspace 46

4.4.1 Initialization . 48

4.4.2 Spline fitting . 50

4.4.3 Propagation . 51

4.4.4 Termination . 52

4.5 Constructing the skeleton curve 53

4.6 Experimental results . 53

5 Model and pose initialization 57

5.1 Probabilistic registration . 59

5.2 Pose and model estimation . 62

5.2.1 Pose initialization . 64

5.2.2 Computing skeleton fit error 65

5.2.3 Estimation of skeleton model from stature 66

5.2.4 Optimization of joint locations 67

5.2.5 Estimation of super-quadric parameters 68

5.3 Experimental results . 72

5.3.1 Registration of segmented voxels 72

5.3.2 HumanEvaII data . 73

5.3.3 3D scan data . 75

5.3.4 Synthetic data . 76

6 Pose tracking using multiple cues 79

6.1 Pose estimation from pixel displacement 82

6.1.1 Point velocity as a function of pose velocity 82

Contents vii

6.1.2 Pixel velocity as a function of pose velocity 85

6.1.3 Estimating pose change from pixel displacement 86

6.2 Temporal registration of skeleton curves 87

6.3 Tracking algorithm . 90

6.3.1 Pose initialization for tracker 91

6.3.2 Pose prediction using motion cues 92

6.3.3 Pose correction using shape cues 96

6.3.4 Pose smoothing . 97

6.4 Experimental results . 98

7 Conclusion and future directions 103

7.1 Human motion analysis . 104

7.2 Depth images for pose estimation 105

7.3 Extension and tight integration of system 106

A Portable motion capture system 111

B Eigenvectors of simple graphs 113

B.1 Eigenvectors of Ring graph . 113

B.2 Eigenvectors of Path graph . 114

C Laplacian eigenvalues of extended tree graphs 115

Bibliography 119

Contents viii

List of Figures

1.1 Eadweard Muybridge: “Woman throwing a ball” 2

1.2 Motion capture system schematic 4

1.3 Input data: images, silhouettes and voxels 5

1.4 Human body models . 6

3.1 Pre-processing the input images 20

3.2 Human body models in the literature 22

3.3 Human body model . 24

3.4 Super-quadric segment . 25

3.5 Articulated structure of human body 27

3.6 Articulation as a function of body model and pose 28

4.1 Mapping a 2D object to Laplacian Eigenspace 31

4.2 The structure of the extended star graph in LE 34

4.3 Chain discrimination based on length 38

4.4 Computing eigenvalues for example in Figure 4.2 (c) 39

4.5 The structure of the grid graph in LE 43

4.6 Comparison of manifold techniques 44

4.7 Isomap versus LE . 46

4.8 Comparison of LE and Isomaps using real example 47

4.9 Voxels in normal space and LE 48

4.10 Voxels in normal space and LE 49

4.11 Fitting lines to nodes for Type 1 chains 49

4.12 Fitting lines to nodes for Type 2 chains 50

4.13 Spline fitting . 51

4.14 Segmentation and registration in LE 52

4.15 Segmentation results for subjects using real data 54

4.16 Segmentation results for HumanEvaII data set 55

ix

List of Figures x

4.17 Segmentation results for 3D scan data 55

5.1 Segmentation, registration and model estimation pipeline 58

5.2 Human body model and different pose configurations 58

5.3 Registration in LE . 59

5.4 Hierarchical human body model estimation 63

5.5 Pose initialization using registered skeleton curves. 64

5.6 Distance between skeleton curve and skeleton model 65

5.7 Fit of skeleton model after stature optimization 67

5.8 Fit of skeleton model after joint locations optimization 68

5.9 Segmenting voxels into body segments 69

5.10 Radial profiles of different body segments 70

5.11 Registration for different subjects and poses. 73

5.12 Model estimation from video sequences 74

5.13 Sample frame from the HumanEvaII data set 74

5.14 Pose estimation results from HumanEvaII sequence. 75

5.15 Pose estimation error for the HumanEvaII sequences 75

5.16 Model estimation from 3D scans 76

5.17 Model estimation from synthetic sequence 78

6.1 Schematic of tracking algorithm 80

6.2 Example of spatially registered frames 89

6.3 Examples of unregistered frames 89

6.4 Pose initialization for tracker using computed model. 91

6.5 Pixel registration showing the mask of left elbow. 93

6.6 Pixel displacement and motion residue 93

6.7 Pose estimation from motion in multiple steps 95

6.8 Computation of unified error image for the forearm 96

6.9 Minimum error configuration . 97

6.10 Translational components of the pose of trunk in sequence 98

6.11 The position of trunk in the three sequences 99

6.12 Tracking results for sequence 1 . 100

6.13 Tracking results for sequence 2 . 101

6.14 Tracking results for sequence 3 . 102

List of Figures xi

7.1 Observations and exemplars in HMM for gait modeling 104

7.2 Combining depth disparity and foreground silhouette 106

7.3 Computing W using disparity map and grid neighbors 108

7.4 Segmentation in Laplacian Eigenspace. 108

7.5 Analysis of a golf swing . 109

A.1 Hydra schematic . 112

B.1 Illustration of a path graph and ring graph on m vertices. 113

C.1 The function f(ϕ) and f ′(ϕ) . 116

List of Figures xii

List of Tables

4.1 Mapping nodes to Laplacian Eigenspace 32

4.2 Comparison of LE and Isomap . 45

5.1 Pose error per frame . 76

5.2 Joint angle error for skeleton and super-quadric optimization . . . 78

6.1 Algorithm for estimating 3D pose using pixel displacement 88

6.2 Temporal registration of skeleton curves 90

xiii

List of Tables xiv

Chapter 1

Introduction

Motion capture for humans describes the activity of analyzing and expressing hu-

man motion in mathematical terms. Motion capture was pioneered by Eadweard

Muybridge (1830-1904) in his famous experiments entitled Animal Locomotion,

a study into the way in which animals and birds moved. The study included

recording photographs of the subjects at discrete time intervals, using multiple

cameras, in order to visualize motion. Muybridge also captured multi-camera se-

quences of human subjects. Photographs of human models engaged in over one

hundred and sixty different activities were published in The Human Figure in

Motion [47]. Muybridge had his human models walk in an open shed which had

three batteries of twelve cameras each, positioned at angles of approximately 30◦,

90◦, and 150◦ with respect to one wall of the shed. Three photographs were taken

simultaneously, one from each battery. Figure 1.1 illustrates one such activity of a

woman throwing a ball. Ètienne-Jules Marey (1830-1904) was another pioneer in

motion capture who used a single camera to record images from which scientific

measurements could be taken. He published the book, Le Mouvement [35], on hu-

man locomotion in 1894. While Muybridge used multiple cameras, Marey devised

a revolutionary method to capture multiple exposures on a single photographic

surface in order to study motion.

Advances in technology, primarily silicon and other sensors, and the contin-

ually lowering cost of video capture and processing, have allowed easier access

to the equipment required for motion capture and broadened the range of appli-

cations. Today, motion capture has applications in diverse fields ranging from

human motion analysis in clinical studies and sports medicine, to animation in

1

1.1 Motivation 2

Figure 1.1: “Woman throwing a ball”, Eadweard Muybridge, Human Locomotion, 1890

the motion picture and video game industries, and human-computer interaction.

The specifications of each of these applications vary in terms of environmental

conditions, accuracy requirements, speed requirements, and complexity of models

used, but they all require the measurement of the pose of the subject in terms of

the various joint angles of the model used.

1.1 Motivation

The state-of-the-art motion capture techniques used today are typically accom-

plished by one of four technologies: optical, magnetic, electro-mechanical or in-

ertial motion trackers. All of them entail the use of some kind of markers in

some form that are worn by the subject. These technologies have a severe dis-

advantage due to the fact that they use external markers that are attached to

the subject. The very presence of these markers can be cumbersome and hinders

the free movement of the subject thereby introducing artifacts in the motion that

1.2 Markerless motion capture system 3

is to be measured. Besides, the placement of these markers requires expertise,

especially in the case of clinical applications, and is time consuming. Markerless

motion capture is a method for motion capture that eschews the use of markers,

instead relying directly on images obtained from multiple cameras placed around

the subject to estimate the pose of the subject. With the current imaging tech-

nology, it is now possible to capture color images using multiple synchronized

cameras at speeds of more than 100 frames per second in a laboratory setting at

a reasonable cost.

1.2 Markerless motion capture system

A motion capture procedure typically consists of the following steps: model es-

timation, pose initialization, and pose tracking as illustrated in Figure 1.2. The

figure describes the relation between the input data, the different algorithms and

their role in the three steps of a motion capture system, and the output of the sys-

tem in terms of the model and pose parameters. In this dissertation, we describe

the components of a complete automatic markerless motion capture system. The

components of the system are further described in the following subsections.

1.2.1 Input to the system

In our markerless motion capture system we use images obtained from multiple

cameras that are placed around the volume of interest in which the subject moves.

We use both 2D data in the form of the original images from the cameras and the

corresponding foreground silhouettes, as well as 3D data in the form of voxels.

The different types of input data are illustrated in Figure 1.3. The foreground

silhouettes are obtained from the original images by performing background sub-

traction. Voxels are points on a 3D grid that lie inside the body and are analogous

to 3D pixels. The voxel data for a frame can be computed by projecting points

on a regular 3D grid onto each of the images and determining whether they lie

1.2 Markerless motion capture system 4

Human Body Pose
3D Articulated

Human Body Model
3D Articulated

Skeleton curves

Foreground Image (2D)

Intensity Image (2D)
3. Pose Tracking

1. Model Estimation

Segmentation

Output

Markerless Motion Capture

Voxel Data (3D)

Input

2. Pose Initialization

Part 3

Part 2

Part 1 Chapter 4

Chapter 5

Chapter 6

Chapter 3

Chapter 3

Figure 1.2: Motion capture system schematic: The relationship between the input data,

algorithms, and the output in our motion capture system. The role of the three steps in

a motion capture system in the whole process is illustrated as are the three main parts

of our work.

inside the silhouette.

1.2.2 Output of the system

Our objective is to estimate both the human body model parameters as well as

the pose of the subject. The human body can be visualized as rigid body segments

attached to each other in articulated chains. Our human body model consists of

six articulated chains; the trunk, the head, the two arms and the two limbs as

illustrated in Figure 1.4. The pose is described in terms of the position of the base

body in the chain and the relative pose of each segment in each chain with respect

to its parent. Given a video sequence, we wish to estimate the parameters of the

articulated human body model, as well as the articulated pose in each frame of

the sequence.

1.2.3 Data processing and algorithms

The estimation of the human body model and pose from the input data involves

a number of steps, including pre-processing images, segmentation of 3D data,

1.2 Markerless motion capture system 5

−400 −200 0 200 400
−200

0
200

200

400

600

800

1000

1200

1400

Figure 1.3: The algorithms use plain images obtained from the cameras, the foreground

images, and the voxel reconstruction that is obtained using space carving.

registration, model estimation, pose initialization and pose tracking. The role

of these algorithms in the motion capture system is illustrated in Figure 1.2.

We divide the algorithms into three parts based on the approaches and their

functionality.

Part 1 One of the key steps is bottom-up segmentation of the voxel data of the

human body into its component articulated chains.

Part 2 The second step is the initialization step where we use top-down tech-

niques to register the segmented articulated chains, and estimate the body

model parameters as well as initialize the pose.

Part 3 The final step is the fusion of the motion cues and the 2D and 3D shape

cues to perform pose tracking using the estimated human body model and

initialized pose.

We note that Part 1 describes a bottom-up approach for segmentation and Part 2

describes a top-down approach to use the primitives obtained in Part 1 to obtain

model and initialize pose. Part 3 tackles the problem of tracking using different

primitives including the segmentation results of Part 1. Marr [36] describes the

1.2 Markerless motion capture system 6

0
200

400
−400 −200 0 200 400

200

400

600

800

1000

1200

1400

1600

1800

(a) Voxel

R. ARM

HEAD

L. LEG

L. ARM

R. LEG

TRUNK

(b) Skeleton curves

0
200

400
−400 −200 0 200 400

200

400

600

800

1000

1200

1400

1600

1800

(c) Skeleton model

0
200

400
−400 −200 0 200 400

200

400

600

800

1000

1200

1400

1600

1800

(d) SQ model

Figure 1.4: Human body models: Illustration of two kinds of models corresponding to

the voxel data. (a) denotes the voxel data of the subject in a frame. (b) denotes the

skeleton curve for each of the articulated chains comprising the human body. (c) is the

skeleton model and (d) is the super-quadric (SQ) model. The skeleton model uses a

subset of the parameters of the complete SQ model.

typical representational framework for deriving shape information from images

which can be extended to 3D data as well.

1.2.3.1 Part 1: Segmentation in Laplacian Eigenspace

One of the key steps in pose and model estimation is the segmentation of the 3D

voxels belonging to different articulated chains of the human body. We consider

the voxels as nodes in a graph and present a novel algorithm for performing the

segmentation by mapping the nodes into the Laplacian Eigenspace (LE) of the

graph they form. The transformation maps the nodes on different articulated

chains to different smooth 1D curves in LE. This allows us to fit a different 1D

spline to nodes (voxels) on different 1D curves (articulated chains) and thus per-

form the segmentation. We prove certain properties of the LE transformation

that show why it is suitable for segmenting objects that consist of non-rigid or

articulated chains. We also compare the LE transformation to other manifold

methods such as Isomap, that are typically used for dimensionality reduction and

1.2 Markerless motion capture system 7

pose invariant transforms. We note that an important by-product of the segmen-

tation is the implicit computation of the position of each node (voxel) along the

1D curve (articulated chain). This enables us to compute a skeleton curve for

that articulated chain, which is a useful feature that is used in all three steps

of the motion capture algorithm; model estimation, pose initialization and pose

tracking.

1.2.3.2 Part 2: Model and pose initialization

Having presented a bottom-up algorithm for segmenting the input voxel data into

the component articulated chains, we use top-down methods to perform pose and

model estimation. While human body dimensional variability is fairly large across

different demographics and sexes, it is not arbitrary. We can use our knowledge of

the structure of the human body to guide pose estimation, towards which end we

use a suitably complex human body model. Following segmentation of voxels using

1D splines in LE, we register each 1D spline to the known articulated chains in the

human body such as the limbs, trunk and head. We use a probabilistic registration

algorithm based on the properties of each articulated chain as well as their mutual

connectivity. A probabilistic approach allows us to easily deal with difficult poses

where there is self-contact. The computed probability of a registration for a given

frame allows us to determine the success of the registration. We use a set of frames

where registration is successful for the model and pose initialization process. The

skeleton curves that were computed for each articulated chain as part of the

segmentation algorithm are used in a hierarchical approach to estimate the pose

and model parameters. We begin with a single parameter, the stature of the

subject and optimize for the stature value that best fits the skeleton curves. We

then use a skeleton model illustrated in Figure 1.4 (c) and optimize for pose and

skeleton model parameters. Finally, we augment our skeleton model using super-

quadric shapes for each rigid segment and the segmented voxel data to compute

the complete SQ-based model illustrated in Figure 1.4 (d).

1.3 Contributions of the dissertation 8

1.2.3.3 Part 3: Pose tracking

The final step in our motion capture system is the tracking of the full body pose of

the subject through the entire sequence. We performed segmentation of the voxels

and computed the skeleton curves in the first part. We obtained the human body

model parameters of the subject and initialized the pose for a set of frames in

the second part. We note that the proposed registration works on a single frame

and typically succeeds only in some of the frames in the sequence. We propose

a temporal registration algorithm that registers the computed skeleton curves to

their corresponding articulated chains for the remainder of the frames. We then

perform tracking using motion cues that include 2D pixel displacement in the

image plane and shape cues that include skeleton curves, foreground silhouettes,

as well as motion residues. It is not always possible to use shape cues to track

pose due to unavailability of reliable cues for the whole or part of the body. These

missing or unreliable cues are caused by faulty segmentation or registration, which

often occur, e.g ., when the limbs are close to the body. Purely silhouette-based

and voxel-based methods typically experience difficulties in such cases, but we are

able to handle such errors as we use motion cues in our tracking algorithm. Shape

based methods, unlike pixel-motion based methods, also have the weakness that

they are often unable to deal with rotation about the axis of the body segment.

On the other hand, pixel motion based tracking methods have their share of

problems, of which, the primary one is that they suffer from drift, as they do not

use absolute features to perform the tracking. Motion and shape cues, therefore,

complement each other and combining both types of cues in the tracking enables

us to overcome the weakness associated with either of the two.

1.3 Contributions of the dissertation

In this dissertation, we have proposed and described algorithms for performing

the key tasks in a markerless motion capture system. Our contribution has been

1.3 Contributions of the dissertation 9

threefold. Firstly, we have proposed a novel segmentation algorithm that can be

used to segment an object consisting of non-rigid chains into its component chains

[67]. The segmentation is performed in Laplacian Eigenspace of the graph of the

object, using a 1D spline fitting algorithm as briefly described in Section 1.2.3.1.

We have proved properties of the Laplacian Eigespace transform [68], that show

that it is ideal for performing the segmentation of non-rigid chains such as the voxel

data of a human body. We show that it can be applied to voxel data of different

human subjects in a variety of poses, including those where there is self contact.

Secondly, we show that it is possible using a top down approach to register the

segmented voxel data of the subject to the model, resolving ambiguities using a

probabilistic formulation. We also estimate the human body model parameters

[65,68] and initialize the pose in a set of frames that have been fully segmented and

registered using a hierarchical approach as outlined in Section 1.2.3.2. We provide

results of the registration, model estimation and pose estimation algorithms on an

array of subjects, whose voxel data have been obtained from different sources such

as images, 3D scans and synthetic sequences. Thirdly, we show that we can use

the estimated human body models and initialized pose in order to track the pose

of the subject in an entire sequence using complementary cues such as motion

and shape [69]. We formulate the pixel velocity, under perspective projection

camera models, as a linear function of the pose velocity [70], and hence propose

an iterative algorithm to estimate the change in pose from pixel displacement [66].

The estimated pose is corrected using both 2D and 3D shape cues. The use

of motion and shape cues, which are complementary, in a predictor-corrector

framework enables us to overcome common problems in tracking such as drift and

local minima.

1.4 Organization of the dissertation 10

1.4 Organization of the dissertation

The dissertation is organized as follows. We present a brief survey of pose estima-

tion and tracking algorithms in computer vision and compare our algorithm with

existing and related algorithms in Chapter 2. We briefly describe the processing

of the input image data to compute foreground silhouettes, and 3D voxels that

we use in our work in Chapter 3. We also describe some of the common human

body models in the literature as well as describe the details of our articulated

human body model and the associated pose vector. The first part of our system,

in which we motivate and describe the use of the Laplacian Eigenspace mapping

to perform the segmentation of voxels is presented in Chapter 4. The second part

which includes single frame registration of the segmented voxels, as well as model

and pose initialization is presented in Chapter 5. The pose tracking algorithm

using 2D and 3D shape and motion cues is described in Chapter 6. We conclude

with a summary of our contributions, suggest extensions to our motion capture

system and outline future research directions in Chapter 7. An outline of Hydra,

a portable multi-camera capture system that has been designed for motion anal-

ysis is presented in Appendix A. Appendix B describes the eigenvectors of simple

graphs and Appendix C explores the possible solutions to the eigenvalues of the

Laplacian of the extended tree graph.

Chapter 2

Related work

Pose estimation from images and video sequences has been steadily gaining in

importance in the last decade. The last few years especially have seen rapid

progress in the development of pose estimation algorithms targeting a wide range

of applications. These algorithms can be quite different depending on the scope of

the application as well as the kind of input data available. Most computer vision-

based pose estimation algorithms target applications where it is required to obtain

an approximate estimate of the pose from either a single image or a monocular

video stream. Segmentation of the image into different, possibly self-occluding,

body parts and tracking them is an inherently difficult problem especially due

to the complex articulated structure of human beings as well as the ambiguity

introduced by the kinematic singularity problem. Recently, there has been more

of a focus on performing pose estimation using images from multiple cameras,

with a view to replacing marker-based motion capture techniques with markerless

techniques. These methods target applications requiring complete articulated 3D

pose of the subject in controlled environments and using multiple camera images

and typically use a human body model to guide pose estimation. It is therefore

necessary to estimate the human body model parameters as well.

Gavrila and Davis [22], Aggarwal and Cai [1], Moeslund and Granum [40],

and, more recently, Wang et al . [76] and Sigal and Black [61] provide surveys of

human motion pose tracking and analysis methods. We describe in this chapter

some specific works in human body model and pose estimation and pose tracking

related to our own. We list some bottom-up segmentation techniques based on

manifold and graph methods in Section 2.1. We then describe some methods

11

2.1 Segmentation of human body volume data 12

that use volumetric data for both human body model and pose estimation in

Section 2.2. Finally, we cover a broad range of tracking algorithms that primarily

use silhouettes and image based methods for tracking and pose estimation in

Section 2.3.

2.1 Segmentation of human body volume data

Most techniques for segmentation of human body volume data for pose estima-

tion use voxel data. Voxel data naturally lends itself to graph-based methods for

analysis, and in particular, segmentation. The human body can be visualized as

consisting of 1D chains embedded in 3D space. There are a number of dimen-

sionality reduction techniques to analyze such structures. Belkin and Niyogi [5]

describe the construction of a representation for data lying in a low dimensional

manifold embedded in a high dimensional space and use Laplacian Eigenmaps for

dimensionality reduction. Lafon and Lee [33] present Diffusion Maps, a variant

on Laplacian Eigenmaps which uses a Gaussian kernel of width σ to construct a

weighted graph and normalizes the Laplacian operator. Two other popular dimen-

sionality reduction techniques are Isomaps proposed by Tenenbaum et al . [73] and

Locally Linear Embedding (LLE) proposed by Roweis and Saul [56]. There also

exist other methods such as charting a manifold proposed by Brand [6] and Ker-

nel Eigenvalue analysis [57]. Elad and Kimmel propose an algorithm for reducing

articulated objects to pose-invariant structure [20]. Weiss [77] presents a unifying

view on segmentation using eigenvectors. Belkin and Niyogi analyze the relation

between Laplacian Eigenmap embedding and Locally Linear Embedding [56]. The

Laplacian Eigenmap also has similarities to Normalized Cuts proposed by Shi and

Malik [58]. Laplacian Eigenmap and other manifold methods have been applied

to dimensionality reduction problems such as classification and face retrieval, e.g .,

Laplacianfaces [26]. However, we actually map the voxels to a higher dimensional

space in order to extract the 1D manifold that the articulated chain segments lie

2.2 Human pose estimation from 3D data 13

on. The dimension of the Laplacian Eigenspace depends on the number of chains

we wish to segment. Xiao et al . [79] and Werghi et al . [78] propose a Reeb graph

approach based on Geodesic distance in order to segment 3D scans of human

bodies in various postures.

2.2 Human pose estimation from 3D data

A popular class of algorithms [13, 38, 44, 67] uses voxels in order to perform pose

estimation. We use a voxel based algorithm [67] in order to perform pose initial-

ization and model estimation. However, typically, voxel-based algorithms can be

used for pose initialization in only a limited number of frames in the sequence.

