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Abstract

An approach for semiquantitative constraint propagation using both simple and complex nodes
is presented. Each node has a label consisting of the union of a negative interval and a positive
interval. Compared to simple interval labels, this representation provides significant increase
in expressiveness, with only a moderate increase in complexity. In addition to simple nodes
(variables), there are complex nodes, representing dimensionless products of variables.
Previous efforts have focused on reasoning only with independent complex nodes; other nodes
can be expressed as suitable algebraic expressions of independent nodes. The approach followed
here involves the use of all irreducible complex nodes; these nodes are the simplest possible, in
that they cannot be broken into smaller complex nodes. Since irreducible nodes are not
necessarily independent, they are related by implicit constraints. The number of nodes and the
number of implicit constraints are polynomial in the size of the problem. The coexisting layers
of simple and complex nodes can be manipulated to limit the propagation: Labels on complex
nodes are only propagated if they contain information that is not already provided by the simple
nodes. This effectively reveals those complex nodes that bear interesting labels. These
representation and reasoning choices are suited to engineering domains in which many
dimensional kinds of variables are present and dimensionless ratios of variables are significant
in defining the state of a system.
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1 Introduction

There has been extensive investigation of constraint propagation with semiquantitative
constraints, involving intervals and inequalities. Davis [1987] provides an excellent review
and evaluation of the field.

It is advantageous to infer interval labels for variables, rather than perform constraint
inferences, because in the latter it is hard to ensure that the derived constraints will be useful
in answering queries. On the other hand, if the queries involve relations among variables, the
interval labels may not contain that information. Davis [1987] points out that, by using
complex nodes (new variables equal to expressions of simple variables), more information can
be preserved by the labels, at the cost of increased complexity.

A

Figure 1:

While A and B vary over wide intervals, they do not vary independently. The two intervals are

correlated.

Qualitative reasoning [Bobrow, 1985] with signs (+, —, 0) essentially uses only simple nodes,
since it focuses on parameter values. Order-of-Magnitude Reasoning [Raiman, 1986, Dague et
al., 1987, Mavrovouniotis and Stephanopoulos, 1987 and 1988, Mavrovouniotis et al., 1989},
which was introduced to remove some of the inherent ambiguity of qualitative values, focuses
completely on complex nodes. It is based on the representation of the relative orders of
magnitude of the parameters of a physical system, in the form of binary relations among
variables. Reasoning with such relations is based either on a prespecified set of rules [Raiman,
1986] or on rigorous quantitative semantics of the relations [Mavrovouniotis and
Stephanopoulos, 1987 and 1988, Mavrovouniotis et al., 1989]. Order-of-Magnitude
reasoning enquires about the rough correlation between the intervals of variables that have the
same physical dimensions (Figures 1 and 3), i.e., can be measured in the same units. Each
Order-of-Magnitude relation can be viewed as an area in a plane whose coordinates are the
correlated parameters (Figures 2 and 3).
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Figure 2:

Order-of-Magnitude relations [Mavrovouniotis and Stephanopoulos, 1987], can be expressed as a

particular area on the graph indicating the correlation of A and B.

Drawing on all these ideas, this paper proposes the constraint propagation with N-ary (as

opposed to binary) semiquantitative relations, encompassing several novel concepts:
» The obvious options for the representation of semiquantitative labels have so far
been single intervals (the standard choice) or arbitrary sets of intervals (avoided
by everyone, because of high computational complexity). In this work, restricted
sets of intervals are used, providing moderate expressive power at a low cost in
complexity.
 In the use of complex nodes (i.e., expressions involving the initial variables) the
emphasis has been traditionally placed on selecting a set of independent nodes to
replace the simple nodes. In this work, simple and complex nodes are allowed to
coexist. Complex nodes are restricted not to a minimal independent set but to
unbreakable or irreducible nodes, namely those that cannot be broken into
smaller complex nodes.

» The tightness of a label on a complex node determines whether there is in that
label any information not contained in the simple nodes; only tight labels are used in
constraint propagation. In the absence of tight labels on complex nodes, only labels

on simple nodes are propagated.
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0 A

Figure 3:
The correlation of the intervals of A and B can be expressed as a rough dependency of B on A, i.e,, as a

region in a graph of B as a function of A.

2 Ranges

Systems for reasoning with interval labels have completely avoided the use of sets of intervals,
because the number of intervals in the set may grow exponentially: In the worst case, an
operation between a label consisting of n intervals and a label consisting of m intervals yields a
set of nxm intervals. The advantage of interval sets is that the result is always correct, i.e.,
each value of the resulting interval set is indeed a potential outcome of the operation.

