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The majority of State Highway Agencies (SHAs) now employ statistical-based 

specifications for the acceptance of highway materials and pavement construction. 

The parameters of these statistical acceptance plans are specified based on 

engineering judgment and may result in a high level of risk to both agency and 

contractor. In order to appropriately apply such specifications to the pavement 

construction industry, the associated production quality (i.e., materials and 

construction variability) needs to be well understood by all parties involved and its 

potential impacts require to be assessed. To address this objective of this study was 

to: (i) quantify the risks to the agencies and contractors (i.e., Type I and Type II 

errors); (ii) examine how the key components in a statistical acceptance plan impact 

its performance; and, (iii) identify a methodology to balance the risks and pay factors. 

Risk and pay factor analysis were conducted for both single and multiple quality 

characteristics through Monte Carlo simulation, and the development of Operating 

Characteristic, OC, curves. Furthermore, case studies were presented to demonstrate 

the value of the analyses proposed in this study. The methodology and findings 

identified in the study can be applied elsewhere to evaluate the acceptance plans and 

the associated risks pertinent to pavement construction and the production of 

highway materials.
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Chapter 1  Introduction  

The most State Highway Agencies (SHAs) are currently using statistical Quality 

Assurance (QA) acceptance specifications for highway construction and pavement material. 

These specifications include statistical acceptance plans that monitor whether the construction 

and material satisfy the quality standards. The following three fundamental items must be 

included in such a statistical acceptance plan (Burati et al, 2004): (1) the desired quality levels 

specified by agencies; (2) how to determine (or estimate) the quality level of the production; (3) 

the consequences for the contractors when the quality level is above or below the desired quality 

levels. Whether the acceptance plan includes simple pass/fail decisions or pay adjustment 

provisions, its appropriate development and evaluation are crucial for the acceptance plan to be 

effective. In order to fully evaluate the statistical acceptance plans, a good understanding of 

statistics, materials, production quality, and construction variability is required. This study 

identifies an alternative statistical basis for a statistical acceptance plan and examines how its key 

components impact the pay adjustments and examines how risks of acceptance can be related to 

rational and desirable pay schedules.  

In the statistical acceptance plans, samples are used to make estimates about the quality 

of a larger amount of production, and thus risks are involved; there is some probability that the 

random samples will not represent the quality of the production as a whole, and thus will lead to 

an incorrect estimate of the production quality. Evaluation and quantification of the risks 

involved in the statistical acceptance plans are critical to ensure the effectiveness of these 

acceptance plans. In reality, however, few SHAs have evaluated the risks associated with their 

statistical acceptance plans.  
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A number of SHAs also have implemented the pay adjustment provisions in their 

acceptance plans to encourage the contractor to produce at the desired quality levels during 

construction. The evaluation of risks and pay factors becomes much more complex when such 

pay adjustment provisions are included in the acceptance plans. When the acceptance plan is 

properly developed, it should provide the best insurance that the contractor will be paid a fair 

price and that the contracting agency will get what was paid for with a reasonable level of risk. 

In order to address these issues, Monte Carlo simulation analysis is implemented to quantify the 

potential risks with pay factors to the agencies and contractors.  

 

1.1 Literature Review 

The evolution of modern QA specifications has taken place over several decades. In 

current QA specifications, statistical acceptance specifications are simple acceptance procedures 

which are monitoring methods used to evaluate whether a particular construction process meets 

the quality standards (Weed, 1996 as cited in Stephen and Joe, 2001). Freeman and Grogan 

(1998) described the statistical acceptance procedures in detail and proposed methods for 

developing statistical acceptance plans for pavement construction. Stephen and Joe (2001) 

conducted a thorough and critical literature review of what statistical acceptance specification 

are, why they are used and what their advantages and limitations are, and summarized the key 

components involved in the statistical acceptance plans including (1) type of acceptance plans, 

(2) acceptance quality characteristics, (3) specification limits, (4) desired quality levels (AQL 

and RQL), (5) statistical models, (6) risks and (7) pay factors. They also pointed out the 

acceptance plan performances will be significantly influenced by these components. Two 

comprehensive project reports FHWA-RD-02-095 (Burati et al, 2003), Optimal Procedures for 
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Quality Assurance Specifications, and FHWA-HRT-04-046 (Burati et al, 2003), Evaluation of 

Procedures for Quality Assurance Specifications, provided step-by-step procedures and 

instructions for developing and evaluating QA specifications and acceptance plans.  

A computer simulation tool known as OCPLOT was developed by Weed (1995) and has 

been widely used (Stephen and Joe. 2001; Burati et al. 2003, 2004, 2005, 2011) to build OC 

curves and evaluate risks associated with accept/reject acceptance plans as well as pay 

adjustment acceptance plans. However, the statistical bases and procedures for developing the 

OC curves were not well studied and explained, and this simulation tool is not able to fully 

evaluate the risk associated with multiple quality characteristics. Villiers et al. (2003) proposed a 

method to develop OC curves, which is using the standard error to construct the normal 

distribution and calculate the probability of acceptance. One significant limitation of this method 

is that it is only valid when the acceptance limit is 50% (Z-score = 0). More recently, Karimi and 

Goulias (2013) built OC curves for superpave Hot Mix Asphalt (HMA) mixture characteristics 

(i.e., aggregate passing 0.075mm, 2.36mm, 4.75mm sieves, asphalt content) using the procedure 

followed by Villiers et al. (2003) and developed a simulation tool for expected pay analysis. 

Although the methods for evaluating risk associated with acceptance plans were proposed 

and discussed, none of these studies systematically examined how the key components of the 

acceptance plan affects its overall performance and associated risks, or provided methodologies 

and suggestions of how to balance the risks with pay factors based on the principal findings from 

the OC curves. Especially the evaluation of risks with pay factors has not been well-studied 

when multiple quality characteristics are used to determine the pay factor for a lot.  
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1.2 Research Objectives  

The primary goal of this research was to (1) quantify the potential risks to the SHAs and 

contractors, (2) identify methods to balance the risks with pay factors associated with pay 

adjustment acceptance plans for highway materials and pavement construction. In order to 

accomplish this objective, the following research elements were addressed: 

(1) Literature review on existing risk and pay factor analysis for highway material and 

pavement construction; 

(2) Development of OC curves and quantification of risks for accept/reject acceptance plans 

supported by statistical theory; 

(3) Development of OC and EP curves for pay adjustment acceptance plans and systematical 

examination how the key components of the statistical acceptance plan affect its overall 

performance, and associated risks with pay factors through Monte Carlo simulation; 

(4) Assessment of risks with multiple quality characteristics; 

(5) Case studies illustrating the value of the proposed analysis 

 

1.3 Organization of Thesis  

The first chapter presents an introduction to the study, the literature review on the risk 

and pay factor analysis associated with statistical acceptance plans for highway material and 

pavement construction, the research objectives, and the organization of the thesis.  

Chapter 2 provides a background, definitions and concepts related to statistical 

acceptance plans. This chapter also presents the development of OC curves and quantification of 

risks for accept/reject acceptance plans. 
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Chapter 3 presents the development of OC and EP curves based on individual and 

composite quality characteristics for pay adjustment acceptance plans and an evaluation of the 

influence of its key components (i.e., sample size, pay equation, RQL, AQL, specification limits) 

on the performance of the acceptance plans and associated risks. 

Chapter 4 presents the relations of risks to pay factors and provides case studies to 

demonstrate the value of the analyses proposed in this study. 

Chapter 5 summaries the key findings and conclusions from the study and provide 

recommendations to balance and risk and pay factors. 
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Chapter 2  Operating Characteristic (OC) Curves and Risks  

In the statistical acceptance plans, using samples to make an estimation about the quality 

of the population involves risk; the random samples may not be representative of the quality of 

the population as a whole if it is obtained and tested improperly, and thus the quality of the 

population will be incorrectly estimated. Therefore, risk is inherent in the statistical acceptance 

plans. The risks associated with a particular statistical acceptance plan can be evaluated using 

Operating Characteristic (OC) curves. This Chapter presents the statistical basis and procedures 

for developing OC curves and quantifying the risks.  

 

2.1 Acceptance Plans Basics  

The statistical acceptance plans are acceptance procedures used to determine whether 

construction or materials should be accepted, rejected or accepted with pay adjustment (Freeman 

and Grogan, 1998). In order to appropriately apply statistical acceptance plans in pavement 

construction, it is important to properly implement the key components of an acceptance plan 

and its associated statistics. The definitions and concepts associated with statistical acceptance 

plans were identified from the Transportation Research Board (TRB) Transportation Research 

Circular Number E-C037, “Glossary of Highway Quality Assurance Terms”.  

 

2.1.1 Acceptance Plan Types  

Acceptance plan: also called acceptance sampling plan or statistical acceptance plan. An 

agreed-upon process for evaluating the acceptability of a lot of material. It includes acceptance 

plan types, quality measure, quality characteristics, desired quality levels, 
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specification/acceptance limit(s), lot size and sample size (i.e. number of samples), evaluation of 

risks, and pay adjustment provisions. 

There are two types of acceptance plans: variable acceptance plan and attribute 

acceptance plan. The analysis in this study is based on the variable acceptance plan which is the 

most commonly used in pavement material and construction. The variable acceptance plan 

assumes that the measured characteristics are normally distributed which is true for construction-

related lot characteristics (Markey et al., 1994; Aurilio and Raymond, 1995; Cadicamo, 1999).  

Variable acceptance plan: A statistical acceptance procedure where quality is evaluated 

by (1) under measuring the numerical magnitude of a quality characteristic for each of the units 

or samples in the group consideration and (2) computing statistics such as the average and the 

standard deviation of the group. 

Acceptance limit: Also called the rejection limit in accept/reject acceptance plans. In 

variables acceptance plans, the limiting upper or lower value, placed on a quality measure, that 

will permit acceptance of a lot. [Unlike specification limits placed on a quality characteristic, an 

acceptance limit is placed on a quality measure.  

Acceptance constant (k): the minimum allowable quality index (Q). [The acceptance 

constant k is the acceptance limit associated with the quality index measure. In other words, for 

acceptance, Q must be greater than or equal to k.] 
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2.1.2 Desired Quality Levels and Risks  

There are two desired quality levels in an acceptance plan including the Acceptable 

Quality Level (AQL) and Rejectable Quality Level (RQL). The following definitions of AQL 

and RQL are provided in EC-037. 

Acceptable quality level (AQL): for a given quality characteristic, that minimum level 

of actual quality at which the material or construction can be considered fully acceptable. For 

example, when quality is based on PWL, the AQL is that actual (not estimated) PWL at which 

the quality characteristic can just be considered fully acceptable. [Acceptance plans should be 

designed such that AQL material will receive an EP of 100%.] 

Rejectable quality level (RQL): for a given quality characteristic, that maximum level 

of actual quality at which the material or construction can be considered unacceptable 

(rejectable). For example, when quality is based on PD, the RQL is that actual (not estimated) 

PD at which the quality characteristic can just be considered fully rejectable. [Removal and 

replacement, corrective action, or the assignment of a relatively low pay factor is appropriate 

when RQL work is detected.] 

The selection of appropriate AQL and RQL depends on the judgments using history data, 

statistics, and experience. In this analysis, how the selection of AQL and RQL impacts the 

performance of the acceptance plans are examined.  

Two types of risks were defined in an OC curve based on the concepts of AQL and RQL: 

Seller’s risk: also called risk of a type I error. The probability that an acceptance plan 

will erroneously reject acceptance quality level (AQL) material or construction with respect to a 

single acceptance quality characteristic. It is the risk the contractor or producer takes in having 

AQL material or construction rejected. 
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Buyer’s risk: also called risk of a type II error. The probability that an acceptance plan 

will erroneously fully accept (100 percent or greater) rejectable quality level (RQL) material or 

construction with respect to a single acceptance quality characteristic. It is the risk the highway 

agency takes in having RQL material or construction fully accepted. [the probability of having 

RQL material or construction accepted (at any pay) may be considerably greater than the buyer’s 

risk.] 

For a well-written acceptance plan, the AQL and RQL must be defined, and the 

specification limits and acceptance limits must be determined. The selection of acceptance limits 

is related to the risks to the contractor and agency. Sufficiently restrictive acceptance limits will 

be effective in controlling quality. The development of reasonable limits relates to the 

determination of risks. Risk analysis should be conducted based on acceptance limits and sample 

size. The risks associated with PWL acceptance plans are determined in this study by developing 

OC and curves using Monte Carlo simulation. 

 

2.1.3 Quality Measures 

Percent within limit (PWL) or percent defective (PD) have been identified as the most 

effective measures to consider mean and standard deviation (AASHTO R-9 and R-42). In this 

study, the PWL is used as the quality measure for analysis and simulation. The PWL is estimated 

using the quality index, Q. The Q-statistic represents the distance in sample standard deviation 

units that the sample mean is away from the specification limit. The quality index for a lot 

corresponding to the specification limits can be calculated based on the following equations: 

L

X LSL
Q

s

−
=                    (1) 
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U

USL X
Q

s

−
=                    (2) 

Where:      UQ    = quality index for the upper specification limit. 

                  LQ    = quality index for the lower specification limit. 

                 USL  = upper specification limit. 

                 LSL  = lower specification limit. 

                  X    = the sample mean for the lot. 

                   s    = the sample standard deviation for the lot.   

  

Once the quality index, Q, is calculated for the lot, the PWL could be estimated by the 

use of a PWL table (Specification Conformity Analysis, FHWA Technical Advisory T5080.12, 

June 23, 1989). LQ  is used for a one-sided lower specification limit, and UQ is used for a one-

sided upper specification limit. For two-sided specification limits, the PWL is estimated by the 

following equation: 

PWLT = PWLU + PWLL – 100               (3) 

 

Where:                      PWLU = percent below the upper specification limit (based on QU).    

                                  PWLL = percent above the lower specification limit (based on QL).    

                                  PWLT = percent within the upper and lower specification limits.  

  

2.1.4 Acceptance Quality Characteristics  

AASHTO R-10 defines an Acceptance Quality Characteristic (AQL) as “A quality 

characteristic that is measured and used to determine acceptability.” The definition of AQC in 

these guidelines was modified to include only those characteristics most related to pay factor 

adjustment and ultimately to the quality and performance of the pavements. Commonly used 
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AQCs for evaluating the quality and performance of concrete pavements including compressive 

strength, thickness, and smoothness are analyzed in this study. The example data used for the 

three parameters are taken from the National Cooperative Highway Research Program (NCHRP) 

Project No.10-79 report and summarized in Table 2.1. The mean values and standard deviations 

for each characteristic of 10 test results are used as population characteristics.  

Table 2.1 Strength, thickness and roughness data from NCHRP Project No.10-79 

Test or Measurements  Strength, (psi) Thickness, (in) Roughness, (in/mile) 

#1 4,691 11.5 62.13 

#2 5,007 12.4 66.09 

#3 4,899 12.8 75.29 

#4 4,590 11.4 67.87 

#5 3,794 12.2 64.04 

#6 3,940 12.6 55.06 

#7 3,772 11.3 53.01 

#8 4,677 11.8 54.54 

#9 4,881 12.3 48.93 

#10 5,111 12.5 49.94 

Mean  4,536 12.1 59.69 

Std. Dev. 509.9 0.54 8.69 

 

 

2.1.5 Example Specification for Acceptance of Concrete Pavements 

Specification Limits: 

1) Compressive strength: - Minimum 3500 psi  

2) Thickness -target thickness 12” (spec limit: +7%)  

3) Ride Quality: Max 75 in/mi 

 

2.2 Functions of OC curves for Variable Sampling Plans 

When the calculated quality index, Q, is greater than the acceptance constant k, and the 

standard deviation is less than the maximum standard deviation, then the entire lot will be 

accepted. The following relation should be satisfied if a lot is accepted: 
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X k USL+   or X k LSL−                    (4) 

 

Assuming that the lower specification limit is specified (single-sided specification limit). 

If the lot is accepted, the quality index (Q) must be greater or equal to k. 

L

X LSL
Q k



−
=                                   (5) 

Where X and  represent the mean and standard deviation of the population  

Adding and subtracting 
u


to the left side where u represents the means of samples. 

L

X u u LSL
Q k

 

− −
= +   or 

X u u LSL
k

 

− −
 −       (6) 

Multiplying both sides by n results in the following relation  

( )
/

X u u LSL
k n

n 

− −
 −             (7) 

The probability of acceptance of the lot becomes   

( ) ( )
/

a

X u X u u LSL
P p P k P k n

n 

   − − −
=  =  −   

   
      (8) 

Where: 

~ (0,1)
/

X u
N

n

−
 

 

Based on the above formulations, the probability of acceptance for different quality levels 

(PWLs) could be calculated by means of Monte Carlo simulation and thus OC curves can be 

developed. The relation of probability, Pa, and percent within the specification limit, PWL, is 

illustrated in Figure 2.1. 
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Figure 2.1 Probability of acceptance and percent within limit 

 

2.3 Construction of Operating Characteristic Curves 

In order to build OC curves for these quality characteristics, simulation analysis based on 

the population characteristics was conducted with MATLAB programming. 

 

2.3.1 Simulation Approach  

For the three commonly used acceptance quality characteristics for evaluating concrete 

pavement including compressive strength, thickness, and roughness, the normal distributions 

were developed using actual standard deviations shown in Table 2.1. Provided the normally 

distributed characteristics have a mean  and standard deviation  with an upper specification 

limit USL, the quality of the lot based on PWL could be estimated by the use of quality index (Q) 
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from Equation (1) & (2) and cumulative distribution function ( )F y  for standard normal deviate. 