There usually are frames in a sequence where errors in the voxel reconstruction

due to noise in the background silhouettes, or segmentation, result in missing

body segments. The stand-alone registration, therefore, fails in these frames.

We also look at some existing methods that use either motion-based methods

or silhouette or edge based methods to perform tracking. A large number of pose

estimation algorithms uses a single image or single image stream to estimate the

pose of the subject or use simplified models. Several pose tracking algorithms also

assume that the initial pose is known. While we list pose estimation algorithms

that use single cameras, we concentrate on works that estimate 3D pose using im-

ages obtained from multiple cameras. The accuracy and the robustness of these

algorithms vary as does the suitability of the algorithms for different applications.

There are several methods to estimate pose from a single view [55, 52, 54, 42]

or images from multiple cameras [28, 38, 13, 11, 9]. Specifically the algorithms

in [38, 13, 11] estimate the pose from voxel representations. Carranza et al . [9]

describe a system that uses multi-view synchronized video footage of an actor’s

performance to estimate the motion parameters and to interactively re-render the

actor’s appearance from any viewpoint. Chu et al . [13] describe a method for

pose estimation using Isomaps [73] to transform the voxel representation of the

2.2 Human pose estimation from 3D data 14

human body to a pose-invariant intrinsic space representation and thus compute

the skeleton. Cheung et al . [11] extend shape-from-silhouette methods to artic-

ulated objects. Given silhouettes of a moving articulated object, they propose

an iterative algorithm to solve the simultaneous assignment of silhouette points

to a body part and alignment of the body part. These methods work well with

poses such as those in Figure 5.2 (a), but they are usually unable to handle poses

(Figure 5.2 (c)) where there is self-contact, i.e., one or more of the limbs touches

the others. Anguelov et al . [2] describe an algorithm that automatically decom-

poses an object into approximately rigid parts, their location, and the underlying

articulated structure given a set of meshes describing the object in different poses.

They use an unsupervised non-rigid technique to register the meshes and perform

segmentation using the EM algorithm. Krahnstoever [32] addresses the issue of

acquiring articulated models directly from a monocular video. Structure, shape

and appearance of articulated models are estimated, but this method is limited in

its application as well as accuracy in extracting complete 3D human body models

as it uses a single camera. Algorithms that estimate the complete human body

model from multiple views are presented in Mikic et al . [38] and Kakadiaris et

al . [28]. Mikic et al . [38] propose a model acquisition algorithm using voxels,

which starts with a simple body part localization procedure based on fitting and

growing templates computed using the shapes and dimensions of average body

parts. Kakadiaris and Metaxas [28] present a Human Body Part Identification

Strategy (HBPIS) that recovers all the body parts of a moving human based on

the spatio-temporal analysis of its deforming silhouette using input from three

mutually orthogonal views. However, they specify a protocol of movements that

the subject is required to go through.

Our segmentation algorithm can also be viewed as a skeletonization algorithm,

that obtains the skeletons of the individual articulated chains. Brostow et al .

[8] present a skeletonization method that uses voxel data to estimate a novel

skeleton representation using spines. We model the human body as a set of

2.3 Human pose tracking 15

rigid body segments that are connected to each other at specific joints forming

kinematic chains originating from the trunk. Badler et al . [3] suggest several

methods to represent human subjects in terms of their shape as well as their

articulated structure. We find that using modified super-quadrics to represent

shapes [23] is reasonably accurate for our purposes, although our approach can

accommodate more sophisticated mesh-models if the data is accurate enough and

if the application demands it.

2.3 Human pose tracking

Pixel flow is used by a number of tracking algorithms to track articulated pose.

Barron et al . [4] present a survey of optical flow methods. Yamamoto and

Koshikawa [80] analyze human motion based on a robot model and Yamamoto

et al . [81] track human motion using multiple cameras. Gavrila and Davis [23]

discuss a multi-view approach for 3D model-based tracking of humans in action.

They use a generate-and-test algorithm in which they search for poses in a param-

eter space and match them using a variant of Chamfer matching. Ju et al . [27] use

planar patches to model body segments. The motion of each patch is defined by

eight parameters. For each frame the eight parameters are estimated by applying

the optical flow constraint on all pixels in the predicted patches. Bregler and Ma-

lik [7] use an orthographic camera model and use optical flow to track pose using

twists and exponential maps. Morris and Rehg [43] and Rehg et al . [53] describe

ambiguities and singularities in the tracking of articulated objects and Cham and

Rehg [10] propose a 2D scaled prismatic model. Sidenbladh et al . [59] provide a

framework to track 3D human figures using 2D image motion and particle filters

with a constrained motion model that restricts the kinds of motions that can be

tracked. Kakadiaris and Metaxas [29] use silhouettes from multiple cameras to

estimate 3D motion. Plänkers and Fua [51] use articulated soft objects with an

underlying articulated skeleton as a model and use stereo and silhouette data for

2.3 Human pose tracking 16

shape and motion recovery. Theobalt et al . [74] project the texture of the model

obtained from silhouette-based methods and refine the pose using the flow field.

Delamarre and Faugeras [18] use 3D articulated models for tracking with silhou-

ettes. They use silhouette contours and apply forces to the contours obtained from

the projection of the 3D model so that they move towards the silhouette contours

obtained from multiple images. Cheung et al . [11] use shapes from silhouette to

estimate human body kinematics. Chu et al . [13] use volume data to acquire and

track a human body model. Wachter and Nagel [75] track persons in monocu-

lar image sequences. They use an IEKF with a constant motion model and use

edges to region information in the pose update step in their work. Moeslund and

Granum [39] use multiple cues for model-based human motion capture and use

kinematic constraints to estimate the pose of a human arm. The multiple cues

are depth (obtained from a stereo rig) and the extracted silhouette, whereas the

kinematic constraints are applied in order to restrict the parameter space in terms

of impossible poses. Sigal et al . [62, 60] use non-parametric belief propagation to

track in a multi view set up. Lan and Huttenlocher [34] use hidden Markov tem-

poral models. DeMirdjian et al . [19] constrain pose vectors based on kinematic

models using SVMs. Rohr [55] performs automated initialization of the pose for

single camera motion. Krahnstoever [32] addresses the issue of model acquisition

and initialization. Mikic et al . [38] automatically extract the model and pose using

voxel data. Ramanan and Forsyth [52] also suggest an algorithm that performs

rough pose estimation and can be used as an initialization step. Sminchisescu

and Triggs present a method for monocular video sequences using robust image

matching, joint limits and non-self-intersection constraints [64]. They also try to

remove kinematic ambiguities in monocular pose estimation efficiently [63].

We present a complete initialization and tracking algorithm that uses both

shape as well as motion cues to estimate and track the pose. Spatial cues are

absolute and prevent drift in the tracking, but it is not possible to extract reliable

spatial cues in each frame. We therefore base our tracker on motion cues, which

2.3 Human pose tracking 17

can be computed in every frame, using spatial cues to correct the drift. We also

present a novel method to use spatial cues such as silhouettes and motion residues.

It is also possible to incorporate other spatial cues such as edges in our method.

We note that we do not constrain the motion or the pose parameters for specific

types of motion and hence our method can be used to track any kind of motion

and is quite general.

2.3 Human pose tracking 18

Chapter 3

Input data and output variables

We describe in this chapter the input data used in our human motion capture

system as well as the details of our human body model and the associated pose

parameter. The input data consists of images from several synchronized cameras,

the corresponding foreground silhouettes, and voxel data. The voxel data serves

as an input layer abstraction for some of the proposed algorithms. Pre-processing

steps for computing silhouettes and voxels are described in Section 3.1, and the

human body model that we use in our work along with the corresponding pose

vector is described in Section 3.2.

3.1 Input data

The basic input data we use in our system are synchronized images from multiple

cameras. Each image from each camera is processed to obtain the foreground

silhouettes and the voxels that are described in the subsections that follow. An

example of the various steps in the processing of the images is illustrated in Fig-

ure 3.1. The original images and silhouettes also serve as inputs to the tracking

algorithm.

3.1.1 Image acquisition

The images are obtained from multiple synchronized cameras. The images can be

gray-scale or color. Background subtraction algorithms perform better on color

images, but optical flow or pixel displacement algorithms typically operate on

gray-scale images. The cameras are completely calibrated, i.e., their internal and

19

3.1 Input data 20

=⇒
Background

subtraction

=⇒
Space

carving

−400 −200 0 200 400
−200

0
200

200

400

600

800

1000

1200

1400

Figure 3.1: The images obtained from the cameras are processed to obtain the fore-

ground images and voxel data. Foreground silhouettes are obtained using background

subtraction, and the voxels are obtained using space carving.

external calibrations are known. The camera calibration parameters are obtained

in three steps. In the first step, the internal parameters are obtained using the

OpenCV 1 library functions. In the second step, the external calibration parame-

ters are computed using the algorithm [72] proposed by Svoboda.2 The method

uses an LED pointer which is moved around in the volume of interest. The algo-

rithm uses the previously computed internal calibration parameters and computes

the external parameters up to a scale. In the third step, the scale and a reference

world frame are determined using a separate calibration device. We thus compute

the complete calibration parameters of the cameras. In our system the radial

distortion parameters are very small and are ignored.

3.1.2 Computing silhouettes

The foreground silhouettes are computed using simple background subtraction

techniques. An average background image is obtained for each camera from a

video sequence of the static background. The threshold image is computed using

the standard deviation of the background sequence as well as the intensity of

the background image. Given a new image, the average background image is

1The library can be downloaded from http://sourceforge.net/projects/opencvlibrary/
2The software can be downloaded from http://cmp.felk.cvut.cz/∼svoboda/SelfCal/.

http://sourceforge.net/projects/opencvlibrary/
http://cmp.felk.cvut.cz/~svoboda/SelfCal/

3.1 Input data 21

subtracted from the image and a given pixel in the difference image is set to

be 1 if it is greater than the threshold image. The resulting binary image is

passed through a morphological filter to remove isolated noisy patches. It is

to be noted that as the number of cameras used in the system increases, the

accuracy of the background subtraction algorithm becomes less important as far

as the computation of the voxel is concerned. We also note that the background

subtraction algorithm can be made completely parallel.

3.1.3 Computing voxels

A voxel image of a subject is a set of points on a regular 3D grid that lies inside

the body of the subject. If a given voxel (3D point) is inside the body of the

subject, then it lies inside the silhouette in all the images. We can therefore

project all points on the 3D grid in the volume of interest onto all the foreground

silhouettes and declare a 3D point to be a voxel if it lies inside the silhouette in

all the images. In order to deal with errors in the background subtraction, we

use a slightly modified algorithm to compute the voxels. Let us assume that we

have images from N cameras. A voxel is considered to be part of the subject if

it falls inside the silhouette in at least N −M images, where 0 ≤ M ≤ N . We

can set M = 0 if the background subtraction is very good. If we set M > 0, we

gain robustness in voxel construction at the expense of accuracy. For instance,

if the background subtraction in one of the images labels part of the body as

background, that part of the body goes missing in voxel construction if M = 0,

but is present if M > 0. In a practical scenario, we can set the value of M

depending on the number of cameras in the system and the performance of the

background subtraction algorithm. In our experiments, we set M as

M =







0 if N ≤ 8,

1 if 8 ≤ N < 12,

2 if N > 12.

(3.1)

3.2 Human body model and pose 22

3.2 Human body model and pose

A human body model is used to guide the pose estimation in a large number of

algorithms and it is advantageous to use a flexible, scalable human body model

whose parameters can be easily estimated. We describe the class of human body

models that we use in our system in Section 3.2.1 and compare it to popular human

body models in the literature. Each body segment is described by a modified

super-quadric described in Section 3.2.2. The pose of a subject is described in

terms of the human body model and we describe the pose parameter with respect

to our human body model in Section 3.2.3.

3.2.1 Human body model

Badler et al . [3] provide a detailed analysis of the different kinds of human body

models that can be used. Figure 3.2 illustrates some of the models that have been

used in the literature including super-quadrics [23], polyhedrons [81], ellipsoids

[38], and cylinders [59]. The most flexible among the parametric models is the

super-quadric based model proposed by Gavrila and Davis [23]. We build upon

their super-quadric model incorporating flexibility in the motion as well as adding

detail in terms of the number of body segments.

(a) Cylinders (b) Polyhedrons (c) Ellipsoid (d) Super-quadric

Figure 3.2: The different shape models to represent the human body: (a) Cylinder (b)

Polyhedrons and (c) Ellipsoid (d) Super-quadric based models

The human body model that we use is illustrated in Figure 3.3 (a) with the

3.2 Human body model and pose 23

different body segments labeled. We model the human body as consisting of six ar-

ticulated chains, namely the trunk (lower trunk, upper trunk), head (neck, head),

two arms (upper arm, forearm, palm) and two legs (thigh, leg, foot) connected

at joints as illustrated in the figure. The articulated chains are composed of rigid

segments. Each rigid body segment is represented in its own coordinate reference

frame that is attached to it and can be described in general by an arbitrary con-

vex 3D mesh-model in terms of its frame coordinates, and in our case is modeled

using a modified super-quadric. The modified super-quadric [65] is described in

Section 3.2.2. The joint location of a body segment is described as a vector in

the coordinate frame of its parent segment. We model the body segments as hav-

ing a single joint location; joints such as the shoulder joint that are compound

joints are modeled as joints with translation. The human body model consists of

the joint locations and parameters of the modified super-quadrics describing each

rigid segment. Our model takes into account the underlying skeleton structure

and flexibility of the human body model. The trunk is represented using two

segments in order to model the flexibility of the spine. The model can be simpli-

fied to a skeleton model using just the axes of the super-quadrics as illustrated in

Figure 3.3 (b). Each body segment can, in general, move freely with respect to

its parent segment. However, we impose constraints on the translational motion

of most of the joints. The details of these constraints are elaborated upon when

we discuss the pose vector in Section 3.2.3.

While there exists considerable human dimensional variability across different

demographics and sexes, it is not arbitrary. The stature (height) of the subject is a

parameter that is strongly related to a number of human body model parameters,

such as the lengths of long bones in the body [50]. Anthropometric studies have

been performed on certain demographic groups to study the relationship between

stature and the long bones in the body [12,37]. These studies indicate that we can

construct the skeleton for an average subject given the stature alone. The super-

quadric parameters of the subject can also be estimated for an average subject.

3.2 Human body model and pose 24

LEFT FOOT

LEFT THIGH

LEFT LEG

LEFT ARM

TRUNK LOWER

TRUNK UPPER

LEFT FOREARM

LEFT PALM

HEAD
NECK

(a) Super-quadric model (b) Skeleton model (c) Voxel data

Figure 3.3: Human body model: (a) Super-quadric human body model, (b) Skeleton

model which uses a subset of the body model parameters, (c) Voxel data of the subject

whose body model is illustrated.

Thus we see that we can construct a complete human body model for an average

subject given just one parameter, the stature of the subject. We can also use a

build parameter that is a scalar in [0.9, 1.1], where a low value indicates a slim

build and a high value indicates a broad build.

3.2.2 The modified super-quadric segment

The modified super-quadric illustrated in Figure 3.4 and described in (3.2), is

characterized by five parameters x0, y0, z0, d, and s. If sliced in a plane parallel

to the xy plane, the cross section is an ellipse with parameters x0r(z) and y0r(z),

i.e.,

(
x

x0

)2

+

(
y

y0

)2

= r2(z). (3.2)

The scale parameter, s, denotes the amount of taper of the radial profile r(z), and

the degree parameter, d, denotes the curvature of the radial profile, r(z)
√
x0y0,

along the z-axis. The radial profile, r(z), is a function of the z-coordinate z, z0,

3.2 Human body model and pose 25

z−axis

y−axis

x−
ax

is
z0

y
0

x
0

z0

αy0

αx0

Figure 3.4: Super-quadric segment

s and d and is given by

r2(z) =

(

1 + s
z

z0

)(

1−
(

1− 2
z

z0

)d
)

, 0 ≤ z ≤ z0. (3.3)

The family of modified super-quadrics as defined above includes common geomet-

ric shapes such as cylinders, cones and ellipsoids. For instance, an ellipsoid has

d = 2, s = 0, a right elliptical cylinder has d = ∞, s = 0, and a right-elliptical

cone has d =∞, s = −1.

3.2.3 The pose vector

The position of a body segment is given in terms of the position of its attached

coordinate frame with respect to its parent segment and is represented by a trans-

formation matrix, G. G is represented in homogeneous 3D coordinates and is a

function of both the pose vector and the body model. In general, any transfor-

mation matrix has six degrees of freedom and can be expressed as a function of

a rotational component, ω, and a translational component, p. The pose vector

for a body segment comprises both components and is given by ϕ = (p
ω). G is

expressed as

G(p,ω) =




R p

0′ 1



 =




eω̂ p

0′ 1



 , (3.4)

3.2 Human body model and pose 26

where

ω̂ =







0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0






. (3.5)

We drop the dependence on the rotational and translational vectors in certain

instances for the sake of simplicity. The relation between body segments in a

kinematic chain is illustrated in Figure 3.5. The figure illustrates five segments

attached in an articulated chain. The root of the chain is referred to as the base

body and is labeled 1. All body segments are attached to the base body in a

kinematic chain and have, in general, six degrees of freedom with respect to their

parent segments. If the translation component of all segments is constrained to be

zero, as it is in the the case of most joints, it results in a pure articulated structure.

Gij represents a transformation matrix of a point from the coordinate frame of

segment j to the coordinate frame of segment i. Note that index 0 refers to the

world reference frame and G0i is the transformation between the world reference

frame and segment i. G01 represents the transformation matrix of the base body

to the world reference frame. The position of the ith segment with respect to the

world reference frame is therefore given by

G0i = G01G12 · · ·G(i−1)i. (3.6)

The position of each body segment with respect to its parent is described by

a combination of body model and pose parameters. We use the superscript S

to denote a structure parameter of the body and P to denote a pose parameter.

For instance, pS is a joint location and is part of the body model, while pP is

the translational pose at the joint and is part of the pose vector. We consider

the position of segment i with respect to its parent. i = 3 in the example in

Figure 3.6 which illustrates the articulated structure as a function of pose. In

general, segment i is connected to its parent at joint i, whose location is given

3.2 Human body model and pose 27

(a) Super-quadric segments

Segment 1

Segment 2
Segment 4

Segment 5

Segment 3

G01

G12

G23

G34 G45

(b) Segment coordinate frames

Figure 3.5: Articulated structure and the relative positions of body segments in a chain:

(a) The actual super-quadric body segments and (b) The coordinate frame attached to

each of the rigid segments. The red, green, and blue axes together describe the pose of

the coordinate frame for each segment.

by p(i)S in the coordinate frame of the parent. The position of segment i in the

coordinate frame of segment i− 1 is given by G(i−1)i which is a function of the

joint location and the pose parameter and is given by

G(i−1)i =

Structure
︷ ︸︸ ︷

G(p(i)S,0)

Pose
︷ ︸︸ ︷

G(p(i)P ,ω(i)P) . (3.7)

For a strictly articulated body, p(i)P = 0 ∀ i > 1. However, not all joints

can be modeled accurately using only rotational motion. The shoulder joint, for

instance, is actually a complex joint and is better modeled as multiple rotational

joints [21, 25]. In order to model complex joints such as the shoulder joint, we

allow limited translation at those joints such that

‖p(i)S‖ < pMAX, (3.8)

where i denotes complex joints.

It is desirable to constrain the translation component to be zero at most joints

in order to minimize the number of parameters while realistically modeling the

3.2 Human body model and pose 28

Segment 3

GS = G(pS,0)p
S

(a) Body model (pS)

Segment 3(pP ,ωP)

GP = G(pP ,ωP)

(b) Pose (pP , ωP)

Figure 3.6: Articulated structure and the relative positions of a body segment as a

function of the body model and pose. The position of the body segment as a function

of (a) The body model and (b) the pose vector.

human body. Our human body model consists of sixteen rigid segments (as is

illustrated in Figure 3.3). The pose of segment i is given by ϕ(i) =
(

p(i)P

ω(i)P

)

and

the complete pose vector is given by

Φ =

(
ϕ(1)

...
ϕ(16)

)

. (3.9)

Chapter 4

Segmentation in Laplacian Eigenspace

One of our first objectives in pose estimation from 3D data is to segment the voxel

(volumetric) data into different body segments. As a first step, we segment the

volumetric data into its component articulated chains. In other words, we aim

to segment the voxel structure of the subject at joints such as shoulders, hips,

and neck as these are the joints where three or more body segments meet. We

describe, in this chapter, a novel technique for segmenting non-rigid (including

articulated) chains of any object using the Laplacian Eigenspace (LE) transform.

There are several advantages to performing segmentation in LE rather than the

3D world the voxels reside in. The transform is based on the graph on the voxels

(nodes) where the edges between the nodes of the graph are between neighboring

voxels. The eigenvectors of the Laplacian of the adjacency matrix of the graph are

used to effect the transform to Laplacian Eigenspace. We particularly focus on

the human body that is comprised of articulated (non-rigid) chains connected at

joints. We show that mapping to LE is a natural choice for segmenting the human

body into its component articulated chains. The mapping of voxels to LE achieves

two important objectives. Firstly, the effect of pose is minimized because the LE

transform depends on the connectivity of voxels, which is minimally affected by the

articulation at joints. Secondly, the transform maps voxels belonging to different

chains (such as the limbs in the human body) to points on separate, smooth,

1D curves in LE according to their position along the articulated chain. It is

this important property that allows us to fit a 1D spline to the voxels belonging

to an articulated chain and differentiates the LE transform from other manifold

techniques such as Isomaps [73] or LLE [56]. We prove these properties of LE using

29

4.1 Mapping to Laplacian Eigenspace 30

simple representative graphs and show that the LE transform is optimal from the

point of view of mapping points to 1D curves in the case of graph structures

composed of grid graphs. We finally describe how to exploit the structure of the

voxels in LE by fitting 1D splines to the voxels in order to perform the actual

segmentation. We present results of the segmentation on subjects with different

body structures and different poses illustrating the efficacy of the LE transform

on real world data.

The segmentation in LE using 1D spline plays a key role in our motion capture

system as it provides an effective bottom-up segmentation of the voxels that can

be exploited by higher level algorithms for tasks such as model and pose initial-

ization as well as pose tracking. In some of the sections that follow, we describe

the segmentation in LE in the context of segmenting the voxel data of a human

subject. We note that the method is not limited to human body segmentation

although that is our primary objective in this work. We begin with the map-

ping of the voxels to Laplacian Eigenspace in Section 4.1. The properties of the

Laplacian Eigenvectors of two special types of graphs are explored in Section 4.2,

and motivate our segmentation algorithm based on these properties. We compare

the LE transform to other manifold techniques for dimensionality reduction, and

in particular to the Isomap, in Section 4.3 and show why LE transform is the

most suitable for our purpose. We describe the segmentation algorithm in LE

with examples in Section 4.4. Finally, we describe how to compute the skeleton

curve of the object using the output of the segmentation algorithm in Section 4.5

and present the results of the segmentation on data from different subjects in

Section 4.6.

