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It is well understood that defects adversely affect the electro-mechanical prop-

erties of materials. Ideally, defect compositions of raw materials used in devices

could be measured, but present technology in the field of atomic defect detection

is either destructive in nature, or is unable to determine the precise atomic com-

position of materials. In the adjacent field of damage detection in large-scale truss

networks, algorithms based on spectral measurements have successfully been em-

ployed to locate damaged members. Already similar principles have been applied to

material lattices experimentally by using Raman Spectroscopy to qualitatively ap-

proximate defect densities within materials. However, the applications have largely

been limited to surface defects or two-dimensional materials, and the host lattices

and defect types are primarily studied anecdotally.

This thesis details a numerical method for determining the precise phonon

or vibration spectra of material lattices with defects, as it was originally presented

in [1]. The dynamical matrices of lattices containing defects are calculated by in-

troducing defects systematically into the dynamical matrices of pristine, defect-free



lattices using linear operators. Each operation modifies or removes an individual

bond or interaction. Complex defect configurations can be composed through reiter-

ative application of the operators. The proposed methods may be applied to systems

containing any interaction type or bond order, including space trusses and atomic

lattices. The method is demonstrated by numerically determining the convergence

rate of phonon properties in the dilute limit of a single point vacancy. Then the

same methodology is applied to two-dimensional atomic lattices with central forces,

two-dimension truss networks with distributed mass, as well as three-dimensional

atomic lattices with non-linear many body potentials. In each example, the defect

structure and properties are shown to alter the spectral properties of the materials.
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Chapter 1: Introduction

Defects or disorder in material lattices at the atomic or continuum scale can

significantly alter material properties. In atomic lattices, defects have been known

to affect the failure response, electronic band structure, carrier transport, and phase

transitions of materials. In the semiconductor industry, where devices are now

designed on the nano scale, each atomic defect has a larger effect on the overall

device properties than ever before. Thus it is becoming increasingly important

to know the atomic composition of the device materials through non-destructive

measurements. Furthermore, a fundamental understanding of the effects of defects

on material properties could enable the design of superior materials and devices.

Techniques exist for visually observing defects using tools such as transmission

electron microscopy [3]. However, visual tools cannot provide detailed information

about defects within the bulk of the material nor are they able to predict the effect

of defects on material properties. Concomitantly, spectral techniques such as Ra-

man spectroscopy, have been used to qualitatively detect defect densities through

variations in the vibration spectra of well-studied materials [2,4–6]. As an example,

Fig. 1.1 (originially from [2]) displays the Raman spectrum of graphene with differ-

ent concentrations of hydrogen atoms. Each peak on the plot may be interpreted
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Figure 1.1: The effects of defect density on the Raman spectrum of hydrogenated
graphene, as expressed in [2]. As shown, increasing the defect density directly
results in an increase of the relative amplitude (ID/IG) of the peak labeled as ‘D’
as compared to the peak labeled as ‘G’.

as a resonant frequency of the material. Luo et. al. [2] note two key observations

from Fig. 1.1. First, the relative amplitude of the two resonant frequencies labeled

as ‘D’ and ‘G’ change as the defect concentration varies. The amplitude of ‘D’

changes from a factor of 1.6 to a factor of 5 times larger than the amplitude of

the ‘G’ peak. Secondly, the ‘G’ peak splits into two distinct peaks at high defect

densities. Noting these observations, one could conceivably perform a spectroscopic

measurement on a sample of graphene and approximate the concentration of hydro-

gen atoms from the number of unique peaks and relative intensity between peaks.

Spectral techniques for detecting defects, like the Raman measurements in Fig. 1.1,

are a natural choice for defect detection because they are non-destructive, and also

because electro-mechanical properties of materials are directly calculable from vibra-

2



Figure 1.2: Two possible effects of defects on the vibration spectrum are shown. On
the left, the peak frequency of vibration shifts to a higher frequency value. On the
right, a single peak in the frequency spectrum splits into two distinct peaks.

tion spectra. Therefore the quantification of the effect of defects on vibration spectra

could not only enable defect detection, but also provide insight to the properties of

defective materials.

Two effects that defects may have on the spectral properties of a material are

shifts and splits of the peak frequencies in the vibration spectrum, schematically

depicted in Fig. 1.2. Defect-induced spectral shifts and splits are highly dependent

on both the host lattice and the defect properties. Atomic-scale defect dynamics has

been a widely studied area to predict the effect of defects on the vibration or phonon

spectra of materials for applications in non-destructive defect detection as well as

defect or dopant design. Theoretical calculations [7–9], physical experiments [2,4,6],

and numerical experiments [10], such as molecular dynamics simulations, have all
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been employed to study defect induced changes of phonon frequencies. The input

to any of these methodologies is a fixed system, either virtual or physical, with cer-

tain lattice and defect structures, and specific defect parameters (such as mass or

charge of an interstitial atom). Thus precise knowledge of the atomic configuration

of the defect is a prerequisite for accurate calculation of both lattice and electronic

properties. Since each unique individual defect, combination of defects, and relative

orientation between defects gives rise to unique system properties, it is necessary to

perform calculations, measurements, or simulations anew for each defective lattice

of interest. Therefore, while it is a straightforward matter of calculating the phonon

spectrum given the nodal interactions or bonds in a lattice, there is a dearth of an-

alytical tools to examine structure-property relationships when defects are present.

As a result, even in simulation, the effects of defects in material lattices are largely

studied anecdotally.

At the continuum scale, the ability to alter the phonon spectra of materials has

wide-reaching applications including vibration and noise control through acoustic

filters [11]. Defect engineering [12] is one method of altering the phonon spectra of

materials, breaking system symmetries, and inducing shifts of phonon frequencies

and splits of certain degenerate solutions. However, like atomic-level methodologies,

the current defect analysis techniques independently analyze each individual defect

design of interest. Thus defect design is difficult since no clear relationship exists

between defect parameters – e.g. mass, potential, density, geometry – and spectral

shifts.

Conversely, a rich history exists for quantifying degrees of damage using the
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vibration spectra of large-scale truss networks [13]. The dynamic equations for

modeling material lattices are not, in principle, different from the equations used

to model large-scale truss networks [14]. The primary differences arise from the

nonlinear potential energy functions and the presence of many-body interactions in

atomic lattices. In many cases, including [7–9], the interatomic potential between

atoms is assumed to be linear, or harmonic, and the types of interactions investigated

are limited to pair potentials. Under these specific assumptions, a material lattice

is nothing more than a truss network with a high connectivity between nodes, and

the calculation of the material phonon spectrum is no different from the calculation

of the natural frequencies of a truss structure. It follows that the vast techniques

developed for predicting the vibration spectra of defective truss networks may be

applied to the computation of phonon spectra of defective material lattices, at least

under the harmonic approximation and in the absence of relaxation.

In spite of the infinite number of possible defect configurations, in this thesis

I derive a new methodology for atomic and continuum-scaled lattice dynamics in-

spired by the “Model Updating Methods” described in [13] and the heuristic model

proposed by Kabe in [15] for truss networks. The methodology derivation makes no

assumptions about bond order, scale, or mass distribution, and is not only appli-

cable to atomic lattices, but may also be applied to structural truss networks and

continuum-level material models. As such, the terminology used presently is nodes

and interactions, where a node may be an atom or a joint, and an interaction may

be a bond, material element, or truss. The premise behind the derivation is that a

pristine or perfect system may be described through the combination of a dynamical
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matrix or stiffness matrix Dp, which captures the geometry and material properties

of the interactions in the pristine lattice, and a mass matrix Mp, which contains the

inertial properties of the pristine lattice. In Section 2 linear operators are derived

to manipulate these two pristine matrices into defective states. The operators, in

turn, may be used to reiteratively build compound defects composed of multiple

damaged, modified, or missing interactions. Furthermore, defect parameters can be

introduced and varied within the operator to analyze the effects of defect mass or

changes to the interaction strength as in the case of substitutional defects. Thus the

pristine matrices need only be computed a single time, but infinitely many defective

spectra may be calculated through the application of individual defect operators,

or combinations of multiple defect operators. In a manner of speaking, this also

incidentally enables a computable framework for the Lifshitz formalism [16] and

the theory of [7] that avoids the use of Green’s functions. Furthermore, the result-

ing defective frequencies using the operator method are exact under the harmonic

approximation.

1.1 Literature Review

This work relates to and draws from the fields of defect dynamics in atomic

lattices, phononic or granular media at the continuum-scale, and damage in large-

scale truss networks. The methodology proposed herein may be applied to defective

or damaged systems across all length scales: atomic, micro-stucture, continuum,

or structural. The literature review is presented in three sections. Section 1.1.1
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discusses the original defect dynamic techniques [7,9] and later expansions on these

theories, along with numerical and physical experimental works related to the spec-

tral properties of defective materials. Extensions of the lattice dynamic and defect

dynamic principles to micro-structure and continuum-level systems are reviewed in

Section 1.1.2. Finally, operator-based methodologies for locating damage in truss-

networks are discussed in Section 1.1.3.

1.1.1 Atomic Defect Dynamics

In this work a “defect” is defined as an alteration of mass or interatomic po-

tential in an otherwise uniform lattice. In a broad sense, dopants or even alloys

may be interpreted as defects in the absence of phase changes, and a dopant con-

centration or alloy material percentage are both synonymous with defect density.

This work therefore relates to, and draws from not only the fields of defect dynamics

in crystalline materials, but also to the varied works related to the spectroscopy of

materials with altered atomic compositions. Theoretical calculations, spectroscopic

measurements, and molecular dynamic simulations have all been used to determine

the effect of defects on material properties. The works described herein outline

just a few of the many studies relating material composition at the atomic level to

measured or calculated spectroscopic properties.

In the field of defect dynamics, Green’s Function-based methodologies have

been used to calculate changes in lattice spectra due to defects. Montroll and

Potts developed theory to calculate the localized changes in frequency due to point
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defects [7]. Recognizing the r−1 exp(−Ar) decay of the effect of point defects at

large distances, they developed a Green’s function-based technique to study single

defects and defect pairs in one-dimensional chains with extended arguments for

three-dimensional lattices. In their most simplistic example, a single point defect

in an infinite chain, Montroll and Potts were able to compute an analytical formula

relating the mass and interatomic potential of a single point defect to the frequency

shift of the highest phonon mode. However, no similar relations were presented

between defect properties and phonon modes for systems with added complexity,

such as multiple dimensions. Lifshitz and Kosevich [9] developed a more expansive

approach to defect dynamics. They were able to calculate changes to the local

and bulk spectra of materials due to point, line, and planar defects. Each of these

articles helped to create a rigorous, physical understanding of the modal properties

of defective lattices. However, both rely on Green’s functions which make extensions

to complex lattice structures a challenge.

Recently, Grimm and Wagner [17] expanded the Lifshitz formalism of [16], to

calculate the effect of densely populated one-dimensional defects on the thermody-

namic properties of three-dimensional crystalline materials. Grimm and Wagner’s

methods increased the efficiency of the Lifshitz formulae by defining ‘mesoscopic’

coordinates, effectively reducing the rank of the tensors. The proposed method in-

creased the breadth and computability of the Lifshitz formalism, but continued to

utilize Green’s functions for calculations, and the examples in [17] were limited to

simple cubic lattices with nearest-neighbor interactions to enable the use of exact,

analytical functions. The method enabled the investigation of defect mechanisms in
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crystals that could mimic low temperature behavior of glassy materials.

Each of these methodologies provided a framework for the calculation of the

phonon spectrum of a system with known defect geometries. However, the works

provide limited insight into the ways in which material phonon spectra shift as defect

parameters are altered, a field that has primarily been studied through numerical

or physical experiments. For example, Feldman et al [4] studied the spectrum of

germanium under different silicon concentrations, or silicon defect densities. The

authors observed two defect-induced changes to the Raman Spectrum. First, they

noted a new peak at approximately 400 cm−1 for silicon concentrations higher than

1%. They also noted a red shift in the peak at 300 cm−1. Feldman et al postulated

that the new peak was due to the relatively low mass of silicon compared to germa-

nium, and the shift of the lower frequency mode was likely induced by the potential

between nearest-neighbor silicon-silicon bonds.

More recent works continue to utilize Raman Spectroscopy to determine the

spectral properties of various materials with defects [2,5,6]. As discussed in Section

1, Luo et al [2] were able to measure the spectra of graphene samples with different

concentrations of hydrogen atoms. Luo et al noted two spectral changes as defect

density was increased: a new peak at 1620 cm−1 and a change in the relative intensity

between the peaks at 1330 cm−1 and 1580 cm−1.

It is difficult to determine the exact composition of the samples measured

through Raman Spectroscopy. Simulation, however, allows for the user to create an

exact atomic composition for each test specimen. Furthermore, as computational

power continues to increase, additional realism may be added to atomic simulations
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to better represent complex geometries, large system sizes, and complex potentials.

Thus numerical experiments, or simulations, are a popular alternative to physi-

cal measurements in the study of defect dynamics. Zhang et al [18], for example,

used molecular dynamic simulations to determine the phonon density of states, and

then the Green-Kubo method to compute the thermal conductivity of graphene

with vacancies. By iteratively performing slightly modified simulations, the authors

were able to determine how the thermal conductivity of graphene changes with an

increased vacancy concentration randomly dispersed through the sample. The au-

thors were able to control the exact defect density in each iteration to generate a

graphical relation between vacancy concentration and specific heat.