In the use of single intervals as labels (whose length is guaranteed constant), the result of
every operation must be forced into the form of an interval — the narrowest interval that is a
superset of the true result. In general, there may be parts of the resuiting interval that couid
never be outcomes of the operation. For example, if a, b, ¢, and d are positive and a<b, the most
accurate result for the division of (a,b) by (-c,d) is a set (union) of intervals, namely
(-0, -a/C)u(ald, +o0); if the result is required to be a single interval, however, the result
becomes (-o0, +00).

In the pursuit of moderate accuracy and expressiveness, at a moderate complexity cost, this
work employs a limited form of interval sets, called a range and defined as a union of three
parts: A positive open interval, a negative open interval, and the point zero. One or more of
these parts of a range can be empty. Some examples of acceptable ranges include: ((-2,-
1)u(1,2)); ((-1,0)0u{0}U(0,2)); ((-100,-10)u(10,100)); and all simple open
intervals. The remainder of this section discusses the advantages of the proposed representation
for labels.
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Knowledge about the absolute magnitude of a variable can be translated into the correct label.
The constraint |x|e (2,4) can be translated into the range label xe ((-4, -2)u (2, 4)),
whereas the use of single intervals would yield xe (-4, 4). Consider an inference on the value
of y=1/x from the above labels: Our range would yield ye ((-0.5, -0.25)u(0.25, 0.5)),
while the use of a single interval would yield ye (-, +0), because the interval for x contains
zero.

As was shown in the above example, ranges are more precise for certain arithmetic operations,
notably:
0 Division. For example, in interval arithmetic (1, 1) / (-1, 1) yields (-,
+o0), but with ranges it yields ((-eo, -1)U(1, +o0)).
0 Square roots. The equation y=x2, with ye (4, 9), vyields xe (-3, 3) in interval
arithmetic, but xe ((-3, -2)u (2, 3)) with ranges.

Unlike operations on arbitrary sets of intervals, algebraic operations on ranges involve a
constant number of interval operations. In general, arithmetic operations between two ranges
can be performed as follows:
¢ Perform the operation among intervals for all possible combinations of a part for
each variable (at most 3x3=9 combinations, since each range has 3 parts); all
empty parts can be ignored.

0 Separate each of the results into a positive, negative, and zero part.

0 Take the interval union of all positive parts to form the positive part of the final
answer; form similarly the negative and zero parts of the final answer. Since each
part of the resulting range must be a simple interval, some information may be lost
here. For example, in the addition of (-2,-1)u(1,2) to (-6,-5)u(5,6), the exact
result with arbitrary sets of intervals should be (-8,-6)u(-5,-3)u(3,5)u(6,8).
With ranges the intervals must be collapsed to (-8,-3)u(3,8). A representation
with simple intervals would collapse the intervals further into (-8,8). Thus, the
use of ranges offers intermediate accuracy at an intermediate complexity cost.

For specific operations, taking advantage of the structure of the ranges, it is a priori known
which combinations will form each part of the result. In multiplication, for example, the
result will contain zero if, and only if, one or more of the multiplicands contain zero. For the
other parts, ignoring the zeroes, the multiplication ((-a1,-b1)u(ct, d1))x((-az,
-bo)u(cg, d2)), where a;, bj, ¢j, and dj are positive, can be performed as follows:

0 Negative part: (-max(-a1dg, -a2d1), -min{-byc2, -b2c1))
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0 Positive part: (min(-b1bg, -c1c2), max(ajas, -d1d2))
This is equivalent to only two multiplications of intervals. Note that, for all operations,
whenever each range contains only one interval the operations can be performed as efficiently
as on intervals.

Performing set operations (such as union and intersection) on ranges is only a matter of
performing the operations on the positive parts, the negative parts, and the zero parts. In
effect, it takes three set operations on intervals to carry out a set operation on ranges.

Sign-independent Order-of-Magnitude relations can be represented by ranges, but not by
intervals. For example, under a quantitative semantics, the relation 1<<x (in any of the two
existing Order-of-Magnitude formalisms) implies that either x > 100 or x < -100. Lumping
this range into an interval can yield nothing more than xe (-, <), i.e., no information
whatsoever about x. Using a range, we get xe ((-~, -100)u(100, +)), retaining all the
information of the Order-of-Magnitude relation.