4.1 Mapping to Laplacian Eigenspace

The mapping to Laplacian Eigenspace is described in Table 4.1 and illustrated

using the example in Figure 4.1. The example highlights certain features of the

4.1 Mapping to Laplacian Eigenspace 31

(a) Nodes in image (b) Eigenvectors 1-3 (c) Eigenvectors 4-6

Figure 4.1: Example 2D object with multiple chains of varying thickness and self contact

mapped to LE. (a) The nodes in the graph. (b) and (c) denote the nodes in 6D LE.

transform. The 2D object in the figure consists of several non-rigid chains of

varying widths and lengths connected at a single joint. The different chains are

color-coded for the purpose of illustration and no distinction based on color is

used in the mapping. One of the chains (colored in red) loops around, i.e., has

self-contact and one of the chains (green) has a sharp “bend”.

The object is sampled on a regular grid and the graph G(V,E) that describes

the connectivity between neighboring nodes in Figure 4.1 (a) is computed. Al-

though the nodes lie on a 2D plane in this example, they could lie in any high

dimensional space as long as we are able to compute G(V,E). We assume that

the graph G(V,E) is completely connected, otherwise we choose the biggest con-

nected component. The eigenvalues of L (Table 4.1, step 3) are positive and real,

as L is positive semi-definite and symmetric. Chung [14] shows that the small-

est eigenvalue of L, λ0 = 0 and the corresponding eigenvector x0 = 1. If G is

fully connected, then λ1 > 0. The ith row of Y (Table 4.1, step 5) provides the

embedding, yTi , for the ith node.

Belkin and Niyogi [5] show that the Laplacian Eigenspace embedding described

in Table 4.1 is optimal when we wish to obtain yi such that the distance between

neighbors,

∑

i,j

‖yi − yj‖Wij = tr
(
Y TLY

)
, (4.1)

4.1 Mapping to Laplacian Eigenspace 32

1. Compute the W matrix, such that

Wij =







1, if i is a neighbor of j,

0, otherwise.

2. Compute the D matrix, so that Dii =
∑m

k=1 Wik and Dij = 0 for i 6= j.

3. Compute the Laplacian matrix, L, so that L = D −W .

4. Compute d eigenvectors of L, x1,x2, · · · ,xd, where Lxi = λixi and

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λd ≤ · · · ≤ λm−1.

5. Node i is mapped to yi, where

Ym×d =
(

x1 x2 · · · xd

)

=








y′1
...

y′m








.

Table 4.1: Mapping nodes to Laplacian Eigenspace

4.2 Properties of Laplacian eigenvectors 33

is minimized, where Wij is defined in Table 4.2. They impose the constraint

Y TY = I to remove an arbitrary scaling factor. In addition to the distance min-

imizing property, the Laplacian Eigenvectors also possess certain properties that

are described in Section 4.2, and motivate our segmentation algorithm described

in 4.4.

4.2 Properties of Laplacian eigenvectors

We make the following observations about the Laplacian Eigenvectors based on

the example in Figure 4.1 and justify them by analyzing the properties of the

Laplacian Eigenvectors of special types of graphs such as the extended star graph

and the grid graph.

1. Nodes on different chains are mapped to points on different curves in LE

such that each of the curves can be discriminated from the others. We note

that the discriminative capability of the LE transform improves with the

dimension of the eigenspace. We observe that the position of each node

along the 1D curve also encodes the position of that node along the 1D

body part.

2. Nodes belonging to a given chain are mapped to points along a smooth 1D

curve irrespective of the thickness of the chain to which they belong as shown

in Figure 4.1 (b)-(c). The 1D structure is retained in the higher dimensions.

The first observation is justified using extended star graphs in 4.2.1 and the second

is justified using grid graphs in 4.2.2.

4.2.1 Eigenvectors of extended star graphs

We define extended star graphs as graphs that are composed of n > 2 chains (or

path graphs) connected at one end to a common node as illustrated in Figure 4.2.

The path graph, Pm, is a graph on m vertices with an edge set EPm
= {(i, i+1)|i =

4.2 Properties of Laplacian eigenvectors 34

0, 1, · · · ,m − 2}. The ring graph, Rm, has the edge set ERm
= {(i, (i + 1) mod

m)|i = 0, 1, · · · ,m− 1}. These two graphs, and the path graph in particular, are

the basic building blocks for the special graphs that we consider and we describe

the properties of their Laplacian Eigenvectors in Appendix B.

x
j
1

x
j
2

xj
mj

x0 x0

1
x0

2
x0

m0
xn−1

mn−1
xn−1

2
xn−1

1

(a) Extended star graph

−0.2
0

0.2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) Symmetric case

−0.1
0

0.1
0.2

0.3

−0.3−0.2−0.100.10.20.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) Asymmetric case

Figure 4.2: The structure of the extended star graph with the nodes labeled in (a).

Examples of both symmetric and asymmetric extended star graphs with n = 4 in LE.

(b) mj = 7 in the symmetric case, and (c) mj = {11, 8, 7, 6} in the asymmetric case.

Nodes belonging to different chains are colored differently.

The jth chain has mj + 1 nodes (including the common node) and hence there

are a total of r + 1 nodes where r =
∑n−1

j=0 mj. Let x =
(
x0 x1 ··· xr

)T
be an

eigenvector of the Laplacian matrix. The node with index
∑j−1

l=0 ml + i, i.e., the

ith node (i = 1, 2, · · · ,mj) in the jth chain (j = 0, 1, · · · , n − 1) is labeled x
(j)
i

for the sake of clarity in representation. x
(j)
0 (j = 0, 1, · · · , n − 1) represents

x0. The graph is asymmetric in general, i.e., mi 6= mj for i 6= j. The graph is

symmetric if m0 = · · · = mn−1 = m. We analyze the structure of the eigenvectors

corresponding to the smallest non-zero eigenvalues in both the general asymmetric

case and the special symmetric case.

The Laplacian Eigenvector, x, needs to satisfy Lx = λx, from the rows of

4.2 Properties of Laplacian eigenvectors 35

which we get the following equations.

nx0 −
n−1∑

j=0

x
(j)
1 = λx0 (4.2)

2x
(j)
i − x(j)

i−1 − x(j)
i+1 = λx

(j)
i , 1 ≤ i < mj, 0 ≤ j ≤ n− 1 (4.3)

x(j)
mj
− x(j)

mj−1 = λx(j)
mj
, 0 ≤ j ≤ n− 1 (4.4)

We note that (4.3) and (4.4) are similar to the equations for the path graph, Pm,

and the ring graph, Rm, respectively (Appendix B). We can verify by substitution

that the set of equations in (4.3) is satisfied by a solution of the form

x
(j)
i = βj sin

(
θj + ϕi

)
for 0 ≤ i ≤ mj, 0 ≤ j ≤ n− 1. (4.5)

The corresponding eigenvalue, λ, is given by 2− 2 cosϕ. We can show that there

exists r eigenvectors of the form described in (4.5) and therefore all eigenvectors

satisfy (4.5). We note that (4.5) satisfies (4.4) if x
(j)
m = x

(j)
m+1, i.e.,

βj sin
(
θj + ϕmj

)
= βj sin

(
θj + ϕ(mj + 1)

)
(4.6)

θj =
π

2
− ϕ

2
(2mj + 1) (4.7)

Since x
(0)
0 , x

(1)
0 , · · · , x(n−1)

0 all represent the same point, we have

β0 sin(θ0) = β1 sin(θ1) = · · · = βn−1 sin(θn−1). (4.8)

Finally, substituting (4.5) in (4.2), we have

nβ0 sin θ0 −
n−1∑

j=0

βj sin
(
θj + ϕ

)
= (2− 2 cosϕ)β0 sin θ0. (4.9)

We consider the general asymmetric case in Section 4.2.1.1 and the special

symmetric case in Section 4.2.1.2.

4.2.1.1 Asymmetric extended star graph

In the general asymmetric case, mi 6= mj. If sin θj = 0 for some j, then from (4.8),

we have sin θj = 0 ∀j. If sin θj 6= 0, then it follows from (4.8) that βj = 1/ sin θj

4.2 Properties of Laplacian eigenvectors 36

and from (4.9), we get

n−
n−1∑

j=0

sin(θj + ϕ)

sin(θj)
− (2− 2 cosϕ) = 0, or (4.10)

n−
n−1∑

j=0

(
cosϕ+ sinϕ cot θj

)
− 2 + 2 cosϕ = 0, or (4.11)

using (4.7)

n−1∑

j=0

((

1− 2

n

)

(1− cosϕ)− sinϕtan(ϕlj)

)

= 0, or (4.12)

n−1∑

j=0

f(ϕ, lj) = 0, (4.13)

where lj = mj + 1/2 and

f(ϕ, lj) =

(

1− 2

n

)

(1− cosϕ)− sinϕtan(ϕlj). (4.14)

We prove in Appendix C that f (ϕ, lj) is monotonically decreasing in [0, π] except

at points of discontinuity that occur at π(2k + 1)/(2lj) for k = 0, 1, · · · ,mj − 1.

The sum of monotonically decreasing functions is also monotonically decreasing.

The eigenvalue, 2 − 2 cosϕ, is a monotonically increasing function of ϕ in [0, π].

Therefore, the smallest eigenvalues correspond to the smallest values of ϕ that sat-

isfy (4.13). Let m0 > m1 > · · · > mn−1. Examining the interval
[

0, 2π
2 max(mj)+1

]

,

we see that if m0 > m1 > · · · > mn−1 > m0/2, then there is exactly one solu-

tion for (4.13) in each of the n − 1 intervals
[

π
2lj−1

, π
2lj

]

for j = 1, 2, · · · , n − 1.

Figure 4.4 plots
∑n−1

j=0 f(ϕ, lj) and
∑n−1

j=0 f
′(ϕ, lj) for the asymmetric example in

Figure 4.2 (c) and clearly illustrates the monotonic nature of
∑n−1

j=0 f(ϕ, lj) as

well as the location of the solutions. Let the solution in the kth interval be ϕk

and λk = 2 − 2 cosϕk. We have 0 < ϕ1 < ϕ2 < · · · < ϕn−1 < π, and thus

λ1 < λ2 < · · · < λn−1. We therefore have

π

2lk−1

< ϕk <
π

2lk
, (4.15)

4.2 Properties of Laplacian eigenvectors 37

and substituting in (4.7),

π

2

(

1− lj
lk

)

< θj <
π

2

(

1− lj
lk−1

)

. (4.16)

Considering the θj for the kth eigenvector, we see that

θ0 < · · · < θk−1 < 0 < θk < · · · < θn−1 (4.17)

sin θ0 < · · · < sin θk−1 < 0 < sin θk < · · · < sin θn−1 (4.18)

We see that for the first eigenvector, corresponding to the smallest eigenvalue,

β0 = 1/ sin θ0 < 0, (4.19)

while

βj = 1/ sin θj > 0 for j = 1, · · · , n− 1. (4.20)

Thus, substituting the value of βj in (4.5), we see that the eigenvector correspond-

ing to the smallest eigenvalue separates the longest chain from the rest. Similarly,

the eigenvector corresponding to the second smallest eigenvalue separates the two

longest chains from the rest and so on. Thus, we are able to discriminate between

n chains using the eigenvectors corresponding to the n − 1 smallest eigenvalues.

Figure 4.2 (c) illustrates the plot of an asymmetric extended tree graph with n = 4.

The nodes are plotted using the first n−1 eigenvectors. Figure 4.3 illustrates how

the ith eigenvector for the same example separates the i longest chain(s) from the

remaining chain(s).

In case there are multiple chains with the same length, i.e., mj1 = mj2 = · · · =
mjq = m, there exist eigenvalues 2−2 cos(kπ/(2m+1)) each with multiplicity q−1

in addition to the eigenvalues described above. The eigenvectors corresponding

to the eigenvalue 2− 2 cos(π/(2m+ 1)) are of the form

x
(j)
i =







β(j) sin (πi/(2m+ 1)) if j = j1, j2, · · · , jq,

0 otherwise,
(4.21)

4.2 Properties of Laplacian eigenvectors 38

(a) Graph (b) Eigenvector 1 (c) Eigenvector 2 (d) Eigenvector 3

Figure 4.3: Chain discrimination based on length: We plot the Laplacian eigenvectors

for the graph in (a). The lengths of the different chains are 12 (green), 9 (cyan), 8 (red)

and 7 (blue). (b), (c), and (d) are the plots of the first, second and third eigenvectors

on the x-axis. We note that the first eigenvector separates the longest chain from the

rest. Similarly, the second eigenvector separates the two longest chains from the rest

and the third eigenvector separates the longest three from the remaining one.

where the β(j) are determined as described in the symmetric case in the following

subsection. Therefore, the q chains of length m are discriminated by the q − 1

eigenvectors corresponding to the eigenvalue 2− 2 cos(π/(2m+ 1)) of multiplicity

q − 1. While we have not explicitly dealt with ring graphs, the eigenvectors of

ring graphs have a very similar structure to that of path graphs (Appendix B),

and it is possible to establish similar results.

4.2.1.2 Symmetric extended star graph

In the symmetric extended star graph case, we have mj = m ∀j and it follows

from (4.7) that θj = θ. Substituting in (4.9), we get

nβ(0) sin θ − sin(θ + ϕ)
n−1∑

j=0

β(j) = (2− 2 cosϕ) β(0) sin θ. (4.22)

The solution to (4.22) depends on whether sin θ = 0 or sin θ 6= 0. If sin θ = 0, we

have from (4.7),

ϕ = kπ/(2m+ 1) for k = 1, 3, 5, · · · (4.23)

4.2 Properties of Laplacian eigenvectors 39

−8

−4

0

4

8

ϕ2

ϕ1

ϕ3

π
2l0

π
2l2

π
2l1

π
2l3

(a)
∑n−1

j=0
f(ϕ, lj)

−1000

−800

−600

−400

−200

0

(b)
∑n−1

j=0
f ′(ϕ, lj)

Figure 4.4: The plots correspond to the example in Figure 4.2 (c) with n = 4 chains

and m0 = 11, m1 = 8, m2 = 7, m3 = 6. The first n− 1 intervals and the corresponding

solutions ϕ1, ϕ2, and ϕ3 are marked. We note that
∑n−1

j=0 f ′(ϕ, lj) < 0.

and substituting in (4.5), we get

x
(j)
i = β(j) sin (kπi/(2m+ 1)) for k = 1, 3, 5, · · · (4.24)

The eigenvalue is given by 2 − 2 cos (kπ/(2m+ 1)). Equation (4.24) satisfies the

conditions in (4.3) and (4.4). Substituting x0 = x
(j)
0 = 0 and x

(j)
i = βjl xi in (4.2),

we get
∑n−1

j=0 β
j
l = 0. We consider a set of eigenvectors, xl given by

xl =
(

0 β0
l x

T β1
l x

T · · · βjl x
T · · · βn−1

l xT

)T

, (4.25)

where x = (x1 x2 ··· xm)T, xi = sin (πki/(2m+ 1)), and x
(j)
i = βjl xi. In order to

ensure that the eigenvectors form an orthonormal set, we require that

(

x1 x2 · · ·
)T (

x1 x2 · · ·
)

= I. (4.26)

Let xTx = c. Then substituting (4.25) in the above equation, we get

c2
(

β1 β2 · · ·
)T (

β1 β2 · · ·
)

= I, where βl =
(

β0
l · · · βn−1

l

)T

. (4.27)

4.2 Properties of Laplacian eigenvectors 40

Since
∑n−1

j=0 β
j
i = 0, the βl must also satisfy βT

l 1 = 0. Thus, we are interested in

vectors that, along with 1, form an orthonormal basis for R
n. These vectors form

the columns of the orthonormal matrix

B =
(

1√
n

cβ1 cβ2 · · ·
)

(4.28)

and we have BBT = BTB = I. We can obtain n − 1 such vectors, β1, · · · ,βn−1

and thus we have n − 1 eigenvectors by (4.25). Let bj =
(
βj
1 βj

2 ··· βj
n−1

)T
. Then

the jth row of B is given by
(

1/
√

(n) bT

j

)
. Let us consider the mapping of nodes

to R
n−1 using the n− 1 eigenvectors x1, · · · ,xn−1. The ith node on the jth chain

is mapped to xi
(
βj
1 βj

2 ··· βj
n−1

)T
= xibj. Thus all points on the jth chain are

mapped to the line αbj in R
n−1. We can compute the angle between any two lines

as cos−1
(
bT

i bj/ (‖bi‖‖bj‖)
)
. Since BBT = I, considering the (i, j)th element of

BBT, we have

(

1/
√
n bT

i

)




1/
√
n

bj



 = 1/n+ bT

i bj = δij. (4.29)

It follows from (4.29) that for i 6= j and i = j respectively, that

bT

i bj = −1/n (4.30)

and

‖bi‖ = ‖bj‖ =
√

(n− 1)/n. (4.31)

We therefore have

bT

i bj

‖bi‖‖bj‖
= − 1

n− 1
. (4.32)

We thus see that the nodes are mapped to n lines in R
n−1, such that the dot

product of the direction of any pair of lines is negative and almost tending to

zero with increasing n. In other words, the lines corresponding to different chains

4.2 Properties of Laplacian eigenvectors 41

are almost orthogonal to each other in R
n−1. This structure is optimal for dis-

criminating the nodes belonging to different chains. Figure 4.2 (b) illustrates an

example of a symmetric extended tree graph with n = 4 in R
n−1.

It remains to be shown that the smallest n−1 non-zero eigenvalues correspond

to those above, i.e., the case when θ = 0. If sin θ 6= 0 in (4.22), it follows from

(4.8) and the fact θ0 = · · · = θn−1 = θ, that

β0 = β1 = · · · = βn−1. (4.33)

We can then divide (4.22) by β0 sin θ to obtain

n− nsin (θ + ϕ)

sin(θ)
= 2− 2 cosϕ. (4.34)

The form (4.34) is similar to (4.10), and in a fashion similar to (4.10)-(4.14), we

simplify (4.34) to obtain

(

1− 2

n

)

(1− cosϕ)− sinϕ tan (ϕl) = 0 or (4.35)

f(ϕ, l) = 0 (4.36)

where l = m + 1/2. We show in Appendix C that f(ϕ, l) is monotonically

decreasing in [0, π] except for the discontinuities ϕ = π(2k + 1)/(2m + 1) for

k = 0, 1, · · · ,m − 1. The smallest possible value of ϕ that is a solution for

f
(
ϕ,m+ 1

2

)
= 0 lies in the interval [π/(2m+1), 3π/(2m+1)] and and hence can-

not be smaller than ϕ = π/(2m+1). Thus, the n−1 smallest non-zero eigenvalues

correspond to the case where θ = 0.

4.2.2 Eigenvectors of grid graphs

Let G = (V,E) and H = (W,F) be graphs. Then G×H is the graph with vertex

set V ×W and edge set, ((v1, w), (v2, w)) and ((v, w1), (v, w2)) where (v1, v2) ∈ E
and (w1, w2) ∈ F . We use the following theorem [41] in our analysis.

4.2 Properties of Laplacian eigenvectors 42

Theorem 1 Let G = (V,E) and H = (W,F) be graphs with Laplacian eigenval-

ues λ0, . . . , λm and µ0, . . . , µn respectively. Then, for each 0 ≤ i < m and 0 ≤ j <

n, G×H has an eigenvector z of eigenvalue λi+µj such that z(v, w) = xi(v)yj(w).

Let G and H be path graphs of length m and n respectively, where (k+1)n >

m > kn and k ∈ N. Then λi = 2 − 2 cos (iπ/2m) and µj = 2 − 2 cos (jπ/2n).

G×H is a grid graph with grid dimensions m×n. Clearly, the larger the value of

k, the “longer” the object. The term “long” here refers to the ratio of its largest

dimension to the second largest dimension. We then have

0 = µ0 = λ0 < λ1 < . . . < λk < µ1 < λk+1 < · · · . (4.37)

Thus, the smallest k eigenvalues are µ0 + λ1, · · · , µ0 + λk and the corresponding

eigenvectors are z(v, w) = xi(v)yj(w) = xi(v). Thus, all points along the width

of the object are mapped to the same point in k-dimensional LE and the nodes

map to a smooth 1D curve in LE. We can easily see that the same results hold

for 3D grid graphs as well where m and n are the largest and the second largest

dimensions. The above result is illustrated in Figure 4.5, where all nodes along the

width of the chain are mapped to the same point. This underlines the property

of LE transform to map chains whose length is greater than their width to a 1D

curve in eigenspace.

Combining the properties shown in 4.2.1 and 4.2.2, if we have n “long” chains

(with the lengths greater than their widths) to segment, we need to map the nodes

to LE of dimension n− 1. If we map to LE of higher dimensions, the nodes still

retain their 1D structure as long as the chains are sufficiently long. The number

of eigenvectors that can be used depends on the ratio of the length of the chains

to their width. The greater the ratio, the greater the number of eigenvectors that

can be used with the chains preserving their 1D structure in eigenspace.

4.3 Comparison with other manifold techniques 43

(a) Grid graph (b) Laplacian Eigenspace

−6

−4

−2

0

2

4

6

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

(c) Isomap

Figure 4.5: Example of a grid graph with length (13) three times greater than the width

(4). The first three eigenvectors map all nodes along the width onto the same point and

the corresponding structure in 3D LE is perfectly 1D.

4.3 Comparison with other manifold techniques

We observe the embedding of the data in example of Figure 4.1 (a) obtained

from different manifold techniques using the program provided by Todd Witter-

man.1 A comparison of the embedding obtained using techniques such as Lapla-

cian Eigenmaps, Isomaps [73], Locally Linear Embedding [56], Diffusion maps [48]

and Multi-dimensional Scaling [17], is presented in Figure 4.6. The Local Tan-

gent Space Alignment mapping (LTSA) [82] did not result in any kind of structure

and is not presented in the figure. We note that from the point of mapping to

a 1D curve, LE map and the Diffusion map perform very well. Diffusion map

embedding is a variation of LE map and uses a Gaussian kernel of width σ to

construct a weighted graph and normalizes the Laplacian operator. Isomap tries

to preserve the geodesic distance between the nodes and hence does not map the

nodes onto a 1D curve as efficiently as LE map which does not try to preserve

distances of any kind. We specifically compare Isomaps to Laplacian Eigenmaps

in Figure 4.7. The objective is to segment nodes according to the chains to which

they belong. We note that LE map does a much better job of mapping the nodes

from the three chains to 1D curves than does the Isomap. We also note that

1Available at http://www.math.umn.edu/∼wittman/mani/.

http://www.math.umn.edu/~wittman/mani/

4.3 Comparison with other manifold techniques 44

−0.1

−0.05

0

0.05

0.1

−0.05

0

0.05

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.05

0

0.05

−0.05

0

0.05

−0.1

−0.05

0

0.05

(a) Laplacian

−40

−20

0

20

−20
−10

0
10

20
30

−20

−10

0

10

20

30

−25
−20

−15
−10

−5
0

5
10

15
20

−10

−5

0

5

10

−5

0

5

(b) Isomap

−3
−2

−1
0

1
2

−6
−5

−4
−3

−2
−1

0
1

2
3

−2

−1

0

1

2

−2

−1

0

1

−2

−1

0

1

2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

(c) LLE

0

1

2

3

4

5

−3

−2

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2
−1

0
1

2

−1

0

1

−3

−2

−1

0

1

2

3

(d) Diffusion Map

−15
−10

−5
0

5
10

−20

−15

−10

−5

0

5

10

15

0

2

4

−20

−10

0

10

20
−10

−5

0

5

10

−15

−10

−5

0

5

10

15

(e) MDS

Figure 4.6: Comparison of manifold techniques: The nodes in the first six dimensions of

the embedding space using different techniques. The nodes correspond to the example

in Figure 4.1.

the Isomap (Figure 4.7 (c)) has no structure in higher dimensions unlike LE map

(Figure 4.7 (f)).

