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Transportation and infrastructure modeling allows us to pursue societal aims such as improved

disaster management, traffic flow, and water allocation. Equilibrium programming enables us

to represent the entities involved in these applications such that we can learn more about their

dynamics. These entities include transportation users and market players. However, determining

the parameters in these models can be a difficult task because the entities involved in these

equilibrium processes may not be able to articulate or to disclose the parameterizations that

motivate them. The field of inverse optimization (IO) offers a potential solution to this problem by

taking observed equilibria to these systems and using them to parameterize equilibrium models.

In this dissertation, we explore the use of inverse optimization to parameterize multiple new

or understudied subclasses of equilibrium problems as well as expand inverse optimization’s

application to new infrastructure domains. In the first project of our dissertation, our contribution



to the literature is to propose that IO can be used to parameterize cost functions in multi-stage

stochastic programs for disaster management and can be used in disaster support systems. We

demonstrate in most of our experiments that using IO to obtain the hidden cost parameters for

travel on a road network changes the protection decisions made on that road network when

compared to utilizing the mean of the parameter range for the hidden parameters (also referred

to as “uniform cost”). The protection decisions made under the IO cost parameterizations versus

the true cost parameterizations are similar for most of the experiments, thus lending credibility to

the IO parameterizations. In the second project of our dissertation, we extend a well-known

framework in the IO community to the case of jointly convex generalized Nash equilibrium

problems (GNEPs). We demonstrate the utility of this framework in a multi-player transportation

game in which we vary the number of players, the capacity level, and the network topology

in the experiments as well as run experiments assuming the same costs among players and

different costs among players. Our promising results provide evidence that our work could be

used to regulate traffic flow toward aims such as reduction of emissions. In the final project

of our dissertation, we explore the general parameterization of the constant vector in linear

complementarity problems (LCPs), which are mathematical expressions that can represent optimization,

game theory, and market models [75]. Unlike the limited previous work on inverse optimization

for LCPs, we characterize theoretical considerations regarding the inverse optimization problem

for LCPs, prove that a previously proposed IO solution model can be dramatically simplified,

and handle the case of multiple solution data points for the IO LCP problem. Additionally,

we use our knowledge regarding LCPs and IO in a water market allocation case study, which

is an application not previously explored in the IO literature, and we find that charging an

additional tax on the upstream players enables the market to reach a system optimal. In sum,



this dissertation contributes to the inverse optimization literature by expanding its reach in the

equilibrium problem domain and by reaching new infrastructure applications.
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Chapter 1: Introduction

Transportation and infrastructure modeling allows us to pursue societal aims such as improved

disaster management, traffic flow, and water allocation. Equilibrium programming enables us

to represent the entities involved in these applications such that we can learn more about their

dynamics. These entities include transportation users and market players. However, determining

the parameters in these models can be a difficult task because the entities involved in these

equilibrium processes may not be able to articulate or to disclose the parameterizations that

motivate them. The field of inverse optimization (IO) offers a potential solution to this problem.

1.1 Background: Equilibrium Problems

Before discussing inverse optimization, we provide some background on equilibrium problems

in general. First, we describe the concept of a Nash equilibrium, which applies to games in which

the players have some kind of “market power” or, in other words, the ability to affect each other

and the outcome of the game [75]. Indeed, with entities and companies in our world gaining more

market power over time, Nash games are becoming more and more relevant. For convex Ki and

convex fi(xi), we can write player i’s problem as [75]:

min
xi∈Ki

fi(xi,x−i) (1.1.1)
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According to Gabriel et al. [75], a Nash equilibrium x∗ “has the property that, for every i, x∗
i

solves (1.1.1) given x−i = x∗
−i.” Essentially, this means that x∗i is a Nash equilibrium if it is the

optimal solution to player i’s optimization problem assuming that the other players in the game

do not change their decision variables. We can find an Nash equilibrium for the above problem

using a relationship called a variational inequality in which we aim to find an x∗ such that [75]:

G(x∗)T (x− x∗) ≥ 0, ∀x ∈ K =
∏
i

Ki (1.1.2a)

G(x∗) =


∇x1f1(x)

...

∇xI
fI(x)

 (1.1.2b)

Thus, there is an equivalence between a solution to this variational inequality (VI) and a Nash

equilibrium point for the multi-player game [75]. The variational inequality can also represent

other equilibrium phenomenon such as the traffic equilibrium principle by Wardrop [190]. Smith

[167] prove that an adjusted version of this variational inequality problem encodes the properties

of the Wardrop equilibrium principle, with the G function representing the cost of flow on either

paths or arcs.

We can then transform the VI to what is known as a mixed complementarity problem.

Given that G and g are convex and continuously differentiable, h is affine, and a constraint

qualification holds, both the following VI and MCP-VI produce the same solution sets [75, 93].
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VI(K,G): Find x∗ ∈ K such that:

G(x∗)T (x− x∗) ≥ 0 ∀x ∈ K = {x ∈ Rn|g(x) ≤ 0, h(x) = 0} (1.1.3)

MCP-VI: Find x∗, v∗ ∈ Rm, and β∗ ∈ Rp such that:

G(x∗) +∇g(x∗)Tv∗ +∇h(x∗)Tβ∗ = 0, x is free. (1.1.4a)

0 ≥ g(x∗) ⊥ v∗ ≥ 0 (1.1.4b)

h(x∗) = 0, β∗ is free. (1.1.4c)

The value of being able to transform the VI into a mixed complementarity problem (MCP)

is that it allows us to stack the KKT conditions of Nash problems into one MCP and use the

PATH solver [54] in GAMS to solve the problem [75]. Sometimes, we are able to simplify the

MCP into what is known as a linear complementarity problem (LCP) which can be defined for

nonnegative variables z ∈ Rn
≥0 and parameters M ∈ Rn×n and q ∈ Rn as follows [48]:

0 ≤ z ⊥Mz+ q ≥ 0 (1.1.5)

The ⊥ indicates the inner product between the two vectors above. We further explore the

parameterization of this LCP in Chapter 4.
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1.2 Background: Inverse Optimization

Inverse optimization allows a user to parameterize particular functions in optimization

and equilibrium problems using solutions to these problems [3, 21, 205]. This means we can

take observed data regarding phenomena in the world and use this data to find the parameters

that define the motivating functions at the heart of the models that represent the phenomena.

Mathematically, we represent this as follows. For optimization problems, we have the classic

problem of, given some function f(x) : Rn → R and set S, find x that solves the following

problem:

min
x
f(x) (1.2.1a)

x ∈ S (1.2.1b)

Conversely, in part of the inverse optimization literature, we take a solution x [3, 37] or a set of

solutions X [13, 112] and use them to find the parameters of the function f(x). Another part

of the inverse optimization literature uses the solutions to find the parameters for the constraints

defining S [36, 82, 161, 174]. What’s more, additional literature has explored explicitly dealing

with when the solution(s) provided are noisy [8, 132], with the statistical properties of the

inverse optimization problem [8], and with robust versions of this problem [81]. For equilibrium

problems, we use the variational inequality (VI) formulation from Bertsimas et al. [21] to

describe inverse optimization for these types of problems. In a VI problem, we find a x̂ ∈ Rn

such that the following relationship is satisfied for function F (x) : Rn → Rn and set F ⊆ Rn:
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F (x̂)T (x− x̂) ≥ 0, ∀x ∈ F (1.2.2)

We know from Gabriel et al. [75] that the VI generalizes many game theory and market problems

which are themselves equilibrium problems and generalizes their mathematical structures including

linear complementarity problems (LCPs) and mixed complementarity problems (MCPs). As

Bertsimas et al. [21] demonstrate, one part of the inverse optimization literature aims to parameterize

the F (x) function using solution(s) to this problem [4, 21, 154]. Other work focuses upon

parameterizing both F (x) and F [103]. See [38] for a recent review of the inverse optimization

literature. Our work falls into the equilibrium category of inverse optimization.

1.3 Summary of the Dissertation

In this dissertation, we explore the use of inverse optimization to parameterize multiple

new or understudied subclasses of equilibrium problems as well as expand inverse optimization’s

application to new infrastructure domains. Indeed, we pursue a combination of extending methods

in the literature after being inspired by applications and applying methods in the literature to

new applications. Using inverse optimization to parameterize new or understudied subclasses

of equilibrium problems is important because it allows us to parameterize the entities involved

in these systems to better understand their motivations. Introducing inverse optimization to new

applications extends the field’s use and involved more communities in its development. This

dissertation is composed of three projects in total, which comprise the next three chapters.

In the first project of our dissertation [5], our contribution to the literature is to propose

that IO can be used to parameterize cost functions in multi-stage stochastic programs for disaster
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management and can be used in disaster support systems. Specifically, the multi-stage stochastic

program that we parameterize is a challenging problem because it is a stochastic optimization

problem with a traffic equilibrium problem embedded within it, forming a mathematical problem

with equilibrium constraints (MPEC) problem. MPECs are mathematical programming structures

that embed equilibrium problems and/or optimization problems within their constraints [75]. We

use inverse optimization on a separate traffic equilibrium problem to obtain parameters for the

travel cost functions inherent in the objective function and equilibrium constraints of this MPEC.

Through computational experimentation, we demonstrate in most of our experiments that using

IO to obtain the hidden cost parameters for travel on a road network changes the protection

decisions made on that road network when compared to utilizing the mean of the parameter

range for the hidden parameters (also referred to as “uniform cost”). The protection decisions

made under the IO cost parameterizations versus the true cost parameterizations are similar for

most of the experiments, thus lending credibility to the IO parameterizations.

In the second project of our dissertation [4], we extend a well-known framework in the IO

community to the case of jointly convex generalized Nash equilibrium problems (GNEPs). In

particular, we take the inverse optimization techniques of Keshavarz et al. [112] and Ratliff et al.

[154] and integrate an additional term to account for the jointly convex constraints, justifying and

proving this addition using GNEP and VI theory. We demonstrate the utility of this framework

in a multi-player transportation game in which we vary the number of players, the capacity level,

and the network topology in the experiments as well as run experiments assuming the same costs

among players and different costs among players. Our promising results provide evidence that

our work could be used to regulate traffic flow toward aims such as reduction of emissions.

In the final project of our dissertation, we explore the general parameterization of the
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constant vector in linear complementarity problems (LCPs), which are mathematical expressions

that can represent optimization, game theory, and market models [75]. Unlike the limited previous

work on inverse optimization for LCPs, we characterize theoretical considerations regarding the

inverse optimization problem for LCPs, prove that a previously proposed IO solution model

can be dramatically simplified, and handle the case of multiple solution data points for the IO

LCP problem. What’s more, we use our knowledge regarding LCPs and IO in a water market

allocation case study, which is an application not previously explored in the IO literature, and we

find that charging an additional tax on the upstream players enables the market to reach the system

optimal. In sum, this dissertation contributes to the inverse optimization literature by expanding

its reach in the equilibrium problem domain and by addressing new infrastructure applications.

These three projects together draw upon similar themes and have some overlapping characteristics,

which we demonstrate in the following Venn Diagram:

Figure 1.1: Commonalities Between the Three Dissertation Projects

As can be seen and as has been demonstrated throughout this Introduction, all three projects share

the common theme of inverse optimization. They also all deal with some kind of infrastructure
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application, with project 1 dealing with road network protection, project 2 employing a traffic

game among multiple players, and project 3 exploring a water market application. Projects 1

and 2 have the commonality of embarking on intensive computational experiments to validate

the approaches. Projects 1 and 3 both apply inverse optimization to a new application area,

with project 1 demonstrating inverse optimization for disaster relief and project 3 employing

inverse optimization in the context of water markets. Projects 2 and 3 extend inverse optimization

techniques and/or theory to new or understudied sub-classes of equilibrium problems, with project

2 addressing jointly convex generalized Nash equilibrium problems (GNEPs) and project 3 exploring

linear complementarity problems (LCPs).

Indeed, we can see the progression and maturation process of the research through these

three projects as well as coverage of many topics and concepts in optimization. We start at project

1 with a new application idea and a difficult computational task in the form of solving a stochastic

MPEC, touching on areas including stochastic programming and handling complementarity constraints

embedded in optimization problems. We advance through project 2 in which we take a theoretical

step in our research and advance inverse optimization in a more general sense to a new sub-

class of equilibrium problems, stretching our understanding of building blocks of equilibrium

models including game theory, variational inequalities, and mixed complementarity problems.

This project also involved a large computational study. Indeed, in both of the first two projects,

we learned strategies and techniques for approaching large computational studies. Finally, in

the culmination of our research, we embark upon a much more difficult theoretical task: the

parameterization of linear complementarity problems which encompass optimization, game theory,

and market models. In approaching this task, we consider the multiplicity of solutions to these

problems and broader inverse optimization considerations such as the implications of moving
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between the original problem and the inverse optimization problem. What’s more, in project

3, we approach a new application and, in that case study, we demonstrate the power of inverse

optimization to impact policy directly through using system optimal solutions to parameterize

markets and, thus, encourage the addition of new taxes or subsidies. Indeed, we provide a

framework through which to parameterize LCPs, touching on such topics as complementarity

cones and matrix analysis, and a demonstration of the capabilities of inverse optimization to

influence markets and policy in profound ways.

Therefore, to conclude, we showcase in this dissertation that the worlds of theory and

application must be in conversation with each other in order to advance our understanding of

both, thus underscoring the importance of this broad field we call Applied Mathematics.

1.4 Papers and Presentations

Before we progress to the rest of the dissertation, we outline the papers and presentations

that have been produced as a result of this dissertation.

• Project 1: [5]

– Papers: Allen, Stephanie, Daria Terekhov, and Steven A. Gabriel. “A Hybrid Inverse

Optimization-Stochastic Programming Framework for Network Protection.” arXiv

preprint arXiv:2110.00488 (2021). (Under review by a journal)

– Presentations: INFORMS 2020 & Trans-Atlantic Infraday Conference 2021

• Project 2: [4]

– Papers: Allen, Stephanie, Steven A. Gabriel, and John P. Dickerson. “Using inverse
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optimization to learn cost functions in generalized Nash games.” Computers & Operations

Research (2022): 105721.

– Presentations: INFORMS 2021, ECOM 2021, & NTNU Winter School 2022

• Project 3:

– Papers: Allen, Stephanie, Steven A. Gabriel, & Nathan T. Boyd, “Inverse Optimization

for Parameterization of Linear Complementarity Problems and for Incentive Design

in Markets,” Available on arXiv soon.
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Chapter 2: A Hybrid Inverse Optimization-Stochastic Programming Framework

for Network Protection

Note: The contents of this chapter come mostly from a paper we have published on arXiv,

referenced here: [5]. There are certain additions that were made in response to the first round of

reviews from an academic journal. We have received the second round of reviews which will not

greatly change the contents of the chapter, thus we will address these comments post-dissertation.

We have presented this work at INFORMS 2020 and at the Trans-Atlantic Infraday Conference

in 2021. We thank our co-authors on this chapter: Daria Terekhov and Steven Gabriel. Stephanie

Allen did the vast majority of the work on this project, from framework conception to code

writing to paper writing. She received some advice from Daria Terekhov on implementation of

the train-test part of the experiments, but she had brought the idea of these types of experiments

herself. Daria Terekhov and Steven Gabriel provided editorial feedback.

2.1 Introduction

Given the threat of natural disasters, it is imperative that communities and nations prepare in

order to mitigate the consequences. According to NOAA [139], in the year 2020, there were

22 “weather and climate disasters” that cost 1 billion or more US dollars in the United States,

and 262 people died in these disasters. Governments and planning agencies often have little
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foresight of the type of disaster that might strike, meaning they must be prepared for many

different potential events. To be effective, governments must make strategic decisions before and

immediately after crises such that financial and human costs are minimized. Indeed, in a report

by Federal Emergency Management Agency (FEMA) entitled “National Response Framework”

[68], officials state there are five mission areas to this response framework which are prevention,

protection, mitigation, response, and recovery, thus indicating that the US government actively

intervenes at the various decision points in the disaster management cycle. We note that we use

the words “disaster” and “crisis” interchangeably in this chapter.

As a response to these events, researchers have developed disaster support systems (DSS),

which include systems that evacuate people out of tunnels [6], deliver supplies to affected individuals

[73], decide where to place supplies in anticipation of a disaster [157], and extinguish wildfires

[201]]. Wallace and De Balogh [187] define DSSes as systems which contain “a data bank, a

data analysis capability, normative models, and technology for display and interactive use of

the data and models.” We focus on the data analysis and normative model elements of these

requirements which, respectively, mathematically examine and present information for decision

makers and help make decisions. One type of normative model used in the disaster management

community which we employ in this chapter is a multi-stage stochastic program. This type of

model is proposed as a way to make decisions regarding protecting networks against disasters or

bringing supplies to communities after disasters. The 2013 US National Infrastructure Protection

Plan [52] proposes seven principles for organizations involved in critical infrastructure, one of

which states: “Risk should be identified and managed in a coordinated and comprehensive

way across the critical infrastructure community to enable the effective allocation of security

and resilience resources.” This principle supports the work of the aforementioned multi-stage
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programs for disaster relief. Indeed, in the report, the need for incorporating “security and

resilience into the design and operation of assets, systems, and networks” is stated as part of the

way to reduce vulnerabilities in infrastructure, which requires accurate representations of these

structures. The misspecification of the parameters defining these structures can severely limit

the usefulness of the multi-stage programs for disaster relief. In particular, in this chapter, we

focus on transportation cost parameters, whose misspecification could lead to incorrect protection

decisions, such as allocating too few or too many resources to parts of road networks affected by

landslides and flash floods. These incorrect protection decisions could happen if, for instance,

cost parameters are assigned such that more traffic is assumed to be using a road than actual data

shows, which in turn leads to more protective measures being allocated to this road rather than to

the road that actually sees more traffic. We propose using inverse optimization to recover these

cost parameters.

Inverse optimization (IO) allows a user to parameterize particular functions in optimization

and equilibrium problems using solutions to these problems [3, 21, 205]. This means we can

take observed data regarding phenomena in the world and use this data to find the parameters

that define the motivating functions at the heart of the models that represent the phenomena. For

this chapter, we focus on parameterizing the cost functions of a traffic equilibrium model, which

means we take data regarding traffic flow and find the values of parameters of the cost functions

that induced that flow.

Inverse optimization has two main advantages over other parameter estimation approaches:

(a) a user is able to employ a model of an entire system such as an optimization or equilibrium

problem with constraints [3, 21] when performing parameter estimation which explicitly allows

us to incorporate knowledge of the constrained model that generated the data into the estimation
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method and (b) we can more intuitively understand what is going on with regard to this method

than “black box” methods such as deep learning (see [84] for more information on deep learning).

There are techniques such as structural estimation that can be compared to inverse optimization

but, as [21] outline in Appendix 2 of their paper, there are several advantages of an inverse

optimization formulation over structural estimation, which include (a) allowing for approximate

equilibria and (b) formulating a less complicated problem (because there are no bilinear terms;

see [21] for more details).

2.1.1 Contribution

To our knowledge, neither the DSS literature nor the multi-stage stochastic program for

disaster relief literature have explored inverse optimization as a tool for estimating model parameters.

We propose inverse optimization as a new approach for data analysis and demonstrate its ability to

recover similar protection decisions as the originally parameterized stochastic network protection

model. We also demonstrate that accurate knowledge regarding the cost functions matters because

it can change protection decisions when compared to the assumption of uniform cost for most

of our experiments. If our protection decisions differ when we have more informed knowledge

of hidden traffic parameters versus when we have less information, this is important. Indeed,

having more accurate information enables us to protect the arcs that have the greatest impact on

traffic flow. This chapter’s goal is to demonstrate the joint inverse optimization and stochastic

programming framework on smaller networks and simplified situations, leaving more realistic

networks and situations to future work.

The rest of the chapter is organized as follows. Section 2.2 investigates the literature
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related to our problem. Section 2.3 provides appropriate mathematical background. Section 2.4

explains the experimental structure, and Section 2.5 explains the results. Section 2.6 discusses

our conclusions and ideas for future work.

2.2 Literature Review

The literature in this section demonstrates that multi-stage disaster relief models and DSS

models have not used inverse optimization previously.

2.2.1 Inverse Optimization for Transportation Problems

Although inverse optimization has not been previously utilized in disaster relief, it has

been used to parameterize cost functions in the transportation literature, which is relevant to our

framework because we use the techniques from this literature to parameterize the cost functions in

the stochastic network protection problem. Within the transportation literature, Thai et al. [177]

use a mathematical program with equilibrium constraints to minimize the difference between

the simulated solutions and optimal solutions to the traffic equilibrium problem as a way of

recovering the specified cost function parameters. Thai et al. [176] use a combination of methods

by [21] and [40] to create a multi-objective program that minimizes the duality gap for the

variational inequality and the difference between the optimal and observed solutions. Bertsimas

et al. [21] use their inverse variational inequality problem along with kernel methods to estimate

the cost functions. Zhang et al. [206] and Zhang et al. [207] follow [21]’s methodology,

with [206] involving different categories of vehicles and [207] emphasizing recovering both

cost function and origin-destination matrices from real-world traffic data. Chow et al. [43] use
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techniques from [3] but augment them to handle the nonlinear nature of their problem. Finally,

Allen et al. [4] extend [154]’s parameterization framework for multi-player Nash problems to the

case of jointly convex generalized Nash equilibrium problems and demonstrate this framework

by parameterizing a transportation game.

2.2.2 Multi-Stage Disaster Relief Models

There is a substantial literature on multi-stage stochastic programs for disaster relief and

protection; see [85]. Methods for estimating cost functions in road networks include fuzzy

numbers, Euclidean distances, road distance data, the Bureau of Public Roads (BPR) function

(see Section 2.3.1.1), and stochastic programming. None of them use inverse optimization to

estimate costs, which is what we propose in this chapter.

Zheng et al. [208] estimate cost parameters for moving supplies after natural disasters

using fuzzy numbers for the time it takes to traverse between the supply and demand nodes.

Barbarosoglu and Arda [16] use road information and Euclidean distances between points for

their cost parameters in their stochastic model pertaining to distributing supplies after natural

disasters. Chu et al. [44] also calculate the travel cost for several routes/paths of origin-destination

pairs to capture the idea that one or more routes could fail in a disaster in their stochastic network

protection model. Travel cost is measured by a variable which takes on real numbers between 0

and 1 and which measures how close to the shortest path the demand for an OD pair is allowed

to take through the network. Noyan et al. [144] and Doyen et al. [56] use a mixture of road data

along with scenario dependent costs to form their cost functions, while Mohammadi et al. [133]

use exclusively scenario dependent costs.
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Fan and Liu [65] employ the BPR function for their stochastic network protection problem

for arc costs, but no stochastic parameters are involved. For the rest of the BPR literature, either

the capacity is impacted by the protection decisions and/or some of the parameters in the BPR

function are stochastic [7, 66, 67, 124, 125]. For these multi-stage stochastic programs, inverse

optimization methods would have captured a set of parameters that led to given flow patterns,

which could have been used to augment the existing cost function approaches.

2.2.3 Disaster Support Systems

We focus on reviewing DSSes that have a data analysis step in their processes. First,

there are disaster support system papers that determine important quantities and parameters via

simulation and/or physical models of the situation [6, 50, 59, 73, 118, 162, 178, 182, 201, 202].

Second, DSS papers can also determine parameters via data processing as in [72, 101, 204], or

they can utilize machine learning to determine modeling structures as in [1]. Other DSS papers

use geographic information system (GIS) techniques to estimate parameters [45, 157]. Horita et

al. [100] combine GIS and sensor information to estimate parameters. In addition, some papers

propose data fusion techniques such as ensemble Kalman filters [148] and gradient based methods

[111]. Inverse optimization allows a user to propose a model of the system and parameterize

the model using data/simulated solutions1 and optimality conditions [3, 21, 37, 205], which can

augment the information gained from data and, thus, could be useful for DSSes. However, as can

be seen from this review, DSSes have not used inverse optimization for data analysis.

1See [171] for an example using proposed solutions.
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2.3 Hybrid Framework

In the next few sections, we will explain our data analysis component (which presents

information for decision makers) along with our normative model (which helps make decisions).

The data analysis component employs Bertsimas et al.’s [21] work on parameterizing cost functions

for the traffic equilibrium problem, which uses traffic data to find the parameters for the cost

functions involved in this model. We utilize the techniques from Bertsimas et al. [21] on inverse

optimization because Bertsimas et al. [21] handles equilibrium problems, which are an important

component of the normative model. The normative model comes from Fan and Liu [65] who

suggest a two-stage network protection problem with equilibrium constraints to make protection

decisions for road networks. We propose pairing the two components together in the following

sequence of steps, with θ representing the collection of parameters to be estimated by the inverse

optimization model:

1. Input data x̂j, j = 1...J into inverse optimization model (2.3.4) and obtain θ

2. Form stochastic network protection problem (SNPP) (2.3.8) with θ

3. Solve the SNPP (2.3.8) and obtain protection decisions u.

2.3.1 Data Analysis Component: Inverse Optimization

Bertsimas et al. [21] utilize variational inequalities (VI) to represent optimization and

equilibrium problems. They assume that the following extended variational inequality describes

the ϵ equilibrium of a system, with F : Rn → Rn, F ⊂ Rn, x ∈ F , and ϵ ∈ R+ [21]:
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F (x∗)T (x− x∗) ≥ −ϵ, ∀x ∈ F . (2.3.1)

When ϵ = 0, we recover the classical VI that was identified in Chapter 1. In the case of our traffic

application, we assume that F is the cost function, representing the time per vehicle along each

arc in the set A of arcs [124, 125]. Therefore, expression (2.3.1) states that x∗ solves the VI if the

inner product between F at x∗ and the difference between any point in F and x∗ is greater than

a small, negative number.

To discuss the traffic equilibrium problem, we need to define the F function and F set

which requires introducing some new notation. Bertsimas et al. [21] describe the Wardrop traffic

equilibrium with nodes N and arcs A as having a node-arc incidence matrixN ∈ {−1, 0, 1}|N |×|A|

[129], vectors dw ∈ R|N | which contain the origin destination locations represented by the set W

with a negative entry for the origin and a positive entry for the destination [129], and a feasible

set F . Bertsimas et al. [21] define the F set as:2

F =

{
x : ∃xw ∈ R|A|

+ s.t. x =
∑
w∈W

xw, Nxw = dw ∀w ∈ W

}
(2.3.2)

in which xw ∈ R|A|
+ represents the flow between origin and destination w and x ∈ R|A|

+ represents

the composite flow vector. The corresponding F function for the variational inequality is defined

as c(x) such that ca : R|A|
+ → R+ for arc a.

The multipliers associated with the constraints in the F set should be non-negative because

they represent the time it takes to travel from the associated node to the destination w [65].

Therefore, we need to turn the equalities in the F set into inequalities [14, 15]. Respecting

2We define the F set for the inverse optimization model differently; see Appendix A.1.2.
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the definition of N and dw, our traffic equilibrium problem in complementarity form is then

[14, 15, 21, 65, 75, 165]:3

0 ≤ c(xw) +NTyw ⊥ xw ≥ 0, ∀w ∈ W (2.3.3a)

0 ≤ dw −Nxw ⊥ yw ≥ 0, ∀w ∈ W (2.3.3b)

We know we can undergo this transformation from the variational inequality to the complementarity

form due to the discussion in Chapter 1 about this transformation. We can show that dw−Nxw =

0 when there is a solution for (2.3.3) and when we assume that the c(x) function is greater than 0

for all x ≥ 0 in a proof which is adapted from Ban [15]. See Appendix A.1.1. We use (2.3.3) to

generate data for the inverse optimization part of the framework, and the data generation process

can be found in Section 2.4.1.

For the inverse optimization model in Bertsimas et al. [21], we can then form an optimization

model including each data point x̂j , j = 1, ..., J (with J representing the total number of data

points utilized) representing the flow on the network such that:

• There is one OD pair for each instance x̂j .

• There is the same node-arc incidence matrix N for each x̂j .

The inverse optimization model for J data points (corresponding to each of the x̂j flow patterns),

parameters θ ∈ Θ with Θ as a convex subset of RZ (Z representing a number of parameters),

3We keep the row in N that contains the destination, which is different from [15] and [14].
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yj ∈ R|N |, and ϵ ∈ RJ is:

min
θ∈Θ,y,ϵ

||ϵ||22 (2.3.4a)

−(N)Tyj ≤ c(x̂j; θ), j = 1, ..., J, (2.3.4b)

yj ≥ 0, j = 1, ..., J, (2.3.4c)

c(x̂j; θ)T x̂j + (dj)Tyj ≤ ϵj, j = 1, ..., J, (2.3.4d)

The derivation of this mathematical program can be found in Appendix A.1.2. In this section of

the Appendix, we explain the Berstimas et al. [21] method in much more detail. We note that

the yj dual variables are important because they correspond, as in the complementarity problem

above, to the travel distance to destination j [65]. We solve this mathematical program using the

ipopt solver [185], which, for convex problems such as the one above, does solve the problem

to global optimality [186]. We set the tol parameter to 1e − 12. There can be multiple forms

for the vector-valued arc cost function c(x; θ), which the next subsection will cover.

Before moving to the next section, it is important to address one of the questions that has

been asked of inverse optimization: how is this different from linear regression? Linear regression

in its unconstrained form as presented in [84] would not be able to express the constraint relationships

in (2.3.4b)-(2.3.4d). In addition, in order to attempt to model our problem with linear regression,

we would need target total cost values for origin-destination pairs on the road network, which
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is something we do not have for our problem. We assume that we only have the values of the

decision variables. We need the dual problem to establish the right optimization relationships

to find our parameter values [21]. Even in linear regression’s constrained form (as expressed

by these papers: [80, 122, 169]), the constraints are on the parameters themselves, which Θ

in (2.3.4a) can already express. Consequently, since even constrained linear regression cannot

accommodate the relationships expressed in (2.3.4b)-(2.3.4d), then we need a more complicated

model to parameterize our cost functions. The equations in (2.3.4b)-(2.3.4d) represent the satisfaction

of dual feasibility and strong duality for the linear program produced by the variational inequality

created by the traffic equilibrium problem. Indeed, one of the most important aspects of the

model (2.3.4) is the set of dual variables yj which must satisfy two sets of inequality relationships

(2.3.4b) and (2.3.4d). These dual variables represent the cost of traveling on the network from the

various nodes to the destination node. What’s more, the inequalities in (2.3.4b)-(2.3.4d) encode

the variational inequality conditions seen in (2.3.1) and, thus, the equilibrium relationship needed

for the problem.

