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ABSTRACT

Title of Dissertation: A THREE DEGREE OF FREEDOM

PARALLEL MANIPULATOR WITH ONLY

TRANSLATIONAL DEGREES OF FREEDOM

Richard Eugene Stamper, Doctor of Philosophy, 1997

Dissertation directed by: Professor Lung-Wen Tsai

Department of Mechanical Engineering

and Institute for Systems Research

In this dissertation, a novel parallel manipulator is investigated. The manip-

ulator has three degrees of freedom and the moving platform is constrained to

only translational motion. The main advantages of this parallel manipulator are

that all of the actuators can be attached directly to the base, closed-form solu-

tions are available for the forward kinematics, the moving platform maintains

the same orientation throughout the entire workspace, and it can be constructed

with only revolute joints.

Closed-form solutions for both the forward and inverse kinematics problems

are presented. It is shown that the inverse kinematics problem has up to four

real solutions, and the forward kinematics problem has up to 16 real solutions.

The Jacobian matrix for the manipulator is also developed, and used to identify



singular poses of the manipulator, where the manipulator instantaneously gains

or loses a degree of freedom.

The manipulator workspace volume as a function of link lengths and leg

orientation is determined using the Monte Carlo method. A procedure for char-

acterizing the quality of the workspace is also developed. Using these results,

optimization studies for maximum workspace volume and for well-conditioned

workspace volume are conducted. The objective function for the well-conditioned

optimization study is defined as the integration of the reciprocal of the condi-

tion number of the Jacobian matrix over the workspace volume, and named the

global condition index.

Three different models are developed for the manipulator dynamics, with

numerical simulations presented for all three models. The first model is based

upon the application of the Newton-Euler equations of motion used in conjunc-

tion with the Jacobian matrix to map the inertial and gravitational loadings

of the moving platform to the actuators. The second model was developed to

give a more complete characterization of the dynamics, and is based upon the

Lagrangian multiplier approach. The third model neglects the highly coupled

nature of the manipulator and models each input link individually. This model

is developed for use with single-input single-output type controllers.

A prototype was fabricated to demonstrate this manipulator. Three con-

trollers are developed and tested on the prototype, where each type of control

tested relied on different characterizations of the manipulator dynamics. The

three controllers are a PID controller, a computed torque controller, and an

iterative learning controller.

The research presented in this dissertation establishes this parallel manipu-



lator as a viable robotic device for three degree of freedom manipulation. The

manipulator offers the advantages associated with other parallel manipulators,

such as light weight construction; while avoiding some of the traditional disad-

vantages of parallel manipulators such as the extensive use of spherical joints

and coupling of the platform orientation and position.
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Chapter 1

Introduction

1.1 Background

Machines that manipulate their surroundings have accounted for many signif-

icant changes in the way people live their daily lives. The exploration of the

parallel manipulator presented in this dissertation is an effort to expand our

understanding of the options available for the manipulation of our surroundings.

Parallel manipulators are robotic devices that differ from the more traditional

serial robotic manipulators by virtue of their kinematic structure. Parallel ma-

nipulators are composed of multiple closed kinematic loops. Typically, these

kinematic loops are formed by two or more kinematic chains that connect a

moving platform to a base, where one joint in the chain is actuated and the

other joints are passive. This kinematic structure allows parallel manipulators

to be driven by actuators positioned on or near the base of the manipulator. In

contrast, serial manipulators do not have closed kinematic loops and are usually

actuated at each joint along the serial linkage. Accordingly, the actuators that

are located at each joint along the serial linkage can account for a significant

0



portion of the loading experienced by the manipulator. Whereas the links of

a parallel manipulator generally need not carry the load of the actuators. This

allows the parallel manipulator links to be made lighter than the links of an anal-

ogous serial manipulator. Hence, parallel manipulators can enjoy the potential

benefits associated with light weight construction such as high-speed operation

and improved load to weight ratios. Some parallel manipulators have also been

shown to display outstanding rigidity as a result of the multiple closed kinematic

loops (Tahmasebi and Tsai, 1995). The most significant drawback of parallel

manipulators is that they have smaller workspaces than serial manipulators of

similar size.

1.2 Prior Work

Probably the most famous parallel manipulator is the Stewart platform (see

Fig. 1.1). It was originally designed by Stewart (1965) as a flight simulator,

and versions of it are still commonly used for that purpose. Since then, the

Stewart platform has also been used for other applications such as milling ma-

chines (Aronson, 1996), pointing devices (Gosselin and Hamel, 1994), and an

underground excavation device (Arai, 1991).

The Stewart platform has been studied extensively (Hunt, 1983; Fichter,

1986; Griffis and Duffy, 1989; Innocenti and Parenti-Castelli, 1993; and Nanua

et al., 1990). Generally, the Stewart platform has six limbs, where each limb is

connected to both the base and the moving platform by spherical joints located

at each end of the limb. Actuation of the platform is typically achieved by

changing the lengths of the limbs. While, these six-limbed manipulators offer

1



Fixed Platform

Moving PlatformSpherical Joints

Actuator

Figure 1.1: A version of the Stewart platform.

good rigidity, simple inverse kinematics, and high payload capacity, they suffer

the following disadvantages.

1. Their direct kinematics are difficult to solve.

2. Position and orientation of the moving platform are coupled.

3. Precise spherical joints are difficult to manufacture at low cost.

Moreover, the closed-form direct kinematic solutions that have been reported

in the literature have generally required special forms of the Stewart Platform

2



(Nanua et al., 1990; Griffis and Duffy, 1989; Lin et al., 1994). Most commonly,

these special forms require concentric spherical joints (see Fig. 1.2). In these

special forms, pairs of spherical joints may present design and manufacturing

problems.

Concentric
 Spherical Joints

Fixed Platform

Moving Platform

Figure 1.2: A special form of the Stewart platform with concentric spherical

joints.

A three degree of freedom parallel manipulator that does not suffer from the

first two of the listed disadvantages was designed by Clavel (1988) and others at

the Swiss Federal Institute of Technology. The manipulator, called the DELTA

3



robot, has only translational degrees of freedom, and is shown in Fig. 1.3.

Closed-form solutions for both the inverse and forward kinematics have been

developed for the DELTA robot (Pierrot et al., 1990). Additionally, the position

and orientation of the moving platform are uncoupled in the DELTA design.

However, the DELTA robot construction does employ spherical joints.

Fixed Platform

Moving Platform

Revolute Joint

Spherical Joint

Figure 1.3: The Delta Platform.

A new parallel manipulator that eliminated the need for the spherical joints

was invented by Tsai (1997). This manipulator uses only revolute joints to con-

strain the moving platform to three translational degrees of freedom. Developing

4



an understanding of this manipulator is the aim of the research presented in this

dissertation.

1.3 Outline

A description of the manipulator is presented in Chapter 2, where the manipu-

lator structure and mobility is discussed, and a special case of the manipulator

is also described. Following the manipulator description, the key kinematic rela-

tionships are developed in Chapters 3 and 4. First the inverse kinematic problem

is addressed, where given the position of the moving platform the goal is to find

the sets of input joint values that allow the moving platform to achieve that

position. It is shown that the inverse kinematics problem has up to four real so-

lutions. Next, the forward kinematic problem is considered, where the goal is to

determine the possible moving platform positions that result from a given set of

input joint values. Unlike serial manipulators, the forward kinematics problem

is more difficult than the inverse kinematics problem for parallel manipulators.

In this case, the forward kinematics problem is reduced to a 32nd degree polyno-

mial in a single variable, the half-angle tangent of an unknown joint angle, using

the diayltic elimination method. Of the 32 solutions suggested by the polyno-

mial, 16 are found to be extraneous, leaving 16 possible solutions for the forward

kinematic problem. The kinematic analysis is continued in Chapter 4 with the

development of the Jacobian matrix that provides a transformation from the ve-

locity of the moving platform in cartesian space to the actuated joint velocities

in joint space. The Jacobian is then used to search for conditions that result

in singular manipulator configurations where the mobility of the manipulator

5



instantaneously changes.

In Chapter 5, the workspace of the manipulator is considered. Workspace vol-

ume as a function of the manipulator parameters is determined using the Monte

Carlo method. A procedure for characterizing the quality of the workspace is

also developed. This characterization of the workspace quality is based upon

the condition number of the Jacobian matrix, which provides some insight to

the magnification of input joint angle uncertainty onto the position error of

the moving platform. Using these results, optimization studies for maximum

workspace volume and for well-conditioned workspace volume are conducted.

Models for the dynamics of the manipulator are presented in Chapter 6.

Three different models are developed, with numerical simulations presented for

all three models. The first model is based upon the application of the Newton-

Euler equations of motion used in conjunction with the Jacobian matrix to map

the inertial and gravitational loadings of the moving platform to the actuators.

This model is developed for use with a computed torque controller since it does

a good job of capturing the character of the dynamics while being computa-

tionally efficient. The second model was developed to give a more complete

characterization of the dynamics, and is based upon the Lagrangian multiplier

approach. The third model neglects the highly coupled nature of the manipu-

lator and models each input link individually. This model is developed for use

with single-input single-output type controllers.

A prototype was fabricated to demonstrate this manipulator. A description

of the prototype and the accuracy of the prototype are provided in Chapter 7.

Three controllers were developed for the manipulator and tested on the proto-

type. A PID controller, a computed torque controller, and an iterative learning

6



controller were all applied to the prototype, and the results are presented in

Chapter 8. Finally, a summary and suggestions for future research are provided

in Chapter 9.

1.4 Contributions

The aim of this dissertation is to expand the understanding of this new parallel

manipulator. The contributions to this understanding are summarized by the

following list:

1. Creation of a new class of parallel manipulators with three translational

degrees of freedom.

2. Derivation of closed-form solutions for both the inverse and forward kine-

matics problems for this new class of parallel manipulators.

3. Development of methods to determine the workspace volume for the new

manipulator.

4. Design guidelines to achieve maximum workspace volume or maximum

well-conditioned workspace volume.

5. Development of models for the manipulator dynamics that are suitable for

various purposes.

6. Prototype demonstration of this type of manipulator.
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Chapter 2

Description of Manipulator

2.1 Introduction

In this chapter, the parallel manipulator that is the focus of this research is

described. The configuration of the links and the joints that define this manip-

ulator are presented, along with the associated nomenclature. The mobility of

the manipulator is also considered.

2.2 Manipulator Structure

A schematic of the manipulator being considered is shown in Fig. 2.1, where the

stationary platform is labeled 0 and the moving platform is labeled 16. Three

identical limbs connect the moving platform to the stationary platform. Each

limb consists of an input link and an upper arm. The input links are labeled 1,

2, and 3. Each upper arm is a planar four-bar parallelogram: links 4, 7, 10, and

13 for the first limb; 5, 8, 11, and 14 for the second limb; and 6, 9, 12, and 15

for the third limb. All of the links and platforms are considered rigid bodies.

For each limb, the upper arm, input links, and the two platforms are con-

8



Figure 2.1: Schematic of the three-DOF manipulator.
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nected by three parallel revolute joints at axes Ai, Bi, and Ei as shown in Fig.

2.1. The axes of these revolute joints are perpendicular to the axes of the four-

bar parallelogram for each limb. There is also a small offset between the upper

arm assembly and the axes of the revolute joints at Bi and Ei. These offsets are

a function of the geometry of links 4, 5, 6, 13, 14, and 15. The axes of A1, A2,

and A3 lie on a plane attached to the fixed platform. Similarly, the axes of E1,

E2, and E3 lie on a plane attached to the moving platform.

A reference frame (XYZ) is attached to the fixed base at point O, located

at the center of the fixed platform. The x and y axes lie in the same plane as

defined by the axes of A1, A2, and A3. The angle φi for the ith leg as shown

in Fig. 2.1 defines the angular orientation of the leg relative to the XYZ frame

on the fixed platform. Another coordinate system (UiViWi) is attached to the

fixed base at Ai for each leg, such that the ui-axis is perpendicular to the axis

of rotation of the joint at Ai and at an angle φi from the x-axis, while being in

the plane of the fixed platform. The vi-axis is along the joint axis of Ai.

The ith leg of the manipulator is shown in Fig. 2.2. The vector p̄ is the

position vector of point P in the (XYZ) coordinate frame, where P is attached

at the center of the moving platform. The angle θ1i is measured from ū to AB.

The angle θ2i is defined from the ū direction to BC. The angle θ3i is defined by

the angle from the v̄ direction to CD. The link lengths are also shown in Fig.

2.2.

For the purposes of this research, θ11, θ12, and θ13 are considered the actuated

joints. Other combinations of actuated joints are also possible, but actuating

θ11, θ12, and θ13 offers the advantage of attaching each of the actuators to ground.
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Figure 2.2: Depiction of the joint angles and link lengths for leg i.
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2.3 Manipulator Mobility

Considering the manipulator mobility, let F be the degrees of freedom, n the

number of links, j the number of joints, fi the degrees of freedom associated with

the ith joint, and λ = 6, the motion parameter. Then, the degrees of freedom of

a mechanism is generally governed by the following mobility equation:

F = λ(n− j − 1) +
∑
i

fi (2.1)

For the manipulator shown in Fig. 2.1, n = 17, j = 21, and fi = 1 for

i = 1, 2, ..., 21. Applying Eq. (2.1) to the manipulator produces: F = 6(17 −

21 − 1) + 21 = −9. Hence, the manipulator is an overconstrained mechanism.

However, due to the arrangement of the links and joints, many of the constraints

imposed by the joints are redundant and the resulting mechanism does have three

translational degrees of freedom. To understand this, first observe that the three

revolute joints at Ai, Bi, and Ei for the ith leg have parallel axes as shown in Fig.

2.2. Since these axes always remain parallel, and the 4-bar parallelogram does

not effect the orientation of the moving platform, the ith leg provides two con-

straints on the rotation of the moving platform about the z and ui axes. Hence,

the combination of any two limbs constrains rotation about the x, y, and z axes.

Accordingly, the moving platform remains in the same angular orientation with

respect to the fixed platform from the constraints of any two legs. This leaves

the mechanism with three translational degrees of freedom and constrains any

rotation of the moving platform.
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2.4 Special Case Manipulator Description

A special case of the manipulator is formed when d = e = 0. That occurs when

the links that attach the four-bar linkage to the moving platform and to the

input links have zero length such that the axes of the revolute joints at B and C

intersect and the axes of the revolute joints at D and E intersect. This special

case results in a manipulator with a less complex kinematic structure, and is

similar to a manipulator devised by Clavel (1988) that employed spherical joints

to obtain the desired kinematic structure.
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Chapter 3

Manipulator Kinematics

3.1 Introduction

Manipulator kinematics deals with the study of the manipulator motion as con-

strained by the geometry of the links. The kinematic analysis is done without

regard to the forces or torques that cause or result from the motion. Typically,

the study of manipulator kinematics is divided into two parts, inverse kinemat-

ics and forward (or direct) kinematics. The inverse kinematics problem involves

mapping a known position of the output link of the manipulator to a set of input

joint variables that will achieve that position. The forward kinematic problem

involves the mapping from a known set of input joint variables to a position

of the moving platform that results from those given inputs. Generally, as the

number of closed kinematic loops in the manipulator increases, the difficulty of

solving the forward kinematic relationships increases while the difficulty of solv-

ing the inverse kinematic relationships decreases. As an example, the forward

kinematics problem for a traditional 6 degree of freedom serial link manipu-

lator is relatively simple, while the inverse kinematic problem is difficult (e.g.

14



Raghavan and Roth, 1993). In contrast, the inverse kinematics of the 6 degree

of freedom Stewart platform is relatively simple, but the forward kinematics is

difficult (e.g. Zhang and Song, 1994).

For this manipulator, the inverse kinematics problem is solved algebraically

and shows that there are four solutions for each leg for the general case manip-

ulator, and two solutions for the special case manipulator, where d = e = 0 (see

Fig. 2.2). The forward kinematics problem is solved with the application of a

dialytic elimination method and shows that there are 16 solutions for a given

set of input joint angles for the general case manipulator. It’s also shown alge-

braically that there are two solutions to the forward kinematics problem for the

special case manipulator.

3.2 Inverse Kinematics

The objective of the inverse kinematics solution is to define a mapping from

the position of the moving platform in a cartesian space to the set of joint

angles that achieve that position. For this analysis, the position of the moving

platform is considered known, and is given by the position vector p̄, which defines

the location of P at the center of the moving platform in the XY Z coordinate

frame. The inverse kinematics analysis produces a set of three joint angles for

each leg (θ1i, θ2i, and θ3i for the ith leg) that define the possible postures for each

leg for the given position of the moving platform.
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3.2.1 Derivation of Inverse Kinematic Solutions

The following transformation expresses the position of P in the (UVW) coordi-

nate frame attached at point A for leg i:
pui

pvi

pwi

 =


cos(φi) sin(φi) 0

− sin(φi) cos(φi) 0

0 0 1




px

py

pz

+


−r

0

0

 . (3.1)

Expressions for pui, pvi, and pwi are given by:

pui = a cos(θ1i)− c+ [d+ e+ b sin(θ3i)] cos(θ2i), (3.2)

pvi = b cos(θ3i), (3.3)

pwi = a sin(θ1i) + [d+ e+ b sin(θ3i)] sin(θ2i). (3.4)

Two solutions are immediately found for θ3i from Eq. (3.3):

θ3i = ± arccos
(
pvi
b

)
(3.5)

With θ3i known, an equation with θ1i as the only unknown is generated by isolat-

ing the θ2i terms in Eqs. (3.2) and (3.4) and then summing the squares of those

two equations so that θ2i is eliminated with the application of the Pythagorean

relationship:

(pui + c)2 + p2
wi + a2 − 2a(pui + c) cos(θ1i)− 2apwi sin(θ1i)

= (d+ e)2 + 2(d+ e)b sin(θ3i) + b2 sin(θ3i)
2. (3.6)

To transform Eq. (3.6) into a polynomial expression, a half-angle tangent is

defined as:

t1i = tan

(
θ1i

2

)
, (3.7)
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producing the following relationships:

sin(θ1i) = 2t1i
1+t21i

and cos(θ1i) =
1−t21i
1+t21i

. (3.8)

The half-angle substitution is applied to Eq. (3.6), and simplified to produce:

l2it
2
1i + l1it1i + l0i = 0, (3.9)

where:

l0i = p2
wi + p2

ui + 2cpui − 2apui + a2 + c2 − d2 − e2

−b2 sin(θ3i)
2 − 2be sin(θ3i)− 2bd sin(θ3i)− 2de− 2ac,

l1i = −4apwi,

l2i = p2
wi + p2

ui + 2cpui + 2apui + a2 + c2 − d2 − e2

−b2 sin(θ3i)
2 − 2be sin(θ3i)− 2bd sin(θ3i)− 2de+ 2ac.

Equation (3.9) can be solved for t1i, producing two possible values for θ1i for

each of the two solutions found for θ3i. With θ1i and θ3i known, θ2i is found by

back-substitution into Eqs. (3.2) and (3.4). Hence, for a given position of the

moving platform, there are four possible configurations for each leg.

3.2.2 Inverse Kinematic Solution for Special Case Ma-

nipulator

For the special case manipulator, where d = e = 0, so that the joint axes at

B and C intersect and the joint axes at D and E intersect, the four solutions

generated by Eqs. (3.9) and (3.5) represent just two postures. That is to say

that only two postures are possible for each leg for a given position of the moving
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platform. This happens because the two solutions for each θ3i result in the same

posture.

To understand why each θ3i results in only one posture, first label the two

solutions of (3.5) as θ
(1)
3i and θ

(2)
3i . From Eq. (3.5), it can be observed that θ

(1)
3i

and θ
(2)
3i are symmetrical about the revolute axis of joint B. Since θ

(1)
3i and θ

(2)
3i

are symmetrical about the revolute axis of joint B the following relationship

exists between the two solutions:

sin(θ
(1)
3i ) = − sin(θ

(2)
3i ). (3.10)

Accordingly, the solutions of Eq. (3.9) for θ1i are independent of which solution

of θ3i is used since all the terms with θ3i are of the form sin(θ3i)
2 when d = e = 0.

If the two solutions of θ2i associated with each solution of θ3i are labeled θ
(1)
2i

and θ
(2)
2i , it’s possible to show that θ

(1)
2i and θ

(2)
2i are separated by π. This can be

observed by solving Eqs. (3.2) and (3.4) for cos(θ2i) and sin(θ2i) as follows:

cos(θ2i) =
pui + c− a cos(θ1i)

b sin(θ3i)
, (3.11)

sin(θ2i) =
pwi − a sin(θ1i)

b sin(θ3i)
. (3.12)

From Eqs. (3.11), (3.12), and (3.10) it can be observed that sin(θ
(1)
2i ) = − sin(θ

(2)
2i )

and that cos(θ
(1)
2i ) = − cos(θ

(2)
2i ). As a result, a single value trigonometric function

for the arctangent can be applied to show that θ
(1)
2i = θ

(2)
2i ± π.

So, either value of θ3i chosen as the solution for Eq. (3.5) will result in

the same posture. This is true since, if the leg posture is calculated for a chosen

value of θ3i, the posture generated from the solution not chosen for θ3i will simply

result in the reflection of the four bar linkage about the joint axis of B, and then

a rotation about that axis by π radians, producing the same leg posture.
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3.3 Forward Kinematics

The objective of the forward kinematics solution is to define a mapping from the

known set of the actuated joint angles to the unknown position of the moving

platform. For this manipulator the joint angles that are considered known are

the angles formed by the input links and the base of the manipulator, θ11, θ12,

and θ13. The unknown position of the moving platform is described by the

position vector p̄, which defines the location of P at the center of the moving

platform in the XY Z coordinate frame.

Unlike serial manipulators, the forward kinematics problem is more difficult

to solve for parallel manipulators than the inverse kinematics problem. Often

the forward kinematics problem for parallel manipulators is reduced to solving a

large system of polynomial equations. Three common approaches to solving these

systems of polynomial equations are outlined by Raghavan and Roth (1995).