We measure quantitatively the 1D nature of the curves in LE and Isomap as

follows. We consider nodes in chain 2 in the example illustrated in Figure 4.7.

The position of node i along the chain is denoted by the site parameter ti. In

this example ti happens to be the position of node i along the vertical axis and

is marked for some of the nodes in Figure 4.7 a. Let node i map to yLi in LE

and to yIi in the Isomap. We compute 1D splines (f I and fL) to fit the nodes

in Laplacian Eigenspace and Isomap cases in order to minimize
∑

i e
L
i and

∑

i e
I
i

respectively which are given by

eIi = ‖yIi − f I(ti)‖ (4.38)

and

eLi = ‖yLi − fL(ti)‖. (4.39)

eIi and eIi are plotted in Figure 4.7 (d) versus the site location t. As can be seen

in (a), the value of t denotes the distance of the node from the junction. We note

4.3 Comparison with other manifold techniques 45

Dimensions 1-3 Dimensions 1-6
Method

L MSE MSE/L L MSE MSE/L

LE 106.12 0.143 1.35e-03 265.86 1.471 5.532e-03

Isomap 54.36 8.019 1.48e-01 55.17 9.689 1.756e-01

Table 4.2: Comparison of LE and Isomap: We measure the 1D nature of the nodes in

LE and Isomap for the example in Figure 4.7. L is the length of the spline used to fit

the voxels and MSE is the Mean Squared Error in the spline fit. MSE/L is a measure

of the 1D structure of the nodes.

that, for nodes on the right side of the vertical dashed line eL(t) is very small.

However, on the left hand side of the dashed line, i.e., as the nodes approach the

junction eL(t) starts rapidly increasing. This plot indicates that a 1D spline is an

excellent choice to fit nodes in Laplacian Eigenspace, except near a junction. The

spline fit error is therefore an excellent indicator of the position of a voxel with

respect to a junction. In the case of Isomap, on the other hand, the spline fit error

is more or less constant for the length of the chain, and is not negligible compared

to the length of the spline. Table 4.2 compares the spline fit error voxels on the

right side of the vertical dashed line for both Isomap and LE with respect to the

length of their respective splines. We observe that the errors in the case of Isomap

are two orders of magnitude greater than the spline fit error for LE as is clearly

obvious in Figure 4.7 (d).

We also compare the LE map and Isomap using a real example in Figure 4.8. It

is obvious that as far as segmenting using 1D splines is concerned, the LE provides

a much better mapping than does Isomap. We also note the nodes retain some

structure in higher dimensions in LE, unlike Isomap. In addition to the properties

described in the previous section, the LE map has the following advantages. The

neighborhood matrix, W , is easily and efficiently computed as the points lie on

a grid. The mappping is global in nature. It is not necessary to know the exact

number of chains that we need to segment as the 1D structure is retained in higher

4.4 Human body segmentation in Laplacian Eigenspace 46

Chain 1 Chain 3

Chain 2

t = 22

t = 56

t = 4

(a) Nodes on grid

−20

0

20

40

−40

−20

0

20

40

−30

−20

−10

0

10

20

30

(b) Isomap Dim. 1-3

−20

0

20

−30
−20

−10
0

10
20

30

−40

−30

−20

−10

0

10

20

30

40

(c) Isomap Dim. 4-6

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Sp
lin

e
fi

t e
rr

or

Position on chain

Laplacian

Isomap

(d) Error

−20

0

20

40

−40

−20

0

20

40

−30

−20

−10

0

10

20

30

(e) LE Dim. 1-3

−20

0

20

−30
−20

−10
0

10
20

30

−40

−30

−20

−10

0

10

20

30

40

(f) LE Dim. 4-6

Figure 4.7: Isomap versus LE: The Isomap embedding is compared to the Laplacian

embedding for the example in (a). The 1D structure is not retained in higher dimensions

in the case of Isomap as it tries to preserve geodesic distances.

dimensions. We can, therefore, map to a higher dimensional space than strictly

necessary. For e.g., if we wish to segment n chains, all of whose lengths are at

least twice as much as their widths, we can map them to LE whose dimension is

between n − 1 and 2n. Indeed, in the case of human subjects we map nodes to

6D LE, although the maximum number of chains at a junction is four.

4.4 Human body segmentation in Laplacian Eigenspace

We visualize the human body as being composed of several articulated chains

connected at joints as described in Chapter 3. We have shown in the previous

sections that the non-rigid chains of an object form smooth 1D curves in Laplacian

Eigenspace. This is true of the human body, as the lengths of the articulated chains

4.4 Human body segmentation in Laplacian Eigenspace 47

−200
0

200
400

−200

0

200

200

400

600

800

1000

1200

1400

1600

(a) Normal

−30−25−20−15−10−505101520

−20
−10

0
10

20

−5

0

5

10

(b) Isomap: Dim. 1-3

−6
−4

−2
0

2
4

6
8

−4−202

−4

−3

−2

−1

0

1

2

3

4

(c) Dim. 4-6

−0.06
−0.04

−0.02
0

−0.04

−0.02

0

0.02

0.04

0.06

−0.04

−0.03

−0.02

−0.01

0

0.01

(d) LE: Dim. 1-3

−0.04 −0.02 0 0.02 0.04 −0.08

−0.06

−0.04

−0.02

0

0.02

0.04

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(e) Dim. 4-6

Figure 4.8: Comparison of LE and Isomaps using a real example

in the case of the human body are greater than their widths. In fact, the lengths

of the limbs are much greater than their widths. Since the transform is based on a

graph structure, the edges of which are determined by the neighborhood relations

between voxels in normal 3D space, it is minimally affected by the articulation

at joints. However, at points where three or more such segments meet, for e.g.,

at the neck joint (head, two arms and trunk), the nodes lose their 1D structure

and diverge in different directions as shown in the previous sections. We exploit

this structure of the voxels in LE in order to perform segmentation by fitting a

different 1D spline to each articulated chain. This process also enables us to obtain

the position of the nodes along their respective articulated chains. All operations

described below are performed in LE. We describe the segmentation algorithm

using the example in Figure 4.9 which is voxel data obtained from a real video

sequence. The example considers the subject in a pose with self-contact in order

to illustrate the power of the segmentation process. The steps in the segmentation

algorithm are listed below and are described in the sections that follow.

4.4 Human body segmentation in Laplacian Eigenspace 48

1. Initialization: The initialization step describes the process of identifying a

set of voxels to begin growing the spline.

2. Spline Fitting : The spline fitting step describes how to estimate a spline to

fit the given set of voxels.

3. Propagation: The propagation step describes the growth of the spline.

4. Termination: The termination step describes the conditions under which

the growth of the spline is terminated.

−200 0 200 400−200−1000100

200

400

600

800

1000

1200

1400

1600

(a) Normal

−0.4
−0.2

0
0.2

0.4
0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

(b) Dim. 1-3

−0.4
−0.2

0
0.2

0.4
0.6

−0.2

0

0.2

0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) Dim. 4-6

Figure 4.9: Voxels in normal space and eigenspace: (b) and (c) illustrate the structure

in eigenspace and represent eigenvectors 1-3 and 4-6 respectively.

4.4.1 Initialization

We can classify the articulated chains into two types according to whether they

are connected to other chains at one end (Type 1) or both ends (Type 2). In the

example in Figure 4.10 (a), the two legs, head, and one of the arms are of Type

1, i.e., one end of the chain is free, and the left arm and the trunk are of Type 2,

i.e., both ends are attached to other chains. For Type 1 chains, we note that the

node at the free end is farthest from other chains. However, for Type 2 chains, the

node that is farthest from other chains lies in the middle of the chain. In order

to initialize the spline, we begin with the node that is farthest from all existing

4.4 Human body segmentation in Laplacian Eigenspace 49

−200 0 200 400−200−1000100

200

400

600

800

1000

1200

1400

1600

(a) Normal

−0.4
−0.2

0
0.2

0.4
0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

(b) Dim. 1-3

−0.4
−0.2

0
0.2

0.4
0.6

−0.2

0

0.2

0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) Dim. 4-6

Figure 4.10: Voxels in normal space and eigenspace: The red, green, blue, magenta

asterisks denote the starting node for the first, second, third and fourth splines.

chains. To begin with, in the absence of existing splines, we begin with the node

that is farthest from the origin. The initial node is denoted by the red asterisk

in Figure 4.10. The starting node for the second, third and the fourth splines are

denoted by the green, blue and magenta asterisks.

−0.4
−0.2

0
0.2

0.4
0.6

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

0

0.2

0.4

0.6

0.8

1

(a) Dim. 1-3

−0.4

−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) Dim. 4-6

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5 Origin
Line 1

(c) Line fit

Figure 4.11: Fitting lines to nodes for Type 1 chains

We obtain a set of nodes that are closest to the initial node as can be seen

in Figure 4.11 (a-b) and Figure 4.12 (a-b) for the Type 1 and Type 2 cases re-

spectively. We then determine if the initial node lies at one end of the curve or

in the middle by computing the number of lines in space that can be fit to the

cluster of nodes. We find N0 closest nodes (Euclidean distance), y1, . . . ,yN0
, to

the initial node, y0 and perform PCA (Principal Component Analysis) on yi−y0

4.4 Human body segmentation in Laplacian Eigenspace 50

−0.4
−0.2

0
0.2

0.4
0.6

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

0

0.2

0.4

0.6

0.8

1

(a) Dim. 1-3

−0.4

−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) Dim. 4-6

−0.2 −0.15 −0.1 −0.05 0

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Origin
Line 1
Line 2

(c) Line fit

Figure 4.12: Fitting lines to nodes for Type 2 chains

to find the two biggest principal components u(a) and u(b). The N0 closest nodes

are marked in blue in Figure 4.11 (a-b) while the first two principal components

of the N0 nodes are plotted in Figure 4.11 (c). We find the principal directions

(lines) which are linear functions of the two principal components. In the Type 1

case (Figure 4.11 (c)), there is only one direction and we grow a single spline from

that point. In the Type 2 case (Figure 4.12), there are two principal directions,

as we start in the middle, and we grow a spline in each direction independently.

4.4.2 Spline fitting

We illustrate the spline fitting procedure using Figure 4.13. Given a set of nodes

and the principal axis as computed in the previous section, we project each node,

yi, onto the principal axis to obtain its site value ti. The cluster of nodes and

the principal axes are plotted in Figure 4.13. The nodes which are 6D vectors are

plotted against their site parameters, t, in Figure 4.13 (c). A 6D spline, fL, can

be computed to minimize the error given by

∑

i

‖fN(ti)− yi‖
2
. (4.40)

The spline computed is a cubic spline with two continuous derivatives and is

computed using the MATLAB spline toolbox function spap2.

4.4 Human body segmentation in Laplacian Eigenspace 51

(a) Dim. 1-3 (b) Dim. 4-6

Site parameter, t

6D
 fu

nc
tio

n
of

 t

(c) Fitting spline

Figure 4.13: Spline fitting: We grow the spline by adding nodes at the growing end.

The blue nodes denote the nodes that are added to the existing nodes (red). We fit a

spline in each dimension in (c). x-axis represents the site parameter t, and the y-axis

represents the location of node in different dimensions.

4.4.3 Propagation

We propagate the spline by adding nodes that are closest to the growing end of

the spline, e.g ., the blue nodes in Figure 4.13 (a)-(b). The principal axis used to

compute the site value is recomputed locally using the additional nodes. When

the angle between the recomputed principal axis and the previous principal axis,

exceeds θmax, a new principal axis and a corresponding pivot point is computed.

This is so that the principal axis adapts to the curvature of the voxels. The black

vertical lines in Figure 4.13 (c) denote the boundaries of different principal axes.

θmax is an adaptive threshold and is computed as

θmax = θMAX
eold

(eold + 5enew)
, (4.41)

where θMAX = 15◦. eold is the spline fit error if the old principal axis is used and

enew is the spline fit error if the new principal axis is used. When the curvature

of the spline is high, enew � eold and θmax ≈ θMAX = 15◦. However, when the

nodes diverge (e.g ., at a junction,) enew ≈ eold and θmax ≈ θMAX/6 = 2.5◦. The

maximum angle between adjacent principal axes is therefore 15◦ when the curve

is strongly 1D, and 3◦ when it is not.

4.4 Human body segmentation in Laplacian Eigenspace 52

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

(a) Dim. 1-3

−0.4
−0.2

0
0.2

0.4
0.6

−0.3−0.2−0.100.10.20.30.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) Dim. 4-6

−200 0 200 400
−200−1000

100

200

400

600

800

1000

1200

1400

1600

(c) Segmented

−200 0 200 400−200−150−100−50

200

400

600

800

1000

1200

1400

1600

(d) Skeleton

Figure 4.14: Segmentation and registration in Eigenspace: The nodes are segmented in

LE (a)-(b). The labels are represented in the original 3D space in (c). The computed

skeleton is presented in (d).

4.4.4 Termination

A node is considered an outlier if the spline fit error of that node exceeds a fixed

threshold, CL
√
d, where C = 0.005, L is the length of the average spline in

LE (set to 1 as we have normalized the LE such that yi ∈ [0, 1]6) and d is the

dimension of the LE. In other words, a node is an outlier if it does not lie close

to the computed 1D spline in LE. The number of outliers increases rapidly at

a junction because the nodes diverge in widely different directions. When the

number of outlier nodes is greater than 5, we stop growing the spline and begin

growing the next spline. We can use our knowledge about the human body and

stop the spline fitting procedure when six splines have been discovered. In general

the stopping criteria can be varied according the requirements of the application,

e.g ., when no more 1D curves can be discovered. We show in Figure 4.14 (b-d)

the successful segmentation of the voxels into different articulated chains although

there is contact between the palm and the hip.

4.5 Constructing the skeleton curve 53

4.5 Constructing the skeleton curve

We compute the position of each node along the articulated chain implicitly as

part of the segmentation algorithm. We note that the position of the node along

the 1D curve in LE can be used to determine the position of the node along

the corresponding articulated chain in normal space as well. For each node yi

in LE belonging to a segmented spline, we have the site parameter ti. Let the

position of the ith node in normal space be given by vi; we then associate ti

with vi and compute a smoothing spline in normal space using the set of nodes

(ti,vi). The computed skeleton curve for the segmented example is illustrated in

Figure 4.14 (d). The skeleton curve spline, f S, seeks to minimize the error given

by

∑

i

‖fS(ti)− vi‖2. (4.42)

We thus compute the skeleton curve for each of the splines in normal space. Type

1 chains contain a single spline. Type 2 chains contain two splines which are

merged together to form a single spline. We now have a set of splines and can use

a top-down approach to register each of the segmented chains as well as identify

the pose.

4.6 Experimental results

We provide segmentation results on voxels obtained from different sources and

under different conditions. We typically use a minimum of eight cameras in order

to obtain reasonable quality voxel reconstruction. If there are fewer cameras,

the space carving or voxel reconstruction tends to be of poor quality and may

have severe defects such as “ghost” limbs, i.e., limbs that do not really exist. The

HumanEvaII data-set [61] contains sequences captured using four cameras and the

corresponding voxels are of poor quality as can be observed in Figure 4.16. We map

voxels to 6D LE in the case of voxels computed from 3D laser scans and sequences

4.6 Experimental results 54

captured from eight or more cameras. When the voxel is of poorer quality, we

map voxels to 5D LE. We provide results on three different sequences. The first

sequence was captured using 12 cameras and the voxel reconstruction is fairly

accurate. We present segmentation results on four different subjects with different

BMI (Body Mass Index) in Figure 4.15. We also consider challenging poses where

there is self contact and algorithms like Isomap typically fail (Figure 4.15 (a)-(b)).

The second set of sequences is from the HumanEvaII data-set.2 The results are

for one subject and are presented in Figure 4.16. The third set of sequences are

voxels obtained using 3D laser scan meshes. The results for four subjects are

presented in Figure 4.17. The voxel reconstruction in this case appears to be the

most accurate due to the high resolution of the original 3D laser scans.

(a) Subject A (b) Subject A (c) Subject B (d) Subject C (e) Subject D

Figure 4.15: Segmentation results for different subjects and poses using voxels computed

from 12 cameras.

2Available at http://vision.cs.brown.edu/humaneva/index.html.

http://vision.cs.brown.edu/humaneva/index.html

4.6 Experimental results 55

500

1000

600
800

1000
1200

200

400

600

800

1000

1200

1400

1600

−200
0

200
400

100012001400

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

800100012001400

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

02004006008001000

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

2004006008001000

200

400

600

800

1000

1200

1400

1600

Figure 4.16: Segmentation results for the same subject using voxels computed 4 cameras

in the HumanEvaII data set. The segmentation was performed in 5D LE, due to poor

quality of voxel reconstruction.

−1000100200
−400 −200 0 200 400

200

400

600

800

1000

1200

1400

1600

1800

(a) Subject A

−200
0
200

400 −200 0 200

200

400

600

800

1000

1200

1400

1600

1800

(b) Subject E

−200
0

200
−200 0 200

200

400

600

800

1000

1200

1400

1600

1800

(c) Subject F

−400−2000200400−400 −200 0 200 400

200

400

600

800

1000

1200

1400

1600

1800

(d) Subject G

Figure 4.17: Segmentation results for different subjects using voxels computed 3D laser

scans.

4.6 Experimental results 56

Chapter 5

Model and pose initialization

Having used a bottom-up segmentation algorithm to segment the voxel data of a

human subject into its component articulated chains, we proceed to use our knowl-

edge of the structure of the human body to guide us for pose and model estimation

routines. Figure 5.1 illustrates the pipeline in the pose and model estimation pro-

cess from voxel data. We have a frame of voxel data in Figure 5.1 (a) that has

been segmented in Figure 5.1 (b)-(c). We also have the skeleton curve of each

segmented articulated chain in Figure 5.1 (d). Since the segmentation algorithm

was a bottom-up procedure it is necessary for us to perform registration, i.e., we

need to identify the segmented chains. Our model consists of six articulated chains

labeled b1, b2, b3, b4, b5, and b6 that correspond to the trunk, head, right arm, left

arm, right leg and left leg respectively as illustrated in Figure 5.1 (d). It remains

for us to register the segmented chains to b1, · · · , b6, and thereafter estimate the

pose and the human body model parameters. We note that, while the registration

in most poses, for instance the pose in Figure 5.2 (b), can be straightforward, our

registration algorithm can also deal with poses where there is self contact as in

Figure 5.2 (c). Given the human body model parameters, we can estimate the

pose parameters. However, to begin with, we need to estimate the human body

model parameters and the pose parameters simultaneously. We use a hierarchical

estimation algorithm wherein we estimate the human body model parameters and

pose beginning with a simple model with few parameters and proceeding progres-

sively to the complete human body model described in Section 3.2.1. Our simplest

human body model is a skeleton model that depends on a single parameter, the

stature of the subject. A slightly more complex model is a skeleton model that

57

58

Top−down model
and pose estimation

Top−down
registration

(c) (d) (e)Bottom−up
segmentation in LE

(b)Map to LE(a)

b2

b3

b1

b6

b4

b5

Figure 5.1: Block diagram illustrating the segmentation, registration and model estima-

tion pipeline: We have segmented the voxel data into different articulated chains and

need to register the segmented chains to the human body based on their properties and

mutual connectivity. We can then estimate the human body model and pose parameters

b2

n
1
6

b6

n
1
5

n
1
2

n
0
5

n
0
6

b5

n
0
4

n
0
2

b4

n
1
4

n
0
3

b1

n
1
1

n
0
1

n
1
3

b3

(a) Graph model (b) Pose 1 (c) Pose 2

Figure 5.2: (a) Human body model consisting of six articulated chains. Each articu-

lated chain bi, has two vertices n0
i and n1

i . The diagram illustrates the connectivity

between the nodes of each articulated chain. (b) and (c) denote various poses and the

corresponding connectivity of the component articulated chains.

allows flexibility in the location of the individual joint locations subject to sym-

metry constraints. The complete model includes the joint locations as well as the

parameters of the super-quadric shape for each body segment.

We describe the probabilistic registration algorithm in Section 5.1. We then

describe our hierarchical pose and body model estimation algorithm in Section 5.2.

We present the results of the pose and body model estimation algorithms for voxel

data obtained from different sources and under different conditions in Section 5.3.

5.1 Probabilistic registration 59

−200 0 200 400
−200−1000

100

200

400

600

800

1000

1200

1400

1600

(a) Segmented

−200 0 200 400−200−150−100−50

200

400

600

800

1000

1200

1400

1600

(b) Skeleton

−200 0 200 400−200−150−100−50

200

400

600

800

1000

1200

1400

1600

(c) Graph

−200 0 200 400−200−150−100−50

200

400

600

800

1000

1200

1400

1600

(d) Connected

Figure 5.3: Registration in LE: The labels are represented in the original 3D space in

(a). The computed skeleton curve is presented in (b) and the two joints in (c). The

correct registration is shown in (d).

5.1 Probabilistic registration

Figure 5.3 illustrates the registration task at hand. Having segmented the voxel

data into its articulated chains, we are faced with the task of identifying them. We

cannot resolve all ambiguities based on the connection between the spline segments

alone as Figure 5.3 (c) illustrates. The trunk (yellow spline) is connected in

exactly the same way as the left arm (black spline) and we need to make decisions

considering all the possibilities. The probabilistic registration method described

in this section considers both the individual properties of each segment as well as

their mutual connectivity in order to find the most probable registration which is

illustrated in Figure 5.3 (d). We obtained six splines in the previous section and

we denote the ith spline as si with nodes at each end (n0
i and n1

i). Type 1 splines

have a connected node at one end and Type 2 splines have connected nodes at

both ends. We can then assign a probability to the “joint” between connected

nodes nki and nlj as

Pr
(
nki ↔ nlj

)
∝







e−
d(nk

i ,nl
j)

dmean if nki and nlj are connected,

0 otherwise,
(5.1)

5.1 Probabilistic registration 60

where d(nki , n
l
j) denotes the Euclidean distance between the nodes in LE. For each

connected node, we compute the distance to the closest node, and dmean is the

mean of this distance for all connected nodes. We note that some of these “joints”

are true joints but some of them are pseudo joints caused by contact between body

parts, e.g ., between the hip and the left palm in Figure 5.3.

We wish to register the si to the known body chains bi in Figure 5.2 (a). We

denote possible registrations as a permutation (j1, j2, . . . , j6) of (1, 2, . . . , 6) which

indicates that sji = bi. The probability of the registration as given in (5.2), is the

product (5.3) of the probability of each chain match being correct (Pr (bi = sji))

and the probability of the connection between the appropriate nodes.