PWL is given by: 

( )UPWL F Q=             (9) 

Where F is the cumulative distribution function for standard normal distribution and UQ  

is the quality index of the lot. 

21 1
( ) exp( )

22

y

F y t dt
−

= −     ~ (0,1)t N                    (10) 

U

USL
Q





−
=                       (11) 

The probability of acceptance of the lot can be calculated using equation 8: 

Pa(p) = (( ) )UF Q k n−                       (12) 

Where k, acceptance constant, is the minimum allowable quality index corresponding to 

the acceptance limit and n is the sample size.                         

By shifting the mean value of the normal distribution based on the quality characteristics 

and keeping the standard deviation, a wide range of quality levels can be obtained (PWL from 

0% - 100%) and the corresponding probability of acceptance can be calculated based on 

equations 9-12. The simulations and calculations were conducted in MATLAB.   
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Figure 2.2 Shifting of populations to develop operating characteristic curves 

 

Figure 2.2 illustrates the construction of the OC curves by illustrating two cases. It is 

assumed the mean value of the normal distribution curve is at the target in case I. The area under 

the curve within the specification limits is the PWL and the corresponding probability of 

acceptance could be calculated based on equation 12. For case II, it is assumed that the mean 

value is away from target exactly on the specification limit. The same standard deviation and 

sampling frequency were used for developing the normal distribution. In this case, the area under 

normal distribution within the specification limit (PWL) is 50%. Different values of percent 

within limit can be obtained by shifting the mean value of the normal distribution curve and 

keeping the same standard deviation and sampling frequency, and the corresponding probability-

of-acceptance values can be calculated based on equations 9&10. 
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2.3.2 Operating Characteristic Curves  

The OC curves for several recommended acceptance plans were developed; the seller’s 

and buyer’s risks were determined. The results are compared with risk levels recommended by 

ASSHTO R-9. The reasonable sample size, acceptance limit and AQL & RQL corresponding to 

the recommended risk levels can also be determined. 

The OC curves are developed for all the quality characteristics based on different 

acceptance limits and different sampling frequencies. An AQL of 90% and RQL of 50% 

recommended by the AASHTO Quality Assurance Guide Specifications (AASHTO, 1995) is 

used in the analysis to interpret the seller’s and buyer’s risks. For each OC curve, the seller’s and 

buyer’s risk are determined. Figure 2.3 shows the OC curves for concrete strength representing 

population characteristics with different acceptance limits and a sample size of five, while 

Figures 2.4 and 2.5 show the results for thickness and roughness with different acceptance limits 

and same sampling frequency.  

 

Figure 2.3 OC curves for compressive strength with different acceptance limits and n=5 
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Figure 2.4 OC curves for thickness with different acceptance limits and n=5 

 

 

Figure 2.5 OC curves for roughness with different acceptance limits and n=5 
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It can be observed from Figures 2.3-2.5, the OC curves not only provide seller’s risks and 

buyer’s risks but also a very good indication of the risks over a wide range of possible quality 

level, which enables to evaluate how the acceptance plan actually perform in practice. The  and 

 risks are summarized in Table 2.2. As the acceptance limit increases, the probability of 

rejecting a good quality material increases so that the seller’s risk increases as the increase of 

acceptance limit. However, the buyer’s risk decreases as the increase of the acceptance limit. For 

example, the probability of rejecting an AQL of 90% material (buyer’s risk) increases from 

0.25% to 1.98% as increasing the acceptance limit from 45% to 60%; the probability of 

accepting an RQL of 50% material decreases from 59.78% to 30.63%.  

On the other hand, for a certain acceptance limit and sample size, the probability of 

acceptance is always 50% when the PWL is right at the acceptance limit. This is because the 

probability of acceptance is the area on the right side of k (acceptance constant which is the 

acceptance limit associated with the quality index measure) value under the normal distribution 

as shown in Figure 2.1. It is illustrated in Figure 2.6 that when the quality level (PWL) is exactly 

at the acceptance limit (case I & II), the distance between the mean and specification limit equals 

the k corresponding to the acceptance limit, and the probability of acceptance will be half area 

(50%) of the normal distribution. 
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Figure 2.6 Illustration of the intersection in OC curves 

 

2.3.3 Seller’s and Buyer’s risks  

The seller’s risk is the probability of rejecting the production that is exactly at the AQL 

level of quality, while the buyer’s risk is the probability of accepting the production that exactly 

at RQL quality level. These seller’s and buyer’s risks were obtained from OC curves and 

summarized in Table 2.2. 

 

Table 2.2 Buyer’s and seller’s risks associated with various levels of acceptance PWL limits  

Acceptance sampling plan Acceptance limit (%) Seller’s risk ( )  

@ AQL=90% 
Buyer’s risk ( ) 

@ RQL=50% 

 

strength  

n=5 

Single-sided 

60 1.98% 30.70% 

70 6.50% 14.72% 

80 18.93% 4.63% 

90 49.99% 0.52% 

 

Roughness  

n=5 

Single-sided 

45 0.25% 59.78% 

50 0.52% 49.98% 

55 1.04% 39.96% 

60 1.98% 30.63% 

 n=5 65 3.22% 22.18% 
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Thickness  Double-sided 75 10.21% 8.91% 

85 29.27% 1.92% 

95 74.87% 0.00% 

 

It can be observed in Table 2.2 that the  risk increases with the increase of acceptance 

limit while the   risk decreases as increasing the acceptance limit. For example, the  risk 

increased from 1.98% to 6.5% with increasing the acceptance limit from 60% to 70% for the 

concrete strength population characteristics. 

In order to analyze how changing AQL and RQL affect the risks, the AQL and RQL are 

modified to 95% and 40% respectively. Table 2.3 provides the  and   risks based on the 

revised AQL and RQL. From Table 2.2 and 2.3, it can be observed that the  risk can be reduced 

by increasing the AQL while the   risk can be reduced by decreasing the RQL. For example, the 

 risk was calculated to be 1.98% for an AQL 90% and 0.24% for an AQL of 95% respectively 

based on strength population and an acceptance limit of 60. The   risk was calculated to be 

30.70% for an RQL of 50% and 15.49% for an RQL of 40%. It can be concluded that the risks 

can be balanced by modifying the desired quality levels (AQL & RQL). 

 

Table 2.3 Buyer’s and seller’s risks associated with various levels of acceptance PWL limit 

Acceptance sampling plan Acceptance limit (%) Seller’s risk ( )  

@ AQL=95% 
Buyer’s risk ( ) 

@ RQL=40% 

 

strength  

n=5 

Single-sided 

60 0.24% 15.49% 

70 1.13% 5.94% 

80 4.99% 1.41% 

90 22.20% 0.11% 

 

Roughness  

n=5 

Single-sided 

45 0.02% 39.70% 

50 0.05% 30.53% 

55 0.12% 22.27% 

60 0.24% 15.50% 

 

Thickness  

n=5 

Double-sided 

65 0.58% 10.03% 

75 2.60% 3.14% 

85 11.13% 0.49% 

95 49.85% 0.00% 
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Table 2.4 shows the probability of acceptance in relation to PWL using the concrete strength 

population with an acceptance limit of 60% and a sample size of five. 

 

Table 2.4 Probability of acceptance in relation to PWL (n=5, acceptance limit=60%) 

Lot concrete strength  

PWL (%) 

Probability of acceptance (%) 

100 100 

95 99.74 

90 AQL 97.99       = 2.01% 

85 93.87 

80 88.03 

75 79.99 

70 70.59 

65 60.44 

60 50.00 

55 39.94 

50 30.97 

45 22.53 

40 RQL 15.56        = 15.56% 

 

2.4 The Effects of Sample Size  

It should be noted that the sample size has a direct effect on the operating characteristic 

curves and risk levels associated with the acceptance plans. The sensitivity of the sample size to 

agency and contractor’s risks have to be well understood. In order to evaluate the effect of 

sample size on OC curves as well as the impact on seller’s and buyer’s risks, the sample size is 

varied to construct OC curves for concrete strength. Figure 2.7 shows typical OC curves for six 

different sampling sizes for concrete strength while the risks are shown in Table 2.5. 
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Figure 2.7 OC curves with different sampling sizes using strength population (Acceptance limit=70%) 

 

Table 2.5 Buyer’s and seller’s risks associated with different sample sizes (Acceptance limit=70%) 

Sample size   @ AQL=90%  @ RQL=40% 

4 6.31% 14.76% 

5 3.49% 12.09% 

6 3.06% 9.99% 

7 2.16% 8.31% 

8 1.53% 6.94% 

9 1.09% 5.82% 

 

Figure 2.7 clearly illustrates how changing the sample size affects the OC curves. The 

OC curves become steeper as the increase of sample size, and they have a common intersection 

point at PWL of 70% (acceptance limit). This means that with the increase of sample size, the 

probability of acceptance decreases faster as the reduction of the quality (PWL). It can also be 

observed in Table 2.5 that  and   risks can be reduced by increasing the sample size. For 
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example, the  risk was reduced from 6.31% to 1.09% and the   risk was reduced from 14.76% 

to 5.82%, respectively, as increasing the sample size from 4 to 9. 

 

2.5 Alternative Approach to Build OC Curves with Standard Error 

Another method for constructing the OC curve was developed by Viller at all. (2003). In 

this method, the distribution is shifted to obtain different percent within limits, and the standard 

error, which is the ratio of the population standard deviation and the square root of the sample 

size, is used to calculate the probability of acceptance. The OC curves were reproduced using 

Villier’s method with different sample sizes as shown in Figure 2.8. 

 

Figure 2.8 OC curves with different sample sizes based on Viller’s approach 

 

Similar to Figure 2.7, the OC curves in Figure 2.8 become steeper as increasing the 

sample size but with an intersection point at PWL of 50%. As illustrated in Figure 2.6, the 
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probability of acceptance is always found to be 50% when the quality level (PWL) is exactly at 

the acceptance limit. This indicates that the Villier’s approach assumes the acceptance limit is 

50% (k=0) and fails to consider the effect of the acceptant limit (acceptance constant k) on the 

OC curves. It can be concluded that the Villier’s approach is only valid for the acceptance plan 

with an acceptance limit of 50%. However, in reality, the acceptance limits (i.e., 40%, 50%, 

60%) may vary for different SHAs such that using Villier’s approach is not enough fully 

evaluated the acceptance plans and the risks.  

Table 2.6 summarized the  and   risks for different sample sizes using Villier’s 

approach. Similar to the results in Table 2.5, increasing sample size reduces both  and   risks. 

For example, as increasing the sample size from 4 to 9, the  risk was reduced from 0.48% to 

0.01% for an AQL of 90% and the   risk was reduced from 30.58% to 22.31% for an RQL of 

40%, respectively. 

 

Table 2.6 Buyer’s and seller’s risks with different sample sizes based on Villier’s approach 

Sample size   @ AQL=90%  @ RQL=40% 

4 0.48% 30.58% 

5 0.19% 28.51% 

6 0.08% 26.70% 

7 0.03% 25.09% 

8 0.01% 23.64% 

9 0.01% 22.31% 

 

 

2.6 Acceptance Plan Based on Risk Levels Recommended by AASHTO 

As the above analysis, the  and   risks can be calculated and the probability of 

acceptance can be determined for any PWL. Increasing the sample size reduces both  and   

risks, however, it also increases the inspection or testing costs. For a given sample size, 
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increasing the acceptance limit means reducing the probability of accepting poor quality 

materials ( risk) and increasing the probability of rejecting good quality material (   risk). So 

the risk must be balanced. Selecting the proper level of  and   risks is a matter of judgment. 

The appropriate levels of alpha and beta risks for highway construction and pavement material 

suggested by AASHTO R-9, “Acceptance Sampling Plans for Highway Construction,” are 1% 

for an AQL of 90% and 5% for an RQL of 40%, respectively. A variable acceptance can be 

designed such that the OC curve passes through two points (AQL, ) and (RQL,  ). The 

required sample size and acceptance limit (critical distance k) can be obtained by the following 

calculations.  

Based on equation 5, Let those values of sample means, u, which produce P1 and P2 

quality be designated as u1 and u2, the corresponding z-scores (Z1and Z2) are as following:  

 

1
1

/

u LSL
Z

n

−
=     (13) 

2
2

/

u LSL
Z

n

−
=     (14) 

The following probability statements can be derived based on the concept of  and 

( specified  @ AQL and   @ RQL) and equation 8 

1Pr( ( ) ) 1
/

X u
k Z n

n




−
 − = −      (15) 

2Pr( ( ) )
/

X u
k Z n

n




−
 − =         (16)   

Since  

2 ~  ( , )X N u        (normal distribution) 
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Then  

~ (0,1)
/

X u
N

n

−
  (standard normal deviates) 

Which means  

1 1( )k Z n Z −− =          (17) 

2( )k Z n Z− =            (18) 

 

For the acceptance plan suggested by AASHTO: 

AQL = 90%  

RQL = 40% 

 = 0.01 

 = 0.05 

Let P1=90% and P2=40%, from the Z-table (attached in appendix) the corresponding Z1, 

Z2, Z  and Z
can be obtained: 

Z1 = 1.282     Z2 = -0.254 

Z = 2.33  Z = 1.645 

Based on equation (13) and (14) n and k can be obtained: 

2

1 2

( ) 6.7 7
Z Z

n
Z Z

 +
= =

−
   

2 1

1 2

Z Z Z Z ZZ
k Z Z

Z Zn n

  

 

+
= − = + =

+
      

k can be calculated based on individual 1Z and Z , which will give us a risk of  at 

exactly AQL: 



 

27 

 

1

2.33
1.282 0.4

7

Z
k Z

n

= − = − =

 

 

The acceptance limit based on k=0.4 is 65%. Thus, in order to reach the risk level 

suggested by AASHTO, the sample size should be 7 and the acceptance limit should set to be 

65%. The readers are encouraged to refer to Figure 2.9 which illustrates the above calculations 

and relationships graphically. 

 

Figure 2.9 Illustration of the effects of sample size (after Duncan, 1952) 

 

Figure 2.9 shows the OC curve for the acceptance plan with a sample size of seven and 

an acceptance limit of 65%, while Table 2.7 shows the probability of acceptance in relation to 

PWL for this acceptance plan. The performance of this acceptance plan can be fully evaluated 

using the OC curve shown in Figure 3.10. The probability of acceptance for any PWL can be 
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obtained from Figure 2.10. For example, there is an 87.88% probability that an 80 PWL material 

will be accepted. It can be observed in Table 2.7 that the  and   risks are 0.95% and 4.31% 

respectively (within the risk levels recommended by AASHTO). However, It should be noted 

that even though the  and   risks can be reduced to the risk levels that AASHTO 

recommended, very few contracting agencies use a sample size of 7 because of economic 

considerations.  

 

Figure 2.10 OC curve for an acceptance limit of 65% and n=7 using concrete population 

 

Table 2.7 Probability of acceptance in relation to PWL (n=7, acceptance limit=65.54%) 

Lot concrete strength  

PWL (%) 

Probability of acceptance (%) 

100 100 

95 99.95   

90 AQL 99.05                   = 0.0095 

85 95.33 

80 87.88 

75 76.75 
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70 62.66 

65 48.47 

60 34.90 

55 23.43 

50 14.49 

45 8.20 

40 RQL 4.31                      = 0.0431 
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Chapter 3  Pay Factor Analysis  

Moving away from the accept/reject PWL acceptance plan to the acceptance plan with 

pay adjustment provision, the evaluation of risks becomes more complex. The OC curves 

developed in Chapter 2 not only determine the and   risks but also provide an indication of the 

probabilities of acceptance over a wide range of quality levels (PWLs). However, the evaluation 

of  and  risks are applied to construction or materials for the case of a pass/fail (accept/reject) 

decision. In order to fully evaluate the risks in the acceptance plans with pay adjustment 

provision and relate the risks to pay factors, the OC curves for the pay adjustment acceptance 

plans and expected payment curves are necessary. In this chapter, the OC curves for pay 

adjustment acceptance plan and expected pay curves are developed by implementing Monte 

Carlo simulation in MATLAB based on the typical population characteristics from NCHRP 

Project NO. 10-79. These multiple OC curves along with EP curves could be used to evaluate the 

risks associated with pay adjustment acceptance plans.  

3.1 Concepts and Definitions  

The TRB glossary provides the following definitions for the OC curve (for acceptance 

plan with pay adjustment) and expected pay curve:  

OC curves for payment adjustment acceptance plan: A graphic representation of an 

acceptance plan that shows the relationship between the actual quality of a lot and the probability 

of its acceptance at various payment levels.  

EP curve: A graphic representation of an acceptance plan that shows the relation 

between the actual quality of a lot and its EP (i.e. mathematical pay expectation, or the average 

pay the contractor can expect to receive over the long run for submitted lots of a given quality.  
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Figure 3.1 shows the typical OC curves associated with pay factors. It is shown in Figure 

3.1 that each curve illustrates the probability of receiving a pay factor equal to or larger than that 

demonstrated for the line. For example, an AQL quality level material has approximately a 25% 

probability of receiving a pay factor equal to or greater than 1.04 and a 64 percent probability of 

receiving a pay factor equal to or greater than 1.0. Additionally, it also can be observed that this 

material has a 100% chance of receiving a pay factor equal to or greater than 0.8. Similarly, the 

probabilities of receiving  various pay factors (i.e., 0.75,0.9) can also be obtained at any quality 

level. The  risk, in this case, can be considered as the probability of receiving less than 100% 

pay for an AQL quality level, while the  risk can be interpreted as the probability of receiving 

greater than 100% pay for an RQL material. However, the use of  and   to evaluate the risks is 

simply not enough. For example, a contractor may be also interested in what is the probability of 

rejection for an AQL material.  