The three approaches are the Dialytic Elimination, Polynomial Continuation,

and Grobner bases.

The approach applied in this case is Sylvester’s Dialytic Elimination proce-

dure (Salmon 1964). This procedure is used to eliminate one or more unknowns

from a system of equations. This method was used by Husain and Waldron

(1994) to solve the inverse and direct kinematics problems of a three-limbed

parallel platform with two actuated joints and four passive joints associated

with each limb. This procedure has also been applied to the forward kinemat-

ics problems of the Stewart platform. Lin, Griffis, and Duffy (1992) used it to

solve the kinematics for the 4-4 Stewart platform. Innocenti and Parenti-Castelli

(1993) applied the procedure to reduce the direct kinematics problem of the 5-5

Stewart platform to a 40th degree polynomial in a single unknown. Lazard and
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Merlet (1994) used it to show that a three-legged version of the Stewart platform

has twelve different forward kinematic solutions.

For this analysis, the loop closure equations are written for each leg, and

are then algebraically reduced to two 16th degree equations in two unknowns,

the half-angle tangent of θ31 and θ32. The dialytic elimination method is then

used to eliminate one of the unknowns from these two equations leaving a single

32nd degree equation in a single unknown. Of the 32 solutions generated by this

method, 16 are extraneous.

3.3.1 Derivation of Forward Kinematic Solutions

First, relationships are written for the position of P in the UVW coordinate

frame for the ith leg, resulting in the following expressions for pui, pvi, and pwi:

pui = a cos(θ1i)− c+ [d+ e+ b sin(θ3i)] cos(θ2i), (3.13)

pvi = b cos(θ3i), (3.14)

pwi = a sin(θ1i) + [d+ e+ b sin(θ3i)] sin(θ2i). (3.15)

To create relationships for the position of P in the XYZ coordinate frame for

each leg, Eqs. (3.13), (3.14),and (3.15) are then substituted into Eq. (3.16), the

transformation between the two coordinate systems.
pui

pvi

pwi

 =


cos(φi) sin(φi) 0

− sin(φi) cos(φi) 0

0 0 1




px

py

pz

+


−r

0

0

 (3.16)

This results in a system of 9 equations in 9 unknowns (px, py, pz, θ21, θ22, θ23, θ31, θ32,

and θ33):
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px cos(φi) + py sin(φi)− a cos(θ1i)

−r + c− [d+ e+ b sin(θ3i)] cos(θ2i) = 0, (3.17)

py cos(φi)− px sin(φi)− b cos(θ3i) = 0, (3.18)

pz −a sin(θ1i)− [d+ e+ b sin(θ3i)] sin(θ2i) = 0, (3.19)

for i = 1, 2, and 3. The solution of this set of equations, represents the solution

of the forward kinematics problem. To determine the solution, Eqs. (3.17),

(3.18), and (3.19) are manipulated to produce two equations in the tangent of

the half-angle of θ31 and θ32. These two equations are then solved using the

dailytic elimination method. The algebra required to achieve this solution is

what follows.

Letting φ1 = 0, an expression for py is found by rewriting Eq. (3.18) for

i = 1:

py = b cos(θ31). (3.20)

An expression for px is developed by substituting (3.20) into Eq. (3.18) for i = 2:

px =
b

sin(φ2)
[cos(φ2) cos(θ31)− cos(θ32)] . (3.21)

An expression without θ2i is generated by isolating the θ2i terms in Eqs. (3.17)

and (3.19) and then summing the squares of those two equations along with

the square of Eq. (3.18) so that θ2i is eliminated with the application of the

Pythagorean relationship:
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p2
x + p2

y + p2
z − 2a sin(θ1i)pz

+2 [c− r − a cos(θ1i)] [px cos(φi) + py sin(φi)]

+a2 + (r − c)2 − 2a(c− r) cos(θ1i)

−b2 − (d+ e)2 − 2b(d+ e) sin(θ3i) = 0, (3.22)

for i = 1, 2, and 3.

An equation that is linear in px, py, pz, sin(θ31), and sin(θ32) is generated

by subtracting Eq. (3.22) for i = 1 from Eq. (3.22) for i = 2:

k1px + k2py + k3pz + k4 sin(θ31) + k5 sin(θ32) + k6 = 0, (3.23)

where the constants are defined in the appendix. Similarly, an equation that is

linear in px, py, pz, sin(θ31), and sin(θ33) is generated by subtracting Eq. (3.22)

for i = 1 from Eq. (3.22) for i = 3:

k7px + k8py + k9pz + k10 sin(θ31) + k11 sin(θ33) + k12 = 0. (3.24)

An expression for pz is generated by substituting Eqs. (3.20) and (3.21) into

Eq. (3.23), and solving for pz:

pz = k13 sin(θ31) + k14 cos(θ31) + k15 sin(θ32) + k16 cos(θ32) + k17. (3.25)

Substituting the expressions for px, py, and pz into Eq. (3.24) produces an

equation that is linear in sin(θ31), cos(θ31), sin(θ32), cos(θ32), and sin(θ33):

k18 sin(θ31) + k19 cos(θ31) + k20 sin(θ32)

+k21 cos(θ32) + k22 sin(θ33) + k23 = 0. (3.26)
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Substituting px and py into Eq. (3.18) for i = 3 generates another equation

in only θ31, θ32, and θ33:

sin(φ2 − φ3) cos(θ31) + sin(φ3) cos(θ32)− sin(φ2) cos(θ33) = 0. (3.27)

A third equation in θ31 and θ32 is created by substituting the expressions for

px, py, and pz into Eq. (3.22) for i = 1:

k24 cos2(θ31) + k25 sin2(θ31) + k26 cos2(θ32) + k27 sin2(θ32)

+k28 cos(θ31) sin(θ31) + k29 cos(θ31) cos(θ32) + k30 cos(θ31) sin(θ32)

+k31 sin(θ31) cos(θ32) + k32 sin(θ31) sin(θ32) + k33 cos(θ32) sin(θ32)

+k34 cos(θ31) + k35 sin(θ31) + k36 cos(θ32) + k37 sin(θ32) + k38 = 0. (3.28)

This leaves three equations (3.26), (3.27), and (3.28) in three unknowns

(θ31, θ32, and θ33). Solving Eqs. (3.26) and (3.27) for sin(θ33) and cos(θ33)

respectively, and then substituting these expressions into the Pythagorean rela-

tionship, sin2(θ33) + cos2(θ33) = 1, yields:

k39 cos2(θ31) + k40 sin2(θ31) + k41 cos2(θ32) + k42 sin2(θ32)

+k43 cos(θ31) sin(θ31) + k44 cos(θ31) cos(θ32) + k45 cos(θ31) sin(θ32)

+k46 sin(θ31) cos(θ32) + k47 sin(θ31) sin(θ32) + k48 cos(θ32) sin(θ32)

+k49 cos(θ31) + k50 sin(θ31) + k51 cos(θ32) + k52 sin(θ32) + k53 = 0. (3.29)

Considering Eqs. (3.28) and (3.29) along with the relationship sin(θ3i)
2+cos(θ3i)

2 =

1 as functions of four independent variables, sin(θ31), cos(θ31), sin(θ32), and

cos(θ32), the system of equations can be considered as four 2nd degree polyno-

mials in four unknowns. The total degree of the system is 16. Therefore, there

are at most 16 solutions.
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Equations (3.28) and (3.29) are transformed into polynomials by applying the

half-angle tangent relationships (3.8) and multiplying by [(1 + t231)
2(1 + t232)

2] to

clear the denominators, which is only valid if (1 + t231) 6= 0 and (1 + t232) 6= 0.

Hence, any solution with values of t31= ±i or t32= ±i must be discarded from

the final solution. The polynomials are expressed with t31 suppressed as shown:

g1t
4
32 + g2t

3
32 + g3t

2
32 + g4t32 + g5 = 0, (3.30)

g6t
4
32 + g7t

3
32 + g8t

2
32 + g9t32 + g10 = 0, (3.31)

where:

g1 = k54t
4
31 + k55t

3
31 + k56t

2
31 + k57t31 + k58,

g2 = k59t
4
31 + k60t

3
31 + k61t

2
31 + k62t31 + k63,

g3 = k64t
4
31 + k65t

3
31 + k66t

2
31 + k67t31 + k68,

g4 = k69t
4
31 + k70t

3
31 + k71t

2
31 + k72t31 + k73,

g5 = k74t
4
31 + k75t

3
31 + k76t

2
31 + k77t31 + k78,

g6 = k79t
4
31 + k80t

3
31 + k81t

2
31 + k82t31 + k83,

g7 = k84t
4
31 + k85t

3
31 + k86t

2
31 + k87t31 + k88,

g8 = k89t
4
31 + k90t

3
31 + k91t

2
31 + k92t31 + k93,

g9 = k94t
4
31 + k95t

3
31 + k96t

2
31 + k97t31 + k98,

g10 = k99t
4
31 + k100t

3
31 + k101t

2
31 + k102t31 + k103.

The dialytic elimination method is applied to Eqs. (3.30) and (3.31), pro-
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ducing the following matrix equation:

g5 g4 g3 g2 g1 0 0 0

g10 g9 g8 g7 g6 0 0 0

0 g5 g4 g3 g2 g1 0 0

0 g10 g9 g8 g7 g6 0 0

0 0 g5 g4 g3 g2 g1 0

0 0 g10 g9 g8 g7 g6 0

0 0 0 g5 g4 g3 g2 g1

0 0 0 g10 g9 g8 g7 g6





1

t32

t232

t332

t432

t532

t632

t732



= 0. (3.32)

For a nontrivial solution to exist for Eq. (3.32), the determinant of the

square matrix must equal 0. This produces a 32nd degree polynomial in t31.

This equation can be solved for t31, and then the values of px, py, and pz are

determined by back-substitution. Of the 32 solutions generated by this method,

16 are extraneous which can be shown by checking the 32 solutions against Eqs.

(3.17), (3.18), and (3.19). These extraneous solutions occur when (t231 + 1) = 0.

3.3.2 Forward Kinematic Solution for Special Case Ma-

nipulator

The solution of the forward kinematics problem for the special case manipulator,

where d = e = 0, is less complex than the solution for the general case manipu-

lator. The solution can be reduced to a quadratic equation in a single unknown

without the use of the dialytic elimination method.

First rewrite Eq. (3.22) with d = e = 0:
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p2
x + p2

y + p2
z + 2 [c− r − a cos(θ1i)] [px cos(φi) + py sin(φi)]

−2a sin(θ1i)pz + a2 + (r − c)2 − 2a(c− r) cos(θ1i)− b
2 = 0, (3.33)

for i = 1, 2, and 3. This leaves a system of three equations in three unknowns,

px, py, and pz. Geometrically, each of these three equations describe a sphere

with a radius of b, and with a center displaced from the joint Bi by a distance of

(r− c), the size difference of the platforms. The solution of this set of equations

represents the intersection of those three spheres and also the solution of the

forward kinematics problem for the special case manipulator.

The plane that contains the circle of intersection created by the spheres of

leg 1 and leg j, where j = 2 and 3, is found by subtracting Eq. (3.33) for i = 1

from Eq. (3.33) for i = j:

l1jpx + l2jpy + l3jpz + l4j = 0, (3.34)

where:

l1j = 2 cos(φj) [a cos(θ1j) + r − c]− 2 cos(φ1) [a cos(θ11) + r − c] ,

l2j = 2 sin(φj) [a cos(θ1j) + r − c]− 2 sin(φ1) [a cos(θ11) + r − c] ,

l3j = 2a sin(θ1j)− 2a sin(θ11),

l4j = [a cos(θ11) + r − c]2 + a2 sin2(θ11)− [a cos(θ1j) + r − c]2 − a2 sin2(θ1j).

Equation (3.34) for j = 2 and 3 provides a system of equations that is linearly

independent as long as the centers of the spheres are not colinear, which is

unlikely to be realized in practical embodiments of the manipulator. This system

of equations defines a line in <3 that must contain point P if there is a real
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solution. The intersection of this line with any of the spheres described by Eq.

(3.33) solves the forward kinematics problem. In this case, solving Eq. (3.34),

where j = 2 and 3, for py and pz in terms of px and then substituting the resulting

expressions into Eq. (3.33) for i = 1, yields:

k104p
2
x + k105px + k106 = 0, (3.35)

where the constants are defined in Appendix A. The values for py and pz that

correspond to px are found by back substitution into Eq. (3.34).

3.3.3 Numerical Example

As an example of the forward kinematics solution for a general case manipulator,

let the manipulator parameters and input angles be as given in Table 3.1.
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Table 3.1: Manipulator parameters and input angles for numerical example.

a = 4

b = 5.8

c = 5

d = e = 0.1

r = 5

φ1 = 0 deg

φ2 = 120 deg

φ3 = 240 deg

θ11 = 10 deg

θ12 = 45 deg

θ13 = 35 deg

The 32nd degree polynomial that results from the determinant of the square

matrix in Eq. (3.32) is:

t32
31 + 0.0012t31

31 − 0.7849t30
31 − 0.0059t29

31 − 8.7107t28
31

−0.0189t27
31 + 5.6986t26

31 + 0.0370t25
31 + 33.2810t24

31

+0.1023t23
31 − 17.5210t22

31 − 0.0855t21
31 − 72.6129t20

31

−0.2698t19
31 + 29.5200t18

31 + 0.0761t17
31 + 98.6375t16

31

+0.3915t15
31 − 29.3813t14

31 + 0.0146t13
31 − 85.1775t12

31

−0.3188t11
31 + 17.2424t10

31 − 0.0761t931 + 45.5498t831

+0.1366t731 − 5.5129t631 + 0.0511t531 − 13.7638t431

−0.0239t331 + 0.7391t231 − 0.0112t31 + 1.7965 = 0.

The roots of this polynomial are given in Table 3.2.
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There are 16 real roots. So, for the given input angles there are 16 possi-

ble poses for this manipulator. The 16 extraneous solutions are determined by

checking the solutions against the condition that t31 6= ±i, as imposed during the

formulation of Eqs. (3.30) and (3.31).

As an example of a real solution, consider the root t31 = 1.218, so that

θ31 = 101.2 deg. The angle θ32 is found by back-substituting t31 into Eqs. (3.30)

and (3.31), yielding t32 = 1.221 and in turn θ32 = 101.4 deg. With θ31 and θ32

known, px and py can be solved for directly from Eqs. (3.20) and (3.21). In this

example, px = 1.971 and py = −1.131. Equation (3.22) can then be used to solve

for pz = 6.245, completing the forward kinematics solution. The positions of the

moving platform for all the solutions of the numerical example were computed

in a similar manner, and are given in Table 3.3.

A numerical example of the special case manipulator is also presented. The

special case manipulator parameters are selected to be similar to the example

presented for the general case manipulator example, where the same parameters

are used as shown in Table 3.1 except that the lengths of d and e are included in

the upper connecting rod length, b. So, d and e both change from a length of 0.1

to 0, and the connecting rod length changes from 5.8 to 6.0, leaving the combined

length of each leg the same, as well as maintaining the same proportions between

the upper arm assembly and the input link for the two examples. Using these

parameters, Eq. (3.35) is solved for the two possible values of px, and then the

associated values for py and pz are found by back substitution into Eq. (3.34).

The results are displayed in Table 3.4. It can be observed from Tables 3.3 and

3.4 that the 16 solutions for the general case manipulator tend to cluster around

the one of the two solutions for the similar special case manipulator.
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Table 3.2: Solutions of t31 for the forward kinematics numerical example.

Solution No. t31

1 -1.213

2 -1.135

3 -1.125

4 -1.052

5 -1.027

6 -0.955

7 -0.951

8 -0.884

9-24 0.000± 1.000 i (multiplicity 8)

25 0.881

26 0.947

27 0.951

28 1.022

29 1.054

30 1.128

31 1.138

32 1.218
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Table 3.3: Position of the moving platform for all the solutions of the numerical

example for a general case manipulator.

Solution No. px py pz

1 2.281 -1.106 5.931

2 2.502 -0.729 6.059

3 2.058 -0.678 5.927

4 2.282 -0.294 6.036

5 -0.643 -0.155 -2.520

6 -0.791 0.266 -2.292

7 -0.508 0.293 -2.697

8 -0.649 0.710 -2.439

9-24 Extraneous Extraneous Extraneous

25 -1.090 0.730 -2.492

26 -0.956 0.318 -2.760

27 -1.229 0.290 -2.338

28 -1.088 -0.126 -2.577

29 1.967 -0.306 6.353

30 1.738 -0.696 6.231

31 2.197 -0.748 6.385

32 1.971 -1.131 6.245
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Table 3.4: Position of the moving platform for all the solutions of the numerical

example for a special case manipulator.

Solution No. px py pz

1 -0.955 0.319 -2.762

2 2.210 -0.739 6.392

3.4 Summary

The inverse kinematics problem for this manipulator was defined as a mapping

from a given position of the moving platform to the set of joint angles that allows

the platform to achieve that position. The solution was presented for both the

general case manipulator and the special case manipulator, where axes of the

joints at B and C intersect such that d = e = 0. The solution for the general

case manipulator resulted in four solutions for each leg for a given position of the

moving platform, where for each real solution there is a unique posture for the

leg. The solution for the special case manipulator also resulted in four solutions.

However, the four solutions only produce at most two unique physical posture.

The forward kinematics problem for this manipulator was defined as a map-

ping from a given set of input joint angles, (θ11, θ12, and θ13), to the position

of the moving platform. The solution was presented for both the general case

manipulator and the special case manipulator, where axes of the joints at B and

C intersect such that d = e = 0.

The solution for the general case manipulator was reduced to a 32nd degree

polynomial in the half-angle tangent of a single unknown joint angle. This was
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accomplished by the application of the diayltic elimination method. Of the 32

solutions suggested by the polynomial, 16 are found to be extraneous, leaving

16 possible solutions for the forward kinematics problem.

The solution for the special case manipulator was reduced to a quadratic

polynomial in a single variable. Accordingly, there are only two solutions to the

forward kinematics problem for the special case manipulator.
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Chapter 4

Jacobian and Singularity Analysis

4.1 Introduction

For parallel manipulators, the Jacobian matrix provides a transformation from

the velocity of the end-effector in cartesian space to the actuated joint velocities

(e.g. Gosselin and Angeles, 1988; Wang and Gosselin, 1996) as shown in Eq.

(4.1):

q̇ = Jẋ, (4.1)

where q̇ is an m-dimensional vector that represents a set of actuated joint rates,

ẋ is an n-dimensional output velocity vector of the end-effector, and J is the

n×m Jacobian matrix. For the manipulator being considered for this research,

the Jacobian matrix is a square matrix since the three actuated joints map onto

the three output coordinates of the moving platform. However, it is possible

that m 6= n. As an example, a redundant manipulator can have more than six

actuated joints, while the end-effector will at most have six degrees of freedom,

so that m > n.

This definition of the Jacobian matrix is slightly different from what is tradi-
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tionally defined for serial manipulators, where the Jacobian provides a transfor-

mation from the joint velocities to the end-effector velocity. This change of the

Jacobian definition for parallel manipulators follows naturally from the dualities

between parallel and serial manipulators (Waldron and Hunt, 1988), and is done

as a matter of convenience.

As an extension of this definition, Gosselin and Angeles (1990) presented a

two-part Jacobian. It assumes that the relationship between the input coordi-

nates, q, and the output coordinates, x, can be written in the following form:

F(q,x) = 0, (4.2)

where F is an n dimensional implicit function of x and q. Differentiating Eq.

(4.2) with respect to time results in the following relationship:

JF ẋ + JI q̇ = 0, (4.3)

where

JF =
∂F

∂x
, JI =

∂F

∂q
, (4.4)

and where JF is an n × n Jacobian matrix and JI is an n × m Jacobian ma-

trix. Both JF and JI are configuration dependent, i.e. JF = JF (x,q) and

JI = JI(x,q). The advantage of the two-part Jacobian is that it allows the

identification of various types of singularities.

Independent of which form it takes, the Jacobian provides many useful in-

sights to the performance of a manipulator. The Jacobian matrix is often used

for trajectory generation purposes since for a given desired end-effector velocity,

it’s possible to map that velocity back to the joint space. Jacobian analysis is
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also used to determine the singular positions of a manipulator, since when a ma-

nipulator is at a singular position the Jacobian matrix is also singular (Gosselin

and Angeles, 1990; Gosselin and Sefrioui, 1992; Wang and Gosselin, 1996). Simi-

larly, the Jacobian is used to describe the workspace boundaries of a manipulator

(Oblak and Kohli, 1988). Furthermore, the Jacobian is useful for characterizing

the stiffness of a manipulator, which provides some insight to the mechanical

advantage the end-effector has relative to the actuated joints (Gosselin, 1990a;

Tahmasebi and Tsai, 1995). The condition number of the Jacobian matrix has

also been used as a performance index for optimizing manipulator design since it

provides a measure of the amplification of the error between the actuated joints

and the position of the end-effector (Gosselin and Angeles, 1988, 1989, 1991). A

recent novel application of the Jacobian has been the analysis and synthesis of

under-actuated force generating mechanisms (Gosselin, 1996).

A manipulator singularity describes a manipulator posture that results in an

instantaneous change in the mobility of the manipulator. These are undesirable

postures, since the control of the manipulator in these postures becomes prob-

lematic or the manipulator is at the limit of the workspace. Accordingly, it’s

important to understand the conditions that result in a manipulator singularity.

The identification of those conditions for this manipulator is the focus of this

chapter.

Using the classification scheme presented by Gosselin and Angeles (1990),

singularities for parallel manipulators can be categorized into three types. The

first type occurs when different branches of the inverse kinematics problem con-

verge. This type of singularity results in a loss of mobility, and occurs at the

boundary of a manipulator workspace. The second type of singularity occurs
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when different branches of the forward kinematics problem converge. This type

of singularity results in additional degrees of freedom at the end-effector. So, for

a manipulator in this singular posture, the end-effector has one or more degrees

of freedom even when the actuated joints are locked. This also means that there

are some forces or torques which can be applied to the end-effector that cannot

be resisted by the actuators. The third type of of singularity occurs when the

manipulator is in a posture that produces a singularity of the first type and a

singularity of the second type simultaneously.