2.3.1.1 Different Types of Cost Functions

We propose two different formulations for the vector valued function c(x) which represents

the time per vehicle along each arc in the set of arcs A [124, 125]. Note that θ will represent the

collection of all parameters for a given function.
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• Linear Cost: We assume that ca(x) = ϕaxa + βa, ϕa ∈ R+, βa ∈ R+, such that

c(x) =


ϕ1

. . .

ϕ|A|

x+


β1

...

β|A|

 (2.3.5)

This function has been used for representing travel times such as in [166]. Siri et al. [166]

label the βa as the free flow travel times i.e., travel times without any interaction with other

travelers [21, 43, 177, 206, 207]. ϕa is the factor of additional time of having one more unit

of flow on the arc. In this chapter, we assume that the free flow travel times are given, and

our goal is to estimate ϕa for all a ∈ A (see Section 2.4.5).

• Bureau of Public Roads Function: The Bureau of Public Roads function (BPR) [27, 180]

is a common function utilized by transportation researchers when modeling flow along arcs

in a network [21, 176, 206, 207]. From [165], the BPR function for arc a is:

ca(xa) = t0a

(
1 + αa

(
xa

c′a

)β
)
. (2.3.6)

The t0a is the free-flow travel time, c′a is the “practical capacity” which we just take as

the normal capacity, and αa & β are parameters which, following [165], are commonly

assumed to be 0.15 and 4 respectively, regardless of the arc. In contrast, in this chapter,

we will assume that the αa parameter is different for each arc and that it is the quantity

we estimate with inverse optimization (see Section 2.4.5). We linearize the BPR function

using standard techniques [127, 197].

23



In our experiments, we compare the protection decisions made under the costs imputed using IO

with the protection decisions made when a user has the original parameterization from (2.3.3)

and with the protection decisions when a user assumes uniform cost, meaning average ϕ for the

linear cost function and 0.15 for the α in the BPR cost function. Section 2.4.2 will explain this

further. We choose these two cost functions because (a) the linear cost function is easy to use,

and (b) the BPR function is standard in the literature.

2.3.2 Normative Model: Two-Stage Stochastic Model

For the stochastic network protection model portion of the framework, we implement Fan

and Liu’s [65] two-stage network protection model with complementarity constraints with a few

changes in the capacity function, the conservation of flow constraints, and the objective function.

We adopt much of the notation from [65] and extended definitions for these terms can be found

in Appendix A.2.1:

• A: the set of network arcs, and m as the number of arcs.

• N : the set of network nodes, and n as the number of nodes.

• K: the number of destinations of flow in the network.

• S: the scenario set.

• xk,sa : the flow on arc a that is destined for the kth destination in scenario s. The vector

xk,s ∈ Rm denotes the flow on all arcs. (units=thousands of vehicles)

• f s
a : the total flow on arc a in scenario s, and f s as the vector containing all of the arcs.

(units=thousands of vehicles)
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• ua: the decision variable controlling resources used to protect an arc a against a crisis.

(units=proportion of necessary resources needed to fully insure the arc)

• W : the node-link adjacency matrix.

• qk ∈ Rn: designates the amount of flow originating at each node that is headed to destination

k. (units = thousands of vehicles)

• hsa(ua): the capacity of an arc a given first stage decision ua under scenario s:

hsa(ua) =


capa if a /∈ Ā

capa −ms
a(1− ua) if a ∈ Ā

(2.3.7)

with capa representing capacity of the arc without it being affected by a disaster, ms
a

representing the amount of damage done to arc a in scenario s if not protected, and Ā

represents the set of arc vulnerable to the disaster. Note that ms
a could be 0 in certain

scenarios. (units = thousands of vehicles)

• ta(f s) represents the time per vehicle along arc a [124, 125] as a function of the flows f s in

scenario s. We explore multiple different forms for ta, described in Section 2.3.1.1.

• λk,si as the minimum travel time from node i to node k in scenario s [65]. (units=travel

time)

• dk,s as the vector of extra variables that acts as a buffer for any flow that cannot be properly

apportioned. (units=thousands of vehicles).

• ps as the probability of each scenario s.
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Fan and Liu’s [65] model with a modification to the complementarity constraints based on work

by [15] and [14] is thus:

min
∑
s∈S

psQs(u, f s) (2.3.8a)

s.t. u ∈ D (2.3.8b)

f s
a =

K∑
k=1

xk,sa ≤ hsa(ua), a ∈ A, s ∈ S (2.3.8c)

0 ≤ xk,sij ⊥
(
ta(f

s) + λk,sj − λk,si

)
≥ 0, ∀(i, j) ∈ A, ∀k = 1...K, ∀s ∈ S (2.3.8d)

0 ≤ qk + dk,s −Wxk,s ⊥ λk,s ≥ 0, ∀k = 1...K, ∀s ∈ S (2.3.8e)

The Qs(u, f s) function (2.3.8a) in the objective function has the following form:

Qs(u, f s) = ⟨ψ,u⟩+ γ⟨f s, t(f s)⟩+ 10000
K∑
k=1

||dk,s||22

The first term denotes the total cost of protection (with ψ as the dollar amount it costs to protect

each arc fully); this term differs from the [65] paper which instead uses the cost of repair. The

second term computes the total travel time for all of the flow on each arc, sums these amounts,

and then multiplies the sum by γ, which transforms travel time to financial units [65], keeping

in the same units as the first term. Note, t(f s) corresponds to the c(x) function from Section
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2.3.1. The third term makes it extremely costly for the model to use any of the buffer that the dk,s

vectors provide for the conservation of flow (2.3.8e) constraints. Constraints (2.3.8b) represent

the budgetary and technological restrictions that [65] define. We specified this further as just

budgetary constraints of the form: ∑
a∈A

ua ≤ I (2.3.9)

with I representing the number of arcs we can afford to fully protect. However, because ua are

continuous variables, we can protect more than I number of arcs partially because we are treating

ua as proportions. The capacity constraints (2.3.8c) have an s dependence for the hsa functions

because the ms
a ∀a ∈ Ā are scenario-dependent. The constraints in (2.3.8d) encapsulate the idea

that there should be no flow on the arc a on its way to destination k in scenario s unless that arc is

part of the minimal travel time route to destination k. The complementarity constraints in (2.3.8e)

include the conservation of flow constraints that ensure flow begins and ends at the appropriate

places in the network. The dk,s vectors are buffers in case some of this flow does not fulfill the

conservation of flow constraints; Fan and Liu [65] define them as variables to ensure a feasible

solution.

We specify some of the parameters for the model that will not change over the course of

the chapter:

• The capa value is set to 8 for all arcs a.

• The ms
a value (amount of damage) is set to 8.

• In the objective function, we set γ = 1 (following [65]) and set the ψ vector to 1 because

we do not want cost to be prohibitive.
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2.3.2.1 Big M Method for Complementarity Constraints and Progressive Hedging

Algorithm for Solving Stochastic Network Protection Problem

Fan and Liu [65] note in their paper that the stochastic network protection problem is

difficult to solve because of (1) the complementarity constraints and (2) the stochastic elements.

In order to handle the complementarity constraints, we use the disjunctive constraint/big M

method approach [74, 95]. As an example, we take the complementarity condition from (2.3.8d)

and produce a series of constraints:

xk,sij ≥ 0 (2.3.10a)

ta(f
s) + λk,sj − λk,si ≥ 0 (2.3.10b)

xk,sij ≤Mk,s
ij (bk,sij ) (2.3.10c)

(
ta(f

s) + λk,sj − λk,si

)
≤Mk,s

ij (1− bk,sij ) (2.3.10d)

The bk,sij is a binary variable, and Mk,s
ij is a sufficiently large number, which forces at least

one of the two terms in (2.3.10c) or (2.3.10d) to be 0. We repeat the same procedure for the

complementarity constraints in (2.3.8e). See Appendix A.2.2 for information on calculating the

Mk,s
ij values. We note that this addition of binary variables increases our computational costs

because, now, we are dealing with a mixed-integer problem (MIP). To handle the stochasticity of

this problem, we follow [65] by employing the progressive hedging (PH) algorithm. Proposed by
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Rockafellar and Wets [156], the PH algorithm at its most basic level solves scenario subproblems

created by the random variable(s) involved in the original problem using an approach in which

there is a penalty term that encourages first-stage variables to tend toward the “aggregate” solution

[156] that is computed after each iteration of the algorithm. See the following references for more

information about using the algorithm, about setting its parameters, and about the fact that the

PH algorithm serves as a heuristic when handling MIP problems: [32, 49, 65, 83, 86, 106, 119,

136, 149, 160, 183, 191]. We use the implementation of the PH algorithm found in the pysp

extension [192] of the pyomo package [95, 96] in Python. We use gurobi [90] for the mixed-

integer quadratic programming sub-problems arising as part of the PH algorithm.

We note that the binary variables created by the big M method cause the SNPP to become

a mixed integer quadratic program in the case of the linear cost function. In the case of the

BPR cost function, we need to integrate a non-convex constraint into the mixed integer quadratic

program. We handle this non-convexity by turning on gurobi’s non-convex flag. This non-

convexity means that we could be obtaining local solutions for the BPR function version of the

SNPP.

Overall, with regard to the size of our problem, one of the computational bottlenecks is

the presence of the complementarity constraints in (2.3.8d) and (2.3.8e). They produce binary

variables due to the big M method, which means as the network becomes larger with more arcs, as

the number of scenarios increases, and/or as the number of origin-destination pairs K increases

(the beginning and ending points of flow on the network), more binary variables are produced

and, thus, the computational complexity increases. Thus, the size of the problem is dependent

upon the number of arcs, scenarios, and OD pairs. For the BPR cost function, there is the added

dimension of the number of breakpoints in the linearization of the function, which adds additional
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binary variables outside of the complementarity constraints.

2.4 Experimental Design

In this section, we define our experimental setup and the metrics by which we will evaluate

the experiments. Most of our experimental results demonstrate that inverse optimization enables

users to recover comparable protection decisions as the original cost protection decisions, and

there is a difference between protection decisions made under uniform cost parameters and the

original or IO parameterizations.

2.4.1 Data Generation

We generate data (observations of flow x̂j for all j = 1, ..., J), as discussed in Section 2.1,

using the forward problem in the form of the complementarity model (2.3.3); we solve (2.3.3)

using PATH [54, 70] in GAMS. The set Λ represents the origin-destination pairs utilized for

each run of the complementarity model. For this chapter, Λ is the set of all different origin-

destination (OD) pairs for each network for the data generation process, one pair for each run of

the complementarity model. In more complicated versions, Λ would consist of multiple different

OD pairs per run of the complementarity model. The algorithm below illustrates generating the

x̂j data for j = 1, ..., J given a set of configurations Λ with |Λ| = J .
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Algorithm 1: Generating the Data
Data: The set Λ of configurations

for j = 1:|Λ| do
Build the traffic equilibrium model (2.3.3) with the jth configuration of OD pair(s)

Solve the traffic equilibrium model (2.3.3) with PATH in GAMS

Store optimal x̂j

end

In part A of the experiments, the generated data x̂j, j = 1...J is used as input into the inverse

optimization model to determine the parameters θ for the cost function. In part B of the experiments,

a subset of the generated data x̂j, j = 1...J , is used as input into the inverse optimization model

to determine the parameters θ for the cost function. Namely, for each of the OD pairs, we leave

out the data corresponding to that OD pair to obtain parameters θ that correspond to that OD

pair. This parallels the training-testing framework used in machine learning [84]. For both

experimental setups, we then carry through with the rest of the hybrid framework described at the

beginning of Section 2.3 to obtain the protection decisions. See Section 2.4.3 for more details.

We note that the data produced by the methods outlined in this section is non-noisy data and,

thus, represents perfect equilibrium solutions to the traffic equilibrium model (2.3.3). This in part

causes the forthcoming defined “flow error” to be low for our experiments.

2.4.2 Metrics

In order to evaluate our hybrid framework, we must solve the stochastic network protection

problem three times for each set of generated data because we must compare the protection

decisions under the original cost parameters, the inverse cost parameters, and the assumption of
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uniform cost parameters:

• We define the IO information protection decisions, denoted u, as the protection decisions

the two-stage model would make based on the cost vector obtained using the inverse

optimization algorithm. This cost vector is defined as θ.

• We define the original information protection decisions, denoted û, as the protection decisions

that the two-stage model would make if it were directly given the original cost structure

that was used in (2.3.3) to generate the data x̂j, j = 1...J . The goal of the framework is for

the inverse optimization algorithm to be able to provide a cost estimate that will result in

the same/comparable protection decisions as under the original cost structure. We use the

Original-IO metric below to evaluate the similarity between the protection decisions: the

closer the Original-IO metric is to 0, the better IO is at recovering parameters leading to

the original (assumed correct) decisions. The cost vector corresponding to the original cost

structure is θ̂.

• We define the uniform information protection decisions, denoted ū, as those decisions that

the two-stage model would make if it were given a uniform cost structure for the network. If

the original information decisions differ significantly from the uniform information decisions,

then this provides evidence that knowing the cost structure of the network is important. The

cost vector corresponding to the uniform costs is θ̄.

Our performance metrics capture the difference between the protection decisions made under

different costs:

• Original-IO (O-IO): ||û− u||2
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• Uniform-IO (U-IO): ||ū− u||2

• Uniform-Original (U-O): ||ū− û||2.

One other metric used in part B of the experimental results is known as flow error in which we

take the difference between the flow produced by the original parameters and the flow produced

by the inverse optimization parameters. We take the 2-norm between these two flow vectors.

Mathematically, this can be expressed as:

Flow Error: ||x̂− x||2 (2.4.1)

2.4.3 Procedures for Experiments A and B

In part A of the experimental results, the full framework is as follows:
Algorithm 2: Part A of the Experiments

Data: Network Structure, Type of Cost Function

for i=1:10 do
Generate the data x̂j, j = 1...J according to Algorithm 1

Input data x̂j, j = 1...J into inverse optimization model (2.3.4) and obtain θ

u = SNPP(θ)

û = SNPP(θ̂)

ū = SNPP(θ̄)

Calculate the performance metrics according to Section 2.4.2

end

In part B of the experimental results, the full framework is as follows:
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Algorithm 3: Part B of the Experiments
Data: Network Structure, Type of Cost Function, Number of OD pairs

for i=1:10 do
Generate the data x̂j, j = 1...J according to Algorithm 1

for k=1:number of OD pairs do
Input data x̂j, j = 1...J with the x̂j corresponding to the kth OD pair removed

into inverse optimization model (2.3.4) and obtain θ

Calculate the flow error by generating the flow for the kth OD pair under the θ

and compare this flow with x̂k

end

for k ∈ subset of OD pairs do
u = SNPP(θ)

û = SNPP(θ̂)

ū = SNPP(θ̄)

Calculate the performance metrics according to Section 2.4.2

end

end

In part A, there are 10 trials for each network structure and type of cost function; in part B, within

each trial, there are separate sub-trials for each OD pair in which (a) the flow error metric is

calculated for the kth OD pair and (b) the performance metrics from Section 2.4.2 are calculated

for a subset of OD pairs. We choose to take 10% of the OD pairs for computational reasons. The

flow error metric corresponds to a type of test error for the IO algorithm because we leave out

x̂k when calculating θ for that OD pair and, then, we take the 2-norm between the flow obtained

from Algorithm 1 and the flow obtained for the kth OD pair under θ [4, 84].
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2.4.4 Networks and Scenarios

We consider two networks on which to test our hybrid framework: a 4x4 grid in Figure 3.2a

and the Nguyen & Dupuis network [142] in Figure 2.1b, both of which we make bidirectional.

(a) 4x4 Directed Grid Network, 16 Nodes & 48 Arcs (b) Nguyen & Dupuis Network, 13 Nodes & 38 Arcs

Figure 2.1: Illustrative Road Networks Used for Experiments

Experiment I: In the first experiment, the linear cost function along with the 4x4 grid are utilized.

The linear cost function is ϕaxa + βa for each arc a. The scenarios are chosen such that every

other pair of arcs are vulnerable to complete destruction. This can be seen in Figure 2.2 through

the placement of the triangles with lightening bolts, indicating the arc pairs at risk. Each arc pair

is given a 1/12 chance of failing.
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Figure 2.2: Scenarios for Experiments I & II

Furthermore, for the experiments involving the linear cost function, only the ϕa parameters

are estimated. βa, the free flow travel time for arc a, is assumed to be known in the majority of

the papers cited in the literature review on estimating cost functions using inverse optimization

[21, 43, 176, 177, 206, 207]. Consequently, for the θ̂, θ̄, and θ stochastic protection models

involving linear cost, the βa terms are the same across all of them. For the θ̂ protection model, the

ϕa terms are the original cost values generated by the unifrnd MATLAB function, as further

discussed in Section 2.4.5. For the θ protection model, the ϕa terms come from the inverse

optimization model (2.3.4). Finally, for the θ̄ protection model, the ϕa = 6 for all a, as indicated

in Table 2.1 in Section 2.4.5.

Experiment II: In Experiment II, the inverse optimization algorithm computes the αa parameters

for each arc a for the BPR cost function. Wong and Wong [199] support having different αa

parameters across the network because they vary the α based on the structure of the network

involved. Lu et al. [126] create their BPR function such that the α parameter value differs for

each type of vehicle in their simulation, thus again showing that the α parameter can be different

than the standard uniform 0.15 noted in Section 2.3.1.1. The IO model is given the randomly
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chosen t0a parameters and the capacity levels (all set to 8), and it is asked to estimate the αa

values. The uniform parameter value that is chosen for the BPR experiments is 0.15 because

that is the traditionally chosen parameter value [165]. The scenario set up is the same as in

Experiment I (see Figure 2.2).

Experiment III: Experiment III uses the linear cost function for the Nguyen & Dupuis network.

Figure 2.3 illustrates the arcs that have a chance of failing, which are again chosen such that every

other pair of arcs are vulnerable to complete destruction. There are 9 pairs of arcs indicated,

which means each pair has a 1/9 chance of completely failing.

Figure 2.3: Scenarios for Experiments III & IV

The notes about the linear cost function discussed in Experiment I hold for this experiment; only

the network has changed along with the qk for part A of the SNPP solves. See the beginning of

Section 2.4.5 for the note about qk for part A of the experiments.

Experiment IV: Experiment IV employs the BPR cost function along with the Nguyen & Dupuis

network. The scenario pattern is the same as in Experiment III (see Figure 2.3), and the description

of Experiment II for the BPR function holds for this experiment as well.
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Some more of the details for Experiments I-IV can be found in Table 2.1, with the following

explanation.

• Network: The network used

• Cost Function: The transportation function used, as defined in Section 3.1.1.

• Parameters: Distributions from which the original cost function coefficients are drawn. We

choose the ends of the uniform distributions for the ϕa, βa, and t0a parameters to be 2 and

10 so as to produce a fairly varied range of numbers but not too large of a range. We choose

the range for the uniform distribution for αa to be between 0.1 and 0.2 because typically

αa is set to 0.15 [165], so we wanted to generate parameter values that were not too large

or too different from this value. The capacity c′a values set to 8 are due to the fact that we

are sending 8 units of flow between nodes in the networks.

• # Scenarios: References the number of arc pairs that are vulnerable to destruction. We

obtain these numbers because we are choosing every other pair of arcs to be candidates for

destruction, and each of these pairs is assigned an equal chance of failing. Therefore, we

arrive at the number of scenarios listed for each experiment.

• ρ Used: Indicates a parameter value in the PH Algorithm. We obtain this value after many

runs of the PH Algorithm with various values of ρ.

• Number of Cores: Refers to the number of computer cores utilized for the experiments.
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Experiment # I II III IV

Network 4x4 Grid 4x4 Grid N & D N & D

Cost Function Linear BPR Linear BPR

Parameters
ϕa ∼ U [2, 10]

βa ∼ U [2, 10]

αa ∼ U [0.1, 0.2]

t0a ∼ U [2, 10]

c′a = 8

ϕa ∼ U [2, 10]

βa ∼ U [2, 10]

αa ∼ U [0.1, 0.2]

t0a ∼ U [2, 10]

c′a = 8

# Scenarios 12 12 9 9

ρ Used 5 5 5 5

Number of Cores 8 8 8 8

Table 2.1: Experiment Descriptions

To summarize all of the experiments, we have the following experiment matrix. To distinguish

between experiments A and B, we indicate the number of origin-destination pairs in the SNPP

solves via k. For part A experiments, there are two origin-destination pairs for the SNPP solves

(k = 2) and, for part B experiments, there is one origin-destination pair for each of the SNPP

solves (k = 1).
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A B

I
Experiment IA:

Linear, 4x4, & k = 2

Experiment IB:

Linear, 4x4, & k = 1

II
Experiment IIA:

BPR, 4x4, & k = 2

Experiment IIB:

BPR, 4x4, & k = 1

III
Experiment IIIA:

Linear, N & D, & k = 2

Experiment IIIB:

Linear, N & D, & k = 1

IV
Experiment IVA:

BPR, N & D, & k = 2

Experiment IVB:

BPR, N & D, & k = 1

Table 2.2: Experiment Matrix

2.4.5 Details of the Experiments

In this section, we elaborate upon some of the details of the experiments. For each trial

of each experiment, Algorithm 1 is used to generate x̂j for j = 1...J . Next, for each trial of

each experiment, the hybrid framework is used to estimate a set of parameters for the current cost

function and to find the protection decisions under that parameterization given a set budget.

In the experiments, three components are varied: the type of graph (4x4 grid vs. Nguyen &

Dupuis (N & D)), the type of cost function (linear vs. BPR functions), and the origin-destination

specification (see Table 2.2 as reference). For all of the experiments, the following remain the

same:

• The MATLAB built-in function unifrnd is used to create the random original costs for

the data generation part of each trial of each experiment.

• There are 10 trials for each experiment, each with a different original (and random) cost
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parameterization.

• For part A of the experiments, the k for qk is equal to 2. For the 4x4 Grid, eight units

of flow go from node 0 to node 15 and from 15 to node 0 and, for the Nguyen & Dupuis

network, eight units of flow go from node 0 to node 2 and from node 2 to node 0. See

Figure 2.1 for the node references. For part B of the experiments, the k for each run of the

SNPP is equal to 1, and the end points correspond to the chosen kth OD pair in the subset

of OD pairs chosen in Algorithm 3. These subsets are chosen randomly.

• The set of scenarios correspond to each pair of arcs indicated in Figures 2.2 and 2.3. Each

pair of arcs has an equal chance of failing.

• The budget for constraint (2.3.9) is set to 6. It could be modified in future work.

• For each run of the stochastic network protection problem (SNPP) in part A, ϵ = 0.01 or

ϵ = 0.001 for the g(k) PH error metric [191]; we utilize the default error metric outlined

in the pysp documentation in [94]. The maximum number of iterations is 300 for part A.

Therefore, the progressive hedging algorithm stops if it reaches the tolerance or if it reaches

the maximum number of iterations, whichever occurs first. Two runs of each experiment

are done, one under ϵ = 0.01 and one under ϵ = 0.001. For part B, the adjustments are

that the stochastic solves are undertaken with an ϵ = 0.001 and an iteration maximum of

150. The parameters were changed between the two parts because we theorized that part B

would be more computationally intensive.
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2.5 Experimental Results

2.5.1 Experiment IA-IVA

The results of the experiments are evaluated with respect to two hypotheses regarding

confidence intervals [188] of the means and to a direct comparison of the means of the O-IO,

U-IO, and U-O metrics defined in Section 2.4.2.4 See Appendix A.3.2 for information on the

medians and minimum/maximums of the data and see Appendix A.3.3 for the run times of the

experiments.

The first hypothesis states the O-IO confidence intervals for the experiments will include

0 because the inverse optimization framework can recover comparable protection decisions to

the θ̂ protection decisions. Looking at Tables 2.3-2.4, all of the confidence intervals include 0.

Therefore, there is evidence in favor of the hypothesis.

The second hypothesis states that the U-IO and U-O metric confidence intervals will not

include 0 because having either cost parameters that are learned from IO or the original parameters

makes a difference in protection decisions when compared to the case of uniform cost parameters.

Tables 2.3-2.4 indicate that Experiments IA-IIIA present evidence in favor of the hypothesis, but

Experiment IVA falls short since the confidence intervals for U-IO and U-O both include 0.

Experiments IA-IIIA demonstrate that using θ̄ (uniform cost) leads to different protection

decisions than the θ̂ or θ costs. Comparing the means as a percentage of the total budget in Tables

2.3 and 2.4, we see that the O-IO metric as a percentage of the budget is small, while the U-IO

and the U-O metrics as a percentage of the budget are many times greater. The small values of the

4See Appendix A.3.1 for the flow error metrics for the IO α values because, as can be seen from Figure 2.5, the
IO α values are different from the original α values.
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O-IO metric as a percentage of the budget indicate that IO can be used to recover parameters for

the SNPP model, while the comparatively large values of the U-IO and U-O metrics indicate that

the uniform protection decisions are quite different from the IO and original protection decisions,

confirming the value of IO in recovering the network parameters. Boxplots in Figures 2.4 and 2.5

(along with the boxplots for Experiment IIIA in Appendix A.3.2) tell the same story.

Experiment IA Experiment IIA Experiment IIIA Experiment IVA

Mean CI Mean CI Mean CI Mean CI

O-IO
0.0001

0.0%
(-0.0001, 0.0002)

0.0015

0.03%
(-0.0007, 0.0038)

0.0374

0.62%
(-0.0144, 0.0892)

0.0041

0.07%
(-0.0017, 0.0099)

U-IO
0.3449

5.75%
(0.2795, 0.4103)

0.0564

0.94%
(0.0115, 0.1013)

0.2617

4.36%
(0.2019, 0.3215)

0.0261

0.43%
(-0.028, 0.0801)

U-O
0.3449

5.75%
(0.2795, 0.4103)

0.0559

0.93%
(0.0108, 0.1009)

0.2573

4.29%
(0.2011, 0.3135)

0.0264

0.44%
(-0.0285, 0.0812)

Table 2.3: Means, Means as Percentage of I = 6 Budget, and 99% Confidence Intervals (CI) for
Experiments IA-IVA, ϵ = 0.01

Experiment IA Experiment IIA Experiment IIIA Experiment IVA

Mean CI Mean CI Mean CI Mean CI

O-IO
0.0001

0.0%
(-0.0001, 0.0002)

0.0013

0.02%
(-0.0002, 0.0027)

0.0251

0.42%
(-0.017, 0.0673)

0.0117

0.19%
(-0.0168, 0.0402)

U-IO
0.3304

5.51%
(0.2545, 0.4063)

0.0638

1.06%
(0.01, 0.1176)

0.2521

4.2%
(0.1873, 0.3168)

0.0197

0.33%
(-0.016, 0.0554)

U-O
0.3304

5.51%
(0.2545, 0.4063)

0.0634

1.06%
(0.0095, 0.1173)

0.2504

4.17%
(0.1807, 0.3202)

0.0257

0.43%
(-0.0158, 0.0673)

Table 2.4: Means, Means as Percentage of I = 6 Budget, and 99% Confidence Intervals (CI) for
Experiments IA-IVA, ϵ = 0.001
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(a) Experiment IA Results for ϵ = 0.01 (b) Experiment IA Results for ϵ = 0.001

Figure 2.4: Experiment IA Results: 4x4 Grid Network with Linear Cost. The parameter
differences refer to the ϕ differences.

(a) Experiment IIA Results for ϵ = 0.01 (b) Experiment IIA Results for ϵ = 0.001

Figure 2.5: Experiment IIA Results: 4x4 Grid with BPR Function. Parameter differences here
refers to the α differences.

2.5.2 Experiments IB-IVB

From Algorithm 3, we obtain results for Experiments IB-IVB. We calculate the metrics

described in Section 2.4.2 for 10% of the OD pairs, but we calculate the flow error between the

original and inverse optimization parameterizations for all of the origin-destination pairs. There

are 240 OD pairs for the grid network and 156 OD pairs for the N & D network.

In Figures 2.6-2.9, we plot histograms of the decision difference metrics between u, û, ū
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outlined in the first part of Section 2.4.2 for Experiments IB-IVB. We see that, for the linear

function for both networks, there is a clear difference between the IO-Original metric and IO-

Uniform & Original-Uniform metrics, with the IO-Original & IO-Uniform histograms showing

that there is a large difference between the IO/original and uniform protection decisions. For

the BPR grid Experiment IIB, there are still some OD pairs that result in protection decisions

that are different between the uniform parameterization and the IO/original parameterizations.

For the BPR N&D network Experiment IVB, there are really no differences between the three

histograms, thus this experiment does not showcase the value of inverse optimization for making

protection decisions. We do note that there is more variability in the hidden parameters for the

linear cost function than for the BPR cost function, which certainly contributed to the differing

IO-Uniform and Original-Uniform results between the two functions on the two graphs.

Finally, in Figures 2.10-2.11, we have the flow errors for all the OD pairs for each of the

four experiments. We see that there is low flow error for all of the experiments except Experiment

IVB which is BPR N & D. Therefore, we note that, as in experiment IVA, experiment IVB does

not perform in the way we were expecting, which may mean not all cost function and network

pairings are suitable to inverse optimization. However, most of the experiments (Experiments

IB-IIIB) do support the idea that inverse optimization is recovering parameterizations that lead

to similar flow patterns as the original parameterizations. We note that this low flow error is

in part due to the way in which we designed the train-test experiments, with only leaving one

observation out of each fold.

In these results, we demonstrate that, in most of the experiments, (a) inverse optimization

can recover cost parameters that produce the same flow values as the original parameters, (b) the

protection decisions are very similar between the original and inverse optimization costs, and (c)
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for at least a portion of the origin-destination pairs, there were differences between the uniform

cost and original & inverse optimization cost protection decisions.

