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with schizophrenia is conducted, showing significant improvement in accuracy for

disease diagnosis using features extracted with the proposed parcellation scheme.

Hypothesis tests are performed on local structures to explore possible structural

causes of the disease.



CONNECTIVITY BASED PARCELLATION AND BRAIN ATLAS
GENERATION

– EXTRACTING CONNECTOME INFORMATION FOR
SCHIZOPHRENIA RESEARCH

by

Qi Wang

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2014

Advisory Committee:
Professor Joseph JaJa, Chair/Advisor
Professor Amitabh Varshney
Professor Rama Chellappa



c© Copyright by
Qi Wang

2014



Acknowledgments

I owe my thanks to all the people who helped me through the excellent grad-

uate study years and make this thesis possible.

First of all I’d like to thank my advisor, Professor Joseph JaJa for offering

me the opportunity, inspirations, equipment and financial support to work on this

interesting and challenging problem. Professor JaJa was always there to help. There

was never a time when my ask was unanswered. He was always ready to give timely

and comprehensive guidance and feedback to my work. He always took my ideas

very seriously and gave me huge encouragement and mental support in the most

difficult time of my research. The inspiring discussions we had is an invaluable asset

in my memory.

I’d like to thank our collaborators, Dr. Rong Chen and Dr. Edward Herskovits

from Radiology department of UM Medical school, for kindly providing their valu-

able brain image data for us to work with, and for their expertise input on helping

us familiarize with the neural image literature. The project wouldn’t be a success

without their help.

I would also like to express my gratitude to Professor Amitabh Varshney and

Professor Rama Chellappa for agreeing to serve on my thesis committee and spend

their valuable time reviewing my manuscript.

My colleagues in the group have been cherishable friends and constant supports

that helped make my graduate life a wonderful experience. Jing Wu helped me

familiarize with the basic tools and working environment in the lab to get started,

ii



and taught me a lot of useful software engineering tricks that facilitated development

of my framework. Wenshuai Hou had many fruitful discussions with me on the

theoretical side and inspired many of my ideas. Michael Ritter has always been a

reliable technical support in our lab, who was ready to help whenever needed.

I would also like to thank the ECE UMIACS staff members who gave me

timely technical and administrative support. Helps from Fritz McCall, Melanie

Prange, Edna Walker and many others are highly appreciated.

I would like to express my deepest thanks to my family. My mother and father

have always been the strongest mental support throughout my career. They were

always the most patient listener and stood on my side whatever I chose to pursue.

Words cannot express my gratitude to them.

Thanks to all the Professors who I’ve taken course with, talked with, who

broadened my knowledge and inspired my critical thinking.

Thanks to all other people who have helped me through my graduate study,

who I fail to mention with my humble memory.

Finally, thank you all and may good luck always be with you!

iii



Table of Contents

List of Figures vi

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Diffusion MRI (dMRI) . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 DWI Processing Tool - FMRIB Software Library (FSL) . . . . . . . . 4
1.4 Interacting with NIFTI Data in MATLAB – the MATLAB NIFTI

Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Generating the Connectivity Matrix from DWI 8
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Linear Registration . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Nonlinear Registration . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Mask registration . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Bayes Modeling of Diffusion Parameters and Probablistic Tractography 13
2.4.1 Diffusion Tensor Imaging (DTI) and BEDPOSTX . . . . . . . 15
2.4.2 Probabilistic Tractography . . . . . . . . . . . . . . . . . . . . 16

2.5 Specific Processing Pipeline for the Schizophrenia Data . . . . . . . . 16

3 Parcellation of an Individual Connectivity Matrix 19
3.1 Connectivity Profile and the Graph-Cut Formulation . . . . . . . . . 19
3.2 Algorithms for Solving the Graph Cut Problem . . . . . . . . . . . . 22

3.2.1 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Multi-class Hopfield Network . . . . . . . . . . . . . . . . . . 25

4 Individual Subjects Parcellations and Group Analyses 30
4.1 Growing Individual Brain Parcellations . . . . . . . . . . . . . . . . . 30
4.2 Group Study of Schizophrenia Patients . . . . . . . . . . . . . . . . . 31
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



4.3.1 Visual Scan of Parcellation Results . . . . . . . . . . . . . . . 31
4.3.2 Significantly Changed Regions and Connections . . . . . . . . 33
4.3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Group Atlases 43
5.1 Group Atlases Generation . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Connectivity Based Atlases Built from Scratch 51
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Computing the Connectivity Profiles in MNI Space from Data in

Diffusion Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Concluding Remarks 65

Bibliography 67

v



List of Figures

2.1 Illustration: a warp field is a field of displacement vectors . . . . . . . 12
2.2 An example warp field visualized in FSLView . . . . . . . . . . . . . 13
2.3 Registered white matter mask example . . . . . . . . . . . . . . . . . 14
2.4 Registered grey matter mask example . . . . . . . . . . . . . . . . . . 14

3.1 Topology and connection weights of the formulated graph-cut problem 21
3.2 Spectral clustering will corrupt region definitions across subjects . . . 25
3.3 Performances of clustering algorithms on the synthetic graph data.

Experiment setup: 7 nodes in each clusters, nodes are connected with
probability 0.5, intra-class link weights have distribution ofGaussian(0.5, 0.52),
inter-class link weights have distribution of Gaussian(−0.5, 0.52).
Hopfield network with simulated annealing performs best in all cases. 29

4.1 Consistent deviations from standard atlas with MHN parcellations . . 32
4.2 Classification performances . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Group atlas of the schizophrenic group . . . . . . . . . . . . . . . . . 46
5.2 Group atlas of the control group . . . . . . . . . . . . . . . . . . . . . 47
5.3 Difference map between two group atlases . . . . . . . . . . . . . . . 48
5.4 Voxel-wise group difference distributions . . . . . . . . . . . . . . . . 48

6.1 Parcellation result with diffusion-to-standard coordinate mapping in-
curs “resolution holes” problem . . . . . . . . . . . . . . . . . . . . . 56

6.2 “Resolution holes” problem is due to resolution gap and unevenness . 57
6.3 Changing the registration to standard-to-diffusion to avoid resolution

holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Pure connectivity based atlas: 5 clusters . . . . . . . . . . . . . . . . 61
6.5 Pure connectivity based atlas: 10 clusters . . . . . . . . . . . . . . . . 61
6.6 Pure connectivity based atlas: 15 clusters . . . . . . . . . . . . . . . . 62
6.7 Pure connectivity based atlas: 20 clusters . . . . . . . . . . . . . . . . 62
6.8 Pure connectivity based atlas: 25 clusters . . . . . . . . . . . . . . . . 63
6.9 Pure connectivity based atlas: 30 clusters . . . . . . . . . . . . . . . . 63

vi



Chapter 1: Introduction

1.1 Overview

The analysis of human brain connectome is gaining increasing popularity in

brain researches using MRI and fMRI data. The goal of brain network analysis

includes the discovery of global network characteristics (e.g. economic wiring [1],

short paths [2, 3]), the detection of functional clusters [4, 5], and the exploration of

novel applications in clinical research [6, 7].

One fundamental problem that needs to be addressed before any network or

connectivity based analysis is possible is to develop a reasonable definition of the

“nodes” in the modeled brain network. Although modern tractography tools can

generate large graphs with connectivity values as fine as the resolution of single

voxels, it is generally hard to store and process such large graphs, and more im-

portantly is unlikely to generate meaningful results due to the high probability of

tractography errors at the microscopic level. The common practice is to use some

type of a brain atlas to group voxels into structural/functional homogeneous regions

and treat each of these regions as a node in the brain network. A macroscopic view

of the brain network is then constructed with the connectivity defined as a certain

type of summary connectivity value between all voxels in the corresponding pair of
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regions.

Due to the critical role of the atlas in defining a brain network, the choice of

atlas is becoming a problem that is gaining increasing attention, though no com-

mon consensus about the “right” methodology has been reached. There are gen-

erally two main approaches pursued in the literature using: pre-defined anatom-

ical atlases, or randomly generated atlases. Pre-defined anatomical atlases are

human-crafted atlases based mostly on cytoarchitecture clues, which do not use

any connectivity information. These include the AAL atlas [8], the Harvard-Oxford

atlas [9](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) the ANIMAL algorithm [10]

and many others. Usually the atlases are registered from the standard space to the

subjects’ local image spaces, and individual brain networks are then generated using

tractography tools. In contrast, random atlases are relatively arbitrarily generated

in subjects local spaces [11, 12]. The randomly generated atlases lack a clear func-

tional definition; however, their advantage is that researchers can have more control

over the size of the nodes (parcellation regions) and thus can perform systematic

study about the impact of network size and resolution.

Neither the pre-defined anatomical atlas nor the random atlas approach are

primarily developed for connectome analysis. Therefore it is natural to try to gener-

ate a connectivity based atlas. Many works have been done on clustering functional

networks based on fMRI (e.g. [13,14]). Fewer works have been made on generating a

connectivity atlas based on anatomical connectivity (e.g. [15,16]), primarily because

it is more difficult to select the appropriate signature for clustering with diffusion

weighted imaging (DWI) data, and the large computational burden on analyzing
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the network at the resolution of DWI data. Our work belongs to the latter category.