Various approaches have been used to determine the singularities of parallel

manipulators, but most involve a Jacobian based analysis, since the Jacobian

matrix degenerates when the manipulator is in a singular position (Ma and

Angeles, 1991, Shi and Fenton, 1992). The approach presented by Gosselin and

Angeles (1990) divides the Jacobian into two parts to aid in the classification

of the singularities. This approach was also applied to the determination of the

singularity loci of a spherical three degree of freedom platform (Gosselin and

Serfrioui, 1992) and a spatial four-degree-of-freedom parallel platform (Wang

and Gosselin, 1996). A singularity classification system that is not based upon

the traditional Jacobian matrix was presented by Zlatanov et. al. (1995), which

further refined the classification of manipulator singularities into 6 categories.

This classification system was based upon the degenerate cases of a system of

linear equations that map both the passive and actuated joint velocities to the

output velocities of the manipulator. Merlet (1989) used Grassman geometry

to identify the singular conditions for parallel manipulators. Mouly and Merlet

(1992) demonstrated this technique for a special case of the Stewart platform

with pairs of concentric spherical joints on the moving platform.
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In this chapter, for the analysis of the three degree of freedom parallel manip-

ulator, q is a vector of the actuated joint variables and x is the position vector

of the moving platform:

q =


θ11

θ12

θ13

 , x =


px

py

pz

 .

The Jacobian matrices are derived by differiniating the loop closure equation for

each leg of the manipulator and then solving the resulting system of equations

so that it takes the following form:

JI


˙θ11

˙θ12

˙θ13

 = JF


Vp,x

Vp,y

Vp,z

 ,

where Vp,x, Vp,y, and Vp,z are the X, Y, and Z components of the velocity of point

P on the moving platform in the world coordinate frame (see Fig. 2.1), and

where JI and JF are 3 × 3 Jacobian matrices. The Jacobian matrices are in

terms of the manipulator joint angles, and are accordingly dependent upon the

position and posture of the manipulator. The singularities of the manipulator

are then found by examining the conditions that result in singular Jacobian

matrices.

4.2 Derivation of Jacobian Matrix

Referring to Fig. 4.1 that shows the ith leg of the manipulator with links of the

leg numbered 1 through 4, the first step in deriving the Jacobian matrices is to

38



o
2i

o
1i

O A

B

D

EP

r

e

d

c

u
i

w
i

a

o
3i

b

C
B

C

D

E

(side view)

v

p

i

i

i

i

i

i

i

i

i

1

3

2

4

i

Figure 4.1: Description of leg i used for derivation of the Jacobian.

write a loop closure equation for the ith leg in the UVW frame:

OAi +ABi = OPi + PEi + EDi +DCi + CBi. (4.5)

Differiniating Eq. (4.5) with respects to time and expressing the resulting

equation in the UVW coordinate frame provides:

ω1i ×ABi = VP ,uvw + ω3i ×DCi + ω2i ×
(
EDi + CBi

)
, (4.6)

where ωni is the angular velocity of the nth link of the ith leg in the UVW

coordinate frame, and is given by:
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ω1i =


0

−θ̇1i

0

 , ω2i =


0

−θ̇2i

0

 , and ω3i =


θ̇3i sin(θ2i)

−θ̇2i

−θ̇3i cos(θ2i)

 .

Rewriting Eq. (4.6) in terms of the link parameters and joint angles results in:


−aθ̇1i sin(θ1i)

0

aθ̇1i cos(θ1i)

=

Vp,u − bθ̇3i cos(θ2i) cos(θ3i) + θ̇2i sin(θ2i) [d+ e+ b sin(θ3i)]

Vp,v + bθ̇3i sin(θ3i)

Vp,w − bθ̇3i sin(θ2i) cos(θ3i)− θ̇2i cos(θ2i) [d+ e+ b sin(θ3i)]

 .

(4.7)

The Jacobian matrices are determined by considering Eq. (4.7) as a system

of three equations in three unknowns, (θ̇1i, θ̇2i, and θ̇3i) and then solving for a

relationship in just θ̇1i for the ith leg. This is accomplished by first solving the

2nd row of Eq. (4.7) for θ̇3i:

θ̇3i = −
Vp,v

b sin(θ3i)
. (4.8)

This expression for θ̇3i is substituted into the 1st and 2nd rows of Eq. (4.7),

leaving two equations in two unknowns, (θ̇1i and θ̇2i). These two equations are

combined so as to eliminate θ̇2i, and simplified to produce Eq. (4.9):

aθ̇1i sin(θ2i − θ1i) sin(θ3i) = Vp,u cos(θ2i) sin(θ3i)

+Vp,v cos(θ3i) + Vp,w sin(θ2i) sin(θ3i). (4.9)
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Equation (4.9) is transformed from the UVW coordinate frame for leg i to

the XY Z frame of the manipulator using the following relationship:
Vp,ui

Vp,vi

Vp,wi

 =


cos(φi) sin(φi) 0

− sin(φi) cos(φi) 0

0 0 1




Vp,x

Vp,y

Vp,z

 . (4.10)

This transformation is repeated for each leg, and the resulting equations are

rearranged so as to produce the Jacobian matrix:

JI


θ̇11

θ̇12

θ̇13

 = JF


Vp,x

Vp,y

Vp,z

 , (4.11)

where:

JF =


jF11 jF12 jF13

jF21 jF22 jF23

jF31 jF32 jF33

 , JI = diag(jI1 , jI2, jI3), (4.12)

and

jFi1 = cos(θ2i) sin(θ3i) cos(φi)− cos(θ3i) sin(φi),

jFi2 = cos(θ3i) cos(φi) + cos(θ2i) sin(θ3i) sin(φi),

jFi3 = sin(θ2i) sin(θ3i),

jIi = a sin(θ2i − θ1i) sin(θ3i)

for i = 1, 2, and 3.

Sometimes the Jacobian matrix for a parallel manipulator is not dimension-

ally uniform, and this creates some problems when using the Jacobian matrix for

other types of analysis such examining the stiffness or condition of the workspace
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of a manipulator. However, in the case of this manipulator, if the Jacobian ma-

trix is considered as in the form given by Eq. (4.1), where the Jacobian matrix

can be calculated by

J = JI
−1JF, (4.13)

then the Jacobian matrix is dimensionally uniform with each element of J having

the dimension of (length)−1. This occurs because the manipulator has only

translational degrees of freedom at the moving platform and all the actuated

joints are revolute joints. Hence, all the elements of the output vector, x, for

this manipulator have the dimension of length and all of the elements of the

input vector, q, have the dimension of radian, resulting in a Jacobian matrix

that is dimensionally uniform.

4.3 Inverse Kinematic Singularities

Using the Jacobian matrices as given in Eq. (4.11), the inverse kinematic singu-

larities occur when the following condition is satisfied:

det(JI) = 0. (4.14)

When Eq. (4.14) is satisfied the manipulator loses one or more degrees of free-

dom. If JI is singular and the dimension of the null-space of JI is nonzero, then

there exist some nonzero q̇ vectors that produce ẋ vectors that are zero in some

directions. Hence, there are moving platform velocities that are not achievable.

This occurs when the manipulator is at a workspace boundary where different

solutions to the inverse kinematics solution converge.
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This type of singularity is found by setting the diagonal elements of JI equal

to zero. This leads to the following conditions for an inverse kinematic singular-

ity:

(θ1i − θ2i) = 0 or π (4.15)

or

θ3i = 0 or π, (4.16)

for i=1 or 2 or 3. So, whenever any of these conditions are satisfied for any leg,

the manipulator is in an inverse kinematic singular posture, and is at the limit

of the manipulator workspace. Physically, this condition occurs when the upper

arm linkage and the input link of a leg are in the same plane or when all the

links of the four bar linkage that comprise the upper arm for a leg are co-linear.

4.4 Forward Kinematic Singularities

When a forward kinematic singularity occurs, the moving platform of the ma-

nipulator gains one or more degrees of freedom, so that the moving platform still

has some mobility even when all of the actuators are locked. Forward kinematic

singularities occur when the following condition is satisfied:

det(JF ) = 0. (4.17)

To understand why this is the case, examine Eq. (4.11). If the dimension of the

nullspace for JF is non-zero, there are some moving platform velocities, ẋ that

are possible even when θ̇ is zero. Hence the moving platform is still mobile while

the actuated joints are locked. Moreover, this shows that there are forces that
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can be applied to the moving platform that are not resisted by the actuators

when the platform is in this type of singular posture.

Accordingly, Eq. (4.17) provides the necessary and sufficient conditions for

a forward kinematic singularity. Now, we consider some manipulator postures

that satisfy this condition.

The first set of postures that satisfies Eq. (4.17) is inferred by imposing linear

dependence on the columns of JF , such that

α1


jF11

jF21

jF31

+ α2


jF12

jF22

jF32

+ α3


jF13

jF23

jF33

 = 0, (4.18)

for some real values of α1, α2, and α3, where not all α’s are zero. By examination,

one set of conditions that satisfies Eq. (4.18) is found when jF13 = jF23 = jF33 =

0. This satisfies Eq. (4.18), since any value of α3 could be chosen, while letting

α1 = α2 = 0. In terms of manipulator variables, this condition is rewritten as:

sin(θ21) sin(θ31) = sin(θ22) sin(θ32) = sin(θ23) sin(θ33) = 0. (4.19)

Equation (4.19) shows that the manipulator is in a forward kinematic singular

position whenever all legs are in a posture such that:

θ2i = 0 or π

or

θ3i = 0 or π.

for all i = 1 and 2 and 3.

The physical interpretation of this condition is that the manipulator displays

this type of forward kinematic singular position any time the four-bar linkages
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of all three legs are in the same plane as the moving platform. In this manipula-

tor configuration, the manipulator actuators cannot resist a force applied to the

moving platform in the z-direction. The front and top views of a manipulator

in this type of singular configuration are shown in Fig. 4.2. In this example the

upper arm assemblies of all three legs are in the same plane as the moving plat-

form, resulting in a forward kinematic singularity. This example configuration

is only possible when r + a ≥ b+ c+ d+ e.

A second set of postures that satisfies Eq. (4.17) is found when any two of

the upper arm linkages are parallel. To show this, a unit vector in the direction

of the upper arm, CD, for the ith leg is defined as n̄CD,i, where:

n̄CD,i =


cos(φi) sin(θ3,i) cos(θ2,i)− sin(φi) cos(θ3,i)

sin(φi) sin(θ3,i) cos(θ2,i) + cos(φi) cos(θ3,i)

sin(θ3,i) sin(θ2,i)

 (4.20)

If any two upper arm linkages are parallel, then

n̄CD,i = ±n̄CD,i+1. (4.21)

Substituting the relationships that result from Eq. (4.21) into Eq. (4.12) reveals

that two of the rows of JF are multiples of each other when two of the upper

arm linkages are parallel. Hence the matrix is singular and the manipulator is

in a singular position of the forward kinematic type when any two of the upper

arm linkages are parallel to each other. As an example, the front and top views

of a manipulator in this type of singular configuration are shown in Fig. 4.3.

In this example, the manipulator cannot resist any force applied in the plane of

the moving platform. Note that in this example all three upper arm linkages

are parallel, however it is only necessary that two of the upper arm linkages be

parallel to be in a singular position of this type.
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Figure 4.2: Example of forward kinematic singular configuration where all the

upper arm linkages are in the plane of the moving platform.
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Figure 4.3: Example of a forward kinematic singular configuration where two

upper arm linkages are parallel.
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4.5 Summary

The Jacobian matrix is derived for the general case manipulator. The derivation

of the Jacobian matrix for the special case manipulator, where d = e = 0,

is not treated separately since the derivation for the special case manipulator

results in the identical Jacobian matrix as given for the general case manipulator.

Furthermore, the Jacobian matrix given by Eq. (4.13) for this manipulator

is dimensionally uniform. Accordingly, there is no need to establish a set of

generalized coordinates for the manipulator to create a dimensionally uniform

Jacobian matrix.

Several singular positions of the manipulator are found by examining the con-

ditions that cause either of the Jacobian matrices as given by Eq. (4.11) to be

singular. These singular positions were classified into inverse kinematic singular

positions and forward kinematic singular positions. The inverse kinematic sin-

gular positions occur at the boundary of the manipulator workspace and result

in an instantaneous reduction of the mobility of the manipulator. The forward

kinematic singular positions occur at the convergence of different branches of

the forward kinematic solution and result in additional mobility at the moving

platform even when all the input links are locked in place. This search for singu-

lar conditions is not exhaustive, but does account for all the singular conditions

observed during the course of this research.

Two conditions were found that result in inverse kinematic singular positions.

The first is when the input link and the upper arm linkage for any leg is in the

same plane. The second condition occurs when all the links of the four bar

linkage that comprise the upper arm for a leg are co-linear.

Two conditions were also found that result in forward kinematic singular
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positions. The first occurs when all the upper arm linkages are in the same

plane as the moving platform. The second occurs when any two of the upper

arm linkages are parallel to each other.
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Chapter 5

Workspace Analysis and Optimization

5.1 Introduction

Parallel manipulators offer several advantages relative to serial manipulators, but

generally these gains are realized at the cost of manipulator workspace. Con-

sequently, it’s incumbent upon the engineer to design the manipulator with the

optimization of workspace in mind. This chapter addresses workspace oriented

manipulator design by considering two optimization studies. First, the opti-

mization of total manipulator workspace volume is considered without regard

to the condition of the workspace. Second,the optimization of a manipulator to

obtained a well-conditioned workspace is considered.

Optimization of manipulator workspace volume is dependent upon a means

of determining the workspace of a parallel manipulator for a given set of de-

sign variables. Oblak and Kohi (1988) described manipulator workspace from

the standpoint of a Jacobian analysis and D-surfaces, where one or more of

the joints achieve a limit position. A geometric based algorithm to generate a

graphical representation of the workspace for a six degree of freedom parallel plat-
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form in a given orientation was generated by Gosselin et al (1992) and Gosselin

(1990b). The workspace of the DELTA4 robot, a 4 degree of freedom parallel

manipulator, was presented by Clavel (1988), where the DELTA4 workspace was

described by the intersection of geometric primitives that are defined by various

robot design parameters. A similar approach was applied to the DELTA4 by

Sternheim (1988), where the workspace described by the intersection of the ge-

ometric primitives was visualized using solid modeling software. Rastegar and

Perel (1988) and Alciatore and Ng (1994) applied the Monte Carlo method to

determine workspace boundaries. For this research, a numerical value for the

workspace volume is computed using the Monte Carlo method.

A parallel manipulator designed for maximum workspace volume may not

however be the optimal design for practical applications. It’s possible that a

parallel manipulator that is optimized for total workspace will result in a ma-

nipulator with undesirable kinematic characteristics such as poor dexterity or

manipulability. One measure of these characteristics used by Salisbury and Craig

(1982) and Angeles and Lopez-Cajun (1988) is based upon the condition number

of the manipulator Jacobian matrix, where the Jacobian matrix maps the actu-

ated joint velocities to the velocity of the moving platform in cartesian space.

Merlet (1996) explored the optimal design of a Gough platform with an objective

function that considered the total workspace volume and the positioning error

of the moving platform at several discrete locations within the workspace so as

to characterize the worst positioning error within the workspace. A summary of

other manipulator dexterity characterizations is presented by Klein and Blaho

(1987).

The condition of the manipulator in a local sense was considered by Gosselin
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and Angeles when they examined the optimization of a spherical three degree

of freedom parallel manipulator (1989) and a planar three degree of freedom

parallel manipulator (1988). The criteria they used to evaluate the manipulator

designs were symmetry, global workspace, and the condition of the Jacobian of

the manipulator at a home position. Global performance indices, that consider

the dexterity of the manipulator over the entire workspace, were developed by

Park and Brockett (1994) and Gosselin and Angeles (1991). The global perfor-

mance index developed by Gosselin and Angeles is based upon the integration

of the reciprocal of the condition number over the entire workspace. A similar

approach is taken for this research.

5.2 Determination of Workspace Volume

The manipulator workspace volume can be calculated using various procedures.

One obvious approach is to integrate a differential volume over the entire workspace.

However, the complexity of establishing the limits of integration for a general

case manipulator with this approach compels the use of a different numerical

technique. For this research the manipulator workspace volume, W , is numer-

ically approximated using the Monte Carlo method, as outlined in Table 5.1.

This procedure produces a numeric value that is used for the optimization of the

total workspace of the manipulator.
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Table 5.1: Procedure to determine manipulator workspace volume using the

Monte Carlo method.

Step 1: A hemisphere with a radius equal to that of the total leg

length of the manipulator, a + b + d + e, is defined that

encases the entire possible workspace of the manipulator.

Step 2: A large number of points, ntotal, are randomly selected

within the hemisphere.

Step 3: Each point is tested to determine if it falls within the

manipulator workspace. This is accomplished by solving

the inverse kinematics problem for each leg as described

by Eqs. (3.5) and (3.9). If all the joints angles are real,

then the point is within the workspace.

Step 4: The number of points that fall within the workspace, nin,

is tallied.

Step 5: The workspace volume is estimated by multiplying the

volume of the hemisphere by the ratio of points that fall

within the workspace to the total number of points se-

lected:

W ≈ π(a+ b+ d+ e)3 2nin
3ntotal

.
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5.3 Optimization for Total Workspace Volume

The objective of the total workspace optimization is to determine the values

of the manipulator design variables that result in the largest total manipulator

workspace. The design variables considered are:

• the leg link lengths, a, b, and (d+ e);

• the relative size of the platforms, (c− r);

• the relative angular position of the legs, φ2 and φ3, where leg 1 is assumed

to align with the X axis so that φ1 = 0.

Note that the sum of the two offsets, d+ e, is treated as a single design variable

as shown in Eqs. (3.5) and (3.9). Similarly the relative size of the platforms,

(c− r), is considered as a single design variable.

In order to bound the solution and to ensure a practical realization, the

objective function is subject to the following constraints:

• the total leg length is not to exceed one, a+ b+ d+ e ≤ 1;

• each leg must have an angular separation of at least 5◦ from each of the

other legs;

• all link lengths must be positive.

Given this problem formulation, the optimization is computed using the Matlab

optimization toolbox and produced the following results: a = .4, b = .6, d =

e = 0, (c − r) = 0, φ2 = 5◦, and φ3 = 355◦. Both the angular leg separation

constraint and the total leg length constraints are active. A plot of the manipu-

lator workspace with these design variables is shown in Fig. 5.1. Note that the
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optimization routine drove the values of φ2 and φ3 to the edge of the allowable

design variable space. That is, the angles φ were driven so that the legs are each

separated by 5◦. This is because the volume of the manipulator workspace is the

intersection of three torii, which reaches a maximum when they align.
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Figure 5.1: Workspace of manipulator designed for maximum workspace volume.

5.4 Determination of Workspace Condition

A global condition index, η, that considers the condition number of the Jacobian

over the entire workspace is defined for the manipulator as:

η =
∫
W

1

λ
dW, (5.1)
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where λ is the condition number of the Jacobian at a given position in the

workspace and W is the manipulator workspace.

The condition number of the Jacobian matrix, J , is defined as:

λ =‖ J ‖‖ J−1 ‖, (5.2)

where ‖ · ‖ is the 2 norm of the matrix.

As with the calculation of the workspace volume, the complexity of generating

a closed-form solution for the global condition index as given by Eq. (5.1),

compels the use of a numerical solution technique. Accordingly, the Monte

Carlo method is employed as outlined in Table 5.2.

5.5 Optimization for Well Conditioned Workspace

Volume

The objective of the well-conditioned workspace optimization is to determine the

values of the manipulator design variables that result in the best global condition

index. The same set of design variables that were used during the total workspace

optimization is also used for the well conditioned workspace optimization. The

objective function is also subject to the same constraints as were used during

the total workspace optimization. The well-conditioned workspace optimization

is computed using the Matlab optimization toolbox and produced the following

results: a = .44, b = .56, d = e = 0, (c − r) = 0, φ2 = 120◦, and φ3 = 240◦

when 200,000 points were used for the Monte Carlo method. The only active

constraint is the total leg length constraint. A plot of the manipulator workspace

with these design variables is shown in Fig. 5.2.

56



Table 5.2: Procedure to estimate global condition index of the manipulator.

Steps 1-3: Same as steps 1-3 for workspace estimation in Table 5.1.

Step 4: The condition index sum, S, which is the sum of the

reciprocal of the condition number of each point that

falls within the workspace, is calculated by S =
∑
i

1
λi

, for

the i points that fall within the workspace.

Step 5: The global condition index, η, is determined by multi-

plying the volume of the hemisphere and the condition

index sum, and then dividing by the total number of

points selected, i.e.:

η =
2π(a+ b+ d+ e)3S

3ntotal
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Figure 5.2: Workspace of manipulator designed for maximum global condition

index.
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The impact of the design on the condition of the workspace is significant,

and can be seen in Figs. 5.3 and 5.4, where the condition number is plotted

across a plane of the workspace at z=.5 for both the manipulator optimized for

total workspace and the manipulator optimized for well conditioned workspace.

Figure 5.3 shows that the workspace is ill conditioned for the manipulator that
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Figure 5.3: Reciprocal of the condition number at the z=.5 plane for the total

workspace optimized manipulator.

is optimized for total workspace volume with a maximum condition index, 1
λ

of

∼ 0.002 in the z=.5 plane. This results in a poor manipulator since positioning

errors at the actuator are significantly magnified at the end effector. Whereas

Fig. 5.4 shows a much better conditioned workspace with a maximum condition

condition index of ∼ 0.6 in the z= .5 plane, suggesting that this is the better

design when considering the positioning performance of the manipulator.
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It’s also interesting to note that when the position of the legs about the plat-

form is constrained to be symmetrical, so that φ2 = 120◦ and φ3 = 240◦, the

results obtained from the total workspace volume optimization still differ signif-

icantly from the results obtained from the global condition index optimization.