1.1.2 Microstructure and Continuum Analyses

With the advent of “smart” materials, and an increase in computational

power, atomic lattice methodologies are commonly applied to microstructure or

even continuum-level systems to gain better understandings of macro-level phenom-

ena in materials [12,19–22]. For example, Nolde et al [21] developed a methodology

for examining vibration modes through a two-dimensional square lattice composed

of elastic strings. By employing lattice dynamics, the authors were able to calculate

high frequency modes, whereas prior approaches were only accurate for wavelengths

larger than the micro-structure of the material. Slepyan [20] modeled crack propa-

gation through a periodic lattice, and demonstrated that “bond mass,” or continu-

ous mass, can be used to represent porous and fiber-reinforced materials. Slepyan
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showed the relative inaccuracy of the concentrated mass assumption in predicting

the speed of crack propagation.

The primary differences between a micro-structure or continuum-level model

and an atomic model are the connectivity and the potential between nodes. In the

models of Nolde et al [21] and Slepyan [20], the connectivity extends no farther than

next-nearest neighbors, whereas atomic lattice interactions are typically assumed

to be farther reaching. Furthermore, micro-structure or continuum-level systems

have elastic interactions, whereas atomic interactions are quantum-based in nature.

The methodology proposed in this work may be applied to any system that can

be modeled as a periodic lattice, regardless of connectivity or interaction potential.

Therefore, the formulae developed in Section 2 are equally as relevant to continuum-

level models containing defects as they are to atomic models.

The design of defects or disorder at the continuum level has become increas-

ingly popular with the growth of phononic or metamaterials [11]. Phononic materials

are often modeled as periodic systems in which one or more degrees of freedom has a

dissimilar geometry, mass, or elastic potential. Wave propagation within the system

can then be manipulated through the alteration of these dissimilarities, or defects.

For instance, Theocharis et al [22] developed a systematic method for analyzing

the stability of localized modes in continuum-level periodic systems, namely gran-

ular crystals. They studied continuum-scale grains and developed simple matrices

to manipulate the pristine system into one containing defective grains of dissimilar

masses, radii, or elastic moduli. The matrix equations were derived assuming one-

dimensional chains of uniform grains interacting only with their nearest neighbors.
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Through their approach, they were able to demonstrate that a single defect pro-

duces a family of localized modes in anharmonic lattices. In later works Boechler

and Theocharis along with others applied their theoretical methodology and experi-

mental setup to develop acoustic wave rectifiers [23] and tunable acoustic filters [24]

within one dimensional chains of spheres. Sigalas [12] used lattice dynamic equations

to study defects in a two-dimensional supercell composed of solid cylinders. Sigalis

studied a pristine system that contained an acoustic band gap, and then introduced

line defects to the system. These line defects acted as waveguides for frequencies

within the forbidden range of the pristine structure. Each of these systems, at

least under the harmonic approximation, could be calculated with the methodology

proposed herein.

1.1.3 Structural Health Monitoring in Truss Networks

The challenges of finding and mitigating the effects of damage in engineered

structures have also motivated the development of evaluation and testing methods

that share similar features with the spectroscopic studies of defective materials.

Structural health monitoring (SHM), or the ability to continuously monitor a sys-

tem for damage, has become an increasingly popular area of study since the 1970s.

Successful implementation of SHM has the invaluable benefit of preventing catas-

trophic failures in large-scale systems. Furthermore, SHM allows users to diminish,

or in some cases eliminate, regularly scheduled safety checks. Several review articles

have been published about various structural health monitoring, or damage locating
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methodologies [13,25,26]. Interestingly, despite the rich history of damage locating

methodologies at the macro level, there is no single method, or even family of meth-

ods, that has emerged as the preferred approach. Doebling et al [25] separate their

250 referenced works into 9 unique categories, listing benefits and shortcomings for

each family of approaches. One common obstacle in SHM, is the accuracy of the

frequency measurements, particularly in noisy environments.

This work is primarily related to the “Matrix Updating” or “Model Updating”

methodologies described in [13], which modify the dynamical or stiffness matrices for

defect-free configurations to account for the effects of defects or damage. Kabe [15]

and Cobb and Liebst [27] developed approaches for altering the stiffness matrices

of structural systems to account for the structural response due to damage. Kabe’s

model modified the stiffness matrix of a perfect structure by a so-called adjustment

matrix. Cobb and Liebst hypothesized that the product of damage and lattice ge-

ometry matrices could result in the defective truss stiffness matrix. In both works

the extensive interaction matrices were only computed a single time for the pristine,

defect-free system. Then the measured frequency response of the structure was

utilized to calculate the defective stiffness matrix. In [15] and [27], the respective

authors assume that there exists a linear operator to transform a pristine stiffness

matrix into a defective matrix, and using this assumption, algorithms for approxi-

mating defect locations based on modal measurements were discussed. In this work,

I derive the exact form of this operator for periodic systems. The operator is then

used to study the effects of various defect types on the defective system modes.

One concern, presented in [26], about model updating methodologies is that
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the damage locating algorithms rely heavily upon accurate frequency measurements

as well as the accuracy of the numerical model, when compared to the physical

structure. Thus if a physical truss-structure is built in such a way that the pristine

stiffness matrix is not representative of the initial system, then the damage finding

algorithms may not locate damage correctly. However, the methodology proposed

herein is solely applied to numerical models, and the purpose is to develop rela-

tions between defect properties and modal shifts, not to locate damage. Thus this

criticism is not a concern within the scope of this thesis.
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Chapter 2: Methodology

In this section linear operators are derived that transform a pristine, defect-

free lattice into a defective state. Through the operator methodology, the extensive

pristine lattice need only be computed a single time, but the phonon spectrum for

any single defect or combination of defects may be computed using simple, linear

algebra. The present developments are intended to be general for lattices across

all scales. Section 2.1 presents the general formulas for the operator method, which

may be applied to any periodic lattice. Then details are filled in for central force pair

potentials or linear elastic truss members in Section 2.2.2 and for many-body, non-

linear interatomic potentials modeled with the Embedded Atom Method in Section

2.2.3. These models represent just two of the infinitely many interaction potentials

that may be modeled using this method.

2.1 Overview

Consider an n-dimensional lattice. The lattice is constructed from a space-

filling periodic unit cell containing N nodes. The vibration frequencies or phonon

modes of the lattice (ωi ∈ R for stable systems, or ωi ∈ C for unstable systems) can
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be computed through the eigenvalue problem

nN∑
i=1

ω2
iχi ⊗ χi =M

−1D (2.1)

where D ∈ CnN×nN is the dynamical matrix,M ∈ RnN×nN is the mass matrix, and

χi ∈ CnN are the corresponding eigenvectors to each eigenvalue ω2
i . The symbol

⊗ is used to denote a tensor product between two vectors. Here, the mass matrix

is a compilation of either nodal or continuous masses, and the dynamical matrix

contains all information about geometric and kinematic relations between nodes.

The problem statement is as follows: Find A ∈ CnN×nN and B ∈ RnN×nN

such that the spectrum of the defective lattice can be directly computed from the

pristine system through

∑
i

ω2
diχdi ⊗ χdi = BM

−1
p ADp (2.2)

The script“p” is used to indicate quantities associated with the pristine lattice,

and “d” the defective lattice. A and B may be interpreted as operators that map

the pristine dynamical and mass matrices into their respective “defect space”. A

“defect” can be embodied by the interactions between nodes, the mass of a single

node, or some combination of both. Thus a defect in this formulation may be

constructed from one or more a) strengthened, weakened, removed, added, and/or

reoriented interactions among the nodes of a lattice, or b) changes to the mass of one

or more nodes. These two defect classifications have been previously used to explain
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Figure 2.1: Single vacancy in a lattice. The dashed lines are the four nearest neighbor
interactions and the eight next-nearest neighbor interactions of a single node in the
xy-plane. In the event of a vacancy, each of the red interactions would be removed
from the lattice.

defect-induced spectral changes in the experimental work [4]. As an example of the

application of bond or mass defects, in a pristine simple cubic lattice with nearest

and next-nearest neighbor interactions, a point vacancy is usually considered as the

removal of a single node. Here, the vacancy is represented as the removal of the

6 nearest neighbor and 12 next-nearest neighbor interactions involving the missing

node, and the removal of the nodal mass, as seen in Fig. 2.1. In similar ways, other

types of defects may be constructed, for instance, for interstitial and substitutional

point defects, and even line, plane, and volume defects.

Using this method, the dynamical matrix of a defect can be composed by the

removal, modification, or addition of a single interaction at a time. The index j is

therefore introduced to enumerate each interaction that participates in the defect.

Our principal postulate means that operators of the form ∆j ∈ CnN×nN represent

the defect contribution of a single interaction, and the defective dynamical matrix

17



Dd may be obtained through systematically altering each individual interaction

through the summation

Dd =Dp −
∑
j

∆j (2.3)

where
∑

j ∆j is similar to the operator Λ described by [9].

Multiplying the right-hand side of (2.3) by D−1
p Dp and factoring yields

Dd = ADp (2.4)

where

A =DdD
−1
p = I −

(∑
j

∆j

)
D−1

p (2.5)

and I is the nN×nN identity matrix. While the inversion of the pristine dynamical

matrix in (2.5) can be computationally expensive for very large unit cells, the inverse

need only be calculated once, and used reiteratively to calculate multiple defect

structures within the lattice.

The terms in A clearly depend on the structure of the host lattice and the

structure of each defect. Eq. (2.5) is a general result that only requires the effect

of the defective interactions on the dynamical matrix to be additive. This will be

further discussed in Section 2.2.1. It is independent of the type of defect and the

structure of the pristine lattice. However, under special cases, when the following

condition holds

∆mD
−1
p ∆n = 0 (2.6)
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for m ̸= n, the lattice operator can be constructed from

A =
∏
j

Aj (2.7)

where

Aj = I −∆jD
−1
p (2.8)

The condition (2.6) is geometric in nature. The types of lattices for which it is

true include five of the primary lattice systems: triclinic, monoclinic, orthorhombic,

tetragonal, and cubic, with nearest-neighbor pair potentials. Thus (2.7) is appli-

cable to many monatomic crystals and their alloys. Greater details of (2.6) are in

Appendix A. When the orthogonality condition (2.6) is not satisfied, (2.5) should

be used to construct complex defects.

It is noted that the contribution of a single interaction to the dynamical matrix

is zero everywhere except in the columns and rows corresponding to the nodes

spanned by the defective interaction. Let η be the number of nodes; for instance,

η = 2 for the defect composed of a single pair interaction between two nodes r and

19



r′. Then it is possible to identify a sub-matrix dj ∈ Cηn×ηn of ∆j such that,

∆j =



1 ··· r ··· r′ ··· N

1 0 · · · 0 · · · 0 · · · 0

... 0 · · · 0 · · · 0 · · · 0

r 0 · · · drr 0 drr′ · · · 0

... 0 · · · 0 · · · 0 · · · 0

r′ 0 · · · dr′r 0 dr′r′ · · · 0

... 0 · · · 0 · · · 0 · · · 0

N 0 · · · 0 · · · 0 · · · 0



(2.9)

where dkk′ ∈ Cn×n. The sub-matrix d is a function of interaction length, direction,

potential, and position. The exact form of dj for central forces is shown in Section

2.2.2.2.

The product ∆jD
−1
p in (2.8) will generally contain many rows of zeros. The

exact number depends on the number of nodes in the system and the type of inter-

action that constitutes the defect. In all cases, a sub-matrix αj ∈ Cηn×nN can be

20



defined to represent the product. Namely, Aj in (2.8) can be written as

Aj = I−



0 · · · 0

...
. . .

...

0 · · · 0

αj

0 · · · 0

...
. . .

...

0 · · · 0



(2.10)

such that αj is the non-trivial portion of the defect operator. Thus, knowing the

terms in αj is sufficient for determining each Aj.

Finally, a defect may also manifest in the mass matrix, for instance due to im-

purities in material lattices, or a damaged truss element in an engineered structure.

Similar to (2.4), the defective mass matrix (Md) can be computed directly from the

mass matrix of the pristine lattice Mp

Md = BMp (2.11)

If mass is assumed to be concentrated at the system nodes, as in atomic lattices,

the mass matrix is diagonal, and the mass defect operator B is a diagonal matrix
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consisting of the ratio of defective mass to pristine mass [22]

Bk =
µk

mk

1 (2.12)

where µk is the mass of the kth node in the defective lattice, mk is the mass of

the kth node in the pristine lattice, and 1 is the n × n identity matrix. In Section

3.2.3, a similar operator will be introduced for systems with consistent mass, or

bond mass [20], for applications involving space truss structures.

2.2 Defect Operator Derivation

To demonstrate the calculation method explicitly, some assumptions are needed

to restrict the possible forms of the dynamical matrix Dp. The assumptions used

in this section are two-fold. The first requires the potential energy in the lattice

to be additively decomposable according to individual interactions, as discussed in

Section 2.2.1. The second makes an assumption about the form of the potential

energy. Section 2.2.2 invokes the use of a central force potential, and Section 2.2.3

uses the Embedded Atom Method, or EAM potentials.

2.2.1 Additive Potential Energy

The first assumption stems from the realization that the dynamical matrix

is the Fourier transform of the Hessian. As such, it is proportional to a second

derivative of the interaction potential energy with respect to state variables. The

interaction potential, which can be in the form of harmonic potentials, central-force
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potentials, and/or empirical many body potentials, can be separated into distinct

sets of additive terms with respect to interaction types. Types may be defined

by interaction distance, for instance by nearest neighbor or next-nearest neighbor

distances, or they may be defined by bond order, such as pair, angle and dihedral

contributions, or even by the chemical nature of the interaction such as London

dispersion, Coulomb electrostatics, and short-ranged covalent bonds. The potential

energy in atomic lattices and truss structures are additively decomposable in this

way. The exception to this is quantum mechanics-based approaches, such as density

functional theory, that define energy contributions according to the electronic kinetic

energy, the energy due to an externally applied field, and an exchange-correlation

energy. Insofar as the present developments are considered for atomic lattices, the

present discussions are focused solely on molecular modeling techniques that employ

classical energy potentials.