Figure 2.6: Experiment IB All OD Pairs

Figure 2.7: Experiment IIB All OD Pairs
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Figure 2.8: Experiment IIIB All OD Pairs

Figure 2.9: Experiment IVB All OD Pairs
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Figure 2.10: Flow Error for Linear and BPR on 4x4 Directed Grid Network: Note a few of the
BPR flow error values fell outside of the 0-0.2 flow error range.

Figure 2.11: Flow Error for Linear and BPR on N & D Directed Grid Network: Note some of the
BPR flow error values fell outside of the 0-0.2 flow error range.

2.6 Conclusions & Future Work

In this chapter, we have demonstrated that inverse optimization can be used as a tool to

make better protection decisions in multi-stage stochastic programs for disaster relief. Using

48



two different networks and two different cost functions, we demonstrate that IO can be used to

recover network parameters that produce similar protection decisions as the original parameters

that were used to generate the data. For most of the experiments, we also demonstrate that

the protection decisions are different when we have either cost parameters learned from IO or

the original cost parameters compared to the protection decisions that would have been made

under the assumption of uniform cost. These results suggest that inverse optimization can be

used as a data analysis approach in a DSS and as a way to estimate cost parameters in multi-

stage stochastic programs for disaster management. Indeed, inverse optimization is valuable

precisely because it can estimate the hidden parameters in the functions that drive optimization-

based systems. Being able to propose an optimization or equilibrium model of a system and,

then, being able to find the parameters for the functions that drive those models are important

parameter estimation capabilities. Inverse optimization is a parameter estimation tool with these

capabilities and, as opposed to a method such as deep learning, we can actually understand the

method in terms of optimality conditions and do not lose important properties such as convexity

(for more information on deep learning, see [84]).

This chapter shows a proof of concept of the use of inverse optimization for DSS, and

we leave intensive realistic studies as future work. This future work would require algorithmic

innovations because the current model has to contend with issues of complementarity, stochasticity,

and functional approximation (in the case of the BPR function). However, the results from this

chapter demonstrate that inverse optimization is a valuable tool to be used in parameter estimation

for multi-stage programs for disaster relief and decision support systems. This means that (a)

we can trust the inverse optimization parameterizations to credibly predict the flow values on

the networks and (b) there is a difference between using knowledge of the hidden parameters
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versus not using this knowledge in protection decision making. Therefore, decision makers

with an optimization or equilibrium model can use inverse optimization to estimate their model

parameters. Accurate parameters will lead to accurate protection decisions, which is fundamental

to disaster preparedness because, if incorrect decisions are made, important arcs in the network

might not be protected adequately in the event of a natural disaster.

With regard to future work, estimating costs such that they are a function of the disaster

would be something worth pursuing; indeed, it may be possible to incorporate risk metrics such

as those proposed by [31] and [87]. In addition, expanding the experiments such that there is

interaction between OD pairs in both the data set for the IO mathematical program and in the flow

patterns for the SNPP would enrich the analysis. Furthermore, obtaining real data on scenarios

and on traffic patterns would allow us to take these simulated results and apply them to the real

world. Indeed, we would want to expand this work to a larger case study with this real data,

which would require more algorithmic innovations as we increase the size and intricacy of the

problem.
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Chapter 3: Using Inverse Optimization to Learn Cost Functions in Generalized

Nash Games

Note: Most of the contents of this chapter come from our article published in Computers &

Operations Research: [4]. We have made some additions to this research since the article was

published, specifically the experiments marked as Part B in the experiments section. We have

presented this research at ECOM 2021, at INFORMS 2021, and the NTNU Winter School in

2022. We thank our co-authors on this chapter: Steven Gabriel and John Dickerson. Stephanie

Allen did the vast majority of the work on this project, including extending the inverse optimization

framework [112, 154] discussed to jointly convex generalized Nash equilibrium problems, forming

the transportation game, writing the code, and writing the paper. Steven Gabriel worked out one

of the proofs and one of the counter examples in the Appendix, and he talked about a paper in

one of his classes that Allen found very useful in extending the IO framework to jointly convex

GNEPs. Steven Gabriel and John Dickerson provided editorial comments on the paper.

3.1 Introduction

In traditional optimization problems, a model with exogenous data is given, and the goal

is to find a feasible solution that maximizes or minimizes a given objective function. In inverse

optimization (IO) problems, a particular solution or set of solutions is instead given as input,
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and the goal is to find the parameters of the optimization problem that resulted in that observed

solution or set of solutions [3, 21, 36, 37, 82, 174, 205]. Applications of inverse optimization are

myriad, including those in medical [34], energy [161], and transportation areas [207].

As a more specific example of inverse optimization, we may take as input observations

of strategic behavior from rational, utility-maximizing players acting in equilibrium in a non-

cooperative game and then infer the utility functions being optimized by those players’ behaviors,

as was done by [154, 155, 193, 194]. More specifically, Ratliff et al. [154] observe the outputs

of a multi-player Nash game in which the players can affect each other’s objective functions in

their individualized optimization problems and, then, utilize those outputs to parameterize the

players’ objective functions. In the present chapter, we extend [154]’s framework to problems

with “coupled” constraints as referenced by [158], [92], and [62] which involve all other players’

variables in the constraints of the feasible region. This means we are parameterizing the objective

functions of players in a game in which the players can affect not only each other’s objective

functions but also each other’s feasible regions. These games with “coupled” constraints are

known as jointly convex generalized Nash equilibrium problems (GNEP) [62, 63, 75, 92, 158].

There are important models in economics, communications, and energy that are GNEPs (see

Facchinei and Kanzow [63] and Gabriel et al. [75]), so dealing with the jointly convex case of

GNEPs is an important step in parameterizing the broader class of GNEPs. As our application in

the chapter, we focus on the context of a multi-player generalized Nash transportation game with

a “coupled” constraint in which players travel across a road network with the goal of minimizing

travel time, and we utilize their observed behavior to parameterize their underlying cost functions

in the game (see Figure 3.1). In the case of this transportation problem, the “coupled” constraint

is a capacity constraint that requires the flow across all players on the various arcs to stay below
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a certain threshold.

Figure 3.1: Framework for the Transportation Game

We formulate this transportation problem on small but illustrative networks, showing via

simulated experiments with multiple players that we can recover objective function parameters

for the players using observed player behavior in the GNEP with a “coupled” constraint such

that the same flow patterns hold under the recovered parameterizations as under the original cost

parameterizations. We also provide some supporting theoretical results regarding a special case

of our transportation problem and the existence of unique solutions to this transportation problem.

Although we utilize the transportation application in the chapter, the extension of Ratliff et al.’s

[154] framework outlined in Section 3.3.3 can be utilized for other jointly convex GNEPs, as will

be explained in that section.

3.1.1 Related Work

Work due to Keshavarz et al. [112] on parameterizing the objective function of a convex

program has been influential in the inverse optimization community and has been discussed and

referenced in multiple other inverse optimization papers such as [8, 21, 61, 154]. Ratliff et

al. [154] apply the ideas of that paper to the context of game theory by making the argument

that the KKT conditions [26] and other added constraints parallel different properties of Nash
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equilibria, as further illustrated by [158] and [153]. Ratliff et al. [154] use data to parameterize

the objective functions of players in an energy game. This combination of game theory with

models/algorithms to learn parameterizations is not new; indeed, there is a subcommunity of the

economics and computer science community that seeks to estimate the parameters of the players

in their games [140, 151, 154, 155, 193, 194]. Notably, [140] reconstructs the incentives of

players using data by assuming no-regret learning on the part of the players, which allows for

more realistic modeling of players than the stronger Nash assumption of perfect knowledge. The

authors of [193, 194] also encode the requirement of low regret into their inverse optimization

model of multi-player interaction in a correlated equilibrium game while maximizing entropy

of the mixed-strategy actions of the players. The authors of [151] point to the importance of

having robust methods when estimating players’ parameters because our rationality assumptions

can be problematic, and our models of the players might be incorrect. Other literature directly

from the inverse optimization community does deal with game theory and multi-player models.

Nguyen [141] proposes an inverse optimization strategy for peer-to-peer energy systems in which

the movement of energy from one entity to another is modeled, but the players are not modeled

independently, thus making it different from our model. Chen et al. [39] augment Bertsimas et

al.’s [21] inverse optimization framework to obtain parameters for a player’s “rivals”; the authors

seem to be dealing with a “coupled” constraint in their IO model, but they are focused upon

one application whereas we present a way of handling this type of constraint more generally.

Fernández-Blanco et al. [69] use a bilevel approach to inverse optimization and model electricity

demand for a “pool” of consumers, thus not following our approach of a game theoretic model.

Risanger et al. [155] do model an energy equilibrium problem and use inverse optimization

techniques from [112], but they do not include a “coupled” constraint. Finally, there is literature
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on finding cost functions for differential games, but those models differ significantly from the

models we envision; interested readers can see references such as [11, 107, 135].

With regard to transportation problems, our example used in the present work, the methods

of inverse optimization and game theory have both been applied before. The inverse optimization

literature on transportation problems has focused on parameterizing cost functions [57, 108, 143,

200, 206], finding capacity values on a network [43], and also on finding the “weights” for

components of objective functions in transportation-themed models [41, 42]. In reference to

game theory and transportation, [60] reviews a number of game theory models that deal with

such transportation phenomenon as “speed choice” and “merging,” and [203] identify types of

games that appear in transportation research which include generalized Nash equilibrium games.

In a recent work, [168] solve a multi-player version of the bipartite graph transportation problem

as a GNEP, thus demonstrating that generalized Nash problems are a difficult problem type that

is still being explored. The merging of game theory/equilibrium problems, the estimation of

parameters for these problems, and transportation has been seen in a number of papers [21, 22,

43, 114, 117, 175, 176, 177, 206, 207]. In particular, [117, 175], and [22] focus on and/or cover

the combination of routing games in transportation with estimating parameters, a category into

which our chapter more specifically fits. Other researchers have pursued similar work to ours in

the inverse GNEP space [98], taking more of a pure mathematical approach. Still others have

utilized a “coupled” capacity constraint in their models of player movement [200] in an effort to

estimate “network dual prices” for the constraint.

For the papers that closely align with the current chapter, we contrast their methodology

with ours. In [175], the researchers focus on “minimizing risk” with regard to estimating the

cost functions in a routing game, and the reseachers do not deal with any “coupled” constraints.
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By contrast, we focus on KKT/optimality conditions instead of statistical quantities and tackle

a different kind of problem in the form of a generalized Nash equilibrium problem. In [22],

the researchers approach estimating parameters in a routing problem through a “query” system

in which they: (a) control part of the objective function to obtain a desired flow pattern and

(b) control part of the flow to obtain a desired flow pattern. This contrasts with our approach

since we recover a set of parameterizations instead of influencing the flow, and we again work

with a generalized Nash game while these researchers do not. [117] most closely align with

our work because the researchers’ work can be directly applied to atomic routing games, as

opposed to the previous two papers [22, 175] that focused upon non-atomic routing games in

which individual players are not considered (see [159] for more details on atomic versus non-

atomic routing games). While [117] devise a mathematical program to solve the problem of

estimating parameters, similar to our approach, they do not deal with a “coupled” constraint in

their approach. Hemmecke et al. [98] focus on a theoretical framework for finding cost functions

in generalized Nash games, which contrasts with our approach that extends an applied framework

using optimality conditions to find cost functions in generalized Nash games with “coupled”

constraints. Finally, [200] formulate a set of linear programs based on work by [3] to handle

their problem of finding “network dual prices” for their “coupled” capacity constraint and utilize

an averaging algorithm to find these prices. Although [200] work with a “coupled” constraint,

we work with and extend another model from [154] and [112] that has been influential in the

literature (as seen in [8, 21, 61, 154]).
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3.1.2 Our Contribution

We contribute to the literature by extending the parameterization framework of Ratliff et al.

[154] to the context of jointly convex GNEP games, which allows us to model more sophisticated

interactions among players in Nash games by considering the players’ effects on each other

in both their objective functions and constraint sets [63, 75]. We expand upon Ratliff et al.

[154]’s extension of Keshavarz et al. [112]’s framework because it was relatively straightforward

to expand. This differs from other inverse optimization literature that either does not include

“coupled” constraint(s) [155, 193], does not model the problem as a multi-player game with

individual player optimization problems [69, 141], or does include the former two elements but

makes the inverse model too specific to their application [39] (and builds off the framework

of Bertsimas et al. [21] as opposed to Keshavarz et al. [112]). What’s more, while [98]

discuss theoretical results with regard to inverse optimization and GNEPs, we pursue an applied

framework to recover parameterizations for cost functions. For our example transportation game

with a “coupled” capacity flow constraint for the arcs on the network, we differ from the transportation

papers that combine equilibrium problems with inverse optimization, such as [21, 207], and the

other papers listed in Section 3.1.1 involving estimating parameters, including the non-atomic

routing game literature of [175] and [22], because our method models traffic at the level of the

player and includes a “coupled” constraint. Our approach also differs from [117] who model

traffic at the level of the player because of this “coupled” constraint. Finally, although one

of [200]’s models includes a “coupled” constraint, we focus on extending the framework by

[154] and [112] as opposed to their use of [3]’s framework. Our contribution to the literature is

significant because we extend a framework that has been influential in the literature (as seen in
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[8, 21, 61, 154]) to jointly convex generalized Nash equilibrium problems.

3.2 Preliminaries

As our application in the chapter, we examine the problem of combiningN -players’ shortest

path problems to create a traffic game in which the N players affect each other’s costs on the

network via interaction terms in their objective functions as well as via a “coupled” capacity

constraint in the feasible region. The problem parallels what is known as an atomic routing game

[159] which features multiple players each with the ability to affect the outcome of the traffic

game and which can be represented as a multi-user Nash equilibrium game [46, 146]. However,

atomic routing games as presented in [159] do not have “coupled” constraints. We do note that

this model was also inspired by [200] who formulate their problem as a set of inverse shortest

path problems and who did include a “coupled” capacity constraint in one of their formulations.

For a network with n arcs and m nodes, let xi ∈ Rn to be the flow decision variables

for the network arcs for each player i ∈ [N ], which can be fractional. The positive diagonal

matrix Ci ∈ Rn×n represents the coefficients for the interactions between player i’s flow and the

aggregate flow, capturing the dynamic costs associated with increasing flow from the players.

The vector c̄i ∈ Rn represents the base cost for traveling along each link in the network; this is

also called the free flow travel time by various papers [21, 43, 166, 177, 206, 207]. We also take

D ∈ {−1, 0, 1}m×n as the conservation-of-flow matrix which keeps track of the net flow at the

nodes [129] and α ∈ Rn as the collective capacity for theN players’ flow on each arc. The vector

fi ∈ Rm for each player i indicates the starting or origin (in negative units of flow) and ending or

destination (in positive units of flow) points in the network of the flow for each player i ∈ [N ].
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Thus, these two points make up an origin-destination or OD pair. As an example for fi, if player

i = 1 begins at node 2 and ends at node 12 in a network with 16 nodes, then their f1 vector would

have a dimension of 16× 1, and we would place a −1 at entry 2 and a 1 at entry 12. Given all of

these variable and parameter definitions, the resulting optimization problem faced by player i is:

min
xi

xTi Ci

(
N∑
j=1

xj

)
+ c̄i

Txi (3.2.1a)

Dxi = fi (dual variable: vi) (3.2.1b)

xi ≥ 0 (dual variable: ui) (3.2.1c)

N∑
j=1

xj ≤ α (dual variable: ū) (3.2.1d)

This is a N -player traffic game in which the N players affect each other’s costs on the network

via the objective function, which has an interaction term between player i’s flow and all other

players’ flow and a term representing the base cost for traveling along each arc. Also, there is a

shared constraint in the flows (3.2.1d). This constraint makes this problem a generalized Nash

equilibrium problem [62, 63, 75, 92, 158]. We also have the conservation of flow constraints in

(3.2.1b) for each player i and the non-negativity constraints in (3.2.1c) for each player i.

In this chapter, we will examine the case in which the Ci matrices and ĉi vectors are equal

across allN players and in which they are different across all N players. The first case represents

the situation in which each player faces the same interaction costs and free flow travel times as

all other players which is a common assumption in aggregate models such as [21, 176, 177]. The

second case represents a view in which the players do not have a consensus view of the interaction
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costs or the free flow travel times, as proposed by [41, 42, 200].

In order to obtain these matrix and vector parameters, we extend the parameterization

formulation proposed by [154] to GNEPs with “coupled” constraints. [154] call their formulation

a residual model after the similar [112] model. Our extended residual model is defined as follows

for the N players [112, 115, 154]:

min
Ci,c̄i,vk

i ,u
k
i ,ū

k

∑
k


stationarity︷ ︸︸ ︷

N∑
i=1

||Ci

2xk
i +

∑
j ̸=i

xk
j

+ c̄i +DT vki − uk
i + ūk||1 +

complementarity #1︷ ︸︸ ︷
N∑
i=1

||(xk
i )

Tuk
i ||1 +

complementarity #2︷ ︸︸ ︷
||(α−

∑
j

xk
j )

T (ūk)||1



L1 ≤ diag(Ci) ≤ U1 ∀i (3.2.2a)

L2 ≤ c̄i ≤ U2 ∀i (3.2.2b)

ūk ≥ 0 ∀k uki ≥ 0 ∀i, k (3.2.2c)

At a high level, our objective function naturally decomposes into three parts (labeled

above as “stationarity,” “complementarity #1,” and “complementarity #2”); we now describe

the intuition behind each part.

• The stationarity component is a norm corresponding to the stationarity conditions of

the optimization problem for each player i and each data piece k, with the data pieces

representing the flow patterns we observe between the origin-destination pairs on the network.

For this norm, the xki are data of the flow patterns for each player i and each origin-

destination pair k, and our variables are the diagonal of the Ci ∀i, the vector c̄i ∀i, uki as the
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dual variables for constraint (3.2.1c) for all i, k, vki as the dual variables for constraint

(3.2.1b) for all i, k, and ūk as the dual variables for constraint (3.2.1d) for each data

piece/origin-destination pair k. An origin-destination (OD) pair indicates the beginning

(origin) and ending (destination) points of a player’s path. We have one set of ūk dual

variables for each k that are shared across the players, which will be further explained in

Section 3.3.

• The complementarity #1 norm refers to the complementarity conditions for the nonnegativity

constraint across the data and the players

• The complementarity #2 norm refers to the complementarity conditions that pair with the

“coupled” constraint for each data piece.

In conjunction, these three components of the objective allow us to minimize the error across the

relevant KKT conditions for all players and all data. The constraints on this objective include

requiring that the diagonal of the Ci matrices remain between two bounds L1 ∈ Rn and U1 ∈ Rn

as captured in (3.2.2a) and that the vectors c̄i remain between two bounds L2 ∈ Rn and U2 ∈ Rn

as captured in (3.2.2b). The use of upper and lower bounds for the Ci and c̄i was inspired by papers

such as [21, 37, 112, 115, 154] which discuss utilizing “prior information” [112] pertaining to the

parameters to be estimated to aid the mathematical program in finding viable parameterizations.

We remember that the diagonals of Ci represent the interaction costs for each player i and the

vectors c̄i represent the free flow travel cost for each player i so, by placing bounds on these

variables, their estimated values will be on the same order of magnitude as the original values

that generated the simulation data.1 The final constraint (3.2.2c) on the objective requires that the

1We do want to ensure that a set of parameterizations results in a convex Nash game since we are dealing with a
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dual variables ūk and uki are non-negative because they correspond with inequality constraints.

One important point about this model is that it can be solved in polynomial time. From

[26], we know we can convert the L-1 norm components into linear constraints, with positive

variables that bound the constraints from above and below and that replace the L-1 terms in the

objective function. This leads to a linear program, which we also know from [26] can be solved

in polynomial time via the interior point method. Furthermore, the growth in the number of

variables as a function of the inputs also grows as a polynomial function, the details of which can

be seen in Appendix B.1. Overall, we summarize all of this in the following lemma:

Lemma 1. Problem (3.2.2) can be solved in polynomial time, and the number of variables grows

as a polynomial function of the inputs.

Having established the complexity of our inverse optimization model, we present an example

of our framework.

Example 3.2.1. We randomly generate a parameterization for the arcs on a 4x4 grid which

consists of 48 total arcs. There are 48 arcs on this grid because there are 4 sets of 3 edges moving

down the grid and then the same pattern moving across the grid; therefore, we multiply (4)(3) by

2 and, then, multiply it by 2 again because we assume two arcs going in opposite directions per

edge. We generate this parameterization by uniformly choosing 48 numbers between 1 and 5 for

the diagonal of Ci such that C1 = ... = CN = C and uniformly choosing 48 numbers between 2

and 10 for the vector c̄i such that c̄1 = ... = c̄N = c̄. We set the number of players as N = 10

and then generate the flows for these parameterizations using all 240 origin-destination (OD)

set of minimization problems across players, and convex games result in Nash equilibrium solutions [146, 154, 158].
Due to the fact that our minimization problems for all of the players are linear in each player’s variables, we do not
require any extra constraints [146, 154, 158], but this might be required for other applications as demonstrated by
[115].
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pairs - a number obtained by calculating
(
16
2

)
, since there are 16 nodes in a 4x4 grid, and then

multiplying by 2 to account for our assumption that the arcs from origin a to destination b might

be different from the arc from origin b to destination a. For each OD pair, all of the players

each start this one unit of flow at the origin and flow this one unit of flow to the destination,

meaning that for N = 10 players there are 10 units of flow on the network. We then input

the resulting flows under these origin-destination pairs into the residual model above (3.2.2) to

obtain the parameterizations for C and c̄. Thus, the “knowns” in the inverse optimization model

are the conservation-of-flow matrix, the origin-destination pairs, and the capacity levels of the

arcs, while the “unknowns” in the inverse optimization model are the Ci and c̄i cost coefficients.

With regard to the results of example 3.2.1, the original parameterizations and the parameterizations

obtained by the inverse optimization residual model do not align. Indeed, the Frobenius norm

difference between the two C matrices is 2.4777, and the 2-norm difference between the two

parameterizations for the c̄ vector is 22.4281. However, if we instead use an error metric that

compares the flows under the original parameterizations versus the flows under the IO parameterizations,

we see promising results. Indeed, when we compare the flows among the 10 players for all 240

origin destination pairs across all 48 arcs on the network, we find that the difference between

the flow patterns using a Frobenius norm metric is 8.1369e-06. We utilize the Frobenius norm

because it allows us to calculate essentially a 2-norm between the two flow matrices, one resulting

from the original costs and one resulting from the IO costs. Consequently, as indicated by the

low Frobenius norm error, the IO solution leads to the same type of flow pattern observed under

the original parameterization for the set of OD pair configurations considered, thus making the

parameters obtained by the IO residual model a reasonable solution to the inverse optimization
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problem.

Next, Section 3.3 explains the connection between the residual model [112, 154] and

the generalized Nash equilibrium problem. Section 3.4 presents the experimental framework.

Section 3.5 discusses our experimental results, and Section 3.6 concludes with a brief discussion

and open problems.

3.3 Theoretical Background and Connections

In this section, we describe our simulation approach, form the residual model more abstractly,

and then make the connection between the simulation conditions and the residual model. In

Section 3.3.1, we discuss the connection between jointly convex GNEPs and mixed complementarity

problems, with the MCPs forming the simulation approach. In Section 3.3.2, we point to the

residual model utilized by [154]. Finally, in Section 3.3.3, we propose and prove a collorary

stating that we can incorporate “coupled” constraints into the residual model to recover the

parameterizations for the objective functions of the players in a jointly convex GNEP.

3.3.1 Theoretical Considerations for Generating the Simulation Data

Using the notation from [63], for each player v in a generalized Nash problem, the goal is to

solve the following optimization problem, with N as the number of players, nv as the number of

variables for player v, xv ∈ Rnv as the variables for player v, x−v as containing all other players’

variables, Xv(x
−v) ⊆ Rnv as the “feasible set” parameterized by the other players’ variables,

θ : Rn̄ → RN with n̄ =
∑

v nv, and θv : Rn̄ → R (with the recognition that the last function has
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x−v as parameters in its functional form once we move to the GNEP problem)

min
xv

θv(x
v,x−v) (3.3.1a)

xv ∈ Xv(x
−v) (3.3.1b)

The authors of [63] and [75] convey that a solution to this problem is an x such that no

player can minimize their objective further, fixing the other players’ variables. We can form a

problem to find this solution (known as a generalized Nash equilibrium) as long as we have the

Convexity Assumption stated in [63]:

Definition 1 (Convexity Assumption [63]). For every player v and every x−v, the objective

function θ(·,x−v) is convex and the set Xv(x
−v) is closed and convex.

With this Convexity Assumption, the following theorem holds in which the solution of a quasi-

variational inequality QVI(X(x),F(x)) problem is defined as x∗ ∈ X(x∗) ⊆ Rn̄ such that

F(x∗)T (y − x∗) ≥ 0 ∀y ∈ X(x∗) (3.3.2)

Theorem 1 (Theorem 3.3 of [63]). Let a GNEP be given, satisfying the Convexity Assumption,

and suppose further that the θv functions are C1 for all v. Then a point x is a generalized Nash

equilibrium if and only if it is a solution of the quasi-variational inequality QVI(X(x),F(x)),

where

X(x) =
N∏
v=1

Xv(x
−v), F(x) = (∇xvθv(x))

N
v=1 (3.3.3)
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This QVI representation of the GNEP can be further simplified to a related variational inequality

(VI) under certain conditions on the Xv(x
−v). For a variational inequality, the goal is to find

x∗ ∈ X ⊆ Rn̄, with X not parameterized by the variables, such that

F(x∗)T (y − x∗) ≥ 0, ∀y ∈ X (3.3.4)

We see that the X set is different between the QVI and the VI, with the QVI X set having

dependence on the x−v variables. One way to transform the QVI into a VI is via joint convexity

of the GNEP, a property that applies if the following definition holds pertaining to the Xv(x
−v)

sets:

Definition 2 (Definition 3.6 of [63]). Let a GNEP be given, satisfying the convexity assumption.

We say that this GNEP is jointly convex if for some closed, convex X ⊆ Rn̄ and all v = 1, ..., N ,

we have

Xv(x
−v) = {xv ∈ Rnv : (xv,x−v) ∈ X} (3.3.5)

This definition means that the xv and x−v are all part of the same set X, that any “coupled”

constraints include all of the variables from all of the players, and that these “coupled” constraints

are convex in all of the players’ variables [62, 63, 75, 92, 158]. If we assume that the multipliers

are equal across the copies of the “coupled” constraints for each player, then we can combine

the constraints from each set Xv(x
−v) into one set X, which also implies that we will have

one copy of any “coupled” constraints that depend upon all the players’ variables in the set X

[62, 63, 75, 92, 158]. As a result, we can utilize the following theorem:

Theorem 2 (Theorem 3.9 of [63]). Let a jointly convex GNEP be given with C1 functions θv.

67



Then every solution of the V I(X,F) (where X is the set in the definition of joint convexity and,

as usual, F(x) = (∇xvθv(x))
N
v=1), is also a solution of the GNEP.

This theorem states that we can utilize the VI with the combined X set instead of the QVI with

X(x) to obtain a solution to the original generalized Nash problem [62, 63, 64, 75, 92, 158]. The

equality of multipliers assumption leads to less complicated models and methods; see [138] for

an example of a method that does not utilize the equality of multipliers assumption. We know

there exists a solution to this VI based upon the following theorem from [93] who cite [58, 97]:

Theorem 3 (Theorem 3.1 of [93]). Let X be a nonempty, compact and convex subset of Rn̄ and

let F be a continuous mapping from X into Rn̄. Then there exists a solution to the problem

VI(X,F).

Due to the fact that our X is nonempty, compact, and convex as a result of the linear

constraints, the lower bound provided by the non-negativity constraints, and the upper bound

provided by the capacity constraint and due to the fact that our function F is continuous, we

know that a solution exists for our VI. See Appendix B.2 for uniqueness considerations for the

VI. With the VI formulation, we can then use a well-known theorem from [64] to convert the

VI into a mixed complementarity problem. Facchinei and Pang [64] define the X = {x ∈ Rn̂ :

Ax ≤ b,Gx = d} such that A ∈ Rm̂×n̂, G ∈ Rl̂×n̂, b ∈ Rm̂, d ∈ Rl̂. They have the following

proposition:

Proposition 1 (Proposition 1.2.1 from [64]). Let X be defined as above. A vector x solves the

VI(X,F) if and only if these exists λ ∈ Rm̂ and µ ∈ Rl̂ such that

0 = F(x) +GTµ+ ATλ (3.3.6a)
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0 = d−Gx (3.3.6b)

0 ≤ λ ⊥ b− Ax ≥ 0 (3.3.6c)

This proposition states that, if we find a solution to the KKT system, we will solve the VI

defined by X and F, so long as the X is a set of linear inequality and linear equality constraints.

Therefore, for GNEP applications with this type of X, we can generate simulation data to perform

inverse optimization analysis by forming a mixed complementarity problem (MCP), as we do for

the transportation example in Section 3.4.

3.3.2 General Residual Model [154]

Having explained that we use a mixed complementarity form of our generalized Nash game

(3.2.1) to produce our simulation data by operating under the assumption of equal multipliers for

“coupled” constraints [62, 63, 75, 92, 158], we can explain the inverse optimization model we

use to extract parameters from this simulation data. We utilize the residual model showcased in

[154], which is quite similar to the one presented in [112], with the difference being that [154]

sum over players in a game. As a note to the reader, we will explain this model utilizing the

notation from [154]’s more recent paper [115]. The model starts with the assumption that each

player solves an optimization problem such as the following:

min{fi(xi, x−i)|xi ∈ Bi}
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with fi(x; θi) = ⟨ϕi(xi, x−i), ζi⟩+ f̄i(x) and Bi = {xi|hi,j(xi) ≤ 0, j = 1, ..., li, gi,q(x) = 0, q =

1, ..., lli}, in which i represents the player, li represents the number of inequality constraints for

player i, lli represents the number of equality constraints for player i, ζi represents the linear

parameterization of the objective function for player i, and f̄i is the “known” term in the objective

function [115]. In our game, each player also has one “coupled” constraint inequality in the set

Bi through which the players can influence each others’ feasible regions. Extending this model

to accommodate this “coupled” constraint will be covered in Section 3.3.3.

