
ABSTRACT

Title of dissertation: Automated Floating-Point Precision Analysis

Michael O. Lam, Doctor of Philosophy, 2014

Dissertation directed by: Professor Jeffrey K. Hollingsworth
Department of Computer Science

As scientific computation continues to scale upward, correct and efficient use

of floating-point arithmetic is crucially important. Users of floating-point arithmetic

encounter many problems, including rounding error, cancellation, and a tradeoff be-

tween performance and accuracy. This dissertation addresses these issues by intro-

ducing techniques for automated floating-point precision analysis. The contributions

include a software framework that enables floating-point program analysis at the bi-

nary level, as well as specific techniques for cancellation detection, mixed-precision

configuration, and reduced-precision sensitivity analysis. This work demonstrates

that automated, practical techniques can provide insights regarding floating-point

behavior as well as guidance towards acceptable precision level reduction. The tools

and techniques in this dissertation represent novel contributions to the fields of high

performance computing and program analysis, and serve as the first major step

towards the larger vision of automated floating-point precision and performance

tuning.

Automated Floating-Point Precision Analysis

by

Michael O. Lam

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Jeffrey K. Hollingsworth, Chair and Advisor
Dr. Bronis R. de Supinski (Lawrence Livermore National Laboratory)
Professor Atif M. Memon
Professor Martin C. Rabenhorst, Dean’s Representative
Professor Alan L. Sussman

Copyright c© 2014 Michael O. Lam

To my wife Lindsay,

and to my parents Neil and Alice.

Soli Deo gloria.

ii

iii

Acknowledgments

First and foremost, I honor God my Father and my Lord. I live to glorify him

and enjoy all of his creations, especially the field of computer science. This work is

a testimony to the life and abilities he has given to me.

I gratefully recognize my dissertation advisor, Jeff Hollingsworth. Thank you

for your invaluable guidance and advice over the years; I have learned much from

you. I look forward to collaborating as a colleague for many more years to come. I

also want to thank the members of my dissertation committee (especially my LLNL

project lead Bronis de Supinski) as well as my undergraduate academic and research

advisors: David Bernstein, Daniela Raicu, Elizabeth Adams, and Charles Abzug.

You all provided mentoring and wise advice that ultimately enabled me to complete

this dissertation.

I am also very thankful for the support and camaraderie of all my fellow lab

members at UMD, especially Ray Chen, Ananta Tiwari, Nick Rutar, Tugrul Ince,

and Geoff Stoker. I will sorely miss the weekly lunch outings, the times spent

together outside the lab, and the mutual encouragement that helped me persevere

over years of course work and research. I hope that we will meet again often in the

future.

I thankfully acknowledge my church family, both at Wallace Presbyterian

Church in College Park, Maryland, as well as at the Evangelical Presbyterian Church

iv

in Elkton, Virginia. Many of you have prayed for me and ministered to me in vari-

ous ways as I have worked and studied these past years. You are too numerous to

mention here by name, but I pray that God will bless you all immensely for your

faithfulness.

I cannot thank my family enough for their love and support. I thank my dad

Neil for being a quiet inspiration to me in all areas of life, and I thank my mom

Alice for challenging me always to aspire to the highest level of achievement. I also

thank my father- and mother-in-law Barry and Susan for their love and support

over the past few years. Further, I acknowledge my siblings: Sarah, Aaron, Rachel,

Nathan, and Hannah, as well as my brother-in-law Corey; thank you all for the love

and care you’ve shown me.

Finally, I thank my amazing wife Lindsay. You supported me through the

most challenging years of my time in graduate school; you were a constant source of

encouragement and support. As I close this chapter of my life and prepare to move

on to the next, I am profoundly grateful to have you by my side. Together we will

see what kind of life God has in store for us. Thank you for choosing to explore it

with me.

v

Table of Contents

List of Figures ix

1 Introduction 1

2 Background 7
2.1 Overview . 7
2.2 IEEE floating-point representation 7
2.3 SSE floating-point arithmetic . 10
2.4 Rounding error . 12
2.5 Cancellation . 13
2.6 Real-life examples . 15

3 Related Work 17
3.1 Overview . 17
3.2 Error analysis . 17
3.3 Interval and affine analysis . 19
3.4 Runtime techniques . 22
3.5 Manual mixed precision . 23
3.6 Alternate representations . 25
3.7 Binary instrumentation . 26
3.8 Subsequent and concurrent work . 28

4 System Architecture 31
4.1 Overview . 31
4.2 Parsing and semantics . 33
4.3 Program modification . 35

4.3.1 Snippets and binary rewriting 36
4.3.2 Instrumentation vs. modification 37
4.3.3 Basic block patching . 38

4.4 Extensible analysis framework . 39
4.5 GUI viewers . 41

4.5.1 Log viewer . 42
4.5.2 Configuration editor . 44

4.6 Automatic search . 47
4.7 Demonstration . 49

4.7.1 Instruction count analysis . 49
4.7.2 NaN detection analysis . 51
4.7.3 Range tracking analysis . 52

4.8 Conclusion . 53

vi

5 Cancellation Detection 55
5.1 Overview . 55
5.2 Techniques . 55

5.2.1 Binary instrumentation . 56
5.2.2 Results viewer . 57

5.3 Benchmarking . 59
5.4 Results . 60

5.4.1 Simple cancellation . 60
5.4.2 Approximate nearest neighbor 62
5.4.3 Gaussian elimination . 63
5.4.4 NAS and SPEC benchmarks 71

5.5 Conclusion . 72

6 Mixed-precision Replacement 73
6.1 Overview . 73
6.2 Techniques . 76

6.2.1 Mixed-precision configurations 76
6.2.2 Binary modification . 78
6.2.3 Automatic search . 81
6.2.4 Memory-based analysis . 84

6.3 Benchmarking . 86
6.4 Results . 88

6.4.1 NAS benchmarks . 88
6.4.2 AMG microkernel . 92
6.4.3 SuperLU . 92

6.5 Conclusion . 94

7 Reduced-precision Replacement 97
7.1 Overview . 97
7.2 Techniques . 97

7.2.1 Reduced-precision configurations 98
7.2.2 Binary modification . 100
7.2.3 Automatic search . 102
7.2.4 Visualization . 105

7.3 Benchmarking . 108
7.3.1 Mixed-precision comparison 108

7.4 Results . 110
7.4.1 NAS benchmarks . 110
7.4.2 LAMMPS . 114

7.5 Conclusion . 119

vii

8 Future Work 121
8.1 Overview . 121
8.2 Short-term work . 121

8.2.1 Binary optimization . 121
8.2.2 Search optimization . 122
8.2.3 Analysis extension . 123
8.2.4 Analysis composition . 124
8.2.5 Platform ports . 125
8.2.6 Extended case studies . 126

8.3 Long-term work . 126
8.3.1 Runtime adaptation . 127
8.3.2 Compiler-based implementation 127
8.3.3 IDE and development cycle integration 129
8.3.4 Performance modeling . 130
8.3.5 Static analysis integration . 131

9 Conclusion 133

Appendices 137

A Sample Application: Sum2Pi X 138
A.1 Overview . 138
A.2 Preliminary analyses . 141
A.3 Cancellation detection . 142
A.4 Mixed-precision analysis . 145
A.5 Reduced-precision analysis . 147
A.6 Conclusion . 148
A.7 Source: sum2pi x.c . 150
A.8 Source: Makefile . 152

Bibliography 153

viii

List of Figures

2.1 IEEE standard formats . 8
2.2 IEEE single- and double-precision formats 9
2.3 SSE opcodes for addition . 10
2.4 Roundoff error demonstration code 13
2.5 Roundoff error demonstration results in varying precisions; the cor-

rect answer is exactly 1,000 . 14
2.6 Examples of cancellation . 14

3.1 Backward and forward error (dashed line indicates floating-point com-
putation) . 18

3.2 Mixed precision algorithm (stars/red indicate double-precision steps) 24

4.1 Runtime binary analysis overview . 32
4.2 Program hierarchy . 33
4.3 Examples of instruction semantic structures 35
4.4 Example of code snippet creation . 36
4.5 Basic block patching . 38
4.6 Log viewer . 42
4.7 Excerpt from an example configuration file 43
4.8 Configuration editor (instruction view) 45
4.9 Configuration editor (source code view) 45
4.10 Overview of autotuning search process 47
4.11 NAS benchmark overhead for instruction count analysis 50
4.12 NAS benchmark overhead for NaN detection analysis 52
4.13 NAS benchmark overhead for range tracking analysis 53

5.1 Sample log viewer results . 58
5.2 NAS benchmark overhead for cancellation detection analysis 59
5.3 SPEC benchmark overhead for cancellation detection analysis 59
5.4 Graphs of Equation 5.1: at normal zoom (left) and zoomed to the

area of interest (right). 61
5.5 Classical Gaussian elimination with partial pivoting 64
5.6 Bordered algorithm for Gaussian elimination 64
5.7 Example of cancellation in Gaussian elimination 64
5.8 Cancellation for unpivoted Gaussian elimination 68
5.9 Diagonal elements for classical (left) and bordered (right) Gaussian

elimination . 69
5.10 Cancellation counts for classical (C) and bordered (B) Gaussian elim-

ination . 69

6.1 Overview of binary editing process 75

ix

6.2 Example replacement analysis configuration file 78
6.3 Graphical configuration editor, viewing a configuration for one of the

NAS benchmarks . 79
6.4 In-place downcast conversion and replacement 80
6.5 Single-precision replacement template 81
6.6 Overview of mixed-precision search process 82
6.7 NAS MPI scaling results . 87
6.8 NAS benchmark overhead results . 87
6.9 NAS benchmark results . 89
6.10 NAS benchmark results for memory-based analysis (columns same as

Figure 6.9) . 91
6.11 SuperLU linear solver memplus results 93

7.1 Example of reduced-precision configuration 98
7.2 Reduced-precision configuration viewer 100
7.3 Example reduced-precision replacement snippet 101
7.4 Reduced-precision histogram . 105
7.5 NAS benchmark overhead for whole-program reduced-precision analysis107
7.6 Search wall time comparison . 108
7.7 Reduced-precision histograms for NAS benchmarks 111
7.8 Reduced-precision histograms for MG.W incremental search 113
7.9 Timing results for MG.W incremental search 113
7.10 LAMMPS benchmarks and running times 114
7.11 LAMMPS benchmark results . 115
7.12 Reduced-precision histograms for LAMMPS benchmarks 116
7.13 LAMMPS profiling comparisons: unique execution percentages 117

A.1 Sum2Pi X versions and results . 139
A.2 Sum2Pi X correctness test results . 140
A.3 Sum2Pi X count and range results . 141
A.4 Sum2Pi X cancellation results . 143
A.5 Sum2Pi X cancellation . 144
A.6 Sum2Pi X mixed-precision results . 146
A.7 Sum2Pi X reduced-precision results 149

x

xi

Chapter 1

Introduction

Floating-point arithmetic is a technology used in a wide range of computer applica-

tions, from high-end scientific computation to consumer video games. As scientific

computation continues to scale upward to larger systems and as computing becomes

further integrated into everyday life, correct and efficient use of floating-point arith-

metic is crucially important. However, the approximate nature of floating-point

arithmetic ensures that rounding error will be an issue in every computer program

that uses such arithmetic. This rounding error manifests with many nuances and

caveats that programmers find difficult to address. This often prompts programmers

to use a numerical precision that is unnecessarily high, which decreases performance.

This unnecessary precision is particularly concerning in high-performance computing

(HPC), where the consequences of such decisions are more severe both for correct-

ness and for performance. This dissertation addresses these issues by proposing

and implementing automated techniques for floating-point analysis, with the goal of

aiding developers in the creation of efficient and accurate floating-point programs.

There has been extensive research in the area of general numerical analysis of

floating-point error. However, much of this work is difficult to apply for program-

mers who do not have a numerical analysis background, and many static analysis

techniques are overly conservative because they overestimate the effect of round-

1

ing errors. In addition, many studies have shown that mixed-precision algorithms

(using both single- and double-precision arithmetic) have great potential to speed

up computation without sacrificing accuracy. Automated runtime techniques can

inform developers regarding various floating-point behaviors; these insights guide

further development. Unfortunately, there are few existing tools and techniques for

performing such analysis. This dissertation improves the state of the field by devel-

oping techniques for dynamic floating-point analysis and by laying the groundwork

for further research and tool development.

Our approach is a practical one based on runtime analysis; i.e., running an

analysis simultaneously with the target application. Runtime-based analysis allows

our analysis to examine floating-point behaviors that only manifest with particular

data sets or particular computation sequences. For example, floating-point accumu-

lation is highly sensitive to the relative ordering of the data values being summed;

adding the smallest numbers in a sequence first leads to a more accurate result than

adding the larger numbers first. This non-associativity is a runtime behavior that is

usually opaque to static or compile-time analyses. Additionally, our techniques work

at the binary level; i.e., they analyze the machine code instructions that are directly

executed on the target hardware. Working at the binary level allows us to incorpo-

rate compiler effects; e.g., a compiler may reorder operations during its optimization

phase, which may affect floating-point behavior. Binary-level analysis also allows us

to analyze highly optimized binaries as well as closed-source shared libraries. Our

2

approach provides the first runtime-based, floating-point-centric program analysis

framework.

We analyze a target binary executable program, parsing the floating-point

semantics of all instructions before inserting instrumentation or performing a full

modification of instruction semantics. These instrumentation routines and modifi-

cations are rewritten into a new binary executable, which can be run in a manner

identical to the original one. After running, the system produces various log files

for which we have developed graphical user interface (GUI) viewers. These results

provide insight and direction for floating-point development. No other contempo-

rary system provides the analysis capabilities and insight generation as the system

described in this dissertation.

In particular, this dissertation makes four major contributions:

1. We propose and implement a generic framework: the Configurable Runtime

Analysis for Floating-point Tuning (CRAFT). This framework allows a wide

variety of runtime analysis techniques specifically focused on floating-point

arithmetic. The framework is based on binary parsing, instrumentation, and

modification; it also provides generic configuration and logging capabilities.

We show the effectiveness of this framework by building simple floating-point

analyses for instruction counting and Not-a-Number (NaN) detection. We

also replicate a previous effort to track the range of floating-point values. The

remainder of the dissertation builds on this framework for more specialized

3

analyses.

2. We propose and implement techniques for cancellation detection. Cancellation

is a loss of precision that can compromise future calculations. This disserta-

tion describes techniques for detecting, aggregating, and reporting cancellation

events during a program’s execution. This information can inform a devel-

oper’s decisions regarding algorithm choice. We evaluate these techniques by

applying them to several example programs and showing how they can provide

insights that were previously unavailable.

3. We propose and implement techniques for mixed-precision configuration im-

plementation. A mixed-precision configuration allows some portions of a

double-precision program’s instructions to be replaced with the corresponding

single-precision instructions, while other portions are still executed in double-

precision arithmetic. These techniques allow developers to prototype mixed-

precision configurations quickly. Additionally, we propose and implement a

search routine to identify automatically the portions of a program must be run

in double-precision arithmetic, leaving the rest to be run in single-precision

arithmetic. This search technique allows developers to target their mixed-

precision development efforts more effectively. We evaluate these techniques

by applying them to various benchmarks and applications, demonstrating the

insights and recommendations that they provide. In one case, we were able to

achieve a 2x speedup based on the results of our analysis.

4

4. We propose and implement techniques for generalized floating-point sensitivity

analysis. These techniques are based on truncating existing double-precision

numbers in memory during execution to simulate varying levels of reduced

precision. The level of precision can be independently adjusted for every in-

struction in a program. We also propose an automated search routine for these

techniques, allowing the system to determine automatically the minimum level

of precision necessary for each part of a program independently. The results of

this search inform the developer regarding nuances in floating-point sensitiv-

ity, and allows them to focus their efforts to reduce the precision requirements

of their application. We evaluate these techniques by benchmarking them to

show viability in actual development, and by applying them to various bench-

marks and applications.

The general thesis statement for this dissertation is as follows:

Automated runtime analysis techniques can inform application developers regarding

floating-point behavior, and can provide insights to guide developers towards reducing

precision with minimal impact on accuracy.

5

6

Chapter 2

Background

2.1 Overview

This chapter provides background information on floating-point representation, round-

ing error, and cancellation. These concepts serve as the basis for understanding the

context of our work, including the relevant technical background on floating-point

arithmetic as well as the problems associated with it. This chapter concludes with

a few real-life examples of rounding error and its sometimes tragic consequences.

2.2 IEEE floating-point representation

“Floating-point” is a method of representing real numbers in a finite binary format.

It stores a number in a fixed-width field with three segments: 1) a sign bit (b),

2) an exponent field (e), and 3) a fractional significand (s). The significand is also

sometimes called the “mantissa.” The stored value is (−1)b ·s·2e. “Machine epsilon”

(ε or MEps) is a measure of the maximum relative error for a given floating-point

representation, and is dependent on the value of the base and the number of bits

allocated for the significand. Floating-point arithmetic was first used in computers

in the early 1940s, and was standardized by IEEE in 1985, with the latest revision

approved in 2008 [42]. The IEEE standard provides for different levels of precision

7

Name Bits Exp Sig Dec MEps
IEEE Half 16 5 10+1 3.311 9.77e-04
IEEE Single 32 8 23+1 7.225 1.19e-07
IEEE Double 64 11 52+1 15.955 2.22e-16
C99 Long Double 80 15 64+0 19.266 1.08e-19
IEEE Quad 128 15 112+1 34.016 1.93e-34

Columns:

Bits: total field width

Exp: # of bits for exponent

Sig: # of bits for significand = <explicit>+<implicit>

Dec: decimal digits = log10(2^Sig)

MEps: machine epsilon = b^(-(p-1)) = b^(1-p)

Figure 2.1: IEEE standard formats

by varying the field width, with the most common widths being 32 bits (“single”

precision) and 64 bits (“double” precision). The C99 and IEEE standards also

provide for an extended 80-bit format. See Figure 2.1 for a table of information

regarding all of these formats. See Figure 2.2 for a graphical representation of the

single- and double-precision formats.

Double-precision arithmetic will generally result in more accurate computa-

tions than single-precision arithmetic, but with several costs. The main cost is the

higher memory bandwidth and storage requirement, both of which are at least twice

the footprint of single-precision. Another cost is the dramatically reduced oppor-

tunity for parallelization. One example is the x86/SSE architecture, where packed

128-bit XMM registers can only hold and operate on two double-precision numbers

simultaneously instead of the four numbers that can be stored in single-precision. Fi-

8

032 16 8 4

Significand (23 bits)Exponent (8 bits)

IEEE Single

03264 16 8 4

Significand (52 bits)Exponent (11 bits)

IEEE Double

Figure 2.2: IEEE single- and double-precision formats

nally, some architectures even impose a higher cycle count (and thus energy cost) for

each arithmetic operation in double-precision. In practice, researchers have reported

[33] that single-precision calculations can be 2.5 times faster than corresponding

double-precision calculations, because of the various factors described above.

As high-performance computing continues to scale to petascale, exascale, and

beyond, these concerns regarding precision, memory bandwidth, and energy usage

will become increasingly important [30]. Thus, application developers have powerful

incentives to use a lower precision wherever possible, as long as it does not com-

promise overall accuracy. In addition, long-running computations may encounter

numerical accuracy issues not seen at shorter scales [39], providing even more im-

petus for an analysis solution that accounts for these runtime effects.

9

Opcode Operands
ADDSS Add two scalar single-precision values
ADDPS Add four sets of packed single-precision values
ADDSD Add two scalar double-precision values
ADDPD Add two sets of packed double-precision values

Figure 2.3: SSE opcodes for addition

2.3 SSE floating-point arithmetic

Streaming SIMD Extensions (SSE) is the primary instruction set for IEEE floating-

point arithmetic on the x86 and x86 64 architectures [8]. Intel designed the SSE

instruction set in the 1990s as an alternative to AMD’s 3DNow! instruction set,

which has since been discontinued. Before the design of SSE, the x87 instruction

set used 80-bit floating-point registers to implement stack-based arithmetic; that

instruction set is now rarely used.

Contemporary implementations of SSE floating-point arithmetic use special-

ized 128-bit registers: eight registers on 32-bit architectures and sixteen registers

on 64-bit architectures. These registers can each hold four single-precision values or

two double-precision values. The registers themselves can also be used for integer

arithmetic, although this dissertation does not address such operations.

The instruction set includes a variety of unary (e.g., square root, reciprocal)

and binary (e.g., add, multiply, min, max) mathematical operations. Most instruc-

tions are provided in both single- and double-precision versions, as well as scalar

and packed variants. Thus, each mathematical operation generally has four possible

opcodes. Figure 2.3 shows the SSE opcodes for the addition operation. Most of

10

these instructions take two operands, and the result is stored in one of the inputs

(e.g., a = a+ b or b = a+ b). Our techniques handle all four types of opcodes.

To compare values, the SSE instruction set provides various comparison op-

codes that compare two input operands and encode the results in an output operand

using all 1s (true) or all 0s (false). The SSE instruction set also provides a variety

of data movement instructions, providing the ability to rearrange values in a packed

register as well as between two registers or memory operands. Most of these move-

ment instructions do not modify the values as they are moved, although a few of

them also do upcast or downcast operations. Our instrumentation and replacement

techniques handle all of these comparison, movement, and conversion instructions

appropriately.

The SSE instruction set also includes a set of bitwise operations; these come in

variants similar to regular operations, such as ANDSS/ANDPS, as well as in variants

that operate on entire registers, such as PAND. Some of our techniques must analyze

all of the bitwise operations, even if they are the latter variant, because these are

sometimes used in conjunction with special binary values to manipulate floating-

point numbers. In particular, floating-point numbers can be negated by XOR’ing

the entire 32- or 64-bit field with a constant that has a 1 in the highest bit (the

sign bit) and zeroes in the rest of the field. Alternatively, the absolute value of a

floating-point number can be taken by AND’ing the field with a constant that has

a 0 in the highest bit and ones in the rest of the field.

11

In recent years, some groups have proposed extensions or additions to the SSE

instruction set. One of these is the Fused Multiply-Add (FMA) extension, which

adds a new opcode that does a multiplication and an addition in a single instruction

cycle (e.g., d = a + b · c). Other proposed additions include the Advanced Vector

eXtensions (AVX), which widen the register width to 256 or 512 bits, providing more

SIMD parallelism. The AVX proposal also adds 3-operand instructions, allowing for

non-destructive encodings (e.g., c = a + b instead of a = a + b). This dissertation

does not analyze such additions to the SSE instruction set, although it could easily

be extended to include them as long as the underlying tools (Dyninst and XED2)

supported them.