I limit the present discussion to an additive decomposition of the energy into b

different interaction types. Thus, the dynamical matrix is separable into dynamical

matrices indexed using the script β in D(β),

D =
b∑

β=1

D(β) (2.13)

Hence (2.1) becomes

∑
i

ω2
iχi ⊗ χi =M

−1
(
D(1) +D(2) + ...+D(b)

)
(2.14)
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As a consequence of this assumption, the problem statement may be re-expressed

more specifically as: Find A(β) ∈ CnN×nN and B ∈ RnN×nN for all β ∈ [0, b] such

that, when (2.14) holds for the pristine lattice, the spectrum of the defective lattice

can be obtained from

∑
i

ω2
diχdi ⊗ χdi = BM

−1
p

(
A(1)D(1)

p +A(2)D(2)
p + ...+A(b)D(b)

p

)
(2.15)

This implies that a defect can be modeled through a modification to the massM and

numerous dynamical matricesD
(β)
p of the pristine, reference lattice. Each separated

dynamical matrix D
(β)
p can be interpreted as an individual network of interactions,

until the dynamical matrices are added together in Eq. (2.15). Thus (2.8) can be

applied to each individual system as

A(β) = I −

(∑
j

∆
(β)
j

)
D(β)−1

p (2.16)

when decomposition by interaction-type is required. As seen with (2.6), the geom-

etry of the lattice creates the special condition that

∆(β)
m D

(β)−1

p ∆(β)
n = 0 (2.17)

for all m ̸= n. Details of this condition are described in Appendix A. With the

separation by interaction type, (2.17) holds for systems with farther-reaching inter-

actions than nearest-neighbor. The separation into individual dynamical matrices

D
(β)
p will be utilized in Section 3.2 to explore two-dimensional rectangular lattices
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with nearest neighbor and next-nearest neighbor interactions. Analogous to (2.7),

this enables (2.16) to be cast in a much more convenient form as

A(β) =
∏
j

A
(β)
j (2.18)

Thus the defect operator may be constructed by multiple interactions, as shown in

(2.7), and by interaction type.

2.2.2 Central Forces

While the general formulations presented thus far make no assumptions about

the form of the interaction potential, other than being additively decomposable as

discussed in Section 2.2.1, in this section all equations will assume central-force pair

potentials to make the descriptions specific and relevant for space truss structures

as well as certain kinds of atomic lattices.

2.2.2.1 Lattice Dynamical Equations

Consider the n dimensional lattice of Section 2.1 with a space-filling periodic

unit cell. Each unit cell is indexed by l ∈ Z and contains N nodes k ∈ (1, 2, . . . , N).

The lattice vectors are aλ ∈ Rn, where λ ∈ Z indexes the n lattice vectors. The

lattice vectors are defined by aλ =
∑

α aλαn̂α, where α ∈ Z is for n Cartesian

directions, and n̂α ∈ Rn are the Cartesian unit vectors.

The location of the lth unit cell is defined by xl ∈ Rn, relative to a reference

frame centered at x0 ∈ Rn via the relative position vector rl0 = xl − x0. Simi-
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Figure 2.2: Schematic of periodic boundary conditions applied to a unit cell with
two unique nodes. The vector between the second node in the reference unit cell
and the first node in the second unit cell (r2012) is shown.

larly, the location of the kth node in the lth unit cell is given by xl
k. Thus the

position of any node k in unit cell l relative to any other node k′ in unit cell l′ is

defined as rll
′

kk′ = xl
k − xl′

k′ and the corresponding unit vector is n̂ll′

kk′ = rll
′

kk′/
∣∣rll′kk′∣∣.

Moreover, displacement ul
k ∈ Cn is also similarly defined. The real part of the

displacement, ℜ(ul
k), is the spatial displacement, while the imaginary part, ℑ(ul

k),

contains information about the phase.

Each of the N nodes in the unit cell has an associated displacement ul
k(t),
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which is written as a periodic function using Blochs theorem [28] as

ul
k(t) = χke

−iωteiG·rl0

(2.19)

where χk ∈ Cn is the amplitude of vibration for node k, ω is the frequency of

vibration, and G ∈ Rn is a wave-vector [29].

The interaction force between the kth node of the lth unit cell, and the k′th

node of the l′th cell is defined as (no sum)

F ll′

kk′ = ϕll′

kk′v
ll′

kk′(u
l′

k′ − ul
k) (2.20)

where

vll′

kk′ = n̂ll′

kk′ ⊗ n̂ll′

kk′ (2.21)

such that vl′

kk′ ∈ Rn×n is the direction cosine between the kth node in the reference

cell and the k′th node in the l′th unit cell which is a measure of the relative orien-

tation of the two nodes. ϕll′

kk′ is the force constant of the interaction in units of force

per length.

The net force on the kth node in the lth unit cell is then

F l
k =

∑
l′k′

ϕll′

kk′v
ll′

kk′(u
l′

k′ − ul
k) (2.22)

where the sum is taken over all nodes k′ in unit cells l′ (including l′ = 0) that

interact with node k in unit cell l. Additionally, ϕll′

kk′ = 0 when k = k′ and l = l′.
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Here, I have followed conventions for atomic lattices, by taking the summation

over nodes, whereas in earlier summations, such as in (2.3), the sums were taken

over interactions. In atomic lattices with periodic boundary conditions, each node

may interact with infinitely many other nodes, and the sum would consequently

have infinitely many terms. However, it is customary to limit the interactions to a

neighborhood around each node.

I will use lumped masses in the descriptions that follow. Section 3.2.3 describes

the extensions to consistent mass representations. Defining the mass of the kth node

in the lth cell as ml
k ∈ R, the equation of motion of the kth node in unit cell l is

then

ml
kü

l
k =

∑
l′k′

ϕll′

kk′v
ll′

kk′(u
l′

k′ − ul
k) (2.23)

The periodicity of the cell can be used to reduce the number of atoms represented

by the index k to only those atoms in the reference cell l = 0,

mkük =
∑
l′k′

ϕl′

kk′v
l′

kk′(u
l′

k′ − uk) (2.24)

where the superscript l = 0 is not shown for notational simplicity.

Substituting (2.19) into (2.24) then gives

mkω
2χk −

∑
l′k′

ϕl′

kk′v
l′

kk′

(
χk − χk′ exp (iG · rl′0)

)
= 0 (2.25)

Comparing (2.25) with (2.1), it can be seen that the mass matrix for a system with
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point masses is a diagonal matrix of the nodal masses mk

Mk = mk1 (2.26)

The dynamical matrix is composed of N ×N sub-matrices Dkk′ ∈ Cn×n

D =



D11 D12 · · · D1N

D21 D22 · · · D2N

...
...

. . .
...

DN1 DN2 · · · DNN


(2.27)

When nodes do not interact with their periodic images, i.e. when the kth node in

the reference unit cell does not interact with the kth node in any other unit cell

l′, the sub-matrices Dkk located along the diagonal can be derived from the second

term in (2.25) as

Dkk =
∑
l′k′

ϕl′

kk′v
l′

kk′ (2.28)

The general form of (2.28) accounting for interactions between any two nodes in the

system is

Dkk =
∑
l′k′

ϕl′

kk′v
l′

kk′

(
1− δkk′ exp (iG · rl′0)

)
(2.29)

where δkk′ is a Kronecker delta. Similarly, the off-diagonal components Dkk′ for

k ̸= k′ can be derived from the second term in (2.25) as

Dkk′ =
∑
l′

ϕl′

kk′v
l′

kk′ exp (iG · rl′0) (2.30)
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Eqs. (2.29) and (2.30) may be combined into one general equation to solve for each

sub-matrix, Dkk′ , by utilizing l′′ and k′′ to enumerate all nodes k′′ in unit cells l′′

that interact with the kth node in the reference unit cell

Dkk′ =
∑
l′′k′′

ϕl′′

kk′′v
l′′

kk′′

(
δkk′ − δk′k′′ exp

(
iG · rl′′0

))
(2.31)

Based on (2.31) the configuration-dependent information about each interaction

(such as orientation, length, and location) can be factored into a sub-matrix ψl′′

kk′k′′ ∈

Cn×n such that

Dkk′ =
∑
l′′k′′

ϕl′′

kk′′ψ
l′′

kk′k′′ (2.32)

where

ψl′′

kk′k′′ = vl′′

kk′′

(
δkk′ − δk′k′′ exp

(
iG · rl′′0

))
(2.33)

Thus, the force information is solely contained in ϕl′′

kk′′ and the kinematic information

is contained in ψl′′

kk′k′′ . In indicial form, the terms in the dynamical matrix may be

written as

Dkk′αα′ =
∑
l′′k′′

ϕl′′

kk′′n̂
T
αψ

l′′

kk′k′′n̂α′ =
∑
l′′k′′

ϕl′′

kk′′ψ
l′′

kk′k′′αα′ (2.34)

The dynamical and mass matrices can be substituted into (2.14) to find the system

modes for the lattice. Dispersion curves can be calculated by plotting the modes as

a function of wave-vector G along the crystal high symmetry lines [29].
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2.2.2.2 Defect Operators for Central Forces

The kinematic term in the dynamical matrix, ψl′′

kk′k′′ , can be written as a func-

tion of an interaction in a basic reference configuration ξl
′′

kk′k′′ ∈ Cn×n and transfor-

mations through an O(3) rotation operator Rl′′

kk′′ ∈ Rn×n such that

ψl′′

kk′k′′ = R
l′′

kk′′ξ
l′′

kk′k′′R
l′′T

kk′′ (2.35)

where ξl
′′

kk′k′′ is the kinematic term for the pristine, reference lattice, and is calculated

as

ξl
′′

kk′k′′ = vl′′

kk′′

(
δkk′ − δk′k′′ exp

(
iG · rl′′0

))
(2.36)

where vl′′

kk′′ is the dyadic product of the vectors drawn between nodes in the pristine

configuration. Rl′′

kk′′ rotates the reference interaction in the pristine lattice into its

defective configuration. Note that a stretch operator to account for changes in bond

length is not needed since ψl′′

kk′k′′ is independent of bond length. Rather, bond length

would likely alter the interaction potential, ϕl′

kk′ . The geometric changes associated

with relaxation may therefore be represented using transformation (2.35) under the

assumption that nodes remain in the same unit cells after relaxation. In the absence

of relaxation, I presently take Rl′′

kk′′ to be the identity matrix.

Defining a scalar damage coefficient ql
′′

kk′′ ∈ R, which accounts for changes to

the potential energy of an interaction due to a defect, the damage factor is multiplied

31



to the interaction potential ϕl′′

kk′′ for one interaction at a time. Thus (2.32) becomes

Dkk′ =
∑
l′′k′′

ql
′′

kk′′ϕ
l′′

kk′′ψ
l′′

kk′k′′ (2.37)

A value of 1 for the coefficient represents an unchanged interaction potential, a

smaller value indicates a weakened interaction, and a larger value represents a

strengthened interaction. In the atomic analogue of this problem, ql
′′

kk′′ adjusts the

interatomic potential between the kth atom in the reference unit cell and the k′′th

atom in the l′′th unit cell. A substitutional defect may require ql
′′

kk′′ > 1, for instance

due to the different electronegativity of the substitute atom in the host lattice. Tra-

ditionally, a void could be created by setting the damage coefficients of numerous

interactions to zero, ql
′′

kk′′ = 0, however, Montroll and Potts in [7] recommend using

a damage coefficient of ql
′′

kk′′ > 1 to model a vacancy in order to simulate relaxation

of neighboring atoms into the hole created by the missing atom. In general, the

notion of a broken bond would be simulated by a coefficient whose value is zero.

Continuous values of ql
′′

kk′′ would be appropriate for truss structures experiencing

variable fatigue, wear, environmental conditions, or predesigned use of a different

truss member.

In a pristine lattice we have ql
′′

kk′′ = 1 and Rl′′

kk′′ = 1 ∀k, k′′, l′′, and the pristine

dynamical matrix follows from (2.35) and (2.37)

Dpkk′
=
∑
l′′k′′

ϕl′′

kk′′ξ
l′′

kk′k′′ (2.38)
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Using (2.35), the defective dynamical matrix Dd in the absence of bond rotation is

Ddkk′
=
∑
l′′k′′

ql
′′

kk′′ϕ
l′′

kk′′ξ
l′′

kk′k′′ (2.39)

which can be rearranged to yield

Ddkk′
=
∑
l′′k′′

ϕl′′

kk′′ξ
l′′

kk′k′′ −
∑
l′′k′′

ϕl′′

kk′′

(
1− ql

′′

kk′′

)
ξl

′′

kk′k′′

=Dpkk′
−
∑
l′′k′′

ϕl′′

kk′′

(
1− ql

′′

kk′′

)
ξl

′′

kk′k′′

(2.40)

Typically, the number of nodes (or number of interactions) that are influenced by

the defect can be assumed to be finite. So a subset of nodes in the vicinity of the

defect is defined, and node indices r and r′ and the unit cell index s′ are used for

summations over those nodes. Thus, the defective dynamical matrix becomes

Dd =Dp −
∑
r,r′,s′

∆s′

rr′ (2.41)

and the non-trivial portion of ∆s′

rr′ , d
s′

rr′ defined in (2.9) is

ds′

rr′ = ϕs′

rr′

(
1− qs

′

rr′

) vs′

rr′ −vs′

rr′ exp (iG · rs′0)

−vs′

rr′ exp (iG · r0s′) vs′

rr′

 (2.42)

Finally, (2.42) can be substituted into (2.5) to obtain the defect operator, and (2.10)
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becomes

As′

rr′ = I −



0 · · · 0

...
. . .

...

0 · · · 0

αs′

rr′

0 · · · 0

...
. . .

...

0 · · · 0



(2.43)

Eq. (2.43) is the defect operator for a single central force interaction. When used

with (2.38) and (2.4), it gives the dynamical matrix of the lattice containing the

defect. When more than one interaction constitutes the defect, the defective dy-

namical matrix (2.4) is then obtained using (2.7) and (2.38), where (2.43) is used

reiteratively in (2.7).