In this thesis we propose methods of connectivity based brain parcellation

using DWI data. The parcellation problem is formulated as a graph partitioning

problem where the topology of the graph is a uniform spatial grid and the edge

weights are modeled as similarity of connectivity profiles of the terminal nodes. The

DWI data for our research was collected from schizophrenia patients and a control

group of subjects. Using the generated parcellations, group studies are done from

several perspectives to explore the structural causes of schizophrenia.

1.2 Diffusion MRI (dMRI)

Diffusion MRI is a type of MRI imaging technique that is mainly used to ana-

lyze white matter connections [17–19]. The idea is that in addition to baseline MRI

scans with homogeneous magnetic field, a pulse of strong magnetic field gradient

is applied on a known direction. Another pulse of magnetic field gradient with the

same magnitude but in the opposite direction is then applied after a time period

called “diffusion time”. When water particles diffuse along the gradient direction,

a signal attenuation will be observed. The amount of signal attenuation will be af-

fected by the intensity of water diffusion. Since the intensity of water diffusion can

reflect the local directionality of the structure, this method is effective at discover-

ing and determining the direction of neural fibers. Images acquired using dMRI are

often called diffusion weighted images (DWI).
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1.3 DWI Processing Tool - FMRIB Software Library (FSL)

Brain network analysis consists of 3 main parts:

• Individual DWI processing bundle, including the Brain Extraction Tool (BET),

registration, diffusion tensor estimation and probabilistic tractography.

• Clustering algorithms.

• Group data summary and statistical analysis.

The primary tool for individual DWI processing bundle is the FSL software de-

veloped by the Analysis Group, FMRIB, Oxford, UK [20,21](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

This is a powerful and widely used tool in the literature for MRI, fMRI and DWI

data processing. It has a user friendly interface, yet hundreds of command line calls

are available that facilitate integration into bigger processing frameworks, and de-

tailed customization of their functionalities. The software is open-source and written

in C++. Some of the parts - such as BEDPOSTX (Bayesian Estimation of Diffu-

sion Parameters Obtained using Sampling Techniques) - have been parallelized to

run on clusters of CPUs and GPUs. FSL is also shipped with many standard brain

atlases that facilitate analysis (fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), such as the

Harvard-Oxford cortical and subcortical structural atlases [22] and the JHU DTI-

based white-matter atlases [23]. The specific functionalities used in data processing

will be described in some detail in Chapter 2.

FSL is accompanied by a convenient visualization tool called FSLView

(http://fsl.fmrib.ox.ac.uk/fsl/fslview/), which works primarily with NIFTI image
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data format [24]. It can visualize brain images with three views, generate 3D ren-

dering, overlay images of the same dimensions, conveniently iterate through an image

sequence and make a movie out of a image sequence, among many other visualization

techniques. Many figures in this thesis are direct snapshots from FSLView.

1.4 Interacting with NIFTI Data in MATLAB – the MATLAB NIFTI

Toolbox

Since the main parts of the clustering algorithms are written in MATLAB,

we need a MATLAB interface to interact with the NIFTI file format. The NIFTI

toolbox developed by Jimmy Shen came in handy

(http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-

image). A compressed NIFTI file (.nii.gz) is loaded into MATLAB as a structure,

two fields of which are most important: “hdr”, which stores the meta data informa-

tion of the image data, such as the resolution of the image (voxel size) and bitwidth

of elements; “img”, which is a 3D (for a single volume) or 4D (for a series of volumes)

array that stores the actual image data.

1.5 Outline of the Thesis

In Chapter 2, the pre-processing pipeline for obtaining the connectivity matrix

is introduced. The basic theory and mathematical formulation for several important

tools in FSL are described, including registration, Bayes diffusion parameter esti-

mation, and probabilistic tractography. The generated connectivity matrix is the
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data foundation of connectivity based parcellation analysis and atlas generation.

Chapter 3 introduces the formulation of the parcellation problem and algo-

rithms used to generate the connectivity based parcellation. The problem is formu-

lated as a graph partitioning problem on a weighted “spatial graph”, with weights

derived from the similarity measures of connectivity profiles. Spectral clustering

and an original method derived from Hopfield networks are applied to solve this

problem.

Chapter 4 describes the application of an analysis framework for the schizophre-

nia data research. Parcellations are obtained in individual diffusion spaces. Hypoth-

esis tests are performed on each of the specific regions to detect the most significantly

changed regions associated with the disease. Classification performance is evaluated

with regional volume and connectivity features extracted using the proposed parcel-

lation algorithm and the AAL-90 atlas. Results show significant improvement for

the proposed parcellation algorithm.

In Chapter 5 we propose a simple group atlas generation scheme that averages

the individual parcellations in the diffusion space, and makes an evaluation of the

separability of the two groups with the generated group atlases.

The parcellation generation framework introduced in Chapters 4 and 5 highly

relies on a common standard initialization, which may not be a good starting point

for connectivity based segmentation. The parcellations are better regarded as a

connectivity based “optimization” of an existing brain atlas.

Chapter 6 forgoes such reliance on standard atlas initialization and proposes

a method to generate purely connectivity based brain atlases. Connectivity profiles
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are acquired in the common standard space so that clustering can be performed on

averaged connectivity profiles. The main technical issue is efficient aggregation of a

large amount of connectivity data. A hash table was chosen to manage the big data

combination problem.

Chapter 7 summarizes the thesis and proposes further research.
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Chapter 2: Generating the Connectivity Matrix from DWI

2.1 Overview

The brain network data-mining algorithms work on connectivity matrices that

represent the brain network connectivity patterns. Therefore before exploring the

use of machine learning techniques, these matrices have to be extracted from raw

brain image data. In this chapter, we describe brain data and the FSL tools used in

the project as well as the process of extracting the required connectivity matrices.

The raw image data are diffusion weighted images acquired from a schizophre-

nia patients group and a normal control group. The standard MNI152 T1 weighted

image is registered onto each of the individual diffusion images, which is then used

to transform the white matter and grey matter atlases into the diffusion spaces.

Probabilistic tractography is then applied in the diffusion spaces to get the voxel-

wise connectivity matrices, with seed regions delineated by the white matter atlas

and target regions by the grey matter atlas. The connectivity matrices obtained

constitute the foundation for all the analyses carried out in the following chapters.

The registration data will have another important usage in Chapter 6, where we try

to combine individual connectivity information in a common standard space.
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2.2 Raw Data

The dataset used in this project are diffusion weighted images (DWI) of 78

subjects with schizophrenia and 48 normal subjects. Our image data are of NIFTI

format. We used FSLView and the MATLAB NIFTI tool to interact with the

NIFTI files. From these software tools we read that the voxel size of the acquisition

is 1.7188mm×1.7188mm×3mm. For each subject, 70 image volumes are acquired,

6 of which are with no directional magnetic field enforced, and the other 64 with

uniformly distributed diffusion directions. Each volume image has a dimension of

128× 128× 52 or 128× 128× 53 voxels.

2.3 Registration

Registration is an important standard preprocessing step for almost all types

of MRI image processing. It is a process of determining a transformation between

two image spaces, and applying the transformation to get a image aligned to the

target space. This is necessary before any group analysis is possible, since subjects’

brain images differ in size and are subject to physical variations when the image

was acquired. The MNI152 T1-weighted MRI image, which is the nonlinear average

of 152 structural images registered to the MNI152 coordinate system (shipped with

FSL), is a commonly used standard reference image to align MRI images across

subjects.

In this thesis, we will use the terms “diffusion space” or “source space” inter-
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changeably to refer to the image space of the raw diffusion weighted imaging data

files, and the terms “standard space” or “MNI space” interchangeably to refer to

the space of MNI152 T1-weighted image.

2.3.1 Linear Registration

The linear registration of an image is represented by an affine transform matrix,

applied on the voxel coordinates. Denote the coordinate of a voxel in the source

space as (xsrc, ysrc, zsrc), and the coordinate of a voxel in the standard space as

(xstd, ystd, zstd), an affine transform can be denoted by a 3× 4 matrix:


xstd

ystd

zstd

 =


a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3





xsrc

ysrc

zsrc

1


= A



xsrc

ysrc

zsrc

1


(2.1)

Typically integer-value standard space coordinates will be transformed from

non-integer source space coordinates. In order to determine the right signal intensity

value, certain interpolation techniques need to be used. Suppose the interpolated

image is Ireg and the standard reference image is Istd, The registration problem

can then be formulated as the problem of determining A so that a measure of

mis-alignment between the two images C(Ireg, Istd) is minimized.

minimize
A

C(Ireg, Istd) (2.2)

Typical choices of C(·, ·) include least squares, negative normalized correlation,
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negative mutual information, etc [25].