 

 

Figure 3.1 Typical OC curves for pay adjustment acceptance plan (after Burati et al. 2003) 
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A typical EP curve is shown in Figure 3.2. The horizontal axis indicates the quality levels 

(PWL) of the lots while the vertical axis provides a long-run average expected pay factor 

corresponding to each quality level. As shown in Figure 3.2, as desired, an expected pay of 100 

percent is received for an AQL quality level. For quality level better than AQL, an incentive pay 

factor up to 105% will be received. RQL quality level receives an expected pay of 24 percent. 

The  risk, in this case, can be considered as the probability of receiving less than 100% pay for 

an AQL quality level, while the  risk can be interpreted as the probability of receiving greater 

than 100% pay for an RQL material. Using and  risks to evaluate the acceptance plans is 

simply not sufficient. Both OC and EP curves for the pay adjustment acceptance plans should be 

developed to fully evaluate the risks involved in.  

 

Figure 3.2 Typical EP curve for pay adjustment acceptance plan (after Burati et al. 2003) 

 

3.2 Pay Equations   

Three pay equations are applied to develop the OC curves for pay adjustment acceptance 

plans and expected pay curves. The first pay equation 19 is recommended by AASHTO Quality 
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assurance guide specification (1996) while the second pay equation 20 was proposed by Burati et 

al. (2003).  

 

55 0.5PF PWL= +                                (19) 

 

10 1PF PWL= +                                    (20) 

 

The third one is a stepped pay equation recommended by NCHRP 10-79 shown in Table 

3.1. It can be observed in equation 13 that the maximum pay factor will be 105% for PWL of 

100 while the minimum pay factor is 50% for a PWL of 0. For equation 20, the maximum pay 

factor will be 110% for PWL of 100 while the minimum pay factor is 10% for a PWL of 0. 

However, in practice, there is usually some form of rejection or replacement (PF=0) if the quality 

level of a lot is below a certain PWL, such as 50% or 60% (RQL). The pay equation 19 and 20 

along with different rejection or replacement levels (i.e., PF =0 if PWL < 50%, PF =0 if PWL < 

60%) were used to conduct pay factor analysis. Figure 3.3 shows the three pay equations 

graphically with “PF =0 if PWL < 50%”. How well these pay equations would perform in 

practice is examined and evaluated by developing OC and EP curves through Monte Carlo 

simulation.  

 

Table 3.1 Stepped pay equation (from NCHRP 10-79) 

Estimated PWL Pay Factor, % 

98.0-100 105 

94.0-97.9 103 

92.0-93.9 101 

88.0-91.9 100 

84-87.9 98 

82.0-83.9 96 

78.0-81.9 94 



 

34 

 

74.0-77.9 92 

70.0-73.9 90 

66.0-69.9 88 

62.0-65.9 86 

58.0-61.9 84 

54.0-57.9 82 

50.0-53.9 80 

 50.0 0 

 

 

Figure 3.3 Illustration of the three different pay equations 

 

3.3 Pay Factor Analysis for Individual Quality Characteristics 

Monte Carlo simulations are conducted in Matlab to develop OC curves associated with 

receiving various pay factors and EP curves. The population distributions (means and standard 

deviations shown in Table 3.2) are shifted to produce different PWLs. Each PWL represents the 

quality level of a simulated lot, and the simulated lots have the same standard deviation as the 

population distribution. The quality indexes associated with each simulated lot are calculated 

using equation 5 and the PWLs are estimated by using a PWL estimation table (Appendix). Then 
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the pay equations (19&20) were used to calculate the pay factors for each simulated lot. The 

probabilities of receiving  various PFs (i.e., 0.7, 0.8, 0.9, 1.0, 1.04) for a specific PWL can be 

determined as follows. 

number of lots PF
Probability of receiving PF=

Total number of lots


  

Multiple OC curves for several specified payment levels (0.75, 0.8, 0.9, 1.0, 1.04) are 

plotted for concrete strength, thickness, and roughness representing the population distribution.  

 

Table 3.2 Means, standard deviations and specification limits for different quality characteristics  

Quality characteristics  Strength, (psi) Thickness, (in) Roughness, (in/mile) 

Standard deviation 509.9 0.54 8.69 

Average 4536 12.1 59.69 

Specification limit LSL=3500 LSL=11.2, USL=12.8 USL=75 

 

 

3.3.1 OC Curves for Pay Adjustment Acceptance Plans  

The OC curves shown in Figure 3.4 were developed using the population standard 

deviation of concrete strength based on pay equation 19. The probability values of receiving 

equal or larger than various pay factors (i.e., 0.7, 0.8, 0.9, 1.0 and 1.04) are shown in Table 4.3. It 

can be seen in Table 3.3 that the probability of receiving PF ≥ 1.0 is 2.83% for RQL of 50% 

quality level while the chance of receiving PF ≥ 1 is 60.84% for AQL of 90% quality level. This 

indicates that there is approximately a 40% probability that a contractor would not receive full 

payment (100%) for an AQL production. The risk may seem to be very high if only the PF=1 

curve was considered. However, it is somehow balanced by the fact that there is a more than 

40% chance of receiving a pay factor of 1.04 or greater indicated by the PF=1.04 curve. Similar, 
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the probability of receiving  various PFs (i.e., 0.7, 0.8, 0.9, 1.0 and 1.04) for any quality levels 

can be estimated using Figure 3.4. 

Table 3.3 Probability of receiving PF based on pay equation 19 and n=5 

PWL 

Strength  

Prob. of receiving  PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0.18 0.18 0 0 0 

20 3.00 3.00 0.24 0.02 0.02 

30 13.00 13.00 2.06 0.31 0.12 

40 29.40 29.4 6.32 1.09 0.57 

50 50.00 50.00 14.88 2.83 1.12 

60 70.00 70.00 28.49 7.14 3.33 

70 86.94 86.94 50.12 15.8 8.48 

80 96.92 96.92 75.15 32.36 18.96 

90 99.85 99.85 94.14 60.84 40.96 

100 100 100 100 100 100 

                       *10000 simulated lots. PF=0 if PWL<50 

 

 

Figure 3.4 OC curves using strength population characteristics based on pay equation 19 and n=5 

 

In order to analyze the effects of sample size on the probability values of receiving 

various pay factors, another sample size of 15 was used to develop the OC curves. Increasing the 
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sample size would reduce the variability associated with the PWLs of the simulated lots. Figure 

3.5 shows a histogram of estimated PWL and PF of 10000 simulated lots for an AQL 

(PWL=90%) production with a sample size of five while Figure 3.6 shows the same information 

but using a sample size of fifteen. It should be noted a sample size of 15 is used just for the 

purpose of illustrating how changing the sample size affects the variability of PWLs. 

 

Figure 3.5 Variability of estimated PWL and PF for an AQL production with n=5 

 

 

Figure 3.6 Variability of estimated PWL and PF for an AQL production with n=15 
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Figures 3.5 & 3.6 clearly shows that sample size directly affects the spread of PWL and 

PF. It can be observed in Figure 3.5 that the spread of PWL and PWL is very large when a 

sample size of 5 is used. However, the high and low PWLs tend to balance out to an average 

PWL of 90% over a large number (10000 simulated lots) of lots. The standard deviation of the 

estimated PWL was calculated to be 11.2 for a sample size of 5, while the standard deviation was 

calculated to be 5.9 for a sample size of 15. Even though the variability can be reduced 

significantly by increasing the sample size, it may not be practical to use large samples size 

because of economic considerations.  

The Probability of receiving PF using the strength population for a sample size of 15 

are summarized in Table 3.4 and plotted in Figure 3.7. Overall, the OC curves shown in Figure 

3.7 (n=15) are more spread compared to OC curves in Figure 3.4 (n=5). It can also be seen that 

an AQL (PWL =90%) quality level has an 8.69% chance of receiving a pay factor equal or larger 

than 1.04 and a 100% probability receiving a pay factor equal or larger than 1.04. This means 

that the distribution of PFs using a sample size 15 is much more centered at PF=1.0 than that 

using a sample size of 5.  

Table 3.4 Probability of receiving PF based on pay equation 19 and n=15 

 

 

 

 

 

 

 
                        *10000 simulated lots. PF=0 if PWL<50 

PWL 

Strength 

Prob. of receiving PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0 0 0 0 0 

20 0.03 0.03 0 0 0 

30 2.67 2.67 0 0 0 

40 16.62 16.62 0.3 0 0 

50 49.8 49.8 3.32 0.01 0 

60 82.87 82.87 16.7 0.18 0.01 

70 97.92 97.92 53.29 1.54 0.03 

80 99.96 99.96 89.5 13.08 0.59 

90 100 100 99.86 60.07 8.67 

100 100 100 100 100 100 
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Figure 3.7 OC curves based on pay equation 19 and n=15 

 

3.3.2 Expected Pay Curves for Different Sample Sizes  

The OC curves along with the histogram of PWLs and PFs enable us to evaluate the risk 

involved in the pay adjustment acceptance plan. However, using such OC curves and histograms 

is not a simple way to evaluate the overall pay performance of an acceptance plan. The expected 

payment curves are developed to represent the pay performance. Table 3.5 and Figure 3.8 show 

the expected pays in relation to PWL for sample sizes of 5 & 15 using equation 19. The EP 

curves illustrate the pay performance by combining all possible pay factors into a single average 

pay factor in the long run for any quality levels.  

 

Table 3.5 Expected payments in relation to PWL for n=5 & 15 

PWL (%) Average pay factor (%) 

N=5 N=15 

100 105 105 

90 100 100 

80 93.0 95.0 

70 80.0 88.5 
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60 63.0 71.0 

50 43.0 42.0 

40 25.5 13.8 

30 11.4 2.2 

20 2.5 0.03 

10 0.15 0 

0 0 0 

                                               *10000 simulated lots. PF=0 if PWL<50 

 

 

Figure 3.8 EP curves based on pay equation 19 for n =5&15 

 

It can be seen in Figure 3.8 that the EP curve becomes steeper as the increase of sample 

size. This indicates that as the sample size increases, the expected pay decreases faster as the 

PWL reduces. The average pay factor in the long run are 100% for a 90% AQL material for both 

sample sizes of five and fifteen. For an 80% PWL quality, the average pay factor at the long run 

is 95.0% for a sample size of 15 and 93.0% for a sample size of 5 respectively. However, for a 

poor quality level (PWL=40%), the average pay factor in the long run is 13.8% for a sample size 

of 15 and 25.5% for a sample size of 5 respectively. This is because as the sample size increases, 

a better estimation of the population characteristic can be obtained.  
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3.3.3 OC Curves Based on Thickness Population Characteristics  

The multiple OC curves shown in Figure 4.8 were developed using the population 

standard deviation of thickness based on pay equation 19. Because the tolerances for thickness 

are close to each other, the maximum PWL can be achieved by shifting the thickness mean value 

is 86% such that the standard deviation was reduced in order to achieve a higher PWL (i.e., 90% 

and 100%). It can be observed from Figure 4.8 that OC curves obtained by using thickness 

population characteristics are identical to those obtained by using the strength population if all 

other parameters remain the same (i.e., sample size, pay equation). This is because the variability 

of the estimated PWL and PF is not affected by the population distributions. The pay factor 

simulation analysis developed here is mainly used to evaluate the pay-performance and risk of 

different acceptance plans. However, how the simulation analysis can be employed by 

contractors with different production variabilities (standard deviation) and population means will 

be discussed later in the next Chapter.   

 

Table 3.6 Probability of receiving PF based on pay equation 19 and n=5 

 

 

 

 

 

 

 
                    *10000 simulated lots. PF=0 if PWL<50 

 

PWL 

Thickness 

Prob. of receiving PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0.17 0.17 0 0 0 

20 3.2 3.2 0.26 0.02 0.02 

30 12.89 12.89 2.06 0.31 0.12 

40 29.4 29.4 6.32 1.09 0.57 

50 50.2 50.2 14.88 2.83 1.12 

60 71.1 71.1 28.36 7.18 3.32 

70 86.94 86.94 50.12 15.8 8.48 

80 97.8 97.8 75.15 32.36 18.96 

90 99.71 99.71 86.82 47.04 29.09 

100 99.93 99.93 94.52 60.96 40.52 
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Figure 3.9 OC curves using pay equation 19 based on thickness population and n=5 

 

3.3.4 OC Curves Using Different Pay Equations 

OC Curves Using Pay Equations 20 

Table 3.7 summaries the probability of receiving ≥ PF for various PWL from simulation 

analysis while Figure 3.10 shows the OC curves for the pay adjustment acceptance plan using 

pay equation 20. Overall the OC curves in Figure 3.10 became less spread to each other 

compared to the OC curves in Figure 3.4. The PF=1 curve in Figure 3.10 is very similar to that in 

Figure 4.3. However, compared to the OC curves using equation 19 (Figure 3.4), the 

probabilities of receiving a pay factor equal to or larger than 1.04 (PF=1.04 curve) increase for 

any given quality levels, while the probabilities of receiving a pay factor that smaller than 0.7, 

0.8 and 0.9 decrease. For example, it is shown in Figure 4.9 that the probability is approximately 

50.8% (compared to 40% in Figure 3.4) for an AQL material to receive a 104% pay, while the 



 

43 

 

probability is approximately 81% (compared to 90.4% in Figure 3.4) for an AQL material to 

receive a 90% pay. This indicates that using equation 20 increases the spread of PF estimates. 

 

Table 3.7 Probability of receiving PF based on pay equation 20 and n=5 for strength population 

PWL Prob. of receiving PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0.06 0.01 0 0 0 

20 0.87 0.23 0.07 0.04 0.03 

30 5.5 1.8 0.6 0.27 0.15 

40 14.7 6.06 2.5 0.93 0.59 

50 30.89 14.25 6.16 2.75 1.93 

60 50.55 29.34 14.87 6.63 4.65 

70 73.1 50.7 29.9 15.87 11.8 

80 90.79 74.92 52.65 31.41 24.6 

90 99.07 94.6 81.4 60.25 50.85 

100 100 100 100 100 100 

                         *10000 simulated lots. PF=0 if PWL<50, PF=105 if PF>105 

 

 

Figure 3.10 OC curves using pay equation 20 and n=5 for strength population  
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OC Curves Using Stepped Pay equation  

The stepped pay equation (Table 3.1) was used to developed multiple OC curves through 

simulation analysis. Table 3.8 summaries the probability of receiving ≥ PF for various PWL 

while Figure 3.11 shows the OC curves for the pay adjustment acceptance plan developed using 

population characteristics of concrete strength based on the stepped pay equation and a sample 

size of five. Overall the OC curves shown in Figure 3.11 are very similar to the OC curves in 

Figure 3.4 except that the probabilities of receiving 100% pay (PF=1 curve) for any PWLs in 

Figure 3.11 are slightly larger than those in Figure 3.4. This means that these pay schedules 

produce similar expected pays.  

 

Table 3.8 Probability of receiving PF based on stepped pay equation and n=5 for strength population 

PWL Prob. of receiving  PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0.43 0.43 0.02 0 0 

20 3.22 3.22 0.13 0 0 

30 13.3 13.3 1.77 0.33 0.07 

40 28.97 28.97 6.18 1.3 0.51 

50 49.72 49.72 15.1 3.33 1.27 

60 70.02 70.02 29 8.1 3.32 

70 87.1 87.1 51 18.08 8.46 

80 97.02 97.02 75.21 35.64 18.91 

90 99.85 99.85 95.69 65.09 41.06 

100 100 100 100 100 100 

                         *10000 simulated lots. PF=0 if PWL<50 
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Figure 3.11 OC curves based on stepped pay equation and n = 5 for strength population 

 

3.3.5 EP curves Based on Different Pay Equations  

To fully evaluate and compare the overall pay performance of the three different pay 

equations, it is necessary to develop EP curves. Table 3.9 summarizes the average pay factors in 

the long run for various quality levels from simulation analysis, while Figure 3.12 shows the EP 

curves of the three pay schedules for a sample size of 5.  

It can be seen in Figure 3.12 that the EP curves for pay equation 19 and the stepped pay 

equation are essentially identical. The expected pay for AQL materials using equation 19 and 

stepped pay schedule is 100%, however, only 98.08% payment for an AQL material was 

obtained using pay 20. This can be considered that pay equation 20 results in a larger pay risk in 

the long run for the contractor. One possible way to reduce such risk is to use equation 20 with a 

maximum incentive payment of 110% rather than 105%. 
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Table 3.9 Expected payments in relation to PWL for three pay equations  

PWL (%) Average pay factor (%) 

(13) (14) Stepped  

100 105.00 105.00 105.00 

90 100.00 98.08 100.00 

80 93.00 87.50 92.12 

70 80.00 73.20 80.67 

60 63.00 55.00 64.45 

50 43.00 37.80 42.93 

40 25.50 21.00 23.35 

30 11.40 10.00 10.25 

20 2.50 1.90 2.65 

10 0.15 0.15 0.36 

0 0.00 0.00 0.00 

                                *10000 simulated lots. PF=0 if PWL<50 

 

Figure 3.12 Expected pay curves for different pay equations and n=5 

 

 

3.3.6 The Effect of Rejection or Replacement Provisions on OC and EP Curves  

The above pay factor analysis considered a lot to be rejected or replaced (PF=0) if the 

PWL is less than 50%. However, this level varies from state to state. For example, the North 

Carolina DOTs specification indicates that a replacement is called if the PWL is less than 60% 
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for AQCs in the asphalt mixture. So, it is necessary to explore the effects of this rejection and 

replacement provision on OC and EP curves.  