2.4 Rounding error

The pitfalls of floating-point representations are numerous and have been extensively

studied in the decades since its adoption [35, 40, 46, 73, 75]. The fundamental prob-

lem is that few real numbers can be represented exactly in floating-point; most

numbers must be rounded to the nearest real number that is representable. This re-

sults in “rounding error” that accumulates and propagates in ways that can severely

compromise the overall calculation. Figures 2.4 and 2.5 show this effect with a sam-

ple program that adds a rounded number (0.001) to itself many times, resulting

in a number that is incorrect to varying degrees depending on the precision level

used. Much of the historical research in floating-point error analysis is discussed in

12

/**

* sum1.c

*

* Roundoff error example. Accumulates 1,000,000 additions of the value 0.001,

* which should result in the value 1000, using three different levels of

* precision. Roundoff error causes the results to be inaccurate to varying

* degrees depending on the precision.

*/

#include <stdio.h>

float sumf = 0.0;

double sumd = 0.0;

long double sumld = 0.0;

void dosums()

{

int i;

for (i=0; i<1000000; i++) {

sumf += 0.001;

sumd += 0.001;

sumld += 0.001;

}

}

int main(int argc, char* argv[])

{

dosums();

printf("sumf: %.20g\nsumd: %.20g\nsumld: %.20Lg\n", sumf, sumd, sumld);

return 0;

}

Figure 2.4: Roundoff error demonstration code

Chapter 3.

2.5 Cancellation

Numerical cancellation occurs when an instruction subtracts two numbers that are

of similar magnitude, or when an instruction adds two such numbers with opposite

signs. The identical digits are “canceled,” and the resulting number has fewer

13

sumf: 991.14154052734375 (single-precision: 32 bits)

sumd: 999.99999998326507011 (double-precision: 64 bits)

sumld: 1000.0000000000008743 (extended-precision: 80 bits)

Figure 2.5: Roundoff error demonstration results in varying precisions; the correct
answer is exactly 1,000

2.491264 (7) 1.613647 (7)

- 2.491252 (7) - 1.613647 (7)

0.000012 (2) 0.000000 (0)

(a) (b)

Figure 2.6: Examples of cancellation

significant digits than either of the operands. Figure 2.6 shows several examples of

numerical operations that illustrate cancellation. In the operation on the left (a),

the operands all have seven significant digits, while the result only has two. In the

operation on the right (b), the problem is even worse; all digits cancel and the result

has no significant digits. This phenomenon is called “complete” or “catastrophic”

cancellation.

Cancellation may seem innocuous; after all, the answer is correct. However,

one must consider what may happen if the two numbers were not truly identical,

but were rounded by previous operations. If the difference between the numbers is

ever used as a scalar in a multiplication operation, for example, the result will be

dramatically different than expected. In the worst case (a zero factor from complete

cancellation), the result will be 100% incorrect. In this way, cancellation serves as

a warning that a loss of significant digits has occurred, which may be a symptom of

14

undesired rounding error.

2.6 Real-life examples

There have been several real-world incidents involving rounding error, such as the

Patriot missile failure in the early 1990s [26] and the Vancouver stock index slump

in the 1970s [40].

In the case of the Patriot missile failure, a radar tracking system encountered

an issue calculating the position of incoming Scud missiles. The system stored

velocity as a real number and the current system time as an integer number; however,

the system also had a 24-bit field limit, meaning that any calculation involving both

quantities had to round the time value to convert it to a real number. This loss of

precision became more of an issue the longer the unit was operational. After 100

hours of operation, the inaccuracy in time was approximately 0.34 seconds, which

was enough to throw off the positional calculation by nearly 700 meters. The tragic

result was that an errant missile failed to stop an incoming Scud, which hit an Army

barracks and killed 28 Americans.

In the case of the Vancouver stock index slump, a long-running financial calcu-

lation was compromised by an issue with floating-point rounding. The index value

itself was stored using three decimal digits of precision. After nearly a year, the

value was hitting suspiciously low values even though the exchange was apparently

doing well otherwise. The issue was tracked down to an errant rounding mode,

15

which was truncating rather than rounding. After recalculating the value using the

proper rounding mode, the final value of the index nearly doubled.

While the motivation for the work described in this dissertation comes from

high-performance computing and thus does not directly involve the deadly or high-

stakes situations involved in these examples, rounding error can have a severe impact

on mission-critical computation taking place at supercomputing centers. Many of

these codes deal with mission-critical endeavors, such as nuclear weaponry simula-

tions and climate change forecasting. While a mistake due to rounding error may

not directly cause a death while running these codes, an incorrect result could be

catastrophic if it leads to a faulty real-life policy decisions. In addition, current

high-performance computation requires the investment of millions of machine cores

for many hours—an expensive proposition. A failed long-term run could mean the

loss of thousands or millions of dollars of computing and personnel resources as the

problem is debugged and the program is restarted. Thus, there is much motivation

for pursuing better analysis techniques in this area.

16

Chapter 3

Related Work

3.1 Overview

This chapter describes various related fields of research. We begin by examining

traditional static error analysis, which was later extended to interval and affine

analysis, before looking at some dynamic runtime techniques. We then examine past

work in manual mixed-precision implementations and alternate representations. We

also include an overview of binary instrumentation frameworks, one of which forms

the basis for our techniques. Finally, we conclude with a brief look at subsequent

and concurrent research in the area of automated floating-point analysis.

3.2 Error analysis

The analysis efforts regarding floating-point representation and its accompanying

roundoff error initially focused on manual backward and forward error analysis.

This field was active as early as 1959 [27], with Wilkinson’s seminal work in the area

being published in 1964 [74]. This research was continued by others [46, 47, 49, 55]

and recently summarized by Goldberg and Higham [35, 40].

Forward error analysis begins at the input and examines how errors are mag-

nified by each operation. The result of a floating-point operation fl(x1 � x2) =

17

x x + ∆x

y = f(x) ŷ = f(x + ∆x)

backward error

forward error

Output range

Input domain

Figure 3.1: Backward and forward error (dashed line indicates floating-point com-
putation)

(x1 � x2)(1 + ε), where ε ≤ 2−p and p is the number of bits of precision used. Thus,

the result of the fl(x1 � x2) operations will gradually begin to diverge from the true

answers x1 � x2.

Backward error analysis is a complementary approach that starts with the

computed answer ŷ and determines the exact floating-point input x̂ that would

produce it (i.e., fl(x̂) = ŷ); this “fake” input x̂ can then be compared to the real

input x to see how different they are. This comparison provides an indication of

how sensitive the computation is, and how incorrect the computed answer ŷ might

be. Computations that are highly sensitive are called ill-conditioned.

Figure 3.1 demonstrates these analyses graphically. Higham [40] describes

examples of these analyses for a variety of different numerical analysis problems.

Unfortunately, the results of these analyses are difficult for a programmer to under-

stand or to apply without extensive training or error analysis background, because

18

numerical analysis of complex algorithms requires the application of a wide range

of techniques as well as familiarity with a large body of mathematics.

3.3 Interval and affine analysis

Researchers have attempted to model the behavior of a program using a technique

called “interval arithmetic,” [48, 65, 47] which represents every number x in a pro-

gram using a range x̄ = [x.lo, x.hi] instead of a fixed value. Arithmetic operations

operate on these intervals, usually resulting in a wider interval in the result:

x̄+ ȳ = [x.lo+ y.lo, x.hi+ y.hi]

x̄− ȳ = [x.lo− y.hi, x.hi− y.lo]

Unfortunately, regular interval arithmetic is not always useful due to the quick

compounding of errors [9], and the difficulty of handling intervals containing zero

[40]. For instance, consider a sequence of functions fi where the output of each

function is the input to the next: xi+1 = fi(xi). Even if the initial value x0 has an

interval width of zero, the interval for x̂1 = fi(xi) will be [x1 − δ2, x2 + ε2], where δ

and ε are error constants depending on the given precision. The width of this error

interval will never decrease; it will only increase proportionally to the condition

number of each fi in the sequence. In the worst case, division by zero will produce

an invalid interval, or the interval will eventually expand to (−∞,+∞), a result

19

that is trivially correct but practically useless. Even in less extreme circumstances,

however, the average-case error is rarely as bad as the worst-case. Thus, interval

analysis by itself is usually of little value to programmers who are merely interested

in the practical behavior.

Interval arithmetic was later improved by Andrade and others [9] with the

concept of “affine arithmetic,” replacing the ranges of interval arithmetic with a

linear combination of error factors. In this scheme, a number x is represented as a

first-degree polynomial x̂:

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn

Affine representation preserves information about error independence, and al-

lows some errors to cancel out others. In the following example, for instance, the

error term ε4 is shared between the two numbers. This sharing indicates that the

error came from the same input and will cancel out in the sum. Thus, the bounds

for the result are tighter than those that would be obtained in standard interval

arithmetic.

x̂ = 10 +2ε1 +1ε2 −1ε4

ŷ = 20 −3ε1 +1ε3 +1ε4

x̂+ ŷ = 30 −1ε1 +1ε2 +1ε3

The authors relate simple formulas for resolving operations on affine numbers.

20

These formulas are composed of simple linear functions involving affine numbers x̂

and ŷ and scalars α ∈ R:

x̂± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + · · ·+ (xn ± yn)εn

αx̂ = (αx0) + (αx1)ε1 + · · ·+ (αxn)εn

x̂± α = (x0 ± α) + (x1 ± α)ε1 + · · ·+ (xn ± α)εn

For non-affine operations, the authors choose an approximation function and

add an extra error term. This extra error term is considered independent from

the numbers, even though it is a function of them. This approximation causes the

analysis to be less precise than an optimal analysis.

Other researchers have proposed extensions or variations on interval arith-

metic, but few have proved long-lived. Richman [65] described a rather complex

way to use a trial low-precision interval arithmetic calculation to determine what

level of precision is necessary for a given calculation. Aberth [7] briefly described a

variation on interval analysis that stores the interval midpoint in a high precision,

effectively combining interval analysis with extended precision arithmetic.

Other researchers have tried using stochastic arithmetic [44], applying Monte

Carlo methods by representing a number as a set of several numbers obtained by

small random perturbations from the original number. By overriding arithmetic

operations to operate on all of these values, they approximate interval arithmetic

21

with less overhead. However, this technique has drawn criticism for being ad-hoc

and imprecise [45].

More recently, Goubault and Martel and others [31, 36, 37, 57, 58] have built

abstract semantics and static analyses using affine arithmetic. These techniques,

like any static analysis, are entirely a priori and give conservative estimates. In

addition, the most recent work [59] describes a system that can effect program

transformations to increase accuracy. These transformations involve rearranging

operations according to well-known rules of floating-point arithmetic, rather than

by adjusting the precision.

Unfortunately, none of these static analyses are dataset-sensitive, so they will

produce conservative results that may not be useful. In addition, they require tuning

by the programmer, particularly with regards to the extent that loops are unrolled:

more unrolling produces better answers but requires more lengthy analyses. These

techniques also only work for a subset of language features (often excluding HPC-

specific interests like MPI communication), and are usually limited to C programs.

3.4 Runtime techniques

FloatWatch [21, 22] is a dynamic instrumentation approach that uses the Valgrind

framework to monitor the minimum and maximum values that each memory loca-

tion holds during execution. This type of range information could be used to adjust

the precision. For instance, if a value has a small dynamic range, it can probably

22

be stored in reduced precision. FloatWatch no longer appears to be in active devel-

opment. In Section 4.7.3, we show how this type of range-tracking analysis can be

implemented using our framework.

Rinard also presents work on fault-tolerant computing with probabilistic ac-

curacy bounds [66]. This effort attempts to measure in a probabilistic model the

failure rate of particular portions of a program, called “task blocks.” Once the fail-

ure rates are known, this system can preemptively abort task blocks to short-circuit

failures and reduce the overall runtime while maintaining an acceptable level of ac-

curacy on the final results. This approach is designed for hardware and software

errors, however, and relies on the failures being relatively easy to detect. The author

does not describe how this technique could be extended to floating-point roundoff

analysis, where error detection is the core issue.

3.5 Manual mixed precision

In recent years, many researchers [13, 24, 25, 41, 54, 69, 70] have demonstrated

that mixed precision (using double-precision in some parts of a program and single-

precision in others) can achieve similar results as using only double-precision arith-

metic, while being much faster and memory-efficient. They usually present linear

solvers (particularly sparse solvers) as examples, showing that most operations can

be performed in single-precision. These solvers have been applied to a wide range

of problems, including fluid dynamics [11], lattice quantum chromodynamics [28],

23

1: LU ← PA
2: solve Ly = Pb
3: solve Ux0 = y
4: for k = 1, 2, ... do
5: rk ← b− Axk−1 (*)
6: solve Ly = Prk
7: solve Uzk = y
8: xk ← xk−1 + zk (*)
9: check for convergence

10: end for

Figure 3.2: Mixed precision algorithm (stars/red indicate double-precision steps)

finite element methods [34], and Stokes flow problems [32]. Often, graphical pro-

cessing units (GPUs) are cited as the target of these optimizations because of their

streaming capabilities [11, 28, 33].

In the iterative algorithm shown in Figure 3.2, for example, only the steps

in red (lines 5 and 8) must be executed in double-precision. The authors observe

that all O(n3) steps can be performed in single-precision, while the double-precision

steps are only O(n2). Thus, using mixed precision can yield significant performance

and memory bandwidth savings. On the streaming Cell processor, for instance, the

mixed-precision version performed up to eleven times faster than the original double-

precision version. Even on non-streaming processors, they obtained a performance

improvement between 50% and 80% [13].

Researchers in computer graphics have also found that mixed-precision al-

gorithms can improve performance [38]. By varying the number of bits used for

graphics computations, they report speedups of up to 4X or 5X, with little or no ap-

parent image degradation. They use fixed-point arithmetic, but the mixed-precision

24

concepts are similar to floating-point.

Unfortunately, these techniques are not automatically generalizable to other

problems and algorithms. However, this work provides an impetus to develop auto-

matic mixed-precision recommendation techniques.

In recent work, Jenkins and others [43] describe a novel scheme for reorganizing

data structures by numerical significance. Their technique splits up floating-point

data structures into striped blocks on byte boundaries. All pieces of corresponding

significance are stored consecutively in these memory blocks for storage and I/O,

and the original values are re-assembled only when needed for calculation. Thus,

the developer can vary the precision of floating-point data during data movement by

truncating the lower-precision blocks. In their experiments, they found that some

applications can use as few as three bytes (24 bits) of floating-point data and retain

an acceptable level of accuracy. This work focused on the I/O implications, however,

and did not address the possibility of single-precision arithmetic. Their system also

incurs overhead during data re-assembly.

3.6 Alternate representations

Finally, some solutions avoid floating-point representation entirely. For instance,

multi-precision libraries allow large or even variable precisions [4, 5, 15, 16]. Some

of these libraries also provide a rational representation, storing real numbers using

a ratio of integers. Both of these approaches provide higher numerical accuracy at

25

the cost of performance. Converting a legacy code base to use a numeric library

usually also incurs a high cost in developer time, although some researchers have

developed automated or semi-automated tools for this purpose [15, 18, 68].

More recently, Le Grand et al. presented a new model for fixed-precision

arithmetic in certain molecular dynamics applications [53]. They represented real

numbers as 64-bit integers in a fixed format with either 24 bits or 34 bits on the

left side of the decimal point, and the remainder of the 64 bits on the right side

of the decimal point. They also took advantage of some hardware-specific atomic

operations in Kepler GPUs. The new model and implementation resulted in 60–80%

higher computational throughput and a reduced memory footprint.

3.7 Binary instrumentation

Binary instrumentation frameworks provide the ability to parse and to instrument

a compiled program in binary format, allowing a tool developer to implement anal-

ysis techniques in a machine-independent way. These frameworks usually provide

a machine-independent representation of program semantics, as well as a scripting

language or interface for coding instrumentation routines. The first such framework

was the Executable Editing Library (EEL) [50], which was the first general-purpose

and cross-platform binary editing framework. EEL provided a system based on

C++ for instrumenting programs on various SPARC systems, but does not have

support for current architectures and is no longer used. Dyninst [23] is a current

26

binary instrumentation system, providing interfaces for binary parsing, instrumen-

tation, modification, and code generation on various architectures including x86 64.

In this dissertation, we use the capabilities of Dyninst to provide generic binary

manipulation, allowing us to focus on implementing floating-point analyses.

Other current binary instrumentation and modification systems include LLVM

[51], ROSE [64], Pin [56], Valgrind [62, 63], and PEBIL [52]. LLVM and ROSE are

both compiler infrastructures that provide cross-platform abstractions for program

transformation and analysis; they provide limited instrumentation support. Pin dif-

fers from Dyninst in that it does just-in-time recompilation when new code segments

are accessed rather than doing all of the binary modification during a single pass,

resulting in a high per-run instrumentation cost. Valgrind differs in that it runs

the targeted program in an emulation environment, resulting in a heavyweight and

high-overhead framework. PEBIL is a recent development effort that focuses on

optimization on a particular platform (Linux on x86/x86 64), although its binary

instrumentation techniques are similar to Dyninst’s.

None of these frameworks provide the floating-point-specific instrumentation

features we needed when we began our research. We chose to use the Dyninst suite

as the basis for our work, because of the lower overhead of its approach and its

wide variety of analysis components. We use the parsing (ParseAPI), instrumen-

tation (DyninstAPI), binary rewriting (SymtabAPI), and control flow modification

(PatchAPI) components of Dyninst.

27

3.8 Subsequent and concurrent work

Since we began work on our system, Benz et al. [19] have presented another sys-

tem for floating-point analysis, implemented using Valgrind. Their system supports

side-by-side computation in a different precision using shadow variables analysis.

The system also collects data related to program slicing. Compared to our earlier

implementation (described in Chapter 5), their analysis can more easily identify ma-

lignant cancellation. However, the overheads are higher, with several benchmarks

experiencing over a 500X slowdown.

In addition, Bao and Zhang [17] have presented a system for detecting and

restarting computation in a higher precision based on cancellation detection. They

call this process “precision hoisting.” Their system tags values with boolean values

indicating whether the value has become “substantially inflated,” as measured using

a cancellation bit threshold test. These values are propagated using a type system,

and when an execution is determined to be unstable, it is halted and restarted in

a higher precision. They based their implementation on GCC and the GIMPLE

intermediate representation. They report an overhead of 3X-23X, which may not

be practical at full scale. Unlike our approach, their system does not look for

mixed-precision implementations, relying instead on the runtime detect-and-restart

approach even in deployed, tuned applications.

Even more recently, Rubio-Ganzalez et al. [67] have built a mixed-precision

autotuning system that resembles the one described in Chapter 6. The main differ-

28

ence is that they work at the source level, creating type configurations rather than

instruction configurations. Their system is built on the LLVM compiler framework

and requires source code annotations. They do not address whether the running

times they report are comparable to those of binaries created by the GCC or Intel

compilers that we use. For instance, they appear to have limited support for packed

instructions, which our techniques can handle fully, and which can dramatically

change the execution profile of an application. For some of their input programs,

they use random input data to build approximate representative data sets. They

use a variant of delta debugging for their search loop, which allows them a better

lower bound on the number of configurations to test. Their verification is performed

the same way as in our system, relying on a user-defined routine to check for correct-

ness. Rather than exploring the program to find all parts that can be individually

replaced, their search process focuses on finding a large subset of variables that can

be replaced simultaneously. This work represents a similar effort in a new context

with slightly differing goals. Extending our techniques into a compiler framework is

part of the future work discussed in Chapter 8.

29

30

Chapter 4

System Architecture

4.1 Overview

This chapter describes our general framework for floating-point-based runtime bi-

nary analysis and modification. Our framework is called CRAFT: the Configurable

Runtime Analysis for Floating-point Tuning. Figure 4.1 shows the basic workflow.

The yellow components are provided by the end user, the blue components are

provided by our system, and the green components are generated during analysis.

The process begins when the original binary executable file (hereafter called

the “binary”) is passed to a Dyninst-based “mutator.” This mutator has various

capabilities for modifying the binary’s machine code to augment or modify the

program’s behavior, emitting the modified, rewritten binary back to disk. The

particular modifications made by the mutator depend on what kind of analysis

is desired. This dissertation describes many different analyses, including simpler

analyses in Sections 4.7.1, 4.7.2, and 4.7.3, as well as more complex analyses in

Chapters 5, 6, and 7. After running the rewritten binary, the system includes a

graphical interface for viewing the results. For more complex analyses, the system

also provides scripting capabilities for doing automatic tuning searches, streamlining

the process of finding optimum floating-point configurations.

31

Original
Binary

Modifed
Binary

Instructon Count

Mutator Results

Cancellaton

Mixed-Precision

Runtme
Executon

...

Analyses

Data
SetInstrumentaton

Viewer

Figure 4.1: Runtime binary analysis overview

CRAFT is implemented in a blend of languages appropriate for the various

parts: C/C++ for the main instrumentation and analysis libraries, Java for the

graphical interfaces, and Ruby for the search automation scripts. The full system

is over 32K lines of code and 5K lines of comments. Roughly 67% of the code is in

C/C++, 20% is in Java, 10% is in Ruby, and the final 2–3% is in makefiles and Bash

scripts. The system includes a test suite with over 4K lines of code that is capable

of running over 300 test combinations with different mutatees, analysis modes and

optimization levels. The entire system is stored in a single Git repository and has

been made available under the GNU Library General Public License version 3.0

(LGPLv3) license on SourceForge [2].

32

Module

Functon

Basic Block

Instructon

Applicaton

Figure 4.2: Program hierarchy

4.2 Parsing and semantics

We use Dyninst [23] to parse an executable file into its component parts (headers,

code, data, etc.). The abstractions provided by Dyninst allow us to view the pro-

gram’s structure as a hierarchy. The hierarchy, depicted in Figure 4.2, consists of a

series of subcomponent relationships, including the full application, code modules,

functions, basic blocks, and instructions. Most analyses are primarily concerned

with the lowest (instruction) level of this hierarchy.