2.2.3 Embedded Atom Method

In the embedded atom method (EAM) [30] each atom is modeled as a particle

within an electron cloud. This simplification, derived in [31], is based on Density

Functional Theory (DFT), in which the nucleus and core electrons of an atom are

treated as a single degree of freedom, and the valence electrons are treated as addi-

tional degrees of freedom. However, EAM unlike DFT is a classical potential, and

therefore does not contain quantum effects. In this work, the atom without the

valence electrons will be considered the atom “core” and the valance electrons of
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each atom will simply be referred to as “electrons.” The separation between atom

cores and electrons is particularly useful in simulating the properties of single crystal

metals [32] and alloys [33] because it approximates the cohesive energy of metallic

lattices better than pair-potentials.

Using the EAM approach, contributions to the net potential energy of the

lattice can be separated into two terms: pair potentials between sets of cores, which

are always repulsive in nature, and the “embedding energy” inserting an atom into

the electron cloud of the surrounding atoms. The pair potential between the k′′th

atom in the l′′th unit cell and the k′′′th atom in the l′′′th unit cell is defined as

Φ(rl
′′l′′′

k′′k′′′) ∈ R. The embedding energy term of the k′′th atom in the l′′th unit cell is

Υ(ρl
′′

k′′) ∈ R, where ρl′′k′′ ∈ R is the electron density of the lattice at the site of the

atom.

The net energy E associated with a lattice using EAM potentials is a sum over

all embedding energy and pair potential terms,

E =
∑
k′′l′′

Υ(ρl
′′

k′′) +
1

2

∑
k′′k′′′l′′l′′′

Φ(rl
′′l′′′

k′′k′′′) (2.44)

where the net electron density at each atom site, ρl
′′

k′′ , is a sum of the electron

densities associated with each pair interaction Ψ(rl
′′l′′′

k′′k′′′) ∈ R,

ρl
′′

k′′ =
l′′′∑
k′′′

Ψ(rl
′′l′′′

k′′k′′′) (2.45)

If two atoms k′′ and k′′′ in unit cells l′′ and l′′′, respectively are closer together, the
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electron density term Ψ(rl
′′l′′′

k′′k′′′) is higher since the same number of valance electrons

occupy a smaller volume. Ψ(rl
′′l′′′

k′′k′′′), therefore, is highly dependent on geometry.

However, Ψ(rl
′′l′′′

k′′k′′′) is also dependent on the element type involved in the interaction,

or more specifically, it is dependent on the number of valence electrons of atoms k′′

and k′′′. Using (2.45) in (2.44), the electron density potential Υ is a function of the

properties of all atoms located within a neighborhood around each node. Thus Υ is

a many-body potential.

The force on an atom k in unit cell l is related to the energy function through

F l
k = − ∂E

∂xl
k

(2.46)

The pair potentials Φ, electron density terms Ψ, and electron density potentials Υ,

vary between materials, and are typically fit to empirical data. For example, Sun et.

al. in [34] report the density and energy functions for magnesium shown in Figure

2.3.

The pair potential Φ represents the repulsion between two atom cores, and

therefore the energy function is always positive for all values of r, as can be seen

in Fig. 2.3. Furthermore, the slope of the curve is always negative since the force

between cores is repulsive for all r, and therefore has a positive force F using Eq.

(2.46). Υ, however, represents both electron-electron and core-electron interactions,

and thus the slope of Υ is positive for high electron densities, where the repulsive

forces between electrons outweigh the attractive forces between electrons and cores,

but is negative for lower values of the electron density.
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Figure 2.3: The embedded atom method potential functions as reported in [34] for
magnesium
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The many-body term in the energy equation, along with the non-linear pair-

potential result in additional terms in the lattice dynamics equations. Therefore,

the lattice dynamic equations are re-derived, and then an approach for using the

proposed methodology of Section 2.1 on systems with an EAM potential is outlined.

2.2.3.1 Lattice Dynamics for EAM potentials

In this section the dynamical matrix is derived for systems with EAM poten-

tials. Consider a lattice with L unit cells. In atomic lattices, L is theoretically

infinite, but is often simplified to a small set of unit cells within the cutoff distance

of the reference unit cell l = 0, and the remainder of the infinitely many unit cells

are represented through periodic boundary conditions. The Hessian is composed of

NL × NL sub-matrices H ll′

kk′ ∈ Rn×n, and the dynamical matrix is, by definition,

the discrete Fourier transform of the Hessian. Thus, each sub-matrix Dkk′ of Eq.

(2.27) is simply

Dkk′ =
∑
l′

eiG·rl′0
H0l′

kk′ (2.47)

where each sub-matrix of the Hessian is calculated through

H ll′

kk′ =
∂2E

∂xl
k∂x

l′
k′

(2.48)

the second derivative of the energy with respect to atom coordinates, or so-called

state variables.

Substituting (2.45) into (2.44), the first derivative of the energy function can
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be evaluated as

∂E

∂xl
k

=
∑

k′′k′′′l′′l′′′

(
Υ′(ρl

′′

k′′)Ψ
′(rl

′′l′′′

k′′k′′′) +
1

2
Φ′(rl

′′l′′′

k′′k′′′)

)
n̂l′′l′′′

k′′k′′′(δkk′′′δll′′′ − δkk′′δll′′) (2.49)

which may be simplified to

∂E

∂xl
k

= −
∑
k′′l′′

((
Υ′(ρl

′′

k′′) + Υ′(ρlk)
)
Ψ′(rll

′′

kk′′) + Φ′(rll
′′

kk′′)
)
n̂ll′′

kk′′ (2.50)

using the relations rll
′′

kk′′ = rl
′′l
k′′k and n̂ll′′

kk′′ = −n̂l′′l
k′′k. Eq. (2.50) is directly related to

the force F l
k through (2.46).

The components of the Hessian, following (2.48), may be computed by taking

the derivative of (2.50) with respect to xl′

k′

H ll′

kk′ =
∑

k′′k′′′l′′l′′′

(δk′k′′δl′l′′ − δk′k′′′δl′l′′′)Υ
′′(ρl

′′

k′′)Ψ
′(rl

′′l′′′

k′′k′′′)Ψ
′(rll

′′

kk′′)n̂
l′′l′′′

k′′k′′′ ⊗ n̂ll′′

kk′′

+
∑

k′′k′′′l′′l′′′

(δkk′δll′ − δk′k′′′δl′l′′′)Υ
′′(ρlk)Ψ

′(rll
′′′

kk′′′)Ψ
′(rll

′′

kk′′)n̂
ll′′′

kk′′′ ⊗ n̂ll′′

kk′′

+
∑
k′′l′′

(δkk′δll′ − δk′k′′δl′l′′)
((

Υ′(rl
′′

k′′) + Υ′(rlk)
)
Ψ′′(rll

′′

kk′′) + Φ′′(rll
′′

kk′′)
)
vll′′

kk′′

+
∑
k′′l′′

δkk′δll′ − δk′k′′δl′l′′

rll
′′

kk′′

((
Υ′(ρl

′′

k′′) + Υ′(ρlk)
)
Ψ′(rll

′′

kk′′) + Φ′(rll
′′

kk′′)
)(

1− vll′′

kk′′

)
(2.51)

which, in turn, may be used in (2.47) to solve for the dynamical matrix.

Once again, the additive potential energy described in Section 2.2.1 can be

utilized to isolate the contributions of the pair potentials in matrix D(1), and the

many-bodied electron density term in matrix D(2). Using (2.51) in (2.47), the
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contribution of the pair potentials to the dynamical matrix is

D
(1)
kk′ =

∑
k′′l′′

(δkk′ − δk′k′′e
iG·r0l′′

)

[
Φ′′(r0l

′′

kk′′)v
0l′′

kk′′ +
1

r0l
′′

kk′′
Φ′(r0l

′′

kk′′)
(
1− v0l′′

kk′′

)]
(2.52)

and the contribution of the electron density term is

D
(2)
kk′ =

∑
k′′k′′′l′′l′′′

(δk′k′′e
iG·r0l′′ − δk′k′′′e

iG·r0l′′′

)Υ′′(ρl
′′

k′′)Ψ
′(rl

′′l′′′

k′′k′′′)Ψ
′(r0l

′′

kk′′)n̂
l′′l′′′

k′′k′′′ ⊗ n̂0l′′

kk′′

+
∑

k′′k′′′l′′l′′′

(
δkk′ − δk′k′′′e

iG·r0l′′′
)
Υ′′(ρk)Ψ

′(r0l
′′′

kk′′′)Ψ
′(r0l

′′

kk′′)n̂
0l′′′

kk′′′ ⊗ n̂0l′′

kk′′

+
∑
k′′l′′

(δkk′ − δk′k′′e
iG·r0l′′

)
(
Υ′(ρl

′′

k′′) + Υ′(rk)
)
Ψ′′(r0l

′′

kk′′)

[
v0l′′

kk′′ +
1

r0l
′′

kk′′

(
1− v0l′′

kk′′

)]
(2.53)

where superscript l = 0 has been eliminated for simplicity. Note that when Φ′(rlkk′) =

0 for all k, k′, and l′, (2.52) is equivalent to (2.31) with Φ′′(rlkk′) = ϕl
kk′ . This case

corresponds to the assumption that each interaction is at a local energy minimum.

The configuration that corresponds to the minimum lattice energy does not nec-

essarily minimize the energy of each individual interaction. In material lattices,

this assumption is valid in a fully relaxed system with nearest-neighbor bonds only.

In truss structures, the assumption corresponds with a lattice that is stress-free at

equilibrium. (2.52) can therefore be interpreted as a more general form of (2.31).

Dynamical matrices (2.52) and (2.53) and mass matrix (2.26) can be used in

(2.1) to find the complete set of eigenvalues for each wave-vector G. The dispersion

curves for magnesium calculated using (2.52) and (2.53) are shown in Fig. 2.4. The

potential functions of Fig. 2.3 and atomic mass m = 24.305 g/mol were used in the
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calculation. All derivatives were calculated from the discrete functions presented

in [34] using fifth-order Taylor expansions. For instance, the nth value of the first

derivative Φ′ was computed as

Φ′
n =

1
12
Φn−2 − 2

3
Φn−1 +

2
3
Φn+1 − 1

12
Φn+2

∆r
(2.54)

and the nth value of the second derivative Φ′′ was computed through

Φ′′
n =

− 1
12
Φn−2 +

4
3
Φn−1 − 5

2
Φn +

4
3
Φn+1 − 1

12
Φn+2

(∆r)2
(2.55)

where ∆r is the difference between successive values of r in the tabulated function.

In [34], ∆r = .00075 Å. The fifth order approximations were chosen for increased

numerical accuracy as compared to the typical second order approximations.

To verify the accuracy of the derived formulas, the dispersion curves using

(2.52), (2.53), and (2.26) in (2.1) are compared with dispersion curves obtained

with the General Utility Lattice Program (GULP) [35] in Fig. 2.4. As can be seen,

the two calculation approaches are numerically equivalent.

2.2.3.2 Defect Operators for EAM Potential

In the absence of relaxation, it is assumed that defects can alter the lattice dy-

namic response in one of three ways: through alterations in nodal mass as accounted

for in (2.12), strengthened/weakened pair potentials, or alterations in the electron

density. Φp and Ψp are henceforth defined as functions related to the pristine lattice,
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Figure 2.4: Dispersion curves of magnesium using an embedded atom potential.
The solid lines are the dispersion curves using (2.26), (2.52), and (2.53) in (2.1),
whereas the circular data points were computed using GULP [35]

and Φd and Ψd are the corresponding functions of the defective lattice. Two linear

defect coefficients qll
′

kk′ and p
ll′

kk′ are defined such that the pristine functions Φp(r
ll′

kk′)

and Ψp(r
ll′

kk′) are mapped into a defective state through

Φd(r
ll′

kk′) = qll
′

kk′Φp(r
ll′

kk′) (2.56)

Ψd(r
ll′

kk′) = pll
′

kk′Ψp(r
ll′

kk′) (2.57)

The electron density in the defective lattice at the kth atom in the lth unit cell is

calculated using (2.57) in (2.45) as
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ρlkd =
l′∑
k′

pll
′

kk′Ψp(r
ll′

kk′) (2.58)

It is assumed that the electron density potential function Υ does not change in going

from the pristine state to the defective state i.e. Υ ≡ Υp ≡ Υd. However the value

of the potential Υ(ρlk) at a specific atomic site might change due to alterations in

the electron density ρlk at that atom site. The electron density potential of the kth

atom in the lth unit cell in the defective state is then

Υ(ρlkd) = Υ

(∑
k′l′

pll
′

kk′Ψ(rll
′

kk′)

)
= Υ

(
ρlk −

∑
k′l′

(1− pll
′

kk′)Ψ(rll
′

kk′)

)
(2.59)

Using a first order Taylor expansion, (2.59) becomes

Υ(ρlkd) = Υ
(
ρlk
)
−
∑
k′l′

(1− pll
′

kk′)Ψ(rll
′

kk′)Υ
′ (ρlk) (2.60)

or a higher-order Taylor expansion could be used for increased accuracy.

The pristine dynamical matrices and defective dynamical matrices are not

shown due to the length of the expressions. The pristine dynamical matrices may

be calculated directly through (2.52) and (2.53) using Φ = Φp and Ψ = Ψp. Two pair

potential defect operators ∆(1) and ∆(2) may be derived to compute D
(1)
d and D

(2)
d ,

respectively. The pair potential defect operator, ∆(1), may be solved by substituting

(2.52) and (2.56) into (2.3). Similarly, the electron density defect operator, ∆(2), is

calculated using (2.53), (2.57), and (2.60) in (2.3).
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Chapter 3: Results and Analysis

In this section the developments of Section 2 are applied to problems represen-

tative of those encountered in the fields of molecular and structural dynamics. First,

I examine 1D and 2D systems under the central force assumption whose simplicity

allow the complete matrix expressions to be shown. Finally, the representation of

vacancies in a three dimensional lattice with EAM potential is explored in Section

3.3.