The link lengths produced are a = .32, b = .68, (d + e) = 0, and (c − r) = 0

when the manipulator is optimized for total workspace with legs that are con-

strained to be symmetrically located about the platform. The workspace of a

manipulator with these design parameters is illustrated in Fig. 5.5, and the re-

ciprocal of the condition number across a plane of the workspace at z= .5 for

such a manipulator is shown in Fig. 5.6. The maximum condition index is ap-

proximately equal to 0.3 as compared to 0.6 obtained from the well-conditioned

workspace optimization.
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5.6 Summary

Two procedures based upon the Monte Carlo method are presented to determine

the volume and global condition index for the manipulator workspace. The

global condition index provides a characterization of the quality of manipulator

workspace and is a function of the condition number of the Jacobian matrix.

These procedures are then applied to the optimization of the manipulator design

parameters for both total workspace and global conditioning index.

The optimization of the total workspace shows that the lower leg of the

manipulator should comprise 40% of the total leg length and the upper arm

parallelogram should should comprise the remaining 60% of the total leg length,

while the links that provide the offset between joints B and C and also between

D and E should have a zero length. Furthermore, the legs should also be at the

smallest angular offset possible.

The optimization of the manipulator design for the global condition index

results in a manipulator where the lower leg comprises 44% of the total leg

length and the upper arm comprises 56% of the total leg length, while each

leg has an angular separation of 120◦. The global condition index is a function

that considers the condition number of the manipulator Jacobian over the entire

workspace.

These results show that a parallel manipulator of this type that is designed

to optimized total workspace volume is significantly different from one that is

optimized for a well conditioned workspace. Moreover, these results show that

a manipulator of this type that is designed to maximize total workspace volume

will result in an ill conditioned workspace.
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Chapter 6

Analysis of Manipulator Dynamics

6.1 Introduction

The dynamics of the manipulator are considered in this chapter, where for a

given trajectory of the moving platform it is desired to determine the torques

applied at the input links by the actuators that will achieve that trajectory.

An understanding of the manipulator dynamics is important from several differ-

ent perspectives. First, it is necessary to properly size the actuators and other

manipulator components. Without a model of the manipulator dynamics, it be-

comes difficult to predict the actuator torque requirements and in turn equally

difficult to properly select the actuators. Second, a dynamics model is useful for

developing a control scheme. With an understanding of the manipulator dynam-

ics, it is possible to design a controller with better performance characteristics

than would typically be found using heuristic methods after the manipulator has

been constructed. Moreover, some control schemes such as the computed torque

controller rely directly on the dynamics model to predict the desired actuator

torque to be used in a feedforward manner.
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Several approaches have been used to characterize the dynamics of parallel

manipulators. The most common approaches are based upon Lagrange formula-

tions (Miller and Clavel, 1992), the application of Hamilton’s Principle (Miller,

1995), and the direct application of the Newton’s equations of motion (Gugliel-

metti and Longchamp, 1994).

For this research, three approaches are developed with each approach dis-

regarding friction at the passive joints. The first approach is based upon a

simplified dynamics model and the direct application of Newton-Euler equations

of motion. This approach assumes that the inertial and gravitational loading of

the moving platform and a portion of the upper arm assembly can be mapped

back to the actuated joint using the Jacobian matrix. The advantage of this ap-

proach is that it is less computationally intensive than the Lagrangian models,

while still capturing the character of the manipulator dynamics. This is desirable

if the dynamics model is to be used as the basis for a computed torque control

scheme.

The second approach is based upon Lagrangian multipliers (Griffiths, 1985).

This approach is selected to give a more complete characterization of the manip-

ulator dynamics, with the most significant assumptions being that the mass of

each long connecting rod of the upper arms is evenly divided and concentrated

at the two joints on the rods and that the short connecting links between BC

and DE are massless.

The third approach is developed for use with a proportional-integral-derivative

(PID) type control. Accordingly, an uncoupled equation of motion is developed

for each individual input link and linearized about a given operating condition.

The assumptions made for each of these approaches are discussed in more
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detail during the development of the models. Results of the three different

dynamics models are compared using a numerical example.

6.2 Direct Application of Newton-Euler Equa-

tions of Motion for Simplified Manipulator

This model of the manipulator dynamics assumes that the fixed base of the ma-

nipulator is mounted above the workspace where it operates such that gravity is

acting in the positive z-direction as shown in Fig. 6.1. This dynamics model also

assumes that the mass of each connecting rod, mb, in the upper arm assembly is

evenly divided between, and concentrated at, joints Bi and Ei. This assumption

can be made without significantly compromising the accuracy of the model since

the concentrated mass model of the connecting rods does capture some of the

dynamics of the rods. Moreover, the connecting rods should not play a dominant

role in the manipulator dynamics because the connecting rods can be made quite

light relative to the rest of the manipulator since these connecting rods don’t

need to carry any of the load associated with the mass of the actuators.
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Figure 6.1: Schematic of the ith leg, showing the orientation of the manipulator

and the direction of the applied actuator torque for the dynamic analysis.

Once these assumptions are made, the equation of motion is written by sum-

ming the moments about the actuated joint for the ith leg:

∑
MAi = IAθ̈1i + cd θ̇1i + τ∗mp,i, (6.1)

for i = 1, 2, and 3, and where
∑
MAi is the sum of the moments applied at joint

Ai; IA is the mass moment of inertia of the input link, the motor rotor, and one-

half of the two connecting-rod masses, mb, that is considered to be concentrated

at Bi; τ∗MP,i is the ith element of τ̄∗mp which is an array of the interial loads at

joint Ai due to the acceleration of the moving platform and the other half of the

connecting rod masses that are considered concentrated at Ei; and cd is the
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viscous damping coefficient of the actuator. Note that there are two connecting

rods in each parallelogram each with mass mb. Expressions for IA and τ̄∗mp are

given by Eqs. (6.2) and (6.3):

IA = Im +
1

3
maa

2 +mba
2, (6.2)

τ̄∗mp = (JT )−1 (3 mb +mc) āP , (6.3)

where:

Im is the mass moment of inertia of the motor rotor,

ma is the mass of the input link,

mb is the mass of each rod in link CD,

mc is the mass of the moving platform and payload,

a is the link length of the input link, and

J is the Jacobian matrix as given in Eq. (4.1), and

āP is the acceleration of the moving platform.

An expression for the resultant moment at joint Ai, due to the motor torques

and the gravitational force, for all three legs is given by:


∑
MA1∑
MA2∑
MA3

 =


τ1

τ2

τ3

+
1

2
a ma g


cos(θ11)

cos(θ12)

cos(θ13)

+ a mb g


cos(θ11)

cos(θ12)

cos(θ13)



+(JT )−1 m


0

0

g

 , (6.4)
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where τi is the torque applied by the actuator for the ith leg, and m = 3 mb+mc.

Substituting Eqs. (6.4) and (6.3) into Eq. (6.1) as written for three legs, and

solving for the actuator torques yields:
τ1

τ2

τ3

 = −a g (
1

2
ma +mb)


cos(θ11)

cos(θ12)

cos(θ13)

− (JT )−1 m


0

0

g

+ cd


θ̇11

θ̇12

θ̇13



+IA


θ̈11

θ̈12

θ̈13

+ (JT )−1 m āP . (6.5)

An expression for the acceleration of the moving platform, āP , in terms of the

manipulator joint angles is given by Eq. (6.6). This is found by differentiating

the Jacobian relationship for the manipulator as given by Eq. (4.1).

āP = J−1


θ̈11

θ̈12

θ̈13

+
d

dt
(J−1)


θ̇11

θ̇12

θ̇13

 . (6.6)

Substituting Eq. (6.6) into Eq. (6.5) and grouping the terms results in:

τ̄ = M(q) q̈ + C(q, q̇) q̇ + G(q), (6.7)

where:

q =


θ11

θ12

θ13

 , τ̄ =


τ1

τ2

τ3

 ,

M(q) = IA I + (JT )−1 m J−1, (6.8)
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C(q, q̇) = cd I + (JT )−1 m
d

dt
(J−1), (6.9)

G(q) =−a g (
1

2
ma +mb)


cos(θ11)

cos(θ12)

cos(θ13)

− (JT )−1 m


0

0

g

 , (6.10)

and I is the identity matrix. (6.11)

This approach offers the advantage of being less computationally intensive

than the Lagrangian approach, while still capturing most of the dynamic charac-

teristics of the manipulator. These characteristics makes it an attractive choice

for the dynamics model to be employed in a computed torque control scheme.

A numerical example of this method is presented later in this chapter and is

compared to the other methods developed for the manipulator dynamics.

6.3 Lagrange Based Dynamic Analysis

A more common approach used to characterize manipulator dynamics is the La-

grangian approach, which is presented here as a comparison to the application of

Newton’s equation of motion. The assumptions made for the Lagrangian dynam-

ics model are the same assumptions made for the model based on the application

of Newton’s equation of motion except for a few subtle differences. Once again

the mass of each connecting rod in the upper arm assembly, mb, is considered as

divided and concentrated at two points. However, for the Lagrangain model the

masses are concentrated at joints Ci and Di, rather than Bi and Ei as was done

in the previous dynamic model, offering a slightly better approximation of the
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manipulator dynamics. Also, in the Lagrangian model the damping at the ac-

tuator is disregarded since the Lagrangian model does not readily accommodate

viscous damping as is assumed for the actuators.

For this analysis, Lagrange multipliers are used with nine generalized coordi-

nates. The analysis could be done using just three generalized coordinates, and

no Lagrange multipliers, however the expression for the Lagrange function would

be cumbersome to use due to the complex kinematics of the manipulator. In

general, the Lagrange multiplier approach involves solving the following system

of equations:

d

dt

(
∂L

∂q̇j

)
−
∂L

∂qj
= Qj +

k∑
i=1

λiAij, (6.12)

for j = 1 to n, where:

i is the constraint index,

j is the generalized coordinate index,

k is the number of of constraint functions,

n is the number of generalized coordinates,

L is the Lagrange function, where L = T − V ,

T is the total kinetic energy of the manipulator,

V is the total potential energy of the manipulator,

qj is the jth generalized coordinate,

λi is the Lagrange multiplier,

fi is a constraint equation,

Qj is a generalized external force, and

Aij = ∂fi
∂qj

.

For this manipulator, the generalized coordinates are chosen to be: px, py, pz,

θ21, θ22, θ23, θ11, θ12, and θ13. As a result, Eq. (6.12) represents a system of nine
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equations in nine variables, where the nine variables are λi for i = 1 to 6, and

the three actuator torques, Qj for j = 7, 8, and 9. The external generalized

forces, Qj for j = 1 to 6, are zero since there is no externally applied force at

the moving platform and the joints at Bi are passive.

This formulation requires six constraint equations, fi for i = 1 to 6, that

are written in terms of the generalized coordinates. The first three constraint

equations are drawn from the fact that the distance between joints C and D will

always be equal to the length of the upper arm connecting rod, b:

fi = (Dxi − Cxi)
2 + (Dyi − Cyi)

2 + (Dzi − Czi)
2 − b2 = 0, (6.13)

where:

Cxi = cos(φi) [r + a cos(θ1i) + e cos(θ2i)] ,

Cyi = sin(φi) [r + a cos(θ1i) + e cos(θ2i)] ,

Czi = a sin(θ1i) + e sin(θ2i),

Dxi = px + cos(φi) [c− d cos(θ2i)] ,

Dyi = py + sin(φi) [c− d cos(θ2i)] ,

Dzi = pz − d sin(θ2i),

for i = 1, 2, and 3.

The second set of constraint equations are drawn from the relationship that

the upper arm linkage is at an angle of θ2i from the XY plane:

fi = Ewi −Bwi + (Bui − Eui) tan(θ2i), (6.14)

where:

Bui = a cos(θ1i),
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Bwi = a sin(θ1i),

Eui = px cos(φi) + py sin(φi) + c− r,

Ewi = pz,

for i = 4, 5, and 6.

Solving the system of equations given by Eq. (6.12) is made easier by group-

ing the first set of six equations together so that they form a system of six

equations in six unknowns. The unknowns in this system are the Lagrange

multipliers:

d

dt

(
∂L

∂ṗx

)
−
∂L

∂px
=

6∑
i=1

λiAi1, (6.15)

d

dt

(
∂L

∂ṗy

)
−
∂L

∂py
=

6∑
i=1

λiAi2, (6.16)

d

dt

(
∂L

∂ṗz

)
−
∂L

∂pz
=

6∑
i=1

λiAi3, (6.17)

d

dt

(
∂L

∂ ˙θ21

)
−

∂L

∂θ21
=

6∑
i=1

λiAi4, (6.18)

d

dt

(
∂L

∂ ˙θ22

)
−

∂L

∂θ22
=

6∑
i=1

λiAi5, (6.19)

d

dt

(
∂L

∂ ˙θ23

)
−

∂L

∂θ23

=
6∑
i=1

λiAi6. (6.20)

Having found the Lagrange multipliers, the actuator torques can be determined

directly from the three remaining equations:

τ1 =
d

dt

(
∂L

∂ ˙θ11

)
−

∂L

∂θ11
−

6∑
i=1

λiAi7, (6.21)

τ2 =
d

dt

(
∂L

∂ ˙θ12

)
−

∂L

∂θ12
−

6∑
i=1

λiAi8, (6.22)

τ3 =
d

dt

(
∂L

∂ ˙θ13

)
−

∂L

∂θ13
−

6∑
i=1

λiAi9, (6.23)

where τi is the actuator torque for the ith leg.
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To apply Eqs. (6.15)-(6.23), an expression must be developed for the La-

grange function, L. The Lagrange function is defined as the difference between

the system kinetic energy, T, and its potential energy, V:

L = T − V. (6.24)

The total potential energy of the manipulator was calculated relative to the plane

of the stationary platform of the manipulator, and was found to be:

V = Vc +
3∑
i=1

(Vbi + Vai), (6.25)

where Vc is the potential energy of the moving platform, Vbi is the potential

energy of the connecting rods of leg i, and Vai is the potential energy of the

input link on leg i:

Vc = −mc g pz, (6.26)

Vbi = −mb g [pz + a sin(θ1i) + (e− d) sin(θ2i)] , (6.27)

Vai = −
1

2
ma g a sin(θ1i). (6.28)

The total kinetic energy, T , for this manipulator is given by:

T = Tc +
3∑
i=1

(Tbi + Tai), (6.29)

where Tc is the kinetic energy of the moving platform, Tbi is the kinetic energy

of the connecting rods of leg i, and Tai is the kinetic energy of the input link and

the rotor on leg i:

Tc =
1

2
mc(ṗx

2 + ṗy
2 + ṗz

2), (6.30)
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Tbi =
1

2
mb(ṗx

2 + ṗy
2 + ṗz

2) + dmb
˙θ2iṗy sin(φi) sin(θ2i)

+dmb
˙θ2iṗx cos(φi) sin(θ2i) +

1

2
a2mb

˙θ1i
2

+
1

2
mb

˙θ2i
2
(d2 + e2) + aemb

˙θ1iθ̇2i cos(θ1i − θ2i)

−dmb
˙θ2iṗz cos(θ2i) (6.31)

Tai =
1

6
maa

2 ˙θ1i
2
+

1

2
Im ˙θ1i

2
(6.32)

Solving Eqs. (6.15)-(6.23) for the actuator torques for a given trajectory also

requires the evaluation of the A matrix, where aij = ∂fi
∂qj

. The evaluation of the

elements of A is provided in Appendix B. The evaluation of the required partial

derivatives of the Lagrange function are included in Appendix C.

6.4 Single Link Dynamic Model

A model based on a single link approximation of the manipulator is also devel-

oped. This model results in an equation of motion that is a linearly uncoupled

approximation of the manipulator dynamics. This model is developed for use

with a PID control model that is developed in another chapter.

A schematic of the single link model is shown in Fig. 6.2, where cd is the

viscous damping of the motor, g is the acceleration due to gravity, ma is the mass

of the input link, Im is the actuator rotor inertia, θ1i is the angular displacement

of the input link from the base of the manipulator, and τi is the applied torque

for the ith leg. It assumes that the mass of the moving platform, mc, is evenly

dived between the three legs and concentrated at the end of the input link, and

that the mass of each connecting rod, mb can be considered as concentrated at
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the end of the input link, so that meq = 2 mb + 1
3
mc. This model also assumes

that each link can be modeled separately, so that it neglects the influence of the

motion of the rest of the manipulator on the input link that is being modeled.

Both of these assumptions are substantial, but are made to provide a dynamic

model that will allow the development of a PID controller for the manipulator.

q
1i

t

Im

m  ga

m   geq

cd

i

Figure 6.2: Single link dynamics model for the ith leg.

The equation of motion for the simplified link model for the ith leg is found

by summing the torques about the revolute joint and applying Euler’s equation
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of motion:

τi = α θ̈1i + cd θ̇1i − β cos(θ1i), (6.33)

where:

α = Im +
1

3
ma a

2 +meq a
2,

β = a g

(
1

2
ma +meq

)
.

Equation (6.33) is linearized about an operating point of θ1i,o = π
4

and τi,o =

−β cos(π
4
). This leads to Eq. (6.34) in terms θ̂1i and τ̂i, where θ̂1i is the differ-

ential displacement of the link relative to the operating point of θ1i,o = π
4
, and

τ̂i is the differential torque applied to the link relative to the operating point of

τi,o = −β cos(π
4
). Both θ̂1i and τ̂i are considered to be small for the linearization.

τ̂i = α
¨̂
θ1i + cd

˙̂
θ1i + β sin(

π

4
) θ̂1i , (6.34)

where:

θ̂1i = θ1i −
π

4
, and

τ̂i = τi + β cos(
π

4
) .

Equation (6.34) provides a simplified linear uncoupled dynamic model of

the manipulator that is useful for developing single input single output (SISO)

type controllers, like a PID controller. This model does supply some insights to

the dynamic behavior of the manipulator, however the model’s ability to fully

capture the dynamics of the manipulator is marginal.
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6.5 Numerical Simulations

Numerical simulations are performed to demonstrate these three approaches and

to provide some insights to the dynamics of the manipulator as it follows a given

trajectory. To accomplish this, a trajectory for the moving platform and a set

of manipulator design parameters are assumed. The trajectory is selected to

represent a typical motion that might be used during a practical application of

the manipulator. Given the trajectory and the manipulator design parameters,

a set of actuator torques is computed using the dynamics model based upon

the the application of Newton-Euler equations of motion. Next, using the same

trajectory and manipulator design parameters a second set of actuator torques

is calculated using the Lagrangian model. Finally, the actuator torques are

computed using the single link dynamics model.

The manipulator design parameters that are used for the simulations are

given in Table 6.1. The trajectory used for these simulations has the moving

platform following three straight line segments between four points, Q1, Q2, Q3,

and Q4. The first segment has the moving platform moving from Q1, located at

(0,0,400) in the XYZ coordinate system, to Q2, located at (0,0,350), in 0.4 sec-

onds, where the length dimensions are given in millimeters. The second segment

goes from Q2 to Q3 at (50,50,350) in 0.8 seconds. The third and final segment

goes from Q3 to Q4 at (50,50,400) in 0.8 seconds. For each segment of the trajec-

tory the moving platform starts and finishes with zero velocity and accelerates

or decelerates at 245.2 cm/s2. The angular displacement required of each input

link to follow the example trajectory is shown in Fig. 6.3. The velocity of the

moving platform as it follows the example trajectory is shown in Fig. 6.4.
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Table 6.1: Manipulator design parameters for dynamic numerical simulations.

a = 203.2 mm

b = 254.0 mm

c = r = 127.0 mm

d = e = 15.9 mm

φ1 = 0 deg

φ2 = 120 deg

φ3 = 240 deg

ma = 0.184 kg

mb = 0.085 kg

mc = 0.413 kg

Im = 0.00434 N ·m · s2

cd = 0.0027 N ·m · s
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Figure 6.3: Angular displacement of the input links to follow the trajectory used

for numerical simulations of the dynamics models.
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Figure 6.4: Velocity of moving platform along the example trajectory.
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Given this sample trajectory and set of manipulator design parameters, the

actuator torques are calculated using the direct application of Newton-Euler

equations of motion. The results of this method is shown in Fig. 6.5. From this

figure it can be seen that during the first segment of the trajectory, from t = 0

seconds to t = 0.4 seconds, all the legs undergo the same motion and the load

from the moving platform is evenly divided between the three legs, causing each

actuator to produce the identical torque during this segment. This segment,

and each of the other segments, of the trajectory is divided into three regions.

The first region is the acceleration region during which the actuators supply an

initial torque to accelerate the moving platform until it reaches the second re-

gion of the segment, the constant velocity region. For the first segment of this

trajectory, once the constant velocity region is reached there is a step reduction

in the magnitude of the actuator torque to allow the moving platform to travel

at a constant velocity. During this constant velocity region, the magnitude of

the torque gradually increases. This is due to the changing configuration of

the manipulator, and in turn the changing Jacobian, and not dynamic loading.

Finally, during the deceleration region of the first trajectory segment, the mag-

nitude of the actuator torque once again takes a step-wise decrease to allow the

gravitational force to slow and finally stop the manipulator at the second point

along the trajectory, Q2. The two remaining trajectory segments follow a similar

pattern.

82



tim
0.50

ac
tu

at
or

 to
rq

ue
, (

N
m

)

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

0

me (sec)
1.51 2

leg3
leg2
leg 1

Figure 6.5: Actuator torques for the simplified dynamics model using Newton-

Euler equations of motion and the Jacobian matrix.
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The actuator torques for the example trajectory were also calculated using

the Lagrange multiplier approach and the single link dynamic model. The results

from these two simulations are shown in Figs. 6.6 and 6.7.