After an application is parsed, our system extracts the semantics of each in-

struction. To build the instruction semantics, we use a combination of sources. The

first source is the Dyninst parse itself, which provides instruction boundaries and raw

33

instruction bytes. At the time of implementation, however, Dyninst did not provide

the detailed information that we needed for floating-point operations. Our second

source of semantics is XED2, the instruction encoder and decoder from the Pin in-

strumentation toolkit [56]. XED2 provided a lightweight framework for extracting

opcode and operand information. The final source of semantics is a hard-coded set

of semantics for each instruction in the SSE instruction set. XED2 provides some

of this information, but in an inconsistent manner. Most instructions from SSE1–4

have custom semantics encoded in our system, and the others (mostly irrelevant to

current analyses) have fallback semantics.

The final instruction semantics are stored in an object called Semantics, which

is composed of several Operation objects, which in turn contain sets of Operand

objects. For unary operations, each set contains a single input Operand and a single

output Operand. For binary operations, each set contains two input Operands and a

single output Operand. In either case, if the instruction is “packed” (i.e., it operates

on an entire 128-bit XMM register), the Operation object contains multiple Operand

sets.

Figure 4.3 shows some examples of instructions and their corresponding se-

mantics structures in our system. Each structure begins with the Semantics object

for the overall instruction (the figure shows the assembly code representation of that

instruction). The Semantics objects serve as the root of a hierarchy that includes

Operation, Operand Set, and Operand objects, which are shown on the subsequent

34

Semantics: "sqrtss %xmm0, 0x3a0(rip)"

Operation: Square Root

Operand Set

Operand (Input) : 0x3a0(rip) memory (bits 0-31)

Operand (Output) : %xmm0 register (bits 0-31)

Semantics: "addsd %xmm0, %xmm1"

Operation: Add

Operand Set

Operand (Input) : %xmm0 register (bits 0-63)

Operand (Input) : %xmm1 register (bits 0-63)

Operand (Output) : %xmm0 register (bits 0-63)

Semantics: "mulpd %xmm0, %xmm1"

Operation: Multiply

Operand Set

Operand (Input) : %xmm0 register (bits 0-63)

Operand (Input) : %xmm1 register (bits 0-63)

Operand (Output) : %xmm0 register (bits 0-63)

Operand Set

Operand (Input) : %xmm0 register (bits 64-127)

Operand (Input) : %xmm1 register (bits 64-127)

Operand (Output) : %xmm0 register (bits 64-127)

Figure 4.3: Examples of instruction semantic structures

lines with layers of indentation indicating containment relationships. The first in-

struction is unary, with a single input and output. The second instruction is binary,

with two inputs and a single output. The third instruction is a packed binary

instruction, with multiple operand sets.

4.3 Program modification

In this section, we discuss the system’s capabilities for modifying a target binary.

After parsing the binary, the system can insert instrumentation or do more complex

modifications and replacements. This section describes the various aspects of binary

35

BPatch_snippet* buildIncrementSnippet(const char *varname)

{

BPatch_variableExpr *varExpr = mainImg->findVariable(varname);

BPatch_snippet *valExpr = new BPatch_arithExpr(

BPatch_plus, *varExpr, BPatch_constExpr(1));

BPatch_snippet *incExpr = new BPatch_arithExpr(

BPatch_assign, *varExpr, *valExpr);

return incExpr;

}

Figure 4.4: Example of code snippet creation

program modification explored and utilized in this dissertation.

4.3.1 Snippets and binary rewriting

Dyninst provides an API for building “snippets,” which are architecture-independent

routines that can be inserted into a target binary. Snippets are created with a se-

ries of declarations; Dyninst provides a variety of snippet objects and they can be

nested. For example, an arithmetic operation snippet may contain several variable

snippet, and may itself be contained by an assignment statement. The API also

provides control flow snippets, such as conditional if-statements and the ability to

call other functions.

Figure 4.4 provides a simple example from our system’s source code. The

buildIncrementSnippet routine takes a variable name as an argument, and cre-

ates a Dyninst snippet that increments that variable. To build the snippet, the rou-

tine first creates a BPatch variableExpr snippet object that references the variable

named by the varname argument. The routine then creates a BPatch arithExpr

36

that increments the variable by a constant value (1), and finally another BPatch arithExpr

that assigns the new value back to the old location.

To insert the snippet, Dyninst overwrites the original function with a jump to

a newly-allocated space in memory. The code generator then emits the augmented

function, containing both the original code and compiled machine code representing

the instrumentation snippet.

4.3.2 Instrumentation vs. modification

As described in the previous section, the instrumentation capabilities of Dyninst

allow the user to insert predefined snippet code at any point in a program’s binary

code. Although the snippet code itself may change the program state if desired, the

insertion itself does not change program semantics. To ensure that the program’s

semantics are not inadvertently changed, the code generation system carefully an-

alyzes the context of an inserted snippet and generates code around the snippet

to save and load the program state. This state preservation code introduces some

overhead in addition to the overhead of the instrumentation, but in practice the

system is quite efficient, and the overhead of state preservation is usually far less

than the cost of the instrumentation itself.

Dyninst also provides a way to modify the program’s code in a way that does

not preserve the original program’s semantics. These capabilities are provided by

the PatchAPI component. The two most important capabilities are 1) the ability to

37

replacement instructon

original instructon in block

block splits

initalizaton cleanup

Figure 4.5: Basic block patching

insert raw machine code and 2) the ability to re-arrange basic blocks and the edges

between them. The ability to insert raw machine code (sometimes called “binary

blobs”) rather than Dyninst snippets allows our system to insert highly efficient,

custom machine code sequences, exploiting techniques that cannot be encoded in

Dyninst snippets. The ability to re-arrange basic blocks allows our system to remove

instructions from the original program and to replace them with newly-generated

ones. Both of these abilities are crucial to the implementation of the techniques

discussed in this dissertation.

4.3.3 Basic block patching

To modify a binary and insert our code snippets, we use Dyninst’s CFG-patching

API. This API allows us to split the original program’s basic blocks at arbitrary

38

points and to re-arrange the edges between blocks. To insert our code in the place of

an instruction, we first split the basic block that contains the instruction into three

blocks: 1) any instructions before the original instruction, 2) the original instruction,

and 3) any instructions after the original instruction. This segmentation allows us

to insert our own code and re-arrange the edges from the surrounding parts of the

original basic block to point to our new code instead of the original instruction.

Figure 4.5 illustrates this process.

After finishing the patching process, we use Dyninst’s binary rewriter to create

a new executable with the replaced code. The rewriter can also output modified

shared libraries, allowing us to instrument and to modify functions in external de-

pendencies. Thus, we can analyze third-party libraries even if the source code is not

available.

4.4 Extensible analysis framework

We designed the system for extensibility. We provide a single Analysis superclass

that specifies all of the interface methods required to create a new type of analysis.

These methods include three major query and callback routines for instrumentation,

as well as corresponding runtime routines. To create a new analysis, a developer

must create a new subclass of Analysis, implement these routines, then add some

glue code to the main mutator to inform it of the new analysis.

bool shouldPreInstrument(Semantics *inst);

39

bool shouldPostInstrument(Semantics *inst);

bool shouldReplace(Semantics *inst);

These routines should return true if the current analysis can act on the given

instruction. The mutator calls these functions for each enabled analysis while it-

erating over the target program’s component tree. The first two functions (pre-

and post-instrumentation) indicate that the analysis can add analysis code before

or after the given instruction. These additions should not modify the semantics of

the original program. The third function (replacement) indicates that the program

can replace the instruction entirely. This replacement could potentially modify the

semantics of the original program.

Snippet buildPreInstrumentation(Semantics *inst, BPatch_addressSpace app);

Snippet buildPostInstrumentation(Semantics *inst, BPatch_addressSpace app);

Snippet buildReplacementCode(Semantics *inst, BPatch_addressSpace app);

These routines are called by the mutator to build the instrumentation or modi-

fied machine code for insertion into a rewritten binary. These routines are separated

from the previous functions so that all decisions can be made about instrumentation

and modification before any code is generated. The Dyninst address space param-

eter is included so that the routines can allocate memory in the rewritten program

if desired. These routines should return a Dyninst snippet. This snippet could be

a standard API-built snippet as discussed in Section 4.3.1, or a binary blob snippet

as discussed in Section 4.3.2. Usually, the pre- and post-instrumentation snippets

are standard API snippets, while the replacement snippets are binary blobs. These

40

routines can also return null, in which case the mutator builds a default snippet,

which will make a function call at runtime to one of the runtime handlers:

void handlePreInstruction(Semantics *inst);

void handlePostInstruction(Semantics *inst);

void handleReplacement(Semantics *inst);

These routines are compiled into a shared library and called at runtime to han-

dle analysis tasks that the developer has chosen not to encode as a Dyninst snippet.

Using these library calls incurs high overhead, but allows for quicker development

and freedom from snippet API restrictions.

4.5 GUI viewers

The system includes graphical interfaces for viewing results and configuring analysis

runs. These interfaces were developed in Java using the Swing toolkit for ease of

development and cross-platform support. The latter feature is important because

it allows allows users of the system to view results on any platform, without being

constrained to the platform on which the analysis took place. This portability is

helpful in many HPC contexts where for technical reasons you cannot visualize

results on the same platform as the analysis. The interfaces have been tested on

Ubuntu Linux, Mac OS X, and Microsoft Windows.

41

Figure 4.6: Log viewer

4.5.1 Log viewer

Every instrumentation and analysis run generates a log file with information about

the results of the run.

Fig. 4.6 shows a screenshot of the log viewer interface. The lower portion

displays all events logged during execution. Each event is displayed in the list in

the lower-left corner, along with summary information about the event. Clicking

on an individual event reveals more information in the lower-right corner and also

loads the source code in the top window if the debug information and the source

42

sv_inp=yes

sv_inp_type=config

^ APPLICATION #1: 0 cg.W.x "cg.W.x"

^ MODULE #31: 0x400000 cg.f "cg.f"

^ FUNC #250: 0x404810 conj_grad "conj_grad"

^ BBLK #21841: 0x404bde

^s INSN #2877: 0x404be6 "pxor xmm1, xmm1 [cg.f:491]"

^s INSN #2878: 0x404bea "pxor xmm0, xmm0 [cg.f:491]"

^ BBLK #21842: 0x404bf2

^s INSN #2882: 0x404bfb "mulpd xmm2, xmm2 [cg.f:509]"

^s INSN #2883: 0x404bff "mulpd xmm3, xmm3 [cg.f:509]"

^s INSN #2884: 0x404c03 "addpd xmm1, xmm2 [cg.f:509]"

^s INSN #2885: 0x404c07 "addpd xmm0, xmm3 [cg.f:509]"

^s INSN #2888: 0x404c19 "mulpd xmm4, xmm4 [cg.f:509]"

^s INSN #2889: 0x404c1d "mulpd xmm6, xmm6 [cg.f:509]"

^d INSN #2890: 0x404c21 "addpd xmm1, xmm4 [cg.f:509]"

^d INSN #2891: 0x404c25 "addpd xmm0, xmm6 [cg.f:509]"

^ BBLK #21843: 0x404c2e

^s INSN #2892: 0x404c2e "addpd xmm1, xmm0 [cg.f:491]"

^s INSN #2895: 0x404c39 "addsd xmm1, xmm0 [cg.f:491]"

^ BBLK #21846: 0x404c4d

^s INSN #2898: 0x404c55 "mulsd xmm0, xmm0 [cg.f:509]"

^d INSN #2899: 0x404c5c "addsd xmm4, xmm0 [cg.f:509]"

Figure 4.7: Excerpt from an example configuration file

files are available. If possible, the interface also highlights the source line that

contains the selected instruction. The tab selector in the middle allows access to

other information, such as a view of event metrics aggregated by instruction. During

instrumentation, the system logs all instrumentation and modifications done to the

rewritten binary. During execution, the system can log instruction count information

as well as other analysis-specific metrics.

43

4.5.2 Configuration editor

Some of our analyses require a configuration file that specifies parameters for the

analysis. This file may also contain a representation of the target binary, similar

to the program structure discussed in Section 4.2 and illustrated in Figure 4.2.

The configuration file is stored in plain text for human-readability, and contains a

single line for each component with details about the desired instrumentation or

modification for that component. The file also contains general instrumentation

options in a standard [key]=[value] format.

Figure 4.7 contains excerpts from an example configuration file. The first two

lines specify general options (in this case, activating configuration-driven inplace

mixed-precision analysis). The other lines (all beginning with a caret symbol) cor-

respond to components in the original program. Each component is labeled with

its type (application, module, function, block or instruction), a unique ID, and

other information like address and disassembly. In this example, the instructions

are marked with an “s” for single precision or “d” for double precision.

Configuration files are generated by a utility included with the system, and

can be hand-edited if desired. We also designed a simple Java-based GUI to increase

the ease of viewing and modifying configuration files. Figures 4.8 and 4.9 show two

different views provided by this interface.

The first view (Figure 4.8) shows the program component tree parsed from

the target binary, as discussed in section 4.2. Each node in the tree represents

44

Figure 4.8: Configuration editor (instruction view)

Figure 4.9: Configuration editor (source code view)

45

a component of the hierarchy and reflects a single line in the configuration file.

The tree can be folded for easier viewing, and the interface provides the capability

to search for a particular component. The view also provides several options for

filtering the display and modifying the configuration. If present, the tree view can

also display profiling information in the form of instruction counts as well as local

(per function) or global execution percentages. The nodes are colored based on the

type of analysis or replacement that the configuration specifies for that program

component.

The second view (Figure 4.9) shows the program’s original source code. This

view collapses the instruction information from the first view and aggregates it

by source line. The view is only available if the target binary was compiled with

debugging information and if the original source files are available. The primary

text view provides the source code in a scrollable window, with indicators along the

left side that change color depending on the values from the current configuration

file. The left pane provides a list of all source files used to build the target binary

and some summary information about each of them.

Taken together, these interfaces provide a useful method of visualizing a pro-

gram’s control structure alongside configuration information. These interfaces are

crucial during both the initial setup and final visualization phases in several of the

analyses described in later chapters.

46

Original Program

Binary Modifcation

Basic
Block

Patching

In-place
Instruction
& Operand
Conversion

Confguration
Generator

Data Set Verifcation
Routine

Candidate Confgurations

Confguration
Evaluation

Recommended
Confguration

Candidate Programs

Figure 4.10: Overview of autotuning search process

4.6 Automatic search

While some of our analyses are intended to be run a single time on each target binary,

others have configurations or parameters that can be changed. These parameters

usually have some effect on a particular performance or evaluation metric, and

thus our system provides the ability to tune these parameters using an evaluation

loop. This loop executes many tests on variants of the original program, guided

47

by an optimization metric. This process is often called “empirical autotuning.”

Figure 4.10 shows the basic workflow for the process.

The basic search process is directed by a manager script, which executes ini-

tialization and profiling analyses before seeding a work queue with experimental

program configurations. The manager process then spawns worker processes, which

use the configurations from the work queue to build rewritten variants of the origi-

nal target binary. The worker processes then run the variants using a user-provided

evaluation script, recording the results. An evaluation routine examines these results

and determines whether to generate more configurations for the work queue. When

the work queue is exhausted, the worker processes exit and the manager process

builds a final configuration based on the results of the search loop. The results are

then presented to the user in a configuration file that represents the “best” combined

configuration found during the search.

This process is optimized in several generic ways:

• If a single variant is split into many new variants after testing, these variants

are combined into two aggregate variants. This aggregation represents a binary

search approach, and usually it reduces the total number of variants tested.

This behavior can be disabled if desired.

• In certain cases, the results of a test variant can be statically determined

without executing the variant. This situation can happen when the profiling

run reveals that the portion of the program in question is never executed,

48

or when the variant has been executed previously. The latter is especially

useful for performing incremental searches; i.e., using the cached results from

a shorter, shallow search to jump-start a longer, deeper search.

• The queue is usually sorted in descending order of execution percentage. This

sorting enforces that the variants that test more frequently-executed portions

of a program are given priority, because presumably these portions are of

higher interest to the developer. As a result, the search converges faster on

program execution time coverage.

4.7 Demonstration

In this section, we discuss several simple analyses created using the framework de-

scribed earlier in this chapter. Although they are not novel analyses, they show the

flexibility of the tool architecture presented in this dissertation to implement various

analyses.

4.7.1 Instruction count analysis

In this section, we describe a simple instruction count analysis for floating-point

instructions. This analysis resembles capabilities provided by most profiling tools,

but filters out all instructions except for floating-point arithmetic or data movement.

This provides a simple example of how to write an analysis using CRAFT, and

provides a useful piece of analysis that we later use in conjunction with other more

49

Benchmark Original time (s) Overhead (X)
bt.A 60.1 51.8
cg.A 2.9 8.4
ep.A 9.1 13.3
ft.A 5.2 28.0
lu.A 48.3 31.1
mg.A 2.3 36.0
sp.A 42.9 28.3
ua.A 28.1 25.8

Figure 4.11: NAS benchmark overhead for instruction count analysis

complex analyses.

The analysis allocates a counter variable in the rewritten binary for each

floating-point instruction. It then inserts pre-instruction instrumentation using a

Dyninst snippet similar to the one shown in Figure 4.4. The analysis also contains

output routines for reporting the results at the end of a run. The implementation for

this analysis (FPAnalysisCInst) requires fewer than 200 lines of C++ code. Fig-

ure 4.11 shows example performance overhead results for this analysis. The second

column shows the original wall time for the benchmark, and the third column shows

the slowdown incurred by instrumentation as a multiple of the original wall time.

For these single-core trials, the benchmarks were compiled using the Intel compiler

with -O3 optimization and the results were averaged over five runs each. The over-

heads are higher than one might expect for such a simple analysis, but the ease of

implementation shows that our framework provides expressiveness. Other analyses

in this dissertation include instruction counting components that are implemented

using binary snippets and have lower overhead.

50

4.7.2 NaN detection analysis

In this section, we describe how CRAFT can be used to detect Not-a-Number (NaN)

values while a program is running. A NaN value is a specially-tagged floating-point

value that generally indicates the occurrence of some kind of error during floating-

point computation, such that the result cannot be represented in the current format.

Sometimes these values arise as part of intended computation and are handled by the

program itself; at other times they are considered anomalies and require debugging.

In either case, developers benefit from an analysis that can detect NaN numbers

when they occur, logging them without stopping execution. We implemented such

an analysis using CRAFT by inserting a call to a shared library after every floating-

point operation. The shared library examines the output of the operation and

creates a log entry if a NaN value is detected.

Figure 4.12 shows example performance overhead results for this analysis. For

these single-core trials, the benchmarks were compiled using the Intel compiler with

-O3 optimization and the results were averaged over five runs each. The overhead

for this analysis is generally much larger than the overhead for the analysis discussed

in Section 4.7.1 because this analysis makes a call to an external analysis library.

Some overhead is also due to event logging, because the overhead is related to the

number of NaN values detected.

51

Benchmark Original time (s) Overhead (X) NaNs detected
bt.A 61.5 805.0 18,021,075
cg.A 2.7 183.3 311,044
ep.A 9.3 143.8 0
ft.A 5.1 346.7 2,978,199
lu.A 48.9 524.0 26,131,409
mg.A 2.5 439.2 1,770,274
sp.A 49.0 363.8 21,914,446

Figure 4.12: NAS benchmark overhead for NaN detection analysis

4.7.3 Range tracking analysis

In this section, we describe how CRAFT can be used to implement the range-

tracking analysis described by Brown et. al. [21] For this analysis, we insert in-

strumentation after each operation. The instrumentation examines the result of the

operation, comparing it against the minimum and maximum values already seen for

that instruction and replacing those values if it is the new minimum or maximum.

The output of the analysis is a list of the minimum and maximum values for each

instruction. These results inform developers of the dynamic range of each instruc-

tion. A low dynamic range indicates that the instruction may be a good candidate

for lower precision or fixed-precision arithmetic.

Initially, we implemented this analysis using the same technique as the NaN-

detection analysis, making a call to a shared library after each floating-point op-

eration. The shared library contained a routine that compared the results of an

operation with previous minimum and maximum values. However, this approach

proved to have a high overhead, so we decided to use binary blob snippets as dis-

cussed in Section 4.3.2. This alternate approach reduced the overhead dramatically,

52

Benchmark Original time (s) Overhead (X)
bt.A 62.2 33.5
cg.A 2.5 6.5
ep.A 9.3 4.9
ft.A 5.3 9.1
lu.A 49.5 15.1
mg.A 2.4 12.3
sp.A 42.1 11.9
ua.A 33.1 12.6

Figure 4.13: NAS benchmark overhead for range tracking analysis

and is the approach used for the performance results in this section.

Figure 4.13 shows example performance overhead results for this analysis. For

these single-core trials, the benchmarks were compiled using the Intel compiler with

-O3 optimization and the results were averaged over five runs each. The overheads

for this analysis are generally lower than the analyses from Sections 4.7.1 or 4.7.2

because this analysis is implemented using the binary blob snippet format. These

overheads could potentially be reduced even further with better cache locality, be-

cause every operation in the original program is now accompanied by at least two

extra memory accesses (for the min/max comparisons).

4.8 Conclusion

We have described CRAFT, a general framework for runtime binary floating-point

program analysis. We have shown the value of this framework by presenting several

useful demonstration analysis techniques. This framework serves as a base for all

other analyses presented in this dissertation.

53

54

Chapter 5

Cancellation Detection

5.1 Overview

Cancellation was introduced in Section 2.5, and defined as the subtraction of two

numbers of similar magnitude. Such subtraction causes a loss of significant dig-

its that may negatively affect the accuracy of future computations or signal that an

unacceptable loss of precision has already occurred. This chapter discusses our tech-

niques for detecting cancellation as well as our implementation of these techniques

in the CRAFT framework. We also present various results and benchmarks.

5.2 Techniques

Our approach involves examining the runtime values of operands to detect cancel-

lation. We build an augmented version of the original program, inserting instru-

mentation before each addition and subtraction instruction. At runtime, this in-

strumentation examines the values of the instruction’s operands and compares their

relative magnitudes. If cancellation is detected, the system stores information re-

garding the cancellation in a log. This section describes our techniques for inserting

the instrumentation and performing the runtime analysis. We also describe a GUI

viewer for exploring and analyzing this log after the program is finished running.