The full affine transform matrix provides 12 degrees of freedom, which are scal-

ings in three directions, rotations in three directions, translations in three directions,

and skews in three directions. FSL linear registration tool (FLIRT) also provides

options for partial degrees of freedom for different purposes. For example, the Rigid

Body option (6 degrees of freedom including rotations and translations) can be used

for within-subject registration, and the Global Rescale option (7 degrees of freedom

including rotations, translations and a common scaling factor along three axes) can

be used for within-subject registration when scanner drifting is present.

2.3.2 Nonlinear Registration

Nonlinear deformation from the standard structure is so common in individual

brains that linear registration is usually not used for cross subject studies. A non-

linear transformation is represented by a warp field, and is formulated by replacing

the shift components b1, b2, b3 by values that are specific to each voxel:


xstd,i

ystd,i

zstd,i

 =


a11 a12 a13 b1,i

a21 a22 a23 b2,i

a31 a32 a33 b3,i





xsrc

ysrc

zsrc

1


= [A1 bi]



xsrc

ysrc

zsrc

1


(2.3)

that is, there are as many parameters in the warp field as voxels in the target

image space - the warp field and the target space have the same resolution. The

vector bi is called the displacement vector of the corresponding voxel. An illustration
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Figure 2.1: Illustration: a warp field is a field of displacement vectors

and a real world example of warp field visualized in FSLView is shown in Figure 2.1

and Figure 2.2, respectively.

2.3.3 Mask registration

As will be clear later, a major role of registration in our project is to transform

several mask images between spaces: JHU white matter atlas is registered to diffu-

sion spaces to serve as seed regions for probabilistic tractography; AAL-90 atlas is

registered to diffusion spaces to serve as target regions on which to compute the con-
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(a) x component (b) y component (c) z component

Figure 2.2: An example warp field visualized in FSLView

nectivity matrix, and each of the 90 regions is registered separately to serve as the

initialization of the clustering algorithm. When a transform is applied to a binary

mask image, the target image will consist of mostly binary-value voxels with a few

boundary points having real values between 0 and 1. Simple thresholding is applied

to convert these voxels to binary values. Example of registered white matter seed

region and grey matter target region is shown in Figures 2.3 and 2.4 respectively,

overlayed onto the raw non-diffusion MRI image.

2.4 Bayes Modeling of Diffusion Parameters and Probablistic Trac-

tography

The connectivity matrix of a brain is obtained by performing tractography on

the DWI images and counting the number of streamlines connecting each pair of

voxels in the target region. In this section we briefly introduce the mathematical

modeling of diffusion tensor imaging (DTI) and how FSL uses this model to estimate

the diffusion parameters and performs tractography.
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Figure 2.3: Registered white matter mask example

Figure 2.4: Registered grey matter mask example
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2.4.1 Diffusion Tensor Imaging (DTI) and BEDPOSTX

We mentioned in Section 1.2 that directional magnetic field gradient is ap-

plied to water molecules. The modulating effect of the magnetic field weighting at

direction j is reflected by a scalar factor bj and a vector vj defining its direction.

Here we leave out details about how bj is related to the physical attributes, be-

cause this doesn’t affect the understanding of the model. The DTI imaging model

is formulated as [26]:

sj = s0exp
(
−bjv′jDvj

)
(2.4)

where sj is the measured signal, s0 is the reference signal without diffusion

weighting, D is a 3 × 3 matrix representing the diffusion tensor. The diffusion

tensor represents an ellipsoid in the 3D space, with its eigen vectors serving as

the three principal directions. The ellipsoid illustrates the diffusion directions. An

isotropic ball indicates that there is unlikely to be a fiber present, while a spiky

shuttle implies high probability of a fiber orienting at the corresponding direction.

The actual model used in FSL BEDPOSTX made some modifications to this

formula, leaving only one principal direction of the diffusion tensor:

sj = s0
[
(1− λ)exp(−bjd) + λexp

(
−bjd(v′jx)2

)]
(2.5)

where λ can be understood as the fraction of the voxel that is anisotropic, d

is the mean diffusivity, x is the direction of the anisotropic portion (i.e. the fiber).

The BEDPOSTX tool in FSL models the signal model probabilistically, so that

the unknown parameters λ, d and x are regarded as random variables. Parameter
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estimation is formulated as a Bayes inference problem, and Markov Chain Monte

Carlo (MCMC) sampling is used to estimate the posterior distribution of the model

parameters.

2.4.2 Probabilistic Tractography

The FSL tractography tool, probtrackx, does probabilistic tractography based

on the diffusion parameters estimated by BEDPOSTX. Seed voxels or a seed region

mask must be specified for probtrackx. From each seed voxel a number of stream-

lines are initiated in both directions. For each voxel reached by the streamline, it is

redirected according to the directional probability distribution estimated by BED-

POSTX. A streamline is terminated when some directionality measure falls under

a certain threshold, or some other constraint is broken. In order to compute the

connectivity matrix, one or two target masks must also be specified. If the matrix

option is switched on and a target mask is specified, connectivity matrix entries cor-

responding to all pair of points within the target region on a streamline are updated

upon a streamline tracking is completed. Streamlines that do not terminate in the

target region for either end will be disgarded.

2.5 Specific Processing Pipeline for the Schizophrenia Data

The techniques introduced in Sections 2.3 and 2.4 cover most of the function-

alities in FSL that we use to process our data. This section introduces the details

about how they are performed.
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We performed nonlinear registration between each individual raw DWI image

data and the standard MNI152 T1 weighted image, getting both the diffusion-to-

standard and the standard-to-diffusion warp field. The standard-to-diffusion warp

field is then used to register the JHU white matter atlas and the AAL-90 atlas to

each individual diffusion space (the AAL-90 atlas has been pre-processed to fit into

the standard space).

On the other hand, BEDPOSTX is performed on each of the individual diffu-

sion image. Probtrackx is then applied to each individual with seed mask specified

as the registered JHU white matter atlas (union of all labeled regions), and the

target mask specified as the AAL-90 atlas (union of all labeled regions). Probtrackx

returns a file recording the coordinates of voxels in the region of interest (ROI, i.e.

the region delineated by the target mask). and a file representing the voxel-wise

connectivity matrix. There are typically 100,000 to 150,000 voxels in the ROI, so

it is in general impossible to store the full connectivity matrix in memory. The

connectivity file represents the matrix in a sparse format. Each connectivity file

typically has about 100,000,000 to 200,000,000 entries. The reason we use the JHU

white matter atlas as the seed region instead of the whole brain is mainly to reduce

the computational cost. Since most of the major fiber bundles resides in the white

matter region, this does not seriously reduce the precision of the estimation. For

the same reason we set the number of sampled streamlines from each seed voxel to

a relatively small number, 50, while the default is 5,000. We found that this does

not affect the tractography results very much in practice.

The connectivity matrix is then ready to serve as input to the clustering (par-
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cellation) algorithm. In the next chapter we will focus on the formulation and

solution of the parcellation problem.
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Chapter 3: Parcellation of an Individual Connectivity Matrix

3.1 Connectivity Profile and the Graph-Cut Formulation

In the literature, many intuitions have been developed as criteria for decid-

ing whether certain brain voxels should be clustered into the same homogeneous

region or not. For example, in fMRI analysis, voxels having strong time-correlated

activation can be regarded as belonging to a region or a functional network [14].

In terms of structural networks, connectivity profile is a widely used signature for

parcellation studies (e.g. [27–29]). The connectivity profile for a voxel is the set of

endpoints connected to this voxel by streamlines and the corresponding connectivity

values. It is a reasonable assumption that voxels having similar connectivity profiles

also have similar functional roles and thus should be grouped together.

While similarity of connectivity profiles is a good measure of the similarity of

structural position of voxels, technical issues need to be addressed: 1) The signature

of the connectivity profile, i.e. how should we encode the connectivity profile so that

it is both accurate and also not too costy to compute; 2) Spatial placement intuition,

i.e. we should also integrate spatial closeness information into clustering to avoid

spurious clusters. Voxels far from each other are unlikely to belong to the same

parcellation even if they have similar connectivity profiles. This intuition cannot be
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reflected by the connectivity matrix data itself.

For the first problem, the most accurate representation of a connectivity profile

is a list of coordinates of the connectivity profile. But in this case we have to perform

an O(n2) matching algorithm (or at best O(n log n) if we use a spatial tree index

to store the data) before computing the similarity, therefore this is only practical

if each connectivity profile only has a very few number of connections. This is not

true for probabilistic tractography, where each voxel usually projects streamlines to

many ending voxels, although many of them have very small connectivity value. In

our framework we construct the connectivity profile by first coarsening the space,

grouping the voxels into cells of size 4×4×4 voxels, and counting the connectivities

to each of these coarsened cells. The problem with this approach is the “cross-

cell-boundary artifact”. Since adjacent cells are not distinguished from far-away

cells, similar connectivity components that happen to fall into adjacent coarsened

cells can lose their similarity information. To alleviate such problem, a Gaussian

smoothing is performed after computing the connectivity profile. With Gaussian

smoothing the other endpoint of a streamline is modeled as having a 3D Gaussian

distribution centered at the actual endpoint. The connectivity profile of a voxel

is then understood as the set of its posterior expected connectivity to each of the

coarsened cells.