If we take the KKT conditions of this problem [26], we obtain the following relevant

“residuals” [112, 115, 154], in which Di represents the derivative with respect to xi:

r
(k)
s,i (ζi, µi, νi) = Difi

(
x
(k)
i , x

(k)
−i

)
+

li∑
j=1

µj
iDihi,j

(
x
(k)
i

)
+

lli∑
q=1

νqiDigi,q

(
x
(k)
i

)
(3.3.7a)

r
j,(k)
c,i (µi) = µj

ihi,j

(
x
(k)
i

)
, j ∈ {1, ..., li} (3.3.7b)

with k representing the “kth observation” in the game, s representing the label for the stationarity

residual, and c representing the label for the complementarity residual [115, 154]. We then have

x(k) data for each instance k of the game as a composite vector containing all the players’ variable

values, and we attempt to choose ζ, µ, ν such that we minimize the residuals presented above.

This leads to the optimization problem proposed by [154] and [115] inspired by [112]:

min
µ,ζ,ν

N∑
i=1

ηi∑
k=1

χi

(
r
(k)
s,i (ζ, µ, ν), r

(k)
c,i (µ)

)
(3.3.8a)

70



ζi ∈ Zi, µi ≥ 0, ∀i ∈ {1, ..., N} (3.3.8b)

with N representing the total number of players and ηi representing the number of times a player

i engages in the game which, in our application, means the number of origin-destination runs

the player undertakes. We assume in our implementation that ηi is equal across all players,

meaning that each player engages in each iteration of the game. It is also important to note

that there are separate parameterizations for each player i in the form of ζi. Furthermore, these

parameterizations each belong to their own convex set Zi. Finally, we specify that χi is a “non-

negative convex penalty function” [115, 154] which, according to [26], is applied to each set of

residuals such that a sum of residuals is formed for each set of residuals. This objective for the

optimization problem thus acts as a type of loss function for finding a parameterization for the

problem [26, 38, 115, 154].

3.3.3 Generalized Nash Connection to Residual Model

With background on the conversion of the generalized Nash problem to a mixed complementarity

form and the use of the residual model for inverse optimization, we presently discuss extending

the residual inverse optimization model to accommodate jointly convex generalized Nash equilibrium

problems. We note that the notation used in this subsection differs in some ways from the notation

in Section 3.3.1, mainly in the definition of the X set. Before we present our corollary regarding

incorporating “coupled” constraints into the inverse optimization model, we state a theorem from

[62] in modified notation from [63]. This theorem requires the following specification of X for
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the purposes of the theorem as:

X = {x ∈ Rn̄ : hq(x) ≤ 0 q = 1, ...,m, gj(x) = 0 j = 1, ..., p} (3.3.9)

where m represents in this case the total set of all inequality constraints across all players and

p represents the total set of equality constraints across all players. In the set X, we incorporate

all of the constraints for all of the players, including one copy of the “coupled” constraints. We

make the assumption that we began with a jointly convex GNEP [62]. We could also write the

subset of constraints for each player v as:

Xv(x
−v) = {xv : hq(xv,x−v) ≤ 0 q = 1, ...,m, gj(x,x

−v) = 0 j = 1, ..., p} (3.3.10)

For each of these subsets Xv(x
−v), all of the constraints for all of the players still exist, but we

are differentiating between player v’s variables and the other players’ variables more explicitly;

each subset Xv(x
−v) also has its own copy of the “coupled” constraints. The set X and the

subsets Xv(x
−v) ∀v lead to two statements of the KKT conditions. First for the Xv(x

−v) subsets,

according to [62, 63, 64], if we assume that a constraint qualification holds for each player, a

solution for each player v will correspond with a KKT point that satisfies the following KKT

conditions for each individual player v:

∇xvθv(x
v, x−v) +

m∑
q=1

λvq∇xvhq(x
v, x−v) +

p∑
j=1

νvj∇xvgj(x
v, x−v) = 0 (3.3.11a)

0 ≤ λvq ⊥ hq(x
v, x−v) ≤ 0, ∀q (3.3.11b)
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gj(x
v, x−v) = 0, νvj free, ∀j (3.3.11c)

Second for the X set, we know from [19, 62, 64] that, if a constraint qualification is satisfied,

then the KKT conditions are satisfied by a solution to the VI (assuming the presence of relevant

multipliers) with F defined as (3.3.3) and X defined as (3.3.9). We also know from [64] that, if

hq are convex and gj are affine, then a solution to the KKT conditions is a solution to the VI with

F defined as (3.3.3) and X defined as (3.3.9). Therefore, we have the resulting KKT conditions

from the VI as:

F(x) +
m∑
q=1

λq∇xhq(x) +
p∑

j=1

νj∇xgj(x) = 0 (3.3.12a)

0 ≤ λq ⊥ hq(x) ≤ 0,∀q (3.3.12b)

gj(x) = 0, νj free, ∀j (3.3.12c)

We can now convey Theorem 4.8 from [63] who cite [62, 92] which states that we can move

between the two forms of the KKT conditions (3.3.11) and (3.3.12) so long as we assume the

multipliers λv, νv for (3.3.11) are equal across all players v. This statement of the theorem is

slightly different from either [62]’s statement or [63]’s statement because we have added equality

constraints and their associated multipliers into our formulation of these KKT conditions.

Theorem 4 (Theorem 4.8 [63]). Consider the jointly convex GNEP with hq ∀q, gj ∀j, θv being

C1. Then the following statements hold:

73



• Let x̄ be a solution of the VI(X,F) (with X defined as (3.3.9), F defined as (3.3.3), and VI

defined as (3.3.4)) such that the KKT conditions (3.3.12) hold with some multipliers λ̄ and

ν̄. Then x̄ is a solution of the GNEP, and the corresponding KKT conditions (3.3.11) are

satisfied with λ1 = ... = λN = λ̄ and with ν1 = ν2 = ... = νN = ν̄.

• Conversely, assume that x̄ is a solution of the GNEP such that the KKT conditions (3.3.11)

are satisfied with λ1 = ... = λN and with ν1 = ν2 = ... = νN . Then (x̄, λ̄, ν̄) with λ̄ = λ1

and with ν̄ = ν1 is a KKT point of VI(X,F), and x̄ itself is a solution of VI(X,F).

Proof. As a brief proof of this theorem (which is based off of, and is a relatively direct extension

of, a related proof by [62]), for the first statement, we notice a correspondence between (3.3.11a)

concatenated for all players v and (3.3.12a) as long as the multipliers are equal across players and

are equal to the λ̄, ν̄ multipliers. This correspondence continues for (3.3.11b) & (3.3.12b) and

(3.3.11c) & (3.3.12c) so long as the multipliers are equal. Therefore, the (x̄, λ̄, ν̄) from (3.3.12)

is a KKT point for the conditions (3.3.11) for each player. According to [62], as long as the

conditions (3.3.11) are sufficient for optimality for each player, which is true if we assume F is

convex, hq are convex, and gj are affine [26], x̄ with multipliers λ̄, ν̄ is a solution for each player’s

optimization problem, thus making it a GNEP solution.

For the second statement, we point to the fact that, now that we are given that the multipliers

are equal across all of the players, then there is a correspondence between (3.3.11) (concatenated

for all players v for the stationarity constraint) and (3.3.12) as long as λ̄ = λ1 = ... = λN

and ν̄ = ν1 = ... = νN . Consequently, we have a KKT point for the (3.3.12) conditions that

comes from the given solution to (3.3.11). We know from [64] that if there is a KKT point for

the conditions (3.3.12) and we assume the constraints hq are convex and gj are affine, then the x̄
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associated with the KKT point is a solution for the VI.

Our technique, as discussed in Section 3.2, can be looked at as a corollary to this theorem, where

we state that we can use the stacked KKT conditions with one copy of the “coupled” constraints

to parameterize the cost functions of the players. This corollary is ours and encapsulates the

methodological contribution of this paper.

Corollary 1. With the assumption of equal multipliers for the “coupled” constraint(s) in a GNEP,

the stationarity conditions and complementarity conditions of the VI KKT conditions (3.3.12) may

be used to form a residual model of the form seen in [112, 115, 154], with χ as a “non-negative

convex penality function” as in those papers and in [26] and with k representing the multiple

data points xk:

min
ζi,λq ,νj

∑
k

χ

(
F(xk) +

m∑
q=1

λq∇xhq(xk) +

p∑
j=1

νj∇xgj(x
k)

)
+
∑
k,q

χ
(
λqhq(xk)

)
(3.3.13a)

λq ≥ 0 ∀q, ζi ∈ Zi ∀i (3.3.13b)

Proof. We know from Theorem 4 that there is a correspondence between the solutions to (3.3.11)

for all players ν and the solution to (3.3.12) so long as the multipliers are equal across these two

sets of KKT conditions. Therefore, we can take the stationarity condition and the complementarity

conditions of (3.3.12) as the residuals for the GNEP problem and form the same kind of residual

problem as (3.3.8).

As a result of corollary 1, we can find parameterizations for players’ cost functions in generalized

Nash games with “coupled” constraints. Specifically, in our transportation problem, we can find
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Ci and c̄i for players i ∈ [N ]. In other applications, we would replace the complementarity

#2 term in (3.2.2) with the appropriate “coupled” constraint(s) and their associated multipliers.2

Next, in Section 4, we explain our experimental framework, walking the reader through our

simulation set-up and the specifications for our residual model for the transportation problem.

3.4 Experimental Framework

To test and explore our inverse optimization framework for jointly convex GNEPs, we

use the transportation game discussed in Section 3.2 on various grid networks, which can be

expressed as a certain number of nodes vertically and a certain number of nodes horizontally (2

nodes by 2 nodes, 3 nodes by 3 nodes, 4 nodes by 4 nodes, and 5 nodes by 5 nodes), and on the

Sioux Falls network [120, 179]. Examples of these networks are visualized in Figures 3.2a and

3.2b, respectively.

(a) 4 nodes x 4 nodes Grid (b) Sioux Falls Network [120, 179]

Figure 3.2: Networks utilized for testing inverse optimization framework

2The stationarity and complementarity #1 parts of (3.2.2) would also change for a different application.
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To generate the solutions to use in our inverse optimization framework, we solve the

following mixed complementarity problem [26, 63, 75]:

0 ≤ xi ⊥ Ci

(
2xi +

∑
j ̸=i

xj

)
+ c̄i +DTvi + ū ≥ 0 ∀i = 1, ..., N (3.4.1a)

0 ≤ α−

(∑
j

xj

)
⊥ ū ≥ 0 (3.4.1b)

Dxi = fi, vi free ∀i = 1, ..., N (3.4.1c)

with dual variables of ui ∀i, ū, and vi ∀i. We note that the system established in (3.4.1) will be

solved repeatedly for different right-hand side fi vectors to generate our simulation data. We

utilize the implementation of PATH [54, 70] from the software GAMS [77, 78] for this problem.

As stated in the introduction, our goal is to solve the inverse optimization residual model for

points generated from the GNEP, specifically with the purpose of finding the parameters Ci and c̄i

for each player i. In some of the experiments, these Ci and c̄i will be assumed the same across all

players and, in others, they will be assumed different across all players. For our experiments, we

follow a general framework in which various elements can be modified. The general framework

is as follows:
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Algorithm 4: Basic Experimental Framework
Input: D conservation-of-flow matrix, n nodes, m arcs, α capacity level, N number of

players, bounds L1, L2, U1, U2

Exhaustively generate P , the set of all unique origin-destination pairs for a given network

for each pair in P do
Solve the mixed complementarity problem (3.4.1) form of GNEP (3.2.1) for RHS fi

∀i constructed from the current pair, with one unit of flow for each player

Store the N player flow vectors xi i = 1, ..., N (which are the data points)

end

Input the sets of data points into the IO mathematical program (3.2.2) to obtain estimates

for Ci and c̄i ∀i

We utilize all P origin-destination pairs for a given network because we want to gain a detailed

picture of flow on that network. However, we recognize that there are many more configurations

of possible flow from which we could have drawn which may lead to further study, including

configurations that would involve the players starting and ending at different points.

3.5 Experimental Results

In this section, we present the numerical results of experiments with the proposed inverse

optimization framework to parameterize the GNEP (3.2.1) using the two types of networks

showcased in Section 3.4. To implement the experimental setup described in Section 3.4, we used

a data generation and optimization pipeline including state of the art solvers from PATH [54, 70]

in GAMS and Gurobi [90]. This included randomly generating from a uniform distribution

the original costs for the Ci and c̄i parameters in the simulation model outlined in (3.4.1). See
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Appendix B.5 for more information about the experimental setup.

The boxplots3 in this section denote two different measures of error. First, there is the value

of the objective function of the residual model, denoting how closely the chosen parameterizations

cause the input data to satisfy the KKT conditions [112, 115, 154]. Second, there is the total

flow error metric, which measures the difference between the flows under both the original

parameterization and the IO residual model parameterization using the same set of OD pairs

P . The Frobenius-norm metric is utilized, which acts as a vector 2-norm for matrices. This is

useful compared to other matrix norms because it calculates a total difference between the two

matrices, not a maximal difference along rows or columns or an abstract eigenvalue metric as in

the case of the more traditional matrix norms [195]. This leads to the following metric.

Definition 3 (Flow error). The flow error is calculated by first taking the squared difference

between the flow under the original parameterization and the flow under the IO parameterization

for all origin-destination pairings, all players, and all arcs. Then, a sum is taken across these

squared differences and, finally, the square root of this summation is taken. This error represents

the Frobenius norm between the two sets of flows.

This error is also normalized by the total number of arc flows, which is calculated by

multiplying the number of origin-destination pairings, the number of players, and the number of

arcs. It forms the following normalized metric.

Definition 4 (Normalized flow error). The normalized flow error is calculated by dividing the

flow error by a factor created by multiplying the number of origin-destination pairings, the

number of players, and the number of arcs. It represents a per unit level of error.
3For all of the box plots, the “whiskers” are placed at quartile 1 - 1.5 (quartile 3 - quartile 1) and at quartile 3 +

1.5 (quartile 3 - quartile 1), and the “dots” are outliers [105].
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Note that data are collected regarding the differences between the original parameterizations

and the IO parameterizations, and it is found that there are differences between the two. However,

the important metrics are the objective function value and the flow error metrics because the

first measures how well the IO parameterization fits the model and the model data and because

the second showcases whether or not the IO parameterization leads to the same flow patterns

observed for the OD pairs under the original parameterization. Note also that the objective

function values for the experiments can be found in Appendix B.7 and timing information for

the experiments can be found in Appendix B.8. Details regarding the Experiments can be found

in Table 3.1.

Finally, we do have two sets of results to discuss in this section. In the first set of results, we

do not employ a train-test methodology but, in the second set of results, we do employ a train-test

methodology. This train-test methodology uses standard five fold cross-validation in which the

data set is split into five non-intersecting sets [84]. In each of the five iterations of the cross-

validation procedure, we use four out of the five sets to find the parameters for the transportation

game using inverse optimization and, then, we “test” on the remaining fifth of the data by finding

the flows on the OD pairs corresponding to those data pieces and compare the resulting flows

against this data. We define the following sets and functions in order to modify Goodfellow et

al.’s [84] k-fold cross validation algorithm to our application:

• G - the graph we are studying

• DG - the data set of flows corresponding to each of the OD pairs for the given graph

• DG
i - the ith segment of the data set when splitting the data into k disjoint subsets

• IO(·) - the inverse optimization framework applied to the data
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# Network Costs Players (N ) # Trials C Bounds c̄ Bounds α
1 2x2-5x5 Same 2, 5, 10 10 [1,5] [5,20] 0.5(N), N
2 Sioux Falls Same 2, 5, 10 10 [1,5] [5,20] 0.5(N), N
3 2x2-5x5 Different 2, 5, 10 10 [1,5] [5,20] 0.5(N), N
4 Sioux Falls Different 2, 5, 10 10 [1,5] [5,20] 0.5(N), N

Table 3.1: Experimental Details. Here, # refers to the experiment group number, Network refers
to the graph upon which the experiment was run, C Bounds indicating the range for
randomization and the bounds used in the IO mathematical program for the diagonal of
the C, c̄ Bounds indicates the same for the c̄ parameters, and α refers to that parameter
value. These experiments are repeated for both the part A and part B results.

• θ - parameterization resulting from IO(·)

• TG(θ,DG
i ) - traffic game given some parameterization θ and the OD pairs corresponding

with the DG
i data set

• Ei - error between the resulting flows under θ parameterization and the original flows DG
i

for segment i

Algorithm 5: k-Fold Cross Validation Framework from Goodfellow et al. [84]

(modified to this application)
Input: G, DG , IO(·), k folds

Split DG into k mutually exclusive subsets DG
i , whose union is DG

for i = 1 : k do
θ = IO(DG\DG

i )

Ei = ||TG(θ,DG
i )−DG

i ||2

end

We label the non train-test results as “part A” and the train-test results as “part B.” We also

note that we only report flow error for the part B experiments, so the boxplot discussions above

only apply to the part A experiments. Part B uses histograms
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3.5.1 Broader Observations about the Results: Part A

Overall, the results from the four experimental groups (with two in the same cost randomized

costs category and two in the different cost randomized costs category) are encouraging. The

maximum objective function values for all the experiments across the groups are on the order

of 1e-6, and the maximum flow errors (see Definition 3) for all of the experiments across the

groups are on the order of 1e-6 or 1e-7. Therefore, these error metrics indicate that viable

parameterizations are being recovered for the OD pair sets under which we are testing the framework.

Indeed, the fact that these errors do not greatly differ between same and different costs is encouraging

because it indicates that the approach can work to recover people’s different perceptions of road

networks [21, 41, 42, 176, 177, 200]. It should be noted that, for different costs, the experiments

with α = 5 and N = 10 for the 5x5 grid and Sioux Falls did not solve completely, with the

5x5 grid experiment only able to complete 6 iterations and the Sioux Falls experiment unable

to complete any at the time of this posting. While Lemma 1 shows that (3.2.2) is solvable in

polynomial time, any solver will naturally encounter scalability problems as the problem size

increases. However, the reality that the framework did work for most of the experiments under

restrictive α values of (0.5)N validates the extension of the framework, because some of the OD

pairs involved start, end, or both nodes where only two arcs were coming out of or into the node,

which meant the capacity constraints were guaranteed to be tight.

3.5.2 Same Randomized Costs: Part A

For experimental groups 1 and 2, there is the assumption of “same randomized costs” across

the players, meaning Ci and c̄i are equal across all players i such that C1 = C2 = ... = CN = C
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and c̄1 = c̄2 = ... = c̄N = c̄. Experiment group 1 (Grid) iterates over generated 2x2, 3x3, 4x4,

and 5x5 grids, each with 10 trials of randomly chosen parameters, which the inverse optimization

residual model attempts to estimate. For each grid, three different player numbers (N = 2, 5, 10)

and two different α values, one set to half the number of players for each N and one set to

exactly the number of players for each N , are considered. The graphs for this experiment group

display many box plots, and the system utilized for labeling the box plots is Grid Size/Number

of Players/Alpha Value. Each set of eight moving from left to right indicate the same number of

players. With regard to flow error, Figure 3.3a demonstrates that, for all of the subsets of players

and α values, as grid size increases, the total flow error also increases. It is important to note

that everything on this graph is still on the order of 1e-7, but this trend is also evident. It likely

results from the fact that, as grid size increases, the number of arcs and number of OD pairs also

increases and, since this measure is calculated across all OD pairs, all players, and all arcs, then

even if consistent error were assumed across all arcs, the norm would have to increase. Indeed,

upon examining the accompanying Figure 3.3b, it is apparent that the normalized flow error,

calculated as described in Definition 4, decreases as grid size increase across all of the subsets of

players and α values.

(a) Flow Error for Experiment Group 1 (b) Normalized Flow Error for Experiment Group 1

Figure 3.3: Flow Error Metrics for Experiment Group 1: The labeling at the bottom of the
graphs indicates attributes of the boxplot, specifically the Grid Size/Number of
Players/Alpha Value
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Experiment group 2 (Sioux Falls) again consists of 10 trials for each of N = 2, 5, 10

players and the two α = (0.5)N,N values. The labeling for the graphics is set to Number of

Players/Alpha Value. In examining flow errors, Figure 3.4a showcases that the flow errors do not

appear to follow a set pattern when moving between the different numbers of players, yet they

are all still small and on the order of 1e-7 or lower. However, in Figure 3.4b, the median flow

error decreases as number of players increases, even on this very small scale (1e-12).

(a) Flow Error for Experiment Group 2 (b) Normalized Flow Error for Experiment Group 2

Figure 3.4: Flow Error Metrics for Experiment Group 2: The labeling at the bottom of the graphs
indicates attributes of the boxplot, specifically the Number of Players/Alpha Value

3.5.3 Different Randomized Costs: Part A

For experimental groups 3 and 4, there is the assumption “different randomized costs”

across the players, meaning that a new Ci and a new c̄i are drawn for each player i. Experiment

group 3 is a mirror image of experiment group 1, except that all of the players do not have the

same costs. One issue with this experiment group was that not all of the trials finished for the

case of the 5x5 grid, 10 players, and α = 5; only 6 of the trials finished in under 24 hours,4 so

they are the ones included in the box plots. Similar to the flow error for the grids under the same

costs (Figure 3.3a), Figure 3.5a demonstrates that the median flow error increases as the grid size
4This means about 24 hours were given for each trial before the trial was stopped, with the exception of one that

was stopped by the computer before convergence.
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increases for all the subsets of player number and α value. Figure 3.5b illustrates much of the

same decrease in median normalized flow as grid size increases (among the subsets) as in Figure

3.3b for same costs across all players.

(a) Flow Error for Experiment Group 3 (b) Normalized Flow Error for Experiment Group 3

Figure 3.5: Flow Error Metrics for Experiment Group 3: The labeling at the bottom of the graphs
indicates attributes of the boxplot, specifically the Number of Players/Alpha Value.
Note: Only 6 trials are included for 5/10/5.0, see note in the text.

Experiment group 4 (Sioux Falls) again consists of 10 trials for each ofN = 2, 5, 10 players

and the two α = (0.5)N,N values. The labeling for the graphics is Number of Players/Alpha

Value. It should be noted that the trials did not finish at the time of this posting for the N = 10

and α = 5 experiment, so those boxplots are not included in Figure 3.6. As concerns flow

error, Figure 3.6a shows increasing median flow error as player number increases, which was

not as visible in Figure 3.4a for experiment group 2. However, unlike Experiment group 2’s

(Sioux Falls, but in the same cost setting) Figure 3.4b, Figure 3.6b does not demonstrate the same

consistent increase in median normalized flow error, with normalized median flow decreasing

with N = 10 and α = 10.
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(a) Flow Error for Experiment Group 4 (b) Normalized Flow Error for Experiment Group 4

Figure 3.6: Flow Error Metrics for Experiment Group 4: The labeling at the bottom of the graphs
indicates attributes of the boxplot, specifically the Number of Players/Alpha Value.
Note: The trials did not finish in time for N = 10 and α = 5, hence that boxplot is
not included.

3.5.4 Broad Conclusions: Part B

For this part of the experiments, we present a representative sample of the results, namely

the results for the 2 × 2 Grid, 4 × 4 Grid, and the Sioux Falls graph.5 See Appendix for the

additional graphs. For the broad conclusions, we find that the Sioux Falls experiments overall

produce better results than the various Grid experiments for both the same and different costs

experiments, despite the Sioux Falls network being arguably more complicated than the other

two Grids. As expected for all of the networks, the different costs flow errors are greater than the

same costs flow errors.

3.5.5 Same Randomized Costs: Part B

For presenting our results in the next two subsections, we use histograms to denote the flow

errors. There are 50 flow errors per histogram, since there are 10 random cost parameterizations

to recover and 5 folds of the train-test set-up. The histograms are positioned according to the

5We note that not all of the experiments finished for the 5 × 5 Grid for different costs, in particular the p = 10
experiments. Not all of the experiments finished for different costs for the Sioux Falls graph, namely p = 10 results.
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player number p on the vertical axis and the α value on the horizontal axis. This convention

carries through to the different costs experiment.

The results overall are encouraging. The Sioux Falls results in Figure 3.8 in particular

demonstrate that the parameterizations recovered result in flow errors that are quite small. The

oddities are some of the results for α = N in the 2×2 Grid and for p = 2 in the 4×4 Grid. These

errors are a bit larger than we expected, especially considering the results we received back from

Sioux Falls. Further work would need to explore if there is a graph structure element to why

certain graphs produce better errors than others.

Figure 3.7: 2× 2 Grid Train Test Same Costs
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Figure 3.8: 4× 4 Grid Train Test Same Costs

Figure 3.9: Sioux Falls Train Test Same Costs
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3.5.6 Different Randomized Costs: Part B

As would be expected, for all of the flow errors in Figures 3.10-3.12 below, the flow error

range end point increases as the number of players increases since there is more opportunity for

mistaken flows. However, we are for the most part satisfied with the results because different

costs is a significantly more difficult problem than same costs, and the errors for the most part

are low, especially for the Sioux Falls graph. Interestingly, for the 2 × 2 Grid and 4 × 4 Grid

results below in Figures 3.10-3.11, the α capacity parameter seems to have some effect on the

recovery of the flow patterns by our parameterizations because the α = 1
2
N produces lower flow

error ranges for the Grids. For the Sioux Falls graph, the results are not as clear; the α does not

appear to have a clear effect one way or another.

Figure 3.10: 2× 2 Grid Train Test Different Costs
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Figure 3.11: 4× 4 Grid Train Test Different Costs

Figure 3.12: Sioux Falls Train Test Different Costs
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3.6 Conclusions & Future Research

Ratliff et al. [154] applied the framework due to [112] to multi-player Nash games. We

extended this framework to the case of jointly convex generalized Nash games by proving that we

can use the VI KKT conditions in conjunction with a residual model to recover a parameterization

for the objective functions of the players in these games. For our transportation game example,

we have seen that, although our model may not recover the original parameterization, it recovers a

parameterization that produces the same flow patterns as the original parameterization. This holds

true across multiple grid sizes, the Sioux Falls network, different assumptions regarding players’

perceived costs, and the majority of restrictive α capacity settings and the associated numbers of

players. When we apply a train test procedure from [84] to our experiments, the results overall

are encouraging, showing that, for same costs, our framework produces overall low flow error

results and, for the difficult problem of different costs, our framework is promising.

Further research could extend our model to the setting where the multipliers for the shared

constraint are not assumed to be equal, especially in the case when the cost functions differ

between the players [75]. For more on this, we suggest to readers the work of [138]. In addition,

we could extend the research to a real-world traffic situation with real data, in which we would

likely need to incorporate more players into our framework and different origin-destination traffic

patterns, including ones in which not all the players leave from the same origin node and head

to the same destination node. Furthermore, we could attempt to address some of the issues with

the Nash approach, including looking at a low regret condition on the players as in [140, 193,

194]. We could also explore making our model more robust to the issues indicated by [151]

such as rationality assumptions and incorrect models. Finally, we could explore the scalability
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of the method further. As noted in the experimentation section, some of the larger examples

did not finish running, so we would want to explore other ways of making the method more

computationally efficient.
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Chapter 4: Inverse Optimization for Parameterization of Linear Complementarity

Problems and for Incentive Design in Markets

Note: We note that a shorter version of this article will appear on arXiv soon. We thank our co-

authors on this chapter: Steven Gabriel and Nathan Boyd. Stephanie Allen did the vast majority

of the work on this project, including the new theory and proofs, the majority of the coding

for the case study, and the writing of the paper. Steven Gabriel provided some suggestions for

additional avenues to explore for the theory as well as provided much editorial feedback. Nathan

Boyd helped Stephanie Allen with understanding the application behind the case study as well as

interpreting results obtains from solving the linear complementarity problems involved. Nathan

Boyd also provided editorial feedback on the case study section.

4.1 Introduction

Mathematical programming allows us to propose a model of the world and, then, find

the decisions that minimize cost, maximize benefit, or produce an equilibrium. Market models,

which are built using mathematical programming, allow us to explore the incentives at work

that cause players to make decisions that optimize their objectives in reaction to the objectives

of other players. These models along with other equilibrium and optimization problems can be

encapsulated by mixed complementarity problems [75]. However, this thesis chapter focuses
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on linear complementarity problems, a subset of the mixed complementarity problems that still

covers many optimization and equilibrium problems.

This linear complementarity problem can be termed the “forward problem,” [37] where

we obtain the decisions made by a singular entity, multiple players, or a collective group of

players. In one paradigm of inverse optimization, we take observed decisions made in the world

by the singular decision-maker, multiple players, or collective group of players and use them to

parameterize the forward problem. Used in this way, inverse optimization helps us form models

when the decision solutions are observable, but not all of the parameters of the model are not

[3, 21]. Traffic modeling is a perfect example because we see the flow of traffic every day, but we

cannot see the decision function in people’s minds as they make driving choices [3, 21]. Inverse

optimization has also sought to influence the decisions of users whose choices can be modeled by

optimization and/or equilibrium problems. Ahuja and Orlin [3] in their seminal work on inverse

optimization point to the idea of influencing traffic flow using inverse optimization by taking a

system optimal solution and figuring out the correct tolls to levy on drivers to push them from

their user solutions to the system optimal. Ahuja and Orlin cite work by [29, 30, 53] as examples

of papers in this area. As another inverse optimization paper in this vein, Bertsimas et al. [21]

mention in their introduction the idea of “design applications” in which one wishes to adjust a

system toward a specific equilibrium. Overall, we see the dual purpose of inverse optimization

in: (a) uncovering how systems work and (b) designing “better” systems [3, 20].

This chapter focuses on parameterizing linear complementarity problems using sets of

solutions that either are observed or are desirable. We define conditions on these sets of solutions

that make the inverse optimization problem feasible or infeasible and that produce certain parameterizations

that possess advantageous properties. We also address when these conditions fail. What’s more,
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we consider the interaction of the given problem data with the parameterization goal. As the

literature review reveals, linear complementarity problems have rarely been considered in the

abstract in the inverse optimization literature, so this work breaks new ground by considering

many of the aspects of their parameterization.