55

5.2.1 Binary instrumentation

Our analysis detects and reports cancellation events, which are defined as follows.

Assume that an addition or subtraction operation involves two values, stored in

floating-point representation as v1 = (sig1 · 2exp1) and v2 = (sig2 · 2exp2). The result

of the operation is stored as vr = v1 + v2 = (sigr · 2expr). If the operation was

subtraction and the operands have the same sign, or if the operation was addition

and the operands have opposite signs, then cancellation is possible. Our technique

compares the binary exponents of the operands (exp1 and exp2) as well as the result

(expr). If the exponent of the result is smaller than the maximum of those of the

two operands (i.e., expr < max(exp1, exp2)), a cancellation event has occurred. This

conditional test works regardless of the precision level of the individual instruction

(i.e., single vs. double precision).

Further, we define the priority as max(exp1, exp2) − expr, a measure of the

severity of a cancellation. The analysis ignores any cancellations under a given

minimum threshold. Unless otherwise noted, we use a threshold of ten bits (approx-

imately three decimal digits) for the results in this dissertation.

To implement this analysis, we instrument every floating-point addition and

subtraction operation in a target program, augmenting it with code that retrieves the

operand and result values at runtime. After each operation, the system checks for

the cancellation criteria described above. If the analysis determines that cancellation

has occurred and that the priority is above the reporting threshold, it saves an entry

56

to a log file. This entry contains information about the instruction, the operands,

and the current execution stack. The stack trace results are more informative if

the original executable was compiled with debug information. The analysis also

maintains basic instruction execution counters for the instrumented instructions.

Because many programs produce thousands or millions of cancellations, re-

porting the details of every single one is impractical and unhelpful. Instead, we

use a sample-based approach. Unfortunately, the number of cancellations usually

differs considerably between various instructions. Some instructions may produce

fewer than ten cancellations during a single run while others produce millions. Thus,

a uniform sampling strategy does not work, so we use a logarithmic sampling strat-

egy. This strategy reports the first ten cancellations for each instruction, then every

tenth cancellation of the next thousand, then every hundred thousandth cancellation

thereafter. We found that this strategy produces an amount of output that is both

useful and manageable. We emphasize that all cancellations are counted and that

the sampling applies only to the logging of detailed information such as operand

values and stack traces.

5.2.2 Results viewer

We have also created a log viewer that provides an easy-to-use interface for exploring

the results of an analysis run. This viewer shows all events detected during program

execution with their associated operands and stack traces. It also aggregates count

57

Figure 5.1: Sample log viewer results

and cancellation results by instruction into a single table.

The viewer also synthesizes various results to produce new statistics. Along

with the raw execution and cancellation information, it also calculates the cancella-

tion ratio for each instruction, which we define as the number of cancellations divided

by the number of executions. This ratio gives an indication of how cancellation-prone

a particular instruction is. The viewer also calculates the average priority (number

of canceled bits) for all cancellations at each instruction. This average gives an

indication of how severe the cancellations induced by that instruction were.

Figure 5.1 shows a representative screenshot of the log viewer interface. The

58

Benchmark Original time (s) Overhead (X)
cg.A 2.5 114.0
ep.A 9.1 69.9
ft.A 5.1 208.5
lu.A 48.9 243.1
mg.A 2.4 428.4

Figure 5.2: NAS benchmark overhead for cancellation detection analysis

Name Original Overhead (X)
soplex 1s 10
povray 2s 85
lbm 20s 70
milc 44s 75
namd 95s 160

Figure 5.3: SPEC benchmark overhead for cancellation detection analysis

lower portion displays all events logged during execution. Each event is displayed in

the list in the lower-left corner, along with summary information about the event.

Clicking on an individual event reveals more information in the lower-right corner

and also loads the source code in the top window if the debug information and

the source files are available. If possible, the interface highlights the source line

containing the selected instruction. The tab selector in the middle allows access to

other information, such as a view of cancellations aggregated by instruction.

5.3 Benchmarking

Figures 5.2 and 5.3 show performance overhead results for this analysis. For the

NAS single-core trials, the benchmarks were compiled using the Intel compiler with

-O3 optimization and the results were averaged over five runs each. We used the

59

“A”-sized problems for the NAS benchmarks. For the SPEC CPU 2006 trials, the

benchmarks were compiled using GCC and the default compilation options, and

tested using the provided “test” data sets. We used these smaller sets so that we

could complete the analyses in a reasonable time. The overheads vary depending

on the amount of addition and subtraction operations in the benchmark, but are

generally between 10–250X. This overhead is significant, but it is not impractical

for occasional analysis.

5.4 Results

In this section, we discuss some of the results obtained by applying cancellation

detection analysis to various applications and problems.

5.4.1 Simple cancellation

Our first test case is a simple example of cancellation. This sort of example is well-

known to numerical analysts, with many known workarounds. Here it serves as an

introductory demonstration of our techniques.

y =
1− cos x

x2
(5.1)

Figure 5.4 (left side) shows the graphical representation of the function given

in Equation 5.1. This function is undefined at x = 0 because this triggers a division

by zero, but as it approaches that point the function value becomes infinitely close

60

Figure 5.4: Graphs of Equation 5.1: at normal zoom (left) and zoomed to the area
of interest (right).

to 1/2. In floating point, the subtraction operation in the numerator results in can-

cellation around x = 0 because cos 0 = 1. This cancellation causes the divergent

behavior shown in Figure 5.4 (right side). The jagged appearance of the divergence

is a result of the discretization of the cosine function near machine epsilon. The

preferred way to avoid this behavior is to rewrite the function to avoid the cancel-

lation. In this case, trigonometric identities allow it to be written to use the sine

function, which does not suffer from the same cancellation issues at x = 0.

We wrote a simple program that evaluates this function at several points ap-

proaching x = 0 from both sides, and ran our cancellation detector on it. The

analysis reported all cancellation events that we expected. The output log included

details about the instruction, the operands, and the number of binary digits can-

celed. Figure 5.1 shows a screenshot of the log viewer interface after analysis.

This simple example confirmed our expectations and demonstrates how our

analysis works. The highlighted message reveals a 51-bit cancellation in the sub-

traction operation on line 19 of catastrophic.c. The two operands involved were

61

two XMM registers with values that were both close to 1.0 (the first was exact and

the second diverged around the sixteenth decimal digit). Selecting the other events

reveals similar details for those cancellations. Being able to examine cancellation at

this level of detail is valuable in analyzing the numerical stability of a floating-point

program. In this case, the results alert us that that the results of the subtraction

operation on line 19 may cause a cancellation of many digits. Because the resulting

value is later used on the same line to scale another value, we may deduce that this

code needs to be rewritten to avoid the loss of significant digits.

5.4.2 Approximate nearest neighbor

To investigate the ability of our analysis to detect change in the cancellation behavior

of a program based on input data, we examined an approximate nearest-neighbor

software library called ANN [12]. This computational geometry library takes as

inputs 1) a series of data points and 2) a series of query points. The software then

finds the nearest data point neighbor (by Euclidean distance) to each query point

using an approximate algorithm. This program is of interest to researchers in high-

performance computing (HPC) as well as computational geometry. Algorithms like

ANN are often used in HPC for autotuning, image processing (classification and

pattern recognition), and DNA sequencing.

We ran this program instrumented with our cancellation analysis twice with

different sets of points. Each set included 500,000 data points and 5,000 query

62

points. The first data set was composed of points randomly generated uniformly

throughout the square defined by x- and y-coordinate ranges of [−1, 1]. The second

data set was composed of points randomly generated close to the same square (i.e.,

most x- and y-coordinates were nearly identical, and close to either −1 or 1). The

expectation was that the second input would lead to many more cancellations for

certain instructions in the distance calculation, because the coordinates are much

closer.

This expectation was confirmed. The first data set caused cancellation in less

than 1% of the executions of the instructions of interest, and the average number

of canceled bits was less than 15. The second data set caused cancellations in 100%

of the executions for the same instructions, and the average number of canceled

bits was 46. These differing results show that the analysis can expose differences in

floating-point error on the same code resulting from varying data sets, which static

analysis techniques cannot do.

5.4.3 Gaussian elimination

The ability of cancellation detection to shed light on a particular algorithm has

limitations, for two principal reasons. First, almost all algorithms contain a back-

ground of trivial cancellations that can mask more significant ones. Second, some

algorithms may conceal a significant cancellation under a sequence of small, harm-

less looking cancellations. In this section, we examine these limits by looking at two

63

1. perm = 1:n

2. for k=1:n

3. [maxak, kpvt] = max(abs(A(k:n,k)));

4. A([k,pvt],:) = A([pvt,k],:);

5. perm([k,pvt]) = perm([pvt,k]);

6. A(k+1:n,k) = A(k+1:n,k)/A(k,k)

7. A(k+1:n,k+1:n) = A(k+1:n,k+1:n)

- A(k+1:n,k)*A(k,k+1:n);

8. end

Figure 5.5: Classical Gaussian elimination with partial pivoting

1. for k = 2:n

2. A(k,1:k-1) = A(k,1:k-1)/triu(A(1:k-1,1:k-1));

3. A(1:k-1,k) = (tril(A(1:k-1,1:k-1),-1)

+ diag(ones(1,k-1)))*A(1:k-1,k);

4. dot = A(k,1:k-1)*A(1:k-1,k);

5. A(k,k) = A(k,k) - dot;

6. end

Figure 5.6: Bordered algorithm for Gaussian elimination


1.00000 · 10−03 1.00000 · 10+00 1.00000 · 10+00 1.00000 · 10+00

1.00000 · 10+00 −7.92207 · 10−01 −3.57117 · 10−02 −6.78735 · 10−01

1.00000 · 10+00 −9.59492 · 10−01 −8.49129 · 10−01 −7.57740 · 10−01

1.00000 · 10+00 −6.55741 · 10−01 −9.33993 · 10−01 −7.43132 · 10−01


(a) −1.00079 · 10+03 −1.00004 · 10+03 −1.00068 · 10+03

−1.00096 · 10+03 −1.00085 · 10+03 −1.00076 · 10+03

−1.00066 · 10+03 −1.00093 · 10+03 −1.00074 · 10+03


(b)[

−6.40000 · 10−01 9.00000 · 10−02

−1.02000 · 10+00 −1.90000 · 10−01

]
(c)

Figure 5.7: Example of cancellation in Gaussian elimination

64

issues in Gaussian elimination: 1) the instability of classical Gaussian elimination

without pivoting and 2) the ability of Gaussian elimination to detect ill conditioning

in a positive definite matrix.

Matlab code for Gaussian elimination with partial pivoting is given in Figure

5.5. Because Matlab is an interpreted language, we also wrote a C version of this

code so that we could apply our binary analysis. The result of this code is a unit

lower triangular matrix

L = tril(A,−1) + diag(ones(1, n))

and an upper triangular matrix U = triu(A) such that

A(perm, :) = L ∗ U.

The purpose of the partial pivoting in lines 3–5 of Figure 5.5 is nominally to

avoid division by zero in line 6. However, if A(k,k) is small, the algorithm will

produce inaccurate results, which cancellation will signal. Consider what happens

when we omit lines 3–5 in Figure 5.5 and apply it to the matrix shown in Fig-

ure 5.7(a). After line 6 the elements of A(2:4,1)/A(1,1) are all 103, so that we

can expect a large matrix when we compute the Schur complement A(2:4,2:4).

Indeed, we get the matrix shown in Figure 5.7(b). Because all numbers in the Schur

complement are approximately −103, we can expect cancellation when we compute

the next Schur complement, as shown in Figure 5.7(c). The numbers in this matrix

are back to the original magnitude, but as the trailing zeros indicate, they now have

65

at most two digits of accuracy. The computations for this example were done in

six-digit decimal floating-point arithmetic using the Matlab package Flap [3].

The cancellation itself introduces no significant errors. Rather, the loss of

precision occurred in passing from the data shown in Figure 5.7(a) to that of Fig-

ure 5.7(b). The subtraction of 103 from the elements of A(2:4,2:4) caused about

four digits to be lost in each of the elements. In this way, cancellation is a lot like

a null pointer dereference, where the null pointer exception is not the problem, but

rather the notification of an earlier error.

To see how well cancellation due to lack of pivoting was detected by our system,

we performed the following experiment. We generated a matrix A of order n that

had a pivot of size 10−s at stage p of the elimination. In the example above, n = 4,

s = 3, and p = 1. We then ran the elimination and counted cancellations. We set

the threshold (the number of bits required for a cancellation to register) at log2 10s−2

rounded to the nearest integer greater than zero. Thus, we regard cancellations of

greater than s − 2 decimal digits as significant. As the threshold is increased over

this value we increasingly risk missing cancellations due to the bad pivot. As it is

decreased we increase the risk of including cancellations not due to the pivot (i.e.,

background cancellations).

We can compute the number of cancellations that we expect due to the bad

pivot by determining the dimensions of the array in which the cancellation will

occur. Our array is of order n− p− 2, and so the expected number of cancellations

66

(n− p− 2)2.

We can also estimate the background cancellation. The matrix A was gener-

ated in such a way as to dampen cancellation before k = p. If we then stop the

process after the cancellation (at k = p + 1) and if p is not large, the cancellation

count will be a good estimate of the cancellation due to the bad pivot.

The results are summarized in Figure 5.8. The rows labeled “Count” give

the cancellation counts for the entire elimination while the rows labeled “Trunc”

give the count for the truncated elimination. The rows labeled “Est” contain the

cancellation count estimated by the formula (n− p− 2)2.

In the first column, the counts considerably overestimate the amount of cancel-

lation due to the bad pivot. This overestimation is because of the small value of the

threshold. In the remaining three columns, all counts are in reasonable agreement.

This suggests that if care is taken to keep the threshold high enough, one can detect

the effects of a reasonably small pivot. A potential application for this method is to

sparse elimination, where the ability to pivot is diminished; cancellation can inform

the choice of where and when to pivot.

Our second example concerns the ability of Gaussian elimination to detect

ill-conditioning. To avoid the complications of pivoting, we worked with positive

definite matrices, for which pivoting is not required to guarantee stability.

Let us suppose that we have a positive definite matrix A whose eigenvalues

descend in geometric progression from one to 10−logkap, where logkap is a constant

67

log(size) −2 −4 −6 −8
Threshold 1 7 13 17
n = 10
Count 66 37 37 34
Trunc 55 37 37 34
Est 25 25 25 25
n = 15
Count 225 123 122 122
Trunc 154 122 122 122
Est 100 100 100 100
n = 20
Count 663 247 252 257
Trunc 298 245 252 257
Est 225 225 225 225
n = 25
Count 1227 394 423 441
Trunc 447 381 423 441
Est 400 400 400 400

Figure 5.8: Cancellation for unpivoted Gaussian elimination

that we use to manipulate the conditioning of the matrix. In this context, the

matrix A has the condition number κ = ‖A‖‖A−1‖ = 10logkap. When Gaussian

elimination computes the LU-factorization of A, the diagonals of U generally track

the eigenvalues of A. Because the elements of A are of order one, the diagonals of

U (which become progressively smaller) are calculated with cancellation.

One opportunity for analysis here is that Gaussian elimination has many vari-

ants. Consider, for example, the code in Figure 5.6 that does Gaussian elimination

by bordering; after step k, A(1:k,1:k) contains the LU factorization of the original

submatrix A(1:k,1:k). Numerically the algorithms are almost identical, even to

the effects of rounding error. However, they exhibit cancellation in different ways.

68

1 2 3 4 5 6 7 8 9 10
10−15

10−10

10−5

100
Classical Gaussian Elimination

1 2 3 4 5 6 7 8 9 10
10−15

10−10

10−5

100
Bordered Gaussian Elimination

Figure 5.9: Diagonal elements for classical (left) and bordered (right) Gaussian
elimination

threshold 1 2 3 4 5
logkap C B C B C B C B C B

5 14 8 8 7 1 6 0 5 0 4
10 29 8 23 8 16 7 11 7 3 6
15 39 9 33 9 27 9 21 8 17 8

Figure 5.10: Cancellation counts for classical (C) and bordered (B) Gaussian elimi-
nation

The plots in Figure 5.9 contain histories of the diagonal elements of the reduction of

the matrix A described above with n = 10 and logkap = 15. The x-axis is the step

in the elimination and the y-axis is the value of the diagonal element in question.

The difference in the behaviors of the two methods is remarkable. For classical

Gaussian elimination, the first diagonal remains constant during the first iteration

while the others decrease by roughly the same amount. In the second iteration, the

second diagonal peels off and remains constant, while the others decrease. Thus,

in the ith iteration, the ith diagonal becomes constant while all lower diagonals

continue to decrease. In the end, each diagonal contains a rough approximation to

69

its corresponding eigenvalue. In the border variant, on the other hand, all diagonals

remain constant during the ith iteration except the ith value, which drops to its

final value and remains constant thereafter. Thus each diagonal makes only one

transition (from its initial value to its final value). The initial and final values for

both methods are identical. To summarize, the classical method has many small

cancellations while the bordered method has fewer and larger cancellations even

though they end up at the same values.

These results suggest that cancellation detection works better for the bordered

variant. Figure 5.10 contains counts for both variants of the cancellation detection

threshold and logkap. Counting the drops in the graph for the border method, we

see that our detection should register nine cancellations, which it does unless the

threshold is too high or logkap is too small. Ideally, classical Gaussian elimination

should register 45 counts: nine in the first step, eight in the second, seven in the

third, etc. However, a look at the plot shows that the sizes of the cancellations

varies irregularly, and small ones may fall by the wayside due to being under our

priority threshold. Only with logkap equal to 15 and a threshold of one bit, does it

come near 45.

From these experiments, we learn several things. First, varying the threshold

is important. Most computations have a background of small cancellations, which

overwhelms more important cancellations if the threshold is set too low. Trying dif-

ferent thresholds may give a better view of what is happening. Second (and corollary

70

to the first), cancellations near the background cannot be made to stand out. In

particular if a large cancellation is obtained by a sequence of smaller cancellations,

it may go undetected. Classical Gaussian elimination in the second experiment is

an example. Third, cancellation detection is not a panacea. It requires interpreta-

tion by someone who is familiar with the algorithm in question. Nonetheless, the

experiments also suggest that cancellation detection, properly employed, can find

trouble spots in an algorithm or program.

Finally, we acknowledge that not all cancellations are bad. A good example is

the computation of a residual to determine the convergence of an iterative method.

Because a small residual means convergence, a large cancellation encountered while

computing it indicates that the algorithm has computed an accurate answer.

5.4.4 NAS and SPEC benchmarks

To show our framework’s ability to analyze larger programs, we also ran it on the

SPEC CPU2006 benchmark suite [6] and the NAS Parallel Benchmarks [14]. Sec-

tion 5.3 shows the overhead results for these experiments.

One interesting discovery was a section in the “povray” (ray-tracer) SPEC

benchmark where a color calculation showed cancellation. In this routine, given

values were subtracted from 1.0 to give percentage components in red, green, and

blue. Thus, complete cancellation in all three variables indicates the color black,

and had nothing to do with numerical accuracy.

71

The most common result was that most cancellations occurred in a few of the

floating-point instructions: usually fewer than twenty instructions. Often, there

were several instructions that caused cancellations 100% of the time. Without

domain-specific knowledge, we do not know whether these cancellations indicate

a larger problem in the code.

5.5 Conclusion

We have described a technique for detecting cancellation events in floating-point

programs. We have also presented an implementation of this technique using the

CRAFT framework. We have demonstrated the usefulness and overhead of the anal-

ysis on several applications and benchmarks. This work provides runtime analysis

capability and insights regarding cancellation that were not previously available.

Later work by others [19] expands on cancellation detection, incorporating more

information to make a better decision about which instructions are malignant and

which are benign.

72

Chapter 6

Mixed-precision Replacement

6.1 Overview

As described in Section 3.5, mixed-precision configurations hold much promise for

improving performance while maintaining acceptable levels of accuracy. Unfortu-

nately, building prototype mixed-precision configurations can be time-consuming for

developers. Additionally, it is not always obvious which parts of a program must be

run in double-precision and which parts can be run in single-precision. This chap-

ter describes our techniques that build mixed-precision configurations of a program

automatically, as well as our implementation of these techniques using the CRAFT

framework. The goal is to provide insight regarding which parts of a program can

be replaced with single-precision arithmetic. We do not intend to achieve a perfor-

mance gain while running the analysis, but rather to provide a rapid prototyping

environment as well as a system for automated recommendations for mixed-precision

adaptation.

Our approach starts with a target application written in double-precision arith-

metic as well as a user-provided script that provides a verification routine for auto-

mated testing. The verification routine should exercise the program using represen-

tative data sets or inputs, and provide some formatted output indicating whether

73

the results are correct. Our system automatically generates various precision-level

configurations and uses the verification routine to determine which configurations

are acceptable.

Our mixed-precision configuration implementation is built on the CRAFT

framework, and Figure 6.1 shows an overview of the binary editing process. We pro-

vide a Dyninst-based mutator that accepts a target double-precision program and a

mixed-precision configuration. The configuration contains a mapping between the

instructions in a program and the desired precision level for that instruction. The

output of the CRAFT mutator is a rewritten version of the original binary where the

desired portions of the program have been replaced by single-precision arithmetic.

This mixed-precision version can be executed the same way as the original.

We also provide a search routine that determines how much of the original pro-

gram can be run in single precision while still passing a user-provided verification

test. The search uses an empirical autotuning loop, testing many different config-

urations and observing the results. The final output is a report that details which

parts of the program can be individually replaced with single-precision arithmetic

while still passing verification.

74

Original
Binary

(“mutatee”)

Modified
Binary

CRAFT

(“mutator”)

Double
Precision

Mixed
Precision

Mixed
Config Configuration

(parser & GUI)

Figure 6.1: Overview of binary editing process

75

6.2 Techniques

6.2.1 Mixed-precision configurations

Our “precision configurations” provide a method of communicating which parts of a

program should be executed in single precision and which parts should be executed

in double precision. A configuration is a series of mappings:

p→ {single, double, ignore}

The mappings involve all points p ∈ Pd, where Pd is the set of all double-

precision instructions in program P . Because the program structure contains nat-

ural parent-child containment aggregations (i.e., instructions are contained in basic

blocks, which are contained in functions), the configuration allows decisions to be

made about these aggregate structures, overriding any decisions about child mem-

bers. The configuration controls the analysis engine as follows:

• If the mapping for pi is single, then the opcode of pi will be replaced with

the corresponding single-precision opcode, the inputs will be cast to single

precision before the operation, and the result will be stored as a replaced

double-precision number with a flag.