3.1 Convergence to the Dilute Defect Limit in a 1D Lattice Chain.

In this section I demonstrate that the operator approach of Section 2 is numer-

ically equivalent to the Green’s Function-based technique derived by Montroll and

Potts in [7] for large unit cells. In [7], Montroll and Potts model a single defect in an

1 2 3 1

Figure 3.1: The one dimensional unit cell with N ≥ 3 independent nodes, is demar-
cated by the green dashed lines. A point defect is located in the position of node
2.
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infinite chain, whereas the operator methodology must be applied to periodic sys-

tems, which contain regularly spaced defects. The ratio of defective to non-defective

atoms can be lessened within the periodic system by increasing the size of the unit

cell. Thus the convergence to the dilute limit of [7] is a function of the number of

atoms in each unit cell.

Consider the periodic geometry shown inside the green dashed lines of Fig.

3.1, with N ≥ 3 nodes per unit cell. In this section I will calculate the rates of con-

vergence of mode frequencies for a single defect in a periodic system to the infinite

chain limit as a function of the unit cell parameter N . Unless otherwise indicated,

interactions are assumed to have the same interaction potential as the pristine lat-

tice. Note that ϕ and q used presently are identical to γ and P , respectively, in [7].

For N = 3, the pristine dynamical matrix can be calculated using (2.32) as

Dp = ϕ


2 −1 −e−i(G·a)

−1 2 −1

−ei(G·a) −1 2

 (3.1)

and assuming that all nodes have the same mass (mk = m, ∀k), the pristine mass

matrix from (2.26) is

Mp =


m 0 0

0 m 0

0 0 m

 (3.2)

A point defect can be created by altering a nodal mass and/or changing the strength
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of the two nearest neighbor interactions of a node. Since the defective atom is located

in the node 2 position, the mass of that node is set to µ2 = µ, and µk = m for all

other nodes k ̸= 2. The mass matrix operator (2.12) is then

B =


1 0 0

0 µ/m 0

0 0 1

 (3.3)

In this configuration, two interactions have modified force constants due to the point

defect. The two damage coefficients associated with these interactions are q012 (the

damage factor corresponding to the bond between the first and second nodes) and q023

(the damage factor corresponding to the bond between the second and third nodes

in the reference unit cell). I will assume that the two linear damage coefficients are

equivalent, q012 = q023 = q, and all other ql
′

kk′ = 1. Using (2.42) and (2.9) in (2.5), the

corresponding defect operator is

A0
12 = I −

q − 1

e− 1


−e −1 −1

e 1 1

0 0 0

 (3.4)

where e = eiG·a

The second operator (A0
23) maps the interaction between the second and third

nodes in the reference unit cell into a “defective” state, and can be calculated using
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Figure 3.2: Dispersion curves for the pristine lattice between Γ, where G = 0, and
G = π/a.

the same general procedure. The final defect operator A is found to be

A = I − q − 1

e− 1


−e −1 −1

0 1− e 0

e e 1

 (3.5)

by substituting (3.4) and A0
23 into (2.18).

The pristine matrices in (3.1) and (3.2) can be substituted into (2.14) and

subsequently used to determine the dispersion curves of the pristine lattice in the

first Brillouin zone. These are shown in Fig. 3.2. If Ωp is defined as the maximum

frequency in the pristine lattice, the frequency (ωp(G)) in the pristine lattice can

take continuous values between zero and Ωp, with no band gap. Increasing the
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Figure 3.3: Dispersion curves for the defective lattice with mass ratio µ/m = 0.5.
For comparison, the maximum frequency of the pristine lattice Ωp is shown.

number of nodes N in the unit cell increases the number of degrees of freedom, and

therefore the number of continuous branches in the piecewise continuous dispersion

curve through so-called zone-folding. However, regardless of the number of nodes in

the unit cell, ωp(G) ranges from zero to some finite maximum value Ωp continuously

with no frequency gaps.

The dispersion curves for a lattice containing a substitutional defect are shown

in Fig. 3.3. This substitutional defect is simulated with an assumed mass ratio

µ/m = 0.5 of the defective node while the interaction potential remains unchanged

from the pristine state (q = 1). The dispersion curves are determined using the

pristine matrices (3.1) and (3.2) along with defect operators (3.5) and (3.3) sub-

stituted into (2.2). Any mass ratio less than 1 is found to produce a similar shift
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in maximum frequency. As can be seen in Fig. 3.3, unlike the pristine lattice, the

defective lattice contains band gaps. Furthermore, the highest frequency mode Ωd

in the defective lattice is higher than any of the available frequencies in the pristine

lattice. In [7], Montroll and Potts refer to the modes in the defective lattice with

frequencies higher than Ωp as modes “whose frequencies are displaced out of the

band.” The frequency labeled as ΩΓ is the highest frequency mode at the Γ point,

and is also the highest frequency mode unaffected by the defect parameter µ. In

Fig. 3.3, the upward movement of Ωd and the lack of change to ΩΓ are consistent

with the basic behaviors noted by [7].

Substitutional defects with values of the mass ratio less than one (µ/m <

1), and no change in force constant induce localized modes, shifting the highest

frequency mode to a higher value. Fig. 3.4 shows the ratio of Ωd to Ωp in systems

with N = 15, 5, and 3 nodes per unit cell where the mass of a single atom is

parametrically changed. The solid line is the maximum frequency shift as a function

of mass ratio in the infinite chain limit [7]. The shift in the maximum frequency

(Ωd/Ωp) increases with decreasing defect mass ratio independent of the number of

degrees of freedom. The present solution is numerically indistinguishable from the

infinite chain or dilute limit solution of [7] for N = 15. The solid line in Fig.

3.6 shows that the convergence to the dilute limit goes as ≈ 1/N2.45; a very rapid

convergence. It is expected that increasing the range of the interactions beyond

nearest neighbors will result in a smaller convergence rate.

Vacancies can also generate localized modes. Following [7], a vacancy can be

represented by a low mass ratio at the site of the vacancy (µ/m ≈ 0.1), and a high
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Figure 3.5: Frequency shift of ΩΓ as a function of damage coefficient q compared to
the results for the infinite limit calculates in [7]
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Figure 3.6: RSS error compared to the infinite limit as a function of the number of
atoms per unit cell.

interaction potential between the vacancy and the neighboring atoms (q ≥ 2) to

account for relaxation. Fig. 3.5 depicts the effect of the parameter q on ΩΓ, the

highest frequency at the Γ point. In the dispersion curves for the pristine lattice,

Fig. 3.2, ΩΓ < Ωp and thus ΩΓ/Ωp < 1 for q = 1. In Fig. 3.5 it is shown that

regardless of unit cell size, a value of q = 2 results in ΩΓ/Ωp = 1, and larger values

of the damage factor q induce shifts in ΩΓ higher than the maximum frequency of

the pristine lattice. Once again the present results are numerically equivalent to the

infinite chain solution of [7] for N = 15 atoms per unit cell. Using the best fit to

the dashed line in Fig. 3.6, the rate of convergence is determined numerically and

found to be proportional to 1/N3.35. Comparing this rate of convergence with that

of the mass defect, it is interesting that the image interactions associated with an
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altered interatomic potential decays more rapidly than the image interactions due

to a substituted mass.

For each type of point defect, defective mass or defective potential, we see

that a unit cell of N = 15 atoms is sufficient to compute the defect-induced fre-

quency shifts of a dilute system. In systems with farther-reached bonds than nearest-

neighbor, it is expected that a larger number of atoms would be required to isolate

the effects of a single defect.

3.2 2D Rectangular Lattices with Central Forces

In this section applications are shown of the developments in Section 2 to

problems representative of those encountered in the fields of molecular and struc-

tural dynamics. Two-dimensional systems are examined whose simplicity allows the

complete matrix expressions to be shown. After first describing the example set-up

in Section 3.2.1, two different defect types are studied: an atomic point defect in

Section 3.2.2, and a structural defect in a truss structure using consistent (truss

element) mass matrices in Section 3.2.3. The same pristine geometry, depicted in

Fig. 3.7a, will be used for the examples. To use Eq. (2.5), one would generally

determine the inverse of the pristine dynamical matrices D
(1)
p and D

(2)
p once and

use the inverse as needed to find the defective spectra for any defect combinations

of interest.
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3.2.1 Example Set-up

In this section, pristine dynamical matrices are calculated for later use in

Sections 3.2.2 and 3.2.3. Additionally, I will demonstrate the use of the equations in

Section 2.2.2.2 for calculating the defect operators of a two-dimensional rectangular

lattice with central forces. The unit cell contains four nodes for a total of eight

displacement degrees of freedom. Both first and second neighbor interactions are

used in these examples. In the two dimensional, rectangular cell, each node has four

nearest neighbors and four next-nearest neighbors.

For the sake of simplicity, this example is limited to a monatomic crystal in

which every node in the lattice is identical to all other nodes. The force constants for

nearest neighbor interactions for a lattice at equilibrium are written as ϕl′

kk′ = ϕ(1)

and next-nearest neighbors as ϕl′

kk′ = ϕ(2). The dynamical matrix contributions from

nearest-neighbor interactions can be calculated using (2.38) and written,

D(1)
p = −ϕ(1)



−2 0 1 + e−1
1 0 0 0 0 0

−2 0 0 0 1 + e−1
2 0 0

−2 0 0 0 0 0

−2 0 0 0 1 + e−1
2

−2 0 1 + e−1
1 0

−2 0 0

−2 0

Hermitian −2



(3.6)
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Figure 3.7: Two dimensional rectangular lattices with four independent nodes and
nearest neighbor as well as next-nearest neighbor interactions. The length of each
unit cell in the n̂1 direction is a1, and in the n̂2 direction is a2. (a) Pristine 2 × 2
unit cell. The green dashed lines indicate the periodic boundaries of the unit cell.
(b) Point defect at node k = 4 with the eight affected interactions shown in red. (c)
Defective structural truss in a rectangular lattice with the defective truss shown in
red.
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where the lower half the matrix is the complex conjugate of the upper half, and

e1 = ei(G·a1) and e2 = ei(G·a2). The next-nearest neighbor dynamical matrix, D
(2)
p ,

can be calculated in the same way.

In a monatomic system withmk = m∀k, the mass matrix of the pristine lattice

Mp using (2.26) is

Mp = mI (3.7)

The defect operators are based on the interactions in the pristine lattice and

can therefore be determined a priori. In Fig. 3.7a, consider the interaction between

nodes 2 and 4 in the reference unit cell l′ = 0, with the force constant q024ϕ
(1). In what

follows, the calculation proceeds by evaluating (2.42), determining the subsequent∆

terms with the help of (2.9), and multiplying by the inverse of the pristine dynamical

matrix to get the defect operatorA of a single defective interaction using (2.8). Since

the orthogonality condition (2.17) is satisfied for rectangular lattices, (2.18) may be

employed.

From (2.42)

d0
24 = ϕ(1)(1− q024)



0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1


(3.8)
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and substituting (3.8) into (2.9),

∆0
24 = ϕ(1)(1− q024)



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1



(3.9)

A0
24 may be determined from substituting (3.9) into (2.8)

A0
24 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0
e2q024−1

e2−1
0 0 0

q024−1

e2−1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0
e2(1−q024)

e2−1
0 0 0

e2−q024
e2−1



(3.10)

This procedure follows the general methodology for calculating a defect operator,

and may be repeated for each defective interaction. The operators are then used

in Eq. (2.7) to obtain the defect dynamical matrix in Eq. (2.4). The αs′

rr′ are
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Table 3.1: αs′

rr′ for three prototype interactions

Interaction α
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α0
24 =

1−q
1−e2


0 0 0 0 0 0 0 0
0 0 0 −e2 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 e2 0 0 0 1


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α1
42 =

1−q
1−e2


0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 −e2 0 0 0 −e2


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1

α0
23 =

1−q
2(e1−e2)


0 0 −e2 e2 −e1 e1 0 0
0 0 e2 −e2 e1 −e1 0 0
0 0 e2 −e2 e1 −e1 0 0
0 0 −e2 e2 −e1 e1 0 0


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determined in Table 3.1 for three of the basic interactions in the square lattice of

Fig. 3.7a.

3.2.2 Point Defect in Square Lattice

The proposed methodology is now used to determine the phonon properties

for a vacancy in a two-dimensional square lattice. I arbitrarily choose the lattice

parameter and force constants to resemble those of a silicon mono-crystal. The

point defect is located at node 4 in the 2× 2 unit cell shown in Fig. 3.7b, and it is

assumed that the force constants of all defective bonds are scaled in Eq. (2.37) by

the same factor (qs
′

rr′ = q). Thus, to create the vacancy, the eight interactions shown

involving node 4 are effectively removed by setting q = 0, and the mass of node 4 is

removed by setting µ4 = 0. The nearest neighbor dynamical matrix and the mass

matrix of the pristine lattice were determined in (3.6) and (3.7) respectively.

Each node in the rectangular system has four nearest neighbors and four next-

nearest neighbors. Therefore, a total of 8 individual defect operators can be com-

bined to simulate the point defect. The defect operator matrix for one exemplary

bond between nodes 2 and 4 was obtained in Eq. (3.10). The same procedure

may be followed to determine the remaining defect operators, and then the individ-

ual defect operators may be substituted into (2.18) to determine the system defect

operator for nearest and next-nearest neighbor interactions. These are, respectively,

diag
(
A(1)

)
= [ 1 1 1 q q 1 q q ] (3.11)
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diag
(
A(2)

)
= [ q q 1 1 1 1 q q ] (3.12)

Note that (3.11) and (3.12) each become the identity matrix when q = 1. The

system mass operator using (2.12) is

diag (B) = [ 1 1 1 1 1 1 µ
m

µ
m

] (3.13)

which similarly becomes the identity matrix when µ = m.