To ground this research in reality, we introduce a new application to the inverse optimization

literature in the form of a water supply application. We build off Boyd et al. [25] by taking a

simplified water supply market example from their paper and using inverse optimization to both:

(a) parameterize the problem using observed solution(s) and (b) choose the parameters of market

model such that a system optimal is an equilibrium point of the market.

4.2 Literature Review

The majority of the inverse optimization (IO) literature has concentrated on parameterizing

objective functions in optimization problems. Interested readers can see the following significant

foundational IO works to read more on this subject: [3, 8, 37, 88, 112, 132, 164]. These works

have lead to many applications of inverse optimization in areas such as healthcare [35], energy

[115], and transportation [207]. Recently, there has been some work done in estimating other

parameters in optimization problems, specifically in linear programs. Černỳ et al. [33] estimate

the cost vector in cTx and the right-hand side in Ax = b when an interval is given for each

of the parameters using a “union of polytopes corresponding to optimal bases” and then using

parametric programming to move around the solution space. Saez-Gallego and Morales [161]

estimate the cost vector in cTx and right-hand side for constraints Ax ≤ b in a linear program

using a set of sequential linear programs along with cross validation, with the application of
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demand response. Chan and Kaw [36] parameterize A in constraints Ax ≥ b and c in objective

function cTx; they use projection/optimality condition techniques as well as robust optimization

in their approach. Ghobadi & Mahmoudzadeh [82] parameterize the A and b in constraints Ax ≥

b using both single point and multi-point data and using multiple types of loss functions, with

an application to the diet recommendation problem. Tan et al. [173] estimate A, b in constraints

Ax ≥ b and c in objective function cTx using backpropagation and unrolling, and they also

estimate “parametric” optimization problems. Finally, Tan et al. [174] estimateA, b in constraints

Ax ≥ b, G, h in constraints Gx = h, and c in objective function cTx using backpropagation and

implicit differentiation. Thus, there has been a recent literature in estimating parameters besides

the ones in the objective function.

However, all of the papers in the previous paragraph focus on optimization problems, and

none of them focus on game theory models involving multiple players. Furthermore, they do

not propose adjusting the incentives of the entities involved to improve societal outcomes. There

has been some work in inverse optimization for game theory models and even a bit of work

done in adjusting incentives in these models. Bertsimas et al. [20] use inverse optimization

to generate new estimation models for finding covariance, mean return, and level of risk based

on observed investment decisions in markets; the researchers present these models as “a novel,

richer, reformulation of the Black-Litterman framework” that overall help investors in environments

where there is imperfect information. Chow et al. [43] adjust the capacity coefficients in a

transportation/freight equilibrium problem formulation by building on the method of [3] to produce

a convex nonlinear program. Ratliff et al. [154] use inverse optimization techniques from [112]

in an energy game. Chen et al. [39] use the inverse optimization method of [21] to find the

cost functions for electricity suppliers that are operating in a market. Birge et al. [24] employ
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inverse optimization to “recover parameters of transmission and related constraints that are not

revealed to market participants but explain the price variation” in an electricity market. Awasthi

[10] finds the costs for a dynamic game involving control theory for multiple players. Kovács

[116] “introduces an inverse optimization approach to eliciting the parameters of electricity

consumer models formulated as linear programs from the historic samples.” Hong et al. [99]

use a biquadratic program to represent the interaction among non-atomic players in a game in

which “disutility is determined only by the number of agents choosing each alternative.” They

find the different sets of parameters representing the different players’ preferences. Huang [103]

explores the computational complexity of the inverse linear complementarity problem and some

different forms of solving this problem.

With regard to the papers that deal with changing incentives in the market models, the

applications vary from line shipping to electricity. Zhou et al. [209] explicitly use a bilevel

inverse optimization problem strategy to find the right “incentives” to push a system operator to

use more renewable energy by proposing the solution they would like to see and then using

the inverse optimization bilevel model to find the right coefficients. The lower-level is the

system level operator that is trying to minimize costs, while the upper-level player is the policy

maker trying to choose the right set of “incentives” to get the system operator to choose a

certain level of renewable energy. The researchers experiment with different kinds of incentives

including subsidies and taxes, and then they unite these incentives with “mandatory policies”

to provide a mix. Without these interventions, on their small case study, they show that the

system operator chooses a very low amount of renewable energy. Agarwal and Ergun [2] use

inverse optimization to try to “drive each individual [line shipping] carrier’s linear program

toward the collaborative optimal solution”, which is the solution in which there is complete
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coordination between all of the players involved and in which they all are working to maximize

total profit (also known as the “centralized problem”). They create a linear program representing

each carrier’s shipping decisions, and then they use IO techniques of relating primal and dual

relationships to find a cost vector that causes each player to do their part in the “collaborative

optimal solution.” Once they find this cost, this tells the researchers the side payments that

must be used as a “mechanism” to keep all of the carriers in line toward this collaborative

optimal solution. Thus, this chapter is very much in line with the theme of our water market

case study. Tan and Aviso [172] adjust the cost coefficients in the objective functions of a

Stackelberg game according to the method of [3] to produce a socially optimal solution in the

area of environmental regulation. Nguyen et al. [141] allow prosumers (agents that consume and

produce energy) to specify a price range and a range on the amount of energy they would like to

buy or sell, and then the researchers design algorithms to generate the cost function parameters

in the market such that these ranges can be respected. Some of these algorithms even preserve

the privacy of the prosumer information. Therefore, this is a kind of market adjusting analysis

because the individuals in the market give feedback regarding what they would like to see in the

market, and then parameters are chosen taking this into consideration (as long as the intervals

satisfy certain conditions like being “overlapping”). Aswani et al. [9] parameterize a “principal-

agent model” representing the partnerships encouraged by the Medicare Shared Savings Program

(MSSP) by using inverse optimization to find the appropriate savings payment and subsidy

rate for new medical investments that the program should provide to these partnerships. They

essentially designed the subsidy rate mechanism as a new part of the MSSP and, then, use inverse

optimization to find a rate based on noisy data. Overall, these papers demonstrate that system

optimal solution(s) or desirable solution(s) can be utilized by inverse optimization techniques to
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design better systems.

4.2.1 Contribution

We address both the question of estimating other parameters besides the parameters in the

objective function as well as the question of parameterizing other problems besides optimization

problems. In particular, we examine the linear complementarity problem (LCP), which generalizes

optimization problems via their Karush-Kuhn-Tucker (KKT) conditions, encompasses game theory

models, and represents a host of other problems in engineering and economics [75]. Thus, this

LCP problem class is versatile and worthy of further study, and it is not a class that has been

explored very much in the inverse optimization literature before. The only paper that explores

inverse optimization of the LCP problem explicitly is Huang [103]. Huang [103] investigates

the computational complexity of inverse linear complementarity problems and propose the same

inverse optimization quadratic program that we propose, but they do not address simplification

measures for the LCP inverse optimization problem, the possibility of being given multiple

solutions, or the complementarity cone and complete information concepts that we address in this

chapter. We address both theoretical and practical considerations when parameterizing an LCP

from either observed or desirable solutions. We define conditions on these sets of solutions that

make the inverse optimization problem feasible or infeasible and that produce parameterizations

that have noteworthy properties. We also discuss when these conditions fail to be satisfied.

Furthermore, we analyze the interaction of the given problem data with the parameterization

goal, examining single-point, multi-point, and infinite-point data cases. These cases correspond

to situations in which we have a unique solution, a finite set of solutions, or a convex set of

99



infinite solutions to our LCP. To apply our new found knowledge to an application, we address

the idea of using “system optimal” solutions to adjust parameters in a water supply market case

study, which is the first time inverse optimization has been applied to a water supply market. In

this case study, we draw on the transportation literature’s discuss regarding system optimal versus

user equilibrium solutions [165] along with previous water supply work [28]. We demonstrate

that we can use inverse optimization to adjust incentives in a market to achieve the system optimal

solution that increases total additive market benefit.

4.3 Background

In order to discuss inverse optimization for LCPs, we first provide some background regarding

LCPs and the theory of their solutions. With this background, we then discuss the inverse

optimization problem at a high level at the end of this section.

To document a few notation conventions, we use subscripts to identify elements in matrices

and vectors. For matrices Ai,: denotes the ith row of A, A:,i denotes the ith column of A, and

Ai,j denotes the (i, j)th element of A. We use superscripts on vectors to identify specific vectors.

Thus, zki denotes the ith element of the kth vector.

4.3.1 Basic Linear Complementarity Problem

A linear complementarity problem with only nonnegative variables can be defined as finding

a vector z ∈ Rn
≥0, given a matrix of coefficients M ∈ Rn×n and a vector of coefficients q ∈ Rn,

such that the following relationship holds [48]:
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0 ≤ z ⊥Mz+ q ≥ 0 (4.3.1)

The ⊥ indicates that the inner product zT (Mz+ q) = 0, and this entire problem can be written in

short-hand as LCP(q,M) [48]. The set I = {1, ..., n} is an index set for the linear complementary

problem, often used to refer to rows of the matrix M , elements of the vector z, or elements of the

vector q. The set of solutions to this problem can be written as SOL(q,M) [48]. The LCP(q,M)

(4.3.1) is sometimes termed the “forward problem” [37] because it produces the z solutions.

There are a few more terms related to the LCP that should be defined.

Definition 5 ([48]). A vector z that satisfies 0 ≤ z and Mz + q ≥ 0 is said to be feasible. A

LCP(q,M) is feasible if a feasible vector exists.

Definition 6 ([48]). A vector z such that zT (Mz + q) = 0 is called complementary. A vector is

a solution of the LCP(q,M) if it is both feasible and complementary. A LCP(q,M) is said to be

solvable if it has a solution.

Definition 7 ([134]). A solution of the LCP(q,M) is degenerate if a component zi = 0 and the

associated Mi,:z+ qi = 0.

Definition 8. A “z solution” or an “LCP z solution” refers to a solution to the LCP(q,M).

Having defined some terms we use throughout the chapter in reference to LCPs, we state that the

goal of our inverse optimization problem is to find a q given a set of z solutions. We define this

formally in Section 4.3.3.

A natural question might surround the multiplicity of z solutions to this problem. This is

dependent on the properties of the matrix M and the vector q. Indeed, a linear complementarity
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problem can have a unique, a finite, an infinite, or unknown number of solutions for a given M

and q [48]. Thus, in the following subsections, we examine the LCP from both the perspective of

the M matrix and the q vector.

4.3.1.1 Multiplicity of z Solutions based on the M Matrix

First, we provide some background regarding when theM matrix induces a unique, a finite,

an infinite number, or an unknown number of z solutions based on the properties of theM matrix.

Case 1 M ∈ P: To have a unique solution for every right hand-side q, the LCP M matrix needs

to be a P-matrix [48]. This is a complete characterization. Before we state the definition of a

P-matrix, we need to define the concepts of principle submatrices and principle minors.

Definition 9 (Definition 2.2.1 [48]). Let A ∈ Rm×n be given. For index sets α ⊆ {1, ...,m} and

β ⊆ {1, .., n}, the submatrix Aα,β of A is the matrix whose entries lie in the rows of A indexed by

α and the columns index by β. If α = {1, ...,m}, we denote the submatrixAα,β byA:,β; similarly,

if β = {1, ..., n}, we denote Aα,β by Aα,:. If m = n and α = β, the submatrix Aα,α is called a

principal submatrix of A; the determinant of Aα,α is called a principal minor of A.

Definition 10 (Definition 3.3.1 [48]). A matrix M ∈ Rn×n is said to be a P-matrix if all its

principal minors are positive. The class of such matrices is denoted P.

The corresponding theorem is the following.

Theorem 5 (Theorem 3.3.7 [48]). A matrixM ∈ Rn×n is a P-matrix if and only if the LCP(q,M)

has a unique solution for all vectors q ∈ Rn.

Therefore, we know that, if we have a P-matrix, then all q ∈ Rn each map to one z vector. It is

possible that multiple q could map to the same z, which means that, when finding a q for z, there
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may be multiple potential q that could lead to that z. An example of this comes from the M and

q defined below:

M =

2 1

1 2

 , q =
 −8

q2 ≥ −4

 (4.3.2)

This M is a P-matrix, and all of the q defined in (4.3.2) map to the z solution z = [4, 0]T . This

fits with the overall setting of an inverse problem in that inverse problems often produce multiple

solutions, with solutions here refering to q solutions. We continue this discussion in Section 4.4

when discussing an algorithm for finding q in this case. We also note for this problem that, if

−16 < q2 < −4, then z1 =
q2+16

3
, z2 =

−8−2q2
3

and, if q2 ≤ −16, z1 = 0, z2 =
−q2
2

. Therefore,

the z solution changes as q2 changes, but we still obtain a unique solution for this matrix M .

Case 2 Nondegenerate M : For this case, the class of matrices includes the P-matrices, since a

finite number does indeed include the case of 1 solution. For this broader class of matrices, we

assume M is nondegenerate, defined as follows:

Definition 11 (Definition 3.6.1 [48]). A matrix M ∈ Rn×n is called nondegenerate if all its

principal minors are nonzero.

We then have the following theorem:

Theorem 6 (Theorem 3.6.3 [48]). Let M ∈ Rn×n. The following statements are equivalent

1. M is nondegenerate.

2. For all vectors q, the LCP(q,M) has a finite number (possibly zero) of solutions.

3. For all vectors q, any solution of the LCP(q,M), if it exists, must be locally unique.
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Thus, from this definition and theorem, we see that nondegenerate matrices have a finite number

of z solutions.

Case 3 Positive Semi-Definite M: We consider the case where there are potentially an infinite

number of solutions forming a convex set. This leads us to deal with the case of positive semi-

definite matrices, which can be defined as follows:

Definition 12 (Definition 2.2.15 [48]). A matrix A ∈ Rn×n is said to be positive semi-definite if

xTAx ≥ 0 for all x ∈ Rn.

We then have the following theorem:

Theorem 7 (Theorem 3.1.7 [48]). Let M ∈ Rn×n be positive semi-definite, and let q ∈ Rn be

arbitrary. The following hold:

1. If z1 and z2 are two solutions of LCP(q,M), then:

(z1)T (q +Mz2) = (z2)T (q +Mz1) = 0 (4.3.3)

2. If z∗ ∈ SOL(q,M) has the property that (i) z∗ is nondegenerate and (ii)Mαα is nonsingular

where

α = {i : z∗i > 0} (4.3.4)

then z∗ is the unique solution of LCP(q,M).

3. If LCP(q,M) has a solution, then SOL(q,M) is polyhedral and equal to

P = {z ∈ Rn
≥0 : q +Mz ≥ 0, qT (z− z̄) = 0, (M +MT )(z− z̄) = 0} (4.3.5)
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where z̄ is an arbitrary solution.

4. If M is symmetric (as well as positive semi-definite), then Mz1 = Mz2 for any two

solutions z1 and z2.

Therefore, positive semi-definiteM matrices can produce convex sets of solutions as demonstrated

in part 3 of Theorem 7 with the polyhedral set. One example of a positive semi-definite but not a

P-matrix M with related q that produces a convex set of solutions is the following problem:

M =

1 2

2 4

 , q =

−4

−8

 (4.3.6)

The two extreme points of the convex solution set, meaning the points that cannot be constructed

from convex combinations of other points, are (4, 0) and (0, 2). If we take a convex combination

of these two solutions, we also obtain a solution to the above problem, as demonstrated by the

following for θ ∈ [0, 1]:

Mz+ q =

 4θ + (2)(2(1− θ))− 4

(2)(4θ) + (4)(2)(1− θ)− 8

 =

4θ + 4− 4θ − 4

8θ + 8− 8θ − 8

 =

0
0

 . (4.3.7)

Thus, this problem has an infinite number of solutions that forms a convex set.

Case 4 Unknown Structure for M : Finally, the matrixM may satisfy none of the properties addressed

in the previous three cases. Then, depending on the problem size, it may or may not be feasible

to obtain all of the solutions. With a limited problem size, we can check the 2n cases of potential

z solutions being 0 or strictly positive for each variable. For larger problems, we may have to
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engage in searching techniques where we warm start an LCP solver to find multiple potential z

solutions [75], meaning that we initialize the LCP model with a starting point from which the

Lemke [48], PATH [54, 70], or other LCP algorithms can work to find a solution.

4.3.1.2 Multiplicity via the q Vector

Having examined multiplicity via the M matrix, we now discuss multiplicity through the q

vector. The overarching idea is that, given a fixed M matrix, different q in the space of possible

q vectors induce different sets of z solutions in the LCP(q,M). This is important for our inverse

optimization problem formulation in the next section. Before we can approach this, we need to

define a few additional terms.

Definition 13 (Cone and Convex Cone: Defintion 1.3.1 [48]). We say that a nonempty set X in

Rn is a cone if, for any x ∈ X and any t ≥ 0, we have tx ∈ X . If a cone X is, in addition, a

convex set, then we say that X is a convex cone.

We can then define an important cone that is be relevant to our M matrix.

Definition 14 (Finite Cone [48]). A matrix A ∈ Rm×p generates a convex cone obtained by

taking nonnegative linear combinations of the columns of A. This cone, denoted pos A, is given

by

pos A = {w ∈ Rm : w = Av for some v ∈ Rp
≥0} (4.3.8)

This definition is related to the definition of a complementary matrix of M and allows us to

express the set of q for a given matrix M that lead to a solution of LCP(q,M).
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Definition 15 (Definition 1.3.2 [48]). Given M ∈ Rn×n and α ⊆ {1, ..., n}, we define CM(α) ∈

Rn×n as

CM(α):,i =


−M:,i if i ∈ α

I:,i if i /∈ α

(4.3.9)

CM(α) is then called a complementary matrix of M. The associated cone, pos CM(α), is called

a complementary cone (relative to M).

As discussed in Cottle et al. [48], we can form the union of all of the complementary cones

associated with M to produce the following set in which the set A contains all 2n possible index

sets for the complementary cones involving matrix M :

K(M) =
⋃
α∈A

{q̂ : CM(α)v = q̂ for some v ∈ Rn
≥0} = {q : SOL(q,M) ̸= ∅} (4.3.10)

This provides us with the insight that the complementary cones can identify the set of q that

produce solutions z to the LCP(q,M) [48]. The interactions of the cones with each other also

identify when a q produces, for a fixed M , different numbers of LCP z solutions [48]. However,

finding these interactions becomes exponentially difficult in the worst case because there are 2n

number of complementary cones for a matrix M . Nevertheless, M and q interact to produce the

set of z solutions for the LCP they define. These insights are important as we move in reverse,

having a set of z solutions and attempting to produce a q associated with this set of z solutions.

We expand upon this interaction in Section 4.4. First, however, we define a set of examples that

we utilize throughout the rest of the chapter to illustrate various points.
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4.3.2 Examples for the Different Cases

We provide examples of the four z solution cases for the different M matrix types before

continuing to the next section. We note for these examples that the q vector and z solution(s)

pairs do not necessarily imply uniqueness of the q vector, meaning that multiple potential q

vectors could have potentially produced the z solution(s).

• Case 1 M ∈ P:

Example 1.1: For a non-symmetric example of a M ∈ P, we have:

M =

2 2

1 4

 (4.3.11)

The clearest demonstration that any potential q only associates with one solution z comes

from the diagrams below which show each of the complementary cones for this example,

with the last diagram showing all of the complementary cones together. The diagrams also

showcase that the complementary cones cover the whole R2 space and, thus, all potential

q =

q1
q2

. The vectors in the diagrams are numbered such that:

1 =

1
0

 , 2 =

0
1

 , 1̂ = −M:,1, 2̂ = −M:,2 (4.3.12)
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α = ∅ (4.3.13a)

CM(α) =

1 0

0 1

 (4.3.13b)

α = {1} (4.3.14a)

CM(α) =

−2 0

−1 1

 (4.3.14b)

α = {2} (4.3.15a)

CM(α) =

1 −2

0 −4

 (4.3.15b)
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α = {1, 2} (4.3.16a)

CM(α) =

−2 −2

−1 −4

 (4.3.16b)

All the complementary cones.

From these complementary cone diagrams, we can see that each q =

q1
q2

 corresponds

with one complementary cone and thus with one solution. To demonstrate this numerically,

we have Table 4.1 which shows sample q from each divided region created by the cones

and the associated singular solution to the LCP for each q. We verified by hand each z

solution set.
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q Vector z1, z2 Solutions Associated Conic Regions0.5
0.5

 z1 = 0, z2 = 0 pos CM(∅)

−0.5

0.5

 z1 =
1
4
, z2 = 0 pos CM({1})

−0.5

−0.5

 z1 =
1
6
, z2 =

1
12

pos CM({1, 2})

 0.5

−0.5

 z1 = 0, z2 =
1
8

pos CM({2})

Table 4.1: q Vectors and Associated z Solutions for Example 1.1

• Case 2 Nondegenerate M :

Example 2.1: For the case of a finite number of solutions, we utilize two examples. Both

are nondegenerate matrices. The first example M is:

−1 1

0 1

 (4.3.17)

The associated complementary cone diagrams are as follows:
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α = ∅ (4.3.18a)

CM(α) =

1 0

0 1

 (4.3.18b)

α = {1} (4.3.19a)

CM(α) =

1 0

0 1

 (4.3.19b)

α = {2} (4.3.20a)

CM(α) =

1 −1

0 −1

 (4.3.20b)
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α = {1, 2} (4.3.21a)

CM(α) =

1 −1

0 −1

 (4.3.21b)

All the complementary cones.

Unlike the previous example, the complementary cones do overlap and do not cover all of

R2. This means not every q ∈ R2 produces solutions to LCP(q,M) for this M and, for this

particular example, the q ∈ R2 that do produce solutions produce a finite number greater

than 1.1 We numerically demonstrate the multiple solutions in Table 4.2 by choosing a q

from each of the two regions.

1We see in the next example that, for nondegenerate matrices, you could have some regions that only produce
unique z solutions.
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q Vector z1, z2 Solutions Associated Conic Regions0.5
0.5

 z1 = 0, z2 = 0

z1 = 0.5, z2 = 0

pos CM(∅)

pos CM({1}) 0.5

−0.5

 z1 = 0, z2 = 0.5

z1 = 1, z2 = 0.5

pos CM({2})

pos CM({1, 2})

Table 4.2: q Vectors and Associated z Solutions for Example 2.1

Example 2.2: The second example is from Cottle et al. [48] page 22. This M matrix is as

follows:

M =

−0.25 0.5

0.5 −0.25

 (4.3.22)

The complementary cone diagrams for this example are as follows:

α = ∅ (4.3.23a)

CM(α) =

1 0

0 1

 (4.3.23b)
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α = {1} (4.3.24a)

CM(α) =

0.25 0

−0.5 1

 (4.3.24b)

α = {2} (4.3.25a)

CM(α) =

1 −0.5

0 0.25

 (4.3.25b)

α = {1, 2} (4.3.26a)

CM(α) =

0.25 −0.5

−0.5 0.25

 (4.3.26b)

115



All of the complementary cones.

We see that, unlike the previous example, the complementary cones coincidentally span

the entirety of R2, and there is a mix of regions that have one solution and three solutions.

Table 4.3 below verifies these facts numerically with four q values from the four different

regions.

q Vector z1, z2 Solutions Associated Conic Regions

0.5
0.5


z1 = 0, z2 = 0

z1 = 2, z2 = 0

z1 = 0, z2 = 2

pos CM(∅)

pos CM({1})

pos CM({2})−0.5

0.5

 z1 = 0, z2 = 2 pos CM({2})

−0.5

−0.5

 z1 = 2, z2 = 2 pos CM({1, 2})

 0.5

−0.5

 z1 = 2, z2 = 0 pos CM({1})

Table 4.3: q Vectors and Associated z Solutions for Example 2.2

• Case 3 Positive Semi-Definite M :
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Example 3.1: To find a positive semi-definite matrix, which is valuable because it produces

a convex set of solutions, we turn to a linear programming problem:

min
x1,x2

2x1 + 3x (4.3.27a)

4x1 + x2 ≥ 4 (λ1) (4.3.27b)

2x1 + 3x2 ≥ 6 (λ2) (4.3.27c)

x1 ≥ 0, x2 ≥ 0 (4.3.27d)

with the following M matrix and q vector for the associated necessary and sufficient KKT

conditions:

M =



0 0 −4 −2

0 0 −1 −3

4 1 0 0

2 3 0 0


, q =



2

3

−4

−6


(4.3.28)

We verify that this matrix is positive semi-definite by checking that 1
2
(M +MT ) is positive

semi-definite, as Cottle et al. [48] on page 66 states we can do. We also know this matrix

is positive semi-definite because it is bisymmetric and the upper left hand block is all 0s.
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Since this is a 4× 4 matrix, we cannot draw the complementary cones, but we know from

constructing the example ourselves that the z = [x1, x2, λ1, λ2]
T solution space is a line

segment (and thus a convex set), with end points of:

ẑ1 =



0.6

1.6

0

1


, ẑ2 =



3

0

0

1


(4.3.29)

which can be seen from the following diagram in which the blue and orange lines represent

the constraints at equality, the black dotted lines represent the intersection of all the constraint

half-spaces, and the green lines represent different instances of the objective function (also

known as the isocost curves):

Figure 4.1: Linear Program Diagram for Example 3.1

Readers can see that the line segment between where the blue line intersects the orange line

and where the orange line intersects the x1 axis is the set of solutions because the objective

function isocost curves reach a minimum on that line segment, since the isocost curves are

118



parallel to that segment. The two ends of the line segment match the ẑ1 and ẑ2 listed above.

Example 3.2: The second example is again positive semi-definite, and M is:

M =

1 2

2 4

 (4.3.30)

The associated complementary cones are:

α = ∅ (4.3.31a)

CM(α) =

1 0

0 1

 (4.3.31b)

α = {1} (4.3.32a)

CM(α) =

−1 0

−2 1

 (4.3.32b)
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α = ∅ (4.3.33a)

CM(α) =

1 −2

0 −4

 (4.3.33b)

α = {1, 2} (4.3.34a)

CM(α) =

−1 −2

−2 −4

 (4.3.34b)

All the complementary cones.

We see that, for the cone pos CM({1, 2}), we have a ray, which denotes linearly dependent

columns of M since the negative columns of M form vectors that overlap each other. This
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gives rise to a convex set of solutions for the q in the cone created by the negative columns

of M because, since M has linearly dependent columns, this means the system −Mz = q

has either 0 or an infinite number of solutions, as presented in the well-known linear algebra

textbook by Strang [170]. We know the system has at least one solution because the q in

that cone are a multiples of the columns of M , which means the system has an infinite

number of solutions.2 This is verified in Table 4.4 below.

q Vector z1, z2 Solutions Associated Conic Regions0.5
0.5

 z1 = 0, z2 = 0 pos CM(∅)

−0.5

0.5

 z1 = 0.5, z2 = 0 pos CM({1})

−0.25

−0.5


z1 = 0.25, z2 = 0

z1 = 0, z2 =
1
8

z1, z2 ≥ 0 s.t. z1 + 2z2 = 0.25

pos CM({1, 2})

−0.5

−1


z1 = 0.5, z2 = 0

z1 = 0, z2 =
1
4

z1, z2 ≥ 0 s.t. z1 + 2z2 = 0.5

pos CM({1, 2})

 0.5

−0.5

 z1 = 0, z2 =
1
8

pos CM({2})

Table 4.4: q Vectors and Associated z Solutions for Example 3.2

• Case 4 Unknown Structure for M :
2Technically, in all cases in Table 4.4, there is a convex set of solutions because a single solution vacuously also

constitutes a convex set. This matches with Theorem 7.
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Example 4.1: We take an adjusted example from page 22 of [48] with the following M

matrix:

M =

 0 0.5

−1 −0.5

 (4.3.35)

We see that this matrix does not fulfill any of the properties of the previous three cases

because its principle minors are: 0, -0.5, 0.5 and because 1
2
(M + MT ) has a negative

eigenvalue. This M matrix’s associated complementary cones are:

α = ∅ (4.3.36a)

CM(α) =

1 0

0 1

 (4.3.36b)

α = {1} (4.3.37a)

CM(α) =

0 0

1 1

 (4.3.37b)
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α = {2} (4.3.38a)

CM(α) =

1 −0.5

0 0.5

 (4.3.38b)

α = {1, 2} (4.3.39a)

CM(α) =

0 −0.5

1 0.5

 (4.3.39b)

All of the complementary cones.

Again, we see that there is a ray formed for the pos CM({1}) cone, which leads to a convex

set of solutions as seen in Table 4.5 below. This results for the same reasons as Example
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3.2; namely, the CM({1})v = q system has linearly dependent columns in CM({1}) and

the q lies in the cone created by CM({1}), so there is an infinite number of solutions to

CM({1})v = q.

q Vector z1, z2 Solutions Associated Conic Regions

 0

0.5


z1 = 0, z2 = 0

z1 = 0, z2 = 1

0 < z1 ≤ 0.5, z2 = 0

pos CM(∅)

pos CM({2})

pos CM({1})−0.25

0.5

 z1 = 0, z2 = 1

z1 =
1
4
, z2 =

1
2

pos CM({2})

pos CM({1, 2})0.5
0.5

 z1 = 0, z2 = 0

z1 = 0, z2 = 1

pos CM(∅)

pos CM({2})

Table 4.5: q Vectors and Associated z Solutions for Example 4.1

Example 4.2: In this example, we expand the linearly dependent column idea from Example

3.2 to three dimensions, with an M and q as follows:

M =


1 4 14

2 5 19

3 6 24

 , q =


−12

−16.5

−21

 (4.3.40)

This M matrix is not a P matrix because its determinant is 0, is degenerate because its

determinant is 0, and is not positive definite because two of 1
2
(M +MT ) eigenvalues are

negative, with the eigenvalues being -2.42410512, -0.30252309, and 32.72662821. The

solutions for this LCP(q,M) are:
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1. z1 = 12, z2 = 0, z3 = 0 ((+, 0, 0) case)

2. z1 = 0, z2 = 0, z3 = 0.875 ((0, 0,+) case)

3. z1 = 2, z2 = 2.5, z3 = 0 ((+,+, 0) case)

4. z1 =
1
3
, z2 = 0, z3 =

5
6

((+, 0,+) case)

5. z1 + 2z3 − 2 = 0, z2 + 3z3 − 2.5 = 0, for z1 > 0, z2 > 0, z3 > 0 ((+,+,+) case)

which we verified by hand by checking all 23 cases of variables being set to either 0 or a

strictly positive number. We see that there is a convex set of solutions in item 5 because

there are only two equations defining the three strictly positive variables, leading to an

underdetermined system. This results from column 3 of M being a linear combination of

the other two columns; specifically, column 3 of M is a combination of: 2M:,1 + 3M:,2 =

M:,3. We also see that solutions in number 5 in the list above can be expressed as the convex

combination of solution numbers 3 and 4 in the list above or, in other words,

{z : z1+2z3−2 = 0, z2+3z3−2.5 = 0, z ≥ 0} = {z : θ ∈ [0, 1], z = θ


2

2.5

0

+(1−θ)


1
3

0

5
6

}

which we arrive at by taking the extreme points, which are not linear combinations of other

points, of the solutions generated by the equations in number 5.