One might observe that although zero was chosen as the point that splits the range into its parts,
any numbers could have been used. For example, the parts of a range could be defined as an
interval below -1, an interval between -1 and +1, and an interval above +1. The choice of
zero makes sense because one normally does not deal with arbitrary mathematical formulas, but
rather with simple formulas in which zero plays a role more important than any other number.
Even if the critical number is not zero, using a set of two intervals may still capture critical
information. Consider the equation y=(x-5)'1, in which the critical point for x is 5, i.e., it
would make sense to use intervals above and below 5. If the information available is that
xe ((1, 2)u(8, 9)), both ranges and intervals fail to capture the fact that x#5. |If, on the
other hand, xe((-2, ~1)u(8, 9)), then a range captures the set exactly.

One may alternatively use labels consisting of a fixed number of intervals without restriction as
to their location. This approach merits further consideration. It would differ from ranges in
two main points. First, it is not clear how a set of several intervals would be simplified into
two intervals. Second, certain operations (such as multiplication) would become less efficient.

3 Variables and Links

A variable refers to a specific physical parameter, with known physical dimensions (which
define the set of units that can be used for the value of the variable). A range label, defaulting to
the trivial infinite range, is attached to each variable. Propagation of these labels through
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algebraic constraints can be carried out in the usual way. Two variables are compatible if they
have the same physical dimensions.

A link represents a compatible pair of variables that can be interrelated. They can also
represent dimensionless products of several variables; specifically, a dimensionless expression

of the form:
k

n,

1

i=1
can be represented by a link, where n; are the coefficients of the link. This kind of combination
of variables is assumed to be more important than other arbitrary or restricted expressions
(such as linear combinations of compatible variables) in correlating the values of variables.
The validity of this assumption depends on the kind of variables and the problem domain. For
example, in reasoning about time, durations of events can be compared in pairs through the
proposed expressions, but absolute time points cannot. For absolute time points, the use of
linear combinations is more appropriate, as it allows indirect reasoning about durations. The
expressions adopted here are particularly suitable when relations of an Order-of-Magnitude
nature must be expressed.

A range for the dimensional value of each variable is available as the label of the variable. The
purpose links serve is the representation of rough correlations among parameters, i.e.,
relative magnitudes (or orders of magnitude) of the parameters. This is why the expression
of a link is required to be dimensionless. To reduce the number of allowable links, additional
restrictions are imposed.

» To eliminate distinct links with coefficients njonly differing by a constant factor,
all nj must be integers with gcd(nj)=1. This allows the existence of two links whose
|

coefficients differ by a factor of -1, but this redundancy can be removed through
additional conventions.

» To ensure a finite number of links, a link's expression is required to be
irreducible. The link

I«

k n
1

is irreducible if it cannot be broken down into other dimensionless expressions:
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K N kka
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i= i= i=1
where N>0, M=0, P=0, and, for all i, mjpiMP20, njpiNP=20, minjMN=0. If the

initial expression is reducible, then it cannot represent a link.

The mathematical restrictions on the exponents ensure that none of the dimensionless quantities
on the right-hand side of the equation is trivial (equal to one), and that, when they are
multiplied together, no cancellations occur: Parameters that are in the numerator for the
initial expression, remain in the numerator for each partial expression, and parameters in the
denominator remain there.

The restrictions placed on the links behave well only because the labels are ranges, rather than

simple intervals.!

4 Relations and Tightness

Apart from range labels on variables, which are propagated in the usual way, there are range
labels on links denoting semiquantitative relations. It was mentioned before that only
tight relations are propagated. The procedure that determines whether a relation is tight
enough to be useful will be discussed below.

Let Rj be the label on each simple variable X;. Let L be a link:

k n,
L= '
i=1

with a current range label Rg. For a newly created link, Rg has an implicit value derived from

the labels of the variables:

11§ simple intervals were used as labels, the first restriction placed on the links would be troublesome,
because the square of a link can contain information not contained in the link itself. Similar problems

arise with irreducibility when the exponents M, N, P are even.
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K n

R =]]R'
0 - i
i=1
Let R be a new candidate range for L.
+ If Rg < R, then the proposed label can be discarded, because it is not tighter

than the existing one, and the analysis stops here.
« Otherwise, R is set to RnRg, and is tentatively accepted. The new label is then
propagated back to yield a potentially tighter label for each variable:

k

n. 1/n

R =/ [IrH "
1L

%;ﬁm

¢ If any variable changes label, and can yield a tighter (implicit) label
Ro then whole procedure is repeated, because if the check Rop <R is
satisfied, the label R is useless.