Pr ((j1, . . . , j6)) = Pr (b1 = sj1 , . . . , b6 = sj6) (5.2)

=

(

Pr
(
n0
j1
↔ n0

j5

)
Pr
(
n0
j1
↔ n0

j6

)
Pr
(
n1
j1
↔ n0

j2

)

Pr
(
n1
j1
↔ n0

j3

)
Pr
(
n1
j1
↔ n0

j4

)
)(6∏

i=1

Pr (sji) = bi

)

.

(5.3)

The length and the thickness (or “girth”) for each chain is obtained using the

computed skeleton curve, f S, computed in Section 4.5. The length of the chain

is the length of the spline. The “girth” of the chain is the mean of the error of

the spline reconstruction, ‖f S(ti) − vi‖2 also computed in (4.42) in Section 4.5.

Let lk and gk be the length and “girth” of kth chain. We normalize them by the

maximum lengths respectively, i.e., lk = lk/max {lk} and gk = gk/max {gk}, and

sort them so that

{
lS1 , . . . , l

S
6

}
= sort({l1, . . . , l6}) (5.4)

and

{
gS1 , . . . , g

S
6

}
= sort({g1, . . . , g6}). (5.5)

Note that b1, b2, are the trunk and head, b3, b4, the arms, and b5, b6, the legs. The

5.1 Probabilistic registration 61

probability that a segmented chain sk is actually bi, Pr (sk = bi), is computed as

Pr (sk = bi) =







ctrunke
−5|gk−gtrunk|, i = 1,

cheade
−5|lk−lhead|, i = 2,

cARMe
−2|lk−lARM|−2|gk−gARM|, i = 3, 4,

cLEGe
−2|lk−lLEG|−2|gk−gLEG|, i = 5, 6,

(5.6)

where ctrunk, chead, cARM, and cLEG are normalizing constants and

gtrunk = gS6 ,

lhead = lS1 ,

lARM = (lS3 + lS4)/2,

gARM = (gS1 + gS2)/2,

lLEG = (lS5 + lS6)/2,

gLEG = (gS3 + gS4)/2.

(5.7)

The key idea here is that we expect

lhead < ltrunk < lARM < lLEG (5.8)

and

gARM < gLEG < ghead < gtrunk. (5.9)

We therefore set gARM = (gS1 + gS2)/2, i.e., the mean of the two smallest values of

“girth”. The other values are set using similar reasoning.

We find the probability of all permutations and select the most probable per-

mutation as the correct registration. We also require that the probability of

registration be greater than a threshold and impose the additional implicit con-

straint that there exist exactly six segments. In fact for most poses (where there

is no “loop-back”), the only chain that has non-zero probability of connections

at both nodes is the trunk and therefore the number of permutations is greatly

5.2 Pose and model estimation 62

reduced. For the example in Figure 5.3 (c), the yellow and black chain have equal

probability of being identified as the trunk based on the connections alone. The

properties of the individual chains help discriminate between the trunk and the

arms. We select the frames with the best registration probabilities for use in

model estimation routines, while the other frames are discarded as unsuitable.

5.2 Pose and model estimation

As mentioned earlier, the model estimation routine is closely tied to the pose

estimation routine, and we estimate both pose and the body model parameters

simultaneously. Once the body model parameters are known, we can keep the

body model fixed and use the same procedure to estimate the pose. The two

sets of parameters that we would like to estimate are the pose vector and the

body structure (joint locations and super-quadric parameters). We use a hierar-

chical approach, beginning with a skeletal model (joint locations and limb lengths)

illustrated in Figure 5.4 (b) and then increase model complexity and refine pa-

rameters to obtain a volumetric model (super-quadric parameters) illustrated in

Figure 5.4 (c). The joint locations cannot be reliably estimated from a single

frame or pose; the reliability of the estimate typically depends on the articulation

at the joint. We therefore use a set of key frames where registration is successful

in order to estimate the body model parameters. These key frames are spread

apart temporally so that a set of distinct poses is obtained.

The stature (or height) of the subject is a key parameter that is strongly

related to a number of human body model parameters, such as the lengths of long

bones in the body [50]. Anthropometric studies have been performed on certain

demographic groups to study the relationship between stature and the long bones

in the body [12,37]. These studies indicate that we can estimate the lengths of the

large bones for an average human subject from the stature parameter alone. We

can construct a skeleton model for the average subject as a function of the stature

5.2 Pose and model estimation 63

by scaling the limb lengths and the joint locations by the ratio of the stature of

the subject to the stature of the average human. We describe how to initialize

the pose using the registered skeleton curves in Section 5.2.1. We estimate the

skeleton model parameters by minimizing the error between the estimated human

skeleton model error and the computed skeleton curves. We describe how to

compute the error of a given skeleton model in Section 5.2.2. In the first step of

the model estimation routine, we find the optimal stature for the subject using

the skeleton model as described in Section 5.2.3. In the second step, described

in Section 5.2.4, we optimize for the joint locations based on the skeleton model.

In the third step, described in Section 5.2.5, we estimate and optimize for the

super-quadric parameters using the full super-quadric model. We use functions

provided in the MATLAB optimization toolbox in order to perform the non-linear

optimizations.

1900 2000 2100 2200 2300 2400 2500
1000

1200

1400

1600

1800

2000

2200

2400

M
od

el
−

S
ke

le
to

n
fit

 e
rr

or

Stature (mm)

(a) Fit error versus stature

0200400
−400 −200 0 200 400 600

200

400

600

800

1000

1200

1400

1600

1800

(b) Skeleton model

0200400
−400 −200 0 200 400 600

200

400

600

800

1000

1200

1400

1600

1800

(c) Super-quadric model

Figure 5.4: Hierarchical human body model estimation: (a) We first estimate the stature

parameter of the subject. (b) The stature is used to build a skeleton model, whose

parameters are optimized. (c) Finally, we estimate the parameters of a complete super-

quadric model

5.2 Pose and model estimation 64

(a) (b) (c) (d) (e)

Figure 5.5: Pose initialization using registered skeleton curves.

5.2.1 Pose initialization

We describe the pose initialization step, given registered skeleton curves, using a

successfully segmented and registered frame illustrated in Figure 5.5. The skeleton

curve is sampled at regular intervals of 20mm to obtain a set of ordered points

for each body chain (trunk, head, two arms and two legs). The sampled skeleton

curve is illustrated in the images in Figure 5.5 (c)-(e). Hereafter, we use the term

skeleton curve to mean the sampled skeleton curve.

The pose is computed using the skeleton curves and is initialized in two steps.

First, the pose of the trunk is determined and second, the pose of the remaining

five articulated segments is computed. The z-axis of the trunk is aligned with the

skeleton curve of the trunk as marked in Figure 5.5 (c). The y-axis of the trunk

is in the direction of the line joining the right pelvic joint to the left pelvic joint

in the actual model. This direction is set to be the average of the rays from the

right to left shoulder joint and from the right to left pelvic joint on the skeleton

curve marked in Figure 5.5 (c). The x-axis points in the forward direction. This

direction is estimated using the direction of the feet and is orthogonal to the

computed yz plane. The location of the origin is set to be near one end of the

skeleton curve of the trunk. The xyz axis orientation that describes the pose of

the trunk is illustrated in Figure 5.5 (d). Once the trunk pose has been estimated,

5.2 Pose and model estimation 65

120140160
−700−650−600−550−500−450−400−350−300−250−200

1000

1050

1100

1150

1200

1250

Skeleton model
Skeleton curve

(a)

120140160
−700−650−600−550−500−450−400−350−300−250−200

1000

1050

1100

1150

1200

1250

Skeleton model
Skeleton curve

(b)

120140160
−700−650−600−550−500−450−400−350−300−250−200

1000

1050

1100

1150

1200

1250

Skeleton model
Skeleton curve

(c)

Figure 5.6: Computing the distance between skeleton curve and skeleton model: (a)

denotes sample points on skeleton curve. (b) denotes the distance to the closest point

on skeleton model before optimization. (c) denotes the same after optimization.

the joint locations at the pelvis, shoulders and neck are fixed. It is then possible

to estimate the pose of each of the articulated chains independently using the

error described in Section 5.2.2. The objective is to compute the pose of the

skeleton model, so that the distance between the points on the skeleton curve and

the skeleton model is minimized. The initial estimate of the pose is illustrated in

Figure 5.5 (e).

5.2.2 Computing skeleton fit error

Consider a set of ordered points x1,x2, · · · ,xn, on a skeleton curve corresponding,

for instance, to the arm as in Figure 5.6. The corresponding skeleton model for the

arm consists of three line segments, L1, L2, and L3. We compute the distance, eji ,

between xi and the closest point on line segment Lj. We then assign each point

to a line segment. Since the set of points on the skeleton curve is ordered, we

impose the constraint that the assignment is performed in a monotonic manner,

i.e., points x1, · · · ,xn1 are assigned to L1, points xn1+1, · · · ,xn2 are assigned to

L2 and points xn2+1, · · · ,xn are assigned to L3. For a given value of n1, n2 is

chosen so that the distance between points xn1 and xn2 is approximately equal

to the length of line segment L2. For the above assignment, the distance between

the skeleton curve is given by the vector (e11 ··· e1n1
e2n1+1 ··· e2n2

e3n2+1 ··· e3n)′. n1 and

5.2 Pose and model estimation 66

n2 are chosen so as to minimize the sum of the elements in the vector.

Let us denote a given skeleton curve as C and the body model as M. The

pose parameter is given by Φ. Given a skeleton model, skeleton curve and the

pose vector, we can compute the fit error of the skeleton model. We compute the

fit error of the pose and model with the skeleton curve as h(C,M,Φ), where the

function h is a vector that comprises the error between the six skeleton curves

and the corresponding line segments in the skeleton model as described above.

We can therefore minimize the function h′h by varying either the pose Φ or the

model parameters M using non-linear optimization. We drop the dependence of

h on C,M and Φ in subsequent sections.

5.2.3 Estimation of skeleton model from stature

In the first iteration of the algorithm, we optimize for the stature of the subject.

We use the relationship between the stature and the length of the limbs for an

average human. We can compute the complete skeleton model for an average

subject given the stature. Given the length of the limbs in the curve skeleton, we

can use the inverse relation to compute the height. We use the following formula

to compute the stature from the length of the skeleton curve of a limb.

stature =







2.89 ∗ length(Limb), if Limb is an arm,

1.69 ∗ length(Limb), if Limb is a leg.
(5.10)

The estimated stature is the median of the stature estimated for all the limbs in

the set of key frames. We construct a skeleton model for different values of stature

in the region of the estimated stature and compute h′h versus the stature and

select that value of stature for which h′h is the minimum. Φ is initialized using

the routine described in Section 5.2.1.

A plot of the skeleton fit error versus the stature allows us to determine the

best stature value to initialize the skeleton model. One such plot for a synthetic

sequence is presented in Figure 5.4 (a). The initial stature estimated was 2168mm

5.2 Pose and model estimation 67

0100200

−500
0

500
1000

0

500

1000

1500

2000

0100200300

−500

0

500

0

500

1000

1500

2000

0100200300

−500

0

500

0

500

1000

1500

2000

0100200300

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

−200
0

200
400

0

500

1000

1500

2000

200
400

600

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

600
800

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

600
800

−200
0

200
400

0

500

1000

1500

2000

200
400

600
0

200
400

0

500

1000

1500

2000

0
200

400
600

−100 0100200300

0

500

1000

1500

2000

Figure 5.7: Fit of skeleton model after the stature has been optimized: The modelM0

is super-imposed on the skeleton curves.

while the correct stature is 2100mm. It should be emphasized that the compu-

tation of the stature is in the context of its relationship to the body structure of

the subject; we do not have any use for the stature in itself. The initial skeleton

segments have been super-imposed on the computed skeleton curves in Figure 5.7.

The optimization results in an optimal value of the stature, using which we can

compute the initial pose estimate and the initial skeletal model estimateM0.

5.2.4 Optimization of joint locations

In the second step, we optimize the skeleton model parameters directly rather

than through the stature parameter. M is allowed to vary in a bounded region

centered around M0. The optimization is performed with bounded input. The

pose and the body model parameters are alternately varied, i.e., we optimize for

M while keeping Φ fixed and optimize for Φ while keeping M fixed. We begin

with the optimal pose and model estimated in the previous section. We label

5.2 Pose and model estimation 68

0100200

−500
0

500
1000

0

500

1000

1500

2000

0100200300

−500

0

500

0

500

1000

1500

2000

0100200300

−500

0

500

0

500

1000

1500

2000

0100200300

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

−200
0

200
400

0

500

1000

1500

2000

200
400

600

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

600
800

−400
−200

0
200

400

0

500

1000

1500

2000

200
400

600
800

−200
0

200
400

0

500

1000

1500

2000

200
400

600
0

200
400

0

500

1000

1500

2000

0
200

400
600

−100 0100200300

0

500

1000

1500

2000

Figure 5.8: Fit of skeleton model after the joint locations have been optimized: The

model M1 is super-imposed on the skeleton curves.

the optimal model parameters after optimization of the joint locations as M1.

The skeleton model super-imposed on the curve skeleton after joint locations are

optimized is presented in Figure 5.8.

5.2.5 Estimation of super-quadric parameters

The super-quadric parameters for the trunk, head, arm, forearm, thigh, and leg are

estimated from voxels as these body segments are large enough to be estimated

using the voxel resolution in our experiments. At this stage, we know which

body segment on the skeleton model each point on the skeleton curve is closest

to. Since we also know the location of each voxel along the skeleton curve, we

can associate each voxel to a body segment as illustrated in Figure 5.9. Each

articulated chain can therefore be segmented into its component rigid segments.

Using the estimated joint angles, the orientation of the coordinate frame attached

to the component segment can also be computed. For a given body segment, the

pose is normalized using the body coordinate frame, so that the body segment is

5.2 Pose and model estimation 69

0200400−400 −200 0 200 400

0

200

400

600

800

1000

1200

1400

1600

1800

(a)

0200400−400 −200 0 200 400

0

200

400

600

800

1000

1200

1400

1600

1800

(b)

−100

0

100

200

300

400

0
100

200
300

400
500

−100

−50

0

50

100

150

200

250

300

350

400

(c)

−100 0 100 200 300 400 500 600
−100

0

100

200

300

400

500

(d)

Figure 5.9: We classify a set of voxels using their position along the skeleton curve as

belonging to the different segments in an articulated chain. (a) shows the coordinate

frame representing the position of the right thigh, (b) shows the set of voxels associated

with the thigh, (c) shows the voxels in the thigh transformed to the coordinate frame

of the thigh, and (d) shows the radial profile along the z-axis.

positioned at the origin and aligned with the z-axis as in Figure 5.9 (c).

We compute the area of the cross-section of the voxels, Az, (plane parallel to

the xy-plane) at regularly spaced points along the z-axis. We assume that the

cross-section is a disc and find the radius, r, from the area using the relation

A = πr2. An equivalent ellipse with equal area would be such that x0y0 = r2. We

compute the radius at different points along the z-axis, , which we refer to as the

radial profile, as

rz =
√

Az/π. (5.11)

The radial profile for the thigh segment in a frame is illustrated in Figure 5.9 (d).

The radial profile is computed in all the key frames for each body segment. The

median radial profiles for some of the body segments are presented in Figure 5.10.

The length, radius and the scale parameters of the body segment are computed

from the median radial profile. We set x0 = y0 = r in (3.2) for all body segments

except the trunk and head, for which we determine the x0 and y0 parameters of

the super-quadric in the following manner. We obtain the xy-histogram, I(x, y),

a function whose value at (xi, yi) is given by the number of voxels that have x and

5.2 Pose and model estimation 70

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

200

(a) Trunk

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

(b) Head

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

200

(c) Upper arm

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

(d) Forearm

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

(e) Thigh

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

(f) Leg

Figure 5.10: Radial profiles of different body segments: The solid line is the median

radial profile. The dotted line is the super-quadric radius with scale parameter set to

zero. The dashed line is the super-quadric radius with estimated scale parameter. The

x-axis of the plots is the distance in mm along the z-axis of the body segment coordinate

system. The y-axis of the plots is the radius value also in mm.

y coordinates given by xi and yi respectively. The set of all points that lie inside

the ellipse with parameters a and b is given by

Sa,b =

{

(x, y) :
(x

a

)2

+
(y

b

)2

< 1

}

. (5.12)

We find the values of x0 and y0 that satisfy the constraint, x0y0 = r2 and maximize

the function

∑

(x,y)∈Sx0,y0

I(x, y), (5.13)

to estimate the x0 and y0 parameters.

Finally, we refine the pose using the super-quadric body segments and the

voxels directly. The objective is to obtain the pose that maximizes the overlap

5.2 Pose and model estimation 71

between the super-quadric model and the voxels. The pose is refined by bounded

optimization of the pose parameter to minimize the “distance” between the voxels

and the super-quadric model. This “distance” depends on the position of each

voxel with respect to the closest super-quadric. The distance of a voxel is set to

e0 if the voxel is on the surface and e−1 if it is on the axis of the super-quadric.

The distance increases exponentially as the voxel is farther from the surface of

the super-quadric. The distance vector, d comprises of the distance of each voxel

with respect to the super quadric and is given by

d =
(

d1 d2 · · · dN

)′
, (5.14)

where

di = min
(

d
(1)
i , d

(2)
i , · · · , d(J)

i

)

. (5.15)

d
(j)
i is the distance of the ith voxel with respect to the jth body segment and given

as

d
(j)
i =







exp
(
rji − qji

)
, if 0 ≤ zji ≤ zj0

exp
(
rji + pji

)
, otherwise,

(5.16)

where

pji = min
(∣
∣zj0 − zji

∣
∣ ,
∣
∣zji
∣
∣
)
, (5.17)

rji =

√
√
√
√

(

xji
xj0

)2

+

(

yji
yj0

)2

, and (5.18)

qji =

√
√
√
√
√

(

1 + sj
zji
zj0

)

1−
(

1− 2
zji
zj0

)d


. (5.19)

(xji , y
j
i , z

j
i) are the voxel coordinates in the coordinate system of the jth body

segment and (xj0, y
j
0, z

j
0, s

j, dj) are the super-quadric parameters of the jth body

segment. Although the distance function appears complicated it is merely a mea-

sure of how close the voxel is to the central axis of the super-quadric. The optimal

pose is the pose that minimizes d′d.

5.3 Experimental results 72

5.3 Experimental results

We present results of our experiments on synthetic data obtained from animation

models, as well as real data obtained both from 3D laser scans and synchro-

nized video sequences. The registration and model estimation results using voxels

obtained from video data (which includes different subjects and poses with self-

contact) are presented in Section 5.3.1. We also present pose estimation results on

two sequences from the HumanEvaII database in Section 5.3.2. We also present

the results of the model estimation algorithm on other sources such as 3D laser

scan data in Section 5.3.3 as well as synthetic data in Section 5.3.4. These dif-

ferent sources result in voxel data with varying degrees of accuracy. Voxels of

dimension 30mm× 30mm× 30mm were used in the experiments.

5.3.1 Registration of segmented voxels

The results of the registration algorithm on different subjects in both simple and

difficult poses are presented in Figure 5.11. The voxels in this case were com-

puted using images from multiple cameras. Gray scale images were captured from

Ncam = 12 calibrated cameras. We have successfully performed segmentation and

registration in the case of self contact as illustrated in Figure 5.11 (a) and (d),

which other algorithms, such as [13], do not address. This probabilistic registra-

tion allows us to reject improbable registrations based on the estimated connec-

tions between the segments as well as lets us use prior knowledge of the properties

of the different segments as well as the graph describing their connectivity.

We also present results on the model estimation and pose initialization. Given

that the quality of the voxels construction is relatively inferior due to space carving

and background subtraction artifacts, we used 20 frames in the human body

model estimation algorithms. The results of the human body model estimation

for different subjects are presented in Figure 5.12.

5.3 Experimental results 73

(a) Subject A (b) Subject A (c) Subject B

(d) Subject A (e) Subject C (f) Subject D

Figure 5.11: Registration for different subjects and poses.

5.3.2 HumanEvaII data

We present results of the segmentation and registration algorithm on two se-

quences from the HumanEvaII dataset in Figure 5.14. We map the nodes to 5D

LE, as the accuracy of voxel reconstruction is low, and we do not gain much by

mapping to a higher dimensional space. The algorithm does not find the requisite

number of body segments in the majority of the frames principally due to two

reasons. The arms are too close to the body and obscured in a majority of the

cameras and are undetected, or segmented limbs are rejected due to the length

of their curve skeleton being too short. The voxel reconstruction algorithm also

creates a “ghost limb” as an artifact of the space carving algorithm in certain

configurations of the subject with respect to the cameras. It should be noted that

both these problems can be alleviated by using more cameras. The problematic

frames are rejected automatically. We report results on the Walking (Frames 1-

350) and Balancing (800-1222) subsets. A total of 68 frames (around 9% of the

total) were segmented and registered.

5.3 Experimental results 74

−400 −200 0 200 400
−200

0
200

200

400

600

800

1000

1200

1400

(a) Voxel from Silhouettes

−2000200400600

0
200

400
600

800

200

400

600

800

1000

1200

1400

1600

−2000200400600

0
200

400
600

800

200

400

600

800

1000

1200

1400

1600

(b) Subject A

−200 0 200 400 600
−500

0

500

200

400

600

800

1000

1200

1400

1600

−200 0 200 400 600
−500

0

500

200

400

600

800

1000

1200

1400

1600

(d) Subject D

−400 −200 0 200
−600−400−2000200400

200

400

600

800

1000

1200

1400

1600

−400 −200 0 200
−600−400−2000200400

200

400

600

800

1000

1200

1400

1600

(c) Subject B

−600 −400 −200 0 200 400−400
−200

0
200

200

400

600

800

1000

1200

1400

−600 −400 −200 0 200 400−400
−200

0
200

200

400

600

800

1000

1200

1400

(e) Subject C

Figure 5.12: Human body model estimation for different subjects from video sequences.

−200
0

200
400

100012001400

200

400

600

800

1000

1200

1400

1600

Figure 5.13: Sample frame from the HumanEvaII data-set, with original images, and

corresponding foreground images and computed voxel data.

The two subsets from the sequence we use are Walking (subset 1) and Balanc-

ing (subset 2). The error numbers reported are in MSE per joint location. We

note that the error is for the full body pose, which consists of 20 joints on the

human body. Figure 5.15 provides the plots of the error for the different frames

that are temporally separate in space. The absolute error and the relative error

are plotted and are similar with the absolute error being slightly less in both the

cases. The means of the errors are plotted in dashed lines. Table 5.1 contains a

summary of the pose estimation error. The number of frames for which the pose

has been computed is also listed.