For the second problem, we formulate the parcellation as such a graph cut

problem where the topology of the graph has nothing to do with the connectiv-

ity data. The topology of the graph is just a grid reflecting the spatial adjacency,

termed “spatial graph”. It can simply be a rectangular grid with only adjacent
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Figure 3.1: Topology and connection weights of the formulated graph-cut problem

voxels connected, or less sparse to include neighbors of voxel that are a few voxels

away. The connectivity profile information only contributes in calculating the con-

nection weights of the spatial graph. The connection weights of a link in the spatial

graph is a similarity measure of the connectivity profiles of its two endpoints. In

the experimental results reported in this thesis, the cosine distance is used as the

measure of similarity between two connectivity profile vectors. The graph is rep-

resented by a weighted adjacency matrix W (stored in a sparse format), termed

“similarity matrix” from hereafter. Figure 3.1 illustrates the spatial graph model.

The parcellation can then be formulated as the graph cut problem on the spatial

graph. The general objective of a multi-class graph cut algorithm is to partition the

graph into K components so that the total weights of the links whose terminals are

in different components are minimized.
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3.2 Algorithms for Solving the Graph Cut Problem

Graph cut problems are generally NP-hard problems. In fact, approximating

the solution of a balanced graph cut problem with any finite factor is NP-complete

[30]. Yet many heuristic methods have been proposed and have been shown to

achieve good performance in practice.

Graph cut algorithms can be categorized into two major types, global methods

and local methods. In our project, we use both a global method, the spectral clus-

tering, and an original local method, the “Multi-class Hopfield Network” method.

3.2.1 Spectral Clustering

Spectral clustering uses eigen-decomposition of the similarity matrix of a graph

to approximate the min-cut solution [31–33]. It has been one of the most popular

class of graph partitioning algorithms, with successful applications especially in im-

age segmentation. Spectral clustering starts by constructing the “Laplacian matrix”

from the similarity matrix W :

L = D−W (3.1)

where D is a diagonal matrix with Dii =
∑
j

Wij. The Laplacian is normalized

for the purpose of balancing the clusters:

Lnorm = D−
1
2 LD−

1
2 (3.2)
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The following generalized eigen value problem is solved to get the first K eigen

vectors (eigen vectors corresponding to the K smallest eigen values).

Lnormu = λLnormDu (3.3)

The eigen vectors u excluding the first one (will be all-one vector in theory

and corresponds to the eigenvalue 0) are stacked to a matrix U of size n× (k − 1)

(n is the number of voxels in ROI). The k-means is then applied to the rows of U

to get the cluster labels of each voxel.

According to the Rayleigh-Ritz theorem [34], the eigen solution solves the

problem

min
H

Tr(H′LnormH)

subject to H′DH = I

(3.4)

if H is contrained as

Hij =


1√

vol(Cj)
if i ∈ Cj

0 otherwise

(3.5)

Then the problem is exactly equivalent to solving the normalized min-cut

problem desired:

min
S1,S2,...,SK

Ncut(S1, S2, ..., SK) =
K∑
i=1

cut(Si, S̄i)

vol(Si)
(3.6)

where Si denotes the set of nodes within cluster i, cut(Si, S̄i) denotes the total

weights of the links to be cut to separate Si from the rest of the nodes, and vol(Si)
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is the number of nodes (volume) of Si. The eigen solution is therefore a continuous

space approximation of the discrete clustering solution.

To problems where there is high node degree heterogeneity, regularized spectral

clustering (RSC, [35,36]) can help improve the performance. In RSC, computation

of the normalized Laplacian matrix is varied as

Lnorm,reg = (D + τI)−
1
2 L(D + τI)−

1
2 (3.7)

Spectral clustering performs well with a relatively few number of clusters. The

challenge with spectral clustering is that the result is highly dependent on the specific

initialization of the centroids in the k-means step. This poses a significant difficulty

to preserve consistent region definitions across subjects so that group analysis is

possible. Although it is possible to enforce a common initialization to all the subjects

in a group, the initialization has such a low degree of freedom (number of clusters

desired) that it does not impose sufficient constraints to enforce consistent definition

of clustered regions. Figure 3.2 shows the spectral clustering result of two subjects

S0370 and S0449, with a common k-means initialization derived from the AAL-90

atlas. We can see that despite the common initialization, many regions, such as the

one circled in red, has totally lost its definition in the AAL-90 atlas.

The cross-subjects inconsistency problem can be somewhat alleviated by the

local update method introduced in the next section. In that method, initialization

can be enforced as the actual cluster labels of each voxel, so that entire parcellation

boundaries are confined near the initial region definitions. This makes parcellation
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(a) S0370 (b) S0449

Figure 3.2: Spectral clustering will corrupt region definitions across subjects

results of different subjects comparable and thus group analysis is then possible.

3.2.2 Multi-class Hopfield Network

To address the cross-subjects inconsistency problem, we propose a special clus-

tering algorithm based on a multi-class version of the Hopfield network model [37],

termed the “Multi-class Hopfield Network (MHN)”. The algorithm starts from an

initial assignment of cluster labels - instead of the cluster centroids - and gradually

evolve to a better parcellation arrangement. Therefore the region definitions pro-

vided by the initial assignment can be somehow preserved across different subjects.

Hopfield networks were originally proposed to model associative memory. A

standard Hopfield network is formulated by a weighted graph with binary node

values (1 or -1). Upon retrieval of stored memory, the update rule attempts to find

the local minimum of the energy function (assuming no nodal bias is introduced)

E = −1

2

∑
i 6=j

wijxixj (3.8)
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Intuitively the optimal solution will tend to assign opposite labels to terminals

of edges of small weights and the same labels to terminals of edges of large weights.

Thus it serves as a good criterion function to be minimized in order to find a good

graph cut.

The update rule for retrieving a local minimum of the energy is very simple:

in each iteration, first select an arbitrary order for node updates, then apply the

following update rule according to the selected order.

xi ← sgn

(∑
j

wijxj

)
(3.9)

It is guaranteed that the update will converge at a local minimum. To gen-

eralize the model to deal with multi-class scenarios, we make a little modification

to the energy function and the update rule. In our formulation, the signature of a

node is changed to a one-out-of-n vector denoting the cluster affiliation:

xi = (I {1 = c} , I {2 = c} , ..., I {k = c})′ (3.10)

The energy function now becomes

E = −1

2

∑
i 6=j

wij (xi · xj) (3.11)

And the update rule becomes

yi ←
∑
j

wijxj (3.12)
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xi ← (I {yi1 = max (yi)} , I {yi2 = max (yi)} , ..., I {yiK = max (yi)})′ (3.13)

It’s easy to prove that a similar convergence theorem holds for the Multi-

class Hopfield Network framework. However, the solution easily falls into a local

optimum. To somewhat mitigate the local optimum problem, simulated annealing

can be applied to help the search jump out of local minima. The update rule with

simulated annealing is

zi ←
exp

(
yi/T

(t)
)

K∑
j=1

exp (yij/T (t))

(3.14)

xi ← {ek with probability zik} (3.15)

T (t+1) ← αT (t) (3.16)

where ek denotes a vector with only one non-zero entry at position k, T spec-

ifies the “absolute temperature” for the cool-down process. α is a factor less than

1 that controls the rate of cooling. Simulated annealing permits certain probability

of assigning a cluster label that is not best in the greedy sense, therefore provides

chances for jumping out of a local optimum.

We tested the correctness of the algorithm with some randomly generated

synthetic graph data. The graphs are generated with preset number of clusters and

number of nodes per cluster. Sparse links are generated according to preset linking

probabilities for intra-cluster nodes and inter-cluster nodes, respectively. Existing
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links are assigned with similarity weights randomly generated with different distri-

butions for intra-cluster and inter-cluster links, respectively. To give a quantitative

assessment of different clustering methods, we follow a similar procedure as the

Levine and Domanys Resampling Approach [38]. Since we have the ground-truth

for our synthesis experiment, we do not really need to do any resampling. For both

the ground truth labeling and the labeling obtained by the clustering algorithms,

we construct a N × N binary matrix (N is the number of nodes in the graph) F

where each of its binary element fij represents whether nodes i and j are of the same

cluster. The quality of a clustering algorithms is then evaluated using the quantity

Q =

∑
i,j

δ
(
f
(truth)
ij , f

(clustering)
ij

)
N2

(3.17)

Where δ(·, ·) is the indicator function representing whether its two binary

arguments are of the same value.