In the following analysis, the pay equation 19 with different rejection or replacement 

provisions (i.e., PF=0 if PWL < 40%, PF=0 if PWL < 60%) are used to develop multiple OC 

curves and EP curves based on the same sample size of 5. Table 3.10 summarizes the probability 

of receiving ≥ PF for various PWL while Figure 3.13 shows the corresponding OC curves using 

equation 19 with PF = 0 if PWL< 40%. Table 3.11 and Figure 3.14 show similar information 

using the same pay equation but with PF=0 if PWL < 60%. It is illustrated in Figures 3.13 & 

3.14 that changing rejection or replacement provisions from PWL<40% to PWL<60% has non-

significant effects on the PF=0.9, 10 and 1.04 curves, however, the probabilities of receiving > 

PF=0.8 and 0.7 for each PWL become smaller. For example, an AQL quality level has 

approximately a 99.96% probability of receiving a pay factor  0.7 and a 61.5% chance of 

receiving a pay factor  1.0 using pay equation 19 with PF =0 at PWL <40%, while this AQL 

quality level has approximately a 99.01% probability of receiving a pay factor  0.7 and a 61.5% 

chance of receiving a pay factor  1.0 using pay equation 13 with PF =0 at PWL <60% 

 

Table 3.10 Probability of receiving > PF using pay equation 19 with PF =0 at PWL <40% and n=5 

PWL Prob. of receiving  PF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 1.46 0.21 0 0 0 

20 10.59 3.09 0.25 0.03 0.01 

30 32.09 14.25 2.29 0.27 0.11 

40 52.1 30 6.29 0.89 0.33 

50 71.15 49.27 15.08 2.75 1.16 

60 86.58 70.58 29.35 7.26 3.62 

70 95.31 87.13 50.38 15.37 8.6 

80 99.16 96.87 75.04 32.96 18.71 

90 99.96 99.86 94.16 61.45 41.22 

100 100 100 100 100 100 
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Figure 3.13 OC curves using pay equation 19with PF =0 at PWL <40% and n=5 

 

Table 3.11 Probability of receiving > PF using pay equation 19 with PF =0 at PWL <60% and n=5 

PWL Prob. of receiving  PF 

0.7 0.8 0.9 1.0 1.04 

0 0.00 0.00 0.00 0.00 0.00 

10 0.05 0.05 0.00 0.00 0.00 

20 0.79 0.79 0.19 0.00 0.00 

30 5.59 5.59 1.90 0.30 0.12 

40 15.25 15.25 6.13 0.84 0.37 

50 29.70 29.70 14.56 3.00 1.43 

60 50.68 50.68 29.20 6.84 3.48 

70 73.27 73.27 51.18 15.39 7.94 

80 90.90 90.90 74.47 31.78 18.20 

90 99.01 99.01 94.77 61.57 41.60 

100 100.00 100.00 100.00 100.00 100.00 
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Figure 3.14 OC curves using pay equation 19 with PF =0 at PWL <60% and n=5 

 

The expected pay in relation to PWLs using pay equation 13 with different rejection and 

replacement provisions (i.e., PF=0 if PWL < 40%, PF=0 if PWL < 50% and PF=0 if PWL < 

60%) are summarized in Table 3.12 and plotted in Figure 3.15. Overall, it is shown in Figure 

3.15 that the average pay factor in the long run decreases, as expected, with the increase of 

PWL<40% to PWL<60%. Changing the rejection or replacement provisions from A to C does 

not have a significant impact on the long-run average expected pay factor for the AQL 

production. For example, the long-run average expected pay is 99.3% for an AQL production 

using equation 13 with provision A, while the long-run average expected pay increases to 100% 

for an AQL production using same pay equation with provision C. This also indicates the pay 

risk for contractor using equation 19 with provision C is higher than that with provision A. 

However, for a poor-quality level (i.e., PWL=50%), it also should be noticed that the pay risk for 

seller using equation 19 with provision C is lower than that with provision A.  
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Table 3.12 Expected pay in relation to PWL based on pay equation 19 and n= 5 

PWL (%) Average pay factor (%) 

A:  

PF=0, if PWL < 50% 

B:  

PF= 0, if PWL < 40% 

C: 

PF= 0, if PWL < 60% 

100 105.0 105.0 105.0 

90 99.9 100.0 99.3 

80 93.1 94.6 87.4 

70 80.5 86.7 68.6 

60 63.2 76.2 46.8 

50 43.3 60.1 27.1 

40 25.5 42.9 13.7 

30 11.4 25.8 5.0 

20 2.5 8.4 0.7 

10 0.2 1.2 0.0 

0 0.0 0.0 0.0 

 

 

 

Figure 3.15 Expected pay curves using pay equation 19 and n = 5  
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3.4 Pay Factor Analysis for Multiple Quality Characteristics   

The pay factor analyses above are based on a single quality characteristic. However, it is 

more often that State Highway Agencies (SHAs) use multiple quality characteristics to determine 

the pay factor for a lot. There are two different ways to calculate the PF associated with multiple 

quality characteristics. The first approach is using a weighting system to combine individual 

PWL and calculate a Composite Percent Within Limit (CMPWL) as shown in Equation 21. 

Then, using Equation 22 or 23 to determine the Composite Pay Factor (CMPF) for each 

CMPWL. For example, Maryland State Highway applies this method to calculate pay factors for 

pavements (2008 specification). The more important quality characteristics would be assigned a 

larger weighting.  

 

0.25 0.35 0.4strength thickness roughnessCMPWL PWL PWL PWL=  +  +      (21) 

Where  

PWLstrength = percent within specification limit for strength  

PWLroughness = percent within specification limit for roughness 

PWLthickness = percent within specification limits for thickness 

 

55 0.5CMPF CMPWL= +           (22) 

 

10CMPF CMPWL= +                  (23) 

 

It should be noted that in order to differentiate the CPF calculated using the pay equation 

24, CMPF was used here to represent the composite pay factor calculated based on CMPWL 

(equation 22&23). 
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The second method was recommended by NCHRP 10-79 (Hughes et al. 2011) and 

widely used by the State Departments of Transportation (DOTs) across the country. This method 

suggests that the pay factors for individual characteristics should be calculated first using 

Equation 19 or 20, then a composite pay equation 24 will be used to combine the individual pay 

factors to calculate the Composite Pay Factor (CPF).  

 

0.25 0.35 0.4strength thickness roughnessCPF PF PF PF=  +  +       (24) 

Where  

PFstrength = pay factor for strength  

PFroughness = pay factor for roughness 

PFthickness = pay factor for thickness 

 

Figure 3.16 shows the flow chart of conducting pay factor analysis for multiple quality 

characteristics using two different methods. Both of the two methods were used to develop the 

OC curves for multiple quality characteristics. The CMPWLs were calculated based on the 

equation 21. It should be noted that a certain CMPWL could be obtained from different 

combinations of PWLs for each parameter. However, in this analysis, the same PWL for 

individual characteristics is used to produce a certain level of CMPWL. For example, a CMPWL 

of 90% is obtained when every single PWL is at the AQL quality level (90%). The effects of 

different combinations of PWL producing the same CMPWL will be discussed in the next 

Chapter.  
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Figure 3.16 Flow chart of pay factor analysis for multiple quality characteristics 

 

As in the previous analysis, the population distributions for each quality characteristic (strength, 

thickness, and roughness) were shifted to produce different PWLs. Equation 21 was used to 

calculate CMPWL of the estimated lots, and the CMPF was determined by equation 22 or 23. 

Table 3.13 summarizes the probability values of receiving ≥ CMPF for various CMPWL from 

simulation using pay equation 22 while Figure 3.17 shows the OC curves based on CMPWL and 

CMPF. It is shown in Table 3.13 that the probability of receiving CMPF ≥ 1.0 is 0% for 

rejectable quality level (CMPWL=50%) while the chance of receiving CMPF ≥ 1.0 is 57.78% for 

AQL (CMPWL=90%) quality product. Overall, the OC curves (Figure 3.17) developed based on 

multiple quality characteristics are more spread than that developed based on a single quality 
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characteristic (Figure 3.4) indicating that the dispersion of CMPWL and CMPF estimates are 

smaller than that of PWL and PF estimates. This can also be demonstrated by the histogram for 

an AQL population showing the variability of PWL, CMPWL and CMPF in Figure 3.18. The 

standard deviation (variability) of the estimated PWLs for a single characteristic was 

approximately 11.0 for a sample size of 5, while the standard deviation was calculated to be 6.34 

for CMPWLs and 3.17 for CMPF, respectively. This is because the large number of individual 

PWLs were randomly combined leading to a balance out between high and low PWLs such that 

the CMPWL was more centered to 90%. The histogram for a 50% PWL population showing the 

variability of CMPWL and CMPF based on equation 22 and n=5 is plotted in Figure 3.19. It can 

be seen that almost half of the simulated lots were assigned a CMPF of 0. This is because that the 

rejection or replace level (CMPF=0) was set at CMPWL of 50.  

 

Table 3.13 Probability of receiving ≥ CMPF using pay equation 22 based on population characteristics 

and n=5 

CMPWL Prob. of receiving CMPF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0 0 0 0 0 

20 0.15 0.15 0 0 0 

30 2.72 2.72 0 0 0 

40 17.02 17.02 0.18 0 0 

50 50.66 50.66 2.52 0 0 

60 84.73 84.73 17.55 0.06 0 

70 98.25 98.25 54.55 1.07 0 

80 99.92 99.92 88.48 11.47 0.32 

90 100 100 99.62 57.78 7.83 

100 100 100 100 100 100 
                  *10000 simulated lots, CMPF=0 if CMPWL<50 
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Figure 3.17 OC curves using pay equation 22 based on population characteristics and n=5 

 

 

 

 



 

56 

 

 

 

Figure 3.18 AQL population showing the variability of CMPWL and CMPF based on equation 22 and 

n=5 (long-run average CMPF = 100%) 
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Figure 3.19 Variability of CMPWL and CMPF for population with 50% PWL based on equation 22 and 

n=5 
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The OC curves were then developed using pay equation 23 based on population 

characteristics. The results were summarized in Table 3.14 and plotted in Figure 3.20. For an 

AQL production, the same average CMPF of 100% was obtained in the long run based on pay 

equations 22 and 23, however, the probabilities of receiving CMPF ≥ various pay factors (i.e., 

0.7, 0.8, 0.9, 1.0 and 1.04) and OC curves are different. For example, the probability of receiving 

CMPF ≥ 1.04 was estimated to be 7.83% based on pay equation 22 while the probability of 

receiving CMPF ≥ 1.04 changed dramatically to 31.2% for an AQL quality based on equation 

23. This indicates that if equation 23 was used, the contractor tends to get more incentive pay for 

an AQL production. Figure 3.21 provides the histogram for an AQL population showing the 

variability of CMPWL and CMPF based on pay equations 23 and n=5. Compared to Figure 3.18, 

a much larger variability (standard deviation estimated to be 5.5) for CMPF was observed.  

 

Table 3.14 Probability of receiving ≥ CMPF using pay equation 23 based on population characteristics 

and n=5 

CMPWL Prob. of receiving CMPF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0 0 0 0 0 

20 0 0 0 0 0 

30 0.15 0.01 0 0 0 

40 2.75 0.2 0.01 0 0 

50 16.63 2.55 0.12 0 0 

60 50.52 16.44 2.08 0.06 0.01 

70 86.62 53.38 16.22 1.12 0.22 

80 98.61 88.08 54.49 11.65 3.48 

90 99.97 99.47 93.7 57.28 31.2 

100 100 100 100 100 100 

                       * 10000 simulated lots, CMPF=0 if CMPWL<50 
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Figure 3.20 OC curves using pay equation 23 based on population characteristics and n=5 
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Figure 3.21 AQL population showing the variability of CMPWL and CMPF based on pay equation 23 

and n=5 (long-run average CMPF = 100%) 

 

The above pay factors were determined using CMPWL while the following pay factor 

analysis was based on the composite pay equation 24, CPF, which combines the pay factors of 

individual quality characteristics. As shown in Figure 3.16, the PF of the simulated lots for a 

single quality characteristic can be calculated using equation 19 or 20, and then the CPFs can be 

determined using pay equation 24. The OC curves for multiple quality characteristics using 

equation 19 with a combination of equation 24 were developed. The results were summarized in 

Table 3.15 and plotted in Figure 3.22. It can be observed from Table 3.15 that the probability 

values of receiving CPF ≥ 1.04 and 1.0 are calculated to be approximately 10.91% and 55.23%, 

respectively, while the probabilities (Table 3.13) of receiving CMPF ≥ 1.04 and 1.0 are 

calculated to be approximately 7.83% and 57.0%.  
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Figure 3.23 shows the histogram of CPF for an AQL population using on pay equation 

19&24 and a sample size of five, while Figure 3.24 shows the histogram of CMPWL and CMPF 

for the same population based on equation 22. It can bee seen that the histogram of CPF is very 

similar to the histogram of CMPF for an AQL population. For an AQL quality level, the long-run 

average pay factor is calculated to be 100% for both CPF and CMPF. This indicates that the two 

pay factor analysis methods for multiple quality characteristics provide similar results for the 

AQL population.  

Figure 3.25 shows the histogram of PF and CPF for an 80% CMPWL population using 

on pay equation 19&24 and a sample size of five while Figure 3.26 shows the histogram of 

CMPWL and CMPF for the same population based on equation 22. It can be observed that the 

histogram of CPF is different from the histogram of CMPF for an 80 CMPWL population. The 

long-run average CMPF was calculated to be 95.3% while the long-run average CPF was 

determined to be 93.1%.  As shown in Figure 3.25, for an 80 PWL population, approximately 

3% of simulated lots have PWL less than 50% for each individual quality characteristic (i.e., 

strength, thickness, and roughness). These individual simulated lots were randomly combined to 

calculate the CMPWL. For example, a 20% PWL for strength may combine with 100% PWL of 

thickness and roughness resulting in a CMWPL = 80%. In this case, the pay factor for the lot 

will be 95% if CMPWL were used (equation 22). However, the CPF was determined to be 

78.75% for this lot using equation 24 with PFstrength = 0 for PWL = 20% and PFroughness = PFthickness 

=105% for PWL = 100%.  This indicates that, for multiple quality characteristics, using CMPWL 

to calculate the PF for a lot is not appropriate. It fails to apply a cut off (i.e., PF = 0 if 

PWL<50%) for individual quality characteristics such that the pay factor for a lot may be 

overestimated.   
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Table 3.15 Probability of receiving ≥ CPF using pay equation 19 & 24 based on population 

characteristics and n=5 

CMPWL Prob. of receiving CPF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0 0 0 0 0 

20 0 0 0 0 0 

30 0.09 0.09 0 0 0 

40 1.56 1.56 0.17 0 0 

50 12.23 12.12 2.6 0.01 0 

60 41.26 40.96 19.16 0.37 0.02 

70 70.18 69.42 48.51 2.55 0.13 

80 92.14 91.44 83.81 14.92 1.36 

90 99.68 99.45 99.12 55.23 10.91 

100 100 100 100 100 100 

                   *n=5, 10000 simulated lots, PF=0 if PWL<50 

 

 

Figure 3.22 OC curves using pay equation 19 & 24 based on population characteristics and n=5 
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Figure 3.23 PF and CPF for an AQL population using pay equation 19 & 24 and n=5 
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Figure 3.24 CMPF for an AQL population using pay equation 22 and n=5  
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Figure 3.25 CMPF for an 80 CMPWL population using pay equation 22 and n=5 
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Figure 3.26 PF and CPF for an 80 CMPWL population using pay equation 19 & 24 and n=5  
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The OC curves for multiple quality characteristics using equation 20 with a combination 

of 24 were developed. The results were summarized in Table 3.16 and plotted in Figure 4.26. 

Similarly, the probabilities of > PF (1.04, 1.0, 0.9, 0.8, 0.7) are very similar to the results in 

Figure 3.27 for a 90 CMPWL quality level, however, the probabilities of > PF (0.9, 0.8, 0.7) are 

smaller for CMPWLs that are less than 90. 

 

Table 3.16 Probability of receiving ≥ CPF using pay equation 20 & 24 based on population 

characteristics and n=5 

CMPWL Prob. of receiving CPF 

0.7 0.8 0.9 1.0 1.04 

0 0 0 0 0 0 

10 0 0 0 0 0 

20 0 0 0 0 0 

30 0.06 0 0 0 0 

40 1.22 0.23 0 0 0 

50 9.76 2.99 0.32 0.01 0 

60 38 18.7 4.92 0.43 0.08 

70 68.79 48.53 18.24 2.55 0.82 

80 92.97 84.34 53.66 14.75 5.91 

90 99.64 99.25 93.04 58.09 34.04 

100 100 100 100 100 100 

                  *n=5, 10000 simulated lots, PF=0 if PWL<50 

 

Figure 3.27 OC curves using pay equation 29 & 24 based on population characteristics and n=5 
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3.5 Sensitivity Analysis  

A producer might be able to improve the production control by either reducing the 

production variability (standard deviation) or improving population means. The objective of this 

analysis is to determine how changing the standard deviation and mean of a single quality 

characteristic would affect the average composite pay factor in the long run. Firstly, the means 

were kept as the same as population means, and only standard deviations were changed to 

examine how variability would affect the pay factors. Then, the population standard deviations 

were used, and the population means were changed to evaluate the effects of changing means on 

composite pay factors. A sample size of 5 was used for different quality characteristics (i.e., 

strength, thickness and roughness).  