5.3 Experimental results 75

500

1000

600
800

1000
1200

200

400

600

800

1000

1200

1400

1600

500

1000

600
800

1000
1200

200

400

600

800

1000

1200

1400

1600

−200
0

200
400

100012001400

200

400

600

800

1000

1200

1400

1600

−200
0

200
400

100012001400

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

02004006008001000

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

02004006008001000

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

800100012001400

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

800100012001400

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

2004006008001000

200

400

600

800

1000

1200

1400

1600

−600
−400

−200
0

200

2004006008001000

200

400

600

800

1000

1200

1400

1600

−600−400−2000200

02004006008001000

200

400

600

800

1000

1200

1400

1600

−600−400−2000200

02004006008001000

200

400

600

800

1000

1200

1400

1600

Figure 5.14: Pose estimation results from HumanEvaII sequence.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

Relative Error
Absolute Error

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

220

Relative Error
Absolute Error

Figure 5.15: Plot of the error per frame for the two sequences from the HumanEvaII

data set. The error is in mm.

5.3.3 3D scan data

We also tested our human body model estimation algorithm on different subjects

using laser scan data which provide 3D meshes. Voxels are computed from 3D

meshes by determining if nodes on a regular 3D grid lie inside the mesh structure.

The subject in each case strikes different poses that exercise different joint angles.

The subjects are of different heights and build. A set of five different poses was

used to estimate the human body pose. Each pose is quite different from the

other and the 3D scans are relatively accurate and we were thus able to estimate

5.3 Experimental results 76

Relative Error Absolute Error
Subset Number of Frames

Mean Median Mean Median

1 19 131.3 113.7 123.0 107.1

3 49 129.1 123.3 115.7 112.8

Table 5.1: Pose error per frame: The pose error is the MSE of all joints per frame and

is in mm.

−200
0

200
−200 0 200

200

400

600

800

1000

1200

1400

(a) Voxel from scan

−200
0

200
400 −200

0
200

200

400

600

800

1000

1200

1400

1600

−200
0

200
400 −200

0
200

200

400

600

800

1000

1200

1400

1600

(b) Subject E

−200
0

200 −200 0 200

200

400

600

800

1000

1200

1400

−200
0

200 −200 0 200

200

400

600

800

1000

1200

1400

(d) Subject A

0 200 400 −400
−200

0
200

200

400

600

800

1000

1200

1400

1600

0 200 400 −400
−200

0
200

200

400

600

800

1000

1200

1400

1600

(c) Subject F

0200400 −200 0 200

200

400

600

800

1000

1200

1400

1600

1800

0200400 −200 0 200

200

400

600

800

1000

1200

1400

1600

1800

(e) Subject G

Figure 5.16: Human body model estimation from 3D scan obtained for different subjects.

the human body model parameters from fewer frames. The results of the human

body model for different subjects are presented in Figure 5.16. This experiment

illustrates that human body model estimation can be performed using a limited

number of frames, provided the poses are varied.

5.3.4 Synthetic data

We provide results on human body model estimation using a synthetic sequence

that has been generated from a known model and known motion sequence de-

scribed by the standard BVH format. A sample 3D frame and the corresponding

5.3 Experimental results 77

voxel data is presented in Figure 5.17 along with the estimated model in different

poses. The human body parameters as well as the pose parameters are known

and we can compare the estimated human body model and the motion parameters

with the ground truth values. We note that the known body parameters are only

the joint locations and not the shape parameters; the 3D animation is a smooth

fairly realistic mesh as can be seen in the above figure and is very similar to real

data. The sequence had 120 frames, and the six different chains were correctly

segmented and registered in 118 of the 120 frames. We used 10 equally spaced

frames as the key frames in our human body model estimation algorithm. The

human body model used in this estimation used two rigid segments for the trunk.

The human body model used in the other experiments use one rigid segment for

the trunk. The pose was computed for all the 118 frames using the estimated

model. The errors in the joint angles at the important joints are compared in

Table 5.2. The error is in degrees and computed as

Joint angle error = cos−1 (n′
GnE) , (5.20)

where nG and nE are the actual and estimated unit vectors describing the direc-

tion of the segment at the joint.

5
.3

E
x
p
e
r
im

e
n
t
a
l

r
e
s
u
lt

s
78

Optim. Statistic Trunk L Should. L Elbow R Should. R Elbow L Hip L Knee R Hip R Knee

Mean 1.24 8.80 4.20 8.61 5.21 4.09 4.04 3.97 4.82
Skeleton

Median 1.20 8.51 3.89 8.66 4.98 3.33 3.71 2.68 3.33

Mean 1.25 7.78 4.25 10.04 5.09 4.18 4.66 3.70 4.96
Super-quadric

Median 1.20 8.13 4.14 9.67 4.97 3.41 4.68 3.22 4.35

Table 5.2: Joint angle error for skeleton and super-quadric optimization. The joint angle errors are in degrees.

200
400

600
800 100200300400500

200

400

600

800

1000

1200

1400

1600

−1000100200300

−500

0

500

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

−1000100200300

−500

0

500

0

500

1000

1500

2000

0
200

400

−400
−200

0
200

400
600

200

400

600

800

1000

1200

1400

1600

1800

2000

0
200

400

−400
−200

0
200

400
600

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
200

400
600

−400
−200

0
200

400

200

400

600

800

1000

1200

1400

1600

1800

0
200

400
600

−400
−200

0
200

400

0

200

400

600

800

1000

1200

1400

1600

1800

0
200

400
600

0
200

400

500

1000

1500

2000

0
200

400
600

0 200
400

0

500

1000

1500

2000

Figure 5.17: Human body model estimation for synthetic sequence: While the sequence itself is synthetic, the voxel data

is of the same resolution and is not very different from real data. Four images from the sequence are presented with the

super-quadric model super-imposed with the voxel data.

Chapter 6

Pose tracking using multiple cues

Pose initialization and pose tracking are different problems and are typically tack-

led using different techniques, although initialization techniques may be adapted

to perform tracking. In a sense, pose tracking is easier as only an incremental

change in pose needs to be estimated. A number of algorithms assume that the

pose is initialized and attempt to solve the tracking problem. On the other hand,

initialization methods, that estimate pose using a single frame, typically are not

able to estimate the pose of the subject in all the frames in a sequence. We,

therefore, need to combine elements of both pose initialization and pose tracking

to estimate the pose in an entire sequence. Having performed model and pose

estimation, or initialization, we describe a tracking algorithm that builds on our

initialization work in this chapter.

Much of the work in the past has focussed on using either motion or shape cues

in order to track the pose. We present a pose estimation and tracking algorithm

that combines both 3D and 2D shape cues as well as 2D image motion cues to

track pose in a sequence using an articulated model of the subject. The human

body model has been described in detail in Section 3.2.1. We represent the pose,

Φ, in a parametric form as described in Section 3.2.3. In the registration method

described in the previous chapter, we have success with frames where all six ar-

ticulated chains have been segmented and the probability of registration is high.

However, in typical sequences, the spatial registration routine fails when body

segments are too close to each other or when errors in the 2-D silhouette estima-

tion cause holes and gaps in the voxel reconstruction. We extend the registration

method to deal with those frames that have only been partially segmented. We

79

80

Human
Body

Model
Prediction

Correction

Pose Tracking

Pose Initialisation

Pose Initialisation3D Shape cues

Spatially registered splines

Temporally registered splines

Pixel displacement

2D Motion cues

Motion residues

Silhouettes

2D Shape cues

Figure 6.1: The outline of the tracking algorithm illustrating the role of different cues

in the different steps: initialization, prediction, and correction.

use the temporal relationships between articulated chains to register them to body

segments in as many of the remainder of the frames as possible. These segmented

articulated chains serve as shape cues in the tracking algorithm as well. The block

diagram of the tracking algorithm is presented in Figure 6.1. We initialize our

tracking algorithm with a frame that has been completely segmented and regis-

tered, and for which we can estimate the pose. We propose a two-part tracking

algorithm that uses both motion and shape cues and consists of a predictor and

corrector. The tracker performs the following steps at each time instant.

• Compute 2D pixel displacement between frames at times t and t+ 1. Use the

pixel displacement of all body segments in all images to compute change in 3D

pose. The predicted pose is computed using the estimated change in pose.

• For all articulated chains whose skeleton curves are present, perform pose cor-

rection using skeleton curves (3D shape cues).

• For articulated chains whose skeleton curves are not available, perform pose

correction using 2D shape cues such as silhouettes and motion residues.

The performance of a tracking system typically improves with the number of

81

independent observations, and to that end our system uses different kinds of cues

that can be estimated from the images. We use both motion cues, in the form of

pixel displacements, as well as shape cues, such as skeleton curves, silhouettes, and

“motion residues”, hereafter collectively referred to as shape cues. The motion and

shape cues complement each other and work together to alleviate the drift and

local minima problem that are manifest when they are applied independently.

Since we use motion and shape cues in our tracking algorithm, we are able to

better deal with cases where the body segments are close to each other, such as

when the arms are close to the side of the body. Purely silhouette-based and

voxel-based methods typically experience difficulties in such cases. Indeed, we use

a voxel-based algorithm to initialize the pose and commence the tracking, but

the registration algorithm used in the initialization is successful in only a limited

number of frames as mentioned earlier. Silhouette or edge-based methods also

have the weakness that they will not be able to deal with rotation around the axis

of the body segment. We also propose a smoothing algorithm that smooths the

trunk pose, a 6D vector. This is an optional step in the algorithm and improves

the performance of the tracker. Since the trunk forms the root of the kinematic

chain in our model, smoothing only the trunk pose leads to a smoother estimate

of the pose of the entire body. The smoothed trunk estimate is used as an input

to the tracking algorithm; it is not a post processing step.

We show that it is possible to estimate 3D pose change from pixel displacement

under a projective transformation in Section 6.1. We describe the temporal reg-

istration of skeleton curves in Section 6.2. The details of the tracking algorithm

including the initialization, prediction, correction, and smoothing routines, are

presented in Section 6.3. Finally, we present results of the tracking algorithm on

different sequences in Section 6.4. In our experiments, we use sequences that have

been captured using eight cameras that are placed around the subject and cover

a variety of motions such as swinging arms in wide arcs, walking in a straight

line and walking in a circles. The tracking algorithm successfully tracks the pose

6.1 Pose estimation from pixel displacement 82

through the entire sequence, some of which extend for more than 10 seconds.

6.1 Pose estimation from pixel displacement

We derive a comprehensive formulation to estimate whole body 3D pose from pixel

displacement of different body segments in images obtained from multiple cam-

eras. Existing algorithms perform monocular tracking, or use the orthographic

projection model for the cameras. We formulate the instantaneous pixel velocity

as a linear function of pose velocity under a perspective projection model for the

cameras. Thereafter, we measure pixel displacement and iteratively estimate the

change in 3D pose using our formulation. We can easily incorporate measure-

ments from multiple cameras in our formulation and thus overcome the problem

of kinematic singularity, leading to a robust estimate.

We consider a point on the ith segment, and its projection onto the camera

image. We show that the 3D point velocity and the corresponding 2D pixel

velocity of this point are linear functions of the pose velocity in Section 6.1.1

and Section 6.1.2 respectively. It is easier to measure pixel displacement than

pixel velocity when we are given two frames. This is because the measured pixel

velocity is a measurement of the optical flow, rather than the actual motion of

the pixel. We therefore estimate and use the pixel displacement between two

frames instead. We then estimate the change in pose using the measured pixel

displacement using an iterative method described in Section 6.1.3.

6.1.1 Point velocity as a function of pose velocity

We first define certain notations and representations that we use in our formu-

lation. We use the notation and some results from Murray et al . [46]. We can

express the homogeneous transformation matrix, G, as a function of the twist

vector ξ = (p
ω) as

6.1 Pose estimation from pixel displacement 83

G = eξ̂ = I + ξ̂ +
1

2!
ξ̂

2
+

1

3!
ξ̂

3
+ · · · , (6.1)

where

ξ̂ =










0 −ω3 ω2 p1

ω3 0 −ω1 p2

−ω2 ω1 0 p3

0 0 0 1










. (6.2)

We define the ∨ (vee) operator to extract the 6-dimensional vector which param-

eterizes a twist, and is the inverse operator of ∧ (hat), so that ξ̂
∨

= ξ.

Let us consider a point q, given by q(i) in the coordinate frame of segment i

and q(j) in the coordinate frame of segment j. We then have

q(i) = Gijq
(j), (6.3)

where Gij has been defined in (3.6) in Section 3.2.3. We consider the motion of

frame j with respect to frame i. Since we are only concerned with the instanta-

neous motion, we can assume that the motion is described by a constant twist, ξ,

so that

gij(t) = gij(0)e
ξ̂t = Gije

ξ̂t. (6.4)

The twist vector is what we refer to as pose velocity, and we can see that if we

estimate the pose velocity, we can estimate the change in 3D pose, which is the

multiplicative factor eξ̂t in (6.4). The t parameter is a scalar and denotes time.

We use gij(t) to denote the transformation as a function of time. Gij is a constant

and is given by gij(0). We consider motion at t = 0 without loss of generality.

Considering the velocity of the point q in frame i, we have

q̇(i) = ġijq
(j) + gijq̇

(j) (6.5)

= ġijq
(j), (6.6)

6.1 Pose estimation from pixel displacement 84

where the second equation follows because the point is fixed in frame j and there-

fore q̇(j) = 0. Substituting (6.4) in (6.6), we get

q̇(i)(t) = Gij ξ̂e
ξ̂tq(j). (6.7)

We thus have

q̇(i)(0) = Gij ξ̂e
ξ̂0q(j) = Gij ξ̂q

(j) = GijΥ(q(j))ξ, (6.8)

where

Υ(q) ,










1 0 0 0 −q3 q2

0 1 0 q3 0 −q1
0 0 1 −q2 q1 0

0 0 0 0 0 0










. (6.9)

Assuming there are a total of m segments, and given a point, q, on the ith segment,

we have

q(0) = g0iq
(i) = g01g12 · · · g(i−1)iq

(i). (6.10)

It follows that

q̇(0) =
(
ġ01g12 · · · g(i−1)i + g01ġ12 · · · g(i−1)i + · · ·+ g01g12 · · · ġ(i−1)i

)
q(i) (6.11)

=
(

g01ξ̂
(1)
g12 · · · g(i−1)i + g01g12ξ̂

(2) · · · g(i−1)i

+ · · ·+ g01g12 · · · g(i−1)iξ̂
(i)
)

q(i)
(6.12)

= g01ξ̂
(1)
q(1) + g02ξ̂

(2)
q(2) + · · ·+ g0iξ̂

(i)
q(i) (6.13)

= g01Υ(q(1))ξ(1) + g02Υ(q(2))ξ(2) + · · ·+ g0iΥ(q(i))ξ(i) (6.14)

=




g01Υ(q(1)) g02Υ(q(2)) · · ·

col. 6(i−1)+1 to 6i
︷ ︸︸ ︷

g0iΥ(q(i)) 04×6(m−i)
︸ ︷︷ ︸

col. 6i+1 to 6m















ξ(1)

ξ(2)

...

ξ(m)










(6.15)

= F (Φ, q)Ξ, (6.16)

6.1 Pose estimation from pixel displacement 85

where Ξ =

(
ξ(1)

...
ξ(m)

)

. Let the pose at time t = 0 be Φ(0) =

(
ϕ(1)(0)

...
ϕ(m)(0)

)

and the

pose at time t = 1 be Φ(1) =

(
ϕ(1)(1)

...
ϕ(m)(1)

)

. We note that the pose at time t + 1 is

given by

g(t) = eϕ̂(t+1) = g(0)eξ̂t = eϕ̂(0)eξ̂t. (6.17)

We therefore have

ϕ(t) = ϕ(0)⊕ ξ, (6.18)

where the ⊕ operation is defined as

ϕ⊕ ξ ,

(

ln eϕ̂eξ̂
)∨

. (6.19)

The pose at t = 1 for each segment i in the body is then given by

ϕ(i)(1) = ϕ(i)(0)⊕ ξ, for i = 1, 2, · · · ,m. (6.20)

We can represent the set of operations in (6.20) using the abbreviated version

Φt+1 = Φt ⊕Ξ, (6.21)

where the upper case Greek letters Φ and Ξ refer to the vector stack of the poses

of the individual segments represented by lower case Greek letters ϕ and ξ.

6.1.2 Pixel velocity as a function of pose velocity

We show in [70] that if we use a perspective projection to project the 3D point

on to the camera, the resulting pixel velocity is still a linear function of the pose

velocity. Let P3×4 =

(
P ′

1

P ′

2

P ′

3

)

be the projection matrix, then the pixel value is

given in homogeneous coordinates by q(c) = Pq(0). The superscript, (c), denotes

6.1 Pose estimation from pixel displacement 86

the camera coordinate system. Let u be the pixel coordinates in inhomogeneous

coordinate system. We then have

u =




u1

u2



 =
1

q
(c)
3




q
(c)
1

q
(c)
2



 =
1

P ′
3q

(0)




P ′

1

P ′
2



 q(0). (6.22)

We then have the pixel velocity given by

u̇ =
1

P ′
3q

(0)




P ′

1

P ′
2



 q̇(0) − q̇(0)

(P ′
3q

(0))
2




P ′

1

P ′
2



 q(0) (6.23)

=
1

P ′
3q

(0)








P ′

1

P ′
2



− 1

P ′
3q

(0)




(P ′

1q
(0))P ′

1

(P ′
2q

(0))P ′
2







 q̇(0) (6.24)

= E(P, q)q̇(0) (6.25)

= E(P, q)F (Φ, q)Ξ, (6.26)

where E(P, q) represents the matrix in (6.25) and (6.26) is obtained by combining

(6.16) and (6.25) to express the 2D pixel velocity as a linear function of the 3D

pose velocity, Ξ.

6.1.3 Estimating pose change from pixel displacement

We can estimate Ξ from pixel velocity using the inverse of (6.26) and thereafter

compute the new pose, Φt+1, from Ξ and Φt using (6.21). However, we measure

pixel displacement from the images, and hence we use a first order approximation

of the pixel velocity in order to compute the change in pose. Given a set of points,

we can compute the projection of each of these points for all the cameras as a

function of the pose Φ. We refer to this stacked vector as C(Φ). We can also

compute the matrix D(Φ) = E(P, q)F (Φ, q) and describe it as a function of Φ.

D and C are functions of both the point coordinates and the projection matrices

besides Φ, but as these are fixed for a given frame, we do not explicitly denote

them for the sake of simplicity. We therefore have the pixel location and velocity

6.2 Temporal registration of skeleton curves 87

given as

u = C(Φ) (6.27)

and

u̇ = D(Φ)Ξ. (6.28)

The state vector in our state-space formulation is Φt and the state update and

observation equations are given by (6.29)-(6.30).

State update : Φt+1 = Φt ⊕Ξt (6.29)

Observation : ∆u = ut+1 − ut ≈ D(Φ)Ξ (6.30)

(6.30) follows from the first order Taylor series approximation

ut+1 = ut + u̇t +
1

2
üt + · · · ≈ ut + u̇t. (6.31)

We can then use an iterative algorithm to estimate the pose from the given pixel

displacement using the steps described in Table 6.1. We have several pixel dis-

placement measurements from multiple cameras and the estimation equation is

highly over-constrained and we can perform a least squares estimate in step 5.

6.2 Temporal registration of skeleton curves

Given a sequence of frames, we can typically segment and register the voxel data

for a subset of the frames using the single frame registration algorithm presented

in Section 5.1. The pose can then be initialized for the frames belonging to this

subset using the algorithm presented in Section 5.2. An example of a successfully

segmented and registered frame is presented in Figure 6.2. The single frame

registration method does not succeed in all frames possibly due to errors in the

voxel reconstruction or segmentation or a complex pose. Two examples where

registration of skeleton curves to articulated chains in a stand-alone frame fails

6.2 Temporal registration of skeleton curves 88

1. Let Φt be the estimated pose at time t.

2. Let Φ0
t+1 = Φt and k = 0.

3. Let k = k + 1.

4. Let ∆u(k) = ∆u− (C(Φ(k))− C(Φt))

5. Compute Ξ(k) =
(

D(Φ(k))′D(Φ(k))
)

D(Φ(k))′∆u(k).

6. Update Φ
(k+1)
t+1 = Φ

(k)
t+1 ⊕Ξ(k).

7. If converged, or k exceeds number iterations, go to 3.

8. Set Φt+1 = Φ
(k+1)
t+1 .

Table 6.1: Algorithm for estimating 3D pose using pixel displacement

are illustrated in 6.3. In one of the examples, the head is missing, due to errors

in background subtraction, and in the other seven, instead of six, spline segments

are discovered. It is very useful, from a tracking point of view, to register at least

some of the skeleton curves in a given frame. We describe a temporal registration

method which can be used in conjunction with the spatial registration method

presented earlier, to register skeleton curves using their temporal relation.

Let SA = {xA1 ,xA2 , · · · ,xAnA
} and SB = {xB1 ,xB2 , · · · ,xBnB

} be the set of points

belonging to skeleton curves SA and SB respectively. The distance between skele-

ton curves SA and SB is given by

d(SA,SB) =
1

nA + nB

(
nA∑

i=1

min
j

(‖xAi − xBj ‖) +

nB∑

i=1

min
j

(‖xBi − xAj ‖)
)

. (6.32)

Let us assume that frames at time t0 and t1 are registered using the spatial reg-

istration method referred to in the previous section. We need to register skele-

ton curves for the frames between t0 and t1. Let Ri
t represent the reference (or

registered) skeleton curve for the ith articulated chain at time instant t. The

6.2 Temporal registration of skeleton curves 89

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

(a)

−300−200−1000100 −600
−400

−200

200

400

600

800

1000

1200

1400

1600

−300−200−1000100 −600
−400

−200

200

400

600

800

1000

1200

1400

1600

−300−200−1000100 −600
−400

−200

200

400

600

800

1000

1200

1400

1600

(b)

Figure 6.2: Example of registered frames: The various stages from segmentation and

registration to pose initialization.

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

(a)

−300−200−1000100
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

−300−200−1000100
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

−300−200−1000100
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

(b)

Figure 6.3: Examples of unregistered frames: The first example has a missing segment

(head) and the second example has an extra segment which is an artifact of the voxel

reconstruction.

6.3 Tracking algorithm 90

1. Set t = t0. Set Rit = Sit for i = 1, · · · , 6. Note that this frame has been

already registered.

2. Set t = t + 1.

3. Let the skeleton curves in the current frame be S1
t , · · · ,SNt

t . Note that the

Nt may not be equal to six.

4. For each Rit−1, find the closest curve, Srit , if it exists, such that

d(Srit ,Rit−1) < dTHRESHOLD and the mapping is unique.

5. If Rit−1 has a registered candidate, then set Rit = Srit , else set Rit = Rit−1.

6. If t = t1 − 1, stop, else go to Step 2.

Table 6.2: Temporal registration of skeleton curves

forward temporal registration algorithm is presented in Table 6.2. We typically

set dTHRESHOLD = 50mm. The same algorithm can be used to perform reverse

temporal registration as well, i.e., we start at t = t1 and proceed backwards in

time. Any skeleton curve that is not registered to the same articulated chain in

the forward and backward temporal registration process is said to be unregistered.