We evaluated the performances of the Multi-class Hopfield Network, Multi-

class Hopfield Network with simulated annealing, spectral clustering, a variation of

spectral clustering using raw similarity matrix and largest eigen vectors. The results

for different test cases are shown in Figure 3.3. Surprisingly, when equipped with

simulated annealing the Hopfield network method performs better than spectral

clustering methods. For the Hopfield network without simulated annealing, its er-

ror mainly comes from clustering two or more distinct clusters into one grand cluster,

therefore the performance index degrades drastically when number of clusters gets

large; But it rarely makes cross-cluster mistakes. Note that this synthetic experi-
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Figure 3.3: Performances of clustering algorithms on the synthetic graph data. Ex-

periment setup: 7 nodes in each clusters, nodes are connected with probability

0.5, intra-class link weights have distribution of Gaussian(0.5, 0.52), inter-class link

weights have distribution of Gaussian(−0.5, 0.52). Hopfield network with simulated

annealing performs best in all cases.

ment only serves to test whether a reasonable solution or not the proposed Multi-

class Hopfield Network method is. It should not be regarded as an evidence that

MHN performs better than spectral clustering in general. Actually we also tested

these algorithms on some simple 2D shape sets including “Aggregation” [39], “Com-

pound” [40], “Pathbased” [41], “Spiral” [41], “D31” [42], “R15” [42], “Jain” [43] and

“Flame” [44] (data files are downloaded from http://cs.joensuu.fi/sipu/datasets/).

On some of these datasets, it is possible to select appropriate graph and distance

configurations to make spectral clustering work better than MHN.
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Chapter 4: Individual Subjects Parcellations and Group Analyses

4.1 Growing Individual Brain Parcellations

The parcellation of each subject is first initialized by the AAL-90 atlas. Regis-

trations from the MNI space to the subjects’ diffusion spaces are first obtained using

FNIRT in FSL. The AAL-90 atlas is segregated into 90 binary images and each is

transformed to the subjects’ diffusion spaces using the registration warp field. The

registered regions serve as the starting point of Multi-class Hopfield Network (MHN)

updates.

The MHN update rule is then applied to each subject’s data with a maximum

of 100 iterations. Then label vectors after these iterations are converted back to

value indices for visualization and group analyses.

The actual implementation used is the variance of the MHN with simulated

annealing, described in (3.14), (3.15). However the initial temperature T (0) is set

very low to prevent the corruption of the initial formulation of the regions.
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4.2 Group Study of Schizophrenia Patients

Two group studies are performed to show the effectiveness of the proposed

parcellation method in clinical research. In the first study we extract individual

voxel volumes of each defined region, and connectivity value between each pair of

defined regions, and perform two-sample t-test over the schizophrenia vs. the normal

group. We detect significantly changed regions/connections. In the second study

we use these region volume/connectivity data as features to train linear Support

Vector Machine(SVM) classifiers. We compare the classification precisions with

those obtained by using the AAL-90 atlas.

4.3 Results

4.3.1 Visual Scan of Parcellation Results

Parcellation results for two subjects are shown in Figure 4.1: S0229 (a schizophrenic

subject) and S0449 (a normal subject). The figure only shows a side view and its

purpose is to illustrate some group consistent differences between the AAL-90 at-

las and the connectivity based atlas. Two kinds of salient deformations are found

to be consistent across most of the subjects and are circled using red and yellow,

respectively. Clearly visual inspection is not sufficient to compare subjects in the

two groups, but we can get some intuition about significant differences in the red

region for example, which are consistent with the t-test results shown later (Region

27, in the red circle which is colored light green, has significant volume change in
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(a) S0229: AAL-90 (b) S0229: Hopfield Network

(c) S0449: AAL-90 (d) S0449: Hopfield Network

Figure 4.1: Consistent deviations from standard atlas with MHN parcellations

the t-test).

Two group studies were performed to show the effectiveness of the proposed

parcellation method in clinical research. In the first study we extract individual

voxel volumes of each defined region, and connectivity value between each pair of

defined regions, and performed two-sample t-test over the schizophrenia vs. the

normal group. This allows us to detect significantly changed regions/connections.

In the second study we use these region volume/connectivity data as features to

train SVM classifiers. We compare the classification precisions with those obtained

from the AAL-90 atlas.
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4.3.2 Significantly Changed Regions and Connections

To show that the constructed atlas is useful in clinical research, especially

in discovering structural causes of the disease, we perform a hypothesis test on

whether each of the regions/connections is significantly different between the two

groups. In the first experiment, we count the number of voxels of each region in the

derived parcellations, and use two-sample t-test to get the p-value that enables us

to determine the significance of volume changes between two groups. Since we use

pre-defined AAL-90 regions as our initialization and the Hopfield network does not

make critical change to these regions, we can name the generated regions with the

standard conventions used in the literature and compare our results with previous

clinical findings. The regions having the least p-values in the two-sample t-test are

shown in Table 4.1. Region volumes are normalized according to individual total

brain volumes before computing the p-values. As a baseline for comparison, the

volume data acquired from solely AAL-90 atlas registration are also displayed in

Table 4.1.

Table 4.1: significant region volume changes detected using the two parcellation

methods

Hopfield Network parcellations AAL-90 parcellations

Region Name p-value Region Name p-value

82=Temporal Sup R 4.61E-06 28=Rectus R 0.00089239

Continued on next page
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Table 4.1 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region Name p-value Region Name p-value

30=Insula R 7.54E-06 27=Rectus L 0.00155086

27=Rectus L 0.000105303 31=Cingulum Ant L 0.00224055

46=Cuneus R 0.000128406 63=SupraMarginal L 0.00397698

86=Temporal Mid R 0.000555938 86=Temporal Mid R 0.00445966

45=Cuneus L 0.00196687 89=Temporal Inf L 0.0045843

43=Calcarine L 0.005417029 5=Frontal Sup Orb L 0.00556962

85=Temporal Mid L 0.005862056 45=Cuneus L 0.00591893

57=Postcentral L 0.005890964 82=Temporal Sup R 0.00740954

13=Frontal Inf Tri L 0.007167291 12=Frontal Inf Oper R 0.00763557

59=Parietal Sup L 0.012264066 36=Cingulum Post R 0.01023098

31=Cingulum Ant L 0.013157024 25=Frontal Mid Orb L 0.01218079

28=Rectus R 0.013672349 87=Temporal Pole Mid L 0.01218086

8=Frontal Mid R 0.015191463 32=Cingulum Ant R 0.01220685

60=Parietal Sup R 0.015690725 46=Cuneus R 0.01712847

34=Cingulum Mid R 0.027025317 81=Temporal Sup L 0.02291038

39=ParaHippocampal L 0.033085883 6=Frontal Sup Orb R 0.02590419

52=Occipital Mid R 0.034406422 38=Hippocampus R 0.03169608

56=Fusiform R 0.035820728 34=Cingulum Mid R 0.03465505

Continued on next page
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Table 4.1 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region Name p-value Region Name p-value

32=Cingulum Ant R 0.041195661 26=Frontal Mid Orb R 0.03634662

81=Temporal Sup L 0.047860704 85=Temporal Mid L 0.03669902

51=Occipital Mid L 0.04965823 56=Fusiform R 0.04687564

16=Frontal Inf Orb R 0.051089719 11=Frontal Inf Oper L 0.04764362

The validity of the two-sample t-test of the region volume analysis hinges

on the “regional assumption”, i.e. it builds on the premise that schizophrenia is

primarily due to regional volume deficits. Actually the “connectivity assumption”

is more prevalent in the schizophrenia research literature, that is, schizophrenia is

more related with connection deficits. For the completeness of the work, we also

did a significance analysis of the connectivities between the 90 regions. Part of the

results are shown in Table 4.2.

Table 4.2: significant region connectivity changes detected using the two parcellation

methods

Hopfield Network parcellations AAL-90 parcellations

Region 1 Region 2 p-value Region 1 Region 2 p-value

2=Precentral

R

36=Cingulum

Post R

7.14E-06 29=Insula L 81=Temporal

Sup L

1.26E-06

Continued on next page
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Table 4.2 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region 1 Region 2 p-value Region 1 Region 2 p-value

2=Precentral

R

35=Cingulum

Post L

1.65E-05 26=Frontal

Mid Orb R

71=Caudate

L

1.56E-06

33=Cingulum

Mid L

34=Cingulum

Mid R

1.76E-05 25=Frontal

Mid Orb L

71=Caudate

L

1.23E-05

57=Post-

central L

77=Thalamus

L

3.58E-05 13=Frontal

Inf Tri L

25=Frontal

Mid Orb L

1.62E-05

7=Frontal

Mid L

13=Frontal

Inf Tri L

4.29E-05 19=Supp

Motor Area

L

59=Parietal

Sup L

1.68E-05

46=Cuneus

R

68=Precuneus

R

0.00010266 57=Post-

central L

77=Thalamus

L

1.82E-05

34=Cingulum

Mid R

73=Putamen

L

0.000107775 12=Frontal

Inf Oper R

14=Frontal

Inf Tri R

2.56E-05

81=Temporal

Sup L

85=Temporal

Mid L

0.000128248 34=Cingulum

Mid R

37=Hippo-

campus

L

3.36E-05

Continued on next page
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Table 4.2 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region 1 Region 2 p-value Region 1 Region 2 p-value