¢ If no variable changes label, the new label R is accepted as tight and
useful and propagated further.

The idea behind this procedure is that if the simple nodes contain enough information to allow a
derivation of the label of the complex node, then this label is not tight enough to be useful.
Under this tightness criterion, priority is always given to simple nodes, but when there is
additional information not captured by them the complex nodes receive labels. The requirement
that relations be tighter than the labels on individual variables limits the propagation of
relations; because of the properties of interval operations, the chain of consequents of a relation
is eventually terminated by relations that are not tight.

5 Propagation of Implicit Constraints among Links

The manipulation performed before accepting a label on a link involves the use of an implicit
constraint relating the complex node (link) to simple nodes (variables). There are other
implicit constraints that relate only complex nodes. They can be formed systematically by
multiplying links together, then decomposing the product into different links, and equating the
two parts.

To limit the number of implicit constraints, multiplication of only two links at a time is
allowed, and the product is a single irreducible link. This implies that the two initial links
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must be chained by a variable: There must be a variable contained with opposite coefficients in
the two links. The implicit constraints have the form:

K n N kkapiP

(%) (T (TT)

with mipiMP<0 for some i (meaning that X; is the variable that chains the two links of the
right-hand side).

In general, the decision that must be made is how many links are allowed in each implicit
constraint. If this number is high, more information is propagated, at the cost of increased
complexity.

6 Algebraic Constraints

When the labels assume values from a finite set, it is possible to perform propagation by
checking the validity of a constraint for different combinations of values. Since ranges are
continuously varying labels an algebraic constraint must be solved with respect to each
variable, forming an assignment — an equation whose left-hand side is the variable in question.
This is a difficult algebraic manipulation problem.

In a similar fashion, an equation can be manipulated to use and produce information on links: It
can be structured in a dimensionless form, so that it relates links rather than simple variables.
There are normally many different dimensional and dimensionless forms that each equation can
assume. Although the forms are algebraically equivalent, they will behave differently in
interval arithmetic (because operations are not distributive). All forms of an equation
restructured in this way must be used in parallel, as it cannot be a priori predicted which exact
form will yield the best results.

If relations for a particular link are desired, one strategy is to introduce the link in all
equations that contain at least one variable from the link.

A particularly interesting class of equations is that of balances, such as mass balances, energy
balances, charge balances, etc. A common form of a balance is:

2T

where, for each f, all agf have the same physical dimensions. Thus, terms of the left-hand

summation are similar in form, and represent inflows and outflows of a conserved quantity. The
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right-hand side product indicates either accumulation, generation, or consumption (there are
sometimes many such terms). Links can be introduced in these equations quite efficiently: For
each f, an agf is chosen as the scale; each term is then divided by the product of the selected

scales. Alternatively, each term can be divided by the right-hand side product. An example of
proper formation of links and their introduction into algebraic constraints is given in the next
section.

After the propagation of all available labels through all constraints, information can be
retrieved through queries. A query requests the label of a node (i.e., a variable or a link),
which can simply be looked up. If a link does not possess an explicit label, its implicit range
can be obtained from the ranges of its variables.

7 An Example

Consider the parameters of the Continuous Stirred-Tank Reactor (CSTR) of Figure 4,
converting two reactants, A and B, to a product, P. There are five kinds of variables present:

« Six concentrations of the form Cy;, in mol/m3, where X is a chemical species (A,

B, or P), and i is a stream (0 for the feed and 1 for the effluent of the reactor);

« two flowrates, Fj, in m3/s, where i is a stream;

« the reaction volume, V, in m3;

- the reaction rate, r, in mol/m3s;

- the reaction rate constant, k, in m3/mo! s.

These kinds of variables can be combined to form the following irreducible dimensionless links:

-1 -1
(1) rv Fi CXk

1 -2
(2) rk CXi
-1
(3) kCXiVFk
FF
(4) i M
-1
(5) C..C

Xi “Yk
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Al B1 P1

Figure 4:
A Continuous Stirred-Tank Reactor, in which the reaction A+B->P takes place. = Fg and F{ are
flowrates, in m3/s. Cyxj is the concentration of species X (X=A,B,P) in stream i (i=0,1), in mol/m3.
V is the volume of the fluid in the tank, in m3. r is the reaction rate, in mol/mSs. k is the reaction

rate constant, in m3/mol s.