• Example 4.3: Finally, in this example, we demonstrate a solution set that is the union of

two convex sets, but this union does not produce a convex set. We have the following M
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and q:

M =


1 2 3

2 4 10

3 7 9

 , q =


−1

−2

−3

 (4.3.41)

This M has principle minors ranging from -34 to 9, including 0, and it has eigenvalues

from -2.2093 to 16.0968. Therefore, it does not satisfy any of the properties previously

outlined in Section 4.3.1.1. Instead, its solutions are the union of the two convex sets in

(4.3.42), which we obtained by solving the problem by hand and was informed by the

fact that various submatrices of M have linearly dependent columns. The submatrices

having linearly dependent columns forces either 0 or an infinite number of solutions [170].

Specifically, for index sets α1 = {1, 2} and α2 = {1, 3},Mα1,α1 andMα2,α2 form submatrices

that have linearly dependent columns that correspond to entries in q that produce solution

sets that are infinite. In turn, since these two convex sets correspond to solutions to the

LCP, we can write that the entire solution set of the LCP is the union of these two sets:

θ
1


1

0

0

+ (1− θ1)


0

0.5

0



 ∪

θ
2


1

0

0

+ (1− θ2)


0

0

1
3



 , θ1, θ2 ∈ [0, 1] (4.3.42)

We see that this union does not produce a convex set because we cannot take the convex

combination of an element from the first term and an element from the second term and

guarantee that it is an element of the solution set of the LCP.
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Having established these examples, we present one definition before moving on to our inverse

optimization problem. We define what it means for a solution z to correspond to a complementary

cone.

Definition 16. A solution z corresponds to a complementary cone if {k : zk > 0} = αz for

pos CM(αz).

An example of this would be in Example 4.1 in which given a solution z = (1
4
, 1
2
), the corresponding

complementary cone is pos CM({1, 2}). We may now proceed to the definition of the inverse

optimization problem.

4.3.3 Basic Inverse Optimization Problem for LCP

Our inverse optimization problem for the LCP is to find a q that induces the set of z

solutions that we observe. We define this set of z solutions as follows:

Definition 17. The set Zobs is the set of z solutions that we observe for the inverse optimization

problem.

These observed solutions can either be viewed in the world (such as via noting the flow of traffic

in a traffic equilibrium problem), obtained from simulation, or gotten from solving a system

optimal model. Given a set of LCP solutions that we observe, Zobs, the set of q that could have

possibly produced this set Zobs can be written as:

QIO = {qZobs : Zobs ⊆ SOL(qZobs ,M)} (4.3.43)

We can also define the following set for a particular z ∈ Zobs:
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QIOz = {qz : z ∈ SOL(qz,M)} (4.3.44)

Two examples to demonstrate these two sets come from Section 4.3.2. We first explore a Zobs

constructed from Example 1.1 in Section 4.3.2. Say Zobs = {(1
6
, 1
12
)}. In this case, since M ∈ P,

QIO = QIOz =


−0.5

−0.5


. In the second example, we explore a Zobs formed from Example

2.2 from Section 4.3.2. Say Zobs = {(0, 0), (2, 0), (0, 2)}. Then, QIO =


0.5
0.5


. If we take a

particular z ∈ Zobs such as (0, 2), we have QIOz =


q1 ≥ −1

0.5


.3 We obtain these QIO and

QIOz by using the feasibility conditions from the forthcoming quadratic program (4.3.46). We

notice from these examples that:

QIO ⊆ QIOz (4.3.45)

When we want to refer to the solutions from the inverse optimization problem, we use the

following terms.

Definition 18. The terminology “q solution” or “IO q solution” refers to a solution found in

either the set QIO or the set QIOz . The terminology is meant to denote a solution to the inverse

optimization problem for the set Zobs.4

There are several considerations on Zobs that we define in Section 4.4.1 that affect the q

parameters to be obtained, including if the q generated from the set Zobs by inverse optimization
3Determining these sets came from using Theorem 8 and, thus, the quadratic program (4.3.46) later defined.

Specifically, we look at the feasibility constraints of this quadratic program (4.3.46), and the feasibility constraints
produce the QIOz and QIO.

4This Zobs could contain a singular z.
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techniques produces extra z solutions not present in Zobs when LCP(q,M) is solved (defined

in Definition 19) and if the solutions in the set Zobs correspond to some intersecting set of

complementary cones (termed Propositions 2 and 3 and relationships (4.4.19) and (4.4.20)).

Sections 4.4.2-4.4.5 focus on the characteristics of M and how they shape the ways we search for

solutions. In Sections 4.4.2-4.4.5, we also address the considerations on the Zobs set from Section

4.4.1 and their interactions with each of the M cases.

As an overarching technique and to close this section, we introduce a quadratic program

that is central to finding q. It is specified and further refined in the coming sections, but it is

worth defining here because we use it as a test for a property of Zobs in Section 4.4.1. Given

some starting guess of q, q0, and the set Zobs of z solutions for our candidate LCP(·,M), we

draw on previous work on embedding equilibrium/optimization problems within an optimization

program that calculates differences from a starting point such as minimizing the l2 norm [55, 76]

to produce a quadratic program as follows, with J = {1, ..., |Zobs|} acting as an index set for

Zobs and |J | = |Zobs| possibly being infinite. The use of q0 allows for case-specific fine-tuning

of problem (4.3.46). We note also that this quadratic program matches one of the quadratic

programs discussed in Huang [103]:

min
q∈Q

||q − q0||22 (4.3.46a)

(zj)T (q +Mzj) = 0, ∀j ∈ J (4.3.46b)

q +Mzj ≥ 0, ∀j ∈ J (4.3.46c)
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Importantly, constraint (4.3.46b) represents the inner product between the jth zj data vector and

the vector q +Mzj . Q represents any constraints we have placed on the variable q, which might

include specific bounds on the elements of q and/or might include relational constraints among

the q variables. For instance, say we have the M from Example 2.2 in Section 4.3.2, and say

Zobs = {(0, 2)}. Our quadratic program with Q = Rn is:

min
q

||q − q0||22 (4.3.47a)

2q2 − 1 = 0 (4.3.47b)

q1
q2

 ≥

−1

0.5

 (4.3.47c)

If we wanted to restrict q to be in the non-negative orthant, we could write the problem with that

following restriction:

min
q

||q − q0||22 (4.3.48a)

2q2 − 1 = 0 (4.3.48b)

q1
q2

 ≥

−1

0.5

 (4.3.48c)
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Q = {q : q ≥ 0} (4.3.48d)

We may wish to restrict q ≥ 0 if q represents some kind of non-negative item/quantity.

4.4 Algorithms for Finding q

We next discuss how to find q given the four cases for the matrix M discussed in Section

4.3.1.1. However, before we consider these cases in more depth, we need to consider the complementary

cone effects on IO q solutions.

4.4.1 The Complete Information Property and Complementary Cone Effects on

Possible IO q Solutions

The interaction between M and Zobs takes up much of Section 4. In this subsection, we

examine the complete information property as well as the way in which the complementary cones

associated with matrix M can affect the possible q’s that we can recover from Zobs. To better

understand this, we utilize Example 4.1 from Section 4.3.2. First, we see that one problem that

can arise is when our chosen q returns more z solutions than are contained within Zobs. To

show this, we observe if Zobs = {(0, 1)}, that solution set could have originated from either

q̄ = [0, 0.5]T , q̃ = [−0.25, 0.5]T , or q̂ = [0.5, 0.5]T . However, as we know from Table

4.5, the first and third of these q vectors produce two different sets of z solutions, with Zobs ⊂

SOL(q̂,M) ⊂ SOL(q̄,M). For the second of these q vectors, Zobs ⊂ SOL(q̃,M). Therefore,

we must distinguish between when the set Zobs is guaranteed to find a q that only returns the

set Zobs in the forward problem and when it finds a q that produces a set Zobs+extra such that
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Zobs ⊂ Zobs+extra.

Before proceeding with this definition, we explain the meaning of the following set intersection:⋂
z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} using Example 2.2 in Section 4.3.2. SayZobs = {(0, 0), (2, 0), (0, 2)};

the individualQIOz = {q̂z : z ∈ SOL(q̂z,M)} sets for each of the z ∈ Zobs are as follows, which

we obtained by looking at the feasible region of the quadratic program (4.3.46)5:

z = (0, 0) : QIOz =


q1 ≥ 0

q2 ≥ 0


 (4.4.1a)

z = (2, 0) : QIOz =


 0.5

q2 ≥ −1


 (4.4.1b)

z = (0, 2) : QIOz =


q1 ≥ −1

0.5


 (4.4.1c)

while the intersection of these QIOz is:

⋂
z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} =
⋂

z∈Zobs

QIOz =


0.5
0.5


 (4.4.2)

With this set explained, we can define what it means for a set to have complete information.

Definition 19 (Complete Information). A setZobs has complete information when the q ∈
⋂

z∈Zobs

{q̂z :

z ∈ SOL(q̂z,M)} are such that SOL(q,M) = Zobs.

5which we know is equivalent to there being a solution to the IO problem by Theorem 8 which will be proven
below.
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To continue the example from above, we know
⋂

z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} =


0.5
0.5


.

From Table 4.3, we know SOL(q,M) for this q is equal to Zobs, which means Zobs has complete

information. An example of a Zobs without complete information is Zobs = {(0, 0), (2, 0)}. The

associated QIOz are defined in (4.4.1), and the intersection of the QIOz is:

⋂
z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} =
⋂

z∈Zobs

QIOz =


 0.5

q2 ≥ 0


 (4.4.3)

One of the qs in that intersection is


0.5
0.5


 which we know from Table 4.3 produces the extra

solution (0, 2). This means that Zobs does not have complete information. We do point out that,

just because the feasible region of the IO quadratic program (4.3.46) with the Zobs solution set

generates just one q vector, this does not mean that Zobs has complete information. We can see

this point if Zobs = {(2, 0), (0, 2)} for Example 2.2 because this Zobs produces q =

0.5
0.5

, but

this IO q solution returns back the solution of (0, 0) when the LCP is solved in addition to the

two other solutions.

In theory, one way to test if Zobs has complete information is to solve (4.3.46) and then

generate the solutions for the 2n cases of zero and strictly positive zi variables. One would then

check to see if the z solutions recovered match the Zobs set. This is feasible for smaller problems,

but quickly becomes infeasible for larger problems. Another approach to test if Zobs has complete

information would be to generate the 2n set of complementary cones and see if the q we obtain

from (4.3.46) appears only in the complementary cones corresponding to the solutions present in
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Zobs [48]. This would require the formulation of 2n feasibility problems involving the following

constraints: CM(α)v = q, v ≥ 0 so, again, the scalability is in question [48].

Second, we see that, if our observed solution set Zobs has z solutions that correspond

to non-overlapping complementary cones, this presents a problem for finding a q vector. For

example, using the mathematical program defined in (4.3.46), we obtain a contradiction in the

mathematical program when Zobs = {(0, 0), (0, 1), (1
4
, 1
2
)} for Example 4.1 in Section 4.3.2. The

constraints (without the objective function) in the mathematical program according to (4.3.46)

are as follows for this set Zobs and the example’s M :

q2 − 0.5 = 0 (from (0,1)) (4.4.4a)

1

4
q1 +

1

2
q2 −

1

8
− 1

16
= 0 (from

(
1

4
,
1

2

)
) (4.4.4b)

q1
q2

 ≥

0
0

 (from (0,0)) (4.4.4c)

q1
q2

 ≥

−0.5

0.5

 (from (0,1)) (4.4.4d)

q1
q2

 ≥

−0.25

0.5

 (from
(
1

4
,
1

2

)
) (4.4.4e)

In the equality constraints (4.4.4a)-(4.4.4b) created by (4.3.46b), q1 = −1
4
, q2 = 1

2
, but this

contradicts the lower bound in the inequality constraint (4.4.4c) (created by (4.3.46c)) that requires
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q1 ≥ 0. Furthermore, if we graph the potential solution q = [−1
4

1
2
] vector in the graph depicting

all of the complementary cones, it only is in two out of the three regions to which the z solutions

in Zobs correspond.

As a result of this problem, when we have multiple z solutions in Zobs, we may need to

further subset them according to if they produce a feasible q solution to (4.3.46), which can be

used as a test to see if the z solutions in Zobs correspond to overlapping complementary cones as

can be seen in Proposition 3. We discuss in the coming subsections the ways in which we address

the complementary cone considerations for each case. Working up to Proposition 3, we formalize

the knowledge using Proposition 2 and relationships (4.4.19) and (4.4.20) that, if the inverse

optimization problem has a q solution for a given Zobs, then Zobs corresponds to overlapping

complementary cones and, if the corresponding complementary cones for Zobs do not overlap,

then there is no q solution to the inverse optimization problem, unless M is a P matrix which

means there should only be one solution in Zobs since each q in Rn is only associated with one

z for this type of M . In the situation in which the corresponding complementary cones for Zobs

do not overlap, we would try different (potentially mutually exclusive) subsets of Zobs in the

quadratic program (4.3.46) until we obtained a q for each subset such that union of the subsets

resulted in Zobs.

We then define some sets that are important for Propositions 2-3 and relationships (4.4.19)-

(4.4.20):

• The set {q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} is the complementary cone corresponding

to the solution z. For example, for the solution z̄ = [0, 1]T from Table 4.5 for Example 4.1
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in Section 4.3.2, the corresponding complementary cone is:

1
0

v1 +

−0.5

0.5

v2, v1,v2 ≥ 0 (4.4.5)

We prove in Proposition 2 that

{q̂z : z ∈ SOL(q̂z,M)} ⊆ {q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.6)

As an example, of this, we return to the z̄ = [0, 1]T for Example 4.1, and see for {q̂z : z̄ ∈

SOL(q̂z,M)} that this set is {q̂ : q̂1 ≥ −0.5, q̂2 = 0.5} for this z̄. The set {q̄ : CM(αz̄)v =

q̄ for some v ∈ Rn
≥0} is defined in (4.4.5). We see that (4.4.6) holds based on these two set

definitions, and we can see it pictorially in the following Figure 4.2. The QIOz is in blue as

a ray, and the corresponding complementary cone for z is in orange; we see the blue ray is

contained within the orange cone.

Figure 4.2: QIOz as a Subset of the Corresponding Complementary Cone for z

• For the set
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0}, this set denotes the intersection
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of the overlapping complementary cones corresponding to the solutions in Zobs. The

z solution set Zobs = {(0, 1), (1
4
, 1
2
)} from Example 4.1 in Section 4.3.2 corresponds

to complementary cones pos CM({2}) and pos CM({1, 2}), and we can visualize the

intersection of these overlapping cones pictorially in Figure 4.3.

Figure 4.3: Overlapping Complementary Cones

The intersection of the two cones pos CM({2}) and pos CM({1, 2}) in the 2nd quadrant

of R2 space defines the set
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0}. Thus, this set

includes the q that are the IO q solutions for the Zobs set, but it includes other q as well.

Specifically,
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} for Zobs can be defined as:

0
1

v1 +

−0.5

0.5

v2, v ≥ 0 (4.4.7)

while the q that are the IO q solutions for the Zobs set are:

q =

−0.25

0.5

 (4.4.8)
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which we obtain from looking at the feasible region of quadratic program (4.3.46). We

prove in Proposition 2 that:

{qZobs : Zobs ⊆ SOL(qZobs ,M)} ⊆
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.9)

With these sets defined and described, we have Proposition 2.

Proposition 2 (IO q Solutions as a Subset of Corresponding Complementary Cones). We have

the following subset relationship between the IO q solutions to the problem (4.3.43) and the

corresponding overlapping complementary cones to the set Zobs:

{qZobs : Zobs ⊆ SOL(qZobs ,M)} ⊆
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.10)

We also establish that:

{q : Zobs ⊆ SOL(q,M)} =
⋂

z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} (4.4.11)

Proof. Each solution z ∈ Zobs corresponds to pos CM(αz) for the index set αz. We know

{q̂z : z ∈ SOL(q̂z,M)} ⊆ {q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.12)

because of the following logic. For the set {q̂z : z ∈ SOL(q̂z,M)}, we know for a given q̂ in this

set that 0 ≤Mz+ q̂ ⊥ z ≥ 0 holds. This leads to the following two cases:

• For zi > 0, we write q̂i = −Mi,:z from the LCP conditions above. However, for j ̸= i
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zj = 0, we can replace −Mi,j = 0 and achieve the same q̂i

• For zi = 0, we write q̂i ≥ −Mi,:z from the LCP conditions above. We can write −Mi,:z as

follows:

−Mi,:z = −

(∑
j ̸=i

Mi,jzj +Mi,izi

)
= −

(∑
j ̸=i

Mi,jzj − zi

)
(4.4.13)

We see that Mi,i can be replaced with a −1, since zi = 0. However, since q̂i ≥ −Mi,:z, we

see that we can write q̂i as follows:

q̂i = −

(∑
j ̸=i

Mi,jzj − wi

)
(4.4.14)

for wi ≥ 0. Because we replaced −Mi,j = 0 for zj = 0 in the previous bullet, this current

wi does not affect the q̂i for the zi > 0 above.

Thus, employing these observations, we can construct a new matrix A such that Azw = q̂, for a

w ≥ 0 and, using h as the index for the elements of z and h as an index for the columns of M ,

such that

Az
:,h =


−M:,h if zh > 0

I:,h if zh = 0

(4.4.15)

We see that Az matches CM(αz), and w matches the v for the corresponding complementary

cone of z because w is forced to be non-negative to fulfill the bullet points above. Specifically,

the i for which zi > 0 results in wi = zi but, for the i in which zi = 0, wi ≥ 0 since q̂i ≥ −Mi,:z.
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Therefore q̂ ∈ {q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} thus proving (4.4.12). If we have the

following set relationships U ⊆ V and X ⊆ Y , then we can say U ∩X ⊆ V ∩ Y . This allows us

to say that:

⋂
z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} ⊆
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.16)

As an intermediate step to proving the proposition, we can say that:

{qZobs : Zobs ⊆ SOL(qZobs ,M)} =
⋂

z∈Zobs

{q̂z : z ∈ SOL(q̂z,M)} (4.4.17)

because a q such that Zobs ⊆ SOL(qZobs ,M) would be an element of the intersection of the QIOz

over the z ∈ Zobs, and a q that is an element of the intersection of QIOz over z ∈ Zobs would be a

q that would make Zobs ⊆ SOL(qZobs ,M). We can then say that:

{qZobs : Zobs ⊆ SOL(qZobs ,M)} ⊆
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈ Rn
≥0} (4.4.18)

which proves (4.4.10).

From Proposition 2, we use set relationship knowledge to make the following statements:

{qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ =⇒
⋂

z∈Zobs

{q̄ : CM (αz)v = q̄ for some v ∈ Rn
≥0} ≠ ∅ (4.4.19)

⋂
z∈Zobs

{q̄ : CM (αz)v = q̄ for some v ∈ Rn
≥0} = ∅ =⇒ {qZobs : Zobs ⊆ SOL(qZobs ,M)} = ∅ (4.4.20)
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These relationships tell us that, if the IO problem has a q solution, then theZobs involved corresponds

to overlapping complementary cones and, if the corresponding complementary cones to Zobs do

not overlap, then the IO problem does not have a q solution.

Working up to a test regarding if a set Zobs corresponds to overlapping complementary

cones, we have the following theorem.

Theorem 8. The quadratic program (4.3.46) is feasible for a given set Zobs and set Q = Rn if

and only if {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅

Proof. ⇒ If the quadratic program is feasible, then it means there exists a q such that the LCP

conditions of 0 ≤ Mz+ q ⊥ z ≥ 0 have been met for all the z ∈ Zobs. This implies that there is

a q such that Zobs ⊆ SOL(q,M).

⇐ If {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅, then there exists a q that meets the LCP conditions

0 ≤ Mz + q ⊥ z ≥ 0 for all z ∈ Zobs. These are exactly the conditions for feasibility for the

quadratic program (4.3.46) when Q = Rn.

Using relationship (4.4.19) and Theorem 8, we can use the feasibility of the quadratic program

(4.3.46) when Q = Rn to see if a set Zobs corresponds to overlapping complementary cones. We

see this in the next proposition.

Proposition 3. If the quadratic program (4.3.46) is feasible for a set Zobs and Q = Rn, then Zobs

corresponds to overlapping complementary cones, meaning
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈

Rn
≥0} ≠ ∅.

Proof. We have from Theorem 8 that, if the quadratic program (4.3.46) is feasible for a set Zobs

and set Q = Rn, then {qZobs : Zobs ⊆ SOL(qZobs ,M)} ̸= ∅. We then have from relationship
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(4.4.19) that, if {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅, then
⋂

z∈Zobs

{q̄ : CM(αz)v = q̄ for some v ∈

Rn
≥0} ≠ ∅.

Thus, we can use the feasibility of quadratic program (4.3.46) with Q = Rn to see for a set Zobs

(a) if there is a q solution to the inverse problem as seen in Theorem 8 and (b) if the set Zobs

corresponds to a set of overlapping complementary cones as seen in Proposition 3.

4.4.2 Case 1 M ∈ P

To begin this section, we assume that we have a set Zobs consisting of one LCP z solution

and that M ∈ P. Given that we know our LCP(q,M) produces a unique z solution for every

q due to M ∈ P, we can form a quadratic program to find a q given this unique z solution.

Using the quadratic program (4.3.46), we adapt it to the situation when M ∈ P in which we have

|Zobs| = 1 and thus Zobs = z1 as follows:

min
q∈Q

||q − q0||22 (4.4.21a)

(z1)T (q +Mz1) = 0 (4.4.21b)

q +Mz1 ≥ 0 (4.4.21c)

If M is a P-matrix and z1 ≥ 0, then we know that, if this quadratic program is feasible, it

produces a q that induces z1 to be the solution of LCP(q,M).
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Proposition 4. Let M be a P-matrix and z1 ≥ 0. If the quadratic program (4.4.21) is feasible,

then it produces a qZobs such that z1 = SOL(qZobs ,M).

Proof. If (4.4.21) is feasible, then this means there exists a qZobs such that (z1)T (qZobs+Mz1) = 0

and qZobs +Mz1 ≥ 0. We are already given that z1 ≥ 0. From Section 4.3.1, we know that these

are the three conditions that define an LCP. Therefore, we know z1 is a solution of LCP(qZobs ,M)

for the feasible vector q. We also know, by Theorem 5, that z1 is the only solution since M is a

P-matrix. Therefore, z1 = SOL(qZobs ,M)

For M ∈ P, we could solve (4.4.21) and find our q directly. However, we notice that we can

simplify (4.4.21) through a few observations, which we generalize with multiple solutions in the

next section. We note first that, for each variable i in z1 that is strictly positive, qi = −Mi,:z
1.

This is because of the complementarity relationship between the components of z1 and q+Mz1,

meaning that, if z1i > 0, this implies qi+Mi,:z
1 = 0 which means qi = −Mi,:z

1. We then observe

that, if z1i = 0, qi +Mi,:z
1 ≥ 0, since the inner product of the equality constraint (4.4.21b) forces

one of each of the nonnegative component pairs to be zero, so qi ≥ −Mi,:z
1 since z1i = 0 already.

We can then form two sets Z+ and Z0, with i ∈ Z+ corresponding to the indices of z1 where

z1i > 0 and k ∈ Z0 corresponding to the indices of z1 where z1k = 0. We then have the following

mathematical program:

min
q∈Q

||q − q0||22 (4.4.22a)

qi = −Mi,:z
1, ∀i ∈ Z+ (4.4.22b)
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qk ≥ −Mk,:z
1, ∀k ∈ Z0 (4.4.22c)

Proposition 5. Given that M is a P-matrix and z1 ≥ 0, if the quadratic program (4.4.22) is

feasible, then it produces a q such that z1 = SOL(qZobs ,M).

Having discussed the IO q solution methods for M ∈ P, we remember the considerations of

Section 4.4.1, and see their relation to this case. We know that a Zobs with one z solution has

complete information for M ∈ P because, as discussed in Section 4.3.1.2, the complementary

cones for a P-matrix do not overlap and cover the entire space of Rn [48]. This means also that, if

|Zobs| > 1, then we have a problem because each q maps to one z solution; this speaks to the idea

that Zobs for M ∈ P would not have overlapping complementary cones and, thus, relationship

(4.4.20) states there is a not an inverse optimization q solution for this set Zobs. Consequently,

in a situation in which |Zobs| > 1 for M ∈ P, we need to form separate mathematical programs

(4.4.21)-(4.4.22) for each z ∈ Zobs and, thus, generate separate q vectors for each of the LCP

z ∈ Zobs. This situation could occur if there is a change in the system or market being modeled

by the LCP such that the q vector changes, and z solution changes as a result, meaning that there

are multiple solutions in Zobs.

4.4.3 Case 2 Nondegenerate Matrix M

To begin this section, we assume that the set Zobs of LCP solutions satisfies {qZobs : Zobs ⊆

SOL(qZobs ,M)} ̸= ∅ meaning the quadratic program (4.3.46) is feasible and Zobs corresponds

to overlapping complementary cones, or i.e., relationship (4.4.19) and Theorem 8 are satisfied.

We address when this may fail at the end of the section. We do not assume that the set Zobs has
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complete information according to Definition 19. We discuss an example of this lack of complete

information at the end of this subsection. In this subsection, we assume M is nondegenerate, so

we know our LCP(·,M) produces a finite number of z solutions. To demonstrate the need to

consider all of the z solutions carefully in Zobs when constructing the quadratic program (4.3.46),

we consider Example 2.1 in Section 4.3.2 with a specified q that is different from the ones found

in Table 4.2

M =

−1 1

0 1

 , q =

 0

−3

 (4.4.23)

This LCP(q,M) has exactly two solutions:

z̄1 =

0
3

 , z̄2 =

3
3

 (4.4.24)

If we use just z̄1 in the IO quadratic program (4.3.46), we obtain the following program:

min
q∈Q

(q1 − q01)
2 + (q2 − q02)

2 (4.4.25a)

3q2 + 9 = 0 (4.4.25b)

q1
q2

 ≥

−3

−3

 (4.4.25c)

Note that q1 does have a lower bound, but its value varies depending on the q01 value chosen
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because q1 does not appear in equation (4.4.25b). If q01 > −3, then q1 = q01 and, if q01 ≤ −3,

then q1 = −3. We know q2 = −3 based on (4.4.25b). If q = [−3, −3]T , we see that z̄2 is not a

solution to the LCP with this new q because:

−1 1

0 1


3
3

+

−3

−3

 =

−3

0

 ≱

0
0

 (4.4.26)

This points to the importance of including all of the finite number of z solutions from Zobs in

the mathematical program that is recovering q if a reader desires to find a q such that Zobs ⊆

SOL(q,M). We discuss ways of reworking the constraints in (4.3.46) to eliminate both some

of the constraints and some of the z ∈ Zobs used in the quadratic program feasible region. For

illustrative purposes for now, we see that, when we use all of the z solutions in the quadratic

program (4.3.46), we obtain the following program:

min
q∈Q

(q1 − q01)
2 + (q2 − q02)

2 (4.4.27a)

3q2 + 9 = 0 (from z̄1) (4.4.27b)

3q1 + 3q2 + 9 = 0 (from z̄2) (4.4.27c)

q1
q2

 ≥

−3

−3

 (from z̄1) (4.4.27d)
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q1
q2

 ≥

 0

−3

 (from z̄2) (4.4.27e)

Equations (4.4.27b) and (4.4.27c) come from the complementarity relationships for z̄1 and z̄2,

respectively. As can be seen, (4.4.27e) acts as a floor for the q1 and q2 values that can satisfy

(4.4.27c) which forces the IO solution of q = [0,−3]T . The reader may notice that, with regard

to the inequality constraints found in (4.3.46), we only need the inequality constraints generated

from z̄2, as well as the equality constraints generated from the two z solutions. This suggests that

z̄2 is able to provide more definitive information than z̄1, which we discuss shortly.

Having worked through this example, we then discuss the mathematical program that can

recover the q that produced all of the finite number of z solutions in a general Zobs. It is simply

(4.3.46) with the set Zobs. We then have the following corollary to Proposition 4.

Corollary 2. Given that M is nondegenerate, zj ≥ 0,∀j ∈ J , if the quadratic program (4.3.46)

is feasible, then it produces a qZobs such that Zobs = {zj : j ∈ J } ⊆ SOL(qZobs ,M).

Proof. If (4.3.46) is feasible, then that means there exists a qZobs such that (zj)T (qZobs +Mzj) =

0,∀j ∈ J and qZobs +Mzj ≥ 0,∀j ∈ J . We are already given that zj ≥ 0,∀j ∈ J . From

Section 4.3.1, we know these are the conditions that define an LCP so, since each zj fulfills these

conditions, each zj is a solution to the LCP. Therefore, we know Zobs ⊆ SOL(qZobs ,M).

Similarly to Section 4.4.2, we can now ask the question: is there a more efficient way to formulate

this quadratic program? The answer is yes, and we tackle this question in three steps. First, we

establish Propositions 6 and 7 which establish some properties of the quadratic program and the
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interactions between the z solutions in Zobs and the M matrix. Second, we establish specific

constraint relationships in Propositions 8 and 9 that can be derived using the relations in the

quadratic program and the previous propositions. Third, we take Propositions 8 and 9 and define

the simplified version of quadratic program (4.3.46) in Theorem 9.