• If the mapping for pi is double, then the opcode of pi will not be replaced, the

inputs will be cast to double precision before the operation, and the result will

be stored as a regular double-precision number.

76

• If the mapping for pi is ignore, then instruction pi will be ignored entirely; this

option is useful for flagging unusual constructs that manipulate floating-point

numbers with bitwise operations, such as random number generation routines.

We use a simple, human-readable exchange file format to store these configu-

rations (Figure 6.2 shows an example). The file is plain text and lists the program’s

functions, basic blocks, and instructions, using indentation to improve readability.

The list of these structures is generated using a simple static analysis that traverses

the program’s control flow graph. The first column contains flags such as “d” (dou-

ble precision), “s” (single precision), or “i” (ignore) that control the precision of

the code structures during instrumentation. The format supports simple toggling

of larger aggregate structures like functions. If an aggregate entry has a flag in the

first column, it overrides any flags specified for its children; if the aggregate entry

has no flag, each child’s flag applies individually.

In the example configuration shown in Figure 6.2, certain instructions from

each function have been selected for replacement with single precision. In addi-

tion, the function split() has a single-precision replacement flag, overriding the

individual flags of all instructions in that function.

We also built a GUI (shown in Figure 6.3) that displays a tree corresponding to

the program structure, allowing a developer to adjust a configuration quickly without

having to edit a lengthy text file. The GUI also allows the developer to visualize the

results of our automatic search to understand what parts of the code can be changed

77

FUNC01: main()

BBLK01

s INSN01: 0x6f45ce "addsd %xmm1, %xmm0"

d INSN02: 0x6f45d7 "mulsd %xmm2, %xmm1"

s INSN03: 0x6f45da "subsd %xmm1, %xmm0"

d INSN04: 0x6f45e8 "mulsd %xmm2, %xmm1"

FUNC02: solve()

BBLK02

s INSN05: 0x6f7abe "addsd %xmm1, %xmm0"

s INSN06: 0x6f7ac6 "addsd %xmm1, %xmm0"

s INSN07: 0x6f7aca "addsd %xmm1, %xmm0"

d INSN08: 0x6f7ad3 "mulsd %xmm1, %xmm2"

s INSN09: 0x6f7ada "addsd %xmm1, %xmm0"

BBLK03

d INSN10: 0x6f7aee "mulsd %xmm1, %xmm2"

d INSN11: 0x6f7af4 "subsd %xmm1, %xmm0"

d INSN12: 0x6f7af9 "mulsd %xmm1, %xmm2"

s FUNC03: split()

BBLK04

s INSN13: 0x6f8248 "subsd %xmm1, %xmm0"

d INSN14: 0x6f824c "divsd %xmm2, %xmm1"

d INSN15: 0x6f824f "divsd %xmm2, %xmm1"

Figure 6.2: Example replacement analysis configuration file

to single precision. The color green indicates a single-precision instruction and the

color red indicates a double-precision instruction. If debug information is available,

the GUI can also present a view that shows the corresponding source code location

for a particular instruction. This capability aids in the conversion of particular code

regions to single precision.

6.2.2 Binary modification

Our general strategy for implementing mixed-precision configurations in existing bi-

naries is to replace some double-precision instructions selectively with their single-

precision equivalents, and to replace some double-precision operands with their

single-precision equivalents in memory. These narrowing conversions (double preci-

sion to single precision) allow our analysis to store the new (lower-precision) value

78

Figure 6.3: Graphical configuration editor, viewing a configuration for one of the
NAS benchmarks

in the same location as the old value. Thus, the 32 bits of the new single-precision

value are stored in the lower 32 bits of the original 64-bit double-precision register

or memory location. The remaining high 32 bits are set to a specific bit pattern

(0x7FF4DEAD) to indicate to future instructions that this value has been replaced.

The first four hex digits (0x7FF4) encode a NaN, ensuring that the program never

silently propagates incorrect values. The second four hex digits (0xDEAD) form a

common human-readable value that is easy to spot in a hex dump. Figure 6.4 il-

lustrates this process. This technique works for single values as well as “packed”

floating-point values in 128-bit XMM registers.

To implement a replaced instruction, our framework inserts a streamlined “bi-

79

downcast conversion

03264 16 8 4

Double

03264 16 8 4
Replaced
Double

7 F F 4 D E A D

Non-signalling NaN 032 16 8 4

Single

Figure 6.4: In-place downcast conversion and replacement

nary blob” snippet of machine code instructions. This snippet checks the operands,

replacing them if necessary, and runs the original instruction in the desired precision.

The desired precision for each floating-point instruction can be specified by a con-

figuration file, as described in Section 6.2.1. These new machine code instructions

are generated by a simple snippet compiler, which implements routines for building

flag checks and for re-writing instruction opcodes in lower precisions. Figure 6.5

shows the template for these snippets in the case where we emulate the instruction

in single precision.

Because most of the snippet operations are integer instructions, the snippets

impose a minimal overhead, and the downcast operation is performed only when the

input has not already been replaced. To avoid hard-to-find synchronization bugs or

attempting to write to unwritable memory, the analysis copies any memory operands

into a temporary register, and modifies the replaced instruction to use only register

operands. Once we replace any instruction with its single-precision equivalent, we

must usually replace all floating-point instructions with our snippets, even the ones

80

push %rax

push %rbx

<for each input operand>

<copy input into %rax>

mov %rbx, 0xffffffff00000000

and %rax, %rbx # extract high word

mov %rbx, 0x7ff4dead00000000

test %rax, %rbx # check for flag

je next # skip if replaced

<copy input into %rax>

cvtsd2ss %rax, %rax # down-cast value

or %rax, %rbx # set flag

<copy %rax back into input>

next:

<next operand>

pop %rbx

pop %rax

<replaced operand> # e.g. addsd => addss

<fix flags in any packed outputs>

Figure 6.5: Single-precision replacement template

that are to be performed in double-precision. This change is necessary even if we do

not replace a particular instruction with its single-precision equivalent, because we

must add a check and possible upcast if any of the incoming operands were replaced

with single precision by an earlier operation.

To modify the binary and to insert our code snippets, we use Dyninst’s CFG-

patching API as described in Section 4.3.3.

6.2.3 Automatic search

We developed an automatic search technique that attempts to replace as much of the

program as possible using a breadth-first search through the entire program’s con-

figuration space. The basic search algorithm is described in Section 4.6. Figure 6.6

shows the specific autotuning process for mixed-precision analysis. For this analysis,

the tuning parameters are the precision levels of all floating-point operations in the

81

Original Program Mixed-Precision
Analysis System

Binary Modification

Basic
Block

Patching

In-place
Instruction
& Operand
Conversion

Configuration
Generator

Data Set Verification
Routine

Mixed-Precision Configurations

Configuration
Evaluation

Recommended
Configuration

Mixed-Precision Programs

Figure 6.6: Overview of mixed-precision search process

82

target binary, and the optimization metric to be maximized is the percentage of the

program that can be replaced by single-precision arithmetic.

Because every instruction could be executed in either single- or double-precision

arithmetic, the search routine can build 2n total unique configurations, where n is

the number of floating-point instructions in the program. Each instruction that

could be replaced is called a “candidate” for replacement search. Usually, every

floating-point computation instruction is a candidate. Pure data movement instruc-

tions (without size conversions) are usually ignored because they do not effect the

precision of the numbers. Because evaluating each test configuration requires a full

program run, exhaustively testing every configuration is not feasible. Our breadth-

first search strategy exploits control structure in programs for a faster search.

Our search maintains a work queue of possible configurations, testing them one

by one and adding to the final configuration any individual configurations that pass

the application-defined verification process. This process is highly parallelizable, and

the system can launch many independent tests if cores are available. The search

first generates configurations for each module in the program. Each configuration

replaces the entire corresponding module with single precision, leaving the rest of

the program in double precision. If any of these module-level configurations fail

to pass verification, the routine begins to descend recursively through the program

structure, testing function-level configurations before continuing to basic blocks and

finally individual instructions as necessary. The recursion terminates when any

83

structure (module, function, or block) is replaced and passes verification, or when

the search tests an individual instruction (which cannot be further subdivided). The

search can also be configured to stop at basic blocks or functions, providing faster

convergence with coarser results.

Performing a brute-force breadth-first search through the program’s struc-

ture, our system finds the coarsest granularity at which each part of the program

can successfully be replaced by single precision. The routine then assembles a “fi-

nal” configuration by taking the union of all previously-found successful individual

configurations. This configuration is also tested automatically, although it may not

pass verification as-is because the precision levels of various instructions are not

independent. In other words, decreasing precision in one part of a program may

impact the sensitivity of other portions. However, the final configuration serves as

a starting point for the developer to investigate because it represents an indicator

regarding which parts of the original program can be individually replaced by single

precision while maintaining the original desired level of accuracy.

6.2.4 Memory-based analysis

In addition to the core computation-based analysis, we also built a memory-centric

analysis. This mode focuses on identifying specific memory locations and structures

that could be stored in single precision rather than double precision, resulting in a

space savings. In this mode, all computation is still done in double-precision; only

84

the memory writes are replaced. The motivation for this analysis lies in the observa-

tion that memory bandwidth is quickly becoming a large issue in high-performance

computation. In fact, industry experts expect that data movement and storage bot-

tlenecks will outweigh computational bottlenecks in exascale computing [30]. Our

analysis attempts to find the largest subsections of a program’s memory that can be

stored in single precision while still passing verification, assuming that the arithmetic

is still performed in double precision. The current analysis examines individual in-

structions; the results can then be traced back to memory locations or source code

variables using debug information.

Another motivation is that insights regarding memory locations will translate

more easily to code transformations than will insights regarding specific computa-

tion operations. Because code transformations usually involve the modification of

variable or data structure types, they are usually difficult to specify at the level of

individual operations. Recommendations regarding memory locations are therefore

more actionable than recommendations regarding instructions.

The implementation of memory-based analysis resembles the normal mixed-

precision analysis described in previous sections. One key difference is that data

movement instructions are included in the analysis. These instructions can be ig-

nored in a computation-centric analysis because movement instructions are agnostic

to whether the double-precision floating-point number being moved has been re-

placed with our special single-precision encoding. Thus, the number of instructions

85

that must be replaced increases for memory-centric analysis, but the number of can-

didate instructions is reduced because only those with memory writes are considered

for replacement.

To implement this analysis, CRAFT replaces all floating-point instructions

that read or write memory operands. The write instructions are replaced with code

that does the original operation, optionally saving the result using the replacement

scheme described in Section 6.2.2. The read instructions are augmented with code

that checks for replaced (truncated) values, upcasting them to double precision be-

fore saving them in a register or using them in an operation. Few instructions in the

SSE instruction set both read and write memory operands, and those instructions

are handled on a case-by-case basis. Values are always cast to full double precision

when moved from memory into an XMM register or used directly from memory in a

calculation. These modifications ensure that all computation is performed in double

precision. Floating-point values are then optionally stored in single precision when

moved from a register to memory.

6.3 Benchmarking

To examine the overhead of our techniques, we looked at scaling by replacing all

instructions with double-precision snippets. This transformation does not affect the

semantics or results of the program, but shows how much overhead our inserted

code causes in the base case in which it makes no conversions. Figure 6.7 shows

86

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
0

5

10

15

20

25

O
ve

rh
ea

d
(X

)

EP CG FT MG

MPI Processes

Figure 6.7: NAS MPI scaling results

the runtime overhead results from these experiments with Class A versions of the

NAS benchmarks. The overall overhead decreases as the number of MPI processes

increases. Figure 6.8 shows specific runtime overheads from individual configurations

for Class A and C inputs.

All benchmarks in Figure 6.8 were MPI versions compiled by the Intel Fortran

compiler with -O2 optimization enabled. Tests were performed on a distributed

Benchmark Overhead (X)
ep.A 3.4X
ep.C 5.5X
cg.A 3.4X
cg.C 4.5X
ft.A 4.2X
ft.C 7.0X

mg.A 5.8X
mg.C 14.7X

Figure 6.8: NAS benchmark overhead results

87

cluster, each node with twelve Intel Xeon 2.8GHz cores and 24 GB memory running

64-bit Linux. Each run used eight cores and one MPI process per node. The over-

head was calculated as the ratio between the instrumented and original execution

user CPU times as reported by the “time” command. Usually, these overheads are

under 20X, making this technique viable for test and trial runs on real data.

6.4 Results

6.4.1 NAS benchmarks

We first verified the correctness of our replacement on several NAS benchmarks [14]

by manually converting the codes to use single precision and comparing the outputs

to that of the instrumented version. The final results were identical, bit-for-bit,

indicating that the instrumented versions were performing the same operations as

the manually-converted versions of the original programs.

As a part of this verification, we developed a small script that attempted an

automatic translation of Fortran source code to use single precision instead of dou-

ble precision. However, we still had to tweak some files by hand. Sometimes, while

examining the results of the comparison we found errors in our manual conversion,

which needed to be corrected before the results matched. This process demon-

strates that even by itself, the whole-program replacement routine is valuable as an

automation of an error-prone manual (or semi-automated) process.

We also ran our automatic mixed-configuration search on the NAS bench-

88

Configurations Instructions Replaced Final
Benchmark Candidates Tested Static Dynamic Verification

bt.W 6,647 3,854 76.2% 85.7% fail
bt.A 6,682 3,832 75.9% 81.6% pass
cg.W 940 270 93.7% 6.4% pass
cg.A 934 229 94.7% 5.3% pass
ep.W 397 112 93.7% 30.7% pass
ep.A 397 113 93.1% 23.9% pass
ft.W 422 72 84.4% 0.3% pass
ft.A 422 73 93.6% 0.2% pass
lu.W 5,957 3,769 73.7% 65.5% fail
lu.A 5,929 2,814 80.4% 69.4% pass

mg.W 1,351 458 84.4% 28.0% pass
mg.A 1,351 456 84.1% 24.4% pass
sp.W 4,772 5,729 36.9% 45.8% fail
sp.A 4,821 5,044 51.9% 43.0% fail

Figure 6.9: NAS benchmark results

marks. For simplicity and speed of execution, we used the single-threaded versions

of the benchmarks in this experiment. For each benchmark, we tested two input set

sizes: class W and class A. All benchmarks were compiled by the Intel Fortran com-

piler with optimization enabled, and the tests were performed on a shared-memory

workstation with Intel Xeon processors and 48 GB of memory running 64-bit Linux.

The benchmarks provided a wide range of replacement results. The percent-

ages in Figure 6.9 indicate how sensitive the benchmark is to the precision level

used. The columns contain the number of instructions that were candidates for re-

placement, the total number of configurations tested, the percentage of instructions

replaced with single precision (measured statically), the percentage of instruction

executions replaced (measured dynamically at runtime), and the verification result

89

of the final composed configuration.

In nearly all cases, the system tested fewer configurations than replacement

candidates, showing that our techniques for pruning the search space are effective.

The one exception, SP, had many instruction sequences in the final configuration

that alternated between single- and double-precision instructions. This alterna-

tion pattern caused our search engine to spend inordinate time searching individual

instructions rather than aggregate structures, and thus the number of tested con-

figurations was higher than the actual candidate count.

Some benchmarks (such as CG and FT) seem to be highly sensitive, because

only a negligible percentage of instruction executions can be replaced. Others seem

to hold more promise for building a mixed-precision version. The ones that fail the

final verification illustrate that using the simple union of all individually passing

instructions does not automatically guarantee a passing configuration. This obser-

vation suggests that a second search phase may be useful, to determine the largest

subset of individually-passing instruction replacements that may be composed to

create a passing final configuration.

Figure 6.10 shows the results of running the memory-based analysis described

in Section 6.2.4 on the NAS benchmarks. The replacement percentages are higher

than the corresponding results from the computation-based analysis. The higher

percentages imply that there may be more opportunities for single-precision re-

placement for data storage than for computation.

90

Configurations Instructions Replaced Final
Benchmark Candidates Tested Static Dynamic Verification

bt.A 2,342 300 98.3% 97.0% fail
cg.A 287 68 96.2% 71.3% fail
ep.A 236 59 96.2% 37.9% fail
ft.A 466 108 94.2% 46.2% fail
lu.A 1,742 104 98.5% 99.9% fail
mg.A 597 153 95.6% 83.4% pass
sp.A 1,525 1,094 81.1% 75.1% fail
ua.A 4,310 741 94.5% 88.9% fail

Figure 6.10: NAS benchmark results for memory-based analysis (columns same as
Figure 6.9)

We also attempted manual code conversion for several of these benchmarks.

In two cases (CG and MG), the analysis found intermediate result data structures

that could be stored in single precision with minimal negative effects on the final

results. After changing the type definitions of these structures in the original source

and re-compiling the benchmarks, the new versions passed the self-verification rou-

tines. The modified versions did not run significantly faster nor did they use a

significantly smaller amount of memory, but this result is not surprising given the

single-core nature of the benchmarks and our lack of expertise in the problem do-

mains. Nevertheless, this shows that automated techniques can provide actionable

recommendations, leading to mixed-precision versions of the original programs that

pass verification. We expect that a programmer familiar with the problem domains

would be able to achieve even better results based on the insights provided by our

analysis.

91

6.4.2 AMG microkernel

To conduct an end-to-end test of our techniques with a subsequent code modification

by a programmer, we looked for a program that could run entirely in single precision,

to simplify the manual conversion process. It was also necessary that the program

include a verification routine that could be analyzed by our analysis. The Algebraic

MultiGrid microkernel [1], which implements the critical sections of a multigrid

solver, met our needs. For our experiments, we used 5,000 iterations on eight cores.

As expected, our system verified that the kernel could be replaced with single

precision. The overhead of our analysis was only 1.2X for this benchmark, with

all instructions replaced by single precision. We verified the results by manually

converting the entire program to single precision and re-compiling. This conversion

includes changing the verification routine to single precision, but in some circum-

stances this change is acceptable. In this instance, the adaptive nature of the multi-

grid method corrects for numerical inaccuracy by iterating to increasingly accurate

results. For the microkernel, we observed a user CPU time decrease from 175.48s

for the double-precision version to 95.25s for the single-precision version, a nearly

2X speedup.

6.4.3 SuperLU

To evaluate our techniques further, we found a software library that is already

implemented in both single- and double-precision versions: the SuperLU [29] general

92

Instructions Replaced
Threshold Static Dynamic Final Error

1.0e-03 99.1% 99.9% 1.59e-04
1.0e-04 94.1% 87.3% 4.42e-05
7.5e-05 91.3% 52.5% 4.40e-05
5.0e-05 87.9% 45.2% 3.00e-05
2.5e-05 80.3% 26.6% 1.69e-05
1.0e-05 75.4% 1.6% 7.15e-07
1.0e-06 72.6% 1.6% 4.77e-07

Figure 6.11: SuperLU linear solver memplus results

purpose linear solver. LU decomposition and linear solving often comprise the most

computationally expensive portions of larger scientific codes. The SuperLU library

does such operations, and it includes a linear solver example program that can be

compiled to use either single- or double-precision (but not mixed-precision). The

program also reports an error metric that is useful in comparing the sensitivity of

various mixed-precision configurations.

For these experiments we used the “memplus” memory circuit design data set

from the Matrix Market [20], which contains nearly 18K rows. The linear solver for

this data set runs for around three seconds on our machine, which allows us to test

many configurations. The single-precision manually recompiled version achieves a

1.16X speedup over the double-precision version, which is equivalent to a 150 MFlops

improvement. The reported error for the double-precision version of the solver is

2.16e-12, and the reported error for the single-precision version is 5.86e-04.

To run an automated search on the linear solver program, we wrote a driver

script that ran the program and compared the reported error against a predefined

93

threshold error bound. Using an error bound just above the error returned by the

single-precision version, our search found that 99.1% of the double-precision solver’s

floating-point instructions could be replaced by single-precision. This replacement

included 99.9% of all runtime floating-point operations. That percentage matches

the precision profile of the single-precision version of the program, and shows that

our analysis can find all replacements inserted manually by an expert.

Figure 6.11 shows the results of running our automated mixed-precision search

using various error thresholds. The general trend is that when the error threshold is

stricter, the search finds fewer static or dynamic instructions that can be replaced.

For this application, the error of the final run (using the union of all passing config-

urations) tends to be much lower than the threshold used during the search. This

shows that our techniques can illuminate the tradeoff between single-precision re-

placement and computational error. In the future, precision levels could be treated

as another variable “control knob” during program performance tuning.

6.5 Conclusion

We have described techniques for building mixed-precision configurations of existing

double-precision binaries, as well as for searching an application automatically for

portions that can be replaced with single-precision arithmetic. These techniques

are applicable to both computation and data movement. We have also described

our implementation of these techniques using the CRAFT framework. Benchmark

94

overhead results show our techniques’ feasibility, and we have described an experi-

ment that demonstrated a speedup gained by an analysis-guided conversion. This

work provides insights that were not previously available, and improves the ability

of floating-point application developers to make informed decisions regarding the

behavior of their code and the necessary precision levels for various parts of their

programs.

95

96

Chapter 7

Reduced-precision Replacement

7.1 Overview

The mixed-precision analysis techniques in Chapter 6 have proven useful, but some-

times the single-vs-double precision dichotomy is too strict. Often, developers would

find it useful to explore at a finer granularity how sensitive the various parts of a pro-

gram are to changes in the floating-point precision level. In this chapter, we describe

our techniques for general precision-level analysis based on binary modification and

reduced precision. We also describe our implementation of these techniques using

the CRAFT framework. These techniques have lower overhead than mixed-precision

analysis, leading to quicker results.

7.2 Techniques

Our technique builds a version of a target program where every instruction can be

executed at any level of precision lower than the original precision (i.e., “reduced”

precision). Using an automated search, we use this reduced-precision capability to

detect the smallest level of precision that any particular instruction requires to pass

verification, assuming that the rest of the program runs in its original precision.