The standard deviation of compressive strength was gradually changed while population 

values were used for all other characteristics. The effects of changing in strength standard 

deviation on CMPWL and CPF using different pay equations are summarized in Table 3.17 and 

plotted in Figure 3.28. It can be seen that a CMPWL of 96.63% can be calculated if the current 

population characteristics values were used. Reducing the standard deviation by 70% only 

resulted in a 0.7% increase in CPF since the current mean of strength is far away from spec and 

small weight of strength in calculating CMPWL. It is also shown that an increase in strength 

variability for three times produces a reduction in CPF of approximately 2.3% using pay 

equation 19 and approximately 4% using pay equation 20. 
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Table 3.17 Effects of change in strength variability on CMPWL and CPF 

Strength PF=55+0.5*PWL PF=10+PWL Stepped Pay Schedule 

Std Std/Std(pop) 

CMPWL 

% 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

CPF 

 % 

Change 

CPF, % 

51 0.1 98.20 104.10 0.77 104.30 0.68 104.00 0.97 

153 0.3 98.00 104.00 0.68 104.30 0.68 104.00 0.97 

255 0.5 97.73 103.80 0.48 104.26 0.64 103.80 0.78 

510 1.0 96.63 103.30 0.00 103.60 0.00 103.00 0.00 

765 1.5 95.08 102.50 -0.77 102.60 -0.97 102.40 -0.58 

1020 2.0 93.80 101.90 -1.36 101.40 -2.12 101.70 -1.26 

1530 3.0 91.70 100.90 -2.32 99.50 -3.96 100.60 -2.33 

 

 

Figure 3.28 Effects of changing strength variability on CPF 

 

The mean of compressive strength was gradually changed while population values were 

used for all other characteristics. The effects of changing in strength mean on CMPWL and CPF 

using different pay equations are summarized in Table 3.18 and plotted in Figure 3.29. Increases 

in strength mean by 10% produce an increase in CPF of approximately 0.68% (based on equation 
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19&24) and after that the change of CPF became constant meaning the PWL for strength has 

achieved 100%, while reductions in strength mean by 10% produces a reduction in CPF of 

approximately 11.4% (based on equation 19&24) and after that the change of CPF became 

constant reflecting the PWL for strength has been reduced to 0%.  

 

Table 3.18 Effects of change in strength means on CMPWL and CPF 

Strength PF=55+0.5*PWL PF=10+PWL 

Stepped Pay 

Schedule 

Mean 

Change 

% 

CMPWL 

% 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

2268.0 -50 73.10 91.50 -11.42 83.00 -19.96 90.70 -11.94 

2721.6 -40 73.10 91.40 -11.52 83.00 -19.96 90.70 -11.94 

3175.2 -30 73.30 91.60 -11.33 83.00 -19.96 90.70 -11.94 

3628.8 -20 76.90 93.30 -9.68 86.70 -16.39 92.20 -10.49 

4082.4 -10 87.80 98.90 -4.26 97.10 -6.36 98.10 -4.76 

4536.0 0 96.60 103.30 0.00 103.70 0.00 103.00 0.00 

4989.6 10 98.10 104.00 0.68 104.30 0.58 104.10 1.07 

5443.2 20 98.20 104.10 0.77 104.40 0.68 104.10 1.07 

5896.8 30 98.20 104.10 0.77 104.40 0.68 104.10 1.07 

 

 

Figure 3.29 Effects of changing strength means on CPF 
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Similar, the effects of changing standard deviation and mean of thickness would affect 

CMPWL and CPF were examined and the results were summarized in Table 3.19 and plotted in 

Figure 3.30. Reducing the standard deviation of thickness by 50% only resulted in a 0.77% 

increase in CPF because the PWL of the current thickness population was ready very high. It is 

also shown that an increase in strength variability for three times produces a reduction in CPF of 

approximately 6.4% (pay equation 19&24) reflecting the heavyweight of thickness in the 

CMPWL equation.  

Table 3.19 Effects of change in thickness variability on CMPWL and CPF 

Thickness PF=55+0.5*PWL PF=10+PWL 

Stepped Pay 

Schedule 

Std Std/Std(pop) 

CMPWL 

% 

CPF 

 % 

Change 

CPF, % 

CPF 

 % 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

0.11 0.20 98.40 104.20 0.87 104.53 0.80 104.20 0.87 

0.27 0.50 98.20 104.10 0.77 104.50 0.77 104.10 0.77 

0.43 0.80 97.40 103.70 0.39 104.12 0.41 103.60 0.29 

0.54 1.00 96.60 103.30 0.00 103.70 0.00 103.30 0.00 

0.59 1.50 93.76 101.90 -1.36 101.50 -2.12 101.50 -1.74 

1.08 2.00 90.60 100.30 -2.90 98.60 -4.92 99.60 -3.58 

1.62 3.00 84.10 96.70 -6.39 92.80 -10.51 96.00 -7.07 

 

 

Figure 3.30 Effects of changing thickness variability on CPF 
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The effects of changing in thickness mean on CMPWL and CPF using different pay 

equations are summarized in Table 3.20 and plotted in Figure 3.31. Because thickness has a 

double side specification limit and tolerances are close to each other, a small change in thickness 

means would produce a significant change in CMPWL and correspondingly CPF. It is can be 

observed that the maximum achievable CPF (103.6%) can be obtained by reducing the mean of 

approximately 1%.  

Increasing thickness mean by 10% produce a reduction in CPF of approximately 7% 

(based on equation 19&24). The change of CPF by shifting thickness mean for other pay 

equations can also be checked in Table 3.20 and Figure 3.31. 

 

Table 3.20 Effects of change in thickness means on CMPWL and CPF 

Thickness PF=55+0.5*PWL PF=10+PWL Stepped Pay Schedule 

Mean 

Change 

% 

CMPWL 

% 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

10.9 -10 67.60 88.00 -14.81 76.90 -25.77 86.60 -15.92 

11.1 -8 76.00 92.70 -10.26 85.70 -17.28 91.50 -11.17 

9.7 -5 88.90 99.40 -3.78 97.90 -5.50 98.80 -4.08 

11.5 -2 96.20 103.10 -0.19 103.40 -0.19 102.90 -0.10 

12.1 0 96.60 103.30 0.00 103.60 0.00 103.00 0.00 

12.3 2 93.30 101.60 -1.65 101.20 -2.32 101.10 -1.84 

12.7 5 81.90 95.90 -7.16 91.60 -11.58 94.90 -7.86 

13.1 8 68.80 88.70 -14.13 78.10 -24.61 87.50 -15.05 

13.3 10 62.60 84.70 -18.01 71.50 -30.98 83.40 -19.03 
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Figure 3.31 Effects of changing thickness means on CPF 

  

Finally, the effects of changing mean and standard deviation of roughness were 

evaluated. It is shown in Figure 3.32 the PWL for roughness based on current population 

characteristic values is 100% indicating the mean of roughness is much smaller than the 

specification limit, and thus increasing the standard deviation by 100% only resulted in an 0.76% 

reduction in CPF. 

Table 3.21 Effects of change in roughness variability on CMPWL and CPF 

Roughness PF=55+0.5*PWL PF=10+PWL 

Stepped Pay 

Schedule 

Std Std/Std(pop) 

CMPWL 

% 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

0.87 0.10 96.60 103.30 0.01 103.60 0.00 103.00 0.00 

4.35 0.50 96.60 103.30 0.01 103.60 0.00 103.00 0.00 

6.95 0.80 96.60 103.30 0.01 103.60 0.00 103.00 0.00 

8.69 1.00 96.60 103.29 0.00 103.60 0.00 103.00 0.00 

10.43 1.20 96.50 103.20 -0.09 103.60 0.00 103.00 0.00 

13.04 1.50 96.20 103.00 -0.28 103.40 -0.19 102.80 -0.19 

17.38 2.00 95.30 102.50 -0.76 102.20 -1.35 102.20 -0.78 

26.07 3.00 92.30 100.80 -2.41 99.70 -3.76 100.40 -2.52 
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Figure 3.32 Effects of changing roughness variability on CPF 

 

The effects of changing in roughness mean on CMPWL and CPF using different pay 

equations are summarized in Table 3.22 and plotted in Figure 3.33. Reducing in strength means 

does not produce any change in CPF meaning the PWL for roughness has achieved 100% based 

on current population characteristics values. Increases in strength mean by 20% produce a 

reduction in CPF of approximately 4.26%. 

Table 3.22 Effects of change in roughness means on CMPWL and CPF 

Roughness PF=55+0.5*PWL PF=10+PWL Stepped Pay Schedule 

Mean 

Change 

% 

CMPWL 

% 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

CPF 

% 

Change 

CPF, % 

47.75 -20 96.60 103.30 0.00 103.60 0.00 103.00 0.00 

53.72 -10 96.60 103.40 0.10 103.60 0.00 103.00 0.00 

59.69 0 96.60 103.30 0.00 103.60 0.00 103.00 0.00 

65.66 10 95.90 102.90 -0.39 103.00 -0.58 102.60 -0.39 

71.63 20 88.70 98.90 -4.26 96.20 -7.14 98.40 -4.47 

77.60 30 71.20 89.00 -13.84 79.00 -23.75 87.70 -14.85 

83.57 40 62.67 83.60 -19.07 70.60 -31.85 82.40 -20.00 

89.54 50 61.67 83.00 -19.65 69.00 -33.40 81.90 -20.49 

107.44 80 61.70 83.00 -19.65 69.00 -33.40 81.50 -20.87 
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Figure 3.33 Effects of changing roughness means on CPF 
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Chapter 4  Relating Risks to Pay Factors 

The risk and pay factor analysis necessary for developing a statistical QA specification 

has been conducted in Chapters 2 and 3. In order to properly apply statistical specifications with 

pay adjustment provision in the quality assurance (QA) system, it is also necessary to evaluate 

the risk associated with a certain pay factor to ensure the effectiveness of the pay adjustment 

acceptance plans. When a pay adjustment acceptance plan is appropriately formulated, the 

statistical description of desired quality characteristics provides the best insurance that the seller 

will be paid a fair price and that the buyer will get what was paid for with a reasonable level of 

risk. The objective of this Chapter is to (i) relate acceptance risks to pay factors, and (ii) present 

case studies to demonstrate the value of the analyses proposed in this study. 

As the analysis in Chapter 3, the pay factor equations (i.e., 19 & 20) are usually applied 

to relate the pay factor (PF) to the actual quality (PWL) of a lot in the payment adjustment 

acceptance plans.  In addition, a number of SHAs acceptance specifications also include some 

form of rejection or replacement (PF=0) if the quality of the lot is below a certain PWL, such as 

50% or 60% For example, the South Carolina DOT specifications use the pay equation 19 to 

determine a pay factor for a lot and call the lot to be removed and replaced (PF=0) if any one of 

the single quality characteristics have a PWL less than 60%. When such rejection or replacement 

provision is included, the concepts of  risk can be interpreted as the probability of rejecting an 

AQL quality material or construction while the   risk can be interpreted as the probability of 

accepting an RQL quality level. The OC curves developed in Chapter 3 provide the relationship 

between the PWL of a lot and the probability of receiving various payment factors (i.e., 0.7, 0.8, 

0.9, 1.0, 1.04) for the lot. However, this is simply not enough when the rejection or replacement 

provision is included in the pay adjustment acceptance plans. It is also necessary to determine the 
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probability of rejection (risk of rejection) for various PWLs. So, both of the average pay factors 

at long run and the probability of rejection for various PWLs were determined to illustrate the 

effects of such rejection or replacement provisions on the pay factors and the risks for single and 

multiple quality characteristics. 

 

4.1 Relating Risks to Pay Factors for a Single Quality Characteristic 

 The OC curves developed in Chapter 2 provided a relationship between the PWL of a lot 

and the probability of its acceptance/rejection while the long-average pay factor based on the 

PWL of the same lot can be obtained from the pay factor analysis presented in Chapter 3, and 

thus the relationship between the probability of rejection and pay factors can be built.  Table 4.1 

summarizes the probabilities of rejection and pay factors for different PWLs based on different 

pay equations and a sample size of five.  

It can be observed from Table 4.1 that the probability of rejection is 0.2% for an AQL of  

90%  using pay equation 19 with an RQL of 50% (PF=0 if PWL < 50%), and the average pay 

factor at the long run for this quality was determined to be 99.89%. The probability of rejection 

is estimated to be 1.1% using the same pay equation but with an RQL 0f 60% (PF=0 if PWL < 

50%), and the average pay factor at the long run decreases from 99.89% to 99.01%. Table 4.1 

also shows that that same pay equation was used in A and B, however, the risks associated with 

each PWL in A are much larger than those in pay schedule B. This indicates that increasing the 

RQL (i.e., from 50% to 60%) will increase the acceptance risk and reduce the expected pay for 

contractors when the same pay equation was used. Similarly, from the results of B and D, it can 

be demonstrated that changing the pay equation has no effects on the risks associated with each 

PWL, but it will affect the average pay factors in the long run for each PWL.  
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Table 4.1 Probability of rejection and pay factor in relation to PWL for different pay equations with n=5 

 

 

PWL 

PF = 55+0.5*PWL 

 

PF = 10+PWL 

A B C D 

If PWL<50%, PF=0 If PWL<60%, PF=0 If PWL<50%, PF=0 If PWL<60%, PF=0 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

100 0.00 105.00 0.00 105.00 0.00 110.00 0.00 110.00 

95 0.01 102.32 0.08 102.01 0.01 104.64 0.08 104.4 

90  0.20  99.89 1.10     99.01 0.20  99.98 1.10     99.25 

85 1.02 96.96 3.98 94.23 1.02 94.55 3.98 92.93 

80 3.02 93.17 9.06 88.30 3.02 89.50 9.06 85.68 

75 6.40 87.64 17.14 78.30 6.40 82.08 17.14 74.70 

70 12.05 80.50 27.37 69.01 12.05 74.08 27.37 64.91 

65 19.43 73.56 38.52 60.00 19.43 66.25 38.52 54.31 

60 28.49 62.77 50.00    46.55 28.49 55.70 50.00    42.74 

55 38.80 54.80 N/A N/A 38.80 47.08 N/A N/A 

50  50.00  43.71 N/A N/A 50.00  37.63 N/A N/A 

 

Figure 4.1 shows the relation of the probability of rejection and the average pay factors at 

the long run for different pay equations and RQL. For a specific risk level, C gives the lowest 

expected pay while B provides the highest pay factor. For a given pay factor, such as 90%, B 

produces the highest probability of rejection (9%) while C offers the lowest probability of 

rejection (4%). The relation of risks and pay factors are very similar for A and D. 
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Figure 4.1 Pay factor and the probability of rejection using different pay equations with n=5 

 

In order to analyze the effects of sample size on the relation of risks and pay factors, 

sample sizes of 3 and 6 were used to calculate the probability of rejection and pay factor 

corresponding to different PWLs. Tables 4.2 and 4.3 summarize the probability of rejection and 

pay factor in relation to PWLs for sample sizes of 6 and 3 respectively. Figures 4.1 through 4.3 

show the relation between pay factor and probability of rejection for different sample sizes (i.e., 

3, 5 and 6). It can be seen from Figures 4.1 through 4.3 that the probability of rejection increases 

as increasing the sample size for a certain pay factor. For a given risk value, the pay factor 

increases with the increase of sample size. For example, the probability of rejection associated 

with 100% payment in plan A was estimated to be 1.15% for a sample size of three. This 

probability reduced to 0.08% as increasing the sample size to six. When a sample size of three is 

used, plans A, B, and D provide similar expected payment for a given risk level.  
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Table 4.2 Probability of rejection and pay factor in relation to PWLs for different pay equations with n=6 

 

 

PWL 

PF = 55+0.5*PWL 

 

PF = 10+PWL 

A B C D 

If PWL<50%, PF=0 If PWL<60%, PF=0 If PWL<50%, PF=0 If PWL<60%, PF=0 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection  

(%) 

Pay 

factor 

(%) 

100 0.00 105.00 0.00 105.00 0.00 110.00 0.00 110.00 

95 0.00 102.50 0.03 102.35 0.00 104.60 0.03 104.74 

90  0.08 100.01 0.58 99.54 0.08 99.79 0.58 99.60 

85 0.59 97.47 2.70 95.20 0.59 95.01 2.70 94.05 

80 1.90 93.94 7.37 89.40 1.90 89.55 7.37 86.20 

75 4.81 88.52 14.76 80.78 4.81 82.59 14.76 75.97 

70 10.02 82.15 25.00 70.43 10.02 75.07 25.00 65.13 

65 17.20 75.20 36.88 59.26 17.20 66.84 36.88 55.38 

60 26.54 64.65 50.00 45.67 26.54 56.14 50.00 41.47 

55 37.74 55.48 N/A N/A 37.74 47.40 N/A N/A 

50  50.03 43.74 N/A N/A 50.03 36.80 N/A N/A 

 

 

 

Figure 4.2 Probability of rejection and pay factor using different pay equations with n=6 
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Table 4.3 Probability of rejection and pay factor in relation to PWL for different pay equations with n=3 

 

 

PWL 

PF = 55+0.5*PWL 

 

PF = 10+PWL 

A B C D 

If PWL<50%, PF=0 If PWL<60%, PF=0 If PWL<50%, PF=0 If PWL<60%, PF=0 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

Probability 

of rejection 

(%) 

Pay 

factor 

(%) 

100 0.00 105.00 0.00 105.00 0.00 110.00 0.00 110.00 

95 0.22 102.02 0.75 101.13 0.22 104.48 0.68 103.53 

90  1.30 99.10 3.74 95.80 1.30 99.06 3.74 96.27 

85 3.55 94.81 8.66 89.28 3.55 93.33 8.66 88.31 

80 7.22 89.66 14.88 81.35 7.22 87.19 14.88 80.40 

75 12.17 82.69 23.04 73.04 12.17 79.53 23.04 70.56 

70 18.26 76.54 31.64 62.68 18.26 71.57 31.64 60.48 

65 25.23 69.56 40.16 54.45 25.23 64.46 40.16 53.65 

60 33.00 60.74 50.28 44.81 33.00 55.45 50.28 43.00 

55 41.40 54.45 N/A N/A 41.40 47.46 N/A N/A 

50  50.01 45.31 N/A N/A 50.01 39.85 N/A N/A 

 

 

 

Figure 4.3 Probability of rejection and pay factor using different pay equations with n=3 
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4.2 Relating Risks to Composite Pay Factors  

As mentioned previously, the majority of state DOTs usually use multiple quality characteristics 

to determine the pay factor for a lot. Then it becomes important to fully evaluate the risks 

associated with composite pay factors. However, using multiple quality characteristics may 

create an issue concerning that different combinations of individual PWL may produce the same 

composite quality level (CMPWL). For example, two hypothetical lots are shown in Table 5.3. 