The torques calculated using the Lagrangian model display very close agree-

ment with the torques calculated using the direct application of Newton-Euler

equations of motion. The small differences between the two results are due to

lack of damping in the Lagrangian model and the different assumptions regard-

ing where the mass of the connecting rods are considered concentrated. This

close agreement helps validate the somewhat unusual approach of mapping the

inertial loads of the moving platform back to the input link as was done in the

model based upon the direct application of Newton’s equation of motion. It also

provides some confidence for using this model as the basis of a computed torque

control scheme.

The actuator torques calculated using the single link dynamic model, as

shown in Fig. 6.7, does not display very good agreement with the other two

more complete dynamic models. This poor agreement highlights the highly

coupled nature of the dynamics of this manipulator. The single link model com-

pletely disregards the influence of the rest of the manipulator on the dynamics

of any one leg. Accordingly, this model does capture some of the character of

the dynamics of the manipulator, but also misses a significant portion of it.

However, this model does offer the advantage of being linear and uncoupled,

which is a significant advantage when developing single-input single-output type

controllers.
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Figure 6.6: Actuator torques for the example trajectory using the Lagrangian

dynamics model.
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Figure 6.7: Actuator torques for the example trajectory using the single link

dynamics model.
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As expected, the time required to calculate the actuator torques for the given

example trajectory was significantly different for the Lagrange based dynamics

model and the dynamics model based on the direct application of Newton’s

equation of motion. The Lagrange based calculation of the actuator torques took

an average of 1.19 seconds per time step where the simplified model based upon

Newton’s equation of motion took an average of 0.45 seconds per time step. Both

methods were written using Xmath, a mathematical software package, and ran on

a Sparc station IPX. The code that was written to calculate the actuator torques

was not optimized in any way to minimize the runtime. However, both programs

used the same programming structure. Clearly, the speed of either method

can be improved with better programming and faster hardware. However, the

runtime results for these programs are provided to give some sense of the relative

computation time required by the two approaches, since the main advantage of

the dynamics model based on the direct application of Newton’s equation of

motion is that it is less computationally intensive.

6.6 Summary

Three approaches are presented to model the dynamics of the manipulator. The

first is based upon the direct application of Newton’s equation of motion and

a simplified dynamics model of the manipulator. It assumes that the mass of

the connecting rods of the upper arm assembly are evenly divided between, and

concentrated at the joints where the upper arm assembly is attached to the

input link and the moving platform. The actuator torques are then calculated

by applying Newton’s equation of motion to the input link and approximating
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the inertial and gravitational torques at the actuator due to the moving platform

by mapping the net force acting on the moving platform back to the actuators

with the inverse of the transpose of the Jacobian matrix. This approach is

developed in an attempt to create a dynamic model that compares favorably

with the ability of the Lagrangian approach to characterize the dynamics of the

manipulator while being less computationally intensive, making it attractive as

the inverse dynamic model for a computed torque control scheme. The second

approach is a Lagrangian based method. The Lagrangian function is developed

for the manipulator assuming that the mass of each long connecting link, CD, on

the upper arm assembly could be considered as distributed equally as two point

masses at either end of the link. Once the Lagrange function was determined,

Lagrangian multipliers were employed to develop a system of nine equations in

nine unknowns that yield the actuator torques for a given trajectory. The third

approach is based on a single link model for each leg of the manipulator. This

model assumes that the mass of the moving platform is evenly divided between

the three legs and concentrated at the end of the input link, and that the mass of

each connecting rod, mb can be considered as concentrated at the end of the input

link. The single link model also assumes that each leg can be modeled separately,

so that it neglects the influence of the motion of the rest of the manipulator on the

input link that is being modeled. The model is also linearized about an operating

point of the manipulator. These assumptions result in a dynamic model that

does provide some insight to the dynamics behavior of the manipulator, but does

a poor job of fully capturing the dynamics of the manipulator. However, this

model does have the advantage of providing a linearly uncoupled approximation

of the dynamics which is useful for the development of a PID controller for the
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manipulator.

A numerical example is presented to demonstrate the results of the three

methods for a sample trajectory and manipulator design parameters. In general

there is an excellent agreement between the Lagrangian model and the model

based on the Newton’s equation of motion. The numerical example is also used

to demonstrate that the dynamic model based on Newton’s equation of motion

requires less time per evaluation to calculate the actuator torques than does the

Lagrangian based approach.
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Chapter 7

Prototype Design and Accuracy

7.1 Introduction

A prototype of the manipulator was designed and constructed to provide a proof

of concept for this parallel manipulator and to provide a visually appealing

demonstration model to build more interest in this research. The prototype is

fully actuated and computer controlled. A user interface has also been devel-

oped that allows the user to construct desired moving platform trajectories from

a combination of straight line and arc trajectories. A photograph of the manipu-

lator is shown in Fig. 7.1. Note that the fixed base of the prototype manipulator

is mounted above the workspace where it operates such that the force of gravity

pulls the moving platform away from the fixed platform.

In this chapter, the design of the prototype manipulator hardware, a descrip-

tion of the selected components, and the system used to implement the controller

are presented. The accuracy of the manipulator is also considered.
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Figure 7.1: Photograph of manipulator prototype.
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7.2 Description of Prototype Design

The prototype manipulator as shown in Fig. 7.1 is actuated by three permanent

magnet brushed DC motors (Inland T-5152B DC Torque Motor) that are directly

coupled to the input links of the manipulator. A direct drive configuration was

chosen to eliminate the positioning error that would result from the backlash

that is typical of a gear train. The position of each input link is measured

with an incremental encoder (Heidenhain #ROD 426.001). Each encoder has

a resolution of 5000 counts/revolution, and is geared to the motor shaft with

an anti-backlash gear set that has a 2.5:1 gear ratio. Hence, each incremental

encoder count corresponds to 0.0288 degrees of displacement of the input link.

The links of the manipulator are fabricated from aluminum alloy (6061-T6).

The nominal design parameters and measured link properties for the prototype

manipulator are the same as were used for the dynamic simulations, and are

listed in Table 6.1. The choice for the ratio of the link lengths and the angular

orientation of the legs was guided by the results of Chapter 5 to provide a well

conditioned workspace. The drawings of the links are provided in Appendix D.

Control of the prototype manipulator is achieved using a controller prototyp-

ing station assembled by Kantor (1995). The controller prototyping station is

based on Integrated Systems Inc.’s AC-100 system. A block diagram describing

the AC-100 system is shown in Fig. 7.2.
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AutoCode Generator
(generates C code)

Interactive Animation Builder
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Hardware Connection Editor
(select input/output devices)
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(executes controller)

Input / Output Devices

486 PC

Prototype
Manipulator

AC-100 System

Figure 7.2: Block diagram of AC-100 controller prototyping system.
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The AC-100 software resides on two computers, a SPARCstation IPX and a

486 PC equipped with a digital signal processing (DSP) chip. The AC-100 uses

Integrated Systems Inc.’s MatrixX family of software products to allow the user

to design the controller, specify the input-output connections, design graphical

instrumentation panels, and generate C code that is used by a digital signal pro-

cessing (DSP) chip for the real-time control of the manipulator. The controller

is designed in block diagram form using the SystemBuild feature of the MatrixX

software. The graphical instrumentation panel allows commands to be sent to

the controller, and also provides a means of monitoring the system outputs dur-

ing the operation of the controller. Once the controller block diagram is defined,

the input-output connections are specified, and the C code is generated; the

code is downloaded to the PC where it is compiled and executed to control the

prototype manipulator.

A block diagram for an example controller developed for a single leg of the

prototype manipulator using the SystemBuild software is shown in Fig. 7.3. The

example controller has 1 input, the number of counts from the encoder, and 2

outputs, the position error and the control signal supplied to the amplifier that

drives the actuator. The example controller converts the number of counts of

the encoder into the angular position of the input link in radians in the “Leg1

Actual Position (Rad)” block. The position error of the input link is determined

by comparing the measured position of the input link to the desired position of

the input link as supplied by the “Leg1 Desired Position (Rad)” block. The error

signal is supplied to a control block, which in this example is a PID controller.

The various controllers that are used for the prototype manipulator are discussed

in more detail in the next chapter. The output signal from the “Leg1 PID
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Controller” block is supplied to the power amplifier that drives the motor for leg

1. This example is the basis for the prototype manipulator controllers that were

developed, and is provided to illustrate how the controller is developed using the

AC-100 system. The complete controllers for the prototype manipulator include

a similar block diagram for each leg, and also has provisions for initializing the

encoders, and implementing the unique features of the various types of controllers

used for the prototype manipulator. An example of a complete block diagram

used for a PID controller for a single leg is given in Appendix E.

The desired position of the input link as supplied by the “Leg1 Desired Po-

sition (Rad)” block in Fig. 7.3 is calculated by a trajectory generator that was

written by a summer research assistant, Remi Taulemesse. The trajectory gen-

erator allows the user to define a trajectory for the moving platform that is

composed of a series of segments, with each segment being a line or circular arc

in end-effector space. The trajectory of the moving platform is mapped into

joint space using the inverse kinematics, and is supplied to the “Leg1 Desired

Position (Rad)” block. Each segment of a trajectory is divided into a constant

acceleration, constant velocity, and constant de-acceleration part to achieve the

desired motion in a prescribed amount of time. The trajectory generation pro-

grams were written using Xmath, a mathematical programming language for

the MatrixX family of software products. The flow charts for the trajectory

generator are given in Appendix F, and the program code listing is provided in

Appendix G.
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7.3 Accuracy of Prototype

There are several sources of error between the mathematical model of a manip-

ulator and the practical embodiment of a manipulator that impact its accuracy.

Whitney, Lozinski, and Rourke (1986) divided these into two sources: geometric

and non-geometric errors. The geometric errors are a function of errors in the

physical parameters that relate the various link axes to one another. This is

primarily driven by fabrication errors (e.g. link lengths, and alignment of the

bearing surfaces). Non-geometric errors are driven by other factors such as con-

troller performance or compliance in the links and joints due to loading. This

chapter only considers the accuracy of the manipulator as related to geometric

errors and the resolution of the position sensing devices for the input links.

To gain some insight to the geometric positioning accuracy of the prototype

manipulator, it was manually placed into several different discrete poses. For

each pose, the geometric positioning error was determined by comparing the

measured position of the moving platform with the position of the moving plat-

form calculated from the input joint angles as measured by the encoders. To

measure the actual position of the moving platform, a jig was fabricated that

constrains the moving platform at a known position relative to the stationary

platform (see Fig. 7.4).

The location of the jig is fixed to the stationary platform with two locating

pins that are mounted on the prototype base. One pin is located at the origin

of the manipulator coordinate system and the other is located along the x-axis,

so that the position of the jig relative to the manipulator coordinate system

is known. A series of holes were machined in the plate at the end of the jig.

These holes are used to constrain the manipulator to the discrete poses that
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are used to characterize the accuracy of the manipulator. The location of the

holes relative to the locating pins and the diameter of the holes were measured

with a coordinate measuring machine with a reported accuracy of ±0.005 mm.

The position of the moving platform is constrained by seating a precision ball of

known diameter in one of the holes machined into the jig, and also in the hole

located at the center of the moving platform (see Fig. 7.5). So, by knowing

the position and diameter of the hole on the jig, the diameter of the ball, and

the diameter of the hole at the center of the moving platform, it is possible to

determine the position of the moving platform. The resulting measurement from

this procedure is considered the actual measured position of the manipulator for

the discrete poses, and is compared to the position calculated from the encoder

measured input link angles to provide a geometric positioning error.
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Figure 7.4: Jig setup to measure position of moving platform.
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Figure 7.5: Prototype position measurement technique.
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Ten different poses were tested with the prototype manipulator using the jig

to constrain the moving platform. The coordinates of the moving platform as

determined with the jig for each pose are given in Table 7.1.

Table 7.1: Position of moving platform as determined with measurement jig for

poses used to measure geometric accuracy.

Pose No. px (mm) py (mm) pz (mm)

1 0.686 44.625 329.433

2 -29.263 48.283 329.486

3 -38.400 20.932 329.260

4 39.180 22.578 329.209

5 57.183 2.080 329.016

6 -37.059 -22.868 328.874

7 39.467 -20.991 328.828

8 2.065 -44.031 328.658

9 -25.862 -49.675 328.633

10 30.825 -47.536 328.620

The angular displacements of the three input links were measured for each

pose using the encoders, and are shown in Table 7.2. Using these values, the

position of the moving platform was calculated for each pose. The coordinates of

the calculated position of the moving platform are listed under p
x,calc, py,calc,

and p
z,calc in Table 7.3. The moving platform position errors were calculated

for each pose and are also shown in Table 7.3. The positioning errors were found

by calculating the distance between the moving platform as measured by the jig

and as calculated from the the angular displacement of the input links using the
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forward kinematic relationships.

Table 7.2: Measured input link angular displacement for each test pose.

Pose No. θ11 (deg) θ12 (deg) θ13 (deg)

1 31.5100 25.2888 39.2092

2 37.1548 22.4952 38.0284

3 37.9036 25.4616 32.5852

4 24.5116 32.3160 39.1228

5 21.6892 37.4424 38.4604

6 37.7020 32.4024 25.7884

7 24.3964 38.3928 32.9884

8 31.1932 38.5368 25.8460

9 36.5788 37.7592 22.9372

10 26.7004 41.8200 28.6108

These data suggest that the geometric accuracy of the prototype manipu-

lator is approximately 5mm in this region of the workspace. In other words,

the moving platform position calculated using the angular displacement of the

input links as measured by the encoders is within 5mm of the actual position

of the moving platform. This is poor accuracy compared to the accuracy that

is theoretically possible. Given that the encoders have the ability to resolve the

angular displacement of the input links to ±0.0288 degrees and that there are no

deviations from the nominal design dimensions, a geometric positioning accuracy

of 0.13 mm should be possible for the prototype in the first pose.

It is possible to significantly improve the accuracy of the prototype manipula-

tor through calibration. Calibration involves a parameter estimation procedure,
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Table 7.3: Moving platform position calculated from input link angular displace-

ment and the associated position error.

Pose No. p
x,calc (mm) p

y,calc (mm) p
z,calc (mm) error (mm)

1 4.295 46.954 331.211 4.649

2 -25.529 50.579 331.587 4.861

3 -34.902 22.888 332.069 4.894

4 42.563 24.160 330.759 4.044

5 60.643 3.724 330.459 4.093

6 -33.848 -21.285 332.273 4.937

7 42.748 -19.185 330.888 4.274

8 5.042 -42.824 331.300 4.159

9 -22.992 -48.372 331.709 4.404

10 33.683 -46.419 330.817 3.774

where the parameters of the kinematic model (e.g. link lengths and leg orienta-

tions) are varied so as to minimize the errors that result from using the kinematic

model. Ideally, the new estimates for the parameters are more representative of

the true values than the original uncalibrated values for the parameters, resulting

in a kinematic model that is more faithful to the actual manipulator. However,

in this case a rigorous calibration isn’t possible without a more general kine-

matic model since the current model doesn’t capture the influence of many key

individual parameters. For example, the kinematic model assumes that all the

legs are identical and that u-axes (see Fig. 2.1) for the three legs intersect at a

single point. So, if the prototype positioning errors are caused by a single link
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being too long or a misalignment of the axis of an input link such that the u-axis

does not pass through the origin of the coordinate system, the kinematic model

would not be able to reflect that in the calculation of the position of the moving

platform.

However it may be possible to make some improvements in the prototype ma-

nipulator accuracy without the general kinematics model. For example, the data

in Tables 7.1 and 7.3 suggest that there might be some misalignment between

the origin of the manipulator coordinate frame as defined by the locating pin on

the base, and the origin of the coordinate frame as defined by the location and

orientation of the input links. This can be observed from the consistent offset in

the measured position error in the x and y directions (see Table 7.4). This type

of misalignment could have easily occurred when the motors were mounted to

the base of the manipulator.

If it’s assumed that the there is a misalignment equal to the average offset,

and the origin of the coordinate frame as defined by the pin is shifted by that

amount in the x and y directions, then the errors are reduced as shown in Table

7.5.

Even though the accuracy is improved by approximately 1.5 mm by shifting

the origin, there is still significant potential for improvement from a rigorous

calibration procedure. The calibration of this type of manipulator and the de-

velopment of the more general kinematic model required to accomplish the more

rigorous calibration are both areas that merit future research.
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Table 7.4: Moving platform position error along x, y, and z coordinate axes.

Pose No. x-axis y-axis z-axis

error (mm) error (mm) error (mm)

1 -3.609 -2.329 -1.778

2 -3.734 -2.296 -2.101

3 -3.498 -1.956 -2.809

4 -3.383 -1.582 -1.550

5 -3.460 -1.644 -1.443

6 -3.211 -1.583 -3.399

7 -3.281 -1.806 -2.060

8 -2.977 -1.207 -2.642

9 -2.870 -1.303 -3.076

10 -2.858 -1.117 -2.197

Avg. -3.288 -1.682 -2.306
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Table 7.5: Moving platform position errors calculated with shifted origin.

Pose No. adjusted

error (mm)

1 1.919

2 2.234

3 2.830

4 1.556

5 1.454

6 3.401

7 2.064

8 2.702

9 3.127

10 2.309
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7.4 Summary

The design of the prototype manipulator that was built to support the research

is described. The actuation of the prototype is achieved by three permanent

magnet DC motors that are directly coupled to the input links. Sensing of the

input link angular displacement for each leg is accomplished by an incremental

encoder geared to each motor so as to provide a resolution of 0.0288 degrees

of input link displacement per encoder count. Drawings of the key links are

provided in Appendix D.

The supporting systems required to operate the manipulator under com-

puter control are also described. These include the controller prototyping sys-

tem assembled by Kantor (1995) and the trajectory generator written by Remi

Taulemesse.

Finally, the accuracy of the manipulator is considered. A method for measur-

ing the position of the moving platform using a measurement jig is described, and

is used to estimate the geometric positioning accuracy of the prototype. Using

this approach, the positioning accuracy of the prototype was estimated to be ap-

proximately 3.5 mm over the tested region of the workspace. This demonstrated

accuracy is an order of magnitude worse than what is theoretically possible. Ac-

cordingly, the need for better calibration of the prototype, and a more general

kinematic model to support the calibration is discussed.
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Chapter 8

Controller Design and Validation

8.1 Introduction

Three different types of controllers are developed and tested for the prototype

manipulator to explore the advantages, disadvantages, and performance of each

type as applied to this parallel manipulator. Each of these comes from three

different broad categories of controllers and has significantly different require-

ments regarding the prior knowledge of the manipulator dynamics and the time

required to develop and implement.

The first type of controller is based upon the classical single-input single-

output proportional-integral-derivative (PID) type controller. This approach

views each actuator of the manipulator independently, and essentially ignores

the highly coupled, non-linear nature of the manipulator. Implementation of the

PID controller is simple and in general provides reasonable performance. This

is particularly true in the situation where link actuation is provided by a motor

with a large gear ratio existing between the motor and the driven link so that the

manipulator dynamics is dominated by the inertia of the motor rotor. However,
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for the prototype manipulator there is no gear train between the actuator and

the input link. So, the prototype manipulator should highlight the deficiencies

of this type of control.

The second controller is a computed torque type, where a model of the in-

verse dynamics of the manipulator is used to estimate the actuation required

for the manipulator to achieve a desired trajectory. Since this type of controller

takes into account the non-linear and coupled nature of the manipulator, the

potential performance of this type of controller should be quite good. However,

the difficulty with this type of controller is that it requires a good model of

the manipulator inverse dynamics and good estimates of the model parameters,

making this controller more complex and difficult to implement than the classic

servo type controller.

The third type is an iterative learning controller. This type of controller is

based upon the repeated trials of a manipulator attempting to follow a given

desired trajectory. After each trial a learning rule is applied to the measured

trajectory tracking errors to produce a new actuation schedule that reduces the

trajectory tracking errors for the next trial. The advantage of this type of con-

troller is that the controller still accounts for the complex dynamics of most

manipulators while not requiring an accurate model of the manipulator dynam-

ics. A significant disadvantage of this type of controller is the time required for

the necessary trials that allows the controller to converge to acceptably small

trajectory tracking errors for each new trajectory.

This chapter presents a section for each type of controller developed for the

prototype manipulator, with each section providing a brief description of the

controller, a discussion of the design of the controller, and finally the experimen-
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tal results of the controller as applied to the prototype manipulator as it follows

a sample trajectory.

8.2 PID Control

The PID controller is a single-input, single-output (SISO) controller that pro-

duces a control signal that is a sum of three terms. The first term is proportional

(P) to the positioning error, the second term is proportional to the integral (I)

of the error, and the third is proportional to the derivative (D) of the error. The

PID controller is the most common type of control algorithm used in engineering

practice, with one survey in 1991 suggesting that 90% of controllers in Japan

were of the PID type (Yamamoto and Hashimoto, 1991). PID controllers are

used because the application of the PID controller is relatively straight forward,

while providing reasonable results for a wide range of applications.

Since the PID controller is a SISO controller, and the manipulator has three

degrees of freedom, three separate PID control loops are used to control the

prototype manipulator, with each one controlling the position of an input link.

The desired angular positions of the input links are determined by mapping the

desired moving platform trajectory, as given in Cartesian space, into joint space

by using the inverse kinematics relationships.

The key to obtaining the best possible performance from a PID controller is

the selection of the gains that determine the influence of the three control terms

on the control signal. Many gain tuning strategies have been developed. Gener-

ally, these tuning strategies are based upon the open-loop system step responses,

open-loop frequency responses, optimization techniques, or other analytical ap-
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proaches. Several of these gain tuning strategies, as well as a general discussion

of PID controllers, are presented by Åström and Hägglund (1995).

The gains used to control the prototype manipulator were selected using an

optimization technique. This was done by developing a simple model for a single

input link that was used to simulate the closed-loop response of the input link

to a step input at the desired position. This simulation was then used with an

optimization routine to find a set of gains that minimized an objective function

that considered the position error of the input link and the actuating torques.

The application of this approach and the results are presented in the following

sections.