The results give an indication of the precision level requirement of each instruction,

97

^ FUNC #7: 0x400b60 "MAIN__"

^ BBLK #87: 0x401088

^r INSN #37: 0x401096 "mulsd xmm6, xmm10 [ep.f:189]"

inst37_precision=39

^r INSN #38: 0x40109b "mulsd xmm8, xmm10 [ep.f:190]"

inst38_precision=37

^r INSN #39: 0x4010a0 "subsd xmm6, xmm9 [ep.f:189]"

inst39_precision=29

^r INSN #40: 0x4010a5 "subsd xmm8, xmm9 [ep.f:190]"

inst40_precision=27

Figure 7.1: Example of reduced-precision configuration

which can be generalized to larger structures by taking the maximal value across all

children.

7.2.1 Reduced-precision configurations

Reduced-precision arithmetic can be approximately simulated by truncating the

significand to the desired number of bits after each operation. This simple insight

provides a way to simulate precisions with levels up to the original precision with

minimal program modification. We chose to use truncation rather than rounding

because it is faster, simpler to implement, and more conservative than rounding.

The exponent is unaffected in the current implementation.

To implement this analysis, we extended our basic configuration file format to

allow the user to specify the number of bits for each operation rather than the simple,

binary single- or double-precision flag used in the mixed-precision analysis from the

previous chapter. Figure 7.1 shows an example excerpt from a reduced-precision

configuration file. The lines beginning with a caret are regular program point control

98

lines, while the other lines give precision levels (in bits) for the operations that will

be truncated. A unique instruction ID allows these lines to be correlated despite

their relative locations in the configuration file.

The bit precision values range between 0–52. Zero indicates that all of the

stored significand should be wiped, leaving the single implied bit to represent a nu-

merical value of one. A bit value of 52 indicates that the entire significand should

be preserved, so the analysis does not truncate the result. The other bit value of

particular interest is 23, which is the number of bits in a single-precision significand.

Truncating a calculation’s result to 23 bits represents a rough estimate of using

single-precision arithmetic to do that calculation. In fact, it would be a conserva-

tive estimate because true single-precision arithmetic would be rounded instead of

truncated.

The exponent is unaffected, for both speed and simplicity. If the developer

is concerned that single-precision exponents are too narrow, range tracking (as de-

scribed in Section 4.7.3) could be used to verify that the truncated value magnitudes

lie in the range of single-precision numbers.

We also modified the default configuration GUI described in Section 4.5.2 to

show these bit values. The GUI uses a white-to-blue gradient to represent bit values

between 0–23 (single precision) and a green-to-red gradient to represent bit values

between 24–52 (double precision). This view extends the color scheme used in the

normal mixed-precision configuration visualization from Section 6.2.1.

99

Figure 7.2: Reduced-precision configuration viewer

Figure 7.2 shows the view of an example reduced-precision configuration. In

this example, most of the instructions are configured to run close to single precision

(bit values in the mid-high 20s). Two instructions (multiplications at the beginning

of the excerpt) are configured to run with 37 and 39 bits of precision, and two other

instructions (additions at the end) are configured to run with nearly-full double

precision.

7.2.2 Binary modification

To reduce the precision of an individual instruction, we augment it by adding code

after the instruction that uses bit masking to truncate the resulting floating-point

value to the desired number of bits. For instance, if the desired number of bits is 40,

then the floating-point value is masked using the binary value 0xfffffffffffff000,

which leaves all bits intact except for the last twelve (52 − 40 = 12). To simulate

100

andsd %xmm2 %xmm1 % original instruction

new inserted code

push %rax

<save %xmm15 to stack>

mov %rax, 0xffffffffe0000000 % truncation constant

pinsrq %xmm15, %rax, 0

andpd %xmm2, %xmm15 % do truncation

<restore %xmm15 from stack>

pop %rax

Figure 7.3: Example reduced-precision replacement snippet

single precision (23 bits of significand), the mask value is 0xffffffffe0000000.

Because the machine code instructions that implement these operations are

integer bitwise operations that do not do memory accesses or comparisons, the

overhead is low compared to that of the mixed-precision techniques from Chap-

ter 6. Additionally, the search phase overhead is generally smaller because the

mutator only needs to replace the instructions that are being analyzed. Because the

truncated value is still a valid double-precision floating-point number, the rest of

the instructions do not need special treatment as they did with our mixed-precision

techniques. The overhead will be directly proportional to the number of instructions

that are selected for a reduction in precision.

Figure 7.3 shows an example of a reduced-precision truncation snippet. In

this case, the configuration specifies that this instruction (an addition of two XMM

registers) should be truncated to 23 bits (roughly single precision). The original

instruction comes first, unmodified, followed by the truncation snippet. The snippet

is surrounded by saving and restoring instructions to avoid clobbering registers or

101

unintentionally modifying program state. The snippet then loads a temporary XMM

register with the appropriate mask constants and does the actual truncation using

a bitwise AND instruction.

7.2.3 Automatic search

Using the reduced-precision technique described in the previous section, we devel-

oped an automatic search routine that determines the general precision sensitivity

of various program components using a breadth-first search similar to the mixed-

precision search described in Section 6.2.3. For this analysis, the tuning parameter

domain consists of the integer values between zero and 52 (double precision). The

larger domain yields a larger search space, because there are now 52n total possible

configurations to test, rather than 2n. However, the overhead for each individual

test is lower. In addition, the breadth-first nature of the search means that the

search will obtain overall precision results for the larger program structures first.

For instance, the search will first determine the lowest precision level required by

the entire program, followed by the lowest precision level required by individual

modules, and so on. Thus, the search functions as a refining process, with the re-

sults becoming more detailed as more tests are executed. In this way, the search

need not run to completion to be useful.

We also use several other techniques to reduce the search space and improve

search convergence speed. These techniques include:

102

1. Using a binary search for each program component, rather than testing every

individual precision level. This works because the precision levels are ordered

and because we can assume that if x > y, then an instruction executed with x

bits of precision will be more accurate than the same instruction executed with

y bits of precision. The binary search will find the smallest precision level that

passes verification for that component in at most six (dlog2 52e) steps. This

dramatically reduces the number of configurations tested during a search.

2. Discontinuing the breadth-first search when the precision level of the search

point in question falls below a given threshold. The default threshold is

23 bits, which represents single-precision arithmetic. This default is moti-

vated by the assumption that the most common use case is replacing double-

precision arithmetic with single-precision arithmetic, rather than with half-

precision arithmetic or any other level lower than single precision. Thus, the

user is unlikely to need the exact precision level requirement once they know

that the level is less than 23 bits. This behavior can be toggled with the

--rprec-split threshold search parameter.

3. Discontinuing the breadth-first search when the runtime instruction execution

percentage of the search point in question falls below a given threshold. This

metric measures each program point for its contribution to the total number of

floating-point instructions executed during the program’s runtime. Applying a

threshold to this metric causes the search to focus on the parts of the program

103

that dominate its runtime execution. This behavior can be toggled with the

--rprec-runtime pct threshold search parameter. By default, this option is

not enabled, because the appropriate value will vary depending on the target

application. In practice, we find that setting this threshold at around 5–

10% reduces the overall search time significantly while having an insignificant

impact on the results (see Section 7.4.1).

4. Providing an option for skipping the top-level (whole-program) configurations,

because the overhead will be high relative to subsequent runs. The information

gained by their analysis is also of minimal interest, because the end goal is

to determine precision sensitivity for the subcomponents of a program. This

behavior can be toggled with the --rprec-skip app level search parameter.

5. Allowing the search to use cached results from previous searches to expedite

the current search. Used in conjunction with the runtime execution threshold

and the top-level configuration skip described in previous paragraphs, the user

may run a search with little initial time commitment. For instance, the user

could skip the application level, and stop the search before it explores any

program point responsible for less than an arbitrary share (say 5%) of the

program’s execution. In our experience, such a search could take as little

as an hour. After the initial search, the user may choose to look deeper by

decreasing the runtime execution threshold. The new search can be configured

to use the results from the initial search, essentially bypassing all of the tests

104

Figure 7.4: Reduced-precision histogram

run by the first search and avoiding any work duplication. We use the term

“incremental search” to refer to a search that runs in several iterations using

different percentage thresholds, with each iteration utilizing the result cache

from previous iterations to avoid test duplication.

7.2.4 Visualization

The results of an automated reduced-precision search are visualized in the standard

GUI from Section 4.5.2 using colors as shown in Figure 7.2. This interface allows

the user to browse a program’s control structure to identify the lower-precision areas

by their graphical appearance and to drill down quickly into the regions of interest.

105

These include regions with high precision requirements that may benefit from higher

precision or algorithmic changes, as well as regions with low precision requirements

that can probably be replaced with lower precision arithmetic.

We also provide a histogram-based visualization of whole-program sensitivity.

The histograms provide an overview of a program’s floating-point sensitivity profile

as detected using the search described in Section 7.2.3. Figure 7.4 shows an example

histogram from the MG NAS benchmark.

The histogram shows the percentage of floating-point instructions executed

(vertical axis), grouped into bars by their final reduced-precision configuration value

(horizontal axis). The exact values on the vertical axis are less important than the

relative sizes of the bars in relationship to the horizontal axis. If the distribution

lies mainly to the left of the red bar, then the program is rarely dependent on full

double precision. A clustering around the extreme left side of the graph indicates

that most of the program uses relatively little precision, showing a high potential for

single-precision replacement. Conversely, a clustering around the extreme right side

of the graph indicates that most of the program relies on full double precision, indi-

cating little chance for a mixed-precision implementation without major rewriting.

A clustering around the red bar is the most interesting outcome, because it implies

that the program needs just barely more than single precision accuracy, implying

that perhaps a small amount of algorithmic reconfiguration could enable the use of

single-precision arithmetic for large portions of the computation.

106

Benchmark Original time (s)
Whole-program
Overhead (X)

Search Trials
Avg. Search

Overhead (X)
bt.A 60.8 33.5 11,610 1.2
cg.A 2.6 4.7 267 1.3
ep.A 9.2 4.0 94 1.3
ft.A 5.2 7.0 234 1.6
lu.A 48.2 11.3 7,246 1.7
mg.A 2.4 9.5 804 1.2
sp.A 42.9 8.9 122 2.1
ua.A 27.7 11.2 12,354 1.6

Figure 7.5: NAS benchmark overhead for whole-program reduced-precision analysis

The histogram values can optionally be binned into a smaller number of bars,

and the zero-precision bar (i.e., floating-point computation that has been determined

to be non-essential for the final computation) can be excluded. In the results we

present in this chapter, we leave the values in their original bins (i.e., a bar for

each precision level) to preserve all trends in the original data, and we include the

zero-precision bar for completeness. The histogram also includes a red, dotted bar

at 23 bits, which represents the cutoff for single precision.

Our visualization interface can also build histograms of the number of binary

floating-point instructions by precision level, as opposed to the runtime execution

count. This difference corresponds to the distinction between static and dynamic

percentages in mixed-precision analysis. However, we have focused on the dynamic

instruction execution count because of its greater relevance to overall performance.

107

Wall Time (s)
Benchmark Mixed Reduced Speedup
cg.A 1,305 532 59.2%
ep.A 978 562 42.5%
ft.A 825 411 50.2%
lu.A 514,332 68,365 86.7%
mg.A 2,898 984 66.0%
sp.A 422,371 236,055 44.1%

Figure 7.6: Search wall time comparison

7.3 Benchmarking

Figure 7.5 shows overhead results from the NAS benchmark suite. For these single-

core trials, the benchmarks were compiled using the Intel compiler with -O3 opti-

mization. The table gives two overhead numbers. The first overhead number (third

column) is from running whole-program reduced precision analysis, averaged over

five runs each. The analysis was configured to use 52-bit precision so that the over-

head could be measured without affecting the program’s execution. The second

overhead number (fifth column) is from running an automatic search on the entire

program. The fourth column reports the total number of trials, and the fifth col-

umn is the overhead averaged over all of those trials. Because many trials apply

truncation to only a few instructions, these overheads are low.

7.3.1 Mixed-precision comparison

To compare the overhead for reduced-precision analysis with the overhead for mixed-

precision analysis from Chapter 6, we added the capability to run mixed-precision

108

searches using reduced-precision instrumentation. To implement this capability, we

added a new mode for mixed-precision search that does 23-bit reduced-precision re-

placement wherever the search would normally call for single-precision replacement.

Where the search would normally call for double-precision replacement, we instead

do 52-bit reduced-precision replacement, which normally becomes optimized to a

no-op because no bits are truncated. This mode dramatically reduces the number

of instructions that are generated to replace the old instructions, partially because

double-precision replacement usually becomes a no-op and partially because the 23-

bit reduced-precision snippets are much simpler than the regular mixed-precision

replacement snippets.

Figure 7.6 shows the speedup using this mode as measured by the overall

search wall time, which ranged from several minutes to several days depending on

the benchmark. All searches were run using multiple search threads, and the number

of threads was kept constant between the original mixed-precision and reduced-

precision runs. The speedup was consistently 40% or higher, a sizeable improvement.

We also examined how closely the results matched the original mixed-precision

searches. Because 23-bit replacement is only a rough approximation of single pre-

cision, we did not expect the results to be identical. However, in most of the

benchmarks, the results were similar, with less than 10% difference as measured us-

ing instruction executions. For two benchmarks (MG and SP), we found a roughly

20% difference in the results. In these results, the floating-point instruction exe-

109

cutions that required higher precision are explained by the conservative nature of

reduced precision due to truncation, while the executions that required lower pre-

cision are attributed to the corresponding noise caused by different search paths

through the parameter space. This experiment shows that reduced-precision analy-

sis can dramatically reduce the time required to run mixed-precision searches, while

still achieving similar results.

This experiment also suggests that a hybrid approach might yield good results.

One could run a reduced-precision search first to get a general estimate of sensitivity,

and then run full mixed-precision searches on select subsets of the program to get

more accurate results. This approach would be a more complex variant of the

incremental search described earlier in this chapter. Our framework provides the

capability for such a hybrid approach, but more research would be required to

determine the best point to transition between strategies.

7.4 Results

7.4.1 NAS benchmarks

Figure 7.7 shows histogram results for the NAS benchmarks [14]. These graphs

give a more complete picture of the benchmarks’ relative precision sensitivities than

do the single percentages from Section 6.4.1. Some benchmarks (such as BT and

LU) show a strong potential for mixed-precision configurations, with large portions

of their sensitivities under the single-precision level. These results match the high

110

bt.A cg.A

ep.A ft.A

lu.A mg.A

sp.A ua.A

Figure 7.7: Reduced-precision histograms for NAS benchmarks

111

replacement percentages from Section 6.4.1. Conversely, some benchmarks (such as

CG and FT) clearly require more than single precision for most of their computation;

thus, these benchmarks seem to have little opportunity for a comprehensive mixed-

precision implementation without a major algorithmic shift. Again, these results

match the low replacement percentages from Section 6.4.1. Other benchmarks (such

as MG and UA) have a clustering of sensitivities around the single-precision mark,

indicating that if the computation could be re-written to be slightly less sensitive,

the benchmark has a large potential for using single precision.

Figure 7.8 shows the histograms from running an incremental search on MG.W

from NAS. Figure 7.9 provides the corresponding search wall times and configuration

counts, including the number of configurations tested at a particular increment as

well as the cumulative number of configurations tested over the entire search. The

histograms show a pattern of refinement that we found to be typical of incremental

search results, with the curve beginning heavily-weighted towards the right side of

the graph and gradually migrating towards the left as more and more of the program

is explored in detail. By the time the search explores any program point accounting

for 0.5% or more of the program’s instruction executions, the graph closely resembles

its final form. Thus, the user may stop the process of incremental searching once

the user is satisfied that further refinement of the histogram would provide little

insight.

112

5.0% 1.0%

0.5% 0.1%

0.05% Full

Figure 7.8: Reduced-precision histograms for MG.W incremental search

Benchmark Threshold Configs
Cumulative

Configs
Time

Cumulative
Time

MG.W 10.00% 35 35 00:03:45 00:03:45
5.00% 12 47 00:01:21 00:04:66
1.00% 34 81 00:01:27 00:05:93
0.50% 350 431 00:03:52 00:09:45
0.10% 546 977 00:06:00 00:15:45
0.05% 665 1,642 00:08:15 00:23:60
0.00% 310 1,952 00:05:11 00:28:71

Figure 7.9: Timing results for MG.W incremental search

113

Benchmark Original time (s)
chain 1.83
chute 1.08
eam 9.01
lj 3.54
rhodo 61.12

Figure 7.10: LAMMPS benchmarks and running times

7.4.2 LAMMPS

We also ran tests on LAMMPS, a molecular dynamics code that is part of the

ASC Sequoia benchmark suite [1]. In these tests, we show that we can obtain

precision information about a program in a reasonable amount of analysis time. We

examined the “30Aug13” version of LAMMPS with five provided benchmark work

loads: chain, chute, eam, lj, and rhodo. We built the LAMMPS with the default

compiler (GCC) and the default optimization levels; it contained 56,643 candidates

for reduced-precision replacement. Figure 7.10 shows the original run times of the

benchmarks.

For each benchmark, we ran several incremental reduced-precision searches,

initializing the runtime percentage threshold at 10% and gradually lowering it to

5%, 1%, and finally 0.5%. Each individual search used the results of the previous

search(es) as a cache, allowing it to skip directly to the incremental tests for the

new threshold. We also skipped the application-level tests for these benchmarks,

because they incur a large overhead and only yield information that can be deduced

from lower-level results.

114

Benchmark
(Original Time)

Threshold Configs
Cumulative

Configs
Time

Cumulative
Time

chain (1.7s) 10.0% 28 28 00:35:05 00:35:05
5.0% 35 63 00:09:13 00:44:18
1.0% 104 167 00:11:56 00:56:14
0.5% 81 248 00:09:03 01:05:17

chute (1.0s) 10.0% 28 28 00:34:49 00:34:49
5.0% 34 62 00:08:57 00:43:46
1.0% 99 161 00:11:36 00:55:22
0.5% 229 390 00:21:28 01:16:50

eam (8.8s) 10.0% 33 33 00:48:10 00:48:10
5.0% 11 44 00:06:23 00:54:33
1.0% 440 484 00:47:49 01:42:22
0.5% 12 496 00:11:34 01:53:56

lj (3.3s) 10.0% 22 22 00:39:42 00:39:42
5.0% 12 34 00:05:30 00:45:12
1.0% 160 194 00:21:33 01:06:45
0.5% 10 204 00:08:25 01:15:10

rhodo (61.7s) 10.0% 41 41 02:14:29 02:14:29
5.0% 17 58 00:23:34 02:38:03
1.0% 222 280 00:53:07 03:31:10
0.5% 188 468 00:45:45 04:16:55

Figure 7.11: LAMMPS benchmark results

115

chain chute

eam lj

rhodo

Figure 7.12: Reduced-precision histograms for LAMMPS benchmarks

116

chute eam lj rhodo
chute 96.0 99.3 95.9
eam 99.5 90.4 91.5
lj 99.7 88.2 91.0
rhodo 91.0 91.0 91.0

Figure 7.13: LAMMPS profiling comparisons: unique execution percentages

Figure 7.11 shows the timing results of these tests, and Figure 7.12 shows the

final histograms for each benchmark. For the timing results, we see the same general

pattern as in Figure 7.9. The number of configurations tested (and therefore the time

spent) at every iteration of the search varies, but does not increase dramatically in

later iterations. This pattern suggests a “leveling off” of the search, indicating that

further computation would be unhelpful. The time spent in individual iterations

matches this trend.

The total number of configurations tested does vary, but there are no severe

outliers; even benchmarks with widely differing profiles (such as “eam” and “rhodo”)

test similar numbers of configurations. The total wall time varies as expected with

both the number of configurations tested and the original running time of the bench-

mark itself. The final histograms show a range of precision sensitivity, reinforcing

again that floating-point behavior is highly sensitive to particular data sets.

To further explore this variance due to program input, we compared execution

profiling data between runs. Figure 7.13 shows the percentage of floating-point in-

struction executions that were unique to the row-specific benchmark when compared

with the column-specific benchmark. Uniqueness is determined using the instruc-

117

tion addresses in the binary. For instance, 96.0% of the floating-point instruction

executions in the “chute” benchmark are attributed to instructions that were never

executed in the “eam” benchmark. The high percentages throughout the table show

that the benchmarks exercise highly disjoint portions of the full application, par-

tially explaining the widely varying precision sensitivity results. In the future, it

would be interesting to explore further analysis of program variance due to differing

inputs. For now, the runtime nature of our analysis ensures that such behaviors are

captured, provided that the analysis incorporates data sets that are representative

of target use cases.

Usually, we were able to get results in under an hour for all portions of the

program representing over 5% of the total floating point instructions executed. This

timing result shows that the analysis crosses an important threshold for practical

viability. An hour-long analysis can easily be fit into a regular workflow; for example,

a developer could run the analysis while at lunch or in a meeting. Even for the

benchmark that took over a minute to run initially, we had results at the 5% level

in under three hours. These experiments show that our reduced-precision analysis

techniques provide the user with realistic analysis time requirements as well as the

capability to choose the granularity of the search and to benefit from a corresponding

reduction in the time to solution.

118

7.5 Conclusion

We have described techniques for building reduced-precision configurations of floating-

point programs, as well as an automatic search process that identifies the precision

level sensitivity of various parts of an application. We have also described our

implementation of these techniques using the CRAFT framework. Benchmark over-

head results indicate that reduced-precision searches are significantly faster than

mixed-precision searches. We also show that an incremental technique provides the

user with the ability to choose the granularity of the search and to benefit from a

corresponding reduction in the time to solution.

119

120

Chapter 8

Future Work

8.1 Overview

This chapter describes some of the many directions for future research based on the

work presented in this dissertation. In some ways, this dissertation represents an

initial contribution to a new sub-field of program analysis devoted to floating-point

accuracy and performance. We see many potential opportunities for extending our

techniques and integrating them into various other projects. This chapter explores

short-term project possibilities as well as ideas for long-term research efforts.

8.2 Short-term work

This section describes short-term ideas for extending the work presented in this

dissertation. These extensions would require a moderate amount of work but no

major new techniques.

8.2.1 Binary optimization

Thus far, little time has been devoted to optimizing the snippet machine code gener-

ated for mixed- and reduced-precision analysis. The code generator is conservative

because it must handle the wide variety of instructions in the SSE instruction set.

121

It saves state around the added code to avoid modifying program semantics, and it

uses several temporary registers that must also be preserved. This code could be

optimized to use fewer registers and to save less state. The Dyninst library provides

a register liveness analysis that could be leveraged for some of this optimization.