Proposition 6. Given {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ or, in other words, the IO problem

has a q solution, if zki > 0 for every k ∈ K ⊆ J and for a given i ∈ I, then Mi,:z
k = c, ∀k ∈ K

where c is some constant number.

Proof. For all qh ∈ {qZobs : Zobs ⊆ SOL(qZobs ,M)} and all zj ∈ Zobs, we know

0 ≤Mzj + qh ⊥ zj ≥ 0 (4.4.28)

because that is the definition of Zobs ⊆ SOL(qh,M). For all k ∈ K and a given i ∈ I, if zki > 0,

then Mi,:z
k + qhi = 0. Say we have z1i > 0 and z2i > 0 with z1, z2 ∈ Zobs and we have q1,

q2 ∈ {qZobs : Zobs ⊆ SOL(qZobs ,M)}. Also, say Mi,:z
1 = c. Then, then we can write:

Mi,:z
1 + q1i = 0, Mi,:z

2 + q2i = 0 (4.4.29a)

Mi,:z
1 + q2i = 0, Mi,:z

2 + q1i = 0 (4.4.29b)

which means

−Mi,:z
1 = −Mi,:z

2 = −c (4.4.30)
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An example of this proposition is seen in the quadratic program above (4.4.27) for Example 2.1’s

M in which, for both z̄1, z̄2 solutions in (4.4.24), z̄12 > 0 and z̄22 > 0, and the associated −M2,:z̄
1

and −M2,:z̄
1 are equal according to the quadratic program.

Proposition 7. Given {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ or, in other words, the IO problem

has a q solution, if, for a given i ∈ I, we have zki > 0 for all k ∈ K ⊆ J and if we have zwi = 0

for all w ∈ W = J −K, then Mi,:z
w ≥Mi,:z

k, ∀k ∈ K, w ∈ W .

Proof. Given our assumption that {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅, then for any q ∈ {qZobs :

Zobs ⊆ SOL(qZobs ,M)}:

Mi,:z
w + qi ≥ 0, ∀w ∈ W (4.4.31)

and ∀k ∈ KMi,:z
k + qi = 0 since zki > 0. Therefore, we can write:

−Mi,:z
w ≤ qi = −Mi,:z

k, ∀k ∈ K, w ∈ W (4.4.32a)

Mi,:z
w ≥Mi,:z

k, ∀k ∈ K, w ∈ W (4.4.32b)

An example of this can be see again in the quadratic program (4.4.27) in which, for q1, M1,:z̄
1 =

3, while M1,:z̄
2 = 0, thus satisfying the inequality in the proposition above.

Before moving to Theorem 9, we formalize the idea that, when zji = 0 for all j = 1, ...,J

and for a given i ∈ I, then the quadratic program (4.3.46) only contains lower bounds for the
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associated qi.

Proposition 8. Given {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ or, in other words, the IO problem

has a q solution, if zji = 0 for all j ∈ J for a given entry i, then the only constraints on the

associated qi for quadratic program (4.3.46) are:

qi ≥ −Mi,:z
j, j ∈ J (4.4.33)

Proof. To see this, we examine quadratic program (4.3.46). For the equality constraints (4.3.46b),

if for all j ∈ J and for a given i ∈ I, zji = 0, then the associated qi is zeroed out for all

j in constraint (4.3.46b). Therefore, we are left with the lower bounds on qi in the inequality

constraints (4.3.46c).

To see an example of this proposition, we turn to Example 2.2 from Section 4.3.2. We select

Zobs = {(0, 0), (2, 0)}. The constraints are as follows:

2q1 − 1 = 0 (from (2,0)) (4.4.34a)

q1
q2

 ≥

0
0

 (from (0,0)) (4.4.34b)

q1
q2

 ≥

0.5
−1

 (from (2,0)) (4.4.34c)

We see that q2 is not involved in the equality constraints, only in the inequality constraints.

Continuing to the final proposition before the main theorem, we propose the idea that, if an
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entry i of a solution z ∈ Zobs is strictly positive, then we can use this z to determine the value of

qi.

Proposition 9. Given {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ or, in other words, the IO problem

has a q solution, if there exists a subset K ⊆ J of zk ∈ Zobs such that zki > 0 for a given entry

i ∈ I and for all k ∈ K, then:

qi = −Mi,:z
k ∀k ∈ K (4.4.35)

Proof. We know the constraints of quadratic program (4.3.46) state the following for zj solutions

j ∈ J :

(zj)T (q +Mzj) = 0, ∀j ∈ J (4.4.36a)

q +Mzj ≥ 0, j ∈ J (4.4.36b)

which we know, according to Theorem 8, has a q solution because we assumed that the IO

problem has a q solution. We know from Proposition 8 that, if for a given i ∈ I, zji = 0 for all

j ∈ J , then we have only the constraints qi ≥ −Mi,:z
j, ∀j ∈ J for that qi. If, however, for a

given entry i ∈ I, there exists zk ∈ Zobs for all k ∈ K ⊆ J such that zki > 0, then by equality

constraint (4.4.36a), qi = −Mi,:z
k due to the fact that the inner product of two nonnegative

vectors forces at least one element in each corresponding pair to be 0. We know from Proposition

6 that, for all k ∈ K such that zki > 0,Mi,:z
k = c, which means we only need one of those k ∈ K z

solutions to produce the qi value. We also know from Proposition 7 that for any w ∈ W = J −K

such that zwi = 0, there is the relationship that Mi,:z
k ≤ Mi,:z

w ⇒ −Mi,:z
k ≥ −Mi,:z

w.
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This means we can eliminate the qi ≥ −Mi,:z
w constraints. Thus, if there exists zk ∈ Zobs

∀k ∈ K ⊆ J such that zki > 0, then qi = −Mi,:z
k,∀k ∈ K.

An example of this proposition comes from the quadratic program in the example at the beginning

of this subsection, i.e., (4.4.27). In this quadratic program, the q solution is defined, but we see

that the program could have been reduced to the constraints q1 = 0, q2 = −3 based on the fact

that we had the z̄2 solution with both entries as positive.

With these last two propositions, we can simplify the IO quadratic program (4.3.46) dramatically.

Theorem 9 (Simplifying Quadratic Program (4.3.46)). Given {qZobs : Zobs ⊆ SOL(qZobs ,M)} ≠

∅ or, in other words, the IO problem has a q solution, the associated quadratic program (4.3.46)

feasible region can be simplified for z ∈ Zobs according to the following rules for all i ∈ I (with

I representing the index set for q and for the entries in z):

Rule 1 If zji = 0 for all j ∈ J , then we have the following constraints on qi: qi ≥ −Mi,:z
j, ∀j ∈

J .

Rule 2 If zki > 0 for some k ∈ Ki ⊆ J , with Ki representing the index set of z solutions

that have a positive ith entry, then choose one k ∈ Ki and the constraint for qi becomes:

qi = −Mi,:z
k.

If there exists a zk ∈ Zobs such that zki > 0 for all i ∈ I, or in other words k ∈
⋂
i∈I

Ki ̸= ∅, then

q = −Mzk.

Proof. According to Theorem 8, the fact that the inverse optimization q solution exists implies

that there exists a feasible quadratic program (4.3.46). Rule 1 comes from Proposition 8. Rule 2
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comes from Proposition 9. The last statement comes from applying Rule 2 for all i ∈ I.

A simple example of using this Theorem 9 is to apply it to quadratic program (4.4.27), which

appears as follows after applying Theorem 9:

min
q∈Q

(q1 − q01)
2 + (q2 − q02)

2 (4.4.37a)

q1
q2

 =

 0

−3

 (4.4.37b)

Since z̄2 > 0, we use the last part of Theorem 9 to produce the above quadratic program.

Having proven this theorem, we move into a discussion of when Zobs does not satisfy

relationship (4.4.20), meaning that the LCP solutions inZobs do not have overlapping complementary

cones. We use Example 2.2 in Section 4.3.2 to again illustrate this point for this case. If we were

to form a Zobs = {(2, 0), (2, 2)} which consists of two z solutions that do not have corresponding

overlapping complementary cones, our quadratic program (4.3.46) does not produce a solution

because the feasibility region of the quadratic program looks as follows:

−1 + 2q1 = 0 (from (2,0)) (4.4.38a)

1 + q1 + q2 = 0 (from (2,2)) (4.4.38b)
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q1
q2

 ≥

0.5
−1

 (from (2,0)) (4.4.38c)

q1
q2

 ≥

−0.5

−0.5

 (from (2,2)) (4.4.38d)

The q solution we obtain from the complementarity constraints (4.4.38a)-(4.4.38b) is q = [1
2

−3
2
]

which contradicts the bounds obtained from the equality constraints (4.4.38d) which require q2 ≥

−0.5. Thus, relationship (4.4.20) comes into play because having non-overlapping complementary

cones implies there is no q solution to the inverse optimization problem.

One question worth asking is in what possible situations we are to encounter a set Zobs with

z solutions that correspond to non-overlapping complementary cones? In the case that we observe

z solutions and aim to parameterize a system from these z solutions, as long as the parameters to

be estimated can be assumed to not be changing over the time we observe the z solutions, then

we can be confident that our set Zobs corresponds to a set of overlapping complementary cones.

This is because, if the parameters are not changing, then one q is creating the z solutions and,

therefore, there is a q such that {q : Zobs ⊆ SOL(q,M)} ≠ ∅ which implies the corresponding

complementary cones to Zobs are overlapping according to relationship (4.4.19). However, if the

parameters of the system do change over a period of time of observation or if we are trying to

design (as discussed in [3, 21]) or formulate a system such that it produces a set of z solutions,

then we could run into the issue of proposing a Zobs such that the corresponding complementary

cones are not overlapping. For the former concern, if we know when the system changes, we can

note the change and subset the z solutions according to when the system changes. For the latter,
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we have to be careful regarding the z solutions we utilize for inverse optimization, and we may

have to undergo a trial and error process. Luckily, we can use the feasibility of (4.3.46) as a test

for our Zobs to see if {q : Z ⊆ SOL(q,M)} ≠ ∅.

To close this section, we consider the case when the set Zobs does not have complete

information (Definition 19). In the Example 2.2 from Section 4.3.2, if Zobs = {(0, 2)}, we

can see in Figure 4.4 below that this solution corresponds to region pos CM({2}), and the q in

this region do not all lead to a recovery of just the set Zobs. This is apparent in the first quadrant

in which pos CM({2}) intersects with two other complementary cones, indicating that in this

region, the qs would lead to more solutions than just Zobs.

Figure 4.4: Example 2.2 Complementary Cones

Consequently, when we have Zobs and obtain our q, we may desire to perform some searching to

see if new solutions to the LCP(q,M) arise. As discussed in Section 4.4.1, we can also check

if the resulting q lies within any complementary cones that correspond to solutions we deem

undesirable, which would be based upon such criteria as the solutions having positive values

where there should be zero values based on application knowledge. If any of these solutions are

undesirable, we may have to restrict Q further or change q0 to find a new q.
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4.4.4 Case 3 Positive Semi-Definite M

As in previous sections, we assume that the set Zobs of LCP z solutions satisfies {qZobs :

Zobs ⊆ SOL(qZobs ,M)} ̸= ∅, meaning the quadratic program (4.3.46) is feasible and Zobs

corresponds to overlapping complementary cones, or i.e. relationship (4.4.19) and Theorem 8

apply. For this section, we assume that M is a positive semi-definite matrix, which means that, if

a q produces a set of z solutions in LCP(q,M), then this set of solutions is a convex set as we see

from this chapter’s Theorem 7 that we take from [48]. We are particularly interested in the case

when this set of z solutions contains an infinite number of solutions because this could potentially

present a problem for the IO quadratic program (4.3.46) in recovering a q solution. Importantly,

we assume that the set Zobs contains the entire set of z solutions that could have been produced

by an LCP(q,M). If this convex set of infinite z solutions contains a z such that z > 0, then we

can use Theorem 9 to reduce the infinite set of z solutions to this single z solution that determines

the exact values of all the elements of q. This can be seen in Example 3.2 from Section 4.3.2 for

q = [−0.5, −1]T . If we are given the Zobs = {z1, z2 ≥ 0 s.t. z1 + 2z2 = 0.5}, we can choose

z1 =
1
4
, z2 =

1
8

and we see:

q = −Mz = −

1 2

2 4


1

4

1
8

 =

−0.5

−1

 (4.4.39)

Thus, we recover the q using this strictly positive z solutions from the convex set of infinite

solutions Zobs. However, as we know from both Proposition 8 and Theorem 9, if there is an entry

i for the entire convex set of z solutions Zobs in which zi = 0, then we have a problem because

we need to express all of the lower bounds that these solutions produce according to Proposition
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8 and Theorem 9, which is impossible because then there would be an infinite number of lower

bounds. As example of just a few of the bounds generated for z3 in Example 3.1 from Section

4.3.2, these are the bounds for different λ ∈ [0, 1] values along the line λẑ1 + (1− λ)ẑ2

λ = 0 : q3 ≥ −12 (4.4.40a)

λ = 0.25 : q3 ≥ −10 (4.4.40b)

λ = 0.5 : q3 ≥ −8 (4.4.40c)

λ = 0.75 : q3 ≥ −6 (4.4.40d)

λ = 1 : q3 ≥ −4 (4.4.40e)

Therefore, we need a way to obtain the tightest lower bound on qi. Luckily, we can construct

a relatively simple linear program to find this tightest lower bound. However, in order for this

linear program to produce a lower bound that is associated with one of the solutions in the convex

set, we must again assume that we have knowledge of the convex set, meaning that we need to

have the vertex points that define the set, since we know from Theorem 7 that the convex set is

a convex polyhedron [48]. This is a significant assumption. Call φ the number of vertices, and

let us denote these vertices using y such that yh, ∀h = 1, ..., φ denotes all of the vertices. We
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can then construct the linear program as follows for each of the indices i in which zi = 0 for all

z ∈ Zobs:

max
z,λ

−Mi,:z (4.4.41a)

φ∑
h=1

λhy
h = z (4.4.41b)

z ≥ 0 (4.4.41c)

φ∑
h=1

λh = 1 (4.4.41d)

λ ≥ 0 (4.4.41e)

To explain this program, we start with the objective function (4.4.41a). We know for the entry i

that is 0 across all z ∈ Zobs that the lower bounds will be of the form qi ≥ −Mi,:z. Consequently,

since we want the tightest lower bound, we maximize the right hand side of that inequality. The

first constraint (4.4.41b) ensures the z chosen is part of the convex set of solutions. Constraint

(4.4.41c) is the nonnegativity constraint for z. Finally, constraints (4.4.41d) and (4.4.41e) ensure

that the λ vector sums to 1 and is greater than or equal to 0.

We can once again use Example 3.1 to form this linear program using the ẑ1 and ẑ2 vertex

points from that example. The linear program for i = 3, since the third entry for the ẑ1 and ẑ2
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vertex points is 0, is as follows:

max
z,λ

−



4

1

0

0



T

z (4.4.42a)

λ1ẑ
1 + λ2ẑ

2 = z (4.4.42b)

λ1 + λ2 = 1 (4.4.42c)

λ1, λ2 ≥ 0 (4.4.42d)

We note that this method does not only work for linear programs; it works for any LCP that has

a positive semi-definite M matrix with a convex set of solutions in Zobs.

Once we have the z we need for each relevant entry i, which we denote as z̃, we can form

the simplified version of quadratic program (4.3.46) using a few rules similar to Theorem 9,

which we formalize in the following corollary.

Corollary 3 (Simplified Quadratic Program (4.3.46) for Convex Polyhedron Zobs). Given {qZobs :

Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ or, in other words, the IO problem has a q solution, the associated

quadratic program (4.3.46) feasible region can be simplified for a set of z solutionsZobs that (a) is

a convex polyhedron of z solutions and that (b) includes all the vertices of the convex polyhedron

according to the following rules for all i ∈ I (with I representing the index set for q and for the
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entries in z):

Rule 1 If zi = 0 for all z ∈ Zobs, solve linear program (4.4.41) to find the z̃ that maximizes the

objective function. The constraint for qi is then qi ≥ −Mi,:z̃.

Rule 2 If zi > 0 for some z ∈ Zobs, then the constraint for qi becomes: qi = −Mi,:z.

Proof. We prove this corollary by addressing the two rules it codifies. For the first rule, if zi = 0

for all z ∈ Zobs, then the linear program (4.4.41) provides the tightest lower bound for qi because

(a) the objective function maximizes this lower bound and (b) constraint (4.4.41b) ensures that

the z̃i chosen is a member of the convex set of solutions defined by Zobs. For the second rule, this

is just a restatement of the second rule of Theorem 9, so we have already proven this.

A reader may wonder at this point about what happens if Zobs does not have all of the solutions,

meaning it would not have all of the vertices that make up the convex polyhedron. This could

mean that we have a subset of the vertices which, in that case, we can solve the linear program

(4.4.41) for this subset. We may also have a set of z solutions from which we need to construct

the convex hull in order to use the linear program (4.4.41) to find z̃. We refer readers to the

following recent papers that discuss efficient methods for generating convex hulls: [12, 110]. If

we have just one of the vertices, then we advise solving the quadratic program (4.3.46) as if it has

a finite set Zobs. Indeed, this vertex may indeed be the only solution to the LCP because, even

though M is positive semi-definite, this does not guarantee an infinite convex set of solutions;

see Example 3.2 in Section 4.3.2.

As in Section 4.4.3, if we do not have complete information in Zobs, we may need to do

some searching techniques to see what other solutions we obtain for a given q. With regard to the
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assumption of overlapping complementary cones, we refer readers to the discussion at the end

of Section 4.4.3. To close this section, we note that, often, we likely are to encounter a Zobs that

does not have all of the vertices of a convex infinite set. In particular, in a situation in which we

observe solutions, we may only obtain one observation; for example, in traffic, we only see one

set of flows for a given state of the system.

4.4.5 Case 4 Unknown M Matrix Structure

In this section, we once again assume that the set Zobs of LCP z solutions satisfies {qZobs :

Zobs ⊆ SOL(qZobs ,M)} ≠ ∅ meaning the quadratic program (4.3.46) is feasible and Zobs

corresponds to overlapping complementary cones, or i.e., relationship (4.4.19) and Theorem 8

hold true. We are not going to assume complete information in this section. The main point of

this section is to handle cases when we either know M does not satisfy any of the previous three

cases or M is too large to check for some or all of those properties.

We proved most of the propositions, theorems, and corollaries from the previous three

subsections without using any specific properties of M . We mainly used the previous properties

of M to help guide us in thinking about the types of solutions structures we might find in Zobs.

In this section, Zobs can be structured in a variety of ways that include similar structures that we

found before as well as combinations of these structures. For instance, in Table 4.5 for Example

4.1 in Section 4.3.2, we see that, for q =

[
0 0.5

]T
, the set of solutions includes both a convex

set (0 < z1 ≤ 0.5, z2 = 0) of solutions and a isolated solution (z1 = 0, z2 = 1) whereas, for

q =

[
−0.25 0.5

]T
and q =

[
0.5 0.5

]T
, the solution sets are comprised of a finite number of

solutions. For Example 4.2 in Section 4.3.2, the solution set for that problem is also composed of
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a convex set of solutions as well as some isolated solutions. Finally, in Example 4.3 from Section

4.3.2, the solution set is a union of convex sets that is not itself a convex set. Therefore, we need

to use knowledge gained from the previous sections to parameterize an LCP with an M that does

not have any of the previous properties, which we outline in the paragraphs below.

First, we note that, if any of the solutions in Zobs are strictly positive for all entries, then we

can apply the result from Theorem 9 and Corollary 3 to say that this strictly positive z solution

can exactly produce the q. Furthermore, if a group of solutions from Zobs can be identified such

that their positive entries cover the entire index set of I for q, then we can apply the result from

Theorem 9 and Corollary 3 to obtain a q. However, if there is an entry i or multiple entries for

which zi = 0 for all z ∈ Zobs, then we have to consider two sub-cases:

• Sub-case 1: If Zobs has a finite set of solutions, we use Theorem 9 and produce a simplified

version of quadratic program (4.3.46).

• Sub-case 2: If Zobs has as part of it a convex set of infinite solutions or multiple convex sets

of solutions, then we need to solve a modified version of the linear program (4.4.41) for

each entry i. The modified version looks as follows:

max
z

−Mi,:z (4.4.43a)

z ∈ Zobs (4.4.43b)

The most challenging part is constraint (4.4.43b) because it could be difficult to express

this depending on the form of Zobs. It might require disjunctive programming, especially
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if Zobs is a union of multiple convex sets or multiple convex sets and isolated points. We

would need to set up a disjunctive constraint such that the z̃ comes from one of the subsets

that comprises Zobs.

4.5 Case Study: Water Supply Market

Having explored the theoretical nature of parameterizing a LCP, we turn to our case study

in which we apply our knowledge to a water supply market. We demonstrate that we can use

inverse optimization for the purposes of adjusting a market toward the system optimal.

4.5.1 Water Supply Background

As illustrated by Boyd et al. [25], water users on a river can be modeled as competing

non-cooperatively on a line graph, which is a “linear ordering on a set of players” [181], to

obtain the necessary water to satisfy the demand of their regions. However, Boyd et al. [25]

also demonstrate that these water resources can be facilitated among players in the game through

markets, and the researchers present two types of markets in their paper: a general commodity

market (GCM) and a cost-sharing market (CSM). The central difference between these two

markets is the delineation of who has a right to use the water as it flows downstream. In the

GCM, downstream users specifically purchase certain quantities of water from upstream users

that any intermediate players are not allowed to utilize; the pricing, as a result, occurs at the

supplier nodes, where they receive one price for their water resources. In the CSM, downstream

users simply demand a certain amount of water from upstream users, so the pricing occurs at the

downstream user nodes. As Boyd et al. [25] point out, this allows the water resource to be utilized
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by multiple users. These users would include municipal, local, and city governments, essentially

entities that withdraw water and make recovery decisions about the water. We note that the water

that is available to be purchased comes from consumptive-loss reductions, such as fixing leaking

pipes and rerouting water to sewers, which upstream players implement in order to have water to

sell to downstream players [25]. The recovered water is returned to the original source through

wastewater networks [25]. The water recovered from consumptive-loss reductions is then sold

from upstream players to downstream players.

These market problems are interesting from an inverse optimization standpoint because

we can actually form system optimal versions of the problems [28]. By a system optimal z

solution, we mean a solution that would be chosen if a centralized figure were maximizing the

total benefits across all of the players, making decisions about how much water each player

should withdraw and recover [28]. It would be as if all the players were working as one player

to maximize total benefit summed across all players [28, 47, 113]. Then, these system optimal

z solutions can be used in inverse optimization formulations of the original market problems

to tell us what parameter values in the market problems we would need to change to achieve

these system optimal z solutions or, in other words, the new taxes or subsidies that would need

to be implemented to adjust the market to these system optimal z solutions. This is the role of

inverse optimization in influencing models that we discuss in Section 4.1, that is the adjusting

of incentives to achieve a system optimal z solution. A system optimal z solution does not

naturally occur in the GCM and CSM markets because, in a market, each player is attempting

to maximize their own benefit in reaction to the actions of other players [75]; more specifically,

in this application, the upstream players do not consider the harm to downstream players of

their withdrawals, which does allow the system optimal solution to occur. To learn more about
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influencing models via system optimal solutions, we direct readers to Section 4.5.2.2.

However, our first task is to use inverse optimization to take observed z solutions from the

market models and, then, recover the qs for the LCP formulations of both market models. In this

test case, observed z solutions come from simulating/solving the market models and then seeing

the q that are returned from the IO quadratic program (4.3.46) solve. The q in this application

contains the per unit costs of water extraction plus components of demand, the per unit costs of

water recovery efforts, as well as the water inflows and flow constraints.

The full formulation details can be found in [25]. We provide an abridged version of the

formulation details for each market, including only the variables that appear in the toy problem

we modify from [25] as well as only the related constraints. Specifically, the major element

missing is the capital improvements portion of the model, which readers can refer to [25] for

more information. We do note that, unlike the toy model in [25], we only use one time period

in this toy model. The following sets, variables, and parameters relate to the models, and the

descriptions are taken from [25]:

Sets: These are the sets for the GCM and CSM models.

• i, j, k ∈ {I} - indexed users of the river numbered from upstream to downstream

• Ui ⊂ I - upstream nodes of i, where j ∈ Ui is a typical node index

• Di ⊂ I - downstream nodes of i, where k ∈ Di is a typical node index

• c ∈ {C} - classes of water loss reductions in ascending order of expense. Examples of

these classes of water loss reductions include fixing leaking pipes and rerouting water to

sewers.
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Primal Variables: These are the primal variables for the GCM and CSM models. If a variable is

specifically for one model or the other, this is noted. Descriptions are taken from [25]. The sets

ζGCM
i and ζCSM

i refer to the set of primal variables for each of the two models for player i.

• WD
i - player i’s direct water withdrawal from the river (volume/day). This is composed of

water purchased plus free flow water. Thus, to obtain free flow water, one subtracts water

purchased from water withdrawn. Water purchases for the two markets are defined in the

coming definitions.

• LR
i,c - player i’s incremental water loss reductions in class c (volume/day)

• W P
i - player i’s water purchases from upstream in the CSM formulation to reduce asymmetric

access to water (volume/day). This ability of downstream users to purchase water from

upstream users “reduces asymmetric access” because it incentivizes upstream users to

engage in consumptive-loss reductions and thus make water available for downstream users

to purchase.

• W P
i,j - player i’s purchases from an upstream player j (volume/day). This is relevant

for the GCM model. This ability of downstream users to purchase water from upstream

users “reduces asymmetric access” because it incentivizes upstream users to engage in

consumptive-loss reductions and thus make water available for downstream users to purchase.

• W P
k,i - water sales to player k downstream from i (volume/day). This is relevant for the

GCM model.

Dual Variables: These are the dual variables are they are defined in the same conventions as the

primal variables.
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• γlossi,c - non-negative shadow price for loss reductions (cost/unit flow)

• γflowi - non-negative shadow price for withdrawal limitations (cost/unit flow)

• πi - non-negative user i’s price for water (cost/unit flow). The relevant i depends upon

which market model is being used (upstream for GCM and downstream for CSM).

Parameters: These are the relevant parameter values taken directly from [25].

• copsi - player i’s unit operating costs to withdraw water from the river (cost/unit flow)

• ccui,c - player i’s unit costs for consumptive-loss reductions in class c (cost/unit flow)

• δalldsk,i
∈ {0, 1} - logical parameter specifying if player k is downstream of player i

• δallusj,i
∈ {0, 1} - logical parameter specifying if player j is upstream of user i

• lfc,i - player i’s estimated fractions of water losses in class c (%)

• ni - local water inflow at player i independent of upstream water releases (e.g., such as

from side streams) (volume/day)

• rfci - player i’s regulator imposed flow constraint (volume/day). This is the flow rate of

water a given player is legally obligated to leave in the river.

• αi - inverse water demand intercept for player i (cost/unit flow)

• βi - inverse water demand linear slope for player i (cost/unit flow)

There are three players in the toy example we modify from [25], and our formulations of

both the ith player optimization problems as well as the LCP conditions below incorporate the
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presence of three players into the formulations through the limits on the various sums in the

formulations. However, to make the problem more concrete, this is the line graph diagram for

the three players:

Figure 4.5: Three Node Line Graph Flow

The diagram represents the flow of water as it moves downstream from player to player, left to

right. The player i optimization models and the LCPs for the GCM and CSM markets encode the

sequential relationship shown in the diagram. To make the models more concrete, the parameters

values for the three-player example for the GCM and CSM market models are as follows:

Parameter Player(s) Class(es) Value

βi 1,2,3 - 3, 3, 3

αi 1,2,3 - 21, 31, 41

copsi 1,2,3 - 1, 1, 1

ni 1,2,3 - 14, 0, 0

rfci 1,2,3 - 4, 4, 4

lf1,i 1,2,3 1 0.13, 0.1, 0.07

lf2,i 1,2,3 2 0.13, 0.1, 0.07

ccu1,i 1,2,3 1 0.67, 1.00, 1.33

ccu2,i 1,2,3 2 3.33, 5.00, 6.67

Table 4.6: Parameter Values for Three Node Model
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These parameters differ somewhat from the toy model in [25], and they are synthetic data.

General Commodity Model: There are three players in this case study, but we provide the

general formulation for a player i.

max
ζGCM
i

WD
i∫

0

(αi − βixi)dxi + πi

2∑
c=1

LR
c,i −

(
copsi WD

i +
2∑

c=1

ccuc,iL
R
c,i +

3∑
j=1

πjδ
all
usj,i

W P
i,j

)
(4.5.1a)

LR
c,i ≤ lfc,iW

D
i , ∀c (γlossc,i ) (4.5.1b)

WD
i ≤ ni +

3∑
j=1

δallusj,i
W P

i,j − rfci +
3∑

j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
, (γflowi ) (4.5.1c)

WD
i ,W

P
i ≥ 0, LR

c,i ≥ 0, ∀c (4.5.1d)

The objective function is the net benefit and, thus, it is the sum of benefits which include consumer

surplus from meeting water demand plus payments for water recovery efforts (with the price at

the supplier node) minus the costs which are the cost of withdrawing water, the cost of water

recovery efforts, and the cost of water purchasing efforts. The first constraint requires the flow

of recovered water to be less than or equal to the amount lost. The second constraint is a

flow-balance constraint that ensures that the amount of water withdrawn leaves enough water

above a certain threshold rfci . The ni is the water from side streams, the term involving W P
i,j

is the water purchased from upstream players, and the last term is the net flow from upstream

players that comes naturally to player i. We can form a LCP for this market because the KKT
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conditions are necessary and sufficient for the players in this market. The KKT conditions are

necessary because, in each player’s problem, the constraints are linear, thus satisfying a constraint

qualification [19, 26]. In each players problem, we are also maximizing a concave function

subject to a linear feasible region, which means we have a convex program, thus making the

conditions sufficient [19, 26]. Furthermore, according to Kim and Ferris [113], even though

this problem is a generalized Nash equilibrium problem due to constraint (4.5.1c), we can still

concatenate the KKT conditions and form a complementarity problem since we satisfy Slater’s

condition and convexity assumptions and produce solutions to the GNEP. Thus, we can concatenate

the KKT conditions from each player along with the market-clearing conditions to form an LCP

[75]. The objective function for the players has to be negated in order to form a minimization

problem for the KKT conditions and for the concatenation of the KKT conditions along with

market-clearing conditions [75]. We also have two classes of improvements, hence the summation

index c going from 1 to 2 in the summation over class in the optimization problem above and the

LCP below. Furthermore, we have three players, hence the summation indices k and j going

from 1 to 3 in the summation over players in the optimization problem above and the LCP below.