19=Supp

Motor Area

L

36=Cingulum

Post R

0.000136104 59=Parietal

Sup L

77=Thalamus

L

5.01E-05

19=Supp

Motor Area

L

59=Parietal

Sup L

0.000153149 33=Cingulum

Mid L

34=Cingulum

Mid R

5.41E-05

20=Supp

Motor Area

R

34=Cingulum

Mid R

0.000156602 23=Frontal

Sup Medial

L

25=Frontal

Mid Orb L

6.54E-05

1=Precentral

L

78=Thalamus

R

0.000207481 17=Rolandic

Oper L

81=Temporal

Sup L

6.83E-05

23=Frontal

Sup Medial

L

59=Parietal

Sup L

0.000217673 12=Frontal

Inf Oper R

52=Occipital

Mid R

7.47E-05

13=Frontal

Inf Tri L

27=Rectus

L

0.00023363 12=Frontal

Inf Oper R

18=Rolandic

Oper R

0.000100664

Continued on next page
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Table 4.2 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region 1 Region 2 p-value Region 1 Region 2 p-value

8=Frontal

Mid R

19=Supp

Motor Area

L

0.000238587 19=Supp

Motor Area

L

34=Cingulum

Mid R

0.000103046

19=Supp

Motor Area

L

66=Angular

R

0.000245982 2=Precentral

R

35=Cingulum

Post L

0.000110779

27=Rectus

L

35=Cingulum

Post L

0.000258836 19=Supp

Motor Area

L

66=Angular

R

0.000112625

34=Cingulum

Mid R

37=Hippo-

campus

L

0.000266763 8=Frontal

Mid R

12=Frontal

Inf Oper R

0.000119972

2=Precentral

R

33=Cingulum

Mid L

0.000268922 4=Frontal

Sup R

71=Caudate

L

0.000128102

29=Insula L 81=Temporal

Sup L

0.000313395 7=Frontal

Mid L

25=Frontal

Mid Orb L

0.000129912

30=Insula R 78=Thalamus

R

0.000315268 13=Frontal

Inf Tri L

85=Temporal

Mid L

0.000132738

Continued on next page
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Table 4.2 – continued from previous page

Hopfield Network parcellations AAL-90 parcellations

Region 1 Region 2 p-value Region 1 Region 2 p-value

19=Supp

Motor Area

L

86=Temporal

Mid R

0.000326886 23=Frontal

Sup Medial

L

71=Caudate

L

0.00013658

17=Rolandic

Oper L

81=Temporal

Sup L

0.000392008 31=Cingulum

Ant L

34=Cingulum

Mid R

0.000136686

4.3.3 Classification

In this section we show the results of classifying the normal versus the schizophre-

nia group using ranked features generated from the proposed parcellations. The

classifiers work on many features, thus a combination of possible disease causes can

be covered. The disadvantage of such supervised learning analysis is that it does

not provide much explanatory information. Yet the classification accuracy provides

a strong indication about the quality of our parcellation results.

We perform classification experiments based both on region volume features

and connectivity features. The regional volume features and connectivity features

are the same quantities that we used to do two-sample t-test in Section 4.3.2. For the

regional volume features, both un-normalized and normalized versions are tested.
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We try different numbers of features, and features are included in order according

to their p-value ranks in Table 4.1. In each experiment with a different number of

features, we perform 100 trials, and in each trial we randomly sample approximately

3/4 of the whole dataset as the training set (both normal and schizophrenia groups)

and use the rest 1/4 as the test set. The mean accuracy result based on 100 trials

is recorded for each experiment. Linear SVM is used to build the classifiers (more

elaborated classifiers tend to severely overfit).

Figure 4.2 displays the classification results. We can see that the proposed par-

cellations perform much better than parcellations that are solely based on registered

version of the AAL-90 atlas in all three cases.

4.4 Discussion of Results

For as many as 90 regions, visual scanning of the parcellation results is not

likely to lead to any definite findings, yet we can still find some consistent connec-

tivity parcellation patterns that are different from the AAL-90 atlas in Figure 4.1,

including the re-configuration of the regions in the red circle, and the “verticaliza-

tion” effect in the yellow circles. We can make an interesting assumption that the

“verticalization” effect may be due to the gravity during human brain evolution,

however whether this is true needs serious and comprehensive verification in the

future. For example, it may be just the result of the energy function favoring less

edges to be cut off, leading to more regular boundaries.

We perform two-sample t-test on region volumes extracted by our parcella-
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tion method and the AAL-90 registration. The top significantly regions detected

using the Hopfield network based atlas show lower p-value and higher consistency

with some previous clinical results reported in the literature [45], indicating bet-

ter confidence of the significantly changed regions. However simply looking at the

top p-values is not a good way of evaluating the two parcellation schemes, since

schizophrenia is a complex disease that may involve many regions, connections and

even sub-networks, which cannot be saliently exhibited by the p-values of single

regions. More convincing results about the quality of the parcellation is shown in

the group classification experiment. The t-test analysis provide a basis of feature

selection in the classification experiment.

In the schizophrenia classification experiments, the proposed parcellation scheme

excels AAL-90 in all the three feature extraction settings. The most recent schizophre-

nia research literature favors more the connectivity interpretation to the region vol-

ume interpretation. Our results coincide with this trend. Connectivity features

extracted using the proposed parcellation scheme perform much better than other

schemes, reaching a recognition accuracy of about 78% with 400 connectivity fea-

tures.

The linear SVM classifier is a black-box prediction system, contributing little

to understanding the local structural causes of schizophrenia. The purpose of the

classification experiment is only to provide a metric for comparing the quality of

the parcellations. The t-test significance is of more interest to clinical research and

should be subject to further examination.
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Chapter 5: Group Atlases

5.1 Group Atlases Generation

The individual atlases are registered back to the MNI space to perform a

simple average to get the (probabilistic) group level atlases. As before, the individual

atlases are first segregated into a set of binary images and then registered back one

by one. The MNI space atlas of a particular subject is represented by stacking these

registered (non-binary) images, with each voxel represented by a 90-dimensional

vector. The vector valued atlases from all subjects in the same group are then

averaged and normalized to get a probabilistic atlas for the whole group, where the

vector for each voxel represents the probability of that the voxel belongs to each of

the 90 regions. Voxel-wise group difference is then measured and visualized using a

symmetrical metric reflecting the distance between two probability vectors. Since it

is hard to perform a hypothesis test on the group difference significance on such high

dimensional data, we use an alternative approach: We randomly partition the data

into groups with different grouping protocols, and compute a scalar metric indicating

total difference between the group atlases for each grouping protocol. Two-sample

t-test can then be performed to determine the significance of the “difference of the

difference” between a pair of grouping protocols.
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The main steps to generate the group level atlases are listed below:

1) For each subject, save each of the 90 atlas structures as a binary image.

2) Register each of this binary images to the MNI space.

3) Combine the 90 binary images for each subject to get an “atlas likelihood

vector”, where each of the 90 values of a voxel measures the “likelihood” that this

voxel belongs to the specific atlas.

4) Average the atlas likelihood vectors for each group and normalize so that

elements of the vector sum to 1, so that we can interpret the vectors as categorical

distribution parameters. The group atlas is then constructed by assigning each

voxel its most probable cluster label, and colored by the corresponding color of

that cluster. We also visualize the voxel-wise “confidence level”, which is simply the

likelihood value of the most probable cluster label, so that we can get an intuitive feel

about which regions have more consistent connectivity patterns and which regions

do not.

5) Compute the difference between the two group atlases. For symmetric and

numerical robustness purposes, we use the simple squared Hellinger distance [46] as

the measure of difference between two probability vectors . The difference values

for each voxel are ordered by magnitude and plotted in a descending order.

6) Measure the significance of several grouping protocols. There were three

grouping protocols used: (i) Schizophrenia group vs. normal group (Sch-NonSch);

(ii) Randomly selected two groups from the entire dataset (Rand-All); (iii) Ran-

domly selected two groups from the normal subjects (Rand-Normal). For each of

the three partitions, we sample 39 subjects in each group for each run, and each
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partition is tested for 10 runs. Voxel-wise differences in each run are overlaid and

displayed in a single graph.

5.2 Results

Figure 5.1 shows the atlas for the schizophrenic group and the corresponding

confidence level for each voxel. Figure 5.2 shows those for the normal control group.

Figure 5.3 displays the voxel-wise difference between the two groups. For example,

the cursor is placed as a bright point indicating that the cluster label distribution

is significantly different between the two group atlases at that voxel. Further ex-

amination will show that this voxel is near the boundary of Region 82, which is the

region that showed the most significant volume change according to our two-sample

t-test analysis.

Figure 5.4 shows the distribution of voxel-wise differences between several

random grouping protocols. The difference values are arranged in descending order

of voxel differences.