Some of the most common instruction patterns ("addsd %xmm0, %xmm1", for in-

stance) could also be hard-coded with hand-tuned machine code for even greater

speed.

Another, potentially larger improvement could be achieved with greater use

of static control flow analysis. Such analysis could determine unreachable paths,

for instance, eliminating certain instructions from consideration. Data flow analysis

could also reveal calculations that do not influence the final results and can be safely

ignored by runtime analysis.

8.2.2 Search optimization

The automatic search routine incurs some overhead. The current implementation

uses file-based configuration and work queue structures. Some of these files can be

accessed concurrently, but others require exclusive locking to preserve queue seman-

tics and priority ordering. This locking also causes bottlenecks when the underlying

file system is slow, such as with some NFS implementations. This slowdown can be

significant, especially if the search runs for many hundreds or thousands of iterations.

The original file-based design aided in the rapid implementation of a parallel search

122

process, but could be improved. In particular, the use of a lightweight database

component such as SQLite could provide the same transactional semantics required

by the search routine at a lower cost than traditional file system locking.

There may also be an opportunity for a performance improvement in searching

strategies. Some researchers have worked on improving search convergence times in

empirical autotuners by changing or modifying the search algorithm [61, 71, 72].

Our parameter spaces are different than the spaces that these algorithms general

explore. Floating-point precision spaces have many variables (instructions) and a

few integral values (two in the case of mixed-precision, or fifty-two in the case of

reduced-precision), while traditional spaces have fewer variables with wider (and

possibly real-valued) ranges. However, some insights from these algorithms might

lead to faster searches if applied appropriately to our domain.

8.2.3 Analysis extension

Our automated search processes focus on replacing individual program components.

The final configurations presented to the user are a combination of many individual

configurations, and the resulting combination may or may not pass verification as-is.

At this point, the search process could refine the final configuration by making it

more conservative to find a whole-program configuration that passes verification.

In the case of mixed-precision results, this refining would mean experimenting with

various combinations of individual replacements. We have no clear intuition about

123

how to build these combinations to find a passing configuration efficiently; this task

would be a subject of research and experimentation. In the case of reduced-precision

results, the search could start raising precision levels across larger components or

the entire program.

8.2.4 Analysis composition

This dissertation has described both a general framework for floating-point pro-

gram analysis as well as particular analyses implemented using this framework.

Sometimes, we have included components of one analysis in others; for instance,

most analyses implement instruction counting. However, we have not attempted to

more generally apply multiple analyses simultaneously. This composition of analyses

could lead to interesting side effects or new insights, but would pose some interesting

challenges, particularly when both analyses replace the existing instruction rather

than augmenting or instrumenting it. It is not clear what the semantics of the com-

position of such analyses should be. However, we imagine that good insights could

result from certain combinations, such as running cancellation detection or range

tracking alongside mixed-precision replacement. For instance, Benz et al. report

good results running cancellation detection alongside a heavyweight shadow value

analysis [19].

124

8.2.5 Platform ports

The CRAFT framework is implemented for the x86 64 and SSE instruction sets.

These instruction sets form the predominate platform in high-performance comput-

ing; however, others are gaining prominence. The PowerPC platform, for instance,

is the basis of the IBM Blue Gene architecture used by several of the top supercom-

puters. The AMD ARM platform is also gaining recognition in high-performance

computing, partially because of the low power usage of ARM-based chips. The

CRAFT framework could be modified to work on these architectures, although the

code generator would need to be rewritten for each target architecture. Alterna-

tively, it could be rewritten to use an external code generator that already supports

these platforms. Dyninst’s own code generator is an obvious choice, although it

would first need to be extended to support more robust floating-point code genera-

tion.

In addition to traditional CPUs, high-performance computing is increasingly

utilizing floating-point accelerators such as GPUs to build hybrid platforms. Nvidia

cards and the CUDA framework are quickly rising in popularity for HPC application

development [10, 28, 60]. More generic alternatives such as OpenCL support both

GPU and CPU computation on several platforms including Nvidia, AMD, Intel,

and ARM. CRAFT has no support for analyzing GPU code, but such support may

become important if GPU computing continues to expand its market share in HPC.

Adding analysis for GPUs may require some redesign in the framework to support

125

the master-slave nature of most CPU/GPU hybrid platforms.

8.2.6 Extended case studies

Although several proof-of-concept case studies appear in dissertation, we can always

do more extended studies. In particular, none of the studies presented in this disser-

tation were run at large scale (hundreds or thousands of cores), which would require

greater support for distributed programming frameworks like MPI and OpenMP.

In the future, we want to work closely with an application development team to

integrate analysis runs into the development cycle. This interaction would allow the

domain experts to review the results of the analysis and make high-level algorithmic

choices. We expect that such collaboration would result in significant performance

improvements and bandwidth savings.

8.3 Long-term work

This section describes longer-term extensions of the work presented in this disserta-

tion. In this section, we discuss the various aspects of an end-to-end floating-point

tuning framework. Such a framework could be integrated throughout the develop-

ment process, including development, testing, and verification, to help developers

maximize both accuracy and performance.

126

8.3.1 Runtime adaptation

In Chapters 6 and 7, we presented techniques for finding mixed-precision configura-

tions. These techniques are tailored to the specific input set and runtime parameters

given by the user, and so the resulting configuration may not generalize to different

inputs. One way to generalize such results is to generate several mixed-precision

variants of a program and use a runtime adaptation system to switch between the

variants based on accuracy feedback. Ideally, such a system would be able to pause

or partially roll back execution, switch variants in memory, and migrate data and

program state before resuming the program. Bao and Zhang [17] describe a less am-

bitious version of such a system; their system terminates the calculation when the

data has become compromised by rounding error, restarting in a higher precision.

It would be interesting to pursue a more flexible version of runtime adaptation.

8.3.2 Compiler-based implementation

This dissertation has addressed floating-point precision analysis of compiled binary

targets. In the future, we want to integrate similar analyses into a compiler frame-

work such as GCC or LLVM. Such an integration would result in great gains in

portability and performance overhead.

Portability would be improved because the analysis could be encoded in the

compiler’s intermediate representation, allowing the analysis to work with any front-

end language or back-end code generation platform provided by the compiler frame-

127

work. Analysis overhead could also be greatly improved with compiler integration.

Running a mixed-precision configuration incurs a performance overhead. This over-

head is acceptable because the techniques described in this dissertation deal with

verifying the correctness of mixed-precision configurations rather than any actual

performance gain associated with them. However, the integration of these analyses

into a compiler framework would allow the compiler to incorporate analysis code

during its optimization phases. This incorporation of analysis code would dramat-

ically reduce the overhead of instrumentation because most of the state-preserving

code would not be needed. In fact, the optimizations applied by a compiler frame-

work could potentially enable performance gains even while testing mixed-precision

configurations. Other researchers [67] have already reported some success using

these frameworks to analyze floating-point behavior.

To implement support in a compiler framework, we imagine the addition of

several compiler command-line options to control the mixed-precision implementa-

tion. Alternatively, the source code could be augmented with annotations to tag

candidates for replacement. An external search framework would still be needed

to generate configurations, perhaps as part of the application’s standard test suite.

The result could be a short tuning search that could potentially be executed during

every compilation. Alternatively, a larger search could run before the release of

each major or minor version. These searches would provide repeated feedback to

the developers regarding the floating-point behavior of their program.

128

8.3.3 IDE and development cycle integration

With the compiler integration described in the previous section, running searches

throughout the software development phase could be feasible. The results of these

searches could be reported to the user in their IDE, highlighting regions of the

program that are replaceable with single precision, as well as those regions that

have particularly high or low precision sensitivities. These results would provide

feedback to the developer as they develop the code. For instance, if a particular

region can be entirely replaced with single precision, the analysis results may prompt

the developer to transfer that logic to a GPU kernel. Alternatively, if a particular

loop or subroutine has high precision sensitivity, the analysis results may prompt

the developer to redesign that particular region for lower sensitivity.

Test suites could also do regular precision-level sensitivity regression analy-

ses. This type of test would be similar to performance regression tests, which are

intended to flag changes that significantly affected a program’s performance. Of-

ten, these regressions were unintended side effects or bugs. Flagging regressions in

floating-point sensitivity could highlight seemingly-harmless code edits that nega-

tively affected numerical stability. In addition, the mere presence of the precision

tests might incentivize programmers to consider more carefully the floating-point

behavior of code that they write.

Once autotuning results have been integrated into IDEs and source code tools,

the next step could potentially include automatic code transformation recommen-

129

dations. The goal of such a technique would be to take the precision-level informa-

tion gained by mixed- and reduced-precision analyses and turn them into candidate

source-code level modifications. This transformation could potentially require so-

phisticated static analysis and program slicing to determine which parts of source

code are associated with the lower-level binary structures. The compiler itself could

provide valuable insights for this process by exploiting intermediate representations

and debug information. For instance, the compiler could tag all operands in an

intermediate representation with their corresponding source variables. This infor-

mation would make the instruction-to-variable mapping process much easier. We

also anticipate opportunities to apply machine learning algorithms for recognizing

code patterns to improve code transformation suggestions.

8.3.4 Performance modeling

Lowering the precision of a region of code does not always result in an overall

speedup. Sometimes, the additional costs of data conversion at the region’s entrance

and exit outweigh the speed gains of single-precision arithmetic. Building a model of

program performance could help identify and prevent such situations. Such a model

would predict the performance of each mixed-precision variant. Poorly-performing

variants could be skipped during the empirical validation runs.

130

8.3.5 Static analysis integration

While CRAFT is primarily a runtime analysis framework, the integration of static

analysis could afford several opportunities to improve runtime analyses or prove

properties about floating-point behavior. In previous sections, we discussed how

static analysis might improve the overhead of our techniques by doing smarter in-

strumentation. In addition, we have some larger ideas for extending the CRAFT

analyses using static analysis techniques.

In particular, the interval and affine arithmetic analyses discussed in Section

3.3 could provide initial conservative bounds on a program’s arithmetic precision

requirements. These results could be used to jump-start empirical runtime searches

by identifying good candidates for replacement. Because static analyses do not

take into account dataset-specific program behaviors, these results would need to

be carefully examined and validated with actual program traces.

Our analysis techniques could also have some application to formal program

verification. In recent years, there have been many research efforts in the pro-

gramming language and security fields that have focused on automated program

verification. This verification is usually stated in the form of various security prop-

erties, which are verified using a formal analysis method. Thus far, we are aware

of no attempt to certify the floating-point accuracy of software using such a tech-

nique. The greatest obstacle is that floating-point behavior is highly dependent on

the actual runtime data, and thus static verifiers have difficulty modeling such be-

131

haviors. However, a runtime environment like CRAFT could aid in the verification

of floating-point properties by generating execution traces with probes added by

prior static analysis. The results of these traces in conjunction with formal analysis

proofs could potentially provide reasonable guarantees of floating-point correctness

and performance properties.

132

Chapter 9

Conclusion

THESIS: Automated runtime analysis techniques can inform application develop-

ers regarding floating-point behavior, and can provide insights to guide developers

towards reducing precision with minimal impact on accuracy.

We have constructively proven this thesis by developing techniques and tools

for automated floating-point precision analysis. This dissertation showed the practi-

cality of automated techniques for analyzing floating-point programs, and represents

a first step towards the long-term vision of autotuned floating-point precision and

performance.

Specifically, we built a software framework (CRAFT) that enables floating-

point program analysis at the binary level with a variety of applications. The

framework uses binary instrumentation and modification to analyze target programs

at runtime, and provides graphical interfaces to interpret the results. We have

demonstrated the framework’s capability by using it to implement many types of

analysis. This includes simple analyses such as instruction counting, NaN detection,

and range tracking, as well as three more complex analyses:

1. We have developed a technique for detecting numerical cancellation. This

technique instruments addition and subtraction operations, checking their

133

operands for cancellation events at runtime. The analysis reports individual

cancellations as well as aggregate cancellation statistics. We have demon-

strated this analysis in various contexts, showing its efficacy and potential

applications.

2. We have developed techniques for implementing mixed-precision configura-

tions and automatically finding valid mixed-precision replacements. This tech-

nique modifies a binary, replacing each floating-point instruction with new

code that runs the original operation in the desired precision (single or dou-

ble). Developers can now quickly prototype mixed-precision configurations

without modifying the source code or recompiling. We have also described an

automated search process that uses this prototyping technique to find indi-

vidual program components that can be reconfigured to use single-precision

arithmetic without causing the overall program to fail a verification test. This

search process can focus on either the arithmetic operations themselves or

the memory locations accessed by the operations. We have demonstrated this

technique by running it on a variety of applications, highlighting the insights

provided by the analysis. In one case, we obtained a speedup of nearly 2X by

reconfiguring a microkernel to use single-precision arithmetic.

3. We have developed a technique for performing generalized reduced-precision

analysis. This technique truncates the results of floating-point operations,

simulating the use of lower-precision arithmetic. We have also described an

134

automated search process that uses this truncation technique to determine

the precision level requirements of each program component. This search

can be run incrementally to gain overview insights more quickly, with further

iterations of the search leading to more detailed results. The result is a profile

of a program’s precision level sensitivity, reported in histograms and program

structure graphs. We have shown that this technique provides similar results

to mixed-precision analysis with much lower overhead.

All of these analyses prove the ability of automated runtime techniques to

inform developers regarding floating-point behavior, and the latter two analyses

(mixed and reduced precision) specifically fulfill the goal of providing insights to-

wards reducing precision with a minimal impact on accuracy.

In conclusion, this dissertation has shown that automated techniques can pro-

vide insights regarding floating-point behavior as well as guidance towards accept-

able precision level reduction. This work provides immediately useful, practical

tools as well as a basis for further research. These techniques represent novel con-

tributions to the fields of high performance computing and program analysis, and

serve as the first major step towards the larger vision of automated extreme-scale

floating-point precision and performance tuning.

135

136

Appendices

137

Appendix A

Sample Application: Sum2Pi X

A.1 Overview

This appendix demonstrates the techniques presented in this dissertation by ap-

plying the full CRAFT analysis tool suite to a simple example target program.

The program calculates π · x using a computational-heavy summation method that

magnifies rounding error over the sequence of many operations. The program then

compares the result with the correct answer as determined by directly calculating

π · x using a single multiplication, and uses an epsilon value of 10−7 to determine

whether a particular run passes or fails. For the example tests presented here,

x = 2000.

Section A.7 lists the program’s source code, and Section A.8 lists its makefile.

The program’s source code contains two main floating-point type designations: real

and sum type. The former designates a standard-precision floating-point data type,

while the latter designates an important accumulator value that requires higher pre-

cision. These types are bound to either single- or double-precision types at compile

time, allowing the project makefile to build multiple versions of the program. By

default, the makefile builds three versions of the original program: 1) Double, where

both types are double precision, 2) Single, where both types are single precision,

138

real

32 64
sum type 32 Single (fail) (fail)

64 Mixed (pass) Double (pass)

Figure A.1: Sum2Pi X versions and results

and 3) Mixed, where real is single precision and sum type is double precision. The

Double version is considered to be the “original” version.

Figure A.1 shows the four combinations of data types that can be selected at

compile time. The diagonal elements represent full-single-precision and full-double-

precision versions; the single-precision version fails verification and the double-

precision version passes verification. The lower-left corner represents an intuitive

mixed-precision implementation: the important summation variables use double

precision and the rest of the variables use single precision. This version passes veri-

fication, and therefore represents the goal of a mixed-precision version of the original

program that passes verification. Later sections show how this configuration might

be discovered using insights from the analyses described in this dissertation. The

upper-right corner represents a low-precision summation type and a high-precision

standard type; this variant fails verification and is of little interest. Figure A.2

shows the output for running the three versions of the program built by the make-

file, showing that the Double and Mixed versions pass verification while the Single

version fails.

139

$./sum2pi_x

=== Sum2PI_X ===

sizeof(real)=8

sizeof(sum_type)=8

RESULT: 6.2831852954768319e+03

CORRECT: 6.2831853071800006e+03

ERROR: 1.8626171386763082e-09

THRESH: 9.9999999999999995e-08

SUM2PI_X - SUCCESSFUL!

$./sum2pi_x-float

=== Sum2PI_X ===

sizeof(real)=4

sizeof(sum_type)=4

RESULT: 6.2832021484375000e+03

CORRECT: 6.2831855468750000e+03

ERROR: 2.6422205792187015e-06

THRESH: 9.9999999999999995e-08

SUM2PI_X - FAILED!!!

$./sum2pi_x-mixed

=== Sum2PI_X ===

sizeof(real)=4

sizeof(sum_type)=8

RESULT: 6.2831850051879883e+03

CORRECT: 6.2831855468750000e+03

ERROR: 8.6212160965715157e-08

THRESH: 9.9999999999999995e-08

SUM2PI_X - SUCCESSFUL!

Figure A.2: Sum2Pi X correctness test results

140

Figure A.3: Sum2Pi X count and range results

A.2 Preliminary analyses

We first apply our instruction count, NaN detection, and range tracking analyses

to the example program. Examining the code, we expect that the outer loop (cal-

culating π · x) to be executed 2,000 times, given that OUTER is set to 2,000. We

expect the inner loop (calculating π) to be executed 29 · 2,000 = 58,000 times,

given that INNER is arbitrarily set to 30, and the loop iterates from 1 to IN-

NER (exclusive). In addition, we expect the inner-most (2j) loop to be executed

2,000 ·
29∑
i=1

i = 2,000 · 435 = 87,000 times. Further, we expect the inner accumulation

141

to see a maximum value of π ≈ 3.142 and the outer accumulation to see a maximum

value of π · x ≈ 6,283. Finally, we would expect not to see any NaN values during

a normal run.

Figure A.3 shows the results of running instruction count and range tracking

analyses on the Double version of the program. The count results (“Count” column)

match our expected execution counts exactly, demonstrating the execution differ-

ences between the three loops. The range results (“Min”, “Max”, and “Range”

columns) show the ranges of individual instructions and also match our expecta-

tions. We also ran our NaN detection analysis, which verified that no NaN values

are encountered during a normal run.

A.3 Cancellation detection

The Sum2Pi X has few subtraction operations, so the program’s execution yields

little cancellation. Figure A.4 shows cancellation detection results obtained by ana-

lyzing the Double version of the program, using the default detection threshold. The

first screenshot highlights the single case of cancellation detected during a successful

run. The lower portion of the screen contains information about the cancellation

itself, while the upper portion shows the corresponding source code location. The

second screenshot shows the contents of the “Instructions” tab with the single in-

struction. If the analysis had found more cancellations, this tab would show aggre-

gate data, such as the total number of cancellations per instruction and the average

142

Figure A.4: Sum2Pi X cancellation results

143

Version
Significand
Size (Bits)

Canceled
Bits

Single 23 18
Mixed 23/52 23
Double 52 29

Figure A.5: Sum2Pi X cancellation

number of bits canceled.

The single cancellation detected takes place during the verification comparison,

which subtracts the computed sum from the reference final value. In this context,

the cancellation indicates that the result has twenty-nine binary digits (bits) of

precision (roughly nine or ten decimal digits), because there were twenty-nine bits

that canceled during the subtraction. The single-precision version yields a single

cancellation of eighteen bits, which indicates a much lower level of accuracy (around

six decimal digits) for the answer. Because this level of accuracy is close to the

epsilon value used for verification, we might guess that we could do most of the

computation in single precision. Indeed, the Mixed version of the program yields a

single cancellation of twenty-three bits, which lies between the two whole-program

precision levels, and is slightly closer to the single-precision version. Figure A.5

shows these values alongside the number of significand bits that were present in each

version of the program. Thus, even though the application does little subtraction,

the cancellation results still provide insight in the overall program analysis.

144

A.4 Mixed-precision analysis

The program contains four major candidate instructions for single-precision replace-

ment, as indicated by comments in the source code in Section A.7. We ran mixed-

precision analysis (as described in Chapter 6), which determined that all except one

of the instructions could be individually replaced with single-precision while still

passing verification. The final configuration (with all three replaced) also passed

verification. Figure A.6 shows the results. These results are confirmed by the Mixed

version of the program, which represents a specially-compiled version of the final

configuration obtained using our analysis. While this configuration was known a

priori for this simple example, this exercise demonstrates how such a configuration

might be constructed using insights provided by our analysis.

This particular program does not experience a speedup in its mixed-precision

configuration. This lack of speedup is because the program does not use packed SSE

arithmetic or specialized hardware that could lead to a computational improvement

in single precision, nor does it have high memory requirements that could lead to

a storage or bandwidth improvement. These characteristics were necessary to keep

the example simple; we show in other parts of the dissertation that performance

improvements can be obtained using these techniques.

145

Figure A.6: Sum2Pi X mixed-precision results

146

A.5 Reduced-precision analysis

We also ran our generalized reduced-precision sensitivity analysis (as described in

Chapter 7). As in the previous section, the analysis identified four primary candi-

dates for analysis. Figure A.7 shows the results. The analysis determined that the

four candidates required 0, 22, 27, and 32 bits of precision.

First, the analysis reveals that the 2j calculation uses zero bits of precision.

This result indicates that the addition operation (which doubles the value each time)

can be completely wiped of its significand, while still allowing the computation to

proceed and pass final verification. This insight may seem surprising at first, but on

closer examination, is entirely correct. The nature of floating-point representation

allows powers of two to be represented purely using the exponent field and the

implicit significand bit that stores a value of one. Thus, this instruction does not

need a significand, and could potentially be replaced by a bit-shift operation that

would be considerably faster. Of course, such a computation could be easily avoided

altogether in this simple case, but in a larger program such computations could be

missed during manual inspections. Our analysis provides an automated technique

leading to the insight that an alternate computation method might be beneficial in

such cases.

Second, the analysis reveals a sensitivity requirement of 32 bits for the outer

accumulator. This result confirms the results obtained using the mixed-precision

analysis in the previous section, and could have provided similar insight leading to

147

a mixed-precision configuration.

Third, the analysis reveals a sensitivity requirement of 27 bits for one of the in-

structions that the mixed-precision analysis determined could be replaced. Because

single precision provides 23 bits for the significand, the reported value of 27 bits is

overly cautious. This result demonstrates the conservative nature of the reduced-

precision analysis, because it uses truncation rather than rounding. Such differences

highlight the value of using multiple analyses on a single target program.