Pristine matrices (3.6)-(3.7) and operators (3.11)-(3.13) can be substituted

into (2.15) to solve for the system modes as a function of the wave-vector G. It is

important to note that when nodes are removed (q = 0, µ = 0), B is not invert-

ible, and therefore a matrix condensation or Lagrange multiplier approach must be

employed.

Now, consider a single vacancy in a square lattice where a1 = a2 = a. At the

so-called Γ point, where G = 0 and e1 = e2 = 1, and assuming that the interaction

potential is inversely proportional to length (ϕ(1) =
√
2ϕ(2)) the phonon modes are

ω =
ϕ(1)

m



0

0

2 +
√
2 +

√
6− 2

√
2

2 +
√
2 +

√
6− 2

√
2

2 +
√
2−

√
6− 2

√
2

2 +
√
2−

√
6− 2

√
2



(3.14)
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Γ

X M

X ′

M ′

Figure 3.8: The first Brillouin zone and high symmetry points for the two-
dimensional rectangular lattice. The boundaries of the Brillouin zone are located at
±π/a1 and ±π/a2.

The dispersion curves can be computed for any value of q or µ by solving for

the system modes for the components of G corresponding to points along the high

symmetry lines. For this two-dimensional, square lattice, the first Brillouin zone is

shown in Fig. 3.8. The corresponding density of states in the first Brillouin zone,

are shown in Fig. 3.9 for damage factors of q = 1 and q = 2. The density of states

plots were calculated using a direct count method [36]. A damage factor of q = 1

represents the pristine lattice. The damage factor of q = 2, could represent an alloy,

dopant, or substitutional defect with an increased potential between the defective

and non-defective atoms. As q is increased from 1 to 2, additional peaks appear

in the density of states due to splittings of degeneracies. This is further shown in

the dispersion curves in Figs. 3.10 and 3.11. At any point in the Brillouin zone the

number of unique frequencies in the defective lattice is greater than or equal to the
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Figure 3.9: The density of states for the pristine lattice and a defective lattice.
The parameters used to create the plots were m = 5 × 10−23 g, ϕ(1) = .12 eV/Å2,
and ϕ(2) = .085 eV/Å2, and were chosen such that the range of frequencies was
representative of silicon. The density of states for the pristine lattice (q = 1) is solid
and the defective lattice with q = 2 is dashed
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Figure 3.10: Dispersion curves of the pristine lattice using the same parameters as
in 3.9.
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Figure 3.11: Dispersion curves of a point defect in a square lattice.

number of unique frequencies in the pristine lattice. For example, at the Brillouin

zone point labeled as X, there exist exactly three unique frequencies in the pristine

lattice, whereas in the lattice with a damage factor of q = 2, there exist 7 frequencies.

The point defect has effectively caused modes to split, reducing the number of

degenerate solutions. This is a consequence of the symmetry broken by the defects.

In the pristine lattice, all four nodes are identical, and the lattice is symmetric under

translations by integer multiples of a1/2 and a2/2. When the defect is introduced

into the system, the lattice is only symmetric under translations by integer multiples

of a1 and a2. Additionally, while the pristine lattice is rotationally invariant to π/2

rotations about any node, the defective system is only rotationally invariant to π/2

rotations about node 4. Thus the defective system has fewer translational and

rotational symmetries than the pristine lattice. This symmetry loss manifests in the

splitting of degenerate phonon modes, and ultimately an increased number of peaks

in the density of states plot.
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A number of other changes can be observed in the resulting dispersion curves.

Notice the two lowest energy modes at the X point, corresponding to transverse

acoustic (TA) and transverse optical (TO) modes. In the pristine lattice, the TA and

TO modes have the same energy levels given a wave-vector along the XM direction.

However, in the defective lattice, the optical mode has a higher energy than the

acoustic mode. Next, looking at the highest energy mode, the stiffened interactions

in the defective lattice have induced a shift in this mode to an even higher frequency,

effectively increasing the range of available frequencies in the lattice. Furthermore,

at a damage factor of q = 2, the optical modes at the X point split, and begin

to create an indirect band gap at approximately 16.2 THz bridged by the phonon

modes at the M point. For values of q > 2, a full band gap is introduced into the

system. Higher values of q would induce a wider band gap, and shift the system

frequencies to even higher values.

In Fig. 3.12, the frequencies at point X are shown as a function of q. Point

X was chosen to better study the band gap that appears in the q = 2 dispersion

curve. As q increases to numbers greater than 1, the degenerate solutions split and

shift farther apart, and the range of frequencies increases. Mode splitting, as in Fig.

3.12, manifests as an increased number of peaks in the density of states. Fig. 3.9

shows that the density of states curve for q = 2 has a larger number of peaks than

for q = 1 and also a wider range of frequencies than the pristine lattice. This spread

of frequency band, or the range of available frequencies in the density of states

is in good agreement with the spreading of frequencies seen in Fig. 3.12a. The

minimum available frequency is always zero for this lattice, regardless of q, however,
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Figure 3.12: Mode frequencies at the high symmetry point X as a function of
the damage factor q. In each figure, red and black lines indicate longitudinal and
transverse modes, respectively. Similarly, solid and dashed lines indicate acoustic
and optical modes, respectively. (a) Frequencies as q varies from 1.0 to 5.0. (b)
Frequencies for q < 1.

64



the maximum available frequency increases with q. For some values of q, such as

q = 1.7, new degenerate solutions form as the curves intersect, however, the number

of unique modes for q ̸= 1 is always greater than the number of unique modes at

q = 1. As q increases past q = 1.7, the gap between the second and third highest

dispersion curves at the X point is created, as seen in Fig. 3.11. Remarkably,

longitudinal modes do not intersect other longitudinal modes, and transverse modes

do not intersect other transverse modes except when the lattice is in the pristine

state (q = 1).

In the limit as q → 0, as depicted in Fig. 3.12b, the model is representative of a

system with a vacancy. Recall that when node 4 is removed, two degrees of freedom

are removed from the system, namely the displacement components of node 4 in the

n̂1 and n̂2 directions. Therefore, two modes are expected to vanish as q → 0, which

is confirmed in Fig. 3.12b. These frequencies correspond to the two modes with

the lowest frequency along the ΓX direction, a TA and an LA mode. The shapes

of the TA mode are shown for three values of q in Fig. 3.13. In general, the shape

of a mode is found by substituting the corresponding eigenvector into Eq. (2.19) at

any time t. In these figures, time t = 0 has been arbitrarily chosen. As q decreases,

the node 3 displacement goes to zero, and at q << 1, the displacement of all nodes

except for node 4 are negligible. Thus at small values of q, node 4 oscillates in the

n̂1 direction. Similarly, in the LA mode (not shown), for small values of q, node 4

oscillates in the n̂2 direction. At q = 0, node 4 is eliminated from the system, along

with the LA and TA modes.

Changing the value of q does not change the number of modes (with the
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(a) q = 5

(b) q = 1

(c) q << 1

Figure 3.13: The shapes of the transverse acoustic mode at high symmetry point X
for different values of q. The relative displacements are calculated by substituting
the eigenvectors into equation (2.19) at time t = 0.
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exception of q = 0) nor their longitudinal or transverse character. For q > 0,

there exist exactly two of each of the mode classifications: LA, TA, longitudinal

optical (LO), and transverse optical (TO), for a total of eight dispersion curves.

Furthermore, for all values of q > 0, the lowest and highest modes at the X point

are LA modes.

This atomic lattice example demonstrated the calculation procedure developed

in Section 2 and provided potential insights into defect-induced mode splitting and

shifting. In the next section, the same methodology is applied to an engineered

structure with continuous mass between nodes.

3.2.3 Defect in Space Truss

This example examines a space truss structure that is comparable to the square

lattice used in Section 3.2.2. Fig. 3.7c depicts the assumed geometry. I assume that

a single truss member is damaged and examine the consequences on the vibration

spectrum. In contrast to the previous example, a consistent mass matrix will now be

employed based on a finite element discretization. Thus the two primary differences

between this example and the example of 3.2.2 are the change in defect geometry

and the use of massive interactions, or so-called bond masses [20].

The pristine dynamical matrices of this system are identical to those in Section

3.2.1 because the interaction geometry is the same. The pristine mass matrix, how-

ever, is now a consistent mass matrix. The consistent mass matrix M ∈ RnN×nN ,
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like the dynamical matrix is composed of N ×N sub-matrices Mkk′ ∈ Rn×n

M =



M11 M12 · · · M1N

M21 M22 · · · M2N

...
...

. . .
...

MN1 MN2 · · · MNN


(3.15)

If the mass of an interaction (i.e. a linkage or truss) between the kth node in

the reference unit cell, and the k′′th node in the l′′th unit cell is ml′′

kk′′ , then each

sub-matrix can be shown to be

Mkk′ =
∑
k′′l′′

1

6
ml′′

kk′′v
l′′

kk′′(2δkk′ + δk′k′′) (3.16)

where the sum is taken over all nodes k′′ in unit cells l′′ that are connected to node

k in the reference unit cell by a linkage or truss, and the mass of each linkage is

ml′′

kk′′ = ρA|xl′′

k′′ − x0
k| (3.17)

where the mass density ρ and cross-sectional area A are assumed constant along

the length and the same for all trusses. The defect operator can be derived using a

similar method to the dynamical matrix defect operator. If µs′

rr′ ∈ R is the mass of

the defective interaction, the resulting consistent mass defect operator analogous to

(2.5) is

B = I −
∑
r,r′,s′

Γs′

rr′M
−1
p (3.18)
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where Γs′

rr′ ∈ RnN×nN is a sparse matrix composed of a sub-matrix gs
′

rr′ ∈ Rn×n just

as ∆s′

rr′ was shown to be composed of sub-matrix ds′

rr′ in Eq. (2.9). The sub-matrix

gs
′

rr′ is simply

gs
′

rr′ =
1

6
(ms′

rr′ − µs′

rr′)

 2vs′

rr′ vs′

rr′

vs′

rr′ 2vs′

rr′

 (3.19)

Assuming a square lattice with a1 = a2 = a, the length of all nearest neighbor and

next-nearest neighbor interactions are a/2 and a
√
2/2, respectively, and the pristine

mass matrix may be calculated from (3.16) as

Mp =
aρA

12



2 + 2
√
2 0 1 0 0 0

√
2 0

2 + 2
√
2 0 0 0 1 0

√
2

2 + 2
√
2 0

√
2 0 0 0

2 + 2
√
2 0

√
2 0 1

2 + 2
√
2 0 1 0

2 + 2
√
2 0 0

2 + 2
√
2 0

Symmetric 2 + 2
√
2


(3.20)

The defect operator for the dynamical matrix is identical to (3.10). Since only a

single interaction is damaged, using (2.18), A = A0
24.

I introduce parameter ϵ ∈ R to enable parametric study of the effect of different

truss masses, where µs′

rr′ = ϵms′

rr′ . The mass defect operator can be calculated from
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(3.18) as

B =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 .01(1− ϵ) 0 .42(ϵ+ 1.35) 0 .12(1− ϵ) 0 .12(ϵ− 1)

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 .12(1− ϵ) 0 .12(ϵ− 1) 0 .01(1− ϵ) 0 .42(ϵ+ 1.35)



(3.21)

Once again, pristine matrices (3.6), and (3.20), and operators (3.10) and (3.21)

can be used in Eq. (2.15) to determine the system modes. For comparison with the

previous example, Fig. 3.14 depicts the density of states for the system in which

bond strength is inversely proportional to length (ϕ(1) =
√
2ϕ(2)), with ϵ = 1, and

q = 1 or 2. In contrast to example 3.2.2, a consistent mass matrix has been used,

and therefore qualitative differences exist between the plots in Figs. 3.9 and 3.15.

Similar to the density of states in Fig. 3.9, the range of available frequencies expands

once the defect is introduced into the system. One of the most apparent differences

between the two curves in Fig. 3.14, is that the highest three peaks shift to even

higher values when q = 2, and a new peak is formed at a frequency of ω = 1.2× 104

Hz. These changes can most easily be seen in the dispersion curves, shown in Figs.

3.15a and 3.15b.
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Figure 3.14: Density of states for two values of q. The parameters used to create
the plot were a = 2 m, ρ = 8000 kg/m3, A = 100 cm2, and E = 200 GPa. The
density of states for the pristine lattice (q = 1) is solid and the defective lattice with
q = 2 is dashed.

The highest three peaks in Fig. 3.14 correspond to the Γ, X, and M points

along the highest frequency dispersion curve in Fig. 3.15a. The frequencies are

circled in Figs. 3.14 and 3.15a for clarity. For the system with a defect parameter

of q = 2, the frequencies corresponding to all three of these points on the dispersion

curve are higher than the system with q = 1, which explains the blue shift in the

highest three peaks. The new mode at ω = 1.2× 104 Hz is related to the frequency

values at the X and X ′ points along the second highest frequency dispersion curve,

which are marked with the x symbol in Fig. 3.15b. In the pristine lattice, the

frequencies are identical at the X and X ′ points. However, in the defective lattice

this curve has different frequency values at the X and X ′ points. At the X point,

71



Γ X M Γ X ′ M ′ Γ

0

0.5

1

1.5

·104

Brillouin Zone Points

ω
fo

r
re

fe
re

n
ce

la
tt

ic
e

(H
z)

(a)

Γ X M Γ X ′ M ′ Γ

0

0.5

1

1.5

·104

Brillouin Zone Points

ω
fo

r
q
≡

2
(H

z)

(b)

Figure 3.15: Dispersion curves for two values of q. The parameters used to create
the plot were a = 2 m, ρ = 8000 kg/m3, A = 100 cm2, and E = 200 GPa. (a)
Dispersion curves associated with the pristine geometry. (b) Dispersion curves of
the defective geometry.
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the frequency value is 1.2× 104 Hz whereas the frequency at the X ′ point remains

unchanged from the pristine lattice with a value of 1.0× 104 Hz.