The lot 1 and lot 2 have the same CMPWL of 90% however, the PWLs of each individual 

characteristic are different. This obviously represents the boundary combinations, but it 

illustrates that using multiple quality characteristics introduces risks that are not present when 

single quality characteristic is used. Figures 4.4 and 4.5 illustrate the range of PWL for 

individual quality characteristics that produce the same composite quality level (CMPWL). As it 

is shown in Figure 4.5, the PWL for a single quality characteristic producing a CMPWL of 80 

may be as low as 50. The purpose of these analyses is to address the risks associated with 

multiple quality characteristics using Monte Carlo simulation and analyze the relation of such 

risks (probability of rejection) between CMPWL and PF. 

 

Table 4.4 Lots with different combinations of PWL producing CMPWL of 90% 

Quality characteristic PWL for Lot 1 PWL for Lot 2 

Strength  60% 90% 

Thickness  100% 90% 

Roughness  100% 90% 

CMPWL 90% 90% 

PF based on CMPWL(CMPF) 100% 100% 

Composite pay factor (CPF) 94.9% 100% 
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Figure 4.4 Range of PWL for individual characteristic producing CMPWL = 90% 

 

Figure 4.5 Range of PWL for individual characteristics producing CMPWL=80% 

 

The different combinations of PWLs for a single quality characteristic producing the 

same CMPWL can be obtained through simulation. Some boundary combinations are shown in 

Table 4.5. It has been mentioned in Chapter 3 that there are two different ways to obtain the pay 
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factors for multiple quality characteristics. The first approach is using CMPWL (equation 22 or 

23) to calculate the pay factor while the second method is to calculate the PF (equation 19 0r 20) 

for each individual quality characteristic and use equation 24 to determine the CPF for a lot. 

Both methods were used in the following analysis to calculate CPF and CMPF based on 

CMPWL.  

The probability of rejection and PF in relation to various CMPWLs were also 

summarized in Table 4.5 and plotted in Figure 4.6. As shown in Table 4.5 the probability of 

rejection (p1, p2, and p3) for each PWL can be obtained using Monte Carlo Simulation as 

following:  

Number of lots with PF=0
Probability of rejection = 

Total number of simulated lots
 

 

If the three quality characteristics are assumed to be independent, the probability of 

rejecting at least one of these quality characteristics can be considered as the risk associated with 

multiple quality characteristics, and the binomial distribution (equation 25) can be used to 

determine this probability.  

 

( , , ) Pr( ; , ) Pr( ) (1 )k n k
n

f k n p k n p X k p p
k

− 
= = = = − 

 
      (25) 

Where                                          
!

!( )!

n n

k k n k

 
= 

− 
 

n = number of trials  

p = the probability of success  

1-p = probability of failure  

k = k successes in n trials  
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It is assumed that the probabilities of rejection for strength, thickness, and roughness are 

p1, p2, and p3, respectively. Then the probabilities of acceptance can be calculated as 1-p1, 1-p2 

and 1-p3. According to the binomial distribution theory, the probability of rejecting or replacing 

at least one of three independent quality characteristics can be calculated as  

 

                            
1 2 31 (1 ) (1 ) (1 )CPR p p p= − −  −  −      (26) 

Where  

CPR = composite probability of rejection (the risk of rejection three independent quality 

characteristics including strength, thickness, and roughness) 

P1 = probability of rejection for strength  

P2 = probability of rejection for roughness 

               P3 = probability of rejection for thickness 

 

Then CPR (composite probability of rejection) for each combination of PWL can be 

calculated by equation 26. For example, with three quality characteristics, each at the AQL of 

90% PWL producing a 90% CMPWL, the probability of rejection or replacement for each 

quality characteristic was determined to be 0.21%. The composite probability of rejection with 

three quality characteristics (CPR) is calculated to be 0.63% (equation 27).  

 

1 (1 0.21%) (1 0.21%) (1 0.21%) 0.63%CPR = − −  −  − =        (27) 

 

if the concrete strength is at 60% PWL while thickness and roughness are at 100% PWL, 

the CMPWL also calculated to be 90% CMPWL, the probability of rejection was calculated to 



 

86 

 

be 29.5% for strength and 0% for both thickness and roughness. The composite probability of 

rejection with three quality characteristics (CPR) increases dramatically to 28.5% (equation 28).  

 

1 (1 28.5%) (1 0) (1 0) 28.5%CPR = − −  −  − =         (28) 

 

The composite probability of rejection with multiple quality characteristics (CPR) for a 

certain CMPWL can be different depending on the PWL of the individual quality characteristics. 

The CPRs corresponding to some specific combinations of PWL are summarized in TABLE 5.4. 

For a certain CMPWL, if all the three quality characteristics have the same PWL as CMPWL 

(i.e., PWL=90 for strength, roughness and thickness producing CMPWL=90), the risk can be 

minimized. However, the highest CPR is observed when the lowest achievable PWL is observed 

for one of the three individual quality characteristics. In this case, a CPR of 28.5% was observed 

since the PWL for strength equals to 60%. 

 

Table 4.5 Probability of rejection and pay factors for multiple quality characteristics with RQL of 50% 

CMPWL PWL, % Probability of rejection, %  CPR 

% 

CPF 

% 

CMPF 

% Strength Thickness Roughness Strength 

(p1) 

Thickness 

(p2) 

Roughness 

(p3) 

100 100 100 100 0 0 0 0 105 105 

 

95 

 

95 95 95 0.01 0.01 0.01 0.03 102.7  

102.6 80 100 100 3.01 0 0 3.01 102.1 

99 99 89 0 0 0.31 0.31 102.4 

100 88 98 0 0.45 0 0.45 102.3 

 

90 

90 90 90 0.21 0.21 0.21 0.63 100.0  

100.0 60 100 100 28.50 0 0 28.50 94.9 

100 100 75 0 0 6.67 6.67 98.0 

98 74 99 0 7.62 0 7.62 98.0 

 

85 

85 85 85 1.02 1.02 1.02 3.03 96.6  

97.0 50 94 99 50 0.03 0 50.02 88.5 

99 59 99 0 30.5 0 30.50 90.2 

99 99 64 0 0 21.01 21.01 92.0 

 

80 

80 80 80 3.01 3.01 3.01 8.76 93.3  

94.5 50 90 90 50 0.21 0.21 50.21 86.4 

90 50 100 0.21 50 0 50.11 82.5 

100 100 50 0 0 50 50.00 80.5 

 75 75 75 6.67 6.67 6.67 18.71 88.3  
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75 50 70 95 50 11.98 0 55.99 80.6 88.0 

70 50 100 11.98 50 0 55.99 77.6 

80 100 50 3.01 0 50 51.51 77.6 

 

70 

70 70 70 11.98 11.98 11.98 31.81 81.8  

82.0 50 50 100 50 50 0 75.00 67.9 

60 100 50 28.5 0 50 64.25 71.0 

 

65 

65 65 65 19.54 19.54 19.54 47.91 72.5  

72.9 50 54 84 50 40.86 1.31 70.82 68.7 

54 50 85 40.86 50 1.02 70.73 68.9 

54 90 50 40.86 0.21 50 70.49 65.8 

 

60 

60 60 60 28.50 28.50 28.50 63.45 66.0  

66.5 50 50 75 50 50 6.67 76.67 62.2 

55 75 50 38.65 6.67 50 71.37 61.4 

 

55 

55 55 55 38.65 38.65 38.65 76.91 55.0  

55.0 50 54 59 50 40.86 45.99 84.03 55.0 

54 50 60 40.86 50 28.5 78.86 55.3 

56 60 50 36.59 28.5 50 77.33 49.8 

50 50 50 50 50 50 50 87.50 42.5 42.0 

*PF=0 if PWL < 50%, sample size n = 5 

 

Figure 4.6 illustrates the range of the composite probability of rejection (CPR) for 

different CMPWLs. It can be seen from Figure 5.6 that for AQL of 90% CMPWL the CPR 

varies from 0.63% to 28.5% depending on the PWLs of the individual quality characteristics 

while, for an 80% CMPWL, the CPR ranges from 3.03% to 50%. This clearly indicates that 

using multiple quality characteristics to determine the pay factor for the lot places much greater 

risks to the contractor than using a single characteristic. 
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 Figure 4.6 Range of CPR for different CMPWLs (PF=0 if PWL <50% ) 

 

As the analysis in Chapter 3, the pay factors for multiple quality characteristics were 

calculated using two different methods and summarized in Table 4.5. The CPF is calculated by 

combining the PFs for the individual characteristics using equation 24 while the CMPF is 

calculated by using Equation 21 based on CMPWL. There is a unique CMPF corresponding to a 

CMPWL, while the values of CPF depend on the combinations of PWLs for the individual 

quality characteristics (Table 4.5).  

Figure 4.7 shows the histograms of CMPF calculated based on CMPWL for a population 

with all three independent quality characteristics at their AQL of 90 PWL while Figure 4.8 

shows the histograms of CPF for the same population. In this case, both the long-run average 

CMPF and CPF were determined to be 100%. However, it can be observed that the variability of 
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CPF is much smaller than CMPF. The composite probability of rejection (risk of rejection) for 

this population is calculated to be 0.63%.  

Figure 4.9 shows the histograms of CMPF calculated based on CMPWL for a population 

with strength at 60 PWL while thickness and roughness at 100 PWL, while Figure 4.10 shows 

the histograms of CPF for the same population. Even though the two populations have the same 

CMPWL of 90, the distributions and long-run averages CMPF and CPF are different. It is shown 

in Figure 5.9 that the long-run average CMPF was calculated to be 100% for this population, 

however, the average CPF in the long run was estimated to be 94.9%. This is because 

approximately 28.5% of simulated lots for strength have an estimated PWL less than 50% and 

these lots will be assigned a pay factor of 0 meaning that this 28 percent of lots were rejected. In 

this case, using CMPWL to calculate the pay for such a population places a greater risk to the 

contractor than using CPF (Equation 24). 
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Figure 4.7 PWL and CMPF with all three characteristics at an AQL of 90% PWL (long-run average 

PF=100%) 
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Figure 4.8 PWL and CPF with all three characteristics at an AQL of 90% PWL (long-run average 

PF=100%) 
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Figure 4.9 PWL and CMPF with strength at 60% PWL while thickness and roughness at 100% PWL 

(long-run average PF=100%) 
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Figure 4.10 PWL and CPF with strength at 60% PWL while thickness and roughness at 100% PWL 

(long-run average PF=94.9%) 
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Figure 4.11 illustrates the relation of the composite probability of rejection and CPF 

while Figure 4.12 shows the relationship between the composite probability of rejection and 

CMPF. Overall, the CPF and CMPF decreases as the increase of the composite probability of 

rejection. For a CMPWL of 90, the CPF varies from 94.9% to 100%, however, the corresponding 

risks range 28.5% to 0.67%. It also can be seen in Figure 4.12, for a PF of 100% calculated based 

on CMPWL, the risk can be as high as 28.5%.  

 

 

Figure 4.11 CPR and CPFs for various CMPWLs (PF=0 if PWL< 50%) 
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Figure 4.12 The relation of CPR and CMPFs (PF=0 if PWL< 50%) 

 

Similarly, the CPR associated with CPF using the same pay equations with an RQL of 

60% are summarized in Table 4.6 and plotted in Figure 4.13. It is shown in Table 4.6 that the 

risk for a 90 CMPWL as can be as low as 50% while the corresponding CPF is estimated to be 

89.6% which is much lower than 100%. This again means increasing RQL will place more risks 

on contractors as well as reduce the long-run average pay factors. Figure 5.13 illustrated the 

ranges of CPR for various CMPWL with an RQL of 60%. Compared to Figure 4.13, the range of 

CPR for CMPWL of 90 becomes wider as the rejection or replace level increases from 50% to 

60%. 
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Table 4.6 Probability of rejection and pay factors for multiple quality characteristics with RQL of 60% 

CMPWL PWL, % Probability of rejection, % CPR 

% 

CPF 

% 

CMPF 

% Strength Thickness Roughness Strength 

(p1) 

Thickness 

(p2) 

Roughness 

(p3) 

100 100 100 100 0 0 0 0 105.0 105.0 

 

95 

 

95 95 95 0.1 0.1 0.1 0.3 103.0  

102.8 80 100 100 9.54 0 0 9.54 100.8 

99 99 89 0 0 1.44 1.44 101.7 

100 88 98 0 1.93 0 1.93 102.0 

 

90 

90 90 90 1.14 1.14 1.14 3.38 99.4  

99.9 60 100 100 50 0 0 50.00 89.6 

98 74 99 0 18.54 0 18.54 94.6 

100 100 75 0 0 17.27 17.27 93.3 

 

85 

85 85 85 4.08 4.08 4.08 11.75 94.2  

94.0 60 88 98 50 1.92 0 50.96 88.4 

96 60 100 0.04 50 0 50.02 84.2 

99 99 64 0 0 40.68 40.68 85.5 

 

80 

80 80 80 9.54 9.54 9.54 25.98 88.2  

88.5 60 84 89 50 4.88 1.52 53.16 84.5 

76 60 100 15.64 50 0 57.82 80.2 

84 100 60 4.88 0 50 52.44 79.6 

 

75 

75 75 75 17.41 17.41 17.41 43.66 79.2  

80.0 60 64 94 50 40.68 0.16 70.39 72.9 

64 60 95 40.68 50 0.1 70.37 71.8 

64 100 60 40.68 0 50 70.34 70.9 

 

70 

70 70 70 27.24 27.24 27.24 61.48 70.0  

70.1 60 60 85 50 50 3.92 75.98 66.0 

65 85 60 38.58 3.92 50 70.49 67.4 

100 60 60 0 50 50 75.00 64.0 

 

65 

65 65 65 38.58 38.58 38.58 76.83 58.0  

59.2 60 64 69 50 40.68 29.47 79.08 59.1 

80 60 60 9.54 50 50 77.39 58.8 

73 65 60 16.1 38.58 50 74.23 58.5 

60 60 60 60 50 50 50 87.50 48.3 50.0 

*PF=0 if PWL < 60%, sample size n = 5 
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Figure 4.13 The relation of CPR and CMPFs (PF=0 if PWL< 60%) 

 

 

Figure 4.14 CPR and CPFs for various CMPWLs (PF=0 if PWL< 60%) 
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Figure 4.15 Illustration of the relation of risks and CMPFs (PF=0 if PWL< 60%) 

 

Form the above analysis, it can be concluded that using multiple quality characteristics to 

calculate the pay factor a lot introduces a new source of risk that is not present when only one 

characteristic is applied. The use of multiple quality characteristics places much greater risks on 

contractors than using a single quality characteristic, and such risk increases as increasing the 

RQL.  
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4.3 Case Studies 

Case studies were examined to illustrate how the above analysis can be used for 

contractors to assess and improve their production quality, and for agencies to formulate proper 

pay adjustment acceptance plans that provide the best insurance that the seller will be paid a fair 

price and that buyer will get what was paid with a reasonable level of risk. Figure 4.16 illustrates 

the procedure of performing risk and expected pay analysis. The simulation tool developed in 

this study is capable of determining  and    associated in an acceptance plan using OC and EP 

curves. It is also able to determine average pay factors in the long run and risks of rejection for 

either an individual or multiple quality characteristics for a production.  

 

 

Figure 4.16 Flow chart of risk and expected pay analysis  
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4.3.1 Effects of Production Population Characteristics  

The first set of case studies consider contractors’ production quality in relation to an 

acceptance plan.. In the acceptance plan, it has been specified that pay equation 19 is used to 

calculate the pay factors with a rejection or replacement  (PF=0) if the PWL is less than 50%.  