8.2.1 Closed-Loop Model

The block diagram of the closed-loop model for each input link of the manipu-

lator is shown in Fig. 8.1, where Gc represents the dynamics of the controller,

Gamp,motor represents the transfer function of the power amplifier and motor,

Glink represents the dynamics of the single-link dynamics model of the manipu-

lator developed in section 6.4, τ is the torque applied to the input link, and e is

the error between the desired input link position, θ
1,d, and the actual position

of the input link, θ1,act. To determine the response of this closed-loop system,

it’s necessary to model each of these blocks.

The controller block, Gc, can be represented in the Laplace domain by the

following equation for a PID controller,

Gc(s) = kp + kd s+
ki
s
, (8.1)

where kp, kd, and ki are the controller gains. The selection of these gains deter-
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Figure 8.1: PID controller block diagram for each input link.

mine the performance characteristics of the controller.

The block representing the amplifier and motor dynamics, Gamp,motor, is

modeled as a simple gain since the amplifiers are configured for current control,

and the torque supplied by the motor is directly proportional to the current

supplied by the amplifier. This is a reasonable approach since the response

of motor torque to the control signal is much faster than the response of the

manipulator input link to the torque from the motor. Any non-linearities of the

motor are also neglected. The value for the gain for Gamp,motor was determined

experimentally to be 0.99 N ·m/volt for the prototype manipulator.

To determine a relationship for Glink, the single-link dynamic model for is

assumed as shown in Fig. 6.2, and modeled by Eq. (6.34). Taking the Laplace

transformation of Eq. (6.34) provides the following relationship for Glink:

θ̂1i(s)

τ̂i(s)
=

1

αs2 + cds+ β sin(π
4
)
, (8.2)

where θ̂1i and τ̂i represent the differential angular displacement of the link and

the differential torque applied to the link about the operating point of θ1i,o = π
4

and τi,o = −β cos(π
4
) where θ1i and τi are shown in Fig. 6.2.

The numeric values for the coefficients for Eq. (8.2) are estimated for the

prototype manipulator from measurements made of the links and information
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obtained from the motor data sheets. These estimates produced the following

values:

α = 0.0196 N ·m · s2

β = 0.797 N ·m

cd = 0.0027 N ·m · s

Now that a model of the closed-loop system for each input link of the pro-

totype manipulator is defined, it’s necessary to select the gains that achieve the

desired performance. The selection of these gains is discussed in the next section.

8.2.2 Gain Selection

The gains for the controller are selected using a numerical optimization approach.

Using the closed-loop system shown in the Fig. 8.1, the step response of the

system is simulated using the Xmath software package. The results of that

simulation are used to minimize an objective function, where the design variables

are the gains, kp, kd, and ki. The objective of the optimization is to minimize

the following function:

f(e, τ̂ , t) = q
∫ t

0
e(t)2 dt+ p

∫ t

0
τ̂(t)2 dt, (8.3)

subject to the constraint of no overshoot in position, where e(t) is the position

error of the input link, τ̂ (t) is the differential torque applied to the input link,

and p and q are scalar quantities that are selected to scale the two terms of the

objective functions. For this controller design, q and p are selected to approxi-

mate an even weighting of the two control terms by setting them equal to the
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reciprocal of the square of the largest value expected during normal operation:

q =
1

e2
max

= 3280 (rad)−2 (8.4)

p =
1

τ̂2
max

= .0046 (N ·m)−2 (8.5)

The no overshoot constraint is common in robotic applications, and is applied

in order to minimize the chance of unintended collisions with obstacles that are

outside the planned trajectory, and also to attempt to keep the end-effector from

approaching undesirable locations in the workspace, such as singular locations.

The optimization procedure resulted in gain values of kp = 63.5, ki = 15.0,

and kd = 1.6. The initial guess for the set of gains was kp = 100, ki = 10, and

kd = 1.0. In Fig. 8.2, which shows the step responses for each of these set of

gains, a significant improvement in the step response performance of the input

link can be observed. The settling time of the arm is reduced and the overshoot

associated with the initial set of gains is eliminated. The optimized gains also

require less torque from the actuators as can be seen in Fig. 8.3, where the

simulated actuator torques for the initial set of gains and the optimized gains

are plotted for the step response.
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8.2.3 Integrator Windup

Systems that use PID controllers are susceptible to a problem called integrator

windup. This can occur when the actuator reaches a limit of the actuation

that it can supply, such that the signal from the controller stops having an

impact on the system actuation. When this happens, the integrating term of

the PID controller continues to integrate the error while the system actuation

remains constant. This integrated error term can become large, and once the

system returns to a state where the the actuator is no longer saturated there can

be a substantial delay before the integrating term of the controller returns to

normal operation. During this delay, while the integrating term is reseting, the

performance of the controlled system will most likely be poor, usually resulting

in excessive overshoot.

In an effort to mitigate the problem associated with integrator windup, a

back-calculation approach is applied as proposed by Fertik and Ross (1967) and

described in more detail by Åström and Rundqwist (1989). The implementation

of the back-calculation approach requires a change in the controller block shown

in Fig. 8.1 and represented by Eq. (8.1) to the form shown in Fig. 8.4.

The back-calculation approach adds a block that models actuator saturation,

and creates another feedback signal based upon this model. This feedback signal,

es, is zero when the actuator model predicts that the actuator is not saturated.

When the actuator is saturated, es reduces the influence of the integrating term

of the controller. Selection of Tt determines how quickly the integrating term is

reduced. A value suggested for Tt by Åström and Hägglund (1995) is:

Tt =

√
kd

ki
(8.6)
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Figure 8.4: PID controller block with changes made to correct integrator windup.

This value of Tt results in a control system where the response of the anti-windup

loop has a shorter time constant than the integrating term and a longer time

constant than the derivative term of the controller. This offers a compromise

between quick relief from integrator windup and sensitivity to very short actuator

saturations that may result from the derivative term reacting to sudden changes

of error. For the PID controller used for the prototype manipulator, Eq. (8.6)

was applied to find Tt = 0.33. The performance of the prototype manipulator

using this control scheme is discussed in the next section.

8.2.4 PID Control Experimental Results

The performance of the prototype manipulator and the associated PID control

system is demonstrated by providing a sample trajectory to the controller, and

then measuring the positioning errors of the input links as it attempted to fol-

low that trajectory. The sample trajectory selected is the same trajectory as was
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used for the numerical example used to illustrate the various dynamics models.

The sample trajectory has the platform moving in a series of three straight lines

starting from rest at a position of (0,0,400). The first segment of the trajectory

has the platform moving from (0,0,400) to (0,0,350) in 0.4 seconds. The remain-

der of the trajectory has the platform moving from (0,0,350) to (50,50,350) in

0.8 seconds, and finally on to (50,50,400) in 0.8 seconds, where are the lengths

are given in millimeters. During each segment of trajectory, of the trajectory

the moving platform starts and finishes with zero velocity and accelerates or

decelerates at 245.2 cm/sec2. The angular displacement required of each input

link to follow the example trajectory is shown in Fig. 6.3. The velocity of the

moving platform as it follows the example trajectory is shown in Fig. 6.4.

The joint errors at the input link for the manipulator as it attempted to

follow the sample trajectory are shown in Fig. 8.5.

From the input link errors shown in Fig. 8.5, it’s possible to gain some insight

to the positioning error of the moving platform. In this case, the position error

of the moving platform is not directly measured, but the position error due to

the joint errors of the input links can be estimated using the Jacobian and is

shown in Fig. 8.6.

The position error of the moving platform degrades as it follows the sample

trajectory. There are two significant causes for this decline in performance as

the platform follows the sample trajectory. The first is that as the manipulator

follows this sample trajectory, the single link dynamic model used to design

the controller deviates further from the operating conditions used to model the

system, and the interaction between the legs that are not accounted for in the

model become more important.
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Figure 8.5: Input-link joint angle error obtained from the PID controller.
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Accordingly, the performance of the controller for each input link degrades

as the deviation from the assumed dynamic model increases. The second reason,

which also compounds the errors from the prior reason, is associated with the

changing configuration of the manipulator as it follows the sample trajectory.

The condition number of the Jacobian matrix for the manipulator changes as

the manipulator follows the sample trajectory as shown in Fig. 8.7. It can be

observed in Fig. 8.7 that from t = 0.4 until t = 2.0, the condition number of

the Jacobian matrix steadily increases. Accordingly, the amplification of the

input link errors onto the moving platform error during this period of time also

increases. Moreover, the nature of the force transmission between the moving

platform and the actuators change such that disturbances at the moving platform

are also magnified at the actuators.

There are several approaches available to improve the trajectory tracking

performance of the prototype. One approach is to develop a control scheme that

employees some form of external metrology to directly measure the position of

the moving platform, and then control the actuators versus that signal. This

should help mitigate the problems associated with the mapping of joint errors

onto the position errors by the Jacobian matrix. Other approaches include the

application of control schemes based on more complete dynamic models of the

manipulator, such as a computed torque controller. The results of applying this

type of controller to the manipulator is discussed in the next section.

122



tim
0.50

co
nd

iti
on

 n
um

be
r 

of
 J

ac
ob

ia
n 

m
at

rix

3

2.8

2.6

2.4

2.2

2

1.8

3.2

me (sec)
1.51 2

Figure 8.7: Condition number of the Jacobian matrix for the prototype manip-

ulator as it follows the sample trajectory.

123



8.3 Computed Torque Control

A second type of controller is developed for the prototype manipulator to ex-

amine if it is possible to improve the performance of the trajectory tracking of

the prototype manipulator by utilizing a more complete understanding of the

manipulator dynamics in the controller design. This second controller employs

a computed torque control approach, and it uses a model of the manipulator

dynamics to estimate the actuator torques that will result in the desired trajec-

tory. An outer control loop is applied to the system to correct any trajectory

tracking errors that result from the computed torques. The application of the

computed actuator torques minimizes the non-linearities of the closed loop sys-

tem, and should improve the performance of the controller. The disadvantage

of this approach is that it requires a reasonably accurate and computationally

efficient model of the inverse dynamics of the manipulator to function as a real

time controller.

8.3.1 Computed Torque Control Design

The dynamics model developed in chapter 6 using the direct application of

Newton-Euler equations of motion given by Eq. (6.7) is used as the inverse

dynamics model for the computed torque controller:

τ̄ = M(q) q̈ + C(q, q̇) q̇ + G(q) , (8.7)

where:
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q =


θ11

θ12

θ13

 , τ̄ =


τ1

τ2

τ3

 ,

M is a 3× 3 symmetric matrix capturing the mass information of the manipu-

lator, C(q, q̇) is a 3 × 3 matrix containing the centrifugal, coriolis, and viscous

friction terms, and G(q) is a 3 × 1 array capturing the gravitational terms of

the dynamics.

For the implementation of the controller, Eq. (8.7) is rewritten as:

τ̄ = M(q) q̈ + N(q, q̇), (8.8)

where N(q, q̇) = C(q, q̇) q̇ + G(q).

Using the computed torque approach with a proportional-derivative (PD)

outer control loop, the applied actuator torques are calculated at each time step

using the following computed torque law as described by Lewis et al. (1993):

τ̄cp = M [q̈d + Kd ė + Kp e] + N , (8.9)

where τ̄cp is the computed torque applied to input links, Kd is the diagonal

matrix of the the derivative gains, Kp is the diagonal matrix of the proportional

gains, and e is the array of the position errors of the input links, e = qd − q. A

diagram of the computed torque scheme is shown in Fig. 8.8.

To show that the computed torque control scheme linearizes the controlled

system, the torques computed by Eq. (8.9) are substituted into Eq. (8.8),

yielding:

Mq̈ = Mq̈d + M [Kd ė + Kp e] . (8.10)
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Figure 8.8: Diagram of computed torque approach.

Pre-multiplying each term of Eq. (8.10) by M−1, and substituting the relation-

ship, q̈d − q̈ = ë, provides the following linear relationship for the error:

ë + Kd ė + Kp e = 0. (8.11)

This relationship can be used to select the gains to give the desired nature of

the closed-loop error response since the solution of Eq. (8.11) provides a second

order damped system with a natural frequency of ωn, and a damping ratio of ζ ,

where:

ωn =
√
kp , ζ =

kd

2
√
kp

, (8.12)

and kp and kd are the diagonal elements of Kp and Kd.

8.3.2 Computed Torque Control Experimental Results

The trajectory tracking performance of the manipulator as controlled with the

computed torque controller was demonstrated using the same sample trajectory

as was used for the PID controller, and described in section 8.2.4. The values
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for the gain matrices, Kp and Kd, were determined experimentally by initially

setting the gains to maintain the following relationship:

kd = 2
√
kp, (8.13)

such that the error response is critically damped. These gains were adjusted

using a trial and error process until a desirable system response was achieved, at

gain values of kp = 1750 and kd = 10. The system response was also improved by

increasing the gain of the motor amplifiers by approximately 20%. The results

obtained using these values are shown in Figs. 8.9 and 8.10, where Fig. 8.9

shows the position error of each of the input links as the manipulator attempts

to follow the desired trajectory and Fig. 8.10 shows the absolute position error

of the moving platform as estimated by transforming the joint angle errors into

position error using the inverse of the Jacobian matrix. During this example the

M and N matrices were approximated beforehand by evaluating the elements of

the matrices at the desired positions and velocities of the input links at each time

step as opposed to the actual positions and velocities at each time step. For the

example trajectory, this approach works well since there is little deviation from

the desired trajectory. However, in general another approach should be employed

to evaluate M and N, since the difference between the desired trajectory and

actual position may not always be small. It is computationally prohibitive to

completely solve the system dynamics during each time step for the real time

controller since it requires solving the complete forward kinematics problem at

each time step. Accordingly, a look-up table approach is a reasonable alternative

for real-time computation of the elements of M and N.

Overall, Figs. 8.9 and 8.10 show improved tracking performance for the com-

puted torque controller as compared to the PID controller performance as shown
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in Figs. 8.5 and 8.6 for the sample trajectory. The most striking difference be-

tween the computed torque and PID controller performances besides the overall

reduction in error is the decrease in the spread of the joint errors during the

trajectory. This is a result of the computed torques canceling the non-linear

components of the controlled system. This cancelation is not complete since

the error does not asymptotically approach zero as predicted by Eq. (8.11).

However, it can be observed that the frequency of the oscillation, 6.7 Hz, of the

error predicted from Eq. (8.12) is approximately the same frequency of the error

oscillation displayed by the prototype while tracking the trajectory.

It also appears from Figs. 8.9 and 8.10 that the computed torque controller

could benefit from additional damping. Furthermore, Eq. (8.13) suggests that

the derivative gain should be increased to achieve the desired critical damping.

However, when the derivative gain was increased for the actual controller, a

vibration was introduced to the prototype. It’s not clear what caused these

vibrations, but it is suspected to be related to the discrete nature of the position

encoders and the difficulties of amplifying the differentiated encoder signal to

obtain the angular velocity of the input link in the feedback loop.
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Figure 8.9: Input-link joint errors obtained from the computed torque controller.
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Figure 8.10: Moving platform position error as estimated from the input link

joint errors obtained from the computed torque controller.
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8.4 Iterative Learning Control

The third and final controller developed for the manipulator is an iterative learn-

ing controller. Like the computed torque controller, the iterative learning con-

troller takes into account the dynamics of the manipulator to improve the tra-

jectory tracking performance of the manipulator. However, unlike the computed

torque controller the manipulator dynamics information does not come from an

explicit mathematical model of the manipulator dynamics. Instead, the dynam-

ics information for a given desired trajectory is learned from repeated attempts

to follow that trajectory. Accordingly, the learning controller requires multiple

trials of a manipulator attempting to follow a desired trajectory. The trajectory

tracking errors are recorded for each trial and are used as an input to a learning

rule to modify the actuation of the manipulator in the next trial so as to im-

prove the trajectory tracking performance. This iterative improvement process

continues until the trajectory tracking errors are acceptably small. Learning

based controllers have been used to control computer disk drives (Tomizuka et

al., 1989), and have been shown to be a feasible controller for manipulators with

flexible joints (Wang, 1995).

The main advantages of the iterative learning control approach are that a

rigorous model of the manipulator dynamics and accurate values for the model

parameters are not required to develop the controller, and that it is relatively

simple to implement. Furthermore, this approach considers the complete ma-

nipulator dynamics, including phenomenon that are difficult to model, such as

backlash and friction. However, there are several disadvantages of this approach

relative to the other controllers presented in this chapter. First, the system being

controlled may need to accommodate a large number of trials to converge to an
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acceptable solution. Second, each new trajectory requires another set of trials

for the manipulator to converge to the new trajectory. Third, once the trajectory

has been learned, disturbances are not rejected by the controller since it behaves

as an open loop controller while it tracks the trajectory unless an additional

closed loop controller is added to augment the iterative learning controller.

8.4.1 Iterative Learning Control Design

Some of the initial work on iterative learning controls was presented by Arimoto

et al. (1984) where they proposed an iterative “betterment process” for both

linear and non-linear time invariant systems. The non-linear system considered

by Arimoto et al. (1984), assumes the following form:

ẋ(t)= f(x(t), t) + B u(t) , (8.14)

y(t)= C x(t) , (8.15)

where x(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRr, B ∈ IRn×r, C ∈ IRr×n, for t ∈ [0, T ] and

function f :IRn → IRn.

For control of the prototype manipulator, the output is considered to be the

joint angles of the input links:

y(t) =


θ11(t)

θ12(t)

θ13(t)

 .

The desired outputs, yd(t), are found by mapping the desired trajectory of the

moving platform into joint space. The system inputs, u(t), are the torques

applied to the input link by the actuators, while B and the function f are

considered unknown.
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The “betterment process” proposed by Arimoto et al. (1984) to control this

system is given by the following learning rule:

ui+1(t) = ui(t) + Γ ėi(t) , (8.16)

where ui(t) is the input of the system for the ith trial, ei(t) = yd(t) − y(t) is

the output tracking error for the ith trial, and Γ ∈ IRr×r is a matrix of learning

parameters. Arimoto et al. (1984) showed that this learning rule caused ė(t)

to converge to zero for non-linear time invariant systems under the following

conditions:

C1: the function f(·, ·) satisfies a Lipschitz continuity condition so

that there is a α <∞ such that for all t ∈ [0, T ],

‖f(x1, t)− f(x2, t)‖ ≤ α ‖x1 − x2‖ ,

C2: ‖I−CBΓ‖∞ < 1 for all t ∈ [0, T ],

C3: u0(t) and yd(t) are continuously differentiable on [0, T ],

C4: yd(0) = Cx(0) ,

where I is the identity matrix. Hence, the learning rule given by Eq. (8.16) can

be applied iteratively to determine the system inputs that will achieve a desired

output.

The key to implementing the iterative learning rule described in Eq.(8.16),

aside from starting at the desired initial conditions and satisfying the continuity

conditions, is the selection of the elements of Γ so that condition 2 is satisfied. In

this case, a diagonal Γ matrix was assumed with equal values for each diagonal

element. Improved convergence of the learning controller may be possible by

properly selecting a full matrix, but that was not explored. The values for the

diagonal elements were determined in a trial and error fashion during experi-

ments with the actual manipulator, with reasonable performance being obtained
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at Γ(i, i) = 0.1 N ·m · s for i = 1, 2, and 3. This Γ matrix was used to demon-

strate the learning controller with the prototype manipulator. The results are

presented in the next section.

8.4.2 Iterative Learning Control Experimental Results

The trajectory tracking performance of the manipulator as controlled with the

iterative learning controller is demonstrated using the same sample trajectory

as was used for both the PID and computer torque controllers, and as described

in section 8.2.4.

The results obtained using the iterative learning controller as described in the

previous section after 100 trials are shown in Figs. 8.11 and 8.12, where Fig. 8.11

shows the position error of each of the input links as the manipulator attempts

to follow the desired trajectory and Fig. 8.12 shows the absolute position error

of the moving platform as estimated by transforming the joint angle errors into

position error using the inverse of the Jacobian matrix. Figures 8.11 and 8.12

demonstrate trajectory tracking performance after 100 trials that was on par

with, or slightly better than was obtained with the computed torque controller.

Even better performance should be attainable with more iterations as the error

continues to converge toward zero.
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Figure 8.11: Input-link joint errors obtained from the iterative learning controller

after 100 trials.
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Figure 8.12: Moving platform position error as estimated from the input link

joint errors obtained from the iterative learning controller.
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Some insights to the convergence of the trajectory tracking error are gained by

observing Figs. 8.13-8.15, where the tracking error for the three legs are plotted

for the initial trial, the 50th trial, and the 100th trial. The actuator torques for

the initial trial were obtained using a PID controller with a large integral gain. It

can be observed in Figs. 8.13 -8.15 that the error converges most rapidly during

the very early portions of the trajectory, up to approximately 0.2 seconds. From

an intuitive point, this is reasonable since during a trial the controller is in an

open loop configuration and any errors in the early portions of the trajectory

will propagate and accumulate throughout the rest of the trajectory. This is

also reasonable from a mathematical point of view since Arimoto et al. (1984)

showed convergence to the desired trajectory by proving that there exist positive

constants λ and ρ, where 0 ≤ ρ < 1 such that:

‖ėi+1‖λ ≤ ρ‖ėi‖λ , (8.17)

when conditions C1-C4 are satisfied, where the λ-norm is defined by:

‖e(·)‖λ = sup
0≤t≤T

{e−λt‖e(t)‖∞} (8.18)

so that it discounts the errors as time increases.

The main difficulty experienced with implementing the iterative learning con-

troller was the large number of trials required to obtain acceptable performance

due to the slow convergence of the error. Arimoto et al. (1984) demonstrated

that it is possible to improve the rate of convergence by increasing the magnitude

of the elements of Γ given condition 2 is satisfied. However, while meaningful

increases in the magnitude of the elements of Γ for control of the prototype

manipulator did improve the rate of convergence in the early portions of the

trajectory, it also led to unacceptably large errors as time increased during the
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trajectory. There are some methods that could be applied to combat this prob-

lem that were not addressed as part of this work, but would be interesting to

pursue. For example, it may be possible to learn several segments of a trajectory

in a piecewise fashion and then combine them to form a complete trajectory. An

improvement should also be achievable by using the results of the learning rule

as a feedforward signal to a closed-loop controller as suggested by Hauser (1987).