As described in the previous section, two-sample t-tests are performed to test

the significance of “difference of difference” of each grouping protocols. In our

experiment 10 random groupings were generated for each random grouping pro-

tocol. The p-value for the total differences between Sch-NonSch partition and the

Rand-All partition is 0.0016, and the p-value between Sch-NonSch partition and the

Rand-Normal partition is 3.3315E-5. This implies that the schizophrenic group has

significant systematic atlas structure change against the normal group. This also
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(a) Group Atlas

(b) Confidence Map

Figure 5.1: Group atlas of the schizophrenic group
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(a) Group Atlas

(b) Confidence Map

Figure 5.2: Group atlas of the control group
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Figure 5.3: Difference map between two group atlases
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shows that the schizophrenic group has bigger variance in its connectivity patterns,

as compared to the normal control group.

5.3 Discussion of Results

We applied a simple registration and averaging scheme to obtain group-level

atlases in the MNI space. The averaging removes many of the individual variations

and thus results in more regular shapes. The information about individual variations

is preserved in the confidence map visualization, from which we can easily tell which

regions have more consistent connectivity patterns than others. For example in

Figure 5.2b, the regions 81 (left superior temporal), 82 (right superior temporal), 85

(left mid temporal), 86 (right mid temporal) have lower confidence value, indicating

lack of consistency of superior/mid temporal regions in terms of their connectivity

patterns.

Figure 5.4 indicates that there is a significant amount of group differences

between patients and normal subjects that cannot be explained by chance. The

two-sample t-test of total difference value further confirms this. The fact that the

Sch-NonSch vs. Rand-All displays larger p-value than Sch-NonSch vs. Rand-Normal

indicates that a Rand-All group has larger variance than a Rand-Normal group,

which in turn indicates that schizophrenia patients have more variance in their

connectivity patterns.

There are two major imperfections for the individual parcellation and group

analyses framework introduced so far. First, although our method integrates connec-
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tivity information into parcellations, it highly relies on initialization of a standard

parcellation, and therefore it is not a method to obtain a purely connectivity based

atlas. And as is indicated in Fig. 3.2, the AAL-90 atlas does not comply with the

connectivity pattern well and therefore may be a bad initialization. To be able to

build a connectivity based atlas from scratch (not relying on a pre-defined initializa-

tion), we’ll need to solve the problem of properly registering the connectivity data

to a standard space, so that averaging connectivity data across subjects is possi-

ble. Secondly the simple atlas averaging scheme to obtain group-level atlases is not

very accurate. The more appealing approach also requires averaging connectivity

data directly in a standard space, adding to the importance of work for finding an

appropriate way of registering connectivity data. The problem of “registering” the

connectivity data to the common MNI space - so that group level averaging can

be computed and purely connectivity based atlases can be built from scratch - is

addressed in the next chapter.
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Chapter 6: Connectivity Based Atlases Built from Scratch

6.1 Overview

The previous described parcellation framework uses the Multi-class Hopfield

Network to tune an existing standard atlas to better fit connectivity based analysis.

The results highly depend on the standard atlas initialization. This is not quite the

ideal framework of our ultimate goal to build a purely connectivity based atlas. As

is shown in Figure 3.2, the AAL-90 atlas can be a bad initialization that could be

misaligned with the brain connectivity patterns. In this chapter, we aim at building

a purely connectivity based atlas, i.e. an atlas that depends solely on connectivity

information and does not depend on any kind of initialization with prior knowledge.

Separate parcellations for different subjects will not achieve our goal, due to the

“cross-subject inconsistency” problem stated in Chapter 3. A feasible solution is

to average the connectome data first and then apply clustering on the averaged

data. The main challenge is that all subjects in our dataset are in unregistered local

diffusion space, and tractography can only be applied in the diffusion space. In

the literature, there is no robust way of “registering” the tractography data to the

standard space - especially when using probabilistic tractography - where subjects

are aligned and averaging is possible. In this chapter, we propose a workflow that
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maps the connectivity profiles from the diffusion space to the standard space. A

graph cut problem can then be formulated and parcellations are formed from the

averaged data in the standard space.

6.2 Computing the Connectivity Profiles in MNI Space from Data

in Diffusion Space

As we have described in Chapter 3, the connectivity profile for a voxel is defined

as a vector of its connectivity numbers to coarsened cells in the full space. The cell

size is usually selected much larger than the voxel size, and Gaussian smoothing

can be applied to the results to mitigate the “cross-cell-boundary artifact” problem.

With 100,000-150,000 voxels in the subjects’ ROIs and the coarsened cell size as

4× 4× 4 voxels, the vector length of a connectivity profile is about 2, 000-3, 000. In

general, it is impossible to store the full connectivity matrix in memory, but it is

possible to store the connectivity profiles.

Transformation of the connectivity data between spaces hinges on the coordi-

nate mapping. FSL provides a utility tool that computes the coordinate mapping,

but it is very slow (it is a C++ program that read in and process each input coordi-

nate one by one, and hence it is even much slower than a MATLAB implementation

that takes advantage of array operations). However we can use the warp field to

customize the coordinate mapping code. To do this we first need to convert the

default FSL registration output (“warp coefficient”) into warp field format. There

is utility tool in FSL that does exactly the transformation from the coefficients to
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warp fields. Transformed coordinates for any set of nodes of our choice can then be

easily computed by simply subtracting the warp field from the source coordinates.

The coordinate mapping between the diffusion space and the standard space

gives us a set of real-value coordinate values. The challenge now is to find a proper

way of rounding these values and adjust the corresponding connectivity values. It’s

not computationally feasible to get a connectivity matrix in the target space, since

1) the full connectivity matrix (non-sparse version) may not fit into memory; 2) if

we choose the sparse version, then for each pair of voxels we have to search through

all pairs to see if there is a coincident, with a total complexity of O(n2) (n is the

number of non-zero entries in the original connectivity matrix, which is of a much

larger order of value than total number of voxels, typically over 100,000,000). There

is actually also another problem of “resolution holes”, which will be described later

in this chapter. Instead of trying to migrate the connectivity matrix to the target

space, we only compute the connectivity profiles in the target space.

The connectivity profile data has a nice key-value structure: The key is the

coordinate of a voxel, the value is the connectivity profile vector associated with

that coordinate. With the registration warp field from the diffusion space to the

standard space, we propose two efficient solutions of computing the connectivity

profile in the standard space: The hash-table solution and the Hadoop solution.

1) The hash table solution:
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Initialize the diffusion profile hash table, with the key being the diffusion

space coordinates and the value being the corresponding connectivity profile

vector (defined w.r.t standard space cells), denoted as profile hash ;

for Each subject in group do

for Each entry in the (sparse) connectivity matrix

{(x1,diff , y1,diff , z1,diff ), (x2,diff , y2,diff , z2,diff ), l} do

Transform (x1,diff , y1,diff , z1,diff ) and (x2,diff , y2,diff , z2,diff ) into

standard space coordinates (x1,std, y1,std, z1,std), (x2,std, y2,std, z2,std),

respectively ;

Round (x1,std, y1,std, z1,std) and (x2,std, y2,std, z2,std) to their integer-value

neighbors. Denote the sets of neighbor coordinates as

{(x(i)1,std, y
(i)
1,std, z

(i)
1,std)} and (x

(j)
2,std, y

(j)
2,std, z

(j)
2,std), respectively ;

Compute the distribution factor for each neighbor coordinate

according to their distances to the corresponding central coordinate,

denoted as pi and pj, respectively ;

Look up the cell index corresponding to (x1,std, y1,std, z1,std) and

(x2,std, y2,std, z2,std), denoted as k1 and k2, respectively ;

Update the corresponding entries in profile hash:

profile hash[(x
(i)
1,std, y

(i)
1,std, z

(i)
1,std)][k2] =

profile hash[(x
(i)
1,std, y

(i)
1,std, z

(i)
1,std)][k2] + pil,

profile hash[(x
(j)
2,std, y

(j)
2,std, z

(j)
2,std)][k1] =

profile hash[(x
(j)
2,std, y

(j)
2,std, z

(j)
2,std)][k1] + pjl ;

end

end

Write profile hash to disk ;
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2) The Hadoop solution:

Mapper:

for Each subject in group (that the mapper receives) do

Initialize profile hash as in the hash table solution ;

Update profile hash as in the hash table solution ;

for Each (key, value) in profile hash do

Emit (key, value);

end

end

Reducer:

for Each key received do

Add up the profile vectors corresponding to the key and emit;

end

The hash table solution performs all computations in memory and requires a

large memory. The Hadoop solution can take advantage of computation clusters

and is more scalable. Luckily we found the hash table solution already meets our

time and memory constraints.

After the transformation we obtain connectivity profiles in the standard space,

which can then be easily averaged.