The last two kinds of links compare variables of the same kind; they are thus useful in capturing
knowledge about the relative magnitudes of flowrates or concentrations. The first three kinds of
links are related to the algebraic equations describing the steady-state behavior of the reactor.
The reaction rate is related to concentrations:

r=kCpy Cg;

This corresponds to a product of 2 links of the second kind. If more reactions were taking place
in the reactor, then more of the links would be directly related to algebraic constraints. With
only one reaction taking place, the links can still be introduced in the constraint, but they are
unlikely to receive tight labels. Mass balances for each of the species A, B, and P yield:

FOCAO - F1CA1 -rtV=0
FOCBO - F1CB1 -rV=20

FOCPO - F1Cp1 +rV=20
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Introduction of links into these mass balances (as discussed at the end of Section 6) leads to
constraints that involve links of the first kind, along with links of the fourth and fifth kind. For
example, if Fg is chosen as the scale for flowrates and Cpq as the scale for concentrations, the
last mass balance is transformed to:

-1 -1 1 -1
CPOCP1' F0 F1 + rVv F1 CP1= 0

which is a constraint among three links; it is one of five possible transformations of the initial

constraint. Given tight relations between Fg and F1 and between Cpg and Cp1, the constraint
will yield a tight relation for the link rV/F1Cp1. If Fo is approximately equal to F1:

Fo/F1e (0.9, 1.1)
and Cpg is much smaller than Cp1:
Cpo/Cpi1e (0, 0.1)
then:
rV/F1Cp1€ (0.8, 1.1)
This important inference can be made even without any knowledge about the ranges of individual
parameters.

In this particular example the irreducible dimensionless links tie well with the algebraic
equations. Any dimensionless ratio that occurs in an equation is either a link or a product of
links. Thus, once an equation is nondimensionalized, it can always be cast in terms of
irreducible links.

9 Complexity

The most basic parameters affecting the complexity of the propagation are defined below:
» P is the number of primitive physical dimensions. P is usually less than 6,
considering that /ength, mass, time, temperature, electric current, and number of
moles cover most cases. Often, P is even smaller.!

For the discussion in this section, P should actually be defined as the number of independent (rather
than primitive) physical dimensions. For example, if a system's parameters are only masses and
velocities, the primitive dimensions are mass, length, and time, but length and time are not independent
because they only occur in velocity. Thus, P should equal 2. If the system also possesses acceleration

parameters, then length and time are independent and P equals 3.
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» Q is the number of dimensionally different kinds of quantities, e.g., volume,
velocity, force, power, energy. Typically, Q is smaller than 10.

* N is the maximum number of variables of each dimensional kind.

The total number of variables is at most QN. Thus, P and Q are bounded, but N increases with
the size or the detail of the physical system being analyzed.

There are two kinds of irreducible finks:
« Links that are ratios of two compatible quantities, i.e., links of the form xly-1.
The number of these links is of order N2.

« Links that include more than two quantities. It can be shown that these links can
include at most P+1 variables, all of which must be of different dimensional kinds.
Consequently, the number of these links is of order NP+T,

Thus, for bounded P and Q, the total number of irreducible links is of order NP+1, i.e.,
polynomial in N (the size of the problem). Consequently, the number of implicit constraints is
also polynomial in N and the propagation through implicit constraints among links requires
time polynomial in the size of the problem. However, the assimilation of labels is not
necessarily complete.

Naturally, depending on the form of the algebraic equations involved, the propagation through
explicit algebraic constraints could be much harder. It might require exponential time or it
might not converge at all [Davis, 1987].

Various heuristic approaches can be used to limit the propagation through explicit constraints.
For example, the number of invocations of an algebraic equation can be restricted, or the
propagation can be stopped when new labels differ from old ones by only a small margin (using
some appropriate metric).

10 Conclusions

This paper presents some attractive engineering options in the management of redundancy in
nodes, labels, and constraints.

The use of ranges, rather than simple intervals, provides significant increase in expressive
power, with little complexity burden.
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By using physical dimensionality considerations, dimensionless irreducible complex nodes can
be formed; they coexist with simple nodes. There is a polynomial number of complex nodes, and
implicit constraints can be limited to involve only a certain number of links. This approach
avoids the dilemma of independent complex nodes; it makes sense when dimensionally different
quantities are present.

To decide which relations are worth propagating, and structure the coexisting layers of simple
and complex nodes, the tightness of a relation is examined. Relations on complex nodes are only
propagated if they contain more information than the labels on simple nodes. Priority in the
propagation is always given to simple nodes, because there is a smaller number of them.
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