6.3 Tracking algorithm

We describe the complete tracking algorithm which consists of the predictor-

corrector framework, beginning with initialization. We assume that the human

body model is available for the subject in the sequence. We track the pose start-

ing at the first frame in which the pose can be initialized. The pose initialization

procedure in the context of tracking is briefly explained in Section 6.3.1. Typi-

cally, the pose can be initialized in several frames in a sequence and the majority

of the skeleton curves in the remainder of the frames can be registered using the

6.3 Tracking algorithm 91

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

(a) Segmentation

−2000200
−800

−600
−400

−200

200

400

600

800

1000

1200

1400

1600

(b) Registration

−200−1000100

−800
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

(c) Initialize pose

−200−1000100

−800
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

(d) Optimize pose

−200−1000100

−800
−600

−400
−200

200

400

600

800

1000

1200

1400

1600

(e) Final pose

Figure 6.4: Pose initialization for tracker using computed model.

temporal registration algorithm described in Section 6.2. Our tracking algorithm

consists of two steps, a prediction step and a correction step. Given the pose at t,

we predict the pose at time t+ 1 using motion cues as described in Section 6.3.2.

We correct the predicted pose using the available 2D and 3D shape cues as de-

scribed in Section 6.3.3. Finally, we describe an optional smoothing routine in

Section 6.3.4.

6.3.1 Pose initialization for tracker

To briefly summarize our initialization algorithm, we begin with a bottom-up

segmentation (Figure 6.4 (a)) and perform registration of skeleton curves (Fig-

ure 6.4 (b)). We then initialize the trunk pose using previously estimated human

body model parameters for the subject (Figure 6.4 (c)) and optimize the pose

parameters using skeleton curves and the skeleton model (Figure 6.4 (d)) and fi-

nally the voxels and super-quadric model (Figure 6.4 (e)). We note that the pose

initialization is performed by minimizing h′h as described in Section 5.2.2, except

that the body model parameters are fixed in this instance. We note that even

with partial registration, we can still obtain an initial estimate of the pose of the

trunk using the skeleton curves of the trunk and either two arms or two limbs.

6.3 Tracking algorithm 92

6.3.2 Pose prediction using motion cues

In order to estimate the motion of the whole body, we first project each body

segment onto each image. We call this step pixel-body registration. We thus

have a pixel mask for each segment in each of the images. We compute the pixel

displacement for each mask segment in each image using the rigid body motion

model. We then combine the pixel displacement for a set of bodies in all the

images into a single matrix equation using which we estimate the change in 3D

pose.

6.3.2.1 Pixel-body registration

We register each pixel in each image to its 3D coordinate and determine the body

segment it belongs to. We can thus obtain a 2D mask for each body segment

in each image and we can impose a rigid motion model for all pixels belonging

to the same segment (mask). In order to determine the correspondence between

a pixel and the body segments in a given image, we convert the super-quadric

representing each body segment into a triangular mesh and project it onto the

image. We can compute the depth at each pixel by interpolating the depths of the

triangle vertices.1 Since we can compute the depth at a pixel for different body

segments, we can resolve self-occlusion. Figure 6.5 illustrates the projection of the

body segments onto images from two cameras. Different colors denote different

body segments. We can also compute 3D coordinates of the points corresponding

to the pixels using similar interpolation techniques.

6.3.2.2 Estimating pixel displacement

We use a parametric rigid motion model for all the pixels belonging to the same

body segment in an image. The displacement, δu, at a pixel u is a function of

1Since we convert the super-quadric to triangular meshes, we can easily extend our algorithm

to use mesh-based models instead of super-quadrics.

6.3 Tracking algorithm 93

(a) View 1 (b) View 2 (c) Sample block (d) Mask

Figure 6.5: Pixel registration showing the mask of left elbow.

(a) Mask (b) Image Difference (c) Motion Residue (d) Flow

Figure 6.6: Pixel displacement and motion residue

ψ = (∆, θ, s) where ∆ is the displacement, θ is the rotation and s is the scale

parameter for the motion of the mask. The displacement at a pixel, u, is therefore

given by

∆u = δ(u,ψ) = s




cos θ − sin θ

sin θ cos θ



 (u− u0) + ∆, (6.33)

where u0 denotes the projection of the joint location for the body segment. We

prefer the above parametric representation to an affine model as we can set mean-

ingful upper and lower bounds on each parameter. Let u1, · · · ,un be the pixels

registered to a given segment and illustrated in Figure 6.6 (a). We compute that

value of ψ ∈ [ψ0−ψB,ψ0 +ψB] for the segment that minimizes the residue given

6.3 Tracking algorithm 94

by eTe, where ψB denotes the bounds on the motion that we impose, and the jth

element of e is given as

ej = It(uj)− It+1(uj + δ(uj,ψ)). (6.34)

A value of ψ = 0 implies no motion. Figure 6.6 illustrates the pixel displacement

computation and the concept of “motion residue”. Figure 6.6 (a) is the smoothed

intensity image at time t. Figure 6.6 (b) is the difference between the intensity

images at time t and t+1. This is the same as the “motion residue” for ψ = 0. We

note that if the actual motion of the pixel agrees with the estimated motion, then

the motion residue for the pixel is close to zero, otherwise it is generally a non-zero

value. We note that the motion ψ = 0 agrees with the motion of the background

pixels (the region left of the mask) which is stationary. However, ψ = 0 does not

agree with the motion of the foreground pixels. Figure 6.6 (c) is the difference

between the image at time t warped according to the estimated motion and the

image at t + 1 and is the “motion residue” for the optimal ψ. We note that the

estimated motion agrees with the actual motion for the pixels in the mask, but

does not agree with the motion for the background pixels. The value of the pixels

in the region of the mask is close to zero where the estimated pixel displacement

agrees with the actual pixel displacement. Thus, the “motion residue” provides

us with a rough delineation of the location of the body segment at time t+1, even

when the original mask does not exactly match the body segment. Figure 6.6 (d)

illustrates the computed pixel displacement for pixels in the mask.

6.3.2.3 Pose prediction

We need to predict the pose Φt+1 given Φt from the pixel displacement. The

basic relationship between the pose velocity, Ξ, and the pixel velocity, and how

we compute Φt+1 from the pixel displacement was described in Section 6.1. Since

we have registered pixels to 3D points on the model, and the camera calibration

parameters, we can compute the matrix D(Φ) in (6.28) between the pixel velocity

6.3 Tracking algorithm 95

and the pose in pose. While our body model and our pose estimation algorithm

allows rotation and translation for each joint, we set the translational component

to zero at most joints as we find that, in practice, the estimation is more robust

when the number of translational parameters are minimum [70]. We, therefore,

allow only the base body to translate freely. We allow the shoulder joint to

translate under the following constraint, where pSHOULDER is the translation at

the shoulder joint.

‖pSHOULDER‖ ≤ 20mm (6.35)

We estimate the whole body pose of the subject in multiple steps, starting at

the root of the kinematic chain as illustrated in Figure 6.7. In the first step,

we estimate the pose for the segments belonging to the trunk, in the second we

include the first segment in all the limbs, and in the final step we estimate the

pose for all the segments save the trunk segments.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 6.7: We estimate the motion beginning at the base of the kinematic chain, i.e.,

the trunk and propagate the motion along the chains in further steps. The segments for

which the pose is computed at a given step are colored in dark gray, while the remaining

segments are in light gray.

6.3 Tracking algorithm 96

6.3.3 Pose correction using shape cues

The pose can be corrected for all the articulated chains in a given frame that

have been registered (spatially or temporally) using the 3D shape cues (skeleton

curves). The pose of each articulated chain can be corrected by minimizing h′h

as described in Section 5.2.2, the only difference being that in this instance we

optimize for pose alone, keeping the body model parameters fixed. The pose

parameter search space is bounded and centered around the pose predicted using

motion cues. In the absence of 3D shape cues for an articulated chain, we can

use 2D shape cues in the form of silhouettes and motion residues. This allows

us to use the predictor-corrector framework irrespective of which shape cues are

available. The “motion residue” for the example in Section 6.3.3 is presented in

Figure 6.6 (d). The “motion residue” for a given segment provides us with the

region that agrees with the motion of the mask and helps us spatially delineate

the segment in the image.

(a) (b) (c) (d) (e)

Figure 6.8: Obtaining unified error image for the forearm: (a) and (b) denote the

silhouette at t + 1, (c) the motion residue, (d) the combined energy image and (e) the

mask.

We combine the “motion residue” and the silhouette as shown in Figure 6.8

to form an error image for that segment. We now have the pixel-wise error image

for each camera and a given segment as well as a mask for the body segment

for the body segment for a given image as illustrated in Figure 6.8 (e). For a

6.3 Tracking algorithm 97

Energy of image 1 Energy of image 2 Energy of image 3 Energy of image 4 Energy of image 6

Figure 6.9: Minimum error configuration: It does not matter if the object is occluded

or nearly occluded in some of the images.

given 3D pose, ϕ, of the segment we can project the axis onto each image. The

red line in Figure 6.8 (e) denotes the 3D axis of the segment denoted in blue.

For a new value of the pose we get a different axis (e.g ., the cyan line). The

2D motion can be represented by a displacement and rotation of this axis.2 We

compute the error of a 2D pose by warping the segment mask according to the

mentioned displacement and rotation and summing the value of all the pixels in

the error image that belong to the mask. We can then express the error of each

3D pose directly by stacking the error of the pixels belonging to that segment in

each image. We minimize this error function in a pose parameter space that is

centered around the predicted pose using non-linear optimization functions. We

illustrate the results of the pose correction for the above example in Figure 6.9.

The red line represents the initial position of the axis of the body segment and

the cyan line represents the corrected position.

6.3.4 Pose smoothing

It is often beneficial to perform temporal smoothing on the pose vector as it uses

the redundancy in the temporal remain to reduce the error in the pose estimate.

It also serves to stabilize the pose estimate. We propose an optional routine

2We ignore the change in scale.

6.4 Experimental results 98

that acts on the pose of the root segment of the kinematic chain. It is difficult

to smooth the entire pose vector due to the articulated constraints between the

segments, and we therefore restrict the smoothing to the pose of the root segment

of the chain as it has an impact on the pose of all the body segments. We can

obtain an estimate of the pose of the trunk using even partially registered skeleton

curves as explained in Section 6.3.1. The trunk pose is smoothed using the cubic

smoothing spline with the trunk poses obtained from the available skeleton curves

in the sequence. We note that the trunk pose can be interpolated for frames

missing the trunk pose using the estimated spline parameters. The translational

components of the pose of the trunk for one of the test sequences is presented in

Figure 6.10. The translational components are given by p =
(
p1
p2
p3

)

.

0 10 20 30 40 50 60 70
−140

−120

−100

−80

−60

−40

−20

0

20

0 10 20 30 40 50 60 70
−800

−600

−400

−200

0

200

400

600

0 10 20 30 40 50 60 70
810

820

830

840

850

860

870

880

890

900

910

Figure 6.10: The translational components of the pose of the trunk in sequence 1 are

presented in the above three images along with the smoothed and interpolated compo-

nents.

6.4 Experimental results

We performed tracking on sequences where the subject performs different kinds of

motion. The experiments were performed using gray-scale images obtained from

eight cameras with a spatial resolution of 648× 484 at a frame rate of 30 frames

per second. The external and internal camera calibration parameters for all the

cameras were obtained as described in Section 3.1.

We present results for three sequences that include the subject walking in a

6.4 Experimental results 99

−600 −400 −200 0 200 400 600

−600

−400

−200

0

200

400

X−axis

Y
−

ax
is

Sequence 1

Sequence 2

Sequence 3

Figure 6.11: The position of the trunk of the subject is plotted in the world reference

frame. Sequence 1 has the subject walking in a straight line, Sequence 2 has the subject

swinging arms, and Sequence 3 has the subject moving randomly in a roughly circular

path with sharp turns.

straight line (65 frames, 2 seconds) in Figure 6.12, swinging the arms in a wide

arc (300 frames, 10 seconds) in Figure 6.13, and walking in a roughly circular

path (300 frames, 10 seconds) in Figure 6.14. Figure 6.11 illustrates the motion

of the base body in the world reference frame in the three sequences. Our results

show that using only motion cues for tracking causes the pose estimator to drift

and lose track eventually, as we are estimating only the difference in the pose

and the error accumulates. This underlines the need for correcting the predicted

pose using shape cues and we observe that the correction step of the algorithm

prevents drift in the tracking. We illustrate the results of the tracking algorithm

by super-imposing the tracked body model onto the image for two of the eight

cameras. The body parts are successfully tracked in the three sequences.

6.4 Experimental results 100

Sequence 1: Images from camera 1

Sequence 1: Images from camera 3

Figure 6.12: Tracking results for sequence 1

6.4 Experimental results 101

Sequence 2: Images from camera 1

Sequence 2: Images from camera 3

Figure 6.13: Tracking results for sequence 2

6.4 Experimental results 102

Sequence 3: Images from camera 1

Sequence 3: Images from camera 3

Figure 6.14: Tracking results for sequence 3

Chapter 7

Conclusion and future directions

In summary, we have presented a complete markerless motion capture system. We

describe a flexible and scalable human body model and present a novel bottom-

up segmentation algorithm particularly well suited for segmenting the volumetric

human body data into its component articulated chains. The algorithm is able

to segment voxel data of human subjects at the joints in the body and is able

to handle complex poses. We then use our knowledge of the structure of the

human body and use a top-down approach to register the segmented chains to the

human body model. We initialize the pose and estimate the human body model

parameters for each subject using frames from a subset of the video sequence or

3D scan data. Finally, we track the pose in the sequence using the estimated

human body model and the initialized pose for a frame. We combine both spatial

and motion cues in the tracker to overcome the twin problems of local minima and

drift respectively. We have shown how to apply the above algorithms to estimate

human body models, initialize and track pose on different kinds of input data and

for different subjects.

In this chapter, we present some research and application directions that ex-

tend the markerless motion capture system that we have presented. We touch

upon the huge potential of a markerless motion capture system to analyze human

motion, including gait, and its applications in biomechanics and surveillance in

Section 7.1. We explore the extension of the segmentation algorithm using depth

images besides the intensity images in Section 7.2. We also discuss the extension

of the components of our system as well as their integration into a near real-time

system in Section 7.3.

103

7.1 Human motion analysis 104

7.1 Human motion analysis

F1 F2 F3 F4 F5 F6 F7

(a) Observations

E1 E2 E3 E4 E5 E6

(b) Exemplars

Figure 7.1: (a) Set of frames used as observation in the HMM method [31] to recognize

subjects using their gait (b) Exemplars, which represent the states of the HMM used to

model the shape and gait of each subject.

Marker-based techniques are already in wide use in biomechanical research to

analyze gait and human motion. However, as described in Chapter 1, marker-

based motion capture methods have several short-comings that limit their use on

a large scale. Mündermann et al . [15] and Corazza et al . [16] have studied the

feasibility of accurately measuring 3D human body kinematics through a marker-

less system for musculo-skeletal biomechanics. Much work has also been done in

the field of computer vision and image processing on gait analysis using images

from a single camera to tackle problems such as person identification and general

surveillance. Murray performed some pioneering work [45] in which gait patterns

for pathologically abnormal patients were compared with those of pathologically

normal people. There has been considerable work in biomechanics and psychol-

ogy since then to suggest that there is much information in gait that can be used

7.2 Depth images for pose estimation 105

for analyzing gender, identity, and abnormalities that may be caused by injuries.

Nixon et al . [49] study gait as a biometric and survey techniques in computer

vision that analyze gait. We have also analyzed gait in video sequences for the

purpose of person identification using a Hidden Markov Model (HMM) to model

both the shape and the dynamics [31, 30, 70]. While these methods use images

from a single camera as input, the HMM framework itself is quite general and

is able to use other inputs such as the 3D pose vector, Φ, which not only sep-

arates the shape and pose information but also offers a richer description of the

motion. Figure 7.1 illustrates some sample observations and estimated exemplars

used in the HMM framework for human identification [31]. It is possible to apply

existing shape and gait analysis techniques, which use images and silhouettes as

input observations obtained from a single camera, to the 3D pose vector that can

be extracted motion capture methods. These methods have applications in fields

ranging from biomechanics to surveillance, and human-computer interaction.

7.2 Depth images for pose estimation

There exist applications, such as human computer interaction, where it is not

feasible to have multiple calibrated cameras in a suitable configuration all around

the subject. In such cases, it is extremely helpful if depth information is available,

so that we can deal with segmentation, kinematic singularities, and occlusion.

Depth information can also be useful in motion capture and to reduce the number

of cameras required. There exist cameras that provide range data (depth) in a

scene using new technology such as shuttered light pulse [24] or by measuring the

amount of time that light takes to reach each pixel1. Alternatively, we can replace

each camera with a stereo pair in order to compute the depth using disparity

measures. Obtaining direct depth information is usually very advantageous in

that it provides complete 3D coordinates of pixels and it is an independent source

1http://www.canesta.com/

http://www.canesta.com/

7.3 Extension and tight integration of system 106

(a) Left image (b) Foreground (c) Disparity map

Figure 7.2: Combining depth disparity and foreground silhouette

of information that can be used in conjunction with the intensity map to aid in

low-level vision problems such as segmentation. We present an example where we

can perform segmentation using both the silhouette and the depth information

in Figure 7.2. The depth information can be used to perform segmentation to

remove the false connection between the head and the arm as illustrated in Fig-

ure 7.3 which denotes the neighborhood relation between nodes in normal space

that has been computed based on distance and depth map. The corresponding

segmentation in Laplacian Eigenspace is presented in Figure 7.4. The issues to be

explored in this area are the computation of the W matrix using depth disparity

values and self-occlusion.

7.3 Extension and tight integration of system

While we have all the important components of a markerless motion capture sys-

tem, there remains the challenge of tightly integrating these components into a

completely automated system. One of the challenges is to construct a pipeline to

compute the voxel data for a given sequence from multiple cameras under differ-

ent environmental conditions within the scope of the project. The pre-processing

operations for each camera, including voxel reconstruction, are largely indepen-

dent of the images from other cameras, and hence it is possible to perform the

7.3 Extension and tight integration of system 107

pre-processing operations in a highly parallel manner. The design of a parallel ar-

chitecture for voxel computation offers the advantage of making the time required

for the voxel computation step independent of the number of cameras, and thus

provides the possibility of real-time feedback of the output of the algorithm. For

certain applications, especially in sports analysis, we need to incorporate external

objects such as golf clubs or tennis rackets into our human body model so that

we can correctly perform segmentation and registration of voxels. Figure 7.5 il-

lustrates two views of a golf player in mid-swing. The system will need to handle

the close proximity of limbs as well as the presence of an external object; the golf

club. Finally, we can incorporate probabilistic tracking, such as a particle filter, in

our algorithm, in order to make the tracking more robust and better integrated.

We can leverage the multiple cues used in our tracker to efficiently search the pose

space in the particle filter.

7.3 Extension and tight integration of system 108

Figure 7.3: Computing W using disparity map and grid and neighbors: An edge is

placed between two nodes if they are neighbors and there is no depth discontinuity

between them. The close up shows that pixels on the left arm are not connected to

pixels on the head due to the depth discontinuity between them.

0

0.5

1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a)

0

0.5

1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) (c)

Figure 7.4: Segmentation in Laplacian Eigenspace.

7.3 Extension and tight integration of system 109

Figure 7.5: Analysis of a golf swing: We need to be able to handle the close proximity

of the limbs, the connection between the two palms as well as the presence of a golf club

in our human body model, segmentation and registration.

7.3 Extension and tight integration of system 110

Appendix A

Portable motion capture system

We briefly describe the schematic of the portable motion capture system that we

have designed and built. The system is called Hydra and is under construction.

The current capture facility consists of ten Pixelink PL-A742 cameras connected

to two workstations that control the cameras as well as store the images from the

cameras. The cameras are connected to the workstations through firewire cables

and to each other through custom-fitted ethernet cables and trigger-buffer boards.

The cameras can be triggered individually using software trigger or synchronously

using either an internal (generated by a camera) or an external (generated by an

external device) trigger signal buffered through the buffer boards. The schematic

of the facility is presented in Figure A.1. The details of the system can be obtained

in a technical report which is in preparation [71] and also the website.1

1http://www.cfar.umd.edu/users/aravinds/research/hydra.html

111

http://www.cfar.umd.edu/users/aravinds/research/hydra.html

112

P1

P2

P3

P4

P5

P6
P9

P8

P7

Sw

S
LA

V
E

EXTERNAL
TRIGGER

NETWORK
WIRELESS

Firewire

Trigger Signal

Network

P1

P2

P3

P4

P5

P6
P9

P8

P7

Sw

M
A

S
T

E
R

Buffer Circuit

Buffer Circuit

WIRELESS
ROUTER

Headless capture node

Lerna1

Headless capture node

Lerna0

Control Terminal

Figure A.1: Hydra Schematic: Layout for ten cameras with two workstations

Appendix B

Eigenvectors of simple graphs

We describe the Laplacian eigenvectors of two simple graphs onm vertices, namely

the path graph, Pm and the ring graph, Rm. The two graphs are very similar and

illustrated in Figure B.1.

m − 1

1

0

m − 2

2

(a) Path graph

m − 1

2

1

0

m − 2

(b) Ring graph

Figure B.1: Illustration of a path graph and ring graph on m vertices.

B.1 Eigenvectors of Ring graph

We consider a ring graph on m vertices or nodes, the Laplacian eigenvectors of

which need to satisfy

2xi − xi−1 − xi+1 = λxi, 0 ≤ i ≤ m− 1 (B.1)

where

xi = xi mod m. (B.2)

113

B.2 Eigenvectors of Path graph 114

Substituting xi = sin(θ + iϕ) in (B.1) leads to

2 sin(θ + iϕ)− sin (θ + (i− 1)ϕ)− sin (θ + (i+ 1)ϕ) = λ sin(θ + iϕ). (B.3)

We get λ = 2− 2 cos(ϕ) using the following trigonometric identities.

sinA+ sinB = 2 sin
A+B

2
cos

A−B
2

(B.4)

cosA+ cosB = 2 cos
A+B

2
cos

A−B
2

(B.5)

In order to satisfy (B.2), we note that the solution is of the form

xi = sin (θ + 2πki/m) i = 0, 1, · · · , bm/2c (B.6)

where θ can take any value. The eigenvalues are given by 2− 2 cos(2πk/m).

B.2 Eigenvectors of Path graph

We consider the path graph on m vertices, Pm. The nodes, xi, need to satisfy the

following set of equations.

x0 − x1 = λx0 (B.7)

xm−1 − xm−2 = λxm−1 (B.8)

2xi − xi−1 − xi+1 = λxi 0 < i < m− 1 (B.9)

Considering solutions of the form xi = sin (θ + ϕi) for i = 0, 1, · · · ,m−1, we need

xm−1 = xm and x0 = x−1 or

sin (θ + ϕ(0)) = sin (θ + ϕ(−1)) (B.10)

and

sin (θ + ϕ(m− 1)) = sin (θ + ϕ(m)) . (B.11)

These conditions are satisfied if we choose ϕ = πk/m and θ = π/2 + πk/2m.

xi = cos (πk/2m+ πki/m) for i = 0, 1, . . . ,m− 1 (B.12)

The eigenvalues are given by λk = 2 − 2 cos πk/m. The values of k range from

0, 1, 2, . . . ,m− 1.