A.6 Conclusion

Taken together, the analyses described in this dissertation provide a comprehensive

examination of the floating-point behavior of the simple example described in this

appendix. The tools provided by CRAFT allow us to learn about the execution

profile, including instruction count and dynamic ranges as well as instruction-level

precision sensitivity. The analysis also yielded a mixed-precision configuration based

on insights from mixed-precision and reduced-precision analysis; this configuration

is verified using a specially-compiled version of the original program. In conclusion,

this exercise demonstrates the efficacy and ease of use of the techniques described

in this dissertation.

148

Figure A.7: Sum2Pi X reduced-precision results

149

A.7 Source: sum2pi x.c

/**

* sum2pi_x.c

*

* CRAFT demo app. Calculates pi*x in a computationally-heavy way that

* demonstrates how to use CRAFT.

*

* September 2013

*/

#include <stdio.h>

#include <stdlib.h>

/* macros */

#define ABS(x) (((x) < 0.0) ? (-(x)) : (x))

/* constants */

#define PI 3.14159265359

#define EPS 1e-7

/* loop iterations; OUTER is X */

#define INNER 30

#define OUTER 2000

/* ’real’ is double-precision if not pre-defined */

#ifndef real

#define real double

#endif

/* sum type is the same as ’real’ if not pre-defined */

#ifndef sum_type

#define sum_type real

#endif

int sum2pi_x() {

int i, j, k;

real x, y, z;

real err;

real acc;

sum_type sum;

150

real final = (real)OUTER * PI; /* correct answer */

printf("=== Sum2PI_X ===\n");

printf("sizeof(real)=%d\n", sizeof(real));

printf("sizeof(sum_type)=%d\n", sizeof(sum_type));

sum = 0.0;

for (i=0; i<OUTER; i++) {

acc = 0.0;

for (j=1; j<INNER; j++) {

/* calculate 2^j */

x = 1.0;

for (k=0; k<j; k++) {

x *= 2.0; /* CANDIDATE #1 */

}

/* accumulatively calculate pi */

y = (real)PI / x; /* CANDIDATE #2 */

acc += y; /* CANDIDATE #3 */

}

sum += acc; /* CANDIDATE #4 */

/*printf(" SUM%03d: %.16e\n", i, sum);*/

}

/* final should be PI*OUTER */

err = ABS((double)final-(double)sum)/ABS((double)final);

/*printf("-------------------------------\n");*/

printf(" RESULT: %.16e\n", sum);

printf(" CORRECT: %.16e\n", final);

printf(" ERROR: %.16e\n", err);

printf(" THRESH: %.16e\n", EPS);

if ((double)err < (double)EPS) {

printf("SUM2PI_X - SUCCESSFUL!\n");

} else {

printf("SUM2PI_X - FAILED!!!\n");

}

return 0;

}

int main() {

return sum2pi_x();

}

151

A.8 Source: Makefile

all: sum2pi_x sum2pi_x-float sum2pi_x-mixed

test: all

./sum2pi_x

./sum2pi_x-float

./sum2pi_x-mixed

sum2pi_x: sum2pi_x.c

gcc -g -O2 -o sum2pi_x sum2pi_x.c

sum2pi_x-float: sum2pi_x.c

gcc -g -O2 -Dreal=float -o sum2pi_x-float sum2pi_x.c

sum2pi_x-mixed: sum2pi_x.c

gcc -g -O2 -Dreal=float -Dsum_type=double -o sum2pi_x-mixed sum2pi_x.c

clean:

rm -f sum2pi_x sum2pi_x-float sum2pi_x-mixed

152

Bibliography

[1] ASC Sequoia Benchmark Codes. https://asc.llnl.gov/sequoia/benchmarks/.
Accessed 21 September 2011.

[2] CRAFT: Configurable Runtime Analysis for Floating-point Tuning.
http://sourceforge.net/projects/crafthpc/. Accessed 14 January 2014.

[3] Flap: A Matlab Package for Adjustable Precision Floating-Point Arithmetic.
http://www.cs.umd.edu/˜stewart/flap/flap.html. Accessed 10 April 2010.

[4] GNU Multiple Precision Arithmetic Library. http://www.gmplib.org/. Ac-
cessed 23 February 2010.

[5] MPFR Library. http://www.mpfr.org/. Accessed 23 February 2010.

[6] SPEC CPU2006 Benchmark. http://www.spec.org/cpu2006/. Accessed 23
February 2010.

[7] Aberth, Oliver. A Precise Numerical Analysis Program. Communications of
the ACM, 17(9):509–513, September 1974. ISSN 00010782. doi:10.1145/361147.
361107.

[8] AMD. AMD64 Manual Volume 4: 128-Bit and 256-Bit SSE. 2011.

[9] Andrade, Marcus Vinicius Alvim, João Luiz Dihl Comba, and Jorge Stolfi.
Affine Arithmetic. In INTERVAL’94, pages 1–10. St. Petersburg, Russia, 1994.

[10] Anzt, Hartwig, Piotr Luszczek, Jack Dongarra, and Vincent Heuveline. GPU-
Accelerated Asynchronous Error Correction for Mixed Precision Iterative Re-
finement. In Euro-Par 2012 Parallel Processing, pages 908–919. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-32820-6\ 89.

[11] Anzt, Hartwig, Björn Rocker, and Vincent Heuveline. Energy efficiency of
mixed precision iterative refinement methods using hybrid hardware platforms.
Computer Science Research and Development, 25(3-4):141–148, 2010. ISSN
18652034. doi:10.1007/s00450-010-0124-2.

[12] Arya, Sunil, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-
gela Wu. An Optimal Algorithm for Approximate Nearest Neighbor Searching
in Fixed Dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998.

153

[13] Baboulin, Marc, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, and Stanimire Tomov. Accelerating scientific
computations with mixed precision algorithms. Computer Physics Communi-
cations, 180:2526–2533, 2009.

[14] Bailey, D. H., et al. THE NAS PARALLEL BENCHMARKS. International
Journal of Supercomputer Applications, 5(3):63–73, September 1991. doi:10.
1177/109434209100500306.

[15] Bailey, David H. Multiprecision Translation and Execution of Fortran Pro-
grams. ACM Transactions on Mathematical Software, 19(3):288–319, 1993.

[16] Bailey, David H., Yozo Hida, Xiaoye S. Li, and Brandon Thompson. ARPREC:
An Arbitrary Precision Computation Package. Technical report, 2002.

[17] Bao, Tao and Xiangyu Zhang. On-the-fly Detection of Instability Problems in
Floating-Point Program Execution. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications - OOPSLA ’13, pages 817–832. ACM Press, New York, New
York, USA, October 2013. ISBN 9781450323741. doi:10.1145/2509136.2509526.

[18] Beazley, D.M. SWIG Users Manual. Technical report, University of Utah
Technical Report UUCS-98-012 (1998), 1998.

[19] Benz, Florian, Sebastian Hack, and Andreas Hildebrandt. A Dynamic Program
Analysis to find Floating-Point Accuracy Problems. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. 2012. ISBN
9781450312059.

[20] Boisvert, Ronald F., Roldan Pozo, Karin Remington, Richard Barrett, and
Jack J. Dongarra. The Matrix Market: a web resource for test matrix col-
lections. In Ronald F. Boisvert, editor, The Quality of Numerical Software:
Assessment and Enhancement, pages 125–137. Chapman & Hall, London, 1997.

[21] Brown, Ashley W, Paul H J Kelly, and Wayne Luk. Profiling floating point
value ranges for reconfigurable implementation. In Workshop on Reconfigurable
Computing, HiPEAC 2007. 2007.

[22] Brown, Ashley W, Paul H J Kelly, and Wayne Luk. Profile-directed speculative
optimization of reconfigurable floating point data paths. In Informal Proceed-
ings of the Workshop on Reconfigurable Computing, HiPEAC, volume 2008.
2008.

[23] Buck, Bryan and Jeffrey K. Hollingsworth. An API for Runtime Code Patch-
ing. Journal of Supercomputing Applications and High Performance Computing,
14:317–329, 2000.

154

[24] Buttari, Alfredo, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Langou,
Piotr Luszczek, and Stanimire Tomov. Exploiting Mixed Precision Floating
Point Hardware in Scientific Computation. Technical report, 2007.

[25] Buttari, Alfredo, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimire
Tomov. Using Mixed Precision for Sparse Matrix Computations to Enhance the
Performance while Achieving 64-bit Accuracy. ACM Transactions on Mathe-
matical Software, 34(4):1–22, 2008.

[26] Carlone, Ralph V. PATRIOT MISSILE DEFENSE: Software Problem Led to
System Failure at Dhahran, Saudi Arabia (GAO/IMTEC-92-26). Technical
report, U.S. Government Accountability Office, 1992.

[27] Carr, John W. Error Analysis in Floating Point Arithmetic. Communications of
the ACM, 2(5):10–16, May 1959. ISSN 00010782. doi:10.1145/368325.368329.

[28] Clark, M. A., R. Babich, K. Barros, R. C. Brower, and C. Rebbi. Solving Lattice
QCD systems of equations using mixed precision solvers on GPUs. Computer
Physics Communications, 181(9), 2010.

[29] Demmel, James W., Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A SUPERNODAL APPROACH TO SPARSE PARTIAL
PIVOTING. SIAM Journal on Matrix Analysis and Applications, 20(3):720–
755, 1999. ISSN 08954798. doi:10.1137/S0895479895291765.

[30] Dongarra, Jack, et al. The International Exascale Software Project roadmap.
International Journal of High Performance Computing Applications, 25(1):3–
60, 2011. ISSN 10943420. doi:10.1177/1094342010391989.

[31] Fang, Claire Fang, Rob A. Rutenbar, Markus Püschel, and Tsuhan Chen.
Toward Efficient Static Analysis of Finite-Precision Effects in DSP Applica-
tions via Affine Arithmetic Modeling. In Proceedings of the 40th Conference
on Design Automation (DAC 2003), pages 496–501. ACM Press, 2003. ISBN
1581136889. doi:10.1145/775832.775960.

[32] Furuichi, Mikito, Dave A. May, and Paul J. Tackley. Development of a Stokes
flow solver robust to large viscosity jumps using a Schur complement ap-
proach with mixed precision arithmetic. Journal of Computational Physics,
230(24):8835–8851, October 2011. ISSN 00219991. doi:10.1016/j.jcp.2011.09.
007.

[33] Göddeke, Dominik and Robert Strzodka. Cyclic Reduction Tridiagonal Solvers
on GPUs Applied to Mixed-Precision Multigrid. IEEE Transactions on
Parallel and Distributed Systems, 22(1):22–32, 2011. ISSN 10459219. doi:
10.1109/TPDS.2010.61.

155

[34] Göddeke, Dominik, Robert Strzodka, and Stefan Turek. Performance and
accuracy of hardware-oriented native-, emulated- and mixed-precision solvers
in FEM simulations. International Journal of Parallel, Emergent and Dis-
tributed Systems, 22(4):221–256, August 2007. ISSN 1744-5760. doi:10.1080/
17445760601122076.

[35] Goldberg, David. What Every Computer Scientist Should Know About Float-
ing Point Arithmetic. ACM Computing Surveys, 23(1):5–48, March 1991.

[36] Goubault, Eric. Static Analyses of the Precision of Floating-Point Operations.
Static Analysis, pages 234–259, 2001. doi:DOI-10.1007/3-540-47764-0\ 14.

[37] Goubault, Eric, Matthieu Martel, and Sylvie Putot. Asserting the Precision
of Floating-Point Computations: a Simple Abstract Interpreter. Programming
Languages and Systems, pages 287–306, 2002. doi:10.1007/3-540-45927-8\ 15.

[38] Hao, Xuejun and Amitabh Varshney. Variable-Precision Rendering. In Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics (SI3D’01), pages
149–158. ACM Press, 2001. ISBN 1581132921. doi:10.1145/364338.364384.

[39] He, Yun and Chris H.Q. Ding. Using Accurate Arithmetics to Improve Nu-
merical Reproducibility and Stability in Parallel Applications. The Jour-
nal of Supercomputing, 18(3):259–277, 2001. ISSN 09208542. doi:10.1023/A:
1008153532043.

[40] Higham, Nicholas J. Accuracy and Stability of Numerical Algorithms, Second
Edition. SIAM Philadelphia, 2002.

[41] Hogg, J. D. and J. A. Scott. A Fast and Robust Mixed-Precision Solver for the
Solution of Sparse Symmetric Linear Systems. ACM Transactions on Math-
ematical Software, 37(2):1–24, 2010. ISSN 00983500. doi:10.1145/1731022.
1731027.

[42] IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008). IEEE,
New York, August 2008.

[43] Jenkins, John, Eric R. Schendel, Sriram Lakshminarasimhan, David A. Boyuka
II, Terry Rogers, Stephane Ethier, Robert Ross, Scott Klasky, and Nagiza F.
Samatova. Byte-precision Level of Detail Processing for Variable Precision An-
alytics. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC’12), SC ’12. IEEE Com-
puter Society Press, 2012. ISBN 978-1-4673-0804-5.

[44] Jézéquel, Fabienne and Jean-Marie Chesneaux. CADNA: a library for es-
timating round-off error propagation. Computer Physics Communications,
178(12):933–955, June 2008. ISSN 00104655. doi:10.1016/j.cpc.2008.02.003.

156

[45] Kahan, William. The Improbability of PROBABILISTIC ERROR ANALY-
SES for Numerical Computations. Technical Report July 1995, University of
California, Berkeley, 1996.

[46] Kaneko, Toyohisa and Bede Liu. On Local Roundoff Errors in Floating-Point
Arithmetic. Journal of the ACM, 20(3):391–398, 1973. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/321765.321771.

[47] Krämer, Walter. A priori Worst Case Error Bounds for Floating-Point Com-
putations. IEEE transactions on computers, 47(7):750–756, 1998.

[48] Krämer, Walter and Armin Bantle. Automatic Forward Error Analysis for
Floating Point Algorithms. Reliable Computing, 7(4):321–340, August 2001.
ISSN 1385-3139. doi:10.1023/A:1011463324243.

[49] Laakso, Timo I. and Leland B. Jackson. Bounds for Floating-Point Roundoff
Noise. IEEE Transactions on Circuits and Systems, 41(6):424–426, 1994.

[50] Larus, James R and Eric Schnarr. EEL: Machine-Independent Executable Edit-
ing. In Proceedings of the SIGPLAN 95 Conference on Programming Language
Design and Implementation, volume 30 of PLDI ’95, pages 291–300. ACM,
1995. ISBN 0897916972. ISSN 03621340. doi:10.1145/207110.207163.

[51] Lattner, Chris and Vikram Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). March
2004.

[52] Laurenzano, Michael A., Mustafa M. Tikir, Laura Carrington, and Allan
Snavely. PEBIL: Efficient Static Binary Instrumentation for Linux. In Pro-
ceedings of the 2010 IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), pages 175–183. Performance Model-
ing and CHaracterization Laboratory, Ieee, 2010. ISBN 9781424460236. doi:
10.1109/ISPASS.2010.5452024.

[53] Le Grand, Scott, Andreas W. Götz, and Ross C. Walker. SPFP: Speed without
compromise–A mixed precision model for GPU accelerated molecular dynam-
ics simulations. Computer Physics Communications, 184(2):374–380, February
2012. ISSN 00104655. doi:10.1016/j.cpc.2012.09.022.

[54] Li, Xiaoye S., et al. Design, Implementation and Testing of Extended and Mixed
Precision BLAS. ACM Transactions on Mathematical Software, 28(2):152–205,
June 2002. ISSN 00983500. doi:10.1145/567806.567808.

157

[55] Liu, Bede and Toyohisa Kaneko. Error Analysis of Digital Filters Realized with
Floating-point Arithmetic. Proceedings of the IEEE, 57(10):1735–1747, 1969.
ISSN 00189219. doi:10.1109/PROC.1969.7388.

[56] Luk, Chi-Keung, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’05), pages 190–200. ACM, New York,
NY, USA, 2005. ISBN 1-59593-056-6. doi:http://doi.acm.org/10.1145/1065010.
1065034.

[57] Martel, Matthieu. Propagation of Roundoff Errors in Finite Precision Compu-
tations: A Semantics Approach. Programming Languages and Systems, pages
159–186, 2002. doi:10.1007/3-540-45927-8\ 14.

[58] Martel, Matthieu. Semantics-Based Transformation of Arithmetic Expressions.
Static Analysis, pages 298–314, 2007. doi:10.1007/978-3-540-74061-2\ 19.

[59] Martel, Matthieu. Program Transformation for Numerical Precision. In Pro-
ceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation (PEPM’09), pages 101–110. ACM Press, New York, NY,
USA, January 2009. ISBN 978-1-60558-327-3. doi:http://doi.acm.org/10.1145/
1480945.1480960.

[60] Meredith, Jeremy S., Gonzalo Alvarez, Thomas A. Maier, Thomas C.
Schulthess, and Jeffrey S. Vetter. Accuracy and performance of graphics pro-
cessors: A Quantum Monte Carlo application case study. Parallel Computing,
35(3):151–163, March 2009. ISSN 01678191. doi:10.1016/j.parco.2008.12.004.

[61] Nelder, J. A. and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, 1965. ISSN 0010-4620. doi:10.1093/comjnl/
7.4.308.

[62] Nethercote, Nicholas. Dynamic Binary Analysis and Instrumentation. Ph.D.
thesis, University of Cambridge, November 2004.

[63] Nethercote, Nicholas and Julian Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’07), volume 42, pages 89–100. PLDI, ACM, 2007.

[64] Quinlan, Dan. ROSE: Compiler Support for Object-Oriented Frameworks.
Parallel Processing Letters, 10(02n03):215–226, 2000. ISSN 0129-6264. doi:
10.1142/S0129626400000214.

158

[65] Richman, Paul L. Automatic Error Analysis for Determining Precision. Com-
munications of the ACM, 15(9):813–820, September 1972. ISSN 00010782. doi:
10.1145/361573.361581.

[66] Rinard, Martin. Probabilistic Accuracy Bounds for Fault-Tolerant Compu-
tations that Discard Tasks. In Proceedings of the 20th Annual International
Conference on Supercomputing (ICS’06), ICS ’06, pages 324–334. ACM Press,
2006. ISBN 1595932828. doi:10.1145/1183401.1183447.

[67] Rubio-González, Cindy, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David
Hough. Precimonious: Tuning Assistant for Floating-Point Precision. In
Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis on (SC’13), pages 1–12. ACM Press,
New York, New York, USA, November 2013. ISBN 9781450323789. doi:
10.1145/2503210.2503296.

[68] Schreppers, Walter and Annie Cuyt. Algorithm 871: A C/C++ Precom-
piler for Autogeneration of Multiprecision Programs. ACM Transactions on
Mathematical Software, 34(1):1–20, January 2008. ISSN 00983500. doi:
10.1145/1322436.1322441.

[69] Strzodka, Robert and Dominik Göddeke. Mixed Precision Methods for Con-
vergent Iterative Schemes. In Proceedings of the 2006 Workshop on Edge Com-
puting Using New Commodity Architectures, pages 23–24. 2006.

[70] Strzodka, Robert and Dominik Göddeke. Pipelined Mixed Precision Algorithms
on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components.
In 14th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’06), pages 259–270. 2006. doi:10.1.1.71.1466.

[71] Tabatabaee, Vahid, Ananta Tiwari, and Jeffrey K. Hollingsworth. Parallel Pa-
rameter Tuning for Applications with Performance Variability. In Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing (SC’05), SC ’05. IEEE
Computer Society, 2005. ISBN 1595930612. doi:10.1109/SC.2005.52.

[72] Tiwari, Ananta, Vahid Tabatabaee, and Jeffrey K. Hollingsworth. Tuning par-
allel applications in parallel. Parallel Computing, 35(8-9):475–492, 2009. ISSN
01678191. doi:10.1016/j.parco.2009.07.001.

[73] Wilkinson, J. H. Error Analysis of Floating-point Computation. Numerische
Mathematik, 2(1):319–340, December 1960. ISSN 0029-599X. doi:10.1007/
BF01386233.

[74] Wilkinson, J. H. Rounding Errors in Algebraic Processes. Prentice-Hall, Inc.,
1964.

159

[75] Wilkinson, J. H. Error analysis revisited. IMA Bulletin, 22(11/12):192–200,
1986.

160

	List of Figures
	Introduction
	Background
	Overview
	IEEE floating-point representation
	SSE floating-point arithmetic
	Rounding error
	Cancellation
	Real-life examples

	Related Work
	Overview
	Error analysis
	Interval and affine analysis
	Runtime techniques
	Manual mixed precision
	Alternate representations
	Binary instrumentation
	Subsequent and concurrent work

	System Architecture
	Overview
	Parsing and semantics
	Program modification
	Snippets and binary rewriting
	Instrumentation vs. modification
	Basic block patching

	Extensible analysis framework
	GUI viewers
	Log viewer
	Configuration editor

	Automatic search
	Demonstration
	Instruction count analysis
	NaN detection analysis
	Range tracking analysis

	Conclusion

	Cancellation Detection
	Overview
	Techniques
	Binary instrumentation
	Results viewer

	Benchmarking
	Results
	Simple cancellation
	Approximate nearest neighbor
	Gaussian elimination
	NAS and SPEC benchmarks

	Conclusion

	Mixed-precision Replacement
	Overview
	Techniques
	Mixed-precision configurations
	Binary modification
	Automatic search
	Memory-based analysis

	Benchmarking
	Results
	NAS benchmarks
	AMG microkernel
	SuperLU

	Conclusion

	Reduced-precision Replacement
	Overview
	Techniques
	Reduced-precision configurations
	Binary modification
	Automatic search
	Visualization

	Benchmarking
	Mixed-precision comparison

	Results
	NAS benchmarks
	LAMMPS

	Conclusion

	Future Work
	Overview
	Short-term work
	Binary optimization
	Search optimization
	Analysis extension
	Analysis composition
	Platform ports
	Extended case studies

	Long-term work
	Runtime adaptation
	Compiler-based implementation
	IDE and development cycle integration
	Performance modeling
	Static analysis integration

	Conclusion
	Appendices
	Sample Application: Sum2Pi_X
	Overview
	Preliminary analyses
	Cancellation detection
	Mixed-precision analysis
	Reduced-precision analysis
	Conclusion
	Source: sum2pi_x.c
	Source: Makefile

	Bibliography