In fact, a general reduction in degeneracy at the high symmetry points located

on the boundary of the first Brillouin zone can be observed. For example, Figs.

3.15a and 3.15b show that the third and fourth highest modes split at the Γ point,

decreasing the number of modal degeneracies, whereas in Section 3.2.2, the modes

shifted but did not split at the Γ point. This decrease in the number of degenerate

solutions is due to the removal of the lattice rotational invariance. In the pristine

lattice, the periodic truss is identical under π/2 rotations about node four, however,

once a single truss is altered, this rotational symmetry is removed. In addition, the

dispersion curves for the pristine lattice in the ΓX direction are identical to those

in the ΓX ′ direction, as can be seen in Fig. 3.15a. From Fig. 3.8, X corresponds to

the point G = (0, π/a) and X ′ to G = (π/a, 0) such that the ΓX direction is a π/2

rotation from ΓX ′. Similarly, the dispersion curves between X and M are identical

to those between X ′ and M ′ in the pristine lattice, but this is not the case in the

defective lattice.

The effects of the symmetry-reducing damage appear in the modes at high-

symmetry points X and X ′ in Fig. 3.16. In a pristine lattice, the frequencies at

these two symmetry points are identical due to rotational invariance. At each point,

X and X ′, exactly two modes shift when damage is introduced into the system,

and all other modes remain constant. In Fig. 3.16a, these are indicated by the

dashed and solid red lines with non-zero slope, and in Fig. 3.16b, they are indicated

by the black solid and dashed lines. The two affected modes at the X point are
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Figure 3.16: Mode changes at the high symmetry point X as a function of the dam-
age factor q. In each figure, red and black lines indicate longitudinal and transverse
modes, respectively. Similarly, solid and dashed lines indicate acoustic and optical
modes, respectively. (a) Modes at point X for different values of q (b) Modes at
point X ′ for different values of q.
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(a) Point X, q = 1

(b) Point X ′, q = 1

Figure 3.17: The shapes of the highest frequency mode at point X and X ′ for
damage factors of q = 1. The relative displacements are calculated by substituting
the eigenvectors into Eq. (2.19) at time t = 0. A full period of the wave in shown
in each image.
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(a) Point X, q = 1

(b) Point X ′, q = 1

Figure 3.18: The shapes of the lower energy transverse acoustic mode at point X
and X ′ for damage factors of q = 1.
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longitudinal modes, and at the X ′ point are transverse modes. This is expected

because the damaged truss is oriented in the n̂2 direction, and the wave-vectors at

the X and X ′ points are oriented in the n̂2 and n̂1 directions, respectively. Thus,

longitudinal modes at the X point, but transverse modes at the X ′ point can alter

the length of the defective truss. As an example, the highest energy mode for the

undamaged system is a transverse acoustic mode, depicted by the higher black solid

line in both Figs. 3.16a and 3.16b. As q increases, the highest energy mode is

unaffected at point X, but at point X ′ the frequency increases with q. The reason

for this discrepancy can most clearly be seen by examining the shapes of the mode

at each of the two points. The shapes of the highest frequency mode at points X

and X ′ are shown in Fig. 3.17. At point X the length of the defective truss is

unchanged during oscillations, whereas at point X ′, the defective truss oscillates in

length. Therefore, the damage parameter q has no effect on this particular mode

at point X, but has a significant effect on both the mode shape and the frequency

value at point X ′. As with example 3.2.2, there exist exactly two of each mode

type: TA, LA, TO, and LO. Remarkably, only the higher energy mode of each type

is affected by damage at the X and X ′ points. Fig. 3.17b depicts the mode shape

of the higher energy TA mode at the X ′ point. This mode can be compared with

Fig. 3.18b, which shows the shape of the lower energy TA mode at the same point.

Unlike the higher energy mode, the length of the defective truss is unchanged for

the lower energy mode, and therefore, the value of q does not affect the frequency

of the mode.

Similar plots can be shown for the LA, TO, and LO modes at the X and
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X ′ points. For each type, the lower energy mode does not stretch or compress the

length of the defective truss. The discrepancies between points X and X ′ and M

andM ′ can also be viewed as mode splitting, or the splitting of degenerate solutions,

which contribute to an increased number of peaks in the density of states.

3.3 Emulating Relaxation in a HCP Lattice with EAM Potential

In examples 3.2.2 and 3.2.3 the interaction potentials were modeled as linear

with no compression or stretch, and the force between any given pair of nodes

was zero, just as an unstretched spring transmits no force. Thus as interactions

were altered or removed from the system, relaxation was not considered because

the force profile and potential energy of the lattice remained unchanged. In this

section, the empirical relations shown in Fig. 2.3 are used for Υ, Ψ and Φ of Eqs.

(2.52) and (2.53). As mentioned in Section 2.2.3, these functions were developed

in [34] to match experimentally measured properties of magnesium. Using the EAM

potential, the forces between pairs of atoms are generally non-zero.

The force F on a given atom k in unit cell l is calculated using (2.44) in (2.46)

as

F l
k =

∑
k′′l′′

((
Υ′(ρl

′′

k′′) + Υ′(ρlk)
)
Ψ′(rll

′′

kk′′) + Φ′(rll
′′

kk′′)
)
n̂ll′′

kk′′ (3.22)

and therefore the magnitude of the force between atom k in unit cell l and atom k′

in unit cell l′ is

F ll′

kk′ =
((

Υ′(ρl
′

k′) + Υ′(ρlk)
)
Ψ′(rll

′

kk′) + Φ′(rll
′

kk′)
)

(3.23)
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Using the values of Υ, Ψ and Φ from [34], the magnitude of the force between two

nearest neighbor atoms in the magnesium lattice is 0.114 eV/Å. The non-zero force

between atoms signifies that relaxation occurs in the presence of defects.

In the absence of relaxation, the operator method calculates the exact spectra

for lattices containing point defects, as stated in Section 2. In this section I will

first examine the effects of relaxation on the defective spectrum of magnesium in

subsection 3.3.1. Then the methods of 2.2.3 will be utilized to emulate the phonon

spectrum of a single vacancy in a relaxed magnesium lattice in subsection 3.3.2.

3.3.1 Relaxation in Magnesium

A sample unit cell for hexagonal-close-packed (HCP) magnesium is shown in

Fig. 3.19. The red nodes indicate missing atoms due to a single vacancy. The

pristine unit cell is therefore composed of the red and black solid nodes, while

the unrelaxed system is composed of only the black nodes. The relaxed geometry

was computed using the large-scale atomic/molecular massively parallel simulator

(LAMMPS), and an exaggeration of this geometry is depicted by the gray nodes

in Fig. 3.19. The trajectory of relaxation for each atom k in unit cell l may be

computed using a relaxation factor of α = [0, 1] in the equation

xl
k = x

l
kunrelaxed

+ α
(
xl
krelaxed

− xl
kunrelaxed

)
(3.24)

such that a relaxation factor α = 0 represents a fully unrelaxed system, and a

relaxation factor α = 1 represents a fully relaxed system. Note that the nodes
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Figure 3.19: The unit cell for a hexagonal-close-packed lattice with a single vacancy
and 16 unique atoms shown on the left. The nodes in the unrelaxed system are
depicted by the black circles. The positions of the gray nodes are exaggerated from
their true positions for the sake of increasing their visibility in this depiction. The
top view is shown in the lower image.
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on the second and third planes of the lattice travel farther away from the nearest

vacancy site. This indicates that the vacant atom, when present, has an attractive

force on these nodes.

Fig. 3.19 displays a single vacancy in a 16 atom unit cell. This configuration

will be referred to as a 23 unit cell, as the HCP primitive cell is tiled two times

along each of the three lattice vectors. As in Section 3.1, the effects of the vacancy

can be diluted by using a larger unit cell, say a 33 unit cell of 54 atoms. The

dispersion curves for the pristine primitive cell were shown in Fig. 2.4 in Section

2.2.3. Since the 23 unit cell contains a total of 48 degrees of freedom leading to 48

dispersion curves, a plot of the dispersion curves is not shown. Instead, the density

of states was calculated using a direct count method [36]. Equations (2.26), (2.52),

and (2.53) were used in (2.1) to solve for the frequencies associated with 10,000

randomly chosen wave-vectors within the first Brillouin zone.

The density of states for the pristine system is shown as the dashed line in

Fig. 3.20. The red curve represents the spectrum of the unrelaxed geometry and the

purple curve shows the spectrum of the relaxed geometry. The density of states is

also shown for α = 0.5 in yellow. For all values of α, the defective system has a larger

number of peaks in the density of states plot than the pristine system. This is largely

due to the removal of certain system symmetries due to the point defect, as discussed

in example 3.2.2. Another notable difference between the pristine and defective

spectra is the increased intensity of frequency modes between 1.8 and 3.8 THz and

the decreased intensity of frequency modes between 3.8 and 4.2 THz. This red shift

of modal frequencies can be attributed to the energy change of the lattice once the
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Figure 3.20: Density of states plots for magnesium using an EAM potential. The
dashed line is the density of states of the pristine lattice. The solid lines represent
the defective lattice geometry in various states of relaxation.

defect is introduced. The average energy per atom in each of the pristine, relaxed,

and unrelaxed systems is −1.5287, −1.4685, and −1.4677 eV/atom, respectively.

The magnitude of the energy per atom decreases for the defective systems, resulting

in lower energy modes.

The shifts and splits of peaks within the density of states can be traced by

varying the relaxation parameter α. For instance, the fully relaxed system has a

peak at approximately 3.98 THz, whereas the fully unrelaxed system has a valley

at the same frequency value. Observing the spectral peaks as α varies between 0

and 1, it appears that during the relaxation process a blue shift occurs for a mode
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at 3.93 THz while a red shift occurs for a mode initially at 4.09 THz. These two

frequency modes combine to form the peak in the relaxed system, signifying that a

new degeneracy exists in the relaxed system which was not present in the unrelaxed

system.

The unrelaxed spectrum may be exactly replicated using the operator method

by setting p = q = µ = 0 for the missing atom, and employing a Lagrange multiplier

approach to eliminate three degrees of freedom. However, in Section 3.3.2 non-zero

values of parameters p, q, and µ are explored to better approximate relaxation.

This parameter-based relaxation is similar to that proposed in [7] and explored

in Section 3.1 for a harmonic, one-dimensional chain. Montroll and Potts suggest

values of q > 1 to approximate the shift of atoms towards a vacant atom site in [7].

In this system the neighboring atoms shift away from the vacant site, as seen in

Fig. 3.19, and therefore values of q < 1 are expected to better simulate the relaxed

geometry. In the next section, multiple values for q and p are explored to simulate

the effects of relaxation.

3.3.2 Use of the Operator Method to Simulate Relaxation

Thermoelectric material properties are primarily functions of low frequency,

acoustic phonon modes due to the relatively low group velocity associated with

the high frequency, optical modes [37]. As such, the objective of this section is to

determine the values of the parameters q, p, and µ that best reproduce the spectrum

of the relaxed system for low frequency modes. I have chosen the cutoff frequency
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of interest to be 5.2 THz, which is half of the maximum frequency of the magnesium

lattice. I will define an error function as a measure of the distance between the

relaxed spectrum and the spectrum computed using the defect parameters. This

error is computed through

Error =

√∫ 5.2

0
(Sdef (p, q, µ)− Srel)

2 dω√∫ 5.2

0
(Spris − Srel)

2 dω
(3.25)

where Sdef is the spectrum computed using the defect parameters, Srel is the spec-

trum of the relaxed lattice, and Spris is the spectrum of the pristine lattice. The

denominator of (3.25) is a constant value for all p, q, and µ, but is a function of

defect density, geometry, and potential.

The process for determining the error associated with a set of parameters is as

follows, first (2.56) and (2.57) are used in (2.52) and (2.53) to compute the defective

dynamical matrices. Then the frequencies are computed at a random set of points

within the first Brillouin zone using (2.14). The density of states is then calculated

using a count method, and substituted into (3.25) to find the error. Parameters that

produce errors less than 1.0 manipulate the pristine lattice into a state closer to the

relaxed lattice, whereas parameters that produce errors greater than 1.0 manipulate

the lattice into a state less like the relaxed system.

Surface plots of the error as functions of p and q are shown for four different

values of µ in Fig. 3.21. As can be seen, all values of µ produce curves with steep

decreases in error for p . 3.5q. In the pristine lattice, each atom has a value of

ρ = 4.09, and Υ(ρ) = −3.3 eV, which is well to the left of the minimum of Υ(ρ)
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Figure 3.21: Error between the desntiy of states of the relaxed geometry and the
density of states using various defect parameters µ, p, and q in the 23 system.

for magnesium, as seen in Fig. 2.3. Thus increasing p results in greater attraction

between the vacant node and its surrounding neighbors. Conversely, increasing the

value of q increases the repulsion between the vacant node and the surrounding

neighbors. Since the neighboring atoms are repelled from the vacant node during

relaxation, intuitively it follows that there should be an upper bound on p with

respect to q to emulate the behavior of the vacancy. Notably, all four surfaces appear

to converge around an error of 1.0 for parameters following p << 3.5q regardless of

the value of µ. Furthermore, low values of µ result in a smaller minimum error. This

is expected because the vacant site in the relaxed lattice has no mass, and thus a

low value of µ better matches the inertial properties of the defective lattice. Values

of µ < 0.05 were also considered, however, there was a negligable difference between

the surface plots for µ = 0.05 and lower values such as µ = 0.005. As such, it was
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Figure 3.22: Detailed error plots for a vacancy in 23 lattice with µ = 0.05. (a) Error
between the density of states of the relaxed geometry and the parameterized system
are shown in red for µ = 0.05. The circled points show local minima along the
constant p and constant q lines. (b) Best fit curve for the local minima. (c) Error
profile along the minimum line
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assumed that the minimum error occurs along the surface of the µ = 0.05 plot.