We found that there is an implicit problem with the above approach. When

we test our scheme on a single subject, we find that the result of spectral clustering

is very cluttered, as shown in Figure 6.1. We name this as the “resolution holes”

problem. The problem is mostly due to the resolution gap between two spaces. Since

each diffusion space voxel is mapped to a single target space voxel, if the target space

is higher in resolution compared with the diffusion space, the target voxels will be
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Figure 6.1: Parcellation result with diffusion-to-standard coordinate mapping incurs

“resolution holes” problem

sparsely scattered across the space, with many “mishits” that have zero connectivity

profile. Since spectral clustering relies heavily on local similarity structures, these

missed voxels can be a major hazard to the performance of spectral clustering. Even

if the target space has a lower resolution, mishits can still be frequent due to the

uneven distribution of displacement vectors of the warp field, as is illustrated in

Figure 6.2.

The solution is to use instead the other direction of coordinate mapping, i.e.

from the standard space to the diffusion space, as is shown in Figure 6.3. We

predefine the set of ROI voxels in the standard space (common to all subjects), and

map each of them to a diffusion space coordinate, do proper rounding and averaging

to get the final connectivity profile of the target voxel. Since every voxel defined
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Missed voxels -
Will have zero 
connectivity profile

local space standard space

Figure 6.2: “Resolution holes” problem is due to resolution gap and unevenness

in the standard space will have its counterparts in the diffusion space (except for

voxels at the boundary of the brain), resolution holes will no longer appear. A catch

is that although this coordinate mapping is from standard space to diffusion space,

we need the elements of a connectivity profile vector to be defined in that standard

space to make it possible for integrating across subjects. Therefore we still need

the diffusion-to-standard space registration warp field also. The pseudo code for

generating the standard space connectivity profile data is summarized in Algorithm

1 and Algorithm 2.
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local space standard space

Averaging

Figure 6.3: Changing the registration to standard-to-diffusion to avoid resolution

holes

Function StandardProfile = GetStandardProfile()

Initialize the standard space profile hash table, with the key being the

standard space coordinates and the value being the corresponding

connectivity profile vector (defined w.r.t standard space cells), denoted as

profile hash ;

Assign DiffusionProfile = GetDiffusionProfileInStandardCell() ;

for each voxel in standard space ROI do

Transform its coordinate (xstd, ystd, zstd) into the diffusion space, denoted

as (xdiff , ydiff , zdiff ) (using warp standard to diffusion); Round

(xdiff , ydiff , zdiff ) to find its integer-value neighbors ;

Assign the connectivity profile vector profile hash[(xstd, ystd, zstd)] as the

average of those of the integer-value neighbors of (xdiff , ydiff , zdiff ) ;

end

Return StandardProfile = profile hash ;

Algorithm 1: Obtaining standard space connectivity profile from (sparse) con-

nectivity matrix in the diffusion space
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Function DiffusionProfile = GetDiffusionProfileInStandardCell()

Initialize the diffusion profile hash table, with the key being the diffusion

space coordinates and the value being the corresponding connectivity profile

vector (defined w.r.t standard space cells), denoted as profile hash ;

for each entry in the (sparse) connectivity matrix

{(x1,diff , y1,diff , z1,diff ), (x2,diff , y2,diff , z2,diff ), l} do

Transform (x1,diff , y1,diff , z1,diff ) and (x2,diff , y2,diff , z2,diff ) into standard

space coordinates (x1,std, y1,std, z1,std), (x2,std, y2,std, z2,std), respectively ;

Look up the cell index corresponding to (x1,std, y1,std, z1,std) and

(x2,std, y2,std, z2,std), denoted as k1 and k2 ;

Update the corresponding entries in profile hash:

profile hash[(x1,diff , y1,diff , z1,diff )][k2] =

profile hash[(x1,diff , y1,diff , z1,diff )][k2] + l,

profile hash[(x2,diff , y2,diff , z2,diff )][k1] =

profile hash[(x2,diff , y2,diff , z2,diff )][k1] + l ;

end

Return DiffusionProfile = profile hash ;

Algorithm 2: Obtaining diffusion space connectivity profile with cells defined in

the standard space
A side benefit of this reverse registration procedure is that connectivity profiles

for all subjects will be defined on the same set of voxels, thus combining them is a

simple matter of averaging the matrices. No further hash table structure is needed in

the combining stage (it is needed in the diffusion-to-standard registration approach,

since the standard space voxel sets will be different across subjects).
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6.3 Clustering

Spectral clustering is used to obtain parcellations on the averaged connectivity

profile data. Since we aim at obtaining a standard atlas for more general applications

in clinical research, we include only the normal subjects in averaging the connectivity

profiles. Before doing the clustering we delete the nodes with small connectivity

profiles as they mess up with the similarity matrix and dramatically affect the

performance of clustering. We set the number of clusters ranging from 5 to 30. This

is one of the drawbacks of the spectral clustering - number of clusters has to be pre-

defined. For all experiment instances, centroids of the kmeans step are initialized

randomly.

6.4 Results and Discussion

Figure 6.4-6.9 shows part of the results of clustering on the spatial graph

derived from averaged connectivity profiles. We can see clearly that for all cases

nice symmetric results are generated even when the initialization is random and no

prior symmetrical information is enforced, implying good quality of the clustering

results. Some nice hierarchical parcellation structures can be observed as the number

of clusters increases. These results show that connectivity profile is a pretty robust

criterion for parcellation and atlas generation.

Note that although the results look good, spectral clustering still suffers from

sensitivity to initialization. For example the region circled in red in the 25 clusters
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Figure 6.4: Pure connectivity based atlas: 5 clusters

Figure 6.5: Pure connectivity based atlas: 10 clusters
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Figure 6.6: Pure connectivity based atlas: 15 clusters

Figure 6.7: Pure connectivity based atlas: 20 clusters
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Figure 6.8: Pure connectivity based atlas: 25 clusters

Figure 6.9: Pure connectivity based atlas: 30 clusters
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result is likely to be a spurious cluster due to wrong initialization. To really produce

a golden standard connectivity based atlas, proper human intervention seems to be

inevitable.
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Chapter 7: Concluding Remarks

We propose a connectivity based brain parcellation scheme based on graph

partitioning algorithms. The data we work on is the DWI images of schizophrenia

and normal subjects, and our main goal is to use the parcellation method to generate

discriminating features to separate the two groups of data.

The parcellation method formulates the problem as a graph cut problem where

the graph topology is defined by the spatial closeness, and the weights on the graph

are defined by similarity of connectivity profiles. Spectral clustering and a proposed

Multi-class Hopfield Network (MHN) algorithm are used to solve the graph parti-

tioning. The method can help detect significant regions and connections related with

schizophrenia. In building the classifier for separation of the two groups of data, the

regional and connectivity features extracted using the proposed MHN method out-

perform those generated using registered AAL-90 atlas. We also propose a simple

scheme of averaging the individual parcellations to form group level atlases for other

clinical researches. The schizophrenia group atlas is consistently different from an

atlas generated using all data, further verifying the effectiveness of the proposed

parcellation method.

To insulate the atlas generation from high dependency to standard atlas initial-
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ization and come up with a purely connectivity based atlas, we develop a framework

that efficiently aggregate the connectivity information of individual subjects to an

averaged connectivity profile in the standard space using hash table. Spectral clus-

tering with random initialization is then performed on the averaged connectivity

matrix and show high level of consistency with intuition.

There are still some imperfections in current work. Quantitative and clinical

expert verification of the generated atlases are needed. Although the connectiv-

ity based atlases shown consistency with intuition, spurious parcellations can still

appear due to bad initialization. To build a more reliable brain atlas, human inter-

vention will be indispensable. The future extension of this project will be to build

a software interface to let neural scientists interact with the automatic parcellation

generation algorithms conveniently to produce semi-automatic parcellations.
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Christos Pantelis, and Edward T Bullmore. Whole-brain anatomical networks:
does the choice of nodes matter? Neuroimage, 50(3):970–983, 2010.

[12] Satoru Hayasaka and Paul J Laurienti. Comparison of characteristics between
region-and voxel-based network analyses in resting-state fmri data. Neuroimage,
50(2):499–508, 2010.

[13] Christian F Beckmann, Marilena DeLuca, Joseph T Devlin, and Stephen M
Smith. Investigations into resting-state connectivity using independent com-
ponent analysis. Philosophical Transactions of the Royal Society B: Biological
Sciences, 360(1457):1001–1013, 2005.

[14] Yufeng Zang, Tianzi Jiang, Yingli Lu, Yong He, and Lixia Tian. Regional
homogeneity approach to fmri data analysis. Neuroimage, 22(1):394–400, 2004.

[15] Pauline Roca, Denis Rivière, Pamela Guevara, Cyril Poupon, and Jean-François
Mangin. Tractography-based parcellation of the cortex using a spatially-
informed dimension reduction of the connectivity matrix. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2009, pages 935–942.
Springer, 2009.

[16] Pauline Roca, Alan Tucholka, Denis Rivière, Pamela Guevara, Cyril Poupon,
and Jean-François Mangin. Inter-subject connectivity-based parcellation of a
patch of cerebral cortex. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010, pages 347–354. Springer, 2010.

[17] Denis Le Bihan, E Breton, et al. Imagerie de diffusion in-vivo par résonance
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