Final Presentation: Toward Net Zero

Strategic Integration of Electric Mowers into Landscape Maintenance Operations

Danilo Azevedo, Tanner Davis, José Diaz, Nirit Rotenberg, Nora Snyder, Donald Vogel, Rosalynd Young

Roadmap

Project Goals

- The Department of Parks and Recreation in Prince George's County will be carbon neutral or net zero emissions by 2040
- Renewable Energy Portfolio
 - May 2019: 50% of the State's energy come from renewable sources by 2030
 - Goal of 100% renewable energy by 2040

Project Goals

- Energy production in Maryland
 - Nuclear energy makes up 38% (Maryland State Archives)
 - Renewable energy (solar, wind, biomass, and hydropower) makes up 11% (Maryland State Archives)
- With electric equipment
 - No direct emissions
 - Potential for less indirect emissions
 - Energy from biomass is carbon neutral

Objective 1: Interviewing Workers

- Met with and interviewed workers in the group using the all electric equipment
- Learned about
 - Costs other than the equipment
 - Worker preferences

Objective 1:

Interviewing Workers

- General information about the equipment:
 - Need to use propane mower for thick grass
 - Less maintenance for the electric equipment
 - Charging for riding mowers
 - Every night
 - Could last 2 days without charging
 - Battery life
 - Should last long but would not need to last more than 8 hours
 - Batteries will also get worse overtime

Objective 1: Small Self-Propelled

	Current Fossil Fuel	Option #1	Option #2
Manufacturer and Model	Toro Timemaster Series 21199	Husqvarna W520i	Snapper 82V Max
Price	\$1,099.99	\$1,199.99	\$699
Pounds of CO2 eq production/ hour operation	8.88	0.41	0.56

Objective 1: Large Self-Propelled

	Current Fossil Fuel	Option #1	Option #2
Manufacturer and Model	Toro 30288	Meangreen WBX-33HD	
Price	\$4721	\$10,500	
Pounds of CO2 eq production/ hour operation	33.93	0.71	

Objective 1: Zero Turn

	Current Fossil Fuel	Option #1	Option #2
Manufacturer and Model	Lazer Z S-Series	Mean Green Evo-74	Pro Turn EV- 997007
Price	\$13,599	\$38,000	\$31,000
Pounds of CO2 eq production/ hour operation	16.26	1.9	1.6

Objective 1:

Gang Reel

	Current Fossil Fuel	Option #1	Option #2
Manufacturer and Model	Toro Reelmaster 3100D	Toro Greensmaster® eTriFlex™ 3370	Jacobsen Eclipse 360 Elite
Price	\$53,413.36	\$75,652	\$59,999
Pounds of CO2 eq production/ hour operation	24.69	1.53	1.53

Objective 2: Life Cycle Analysis

Calculating the CO2

- Assumptions made:
 - 85% charging efficiency for all the batteries
 - 70% of the battery wattage is used during the runtime
 - Maryland produced 0.841 lb CO2 eq/kwh in 2018
 - Electricity cost per kwh is \$0.1261
 - Total anticipated cost per hour of operation is the runtime times 10

Objective 2: Life Cycle Analysis

Calculating the CO2

Electric Power Consumption = (battery size * .85) (runtime * .70)

CO2 eq Production per = (electric power consumption) x (CO2 per lbs for electricity in MD) Hour Operation

Fuel Cost per Hour Operation = (electric power consumption) x (cost of 1 kwh of electricity in MD)

Total Anticipated Cost per = (price of equipment)Hour of Operation $(hours of operation)^*(10)$ x fuel cost per hour operation

Small Self Propelled

Large Self Propelled

Zero Turn 20 Pounds of CO2 eq Production/ Hour Operation 16.26 15 **Current Fossil Fuel** Option #2 Option #1 10 5 1.9 1.6 0 Lazer Z S-Series Mean Green Evo-74 Pro Turn EV- 997007

Small Self Propelled \$12.00

Toro 30288

Zero Turn

Gang Reel \$400.00 \$324.32 Total Anticipated Cost per Hour of Operation \$294.55 \$300.00 \$106.69 Fuel Current Fossil Option #2 Option #1 \$200.00 \$100.00 \$0.00 Toro Reelmaster 3100D Jacobsen Eclipse 360 Toro Greensmaster® eTriFlex™ 3370 Elite

Return on Investment

- Assumptions made:
 - Buy the equipment at the price given
 - Electricity and fossil fuel price stays the same
 - These are the only variables that are impacting the breaking even point
- Results:
 - Small Self Propelled: 105.04 hours
 - Large Self Propelled: 1,206.47 hours
 - Zero Turn: 9,606.70 hours
 - Gang Reel: 5,883.33 hours

Objective 4: Purchasing Plan

Recommendations

Meangreen WBX-33HD

Husqvarna W520

Objective 4: Purchasing Plan

Recommendations

Mean Green Evo-74

Toro Greensmaster® eTriFlex[™] 3370

Questions?

Saidani, M & Kim, H. (2020). Quantification of the environmental and economic benefits of the electrification of lawn mowers on the US residential market. The International Journal of Life Cycle Assessment. https://link.springer.com/content/pdf/10.1007/s11367-021-01917-x.pdf

Hope, P. (2018). How Green are Electric Lawn Mowers? CR weighs the environmental costs and benefits of battery-powered mowers. <u>https://www.consumerreports.org/lawn-mowersand-tractors/how-green-are-electric-lawn-mowers/</u>

OSHA. (2011). Worker Safety Series: Protecting yourself from noise in construction. OSHA Pocket Guide. Retreived October 13, 2021, from <u>https://www.osha.gov/sites/default/files/publications/3498noise-in-construction-pocket-guide.pdf</u>

Baldauf, R., Fortune, C., Weinstein, J. *et al.* Air contaminant exposures during the operation of lawn and garden equipment. *J Expo Sci Environ Epidemiol* 16, 362–370 (2006). <u>https://doi.org/10.1038/sj.jes.7500471</u>

Levin, K., Fransen, T., Schumer, C., & amp; Davis, C. (2019, September 17). What does "net-zero emissions" mean? 8 common questions, answered. World Resources Institute. Retrieved October 20, 2021, from https://www.wri.org/insights/net-zero-ghg-emissions-questions-answered.

Maryland State Archives. (n.d.). Maryland at a Glance. Maryland Energy. Retrieved October 20, 2021, from https://msa.maryland.gov/msa/mdmanual/01glance/html/energy.html.

Our sustainability efforts: MNCPPC, MD. Our Sustainability Efforts | MNCPPC, MD. (n.d.). Retrieved October 20, 2021, from https://www.pgparks.com/4986/Sustainability.