An AQL of 90% and a sample size of five are also specified in the acceptance plan. Then, 

population distributions representing the productions from three different contractors were 

analyzed and presented to demonstrate how risks and pay factors can be assessed for these 

population distributions. In the examples of Figure 4.17 contractor 1 and 2 have the same 

average production quality mean. Nevertheless, contractor 2 is able to produce more uniform 

quality (smaller variance). Contractor 3 has a higher average production quality mean but with a 

larger variance. 

The PWL, PF, and the probability of rejection (risk) for each population distribution were 

determined through simulation analysis and summarized in Table 4.7. Figures 4.17 through 4.19 

illustrate the population distributions in relation to the specs for strength, roughness and 

thickness. Population #2 represents an average quality of production with a CMPWL of 84.61%, 

and the long-run average expected pay based on CMPWL is 97.40%. Population #1 represents a 

better production quality with a lower variability (standard deviation =2.76) compared to 

population #2 (standard deviation=4.14). The CMPWL and CPF for population #2 are estimated 

to be 91.24% and 100.56% respectively. Population #3 represents a construction quality with a 

large variability (standard deviation=5.52). However, in order to maximize incentive payments, 

contractor 3 has targeted a mean value far away from the specification limit. Even though 

contractor 3 can receive a CPF of 97.52% by targeting the mean far away from the specification 



 

101 

 

limit, the cost to reach the target mean value for contractor 3 will be much higher than that for 

contractor 1 & 2. 

Table 5.6 also shows the risks of rejection for the three populations. The composite 

probability of rejection with three quality characteristics (CPR) is the lowest (0.43%) for 

population #1 because it represents the best production quality among the three populations. The 

composite probability of rejection (CPR) for populations 2 & 3 is estimated to be 4.5% and 4.3% 

respectively. 

 

Table 4.7 Case studies showing risk and PF for different populations  

Quality 

characteristics 

Contractor 

# 

Population distribution PWL 

% 

PF 

% 

Probability of 

rejection, % Mean  Standard deviation 

 

Strength 

(MPa) 

1 31.0 2.76 89.72 99.75 0.23 

2 31.0 4.14 80.00 92.54 3.00 

3 34.5 5.52 89.71 99.60 0.23 

Thickness 

(mm) 

1 305 7.62 90.90 100.45 0.14 

2 305 8.89 85.17 97.25 1.00 

3 308 10.16 78.47 92.24 3.94 

Roughness 

(mm/m) 

1 1.0  0.11 92.50 101.27 0.06 

2 1.0   0.14 86.99 97.95 0.59 

3 0.95 0.17 91.69 100.77 0.10 

    CMPWL CMPF CPR 

Composite 

quality level 

(CMPF) 

1 N/A N/A 91.24 100.67 0.43 

2 N/A N/A 84.61 97.40 4.50 

3 N/A N/A 86.62 98.25 4.30 

     CPF CPR 

Composite pay 

factor  

(CPF) 

1 N/A N/A N/A 100.56 0.43 

2 N/A N/A N/A 96.35 4.50 

3 N/A N/A N/A 97.52 4.30 

    *CPR: composite probability of rejection 
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Figure 4.17 Population distribution and spec for strength 

 

 

 

Figure 4.18 Population distribution and specs for thickness  
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Figure 4.19 Population distribution and spec for roughness 

 

4.3.2 Changing the Acceptance Plan Parameters 

It is often that an agency may want to adjust the acceptance plans in order to balance the 

risks and PF. The following case studies were used to illustrate how modifying the acceptance 

plan parameters (i.e., Spec limits/Tolerances, sample size, rejection or replace provision and pay 

equations) would affect the risks and PF for a given quality level. 

 

Modifying Specification Limits  

As shown in Figure 4.20 the specification limits were shifted to a lower quality level. The 

PWL, PF and risks were determined for the three populations and summarized in table 5.7. It can 

be seen in Table 4.8 that the PF can be increased while the risks can be reduced for all 

populations by moving spec limits away from the means. For example, by reducing the spec 

limit for strength for approximately 8%, the risk for rejection for population #2 can be reduced 

from 3% to 0.1%. At the same time, the PF for strength was increased from 92.54% to 101.1%. 
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However, the increases of PF for the population 1 & 3 are approximately 4% and 3% 

respectively. This indicates the changing specification limits will produce different levels of 

benefits or penalties to these contractors. As shown in Figure 4.20, the contractor 2 benefits the 

most since now more material is within the specification limits than before while contractor 3 

benefits the least from reducing specification limit by 7% for concrete strength. Thus, how 

modifying specification limits would affect the PFs and risks for different contractors should be 

examined using simulation analysis based on the specification limits and contractor’s population 

distributions. 

Table 4.8 Effects of changing Specs on PF and risks  

Quality 

characteristic 

Contractor 

# 

Population distribution Spec PWL 

% 

PF 

% 

Probability 

of rejection 

% Mean Standard deviation 

 

 

Strength  

(MPa) 

1 31 2.76  27.6 89.72 99.75 0.23 

25.5 97.89 103.98 0.00 

2 31 4.14 27.6 80.00 92.54 3.00 

25.5 91.25 101.10 0.10 

3 34.5 5.52 27.6 89.71 99.60 0.23 

25.5 95.03 102.48 0.01 

 

 

Thickness  

(mm) 

1 305 7.61 + 4.2% 90.90 100.45 0.14 

+ 5% 95.78 102.91 0.01 

2 305 8.89 + 4.2% 85.17 97.25 1.00 

+ 5% 91.80 100.89 0.09 

3 308 10.16 + 4.2% 78.47 92.24 3.94 

+ 5% 86.19 97.80 0.74 

 

 

Roughness 

(mm/m) 

1 1.0 0.11 1.184 92.50 101.27 0.06 

1.26 98.52 104.23 0.00 

2 

 

1.0 0.14 1.184 86.99 97.95 0.59 

1.26 95.34 102.65 0.01 

3 1.0 0.17 1.184 91.82 100.83 0.10 

1.26 96.74 103.35 0.00 

     CMPWL CMPF CPR 

 

 

Composite 

quality level 

 

1 N/A 

 

91.24 100.67 0.40 

97.97 103.7 0.00 

2 N/A 84.61 97.40 4.50 

93.07 101.54 0.20 

3 N/A 86.62 98.25 4.30 

92.61 101.31 0.75 

    CPF CPR 

 

Composite pay 

factor 

(CPF) 

1 N/A 100.56 0.40 

103.67 0.00 

2 N/A 96.35 4.50 

101.51 0.20 
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3 N/A 97.52 4.30 

101.10 0.75 

 

 

 

 

Figure 4.20 Effects of changing specification limits for roughness 

 

Changing Sample Size  

In this analysis, two additional sample sizes (n=2 and n=4) were considered to conduct 

simulation analysis for populations from all three contractors. The results were summarized in 

Table 4.9. It can be seen in Table 4.9 that increasing sample size from 3 to 5 has very little 

effects (the PWLs increase less than 1%) on the average PWL for all populations. However, the 

risks were reduced significantly. For example, the risk of rejection associated with CPF for 

population #2 was reduced from 11.2% to 4.54% by increasing sample size from 3 to 5.  

The effects of changing sample size on the long-run average PF is not significant when 

the population has a good quality level (PWL>90), while this effect became more significant as 

population quality (PWL) drops. As shown in Table 4.9, the average PF at the long run for 
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thickness of population #1 increased slightly from 99.33% to 100.45% with increasing the 

sample size from three to five, whereas the PF for thickness of population #3 increased 

significantly from 85.95% to 92.24%. This is because increasing sample size reduces the 

variability of estimated PWL such that less simulated lots will be assigned a PF of 0. In statistical 

terms increasing sample size also provides a better estimate of the “true” population 

characteristics. 

Table 4.9 Effects of sample sizes on PF and risk  

Quality 

characteristic 

Contractor 

# 

Population distribution Sample 

size 

PWL 

% 

PF 

% 

Risk 

% 
Mean Standard deviation 

 

 

 

Strength 

1 31 2.76 3 89.36 98.63 1.54 

4 89.71 99.31 0.57 

5 89.72 99.75 0.23 

2 31 4.14 3 80.00 89.71 7.26 

4 80.05 91.61 4.60 

5 80.11 92.54 3.00 

3 34.5 5.52 3 89.51 98.70 1.48 

4 89.64 99.46 0.59 

5 89.71 99.60 0.23 

 

 

Thickness 

1 305 7.61 3 90.70 99.33 1.05 

4 90.73 100.20 0.40 

5 90.90 100.45 0.14 

2 305 8.89 3 85.15 94.39 3.42 

4 85.15 96.51 1.86 

5 85.17 97.25 1.00 

3 308 10.16 3 77.83 85.95 9.18 

4 77.93 89.78 6.06 

5 78.47 92.24 3.94 

 

 

Roughness 

1 1.0 0.11 3 92.64 100.95 0.60 

4 92.32 100.96 0.22 

5 92.50 101.27 0.06 

2 

 

1.0 0.14 3 86.82 96.45 2.59 

4 86.87 97.36 1.25 

5 86.99 97.95 0.59 

3 1.0 0.17 3 91.71 100.11 0.81 

4 91.44 100.49 0.32 

5 91.82 100.83 0.10 

     CMPWL CMPF CPR 

 

 

Composite 

quality level 

(CMPWL) 

1 N/A 3 91.13 100.55 4.30 

4 91.11 100.66 1.19 

5 91.24 100.70 0.43 

2 N/A 3 84.55 97.09 12.8 

4 84.52 97.22 7.54 

5 84.61 97.40 4.54 
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3 N/A 3 86.30 98.08 11.2 

4 86.26 98.12 6.91 

5 86.62 98.25 4.26 

     CPF CPR 

 

Composite pay 

factor 

(CPF) 

1 N/A 3 N/A 99.68 4.30 

4 100.33 1.19 

5 100.56 0.43 

2 N/A 3 N/A 94.06 11.2 

4 95.68 7.54 

5 96.35 4.54 

3 N/A 3 N/A 97.52 11.2 

4 96.25 6.91 

5 94.89 4.26 

*PF=55+0.5*PWL, PF=0 if PWL<50 

 

However, it should be noted that increasing the sample size in QC implies a higher cost 

for QA/QC for any project. 

 

Changing the Rejection and Replacement Provisions 

The effects of changing rejection or replacement provisions on the risks of rejection and 

PFs were also examined for the three cases of population distributions considered. The rejection 

or replacement provisions (PF=0) are usually triggered at a PWL value (RQL), such as 40% or 

50%. This PWL value (RQL) was changed from 40% to 60% Overall, it is shown in Table 4.10 

that changing the RQL from 40% to 60% increase the risks associated with both single and 

multiple quality characteristics. For example, the CPR associated with CPF increases from 

1.15% to 13.1% as changing the rejection or replace level from 40% to 60%.  

Overall, increasing the RQL from 40% to 60% reduces the average PF at the long run, 

and this effect became more significant as population quality became poorer. For example, the 

CPF for contractor #1 (good quality) decreased from 100.36% to 97.43% while the CPF for 

contractor #3 decreased dramatically from 97.17% to 89.63% (relatively poor quality) with 

increasing the RQL from 40% to 60%. As shown in Table 4.10, the average PF at the long run 

for thickness population #1 decreased slightly from 100.48% to 99.93% as the increase of the 
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RQL from 40% to 60%, whereas the PF for thickness population #3 decreased significantly from 

93.57% to 84.45%.  

 

Table 4.10 Effects of rejection or replacement provision on risks and PF  

Quality 

characteristic 

Contractor 

# 

Population distribution PF=0 if PWL 

< (%) 

PWL 

% 

PF 

% 

Probability 

of rejection  

% Mean Standard 

deviation 

 

 

 

Strength 

(MPa) 

1 31 2.76 40 89.82 99.88 0.03 

50 89.72 99.75 0.23 

60 89.67 98.79 1.20 

2 31 4.14 40 80.11 94.41 0.69 

50 80.11 92.54 3.00 

60 80.47 88.13 8.80 

3 34.5 5.52 40 89.94 99.94 0.03 

50 89.71 99.60 0.23 

60 89.74 98.85 1.20 

 

 

Thickness 

(mm) 

1 305 7.61 40 90.78 100.48 0.02 

50 90.90 100.45 0.14 

60 90.94 99.93 0.77 

2 305 8.89 40 85.22 97.59 0.18 

50 85.17 97.25 1.00 

60 85.14 94.50 3.84 

3 308 10.16 40 77.79 93.57 1.11 

50 78.47 92.24 3.94 

60 78.40 84.45 11.56 

 

 

Roughness 

(mm/m) 

1 1.0 0.11 40 92.63 101.31 0.01 

50 92.50 101.27 0.06 

60 92.76 101.02 0.36 

2 

 

1.0 0.14 40 87.18 98.52 0.09 

50 86.99 97.95 0.59 

60 87.20 96.29 2.39 

3 1.0 0.17 40 91.71 100.84 0.01 

50 91.82 100.83 0.10 

60 91.63 100.29 0.59 

     CMPWL CMPF CPR 

 

 

Composite 

quality level 

 

1 N/A 40 91.28 100.64 0.06 

50 91.24 100.70 0.43 

60 91.35 100.67 2.31 

2 N/A 40 84.72 97.40 0.96 

50 84.61 97.40 4.54 

60 84.78 97.16 15.3 

3 N/A 40 86.40 98.20 1.15 

50 86.62 98.25 4.26 

60 86.52 98.18 13.1 

     CPF CPR 

 

 

1 N/A 40 N/A 100.36 0.06 

50 100.56 0.43 
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Composite pay 

factor 

 

60 97.43 2.31 

2 N/A 40 N/A 96.20 0.96 

50 96.35 4.54 

60 87.94 15.3 

3 N/A 40 N/A 97.17 1.15 

50 94.89 4.26 

60 89.63 13.1 

*Sample size n=5  

 

The Effects of Pay Equations on Risks and PF 

Two pay equations (i.e., A, B shown in Figure 4.21) were used to run the simulation 

analysis and calculate the PFs and relate those to the risks of rejection for the populations from 

the three contractors, and the results are summarized in Table 5.10. It can be seen that the 

average PFs in the long run produced by the two equations are almost the same for the strength 

population (PWL at AQL of 90%) from contractor #1. If the PWL of the population is less than 

90%, the PF equation B produces a smaller average PF at long run than PF equation A. For 

example, the PF calculated by PF equation A was 92.54% for strength population 

(PWL=80.11%) from contractor #1, whereas the PF calculated by PF equation B was only 

88.32%. However, if a population has a PWL larger than AQL of 90%, at long run the average 

PFs calculated by PF equation B will be larger than that calculated by PF equation A. For 

example, the PF for roughness population (PWL=91.82%) from contractor #3 was calculated to 

be 101.51% using PF equation A, while the PF was calculated to be 100.83% for the same 

population using PF equation B. This indicates that PF equation B tends to provide more 

incentive payments if a contractor produces quality level higher than AQL of 90%, while this 

equation produces more payment reduction if the population quality is less than AQL of 90%. 

Changing the pay equation itself will not affect the risk associated with a quality level if all other 

parameters remain constant.  
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Figure 4.21 Illustration of pay equation A and B 

 

Table 4.11 Effects of pay equations on risk and PF  

Quality 

characteristic 

Contractor 

# 

Population distribution Pay 

equation 

PWL 

% 

PF 

% 

Risk 

% 
Mean Standard deviation 

 

 

Strength 

1 31 2.76 A 89.72 99.75 0.23 

B 89.70 99.63 0.23 

2 31 4.14 A 80.11 92.54 3.00 

B 80.11 88.32 3.00 

3 34.5 5.52 A 89.71 99.60 0.23 

B 89.46 99.73 0.23 

 

 

Thickness 

1 305 7.61 A 90.90 100.45 0.14 

B 90.84 100.82 0.14 

2 305 8.89 A 85.17 97.25 1.00 

B 85.03 94.79 1.00 

3 308 10.16 A 78.47 92.24 3.94 

B 77.83 86.19 3.94 

 

 

Roughness 

1 1.0 0.11 A 92.50 101.27 0.06 

B 92.64 102.59 0.06 

2 

 

1.0 0.14 A 86.99 97.95 0.59 

B 87.13 96.75 0.59 

3 1.0 0.17 A 91.82 100.83 0.10 

B 91.58 101.51 0.10 

     CMPWL CMPF CPR 

 

 

Composite 

quality level 

1 N/A A 91.24 100.70 0.43 

B 91.27 101.23 0.43 

2 N/A A 84.61 97.40 4.54 

B 84.64 94.71 4.54 
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3 N/A A 86.62 98.25 4.26 

B 86.34 96.36 4.26 

     CPF CPR 

 

Composite pay 

factor 

1 N/A A N/A 100.56 0.43 

B 101.31 0.43 

2 N/A A N/A 96.35 4.54 

B 94.01 4.54 

3 N/A A N/A 94.89 4.26 

B 95.80 4.26 

*Sample size n=5 
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Chapter 5  Summary, Conclusions and Recommendations 

5.1 Summary  

In order to properly implement statistical acceptance specifications in the pavement 

construction, this thesis provides (1) an examination of how the key components of an 

acceptance plan affect its performance, (2) a detailed quantification of seller’s and buyer’s risks 

with Monte Carlo simulation and the development of OC curves, and, (3) an evaluation of the 

risks associated with a certain pay factor (i.e., single pay factor and composite pay factor). 