The following procedure was used to find the properties associated with the

minimum error. First the minima along the lines of constant q on the surface plot

for µ = 0.05 were located. These data points are shown in black in Fig. 3.22a.

Next, a line of best fit was calculated to approximate the locations of the point of

minimum error, as shown in Fig. 3.22b. Incidentally, the equation of the line of

best fit was found to be p = 3.1864q− 0.1129, and the residual squared value of the

fit was R2 = 99.9% [38]. Finally, the error profile traveling along this line of best

fit was computed at regularly spaced intervals (Fig. 3.22c) and the minimum error

was found to be 0.322, at p = 0.37 and q = 0.15. For comparison purposes, the

values of p = q = µ = 0 (the unrelaxed system) yields an error of 0.423. Therefore

by this measure, the parameters yield a spectrum that is 24% closer to the relaxed

spectrum than the unrelaxed spectrum.

The density of states for the minimum error solution is shown on top of the re-

laxed and pristine spectra in Fig. 3.23. Qualitatively, it appears that minimizing the

error function (3.25) produced a defective spectrum similar to the relaxed system.

For several applications including defect detection through Raman Spectroscopy,

the frequencies associated with each peak in the density of state plot is perhaps

the most critical value to simulate accurately. These peak frequencies are tabulated

in 3.2 for the relaxed, minimum error, and unrelaxed systems. The first, second,

fourth, fifth, and ninth peaks in the relaxed density of states are better represented

using the minimum error solution than they are by the unrelaxed system. Only

the seventh, tenth, and eleventh peaks are better approximated by the unrelaxed
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Figure 3.23: The density of states for the system with minimum error can be seen
as the red solid line. Similarly, the density of states for the relaxed and pristine
systems are the blue solid line, and black dashed line, respectively.

solution.
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Peak Num. Relaxed Min. Error Unrelaxed

1 3.1922 3.1394 3.0867
2 3.456 3.456 3.4033
3 3.6143
4 3.6671 3.6671 3.7198
5 3.9837 4.0364 4.0892
6 4.3003 4.3003 4.3003
7 4.4058 4.4585 4.4058
8 4.6168 4.6168 4.6168
9 4.7224 4.7224
10 4.8807 4.9334 4.8807
11 5.0917 5.1445

Table 3.2: Frequencies in THz associated with each peak in the lower half of the
density of states curves. The values are tabulated for the relaxed, unrelaxed, and
minimum error spectra.
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Chapter 4: Conclusion

4.1 Contributions

This thesis derived a general methodology for modeling defects in periodic

lattices across multiple length scales. Presently, when the accurate atomic structure

of any defect is known, it is a simple matter to determine the dynamical matrix and

its accompanying dynamic properties. Of interest in the present work is the ability

to investigate variations in the structure-property relationships under variations of

the defect structure and/or defect parameters. Such a capability could potentially

enable parametric study and design of the vibration and phonon transport properties

in lattice-based structures and materials. To this end, an approach for systematically

composing the dynamical matrices of lattices containing defects is developed.

The developments are based on the proposition that the terms in the equations

of motion, specifically the mass and dynamical matrices, can be transformed using

a derived linear operator, and the operator is solely based on the pristine lattice

configuration. That is, any lattice defect can be reduced to a set of basic trans-

formations on the pristine lattice, where the transformations involve nodal massed

or the direction and magnitude of the forces among nodes. Complex defects there-

fore are composed by any number of basic interactions through the use of defect
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operators by applying those operators to the pristine lattice dynamical matrix. The

entire framework is amenable to computer implementation and can scale to arbi-

trarily large unit cells. In contrast, established analytic methods require Greens

functions, or numerical solutions must develop a separate dynamical matrix for ev-

ery possible defect configuration in every possible unit cell of interest without direct

relationships to the pristine host lattice.

A key result is in the formulation of an operator that can be composed of

multiple matrices that either add or multiply together depending on the symmetry

of the original pristine lattice. The multiple matrices contribute to create a system-

level defect operator that, when multiplied to the original dynamical matrix of

the pristine lattice, gives the exact dynamical matrix of the lattice containing this

deliberate arrangement of defects in the absence of relaxation. Then, the solution to

the associated eigenproblem can be obtained directly from the resulting expressions.

The present effort is exact only under the harmonic approximation in the ab-

sence of local relaxation around the defect core. In systems with relaxation, the

operator method may be used to emulate the spectrum of the relaxed lattice with

some finite error. The present results and analyses focus on the variations in vibra-

tion spectra as functions of defective potential and mass ratios. In one-dimensional

lattices, the convergence to the infinite chain limit is numerically demonstrated.

The dispersion properties of a periodic unit cell containing 15 nodes is numerically

indistinguishable from the infinite chain solution. A finite defect density, through

the indirect consideration of periodic image interactions, results in an increasing

frequency shift when the mass of a point defect decreases or the local forces among
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nodes increase.

For the sake of demonstrating the calculation approach using manageable ma-

trix sizes, two-dimensional square lattices are studied using central force interaction

potentials within the harmonic approximation. Varied defect structures are studied

parametrically to investigate the parametric dependence of splitting and shifting of

degeneracies as a function of the local nodal masses and forces. The calculated band

structures of the vibration spectra reveal quantifiable parametric dependencies of

band gaps and frequency maxima. The number of additional peaks in the density

of states plot is found to correlate with the symmetry of the system in the two

examples provided.

Finally, the methodology is applied to a three dimensional magnesium lattice

with tabulated EAM potential functions. Relaxation within the non-linear lattice

was simulated using the defect parameters. A 24% reduction in error in the density

of states plot was demonstrated by using the operator method as compared to the

unrelaxed geometry.

4.2 Future Work

This thesis focused first on the development of the operator method, and then

on applications to atomic lattices with point defects as well as engineered structures

with damaged members. In Section 3.3, the possibility of simulating relaxation using

the proposed operator-based approach was assessed. As the scope of the research to

date has primarily involved the derivation of a new methodology, there still remain
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numerous applications for future study. The two primary areas of study on which I

plan to focus are the design and detection of defects.

The design of phonon spectra has become a wide area of study, as discussed

in Section 1.1.2. Already in Section 3.2.2, we derive defect properties that create

a phononic band gap. For the simple, two-dimensional structure studied, it was

shown that values of q > 2 of an atomic point defect produced a full band gap at

approximately 16 THz. In the future, I wish to develop an approach for the design

of acoustic band gaps at specified frequencies. For instance, using the operator

method, perhaps one could design a system with a band gap covering a portion of

the human auditory spectrum (approximately 20 Hz to 20 kHz [39]). Or perhaps a

system could be designed to filter out high frequency noise from a recording device

in an experimental setup. For these design applications, I plan to study systems that

are periodic at the continuum-level with elastic potential functions between nodes,

as in [12, 22–24, 40]. I choose to focus on continuum-level design and not atomic

because the fabrication tools to build such devices are more readily available.

By detection, I am referring to the detection of the presence and possibly the

location of defects or damage within a system. The applications in the field of defect

detection could be at any level–atomic, continuum, or structural. However, I plan to

focus my efforts on atomic defect detection. In this work, some of the ways in which

the dispersion curves and density of states shift and split in the vicinity of a point

defect were explored. First and foremost, I plan to study the effects of defect density

on these predicted spectral shifts. The high defect densities explored in this work are

not unlike the hydrogenated graphene of [2] or the silicon germanium of [4], and the
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analysis performed herein could be useful in applications such as determining alloy

material percentages from measured Raman spectra. However many applications

require extremely low defect densities. Using the unit cell in Section 3.3, I plan

to determine the rate at which the defective spectrum converges to the pristine

spectrum as a function of unit cell size. This should provide a guideline for the

defect densities that could realistically be detected within the bulk of a material.

There might be, however, an opportunity to detect low densities of defects using the

localized modes created around each defect. Localized modes, which are functions of

anharmonicity and are therefore not calculable using the operator method, might in

fact be similar to the bulk modes of high defect densities predicted by the operator

method, but this supposition will require future investigation.

In addition to defect densities, I plan to study the effects of dislocations on

material lattices. In Section 3.3 it was shown that parameters p and q could be used

to approximate the spectrum of a fully relaxed lattice with a single vacancy. Next

I would like to determine if similar parameters could be utilized along dislocation

planes to emulate the spectrum of a substance with dislocations. It would also be

interesting to compare the spectral shifts induced by dislocations to the spectral

shifts induced by point defects. I expect there to be clear differences in the spectra

of the two defect types.

While the operator methodology was fully derived within this work, the num-

ber of potential applications to explore in the future are numerous.
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Appendix A: Orthogonality Conditions

In this section, I examine the situations in which the orthogonality condition

(2.6) is met. I classify the lattice types of interest by the nodal connectivity, Zk,

which is the total number of interactions involving the kth node in the reference

unit cell. In general, I have found that the orthogonality condition is satisfied when

the nodal connectivity satisfies

Zk ≤ 2n,∀k (A.1)

where n is the number of spatial dimensions. Note that this is independent of the

lattice symmetry and generally precludes lattices with bases. As an example, I

will first consider the primitive triclinic unit cell shown in Fig. A.1a. The triclinic

lattice has the lowest symmetry, and other lattice types such as cubic, orthorhombic,

monoclinic, etc. may be consider special cases of the triclinic lattice. I restrict the

present consideration to only triclinic lattices where the angles and cell dimensions

are such that the nearest neighbor interactions occur along the lines drawn from the

lattice vectors. Very elongated cells or cells with very low or high aspect ratios are

beyond the present scope. The simple, triclinic lattice has a nodal connectivity of

Zk = 6 ∀k.

By definition, primitive unit cells contain a single node, and thus k = 1 and
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(a)

(b)

Figure A.1: (a) Triclinic primitive cell with the three independent interactions de-
noted by the solid lines. (b) The body-centered cubic unit cell (dotted lines) with
the primitive cell shown with dashed lines. The four independent nearest-neighbor
interactions are represented by solid lines.

k′ = 1 for every interaction. I will therefore omit the subscript 11 for simplicity. The

pristine dynamical matrix for any primitive unit cell comes from using Eq. (2.31)

in (2.27) to yield

Dp =
∑
l′

cl′vl′ (A.2)

where cl′ = 2ϕl′
(
1− cos(G · r0l′)

)
. The primitive cell of a triclinic lattice, as de-
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picted in Fig. A.1a has exactly three interactions per cell, and thus

Dp = c1v1 + c2v2 + c3v3 (A.3)

To calculate the orthogonality condition, the general form of ∆ must be found for

a primitive lattice. Using Eqs. (2.21) and (2.42) in (2.9),

∆l′ = (1− ql′)cl′n̂l′n̂
T
l′ (A.4)

Consider now ∆m and ∆n such that the orthogonality condition (2.6) becomes

∆mD
−1
p ∆n =(1− qm)(1− qn)cmcnn̂mn̂

T
mD

−1
p n̂nn̂

T
n

(A.5)

In the above expression, the scalar terms are non-zero in general and, therefore,

condition (2.6) is met if

n̂T
mD

−1
p n̂n = 0 (A.6)

where

n̂l′ =


nl′1

nl′2

nl′3

 (A.7)

Let us now examine the conditions under which (A.6) is true. Substituting (A.3)

and (A.7) into (A.6), we find that the left-hand-side of (A.6) for m = 1 and n = 2
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becomes

n̂T
1D

−1
p n̂2 =

c2c3 det ([n̂1, n̂2, n̂3])

det (Dp)


n22n33 − n23n32

n23n31 − n21n33

n21n32 − n22n31



T 
n21

n22

n23

 (A.8)

The last two terms reduce to zero when multiplied. Since no assumptions were made

about orientation, the orthogonality condition is satisfied for any primitive lattice

with a connectivity of Zk = 6, which agrees with condition (A.1).

Next, consider a primitive lattice with Zk = 8, such as the body-centered-

cubic lattice depicted in Fig. A.1b. Note that the body-centered primitive cell in

Fig. A.1b has four interactions, and thus the dynamical matrix will be of the form

Dp = c1v1 + c2v2 + c3v3 + c4v4 (A.9)

Now substituting (A.9) into Eq. (A.6), the left-hand side reduces to

n̂T
1D

−1
p n̂2 =

c3c4
det (Dp)

det ([n̂1, n̂3, n̂4]) det ([n̂2, n̂3, n̂4]) (A.10)

The orthogonality condition is satisfied when (A.10) reduces to zero. In general, c3

and c4 are not zero, and therefore, one of the two determinants must be zero for the

orthogonality condition to be satisfied. By definition, three unit vectors are linearly

dependent when the matrix composed of the three vectors has a determinant equal

to zero. Thus for (A.10) to reduce to zero, n̂1 and/or n̂2 must lie on the plane
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defined by n̂3 and n̂4. However, (A.6) should be satisfied for all n,m ∈ (1, 2, 3, 4),

and so (A.10) must reduce to zero for all permutations of n̂1, n̂2, n̂3, and n̂4. This

is only the case when all four vectors lie on one two-dimensional plane, or when

two of the unit vectors are parallel. Therefore, the orthogonality condition is not,

in general, satisfied for primitive cells with nodal connectivities of Zk ≥ 8 in three

dimensions. Again, this finding agrees with conditions (A.1).
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[6] CM Ruiz, X Fontané, A Fairbrother, V Izquierdo-Roca, C Broussillou, S Bod-
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