8.5 Summary

Three separate controllers were developed and demonstrated using the prototype

parallel manipulator, with the first being a PID type controller, the second being

a computed torque controller, and the third being a iterative learning controller.

The computed torque and iterative learning controllers both demonstrated com-

parable improved trajectory tracking performance relative to the PID controller.

The performance improvements demonstrated by the computed torque and it-

erative learning controllers stem from their ability to account for the nonlinear

and coupled nature of the manipulator dynamics.

The computed torque controller is the most complex controller of the three to

implement since it requires a good model of the manipulator inverse dynamics.

It’s suspected that the performance of the computed torque controller could

be improved for the prototype manipulator by incorporating a better model of

the motor friction. The current model only considers viscous friction at the

actuator. Accordingly, the inverse dynamics model, and in turn the computed

torque controller performance, could be improved by including the influence of

kinetic and static friction. This is especially relevant during trajectory segments
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were the motor operates at slow speed or experiences torque reversals.

The iterative learning controller is relatively easy to implement, but it is

encumbered by the large number or trails required for the trajectory tracking

error to converge to an acceptable range. It may be possible to improve the

convergence of the trajectory tracking error by incorporating the results of the

iterative learning controller as a feedforward term in a closed loop controller or

perhaps by learning the trajectory in a piecewise fashion.
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Figure 8.13: Leg 1 input link joint errors after selected number of trials.
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Figure 8.14: Leg 2 input link joint errors after selected number of trials.
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Chapter 9

Summary and Future Research

9.1 Summary

In this dissertation, a novel parallel manipulator is investigated. The manipu-

lator has three degree of freedoms and the moving platform is constrained to

only translational motion. The main advantages of this parallel manipulator are

that all of the actuators can be attached directly to the base, closed-form solu-

tions are available for the forward and inverse kinematics, the moving platform

maintains the same orientation throughout the entire workspace, and it can be

constructed with only revolute joints. The most significant disadvantage is the

limited workspace relative to a serial manipulator of comparable size. A descrip-

tion of the manipulator joint and link configuration is presented in Chapter 2,

along with a discussion of the manipulator mobility.

Closed-form solutions for both the forward and inverse kinematics problems

are given in Chapter 3. It is shown that the inverse kinematics problem has

up to four real solutions, and the forward kinematics problem has up to 16 real

solutions. The kinematics of the manipulator are explored further in Chapter
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4, where the Jacobian matrix for the manipulator is developed. The Jacobian

matrix maps the velocity of the moving platform in cartesian space to the input

joint velocities in joint space, and is used in Chapter 4 to search for singular

poses of the manipulator, where the manipulator instantaneously gains or loses

a degree of freedom.

In Chapter 5, the workspace of the manipulator is considered. Workspace vol-

ume as a function of the manipulator parameters is determined using the Monte

Carlo method. A procedure for characterizing the quality of the workspace is also

developed. Using these results, optimization studies for maximum workspace

volume and for well-conditioned workspace volume are conducted. An objective

function for the well-conditioned optimization study is defined as the integra-

tion of the reciprocal of the condition number of the Jacobian matrix over the

workspace volume, and named the global condition index. The results of the op-

timization study show that a manipulator that is optimized for well-conditioned

workspace has legs that are evenly separated by 120◦, and a moving platform

and a fixed platform of the same size. Also, each input link is 44% of the total

length of each leg, and each upper connecting arm is 56% of the total length of

each leg.

Models for the dynamics of the manipulator are presented in Chapter 6.

Three different models are developed, with numerical simulations presented for

all three models. The first model is based upon the application of the Newton-

Euler equations of motion used in conjunction with the Jacobian matrix to map

the inertial and gravitational loadings of the moving platform to the actuators.

This model is developed for use with a computed torque controller since it does

a good job of capturing the character of the dynamics while being computa-
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tionally efficient. The second model was developed to give a more complete

characterization of the dynamics, and is based upon the Lagrangian multiplier

approach. The third model neglects the highly coupled nature of the manipu-

lator and models each input link individually. This model is developed for use

with single-input single-output type controllers.

A prototype was fabricated to demonstrate this manipulator. A description

of the prototype and the accuracy of the prototype are provided in Chapter 7.

Three controllers are developed for the manipulator and tested on the proto-

type. A PID controller, a computed torque controller, and an iterative learning

controller are all applied to the prototype, and the results are given in Chapter

8.

The research presented in this dissertation establishes this parallel manipu-

lator as a viable robotic device for three degree of freedom manipulation. The

manipulator offers the advantages associated with other parallel manipulators,

such as light weight construction; while avoiding some of the traditional disad-

vantages of parallel manipulators such as the extensive use of spherical joints

and coupling of the platform orientation and position.

9.2 Future Research

One of the disappointments of this research was the positioning accuracy demon-

strated by the prototype manipulator. It should be possible to significantly im-

prove upon the geometric positioning accuracy with a rigorous calibration of the

prototype. This rigorous calibration requires a more general kinematic model

that does not assume that each leg is identical, and also allows a more general
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location and orientation of the joint between the input link and the fixed base.

Accordingly, development of a general kinematic model is an area that deserves

future research. Along with development of the more general kinematics model,

an effort should be made to eliminate the extraneous solutions generated by the

forward kinematics solution.

Another area of research that would benefit this manipulator is the investi-

gation of alternative sensing and actuation schemes. It’s not difficult to imagine

applications where sensing and actuation schemes that are different from the one

used in the prototype would provide better performance. For instance, if accu-

rate positioning of the moving platform is of primary importance (e.g. integrated

circuit lead bonding), then direct sensing of the moving platform position should

provide better performance than inferring the moving platform position from the

angular displacement of the input links. Hence, an exploration of the sensing and

actuation configurations available to this manipulator and their relative merits

would be beneficial.

It would also be interesting to examine this manipulator as a compliant mech-

anism. One of the distinguishing characteristics of this manipulator is that it

can be constructed using only revolute joints with non-intersecting axes, which

can easily be approximated in compliant mechanisms. So, potentially this ma-

nipulator could be molded in a single piece using the injection molding process,

providing an inexpensive means of producing a spatial mechanism that constrains

motions to three translational degrees of freedom. This type of compliant mech-

anism would also lend itself to the application as an underactuated or passive

mechanism, where one or more of the actuated joints are replaced with elastic

elements. Gosselin (1996) examined underactuated planar parallel manipulators
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that are used for force generation as opposed to motion generation. It would be

interesting to extend Gosselin’s work to spatial mechanisms using the manipu-

lator studied in this dissertation.
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Appendix A Constants for Forward Kinematics

k1 = 2 [c− r − a cos(θ11)]− 2 cos(φ2) [c− r − a cos(θ12)]

k2 = 2 sin(φ2) [r − c+ a cos(θ12)]

k3 = 2a [sin(θ12)− sin(θ11)]

k4 = −2b(d+ e)

k5 = 2b(d+ e)

k6 = 2a(r − c) [cos(θ11)− cos(θ12)]

k7 = 2 [c− r − a cos(θ11)]− 2 cos(φ3) [c− r − a cos(θ13)]

k8 = 2 sin(φ3) [r − c+ a cos(θ13)]

k9 = 2a [sin(θ13)− sin(θ11)]

k10 = −2b(d+ e)

k11 = 2b(d+ e)

k12 = 2a(r − c) [cos(θ11)− cos(θ13)]

k13 = −
k4

k3

k14 = −
k2b sin(φ2) + k1b cos(φ2)

k3 sin(φ2)

k15 = −
k5

k3

k16 =
k1b

k3 sin(φ2)

k17 = −
k6

k3

k18 = k10 + k9k13

k19 = k8b+
k7b cos(φ2)

sin(φ2)
+ k9k14
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k20 = k9k15

k21 = k9k16 −
k7b

sin(φ2)

k22 = k5

k23 = k12 + k9k17

k24 = b2 + k2
14 sin2(φ2)

k25 = k2
13 sin2(φ2)

k26 = b2 + k2
16 sin2(φ2)

k27 = k2
15 sin2(φ2)

k28 = 2k13k14 sin2(φ2)

k29 = 2k14k16 sin2(φ2)− 2b2 cos(φ2)

k30 = 2k14k15 sin2(φ2)

k31 = 2k13k16 sin2(φ2)

k32 = 2k13k15 sin2(φ2)

k33 = 2k15k16 sin2(φ2)

k34 = 2bc cos(φ2) sin(φ2)− 2ab cos(φ2) sin(φ2) cos(θ11)− 2br cos(φ2) sin(φ2)

+2k14k17 sin2(φ2)− 2ak14 sin2(φ2) sin(θ11)

k35 = −2bd sin2(φ2)− 2be sin2(φ2) + 2k13k17 sin2(φ2)− 2ak13 sin2(φ2) sin(θ11)

k36 = −2bc sin(φ2) + 2ab cos(θ11) sin(φ2) + 2br sin(φ2) + 2k16k17 sin2(φ2)

−2ak16 sin2(φ2) sin(θ11)

k37 = 2k15k17 sin2(φ2)− 2ak15 sin2(φ2) sin(θ11)

k38 = sin2(φ2)(a
2 − b2 + c2 − 2ac cos(θ11)− d

2 − 2de− e2 + k2
17 − 2cr

+2ar cos(θ11) + r2 − 2ak17 sin(θ11))
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k39 = k2
19 sin2(φ2) + k2

22 sin2(φ2 − φ3)

k40 = k2
18 sin2(φ2)

k41 = k2
21 sin2(φ2) + k2

22 sin2(φ3)

k42 = k2
20 sin2(φ2)

k43 = 2k18k19 sin2(φ2)

k44 = 2k19k21 sin2(φ2) + 2k2
22 sin(φ2 − φ3) sin(φ3)

k45 = 2k19k20 sin2(φ2)

k46 = 2k18k21 sin2(φ2)

k47 = 2k18k20 sin2(φ2)

k48 = 2k20k21 sin2(φ2)

k49 = 2k19k23 sin2(φ2)

k50 = 2k18k23 sin2(φ2)

k51 = 2k21k23 sin2(φ2)

k52 = 2k20k23 sin2(φ2)

k53 = sin2(φ2)
[
k2

23 − k
2
22

]
k54 = k24 + k26 + k29 − k34 − k36 + k38

k55 = −2k28 − 2k31 + 2k35

k56 = −2k24 + 4k25 + 2k26 − 2k36 + 2k38

k57 = 2k28 − 2k31 + 2k35

k58 = k24 + k26 − k29 + k34 − k36 + k38

k59 = −2k30 − 2k33 + 2k37

k60 = 4k32
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k61 = −4k33 + 4k37

k62 = 4k32

k63 = 2k30 − 2k33 + 2k37

k64 = 2k24 − 2k26 + 4k27 − 2k34 + 2k38

k65 = −4k28 + 4k35

k66 = −4k24 + 8k25 − 4k26 + 8k27 + 4k38

k67 = 4k28 + 4k35

k68 = 2k24 − 2k26 + 4k27 + 2k34 + 2k38

k69 = −2k30 + 2k33 + 2k37

k70 = 4k32

k71 = 4k33 + 4k37

k72 = 4k32

k73 = 2k30 + 2k33 + 2k37

k74 = k24 + k26 − k29 − k34 + k36 + k38

k75 = −2k28 + 2k31 + 2k35

k76 = −2k24 + 4k25 + 2k26 + 2k36 + 2k38

k77 = 2k28 + 2k31 + 2k35

k78 = k24 + k26 + k29 + k34 + k36 + k38

k79 = k39 + k41 + k44 − k49 − k51 + k53

k80 = −2k43 − 2k46 + 2k50

k81 = −2k39 + 4k40 + 2k41 − 2k51 + 2k53

k82 = 2k43 − 2k46 + 2k50
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k83 = k39 + k41 − k44 + k49 − k51 + k53

k84 = −2k45 − 2k48 + 2k52

k85 = 4k47

k86 = −4k48 + 4k52

k87 = 4k47

k88 = 2k45 − 2k48 + 2k52

k89 = 2k39 − 2k41 + 4k42 − 2k49 + 2k53

k90 = −4k43 + 4k50

k91 = −4k39 + 8k40 − 4k41 + 8k42 + 4k53

k92 = 4k43 + 4k50

k93 = 2k39 − 2k41 + 4k42 + 2k49 + 2k53

k94 = −2k45 + 2k48 + 2k52

k95 = 4k47

k96 = 4k48 + 4k52

k97 = 4k47

k98 = 2k45 + 2k48 + 2k52

k99 = k39 + k41 − k44 − k49 + k51 + k53

k100 = −2k43 + 2k46 + 2k50

k101 = −2k39 + 4k40 + 2k41 + 2k51 + 2k53

k102 = 2k43 + 2k46 + 2k50

k103 = k39 + k41 + k44 + k49 + k51 + k53

k104 = 1 +
k2

108

k2
109

+
k2

111

k2
112
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k105 =
2k107k108

k2
109

+
2k110k111

k2
112

− 2k113 cos(φ1)−
2k113k108

k109
sin(φ1)−

2ak111

k112
sin(θ11)

k106 = k2
113 − b

2 +
k2

107

k2
109

+
k2

110

k2
112

+ a2 sin2(θ11)−
2k107k113

k109

sin(φ1)−
2ak110

k112

sin(θ11)

k107 = k118k121 − k119k120

k108 = k115k118 − k114k119

k109 = k116k119 − k117k118

k110 = k117k120 − k116k121

k111 = k114k117 − k115k116

k112 = k116k119 − k117k118

k113 = a cos(θ11) + r − c

k114 = 2 cos(φ2) [a cos(θ12) + r − c]− 2 cos(φ1) [a cos(θ11) + r − c]

k115 = 2 cos(φ3) [a cos(θ13) + r − c]− 2 cos(φ1) [a cos(θ11) + r − c]

k116 = 2 sin(φ2) [a cos(θ12) + r − c]− 2 sin(φ1) [a cos(θ11) + r − c]

k117 = 2 sin(φ3) [a cos(θ13) + r − c]− 2 sin(φ1) [a cos(θ11) + r − c]

k118 = 2a sin(θ12)− 2a sin(θ11)

k119 = 2a sin(θ13)− 2a sin(θ11)

k120 = [a cos(θ11) + r − c]2 + a2 sin2(θ11)− [a cos(θ12) + r − c]2 − a2 sin2(θ12)

k121 = [a cos(θ11) + r − c]2 + a2 sin2(θ11)− [a cos(θ13) + r − c]2 − a2 sin2(θ13)
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Appendix B

Evaluation of Partial Derivatives of Constraint

Functions for Langrange Based Dynanics

For i =1, 2, and 3,

and j = 1:

Aij =
∂fi
∂qj

=
∂fi
∂px

= 2px + 2c cos(φi)− 2r cos(φi)− 2a cos(φi) cos(θ1i)

−2d cos(φi) cos(θ2i)− 2e cos(φi) cos(θ2i)

For i =4, 5, and 6,

and j = 1:

Aij =
∂fi
∂qj

=
∂fi
∂px

= − cos(φi) tan(θ2i)

For i =1, 2, and 3,

and j = 2:

Aij =
∂fi

∂qj
=
∂fi

∂py

= 2py + 2c sin(φi)− 2r sin(φi)− 2a sin(φi) cos(θ1i)

−2d sin(φi) cos(θ2i)− 2e sin(φi) cos(θ2i)
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For i =4, 5, and 6,

and j = 2:

Aij =
∂fi
∂qj

=
∂fi
∂py

= − sin(φi) tan(θ2i)

For i =1, 2, and 3,

and j = 3:

Aij =
∂fi
∂qj

=
∂fi
∂pz

= 2pz − 2a sin(θ1i)− 2d sin(θ2i)− 2e sin(θ2i)

For i =4, 5, and 6,

and j = 3:

Aij =
∂fi

∂qj
=
∂fi

∂pz

= 1

For i =1, and j = 4:

Aij =
∂fi
∂qj

=
∂fi
∂θ21

= [−px sin(φ1 − θ21) + 2a sin(θ11 − θ21) + 2c sin(θ21)

−2r sin(θ21) + px sin(φ1 + θ21) + py cos(φ1 − θ21)

−2pz cos(θ21)− py cos(φ1 + θ21)] (d+ e)
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For i =2, 3, 5, and 6

and j = 4:

Aij =
∂fi
∂qj

=
∂fi
∂θ21

= 0

For i =4 and j = 4:

Aij =
∂fi
∂qj

=
∂fi
∂θ21

=
1

cos(θ21)2
[r − c− px cos(φ1) + a cos(θ11)− py sin(φ1)]

For i =1, 3, 4, and 6

and j = 5:

Aij =
∂fi
∂qj

=
∂fi
∂θ22

= 0

For i =2 and j = 5:

Aij =
∂fi
∂qj

=
∂fi
∂θ22

= [−px sin(φ2 − θ22) + 2a sin(θ12 − θ22) + 2c sin(θ22)

−2r sin(θ22) + px sin(φ2 + θ22) + py cos(φ2 − θ22)

−2pz cos(θ22)− py cos(φ2 + θ22)] (d+ e)
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For i =5 and j = 5:

Aij =
∂fi
∂qj

=
∂fi
∂θ22

=
1

cos(θ22)2
[r − c− px cos(φ2) + a cos(θ12)− py sin(φ2)]

For i =1, 2, 4, and 5,

and j = 6:

Aij =
∂fi
∂qj

=
∂fi
∂θ23

= 0

For i =3 and j = 6:

Aij =
∂fi
∂qj

=
∂fi
∂θ23

= [−px sin(φ3 − θ23) + 2a sin(θ13 − θ23) + 2c sin(θ23)

−2r sin(θ23) + px sin(φ3 + θ23) + py cos(φ3 − θ23)

−2pz cos(θ23)− py cos(φ3 + θ23)] (d+ e)

For i =6 and j = 6:

Aij =
∂fi
∂qj

=
∂fi
∂θ23

=
1

cos(θ23)2
[r − c− px cos(φ3) + a cos(θ13)− py sin(φ3)]
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For i =1 and j = 7:

Aij =
∂fi

∂qj
=

∂fi

∂θ11

= 2a [px cos(φ1) sin(θ11) + py sin(φ1) sin(θ11) + (c− r) sin(θ11)

−(c + e) sin(θ11 − θ21)− pz cos(θ11)]

For i =2, 3, 5, and 7

and j = 7:

Aij =
∂fi

∂qj
=

∂fi

∂θ11

= 0

For i =4 and j = 7:

Aij =
∂fi
∂qj

=
∂fi
∂θ11

= −a [cos(θ11) + tan(θ21) sin(θ11)]

For i =1, 3, 4, and 6,

and j = 8:

Aij =
∂fi
∂qj

=
∂fi
∂θ12

= 0
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For i =2 and j = 8:

Aij =
∂fi

∂qj
=

∂fi

∂θ12

= 2a [px cos(φ2) sin(θ12) + py sin(φ2) sin(θ12) + (c− r) sin(θ12)

−(c + e) sin(θ12 − θ22)− pz cos(θ12)]

For i =5 and j = 8:

Aij =
∂fi
∂qj

=
∂fi
∂θ12

= −a [cos(θ12) + tan(θ22) sin(θ12)]

For i =1, 2, 4, and 5,

and j = 9:

Aij =
∂fi
∂qj

=
∂fi
∂θ13

= 0

For i =3 and j = 9:

Aij =
∂fi
∂qj

=
∂fi
∂θ13

= 2a [px cos(φ3) sin(θ13) + py sin(φ3) sin(θ13) + (c− r) sin(θ13)

−(c + e) sin(θ13 − θ23)− pz cos(θ13)]
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For i =6 and j = 9:

Aij =
∂fi

∂qj
=

∂fi

∂θ13

= −a [cos(θ13) + tan(θ23) sin(θ13)]
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Appendix C

Evaluation of Partial Derivatives of Langrange

Function for Langrange Based Dynanics

For j =1:

d

dt

(
∂L

∂ẋ

)
= (3mb +mc) ẍ+ dmb

3∑
i=1

(
θ̈2i cosφi sin θ2i + θ̇2

2i cosφi cos θ2i

)
∂L

∂x
= 0

For j=2:

d

dt

(
∂L

∂ẏ

)
= (3mb +mc) ÿ + dmb

3∑
i=1

(
θ̈2i sin φi sin θ2i + θ̇2

2i sin φi cos θ2i

)
∂L

∂y
= 0

For j=3:

d

dt

(
∂L

∂ż

)
= (3mb +mc) z̈ − dmb

3∑
i=1

(
θ̈2i cos θ2i − θ̇

2
2i sin θ2i

)
∂L

∂z
= −g (3mb +mc)
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For j=4, 5, and 6:

d

dt

(
∂L

∂θ̇2n

)
= d2mbθ̈2n + e2mbθ̈2n + aembθ̈1n cos (θ1n − θ2n)

−aembθ̇1n

(
θ̇1n − θ̇2n

)
sin (θ1n − θ2n)− dmbz̈ cos θ2n

+dmbżθ̇2n sin θ2n + dmbẍ cosφn sin θ2n + dmbẋθ̇2n cosφn cos θ2n

+dmbÿ sinφn sin θ2n + dmbẏθ̇2n sin φn cos θ2n

∂L

∂θ2n
= (d− e)gmb cos θ2n + dmbθ̇2nẋ cosφn cos θ2n

+dmbθ̇2nẏ sin φn cos θ2n + aembθ̇1nθ̇2n sin(θ1n − θ2n)

+dmbθ̇2nż sin θ2n

for n =1, 2, and 3.