In chapter 2, the statistical basis related to the statistical acceptance plan was presented to 

provide a good understanding of the associated statistics. The effects of the key components (i.e., 

AQL, RQL, and sample size) of a statistical acceptance plan on its performance were examined 

with the development of OC curves. The OC curves were developed for concrete strength, 

thickness, and roughness using typical population characteristics from the NCHRP 10-79 study 

with varying acceptance limits and sample sizes. Then, the seller’s and buyer’s risks were 

determined for these populations and compared to the risk levels recommended by AASHTO R9 

(1997). The desired quality levels (AQL & RQL) were modified to determine the risks to the 

contractor and the agency.   

In the pay factor analysis, the OC and EP curves for the pay adjustment acceptance plan 

were developed by using Monte Carlo simulation in Matlab for both single and multiple quality 

characteristics. These OC curves along with EP curves were used to evaluate the risks and pay 

performance associated with the acceptance plans. Three different pay equations were applied to 

analyze how the pay equation affects the effectiveness of the acceptance plan. The RQL (i.e., 

40%, 50%, and 60%) was modified to examine how it impacts the risks and pay factors to the 

contractor and agency. The effects of sample size on risks and pay factors were also analyzed. 
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The risks associated with composite pay factors were evaluated as well. Furthermore, a 

sensitivity analysis was conducted to determine how changing the standard deviation and mean 

of a single quality characteristic (i.e., strength, thickness and roughness) affect the average 

composite pay factors at the long run.  

Additionally, the relationship between risk and pay factors were obtained for both single 

and multiple quality characteristics based on different sample sizes and RQL. The risk associated 

with a certain pay factor was evaluated. Using multiple quality characteristics to calculate the 

pay factor for a lot introduces a new source of risk that is not present when only one 

characteristic is applied. Such risks were calculated based on the binomial distribution theory. 

Simulation analysis was conducted to analyze how the different combinations of PWL affect the 

composite probability of rejection, CPR, and the composite pay factors. Finally, case studies 

were presented to demonstrate how the proposed analysis can be used by contractors to assess 

and improve their production quality, and for the agencies to formulate effective statistical 

acceptance plans with rational pay adjustment provisions. 
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5.2 Conclusions & Recommendations  

 

1. Proper selection in regards to key components of a statistical acceptance plan has a 

significant influence on its performance and associated risks. This analysis provides a 

perspective and guidance to SHAs on how to balance risks by modifying acceptance 

limits, sample sizes, and, AQL and RQL. As the acceptance limit increases, (i.e., from 

50% to 60%) the probability of rejecting material increases and thus the seller’s risk 

increases. On the contrary, the buyer’s risk decreases as the acceptance limit is increased. 

The seller’s risk can be reduced by increasing the AQL while the buyer’s risk can be 

reduced by decreasing the RQL. Both α and β risks can be effectively reduced by 

increasing sample size. Thus, it is proposed that SHAs quantify the risks to the 

contractors and agencies associated in their current acceptance specifications through the 

analysis methods proposed in this study.  

 

2. An acceptance limit of 65% and a sample size of seven are required for the populations 

examined in this study to attain the seller’s risk of 0.01 at AQL of 90% and the buyer’s 

risk of 0.05 at RQL of 50% as recommended by AASHTO R9 (1997). This sample size is 

larger than the typical sample size of five used by the majority of SHAs.  

 

3. The pay factor analysis has shown that (i) increasing RQL will increase the probability of 

awarding lower pay to the contractors, as well as reduce the average pay factors at the 

long run; (ii) Increasing the sample size from five to fifteen has no significant impact on 

the average pay factor at the long run when  an AQL of 90% is considered. However, this 

impact becomes more significant when the production quality (PWL) drops. As expected, 
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increasing sample size provides a better inference of the true  population characteristics; 

(iii) the three alternative pay equations (i.e., continuous pay equations 19 & 20, and 

stepped pay equation) provided the same overall average pay factor (i.e., 100% pay) at  

the long run for a production with an AQL of 90% and when  an RQL of 50% is 

considered with a sample size of five. The continuous pay equation 19 and the stepped 

pay one produces similar EP, while pay equation 20 provides relatively lower EP for 

quality levels lower than AQL of 90%; (iv) Because of the higher weighting factor for 

roughness in the composite pay equation, the effects of modifying roughness population 

characteristics (i.e., mean and standard deviation) has a more significant impact on the 

composite pay factor than the remaining properties.  

 

4. Overall a reduction in expected pay can be observed for both single and multiple quality 

characteristics as the probability of rejection increases. The risks associated with a certain 

pay factor can be obtained by building the relationship between the probability of 

rejection and PF. 

 

5. Using multiple quality characteristics to determine the pay factor for a production lot 

places much greater risks to the contractor than using a single quality characteristic; the 

composite probability of rejection associated with three quality characteristics (i.e., 

strength, roughness and thickness) ranges from 0.65% to 28.5% for an AQL of 90% 

production depending on the PWL of the individual quality characteristic, and with an 

RQL of 50% and a sample size of five. Any SHA that uses multiple quality 

characteristics to determine the pay factor for a production lot should perform the 
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simulation analysis presented in this study to fully evaluate the risks and associated pay 

factors.  

 

6. When calculating the risks associated with composite pay factors, this study considered 

the binomial distribution theory which assumes that the three quality characteristics are 

independent to each other. This is valid for the analysis presented herein since strength, 

thickness, and smoothness are the product of distinct construction operations for 

pavements. However, SHAs may choose acceptance quality parameters that may be 

correlated to each other (i.e., strength and modulus for example). In this case, the 

correlation coefficients should be determined and used in calculating the probability of 

acceptance and thus risks. Such composite probabilities and risks can be estimated based 

on the composite probability theory. 

 

7. Based on the production case studies presented herein it can be concluded that for the 

high-quality level of production (PWL>90%), increasing the sample size from 3 to 5 has 

no significant influence on the average pay factor at the long run. On the opposite, 

sample size effects are more significant as the production quality drops. Similarly, the 

effects of RQL on the PF are related to the quality of the population. As expected, 

modifying the specification limits will also affect risk and rewards to contractors. Thus, 

the suggested approach and analysis should be performed based on the production quality 

characteristics observed by each agency in order to define rational and defensible 

specification limits, pay adjustment equations, and define AQL, RQL and lot sample 

sizes. 
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Appendices  

MATLAB codes 

Development of OC curves  

clear  

close all 

clc  

n=1000; % number of lots  

m=5;    % sample size  

for i=1:n 

N=normrnd(5030,270,m,1); 

MEAN=mean(N); 

STDEV=std(N); 

U=5000; 

v(i)=(MEAN-U)./STDEV; 

w(i)=(v(i)-0.255).*sqrt(m); 

w_1(i)=(v(i)-0.525).*sqrt(m); 

w_2(i)=(v(i)-0.842).*sqrt(m); 

w_3(i)=(v(i)-1.281).*sqrt(m); 

end 

F=zeros(n,1); 

P=zeros(n,1); 

P_1=zeros(n,1); 

P_2=zeros(n,1); 

P_3=zeros(n,1); 

for j=1:n 

fun=@(x) (1./sqrt(2.*pi))*exp(-x.^2./2); 

F(j)=integral(fun,-inf,v(j)); 

P(j)=integral(fun,-inf,w(j)); 

P_1(j)=integral(fun,-inf,w_1(j)); 

P_2(j)=integral(fun,-inf,w_2(j)); 

P_3(j)=integral(fun,-inf,w_3(j)); 

end  

x=sort(F); 

y=sort(P); 

y1=sort(P_1); 

y2=sort(P_2); 

y3=sort(P_3); 

  

figure(1)  

plot(x,y,'--r','Linewidth',1.5); 

grid on  

hold on  

plot(x,y1,'-g','linewidth',1.5); 

plot(x,y2,':b','linewidth',1.5); 



 

118 

 

plot(x,y3,'-.c','linewidth',1.5); 

grid on  

lgd=legend('60','70','80','90'); 

title(lgd,'Acceptance limit'); 

xlabel('PWL'); 

ylabel('Probability of Acceptance'); 

xlim([0 1]) 

ylim([0 1]) 

% Convert y-axis values to percentage values by multiplication 

a=[cellstr(num2str(get(gca,'xtick')'*100))];  

b=[cellstr(num2str(get(gca,'ytick')'*100))];  

% Create a vector of '%' signs 

pct = char(ones(size(a,1),1)*'%');  

% Append the '%' signs after the percentage values 

new_xticks = [char(a),pct]; 

new_yticks = [char(b),pct]; 

% 'Reflect the changes on the plot 

set(gca,'xticklabel',new_xticks) 

set(gca,'yticklabel',new_yticks) 

set ( gca, 'xdir', 'reverse' ) 

 

OC curves based on Villier’s Approach  
 

clear  

close all  

clc  

  

n=1000;        % number of lots 

mu=11.588; 

sigma=0.9; 

SE=zeros(1,5); 

Pa_roughness=zeros(n,5); 

N_roughness=normrnd(mu,20,n,1); 

PWL_roughness=cdf('normal',7.0,N_roughness,sigma); % 7.0 is the 

usl 

  

SE(1,1)=sigma/sqrt(4);  % standard error with sample size  

SE(1,2)=sigma/sqrt(5); 

SE(1,3)=sigma/sqrt(6); 

SE(1,4)=sigma/sqrt(7); 

SE(1,5)=sigma/sqrt(8); 

  

for i=1:5 

    Pa_roughness(:,i)=cdf('normal',7.0,N_roughness,SE(1,i)); 

end 

  

x=sort(PWL_roughness); 
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y1=sort(Pa_roughness(:,1)); 

y2=sort(Pa_roughness(:,2)); 

y3=sort(Pa_roughness(:,3)); 

y4=sort(Pa_roughness(:,4)); 

y5=sort(Pa_roughness(:,5)); 

figure(1)  

plot(x,y1,'--r','Linewidth',2); 

grid on  

hold on  

plot(x,y2,'-g','linewidth',1.5); 

plot(x,y3,':b','linewidth',1.5); 

plot(x,y4,'-.c','linewidth',1.5); 

plot(x,y5,'-m','linewidth',1.5); 

set( gca, 'xdir', 'reverse' ); 

legend('n=4','n=5','n=6','n=7','n=8') 

xlabel('PWL'); 

ylabel('Probability of Acceptance'); 

 

Pay Factor simulation analysis  

clear   

close all  

clc 

% import PWL table  

filename1 = 'mydata A.xlsx'; 

sheet = 1; 

xlRange = 'A1:P51'; 

subsetA=xlsread(filename1, sheet, xlRange);          

n=10000; % number of lots  

m=4;     % number of sample sizes  

QL=zeros(n,2); 

QU=zeros(n,2); 

PL=zeros(n,2); 

PU=zeros(n,2); 

PWL=zeros(n,3); 

PF=zeros(n,3); 

CPF=zeros(n,1); 

CPF1=zeros(n,1); 

CMPWL=zeros(n,1); 

% population characteristics (mean and std) 

mu=[3935 12.38 67];  

sigma=[500 0.49 9.5]; 

% specification limits  

USL=[75,12.8]; 

LSL=[3500,11.2]; 

  

for k=1:n 
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    N_strength=normrnd(mu(1,1),sigma(1,1),m+1,1); 

    N_thickness=normrnd(mu(1,2),sigma(1,2),m+1,1); 

    N_roughness=normrnd(mu(1,3),sigma(1,3),m+1,1); 

    N=[N_strength,N_thickness,N_roughness]; 

    X = N; 

    MEAN=mean(X); 

    STDEV=std(X); 

    QU(k,1)=chop((USL(1,1)-MEAN(1,3))./STDEV(1,3),3); 

    QU(k,2)=chop((USL(1,2)-MEAN(1,2))./STDEV(1,2),3); 

    QL(k,1)=chop((MEAN(1,1)-LSL(1,1))./STDEV(1,1),3); 

    QL(k,2)=chop((MEAN(1,2)-LSL(1,2))./STDEV(1,2),3); 

     

  for j=1:2 

    for i=1:50 

       if (QL(k,j)==subsetA(i,m)) 

       PL(k,j)=subsetA(i,1); 

       end 

       if ((QL(k,j)>subsetA(i+1,m)) && (QL(k,j)<subsetA(i,m))) 

       PL(k,j)=subsetA(i,1); 

       end 

       if (QL(k,j)>subsetA(1,m)) 

       PL(k,j)=100; 

       end 

       if (-QL(k,j)==subsetA(i,m)) 

       PL(k,j)=100-subsetA(i,1); 

       end 

       if ((-QL(k,j)>subsetA(i+1,m)) && (-QL(k,j)<subsetA(i,m))) 

       PL(k,j)=100-subsetA(i,1); 

       end 

       if (-QL(k,j)>subsetA(1,m)) 

       PL(k,j)=0; 

       end 

       if (QU(k,j)==subsetA(i,m)) 

       PU(k,j)=subsetA(i,1); 

       end 

       if ((QU(k,j)>subsetA(i+1,m)) && (QU(k,j)<subsetA(i,m))) 

       PU(k,j)=subsetA(i,1); 

       end 

       if (QU(k,j)>subsetA(1,m)) 

       PU(k,j)=100; 

       end 

       if (-QU(k,j)==subsetA(i,m)) 

       PU(k,j)=100-subsetA(i,1); 

       end 

       if ((-QU(k,j)>subsetA(i+1,m)) && (-QU(k,j)<subsetA(i,m))) 

       PU(k,j)=100-subsetA(i,1); 

       end 
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       if (-QU(k,j)>subsetA(1,m)) 

       PU(k,j)=0; 

       end  

    end   

  end 

       PWL(k,1)=PL(k,1); 

       PWL(k,2)=PU(k,1); 

       PWL(k,3)=PU(k,2)+PL(k,2)-100; 

        

       CMPWL(k,1)=0.25*PWL(k,1)+0.35*PWL(k,2)+0.4*PWL(k,3); 

        

     if (CMPWL(k,1)<=100 && CMPWL(k,1)>=50) 

         CPF1(k,1)=55+0.5*CMPWL(k,1); 

     end 

      

     if (CMPWL(k,1)<50) 

         CPF1(k,1)=0; 

     end 

        

        

     if (PWL(k,1)<=100 && PWL(k,1)>=50) 

         PF(k,1)=55+0.5*PWL(k,1); 

     end 

      

     if (PWL(k,1)<50) 

         PF(k,1)=0; 

     end 

     if (PWL(k,2)<=100 && PWL(k,2)>=50) 

         PF(k,2)=55+0.5*PWL(k,2); 

     end 

      

     if (PWL(k,2)<50) 

         PF(k,2)=0; 

     end 

     if (PWL(k,3)<=100 && PWL(k,3)>=50) 

         PF(k,3)=55+0.5*PWL(k,3); 

     end 

      

     if (PWL(k,3)<50) 

         PF(k,3)=0; 

     end 

     CPF(k,1)=0.25*PF(k,1)+0.35*PF(k,2)+0.4*PF(k,3); 

 end  

  

MEAN_CMPWL=mean(CMPWL); 

MEAN_PWL=mean(PWL); 

MEAN_PF=mean(PF); 
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MEAN_CPF=mean(CPF); 

PF_95=prctile(CPF,95); 

PF_5=prctile(CPF,5); 

  

figure(1) 

subplot(2,2,1) 

histogram(PWL(:,1),20) 

xlabel('PWL') 

ylabel('Number of lots') 

title('Strength') 

subplot(2,2,2) 

histogram(PWL(:,2),20) 

xlabel('PWL') 

ylabel('Number of lots') 

title('Roughness') 

subplot(2,2,3) 

histogram(PWL(:,3),20) 

xlabel('PWL') 

ylabel('Number of lots') 

title('Thickness') 

subplot(2,2,4) 

histogram(CMPWL,20,'FaceColor','r') 

xlabel('CMPWL') 

ylabel('Number of lots') 

title('Composite') 

  

figure(2) 

histogram(CPF,30,'FaceColor','r') 

title('Composite PF') 

xlabel('CPF') 

ylabel('Number of lots receiving a given pay fator') 

  

figure(3) 

histogram(CPF1,30,'FaceColor','r') 

title('Composite PF') 

xlabel('PF based on CMPWL') 

ylabel('Number of lots receiving a given pay fator') 

% probability of receving PF > 0.7, 0.8, 0.9, 1.0 and 1.04 

PF70=sum(histc(CPF,70:0.1:105))/n*100;  

PF80=sum(histc(CPF,80:0.1:105))/n*100; 

PF90=sum(histc(CPF,90:0.1:105))/n*100; 

PF100=sum(histc(CPF,100:0.1:105))/n*100; 

PF104=sum(histc(CPF,104:0.1:105))/n*100; 

  

PF_average=[PF75,PF80,PF90,PF100,PF104]; 
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Different combinations of PWLs  
 

clear   

close all  

clc 

  

CMPWL=[]; 

count=1; 

  

for ii=50:100 

    for jj=50:100 

        for kk=50:100 

            if (0.25*ii+0.35*jj+0.4*kk == 90) 

                CMPWL(count,:)=[ii,jj,kk]; 

                count=count+1; 

            end 

        end  

    end 

end 

  

  

save('CMPWL.mat','CMPWL'); 

  

load CMPWL.mat 

filename2 = 'CMPWL.mat';  

  

x1 = min(CMPWL(:, 1)); 

x2 = min(CMPWL(:, 2)); 

x3 = min(CMPWL(:, 3)); 

  

a=CMPWL(CMPWL(:,1)==x1,:); 

b=CMPWL(CMPWL(:,2)==x2,:); 

c=CMPWL(CMPWL(:,3)==x3,:); 
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PWL estimation table  

 

 
 
       Source: Specification Conformity Analysis, FWHA Technical Advisory T5080.12, June 23 1989 
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