Appendix C

Laplacian eigenvalues of extended tree graphs:

Solutions for f (ϕ, l) in [0, π]

We explore the solutions for f(ϕ, l) = 0 in the interval [0, π], as the solutions give

us the eigenvalues as well as the structure of the eigenvectors of the extended star

graph, whose properties we explore in Section 4.2. The function f(ϕ, l) is given

by

f(ϕ, l) = (1− 2/n)(1− cosϕ)− sinϕ tan(ϕl), (C.1)

where l = m+1/2, and m ∈ N. We see that f(0, l) = 0 and f(π, l) = 2(1−2/n)−
1/l ≥ 0, with the equality holding ⇐⇒ m = 1 and n = 3. Hereafter, we ignore

the l parameter in f(ϕ, l). We have

lim
ϕ→π

sinϕ tan (ϕl) = lim
ψ→0

sinψ cot (ψl) (C.2)

= lim
ψ→0

sinψ cos(ψl)/ sin(ψl) (C.3)

= ψ/(ψl) = 1/l. (C.4)

where we substitute ψ = π−ϕ. We see that f(ϕ) has discontinuities at tan(ϕl) =

±∞ or ϕ = π(2k + 1)/(2m+ 1) for k = 0, 1, · · · ,m− 1. We show that f ′(ϕ) < 0

in the continuous intervals between these discontinuities and hence f(ϕ) is mono-

tonically decreasing in each of the continuous intervals in [0, π]. f(ϕ) and f ′(ϕ)

are plotted in Figure C.1 for m = 5. The value of f(ϕ) switches from −∞ to +∞
at the discontinuities. Thus we see that there is exactly one solution for f(ϕ) = 0

in each of the m − 1 intervals
[
π 2k+1

2m+1
, π 2k+3

2m+1

]
for k = 0, 1, · · · ,m − 2. We now

show that f ′(ϕ) < 0 for ϕ ∈ [0, π].

115

116

−8

−4

0

4

8

π/(2l) 3π/(2l) 5π/(2l) 7π/(2l) 9π/(2l) π0

(a) f(ϕ)

−8

−4

0

4

8

π/(2l) 3π/(2l) 5π/(2l) 7π/(2l) 9π/(2l) π0

(b) f ′(ϕ)

Figure C.1: The function f(ϕ) and f ′(ϕ) for m = 5. The discontinuities of f(ϕ) occur

at π(2k + 1)/(2m + 1) for k = 1, 2, · · · , m − 1. We see that f ′(ϕ) < 0 and f(ϕ) is

monotonically decreasing function except at the points of discontinuity.

f ′(ϕ) = (1− 2/n) sinϕ− sinϕ sec2(ϕl)l − cosϕ tan(ϕl) (C.5)

= (1− 2/n) sinϕ− sinϕ(1 + tan2(ϕl))l − cosϕ tan(ϕl) (C.6)

= (1− 2/n− l − l tan2(ϕl)) sinϕ− cosϕ tan(ϕl) (C.7)

= −
(
(l + l tan2(ϕl) + 2/n− 1) sinϕ+ cosϕ tan(ϕl)

)
(C.8)

where (C.6) follows by substituting sec2(θ) = 1 + tan2(θ). We therefore need to

show that

sinϕ
(
l + l tan2 (ϕl) + 2/n− 1

)
> − cosϕ tan(ϕl) or (C.9)

sinϕ
(
l + l tan2 (ϕl)− 1

)
> − cosϕ tan(ϕl), (C.10)

where the last equation follows as 2/n sinϕ > 0. We note that in the interval

under consideration, i.e. [0, π], that sinϕ > 0, and hence

sinϕ
(
l + l tan2 (ϕl)− 1

)
> 0. (C.11)

We now proceed to prove that (C.10) holds in the interval [0, π], by considering

different sub-intervals in the following paragraphs.

117

• Interval 0 < ϕ < π/(2l):

We have − cosϕ tanϕ < 0 and hence (C.10).

• Interval π − π/(2l) < ϕ < π:

Substituting ϕ = π − ϕ in (C.10), we need to show for 0 < ϕ < π/(2l) that

sinϕ
(
l + l cot2 (ϕl)− 1

)
> cosϕ cot(ϕl). (C.12)

We have

sinϕ
(
l + l cot2 (ϕl)− 1

)
> l sinϕ cot2(ϕl) (C.13)

=
l sinϕ

sin(ϕl)
cos(ϕl) cot(ϕl) (C.14)

> cosϕ cot(ϕl) (C.15)

where the last statement follows because l sinϕ/ sin(ϕl) > 1 for 0 ≤ ϕ ≤ π/2.

• Interval π/(2l) < ϕ < π − π/(2l)

We have

sinϕ
(
l + l tan2 (ϕl)− 1

)
= |cosϕ||tan(ϕl)||tanϕ|

(
(l − 1)|tan(ϕl)|−1

+l|tan (ϕl)|)
(C.16)

≥ |cosϕ||tan(ϕl)| π
2l

(
(l − 1)|tan(ϕl)|−1

+l|tan (ϕl)|)
(C.17)

> |cosϕ||tan(ϕl)|. (C.18)

(C.17) holds because |tanϕ| > minϕ, π − ϕ for ϕ ∈ [0, π], and (C.18) holds

118

because

π

2l

(
(l − 1)|tan(ϕl)|−1 + l|tan (ϕl)|

)
=
π

2

(
(l − 1)

l
|tan(ϕl)|−1 + |tan (ϕl)|

)

(C.19)

≥ π

2

(
1

3
|tan(ϕl)|−1 + |tan (ϕl)|

)

(C.20)

≥ π

2

2√
3

(C.21)

> 1. (C.22)

Bibliography

[1] J. Aggarwal and Q. Cai, “Human motion analysis: A review,” Computer

Vision and Image Understanding, vol. 73, no. 3, pp. 428–440, 1999.

[2] D. Anguelov, D. Koller, H. Pang, P. Srinivasan, and S. Thrun., “Recovering

articulated object models from 3-D range data,” in Proc. of the Conference

on Uncertainty in Artificial Intelligence, Banff, Canada, 2004, pp. 18–26.

[3] N. I. Badler, C. B. Phillips, and B. L. Webber, Simulating Humans. Oxford

University Press, Oxford, UK, 1993.

[4] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow

techniques,” International Journal of Computer Vision, vol. 12, no. 1, pp.

43–77, 1994.

[5] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction

and data representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396,

2003.

[6] M. Brand, “Charting a manifold,” in Proc. of the Conference on Neural In-

formation Processing Systems, Vancouver, BC, Canada, December 2002.

[7] C. Bregler and J. Malik, “Tracking people with twists and exponential maps,”

in Proc. of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, Santa Barbara, CA, USA, June 1998, pp. 8–15.

[8] G. Brostow, I. Essa, D. Steedly, and V. Kwatra, “Novel skeletal representation

for articulated creatures,” in Proc. of the European Conference on Computer

Vision, vol. 3, Prague, Czech Republic, May 2004, pp. 66–78.

119

Bibliography 120

[9] J. Carranza, C. Theobalt, M. Magnor, and H. Seidel, “Freeviewpoint video of

human actors,” ACM Transactions on Graphics, vol. 22, no. 2, pp. 569–577,

2003.

[10] T.-J. Cham and J. M. Rehg, “A multiple hypothesis approach to figure track-

ing,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, vol. 2, Ft. Collins, CO, USA, June 1999, pp. 239–245.

[11] K. Cheung, S. Baker, and T. Kanade, “Shape-from-silhouette of articulated

objects and its use for human body kinematics estimation and motion cap-

ture,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, vol. 1, Madison, USA, June 2003, pp. 77–84.

[12] B. Y. Choi, Y. M. Chae, I. H. Chung, and H. S. Kang, “Correlation between

the postmortem stature and the dried limb-bone lengths of korean adult

males,” Yonsei Medical Journal, vol. 38, no. 2, pp. 79–85, 1997.

[13] C.-W. Chu, O. C. Jenkins, and M. J. Mataric, “Markerless kinematic model

and motion capture from volume sequences.” in Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition, vol. 2, Madison, USA, June

2003, pp. 475–482.

[14] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society,

Providence, 1997.

[15] S. Corazza, L. Mündermann, and T. P. Andriacchi, “The evolution of meth-

ods for the capture of human movement leading to markerless motion capture

for biomechanical applications,” Journal of Neuroengineering and Rehabili-

tation, vol. 3, no. 6, 2006.

[16] S. Corazza, L. Mündermann, and T. P. Andriacchi, “A markerless motion

capture system to study musculoskeletal biomechanics: visual hull and simu-

lated annealing approach.” Annals of Biomedical Engineering, vol. 34, no. 6,

2006.

[17] T. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall, London,

1994.

Bibliography 121

[18] Q. Delamarre and O. Faugeras, “3D articulated models and multi-view track-

ing with silhouettes,” in Proc. of the International Conference on Computer

Vision, vol. 2, Kerkyra, Corfu, Greece, September 1999, pp. 716–721.

[19] D. Demirdjian, T. Ko, and T. Darrell, “Constraining human body tracking,”

in Proc. of the International Conference on Computer Vision, vol. 2, Nice,

France, October 2003, pp. 1071–1078.

[20] A. Elad and R. Kimmel, “On bending invariant signatures for surfaces,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,

pp. 1285–1295, 2003.

[21] A. E. Engin and S. T. Tumer, “Three-dimensional kinematic modelling of the

human shoulder complex,” Journal of Biomechanical Engineering, vol. 111,

pp. 107–112, 1989.

[22] D. M. Gavrila, “The visual analysis of human movement: A survey,” Com-

puter Vision and Image Understanding, vol. 73, no. 1, pp. 82–98, 1999.

[23] D. Gavrila and L. Davis, “3-D model-based tracking of humans in action: A

multi-view approach,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, 1996, pp. 73–80.

[24] H. González-Banõs and J. Davis, “Computing depth under ambient illumina-

tion using multi-shuttered light,” in Proc. of the IEEE Conference on Com-

puter Vision and Pattern Recognition, vol. 2, Washington, DC, USA, Jun

2004, pp. 234–241.

[25] K. Halvorsen, T. Arndt, H. Rosdahl, and A. Thorstensson, “Evaluation of

three different models of the shoulder kinematics,” in Proc. of the Interna-

tional Symposium on 3D Human Movement, Tampa, FL, USA, March 2004,

pp. 128–131.

[26] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition using

laplacianfaces,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 27, no. 3, pp. 328–340, 2005.

Bibliography 122

[27] S. X. Ju, M. J. Black, and Y. Yacoob, “Cardboard people: A parameterized

model of articulated image motion,” in Proc. of the International Conference

on Automatic Face and Gesture Recognition, Killington, Vermont, USA, Oc-

tober 1996, pp. 38–44.

[28] I. A. Kakadiaris and D. Metaxas, “3D human body model acquisition from

multiple views,” in Proc. of the International Conference on Computer Vi-

sion, Boston, MA, USA, June 1995, pp. 618–623.

[29] I. A. Kakadiaris and D. Metaxas, “Model-based estimation of 3D human

motion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, no. 12, pp. 1453–1459, December 2000.

[30] A. Kale, A. Sundaresan, A. RoyChowdhury, and R. Chellappa, Handbook

on Pattern Recognition and Computer Vision. World Scientific Publish-

ing Company Pvt. Ltd., 2005, ch. Gait-Based Human Identification From A

Monocular Video Sequence.

[31] A. A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. R.

Chowdhury, V. Krüger, and R. Chellappa, “Identification of humans using

gait,” IEEE Transactions on Image Processing, vol. 13, no. 9, pp. 1163–1173,

September 2004.

[32] N. Krahnstoever and R. Sharma, “Articulated models from video,” in Proc.

of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,

Washington, DC, USA, June 2004, pp. 894–901.

[33] S. Lafon and A. B. Lee, “Diffusion maps and coarse-graining: A unified

framework for dimensionality reduction, graph partitioning, and data set

parameterization,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 28, no. 9, pp. 1393–1403, 2006.

[34] X. Lan and D. P. Huttenlocher, “A unified spatio-temporal articulated model

for tracking.” in Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, Washington, DC, USA, June 2004, pp. 722–729.

[35] E.-J. Marey, Le Mouvement. Masson, Paris, 1894.

Bibliography 123

[36] D. Marr, Vision: A Computational Investigation into the Human Represen-

tation and Processing of Visual Information. W. H. Freeman and Company,

New York, 1982.

[37] M. C. D. Mendonca, “Estimation of height from the length of long bones in

a portugese adult population,” American Journal of Physical Anthropology,

vol. 112, pp. 39–48, 2000.

[38] I. Mikić, M. Trivedi, E. Hunter, and P. Cosman, “Human body model ac-

quisition and tracking using voxel data,” International Journal of Computer

Vision, vol. 53, no. 3, 2003.

[39] T. Moeslund and E. Granum, “Multiple cues used in model-based human mo-

tion capture,” in Proc. of the International Conference on Face and Gesture

Recognition, Grenoble, France, March 2000, pp. 362–367.

[40] T. Moeslund and E. Granum, “A survey of computer vision-based human

motion capture,” Computer Vision and Image Understanding, pp. 231–268,

2001.

[41] B. Mohar, Graph Theory, Combinatorics, and Applications. J. Wiley, New

York, 1991, vol. 2, ch. The Laplacian Spectrum of Graphs, pp. 871–898.

[42] G. Mori and J. Malik, “Estimating human body configurations using shape

context matching,” in Proc. of the European Conference on Computer Vision,

2002, pp. 666–680.

[43] D. Morris and J. M. Rehg, “Singularity analysis for articulated object track-

ing,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, Santa Barbara, CA, USA, June 1998, pp. 289–297.

[44] L. Mündermann, S. Corazza, and T. Andriacchi, “Accurately measuring hu-

man movement using articulated ICP with soft-joint constraints and a repos-

itory of articulated models,” in Proc. of the IEEE Conference on Computer

Vision and Pattern Recognition, Minneapolis, MN, USA, June 2007.

[45] M. P. Murray, “Gait as a total patern of movement,” American Journal of

Physical Medicine, vol. 46, no. 1, pp. 290–332, 1967.

Bibliography 124

[46] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic

Manipulations. CRC Press, 1994.

[47] E. Muybridge, The Human Figure in Motion. Dover Publications, 1901.

[48] B. Nadler, S. Lafon, R. Coifman, and I. Kevrekidis, “Diffusion maps, spectral

clustering and the eigenfunctions of fokker-planck operators,” in Proc. of the

Conference on Neural Information Processing Systems, Vancouver, British

Columbia, Canada, December 2005.

[49] M. S. Nixon, T. N. Tan, and R. Chellappa, Human Identification Based on

Gait (The Kluwer International Series on Biometrics). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2005.

[50] A. Ozaslan, H. T. M. Yasar Iscan, Inci Oxaslan, and S. Koc, “Estimation of

stature from body parts,” Forensic Science International, vol. 132, no. 1, pp.

40–45, 2003.

[51] R. Plänkers and P. Fua, “Articulated soft objects for video-based body mod-

eling,” in Proc. of the International Conference on Computer Vision, vol. 1,

Vancouver, British Columbia, Canada, July 2001, pp. 394–401.

[52] D. Ramanan and D. A. Forsyth, “Finding and tracking people from the bot-

tom up,” in Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, vol. 2, Madison, WI, USA, June 2003, pp. 467–474.

[53] J. Rehg, D. D. Morris, and T. Kanade, “Ambiguities in visual tracking of

articulated objects using two- and three-dimensional models,” International

Journal of Robotics Research, vol. 22, no. 6, pp. 393 – 418, June 2003.

[54] X. Ren, A. C. Berg, and J. Malik, “Recovering human body configurations

using pairwise constraints between parts,” in Proc. of the International Con-

ference on Computer Vision, vol. 1, Beijing, China, October 2005, pp. 824–

831.

[55] K. Rohr, Human Movement Analysis Based on Explicit Motion Models.

Kluwer Academic, 1997.

Bibliography 125

[56] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally

linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[57] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as

a kernel eigenvalue problem,” Neural Computation, vol. 10, pp. 1299–1319,

1998.

[58] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.

888–905, 2000.

[59] H. Sidenbladh, M. J. Black, and D. J. Fleet, “Stochastic tracking of 3D

human figures using 2D image motion,” in Proc. of the European Conference

on Computer Vision, vol. 2, Dublin, Ireland, June 2000, pp. 702–718.

[60] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard, “Tracking loose-

limbed people,” in Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, Washington, DC, USA, June 2004, pp. 421–428.

[61] L. Sigal and M. Black, “Humaneva: Synchronized video and motion cap-

ture dataset for evaluation of articulated human motion,” Brown University,

Technical report CS-06-08, 2006.

[62] L. Sigal, M. Isard, B. H. Sigelman, and M. J. Black, “Attractive people:

Assembling loose-limbed models using non-parametric belief propagation.”

in Proc. of the Conference on Neural Information Processing Systems, 2003.

[63] C. Sminchisescu and B. Triggs, “Kinematic jump processes for monocular 3D

human tracking,” in Proc. of the IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, Madison, WI, USA, June 2003, pp. 69–76.

[64] C. Sminchisescu and B. Triggs, “Covariance scaled sampling for monocular

3D body tracking,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, vol. 1, Kauai, HI, USA, Dec 2001, pp. 447–454.

[65] A. Sundaresan and R. Chellappa, “Acquisition of articulated human body

models using multiple cameras,” in Proc. of the Conference on Articulated

Bibliography 126

Motion and Deformable Objects, Port d’Andratx, Mallorca, Spain, July 2006,

pp. 78–89.

[66] A. Sundaresan and R. Chellappa, “Multi-camera tracking of articulated hu-

man motion using motion and shape,” in Proc. of the Asian Conference on

Computer Vision, vol. 2, Hyderabad, India, January 2006, pp. 131–140.

[67] A. Sundaresan and R. Chellappa, “Segmentation and probabilistic registra-

tion of articulated body model,” in Proc. of the International Conference on

Pattern Recognition, vol. 2, Hong Kong, China, August 2006, pp. 92–96.

[68] A. Sundaresan and R. Chellappa, “Model driven segmentation and registra-

tion of articulating humans in laplacian eigenspace,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2007, (Under revision).

[69] A. Sundaresan and R. Chellappa, “Multi-camera tracking of articulated hu-

man motion using shape and motion cues,” IEEE Transactions on Image

Processing, 2007, (In preparation).

[70] A. Sundaresan, A. RoyChowdhury, and R. Chellappa, “Multiple view track-

ing of human motion modelled by kinematic chains,” in Proc. of the IEEE

International Conference on Image Processing, vol. 2, Barcelona, Catalonia,

Spain, September 2004, pp. 93–96.

[71] A. Sundaresan, J. Sherman, F. McCall, and R. Chellappa, “Hydra: The

portable camera capture facility for motion analysis,” University of Maryland

Institute for Advanced Computer Studies, College Park, MD, Tech. Rep.,

2007, (In preparation).

[72] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multi-camera self-

calibration for virtual environments,” PRESENCE: Teleoperators and Virtual

Environments, vol. 14, no. 4, August 2005.

[73] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric

framework for nonlinear dimensionality reduction,” Science, vol. 290, no.

5500, pp. 2319–2323, 2000.

Bibliography 127

[74] C. Theobalt, J. Carranza, M. A. Magnor, and H.-P. Seidel, “Combining 3D

flow fields with silhouette-based human motion capture for immersive video,”

Graphical Models, vol. 66, no. 6, pp. 333–351, 2004.

[75] S. Wachter and H.-H. Nagel, “Tracking persons in monocular image se-

quences,” Computer Vision and Image Understanding, vol. 74, no. 3, pp.

174–192, June 1999.

[76] L. Wang, W. Hu, and T. Tan, “Recent developments in human motion anal-

ysis,” Pattern Recognition, vol. 36, no. 3, pp. 585–601, March 2003.

[77] Y. Weiss, “Segmentation using eigenvectors: A unifying view,” in Proc. of

the International Conference on Computer Vision, vol. 2, Kerkyra, Corfu,

Greece, September 1999, pp. 975–982.

[78] N. Werghi, Y. Xiao, and P. Siebert, “A functional-based segmentation of

human body scans in arbitrary postures,” IEEE Transactions on Systems,

Man and Cybernetics, Part B, vol. 36, no. 1, pp. 153–165, Feb 2006.

[79] Y. Xiao, P. Siebert, and N. Werghi, “Topological segmentation of discrete

human body shapes in various postures based on geodesic distance,” in Proc.

of the International Conference on Pattern Recognition, vol. 3. Cambridge,

England, UK: IEEE Computer Society, August 2004, pp. 131–135.

[80] M. Yamamoto and K. Koshikawa, “Human motion analysis based on a robot

arm model,” in Proc. of the IEEE Conference on Computer Vision and Pat-

tern Recognition, Maui, HI, June 1991, pp. 664–665.

[81] M. Yamamoto, A. Sato, S. Kawada, T. Kondo, and Y. Osaki, “Incremental

tracking of human actions from multiple views,” in Proc. of the IEEE Con-

ference on Computer Vision and Pattern Recognition, Santa Barbara, CA,

USA, June 1998, pp. 2–7.

[82] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality

reduction via tangent space alignment,” SIAM Journal on Scientific Com-

puting, vol. 26, no. 1, pp. 313–338, 2004.

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Markerless motion capture system
	Input to the system
	Output of the system
	Data processing and algorithms

	Contributions of the dissertation
	Organization of the dissertation

	Related work
	Segmentation of human body volume data
	Human pose estimation from 3D data
	Human pose tracking

	Input data and output variables
	Input data
	Image acquisition
	Computing silhouettes
	Computing voxels

	Human body model and pose
	Human body model
	The modified super-quadric segment
	The pose vector

	Segmentation in Laplacian Eigenspace
	Mapping to Laplacian Eigenspace
	Properties of Laplacian eigenvectors
	Eigenvectors of extended star graphs
	Eigenvectors of grid graphs

	Comparison with other manifold techniques
	Human body segmentation in Laplacian Eigenspace
	Initialization
	Spline fitting
	Propagation
	Termination

	Constructing the skeleton curve
	Experimental results

	Model and pose initialization
	Probabilistic registration
	Pose and model estimation
	Pose initialization
	Computing skeleton fit error
	Estimation of skeleton model from stature
	Optimization of joint locations
	Estimation of super-quadric parameters

	Experimental results
	Registration of segmented voxels
	HumanEvaII data
	3D scan data
	Synthetic data

	Pose tracking using multiple cues
	Pose estimation from pixel displacement
	Point velocity as a function of pose velocity
	Pixel velocity as a function of pose velocity
	Estimating pose change from pixel displacement

	Temporal registration of skeleton curves
	Tracking algorithm
	Pose initialization for tracker
	Pose prediction using motion cues
	Pose correction using shape cues
	Pose smoothing

	Experimental results

	Conclusion and future directions
	Human motion analysis
	Depth images for pose estimation
	Extension and tight integration of system

	Portable motion capture system
	Eigenvectors of simple graphs
	Eigenvectors of Ring graph
	Eigenvectors of Path graph

	Laplacian eigenvalues of extended tree graphs
	Bibliography