For j=7, 8, and 9:

d

dt

(
∂L

∂θ̇1n

)
= (Im +

1

3
a2ma + a2mb)θ̈1n + aembθ̈2n cos(θ1n − θ2n)

−aembθ̇2n(θ̇1n − θ̇2n) sin(θ1n − θ2n)

∂L

∂θ1n
= −

1

2
agma cos θ1n − agmb cos θ1n − aembθ̇1nθ̇2n sin(θ1n − θ2n)

for n =1, 2, and 3.
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Appendix D

Link Drawings

163



164



165



166



Appendix E

Complete Single Leg PID Block Diagram
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Appendix F

Trajectory Generator Flowcharts

Begin
shape.msf

User Input:  acceleration, max velocity
time-step, and the starting point

User Input:  No. of desired line segments, 
the endpoints, and the desired time for each 

segment

User Input: intermediate point,
arc endpoint, and desired time for the segment

Compute moving platform position
and input joint angles at each time-step

using polylin.msf and arcircle.msf

Prepare data for
the AC-100

End

Is segment a
line or arc 

shape?

Are more
segments desired?

Have manipulator 
return to starting 

position?

Select arc or linesegment 
and desired time

Compute platform position 
and input joint angles for 

each time-step

no

yes

no

yes

arcline
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Begin
polylin.msf

Determine the required acceleration
time and deacceleration time to track 

the arc in the desired time

Return to
shape.msf

Is the desired
time long 
enough?

Display error
message

yes

Calculate the unit vector formed by the 
two endpoints of the line segment, and 
the distance between the two endpoints

Calculate the position of the moving
platform at each time-step

 along  the arc

Calculate the input joint angles
at each time step using the inverse

kinematics

no
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Begin
arcircle.msf

Determine the required acceleration
time and deacceleration time to track 

the arc in the desired time

Return to
shape.msf

Is the desired
time long 
enough?

Display error
message

yes

Calculate the center and radius
of the arc that contains the three

given points

Calculate the position of the moving
platform at each time-step

 along  the arc

Calculate the input joint angles
at each time step using the inverse

kinematics

no
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Appendix G

Trajectory Generation Code

This is the trajectory generation code for the prototype manipulator written

in Xmath math-script. The author of the code is Remi Taulemesse. The first

listed function is shape.msf, which is the function that is envoked by the user to

define the trajectory. All the other functions are called from shape.msf.

function [theta1,theta2,theta3,veloci,time,tt,gra,space,pt_user,
g1,g2,g3]=shape()

#############################################################

#{ The meaning of these output variables are the following:

theta1, theta2, theat3 : values of theta1(2 and 3) as a function
of time
veloci: velocity as a function of time
time: time increasing of the step time
tt: total time of the motion
space: cartesian coordinates of points followed by the moving
platform
graph: graph which shows the three angles as a function of
time and the path in the space
pt_user: coordinates of points given by the user
g1, g2, g3: initial value of each joints

To run this program, type the following in Xmath commands:

[theta1,theta2,theta3,veloci,time,tt,gra,space,pt_user,g1,g2,g3]
= shape();

}#

#############################################################

acc=getline("Enter the acceleration required:")
acc=makematrix(acc)
velocmax=getline("Enter the maximum velocity:")
velocmax=makematrix(velocmax)
dt = getline("Enter the step time wanted :")
dt = makematrix(dt)

#{ Input the first coordinates and turn them into a row vector }#

temp = getline("Enter the coordinates of the first point:")
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x = index(temp,",")
px = makematrix(stringex(temp, 1,x-1))
temp = stringex(temp,x+1,length(temp))
y = index(temp,",")
py = makematrix(stringex(temp, 1,y-1))
temp = stringex(temp,y+1,length(temp))
pz = makematrix(temp)
p(1,:)=[px, py, pz]

#{

#############################################################
Initialisation cur_pt: current point which will be the first
point of each curve shape,

nbr: Total Number of points,
time: Vector which is the discete time,
tt: Total Time,
pt_user: Coordinates of points given by the user,
nb_user: Number of points given by the user,
theta: Points in angular coordinates.

#############################################################
}#

cur_pt = p(1,:)
what = 0
nbr = 0
tt = 0
pt_user = p(1,:)
nb_user = 1

#{ First Point }#
nbr = nbr+1
time(nbr) = tt
veloci(nbr) = 0
space(nbr,:) = p(1,:)

#{ Finding the angular coordinates of the first point }#
for i = 1:3
[angle,err] = inv_kin(p(1,:),i)
if (err == 1)
error("There are points out of the workspace","S")
endif
theta(nbr,i) = angle
endfor;

#{ creating the linear-circular path }#

while (what<>3)

what = getchoice("Three DOF Simulation", [ "Line Shape";...
"Circle Shape";"No more points"], {defaultchoice=1})

if (what == 1)
[last_pt,pt_user,theta,veloci,time,tt,nbr,nb_user,space]=

polylin (cur_pt,pt_user,theta,veloci,time,tt,nbr,nb_user,
space,acc,velocmax,dt)
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elseif (what == 2)
[last_pt,pt_user,theta,veloci,time,tt,nbr,nb_user,space]=

arcircle(cur_pt, pt_user, theta, veloci, time,tt,
nbr, nb_user, space, acc, velocmax, dt)

else
open = getchoice("Type of shape",["Open polygon";

"Close Polygon"], {defaultchoice=1})
endif

if (nbr <> 1)
cur_pt = last_pt

endif

endwhile

#{ A last path will be done if necessary (close polygon case) }#

if (open == 2)
final = getchoice("Three DOF Simulation", [ "Line Shape";
"Circle Shape"], {defaultchoice=1})

if (final == 1)
[last_pt,theta,veloci,time,tt,nbr,space] = onelin(cur_pt,

space(1,:),theta,veloci,time,tt,nbr,space,acc,
velocmax, dt)

else

[last_pt,pt_user,theta,veloci,time,tt,nbr,nb_user,space] =
last_circle (cur_pt, space(1,:), pt_user,theta,
veloci, time,tt,nbr,nb_user,space, acc,velocmax,dt)

endif

endif

where = getchoice("Use of datas",["Datas used for ac100 model";
"Datas used for DADS model"],{defaultchoice=1})

#{ If open polygon, back to the first point, necessary condition
for ac100 control }#

if ( (open == 1) & (where == 1))
time(nbr+1) = tt+dt
veloci(nbr+1) = 0
for i = 1:3

theta(nbr+1,i) = theta(1,i)
endfor

endif

theta1 = theta(:,1)
theta2 = theta(:,2)
theta3 = theta(:,3)

#{ If wanted change angles values to fit with Dads model and Send
datas to Dads directory }#

if (where ==2)
theta1 = theta1 - (pi/2)
theta2 = theta2 - (pi/2)
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theta3 = theta3 - (pi/2)
result = [time, theta1]
print result file="/homes/rstamper/proto3/dav1.dat"
result = [time, theta2]
print result file="/homes/rstamper/proto3/dav2.dat"
result = [time, theta3]
print result file="/homes/rstamper/proto3/dav3.dat"
endif

#{

#############################################################
Creating a graph with all datas

#############################################################
}#

gra=plot(time, theta1, {rows=2,columns=2, title="THETA1"})
plot(time, theta2, {keep=gra, row=1, column=2, title="THETA2"})
plot(time, theta3, {keep=gra, row=2, title="THETA3"})
gr = plot(space(:,1),space(:,2),space(:,3),...

{row=2, column=2, keep=gra, title="TRAJECTORY",...
line_color=[1], line_width=[2], x_lab="x", y_lab="y",

zlab="z"})
plot(pt_user(:,1), pt_user(:,2), pt_user(:,3),...
{keep=gr, row=2, column=2, marker_size=[1],...
marker_style=[2],marker_color=[48],...
line_style=[0], line_color=[1]})

#{

#############################################################
Coefficient usefull for the simulation on ac100

#############################################################
}#

g1=theta1(nbr)
g2=theta2(nbr)
g3=theta3(nbr)

endfunction
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This is the function polylin.msf that is called from shape.msf.

function [last_pt,pt_userout,thetaout,velociout,timeout,ttout,nbrout,
nb_userout,spaceout] = polylin(first_pt,pt_user,theta,veloci,time,tt,
nbr,nb_user,space,acc,velocmax,dt)

##############################################################

#{ This function create a polygon thanks to the coordinates of points
given by the user. All these output and input are useful to fill
out datas matrix. Output variables whose name end by "out" are
the same than input variables without "out" at the end.
}#

##############################################################

set format fixed
set precision 7

#{ Taking datas from the user }#

p(1,:) = first_pt

#{ Input the coordinates of the points which will create the
polygon. THE FIRST POINT IS ALREADY TAKEN IN ACOUNT. }#

nbpts = getline("Enter the number of points wanted:")
nbpts = makematrix(nbpts)
nbpts = nbpts + 1 # Adding the first point

loop = nbpts - 1

nb_userout = nb_user + nbpts

for i = 2:nbpts
temp = getline("Enter the coordinates of the point:")
x = index(temp,",")
px = makematrix(stringex(temp, 1,x-1))
temp = stringex(temp,x+1,length(temp))
y = index(temp,",")
py = makematrix(stringex(temp, 1,y-1))
temp = stringex(temp,y+1,length(temp))
pz = makematrix(temp)
p(i,:)=[px, py, pz]
endfor

for i=1:loop

#{ Finding the magnitude of P1P2 vector }#

magn(i) = sqrt((p(i+1,1)-p(i,1))^2 + (p(i+1,2)-p(i,2))^2 +
(p(i+1,3)-p(i,3))^2)

#{ Finding the unit vector supporting the line we are suppose to follow }#
for j=1:3
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norm_vec(i,j) = (p(i+1,j)-p(i,j)) / magn(i)
endfor

#{ Reading of the trajectroy time and testing if it fits }#

temp = getline("Enter the trajectory time wanted :")
tf(i) = makematrix(temp)

tacc(i) = (tf(i)/2)-(sqrt(acc^2*tf(i)^2-4*acc*magn(i))/(2*acc))

while((tf(i)<(2*sqrt(magn(i)/acc))) | (velocmax<(acc*tacc(i))))

if (tf(i)<2*sqrt(magn(i)/acc))
beep "Time too short ... Unreachable"
else
beep "With this duration, velocity
will be greater than the
maximum velocity given."
endif

temp = getline("Enter the trajectory time wanted :")
tf(i) = makematrix(temp)
endwhile

endfor

#{ Initialisation }#

tlast = 0 # for time at the end of each line
veloc = 0 # for velocity

for i = 1:loop

desacc = 0 # for desacceleration
tempt = 0 # for temporary time

#{ Motion and calculation along the arc circle.
This loop starts at dt because the initial point has

already been compute }#

for t = dt:dt:tf(i)
[s_cur, veloc, desacc, tempt] = next_point(acc,

tf(i), dt, t, tacc(i), tempt, desacc)
#{ s_cur is for current curvilinear abscissa }#

if (tempt>=0)
#{ Necessary condition to eradicate numerical errors }#

pt(1) = p(i,1) + s_cur*norm_vec(i,1)
pt(2) = p(i,2) + s_cur*norm_vec(i,2)
pt(3) = p(i,3) + s_cur*norm_vec(i,3)

nbr = nbr+1
space(nbr,:) = pt’

time(nbr) = t + tlast + tt
veloci(nbr) = veloc
for j = 1:3
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#{ Calculating the inverse kinematic for each point }#

[angle,err] = inv_kin(pt, j)
if ( err == 1)

error("There are points out of the workspace","S")
endif
theta(nbr,j) = angle

endfor
endif

endfor

#{ Last Point }#
nbr = nbr+1
time(nbr) = tf(i) + tlast + tt
veloci(nbr) = 0
space(nbr,:) = p(i+1,:)
for j = 1:3

[angle,err] = inv_kin(p(i+1,:),j)
if ( err == 1)
error("There are points out of the workspace","S")
endif
theta(nbr,j) = angle

endfor

tlast = tlast + tf(i)

endfor

last_pt = space(nbr,:)

for i = 1:nbpts
pt_user(nb_user + i,:) = p(i,:)
endfor

#{ Puting datas in output variables }#

pt_userout = pt_user
spaceout = space
thetaout = theta
velociout = veloci
timeout = time
nbrout = nbr
ttout = tt + tlast

endfunction
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This is the function arcircle.msf that is called from shape.msf.

function [last_pt,pt_userout,thetaout,velociout,timeout,ttout,
nbrout,nb_userout,spaceout] = arcircle(first_pt,pt_user,theta,
veloci,time,tt,nbr,nb_user,space,acc,velocmax,dt)

##############################################################

#{ This function create a circle thanks to the coordinates of
three points given by the user. All these output and input are
useful to fill out datas matrix.

Output variables whose name end by "out" are the same than input
variables whithout "out" at the end.
}#

###############################################################

set format fixed
set precision 7

#{ Taking datas from the user }#

p(1,:) = first_pt
for i = 2:3
temp = getline("Enter the coordinates of the point:")
x = index(temp,",")
px = makematrix(stringex(temp, 1,x-1))
temp = stringex(temp,x+1,length(temp))
y = index(temp,",")
py = makematrix(stringex(temp, 1,y-1))
temp = stringex(temp,y+1,length(temp))
pz = makematrix(temp)
p(i,:)=[px, py, pz]
endfor

nb_userout = nb_user + 3

#{ Finding coordinates of the center of the circle }#

c1 = (p(2,1)-p(1,1))^2 + (p(2,2)-p(1,2))^2 + (p(2,3)-p(1,3))^2
c2 = (p(3,1)-p(1,1))^2 + (p(3,2)-p(1,2))^2 + (p(3,3)-p(1,3))^2
c3 = (p(2,1)-p(1,1))*(p(3,1)-p(1,1)) + ...
(p(2,2)-p(1,2))*(p(3,2)-p(1,2)) + ...
(p(2,3)-p(1,3))*(p(3,3)-p(1,3))

for i = 1:3
cen(i) = p(1,i) + (c2*(c1-c3))/(2*(c1*c2-c3^2))

*(p(2,i)-p(1,i))
+ (c1*(c2-c3))/(2*(c1*c2-c3^2))*(p(3,i)-p(1,i))
endfor

#{ Finding the radius of the circle }#

r = sqrt((cen(1)-p(1,1))^2 + (cen(2)-p(1,2))^2
+ (cen(3)-p(1,3))^2)
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#{ Finding the vector which will define this circle }#

mn = [(p(2,2)-p(1,2))*(p(3,3)-p(1,3))
- (p(2,3)-p(1,3))*(p(3,2)-p(1,2));

(p(2,3)-p(1,3))*(p(3,1)-p(1,1))
- (p(2,1)-p(1,1))*(p(3,3)-p(1,3));

(p(2,1)-p(1,1))*(p(3,2)-p(1,2))
- (p(2,2)-p(1,2))*(p(3,1)-p(1,1))]

magn_mn = sqrt( mn(1)^2 + mn(2)^2 + mn(3)^2)

ext = cen + (r/magn_mn) * mn

#{ Finding the magnitude of P1P2 vector and the changing base
homogen matrix }#

if ( (ext(1) <> cen(1)) | (ext(2) <> cen(2)) )

a = - (ext(2)-cen(2)) / (sqrt((ext(1)-cen(1))^2 +
(ext(2)-cen(2))^2))
b = (ext(1)-cen(1)) / (sqrt((ext(1)-cen(1))^2 +
(ext(2)-cen(2))^2))

mat(1,1) = (b*(ext(3)-cen(3))) / r
mat(2,1) = (-a*(ext(3)-cen(3))) / r
mat(3,1) = ( a*(ext(2)-cen(2))) / r
- (b*(ext(1)-cen(1)) ) / r
mat(4,1) = 0

mat(1,2) = a
mat(2,2) = b
mat(3,2) = 0
mat(4,2) = 0
else # if z vector coordinates and z axis are parallel
mat(1,1) = 1
mat(2,1) = 0
mat(3,1) = 0
mat(4,1) = 0

mat(1,2) = 0
mat(2,2) = sign(ext(3)-cen(3))
mat(3,2) = 0
mat(4,2) = 0

endif

mat(1,3) = (ext(1)-cen(1)) / r
mat(2,3) = (ext(2)-cen(2)) / r
mat(3,3) = (ext(3)-cen(3)) / r
mat(4,3) = 0

for i = 1:3
mat(i,4) = cen(i)
endfor

mat(4,4) = 1
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#{ Finding the angle and the length of the arc }#

inv_mat = mat(1:3,1:3)’

ini_pt = p(1,:) - cen’
ini_pt = (1/r)*inv_mat*ini_pt’

fin_pt = p(3,:) - cen’
fin_pt = (1/r)*inv_mat*fin_pt’

if (ini_pt(2)>=0)
ini_angle = acos(ini_pt(1))
else
ini_angle = 2*pi - acos(ini_pt(1))
endif

if (fin_pt(2)>=0)
fin_angle = acos(fin_pt(1))
else
fin_angle = 2*pi - acos(fin_pt(1))
endif

if (fin_angle<ini_angle)
fin_angle = fin_angle + 2*pi
endif

ang = fin_angle - ini_angle

len = ang*r

#{ Reading of the trajectroy time and testing if it fits }#

temp = getline("Enter the trajectory time wanted :")
tf = makematrix(temp)

tacc = (tf/2)-(sqrt(acc^2*tf^2-4*acc*len)/(2*acc))

while((tf<(2*sqrt(len/acc))) | (velocmax<(acc*tacc)))

if (tf<2*sqrt(len/acc))
beep "Time too short ... Unreachable"
else
beep "With this duration,
velocity will be greater than the
maximum velocity given."
endif
temp = getline("Enter the trajectory time wanted :")
tf = makematrix(temp)
endwhile

#{ Initialisation }#

veloc = 0 # for velocity
tempt = 0 # for temporary time
desacc = 0 # for desacceleration

#{ Motion and calculation along the arc circle.
This loop starts at dt because the initial point has
already been compute }#
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for t = dt:dt:tf
[s_cur, veloc, desacc, tempt] = next_point ...

(acc, tf, dt, t, tacc, tempt, desacc)
#{ s_cur is for current curvilinear abscissa }#

if (tempt>=0)
#{ Necessary condition to eradicate numerical errors }#

alpha = s_cur / r # Angle calculate from the origin

nbr = nbr+1
temp = (mat * [r*cos(alpha+ini_angle);

r*sin(alpha+ini_angle); 0;1])’
space(nbr,:) = temp(1:3)

time(nbr) = t + tt
veloci(nbr) = veloc

for j = 1:3
#{ Calculating the inverse kinematic for each point }#

[angle,err] = inv_kin(space(nbr,:), j)
if ( err == 1)

error("There are points out of the workspace","S")
endif
theta(nbr,j) = angle

endfor
endif

endfor

#{ Last Point }#
nbr = nbr+1
time(nbr) = tf + tt
veloci(nbr) = 0
temp = (mat * [r*fin_pt;1])’
space(nbr,:) = temp(1:3)

for j = 1:3
[angle,err] = inv_kin(space(nbr,:),j)
if ( err ==1 )
error("There are points out of the workspace","S")
endif
theta(nbr,j) = angle
endfor

last_pt = space(nbr,:)

for i = 1:3
pt_user(nb_user + i,:) = p(i,:)
endfor

#{ Puting datas in output variables }#

pt_userout = pt_user
spaceout = space
thetaout = theta
velociout = veloci
timeout = time
nbrout = nbr
ttout = tt + tf
endfunction
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function [s, veloc, desaccout, temptout] = next_point
(cur_acc, tf, dt, t, tacc, tempt, desacc)

#{ Acceleration part }#
if (t<tacc)
s = 0.5 * cur_acc*t*t
veloc = cur_acc*t

#{ Desacceleration part }#
elseif (t>=tf-tacc)

#{ first loop of desacceleration }#
if (desacc == 0)
desacc = 1
tempt = tacc - dt
endif

#{ we use the symetrical aspect of the curve }#
if (tempt>=0)
s = (- cur_acc)*(tacc*tacc - tf*tacc + 0.5*tempt*tempt)
veloc = cur_acc*tempt
tempt = tempt - dt
endif

#{ Linear part }#
else
s = (- 0.5*cur_acc*tacc*tacc) + cur_acc*tacc*t
veloc = cur_acc*tacc

endif

desaccout = desacc
temptout = tempt

endfunction
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function [angle,err]=inv_kin(pt,i)
#{ Inverse kinematic function:
i is the joint number,
pt is the cartesian coordinates of the point

The output are:
the considered angle
an error message: err = 1 if point is out of the workspace

else err = 0}#

#{ Length of the differents legs }#
r = 5
a = 8
e = 0.625
b = 10
d = 0.625
c = 5
#{ Orientation of the legs and conversion into radian }#
teta0(1)=0
teta0(2)=120
teta0(3)=240
for j=1:3
teta0(j)=(teta0(j)/360)*2*pi
endfor

pu = pt(1)*cos(teta0(i)) + pt(2)*sin(teta0(i)) - r
pv = -pt(1)*sin(teta0(i)) + pt(2)*cos(teta0(i))
pw = pt(3)

#{ If points out of the workspace }#

if ((pv/b)>1)
err = 1
else
teta3 = acos(pv/b)
err = 0
endif

l0 = pu*pu + pw*pw + 2*c*pu - 2*a*pu - b*b*sin(teta3)*sin(teta3)
l0 = l0 - 2*b*e*sin(teta3) - 2*b*d*sin(teta3) - 2*d*e - 2*a*c
l0 = l0 + a*a + c*c - d*d - e*e
l1 = -4*a*pw
l2 = pu*pu + pw*pw + 2*c*pu + 2*a*pu - b*b*sin(teta3)*sin(teta3)
l2 = l2 - 2*b*e*sin(teta3) - 2*b*d*sin(teta3) - 2*d*e + 2*a*c
l2 = l2 + a*a + c*c - d*d - e*e
discr = l1*l1-4*l2*l0
temp1 = 2*atan((-l1+sqrt(discr))/(2*l2))
temp2 = 2*atan((-l1-sqrt(discr))/(2*l2))

if (abs(temp1) < abs(temp2))
angle = temp1
else
angle = temp2
endif

#{ If points out of the workspace }#

if ( is(angle, {!real})==1)
err = 1
else
err = 0
endif
endfunction
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