The LCP for this market is as follows for player i:

0 ≤ βiW
D
i − αi + copsi −

2∑
c=1

γlossc,i lfc,i + γflowi ⊥WD
i ≥ 0 (4.5.2a)

0 ≤ δallusj,i
(πj − γflowi ) ⊥W P

i,j ≥ 0, j ̸= i (4.5.2b)

0 ≤ −πi + ccuc,i + γlossc,i ⊥ LR
c,i ≥ 0, ∀c (4.5.2c)
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0 ≤
2∑

c=1

LR
c,i −

3∑
k=1

δalldsk,i
W P

k,i ⊥ πi ≥ 0 (4.5.2d)

0 ≤ lfc,iW
D
i − LR

c,i ⊥ γlossc,i ≥ 0, ∀c (4.5.2e)

0 ≤ ni +
3∑

j=1

δallusj,i
W P

i,j − rfci +
3∑

j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
−WD

i ⊥ γflowi ≥ 0 (4.5.2f)

The first three sets of complementarity constraints involve the KKT stationarity conditions for

the three sets of variables. For the first of the stationarity conditions associated with WD
i , the

copsi + γflowi portion represents the marginal costs, with copsi as the cost for extracting the water

and γflowi as the value or opportunity cost of the water. The marginal benefit terms are βiWD
i −

αi −
2∑

c=1

γlossc,i lfc,i, with βiWD
i − αi as the marginal consumer surplus and −

2∑
c=1

γlossc,i lfc,i as the

profit obtained from water recovery efforts, since we have the opportunity cost of the recovered

water multiplied by the loss fraction (which represents the water that could be recovered). In the

second stationarity constraint associated with W P
i,j , we have the marginal cost of water purchased

as πj , and the marginal benefit as the value of the additional water γflowi . For the third stationarity

constraint associated with LR
c,i, we have the marginal cost of water recovery in extraction cost

ccuc,i and in γlossc,i as the opportunity cost/value of the recovered water, and we have the marginal

benefit of water recovery in the price paid for the water recovered πi. The next complementarity

relationship is the market-clearing condition, which says that the supply from player i of water

to be sold in the form of recovery efforts must be greater than or equal to the demand from
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downstream players for water; this must have a complementary relationship with the price at

player i’s node that player i receives for the water. The final two sets of complementarity

constraints are the feasibility conditions, which require a complementarity relationship between

the inequality constraints and their multipliers [19, 26].

Cost-Sharing Model: There are three players, but we provide the general formulation for a

player i.

max
ζCSM
i

WD
i∫

0

(αi − βixi)dxi +
3∑

k=1

πkδ
all
dsk,i

2∑
c=1

LR
i,c −

(
copsi WD

i +
2∑

c=1

ccui,cL
R
i,c + πiW

P
i

)
(4.5.3a)

LR
c,i ≤ lfc,iW

D
i , ∀c (γlossi,c ) (4.5.3b)

WD
i ≤ ni +W P

i − rfci +
3∑

j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
, (γflowi ) (4.5.3c)

WD
i ,W

P
i ≥ 0, LR

i,c ≥ 0, ∀c (4.5.3d)

The objective function illustrates the net benefit and, thus, it is the benefits minus the costs in

the form of consumer surplus gained by meeting demand plus the payments by other players

from water recovery efforts minus the cost of water withdrawn, the cost to make water recovery

improvements, and price of water purchases from upstream users. The first constraint defines the

amount of water that can be recovered; it is bounded by the loss factor multiplied by the amount
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of water withdrawn. The second constraint has to do with accounting for how much water can be

taken out of the river; it is very similar to the related constraint in the GCM model. The discussion

above from the GCM market regarding the lead up to the LCP applies here for the CSM LCP as

well including the remarks about the KKT conditions, the concatenation, and the limits on the

summations. The LCP for this market is as follows for player i:

0 ≤ βiW
D
i − αi + copsi −

2∑
c=1

lfc,iγ
loss
c,i + γflowi ⊥WD

i ≥ 0 (4.5.4a)

0 ≤ πi − γflowi ⊥W P
i ≥ 0 (4.5.4b)

0 ≤ ccuc,i −
3∑

k=1

πkδ
all
dsk,i

+ γlossc,i ⊥ LR
c,i ≥ 0, ∀c (4.5.4c)

0 ≤
3∑

j=1

δallusj,i

2∑
c=1

LR
c,j −W P

i ⊥ πi ≥ 0 (4.5.4d)

0 ≤ lfc,iW
D
i − LR

c,i ⊥ γlossc,i ≥ 0, ∀c (4.5.4e)

0 ≤ ni +W P
i − rfci +

3∑
j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
−WD

i ⊥ γflowi ≥ 0 (4.5.4f)

The first three complementarity constraints correspond with the KKT stationarity conditions for

those variables. The same analysis holds for these conditions as in the GCM model except for

in the third stationarity condition in which the marginal benefit is a summation of downstream
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prices for the recovered water. The constraint after the first three is the market-clearing constraint

in which the supply of water from upstream users must be greater than the demand from user i.

The price, unlike the previous model, is at the demand player’s node, and it is the price paid to

upstream players for their water. The final two complementarity constraints refer to feasibility.

4.5.2 Water Supply Inverse Optimization

Section 4.5.2.1 focuses on observed z solutions to the GCM and CSM market models, and

Section 4.5.2.2 focuses on using system optimal z solutions to influence the GCM and CSM

market models. Both the observed and system optimal z solution defintions can be found in the

beginning of Section 4.5.1.

4.5.2.1 Observed z Solutions Inverse Optimization

Our first set of inverse optimization experiments focuses on recovering the q back from

LCP solution(s) to each of the two GCM and CSM market models. This set of experiments is

essentially a check on the inverse optimization method. As far as we can tell, neither of the

two models’ M matrices demonstrate properties that would allow us to say anything about the

z solution structure of the resulting LCP. For the GCM model, the principle minors range from

-0.08070000000000006 to 27 and the values do include 0, thus the matrix is degenerate and the

negative values plus the 0s mean the matrix is not part of the class P. The algorithm we used

to find the principle minors can be found in the Appendix C.1. What’s more, we know from

Cottle et al. [48] that all positive semi-definite matrices are members of the class of matrices P0,

which means their principle minors are nonnegative. Thus, since we have negative principle
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minors, M is also not positive semi-definite. This is further confirmed by the fact that the

eigenvalues of 1
2
(MGCM + MGCMT

) range from -1.31173554e-02 to 3.01311736 and include

0, again meaning the matrix is not positive semi-definite (see page 66 of [48]). For the CSM

matrix, the principle minors have the same value range as the GCM matrix, and the eigenvalues

of 1
2
(MCSM +MCSMT

) are the same as for 1
2
(MGCM +MGCMT

). Consequently, we need to use

the material from Section 4.4.5 to solve the inverse optimization problem.

For the first experiment of this section, we find one of potentially multiple z by using the

PATH solver [54, 70] in GAMS with a convergence tolerance of 1e−12. These are the z solutions,

with zGCM representing the solution we find for the GCM market and zCSM representing the

solution we find for the CSM market. We find these z solutions by using a multi-point starting

method in which we construct a scheme of 2024 random starting points, with the first 1000 points

being random vectors of 0s and 10s, the next 1000 points being random vectors of numbers

between 0 and 10, and the last 24 points being the coordinate axes multipled by 10. We choose

to scale vectors by 10 because this is the largest number that is present in the initial solutions

obtained from solving the LCPs with an all 0s starting point. We check that the solutions we

obtain from the random starting point scheme match the solution we obtain from the all 0s starting

point for both the GCM and CSM markets. Thus, we have one solution to present in Table 4.7

below.
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Variable Explanation zGCM zCSM

WD
1 water withdrawal (volume/day), player 1 7.36 7.4813

WD
2 water withdrawal (volume/day), player 2 8.0864 10.0

WD
3 water withdrawal (volume/day), player 3 10.0 10.0

WP
2,1 or WP

1 water purchases (volume/day) 0.0 0.0

WP
3,1 or WP

2 water purchases (volume/day) 1.9136 1.9451

WP
3,2 or WP

3 water purchases (volume/day) 1.6173 3.9451

LR
1,1 loss reductions (volume/day), class 1, player 1 0.9568 0.9726

LR
1,2 loss reductions (volume/day), class 1, player 2 0.8086 1.0

LR
1,3 loss reductions (volume/day), class 1, player 3 0.0 0.0

LR
2,1 loss reductions (volume/day), class 2, player 1 0.9568 0.9726

LR
2,2 loss reductions (volume/day), class 2, player 2 0.8086 1.0

LR
2,3 loss reductions (volume/day), class 2, player 3 0.0 0.0

π1 price for reductions (cost/unit flow) 9.9999 0.0

π2 price for reductions (cost/unit flow) 9.9999 1.4

π3 price for reductions (cost/unit flow) 0.0 10.0

γloss
1,1 opportunity cost of reductions (cost/unit flow), class 1, player 1 9.3332 10.7332

γloss
1,2 opportunity cost of reductions (cost/unit flow), class 1, player 2 8.9999 9.0

γloss
1,3 opportunity cost of reductions (cost/unit flow), class 1, player 3 0.0 0.0

γloss
2,1 opportunity cost of reductions (cost/unit flow), class 2, player 1 6.6666 8.0666

γloss
2,2 opportunity cost of reductions (cost/unit flow), class 2, player 2 4.9999 4.9999

γloss
2,3 opportunity cost of reductions (cost/unit flow), class 2, player 3 0.0 0.0

γflow
1 value of additional water to player 1 (cost/unit flow) 0.0 0.0

γflow
2 value of additional water to player 2 (cost/unit flow) 7.1408 1.4

γflow
3 value of additional water to player 3 (cost/unit flow) 9.9999 9.9999

Table 4.7: PATH Solver [54, 70] Generated Market Solutions
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We see that the two markets do indeed produce different outcomes for the players. Players 1 and

2 withdraw less water in the GCM market compared to the CSM market. Player 3 purchases

more water in the CSM compared to the GCM market. What’s more, π3 is 0 in the GCM market

because player 3 has no downstream players to whom they can sell water, and the π1 is 0 in the

CSM market because player 1 has no upstream players from whom they can buy water.

Since we have one solution for each of the markets, this situation fits into the finite solution

case from Section 4.4.5, and we take the z solution we have and construct the quadratic program

(4.3.46). Our q0 is a vector of 0s, the reasoning for which is that it aids us in choosing a q that

has 0s in the places in q that we expect. The resulting qGCMIO, which is the IO q solution using

Zobs = {zGCM}, and qCSMIO, which is the IO q solution using Zobs = {zCSM}, are in Table 4.8.

The table also includes, for the sake of comparison, the original q used to generate the zGCM and

zCSM solutions, and this q is denoted qGCM = qCSM in order to express that the same q is used

in both markets to produce the zGCM and zCSM solutions for the sake of comparison between the

markets. The row names denote the coefficients to which the q entries are associated. The 0s in

certain row names indicate that there are 0 coefficient values for those respective equations:
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Coefficient Explanation qGCM = qCSM qGCMIO qCSMIO

−α1 + c
ops
1

negative demand intercept plus cost of

water consumption (cost/unit flow), player 1
-20.0 -20.0 -20.0

−α2 + c
ops
2

negative demand intercept plus cost of

water consumption (cost/unit flow), player 2
-30.0 -30.0 -30.0

−α3 + c
ops
3

negative demand intercept plus cost of

water consumption (cost/unit flow), player 3
-39.9999 -39.9999 -39.9999

0 water purchase equilibrium (cost/unit flow) 0.0 0.0 0.0

0 water purchase equilibrium (cost/unit flow) 0.0 0.0 0.0

0 water purchase equilibrium (cost/unit flow) 0.0 0.0 0.0

ccu1,1

cost of loss reductions

(cost/unit flow), class 1, player 1
0.6667 0.6667 0.6667

ccu1,2

cost of loss reductions

(cost/unit flow), class 1, player 2
1.0 1.0 1.0

ccu1,3

cost of loss reductions

(cost/unit flow), class 1, player 3
1.3333 0.0 0.0

ccu2,1

cost of loss reductions

(cost/unit flow), class 2, player 1
3.3333 3.3333 3.3333

ccu2,2

cost of loss reductions

(cost/unit flow), class 2, player 2
5.0 5.0 5.0

ccu2,3

cost of loss reductions

(cost/unit flow), class 2, player 3
6.6667 0.0 0.0

0 market clearing (volume/day) 0.0 0.0 0.0

0 market clearing (volume/day) 0.0 0.0 0.0

0 market clearing (volume/day) 0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 1, player 1
0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 1, player 2
0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 1, player 3
0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 2, player 1
0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 2, player 2
0.0 0.0 0.0

0
feasibility loss reductions (cost/unit flow),

class 2, player 3
0.0 0.0 0.0

n1 − r
fc
1 flow constraint (volume/day), player 1 10.0 7.36 7.4813

n1 + n2 − r
fc
2 flow constraint (volume/day), player 2 10.0 10.0 10.0

n1 + n2 + n3 − r
fc
3 flow constraint (volume/day), player 3 10.0 10.0 10.0

Table 4.8: q from Observed z Table

We know from Proposition 9 that any positive entries i in zGCM and zCSM fully determine the

associated individual values for qi in the IO qGCMIO and qCSMIO solutions. In contrast, as we
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know from Proposition 8, when zi = 0 for zGCM and zCSM , the associated qi entry can in theory

take on a range of values, with a lower bound established by qi ≥ −Mi,:z. We identify the

qi below in (4.5.5) that have lower bounds for the zGCM and zCSM inputs to the IO quadratic

program (4.3.46). The relevant qi are numbered as well as listed as equal to their respective

coefficient value from Table 4.8. The lower bounds for each entry i are obtained by calculating

−MGCM
i,: zGCM for the GCM market and −MCSM

i,: zCSM for the CSM market.



qGCMIO
4 = 0

qGCMIO
9 = ccu1,3

qGCMIO
12 = ccu2,3

qGCMIO
15 = 0

qGCMIO
18 = 0

qGCMIO
21 = 0

qGCMIO
22 = n1 − rfc1



≥



−2.8591

0

0

0

−0.7

−0.7

7.3600



,



qCSMIO
4 = 0

qCSMIO
9 = ccu1,3

qCSMIO
12 = ccu2,3

qCSMIO
13 = 0

qCSMIO
18 = 0

qCSMIO
21 = 0

qCSMIO
22 = n1 − rfc1



≥



0

0

0

0

−0.7

−0.7

7.4813



(4.5.5)

As we see in this application, there are certain qi coefficient values we expect to be 0 (such as

qGCMIO
4 and qCSMIO

4 which correspond to the water purchase equilibrium for W P
2,1 for GCM and

W P
1 for CSM respectively) due to the specification of the GCM and CSM models, even if they

technically could take on different values based on the theoretical inverse optimization analysis.

Interestingly, if these qi values were to turn out not to be zero, this might open up the idea of

introducing new parameters to the IO model that would represent different incentives that could

influence the market toward a z solution. The q = qGCM = qCSM , which produced zGCM and

zCSM , matches the qGCMIO and qCSMIO in the i entries where zGCM and zCSM have positive

entries. The q = qGCM = qCSM also satisfies the lower bounds from (4.5.5) for the i entries

where zGCM and zCSM have zero entries.

Feeding the qGCMIO and qCSMIO back into the market models to verify that they produce
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the z with which we started, we find that, for the GCM market, we obtain back the same zGCM

solution. For the CSM market, we just about get back the zCSM solution, with the exception of

the 13th and 22nd entries which are 0.9992656e − 4 instead of 0. We credit this to numerical

precision error.

4.5.2.2 Using System Optimal z Solutions to Influence GCM and CSM Market

Models via Inverse Optimization

For the inverse optimization experiment in this section, we find the GCM and CSM system z

solution(s) and use them to parameterize the GCM and CSM market models. To find these system

optimal solutions, we draw on the methods of Britz et al. [28] to form what these researchers call

an “aggregate optimization” problem in which we combine all of the players’ problems into one

problem. The constraints from all of the players are brought into the same optimization problem,

and the objectives from all of the players are summed together. Summing these objectives

together pools the benefit such that the goal becomes to maximize total, communal benefit, which

is the view of a social planner. Indeed, the aggregate problem itself can be looked at as a single-

player game with market-clearing constraints, as opposed to the multi-player game with market

clearing constraints that comprise the GCM and CSM markets [47, 113]. The aggregate GCM

model looks as follows:

max
ζGCM
i

3∑
i=1

WD
i∫

0

(αi − βixi)dxi + πi

2∑
c=1

LR
c,i −

copsi WD
i +

2∑
c=1

ccuc,iL
R
c,i +

3∑
j=1

πjδ
all
usj,iW

P
i,j


 (4.5.6a)
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LR
c,i ≤ lfc,iW

D
i , ∀c, i (γlossc,i ) (4.5.6b)

WD
i ≤ ni +

3∑
j=1

δallusj,i
W P

i,j − rfci +
3∑

j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
, ∀i (γflowi ) (4.5.6c)

WD
i ,W

P
i ≥ 0, ∀i, LR

c,i ≥ 0, ∀c, i (4.5.6d)

The aggregate CSM model looks as follows:

max
ζCSM
i

3∑
i=1

WD
i∫

0

(αi − βixi)dxi +

3∑
k=1

πkδ
all
dsk,i

2∑
c=1

LR
i,c −

(
copsi WD

i +

2∑
c=1

ccui,cL
R
i,c + πiW

P
i

) (4.5.7a)

LR
c,i ≤ lfc,iW

D
i , ∀c, i (γlossi,c ) (4.5.7b)

WD
i ≤ ni +W P

i − rfci +
3∑

j=1

δallusj,i

(
nj −

2∑
c=1

lfc,jW
D
j

)
, ∀i (γflowi ) (4.5.7c)

WD
i ,W

P
i ≥ 0, ∀i, LR

i,c ≥ 0, ∀c, i (4.5.7d)

The only difference in the LCP model for the GCM and CSM market models versus these two

GCM and CSM aggregate models lies in the stationarity conditions for WD
i , which become for

the two aggregate models the following:
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0 ≤ βiW
D
i −αi+c

ops
i −

2∑
c=1

lfc,iγ
loss
c,i +γflowi +

2∑
c=1

lfc,i

3∑
k=1

δalldsk,i
γflowk ⊥WD

i ≥ 0, ∀i (4.5.8)

The new term of
2∑

c=1

lfc,i
3∑

k=1

δalldsk,i
γflowk represents the marginal value of water lost to the system

or lost to the rest of downstream players k if player i takes more water from the system. Thus, the

centralized planner for the aggregate model is trying to find the WD
i that balances the marginal

benefit to player i with the marginal cost to the system as Britz et al. discuss in [28].

We use the same q as is used in the GCM and CSM market models and which can be found

in Table 4.8 to produce the following z solutions that can be found in Table 4.9:

• zGCM - the GCM market solution

• zAGGCM - the GCM aggregate solution

• zCSM - the CSM market solution

• zAGCSM - the CSM aggregate solution

Again, as in the GCM and CSM market model solves, we use one solution of potentially multiple

solutions that we find employing PATH. We use the same starting point technique and starting

points as in Section 4.5.2.1. We do find that, for the W P
2 variable value for the CSM aggregate

market, this variable can take on values ranging from 1.4883 to 1.6883. However, we still use

only one of these aggregate solutions for this CSM model for this section. The matrices for the

aggregate GCM and CSM models do have different properties than the GCM and CSM market

models. For the aggregate GCM and CSM matrices, the principle minors lie in the range of 0
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to 27, and the unique eigenvalues are 0 and 3, which repeat. This means that both matrices are

positive semi-definite, which we know means they have a convex set of solutions as Theorem 7

shows. The starting-point methods provide some evidence that there may be only one solution for

the GCM model, which is a convex set of solutions, while the starting point method for the CSM

model suggests that there may be multiple solutions involving the W P
2 variable. Tables 4.10 and

4.11 compare the objective function totals across all three players as well as the individual player

objective function values for the GCM and CSM market and aggregate models.

Variable Explanation zGCM zAGGCM zCSM zAGCSM

WD
1 water demand (volume/day), player 1 7.36 6.1309 7.4813 6.4933

WD
2 water demand (volume/day), player 2 8.0864 8.406 10.0 9.8

WD
3 water demand (volume/day), player 3 10.0 10.0 10.0 10.0

WP
2,1 or WP

1 water purchases (volume/day) 0.0 0.0 0.0 0.0

WP
3,1 or WP

2 water purchases (volume/day) 1.9136 1.594 1.9451 1.6883

WP
3,2 or WP

3 water purchases (volume/day) 1.6173 1.6812 3.9451 3.6483

LR
1,1 loss reductions (volume/day), class 1, player 1 0.9568 0.797 0.9726 0.8441

LR
1,2 loss reductions (volume/day), class 1, player 2 0.8086 0.8406 1.0 0.98

LR
1,3 loss reductions (volume/day), class 1, player 3 0.0 0.0 0.0 0.0

LR
2,1 loss reductions (volume/day), class 2, player 1 0.9568 0.797 0.9726 0.8441

LR
2,2 loss reductions (volume/day), class 2, player 2 0.8086 0.8406 1.0 0.98

LR
2,3 loss reductions (volume/day), class 2, player 3 0.0 0.0 0.0 0.0

π1 price for reductions (cost/unit flow) 9.9999 10.0 0.0 0.0

π2 price for reductions (cost/unit flow) 9.9999 10.0 1.4 0.0

π3 price for reductions (cost/unit flow) 0.0 0.0 10.0 10.0

γloss
1,1 opportunity cost of reductions (cost/unit flow), class 1, player 1 9.3332 9.3333 10.7332 9.3333

γloss
1,2 opportunity cost of reductions (cost/unit flow), class 1, player 2 8.9999 9.0 9.0 9.0

γloss
1,3 opportunity cost of reductions (cost/unit flow), class 1, player 3 0.0 0.0 0.0 0.0

γloss
2,1 opportunity cost of reductions (cost/unit flow), class 2, player 1 6.6666 6.6667 8.0666 6.6667

γloss
2,2 opportunity cost of reductions (cost/unit flow), class 2, player 2 4.9999 5.0 4.9999 5.0

γloss
2,3 opportunity cost of reductions (cost/unit flow), class 2, player 3 0.0 0.0 0.0 0.0

γ
flow
1 value of additional water to player 1 (cost/unit flow) 0.0 0.0 0.0 0.0

γ
flow
2 value of additional water to player 2 (cost/unit flow) 7.1408 4.1821 1.4 0.0

γ
flow
3 value of additional water to player 3 (cost/unit flow) 9.9999 10.0 9.9999 10.0

Table 4.9: Comparing z Solutions Between Market and Aggregate Models
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GCM CSM

Market Model 451.7738 455.7809

Aggregate Model 454.1930 457.3051

Table 4.10: Sum of Objective Function Values Market vs Aggregate Model (cost/day)

Player 1 Player 2 Player 3

GCM Market Model 81.2542 155.8280 214.6916

GCM Aggregate Model 78.9883 157.9570 217.2478

CSM Market Model 83.9553 161.2766 210.5489

CSM Aggregate Model 80.1277 163.6600 213.5173

Table 4.11: Individual Objective Function Values Market vs Aggregate Models (cost/day)

Comparing the aggregate and market solutions in Tables 4.9-4.11 provides several important

insights regarding the water withdrawals of the three players. The unconstrained demand (which

is the demand of the players given no water scarcity6) values of the three players are 6.6667, 10,

and 13.3333 volume/day, respectively [25]. Noting these values helps with the water withdrawal

analysis for certain players.

For both the GCM and CSM models, it is better for the system as a whole according to the

aggregate objectives (4.5.6a) and (4.5.7a) and thus according to Tables 4.9-4.10 to have player 1

withdraw less waterWD
1 and also recover less water to be able to sell to downstream players in the

form of LR
1,1, L

R
2,1. This results mathematically because, in the aggregate models, there is now the

term
2∑

c=1

lfc,i
3∑

k=1

δalldsk,i
γflowk in the WD

1 stationarity complementarity equation (4.5.8) that forces

6Water scarcity for player i is defined as the constraint associated with the γflow
i dual variable being tight.

184



player 1 to take into consideration the “damage” it causes downstream players by withdrawing

too much. We note for player 1 in the market and aggregate models that WD
1 represents only

the removal of free-flow water and not purchases because there is no one upstream from whom

to purchase water. Furthermore, we indicate that, in both the GCM and CSM markets, player

1 withdraws more water than their unconstrained demand in order to sell recovered water to

downstream players. However, in both of the aggregate models, player 1 withdraws less water

than their unconstrained demand, indicating that this player is taking into consideration the affect

of their water withdrawals on the players downstream. What’s more, we notice in Table 4.11 that

player 1’s net benefit decreases in the aggregate model compared to the market model for both

the GCM and CSM models. This is because player 1 was over withdrawing in the market models

but, in the aggregate models, they are correcting for this over-withdrawal.

In the case of player 2, the story is more complicated. For the GCM model, player 2

withdraws more water in the aggregate model compared to the market model as shown in Table

4.9. For the CSM model, player 2 withdraws a little less water in the aggregate model compared

to the market model as shown in Table 4.9. In both GCM and CSM aggregate models, the

objective function for player 2 does increase as seen in Table 4.11. For the GCM model, the

increase in the aggregate model for player 2 occurs because player 2 can satisfy more demand by

removing more free-flowing water (i.e. WD
2 −W P

2,1). Player 2 does not purchase from upstream

player 1 in either the market or aggregate models, so player 2 is able to remove more free flow

water and then recover more water to sell to downstream player 3. For the CSM model, the

increase in the objective function in the aggregate model for player 2 comes from the water that

is accessed freely (i.e., π2 = 0) from player 1 as it flows downstream to player 3. Thus, CSM

player 2 is able to consume a significant amount of water for “free,” except for treatment and
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distribution costs (i.e., cops2 ). Indeed, one theory for why the W P
2 value may take on a range of

solution values as we reported above might have to do with this “free” effect because the player

may be indifferent between the water it can take from the free flow and water it can “purchase”

from upstream players, since this water is the same cost through both means.

As shown in Table 4.11, the objective function values for player 3 are higher in the aggregate

model versus the market model. For both the GCM and CSM markets, however, the level of water

withdrawn by player 3 stays the same when moving from the market to the aggregate models as

Table 4.9 demonstrates with the value of WD
3 being consistently 10. For both the GCM and

CSM models, the increase in player 3’s objective occurs because they remove more free-flowing

water to satisfy demand which is less expensive, since free-flowing water only costs cops3 while

purchasing water requires an additional cost in the form of π1 for the GCM market for player 3

and π3 for the CSM market for player 3. As a result, they purchase less from upstream players.

Since we now have aggregate market zAGGCM and zAGCSM solutions, we can use these

solutions in our inverse optimization quadratic program (4.3.46) to parameterize the original

GCM and CSM market models as if the zAGGCM and zAGCSM are solutions to these market

models, thus pushing the GCM and CSM models toward these system optimal solutions. For the

formulation of this inverse optimization problem, we run a couple of different trials:

1. The first trial fixes q0 to zeros for both the GCM and CSM inverse optimization problems.

2. The second trial fixes q0 equal to the qGCM = qCSM vector from the last set of experiments

for both the GCM and CSM inverse optimization problems. The qGCM = qCSM vector is

also used to produce the aggregate solutions.

We define
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• qAGGCMIO as the IO q solution to the GCM market model using the zAGGCM solution

• qAGCSMIO as the IO q solution to the CSM market model using the zAGCSM solution

In Table 4.12, we showcase the relevant subset of the q coefficients from the IO quadratic program

trials. q0 is denoted as either being zeros, qGCM , or qCSM . We call the following experiments

(with the different settings for q0) the IO quadratic program trials.

Coefficient qGCM = qCSM qAGGCMIO , q0 zeros qAGGCMIO , q0 = qGCM qAGCSMIO , q0 zeros qAGCSMIO , q0 = qCSM

−α1 + c
ops
1 -20.0 -16.3127 -16.3127 -17.4 -17.4

−α2 + c
ops
2 -30.0 -28.0 -28.0 -28.0 -28.0

−α3 + c
ops
3 -39.9999 -40.0 -40.0 -40.0 -40.0

Table 4.12: Selected IO q Entries for GCM and CSM Markets Using Aggregate z Solution

We choose to display these coefficients of the q vectors because they are the most consequential

coefficients of the experiments. This is due to the fact that they have the same values between

the two settings of the q0 and due to the meaning of the change for the GCM and CSM markets.

For the table that lists all of the q coefficient values, see Appendix C.2. These q coefficients are

important because they present policy implications for the GCM and CSM markets. Recall that

the purpose of these IO quadratic program trials is to see if the GCM and CSM markets can be

adjusted to produce the respective aggregate model solutions. For the qAGGCMIO and qAGCSMIO

coefficient values compared to the original qGCM = qCSM coefficient values in Table 4.12, the

values are lower for players 1 and 2, which means cops1 and cops2 have to be increased to achieve

the aggregate zAGGCM and zAGCSM solutions in the GCM and CSM markets. Since cops1 and cops2

represent the cost of withdrawing water, increasing their values could be done through a form of

taxation on water withdrawals. Thus, inverse optimization has suggested a policy mechanism to

move the markets toward system optimal and thus to maximize additive net benefit for the entire
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market.

We verify that the q coefficient values obtained from all of the IO quadratic program trials

in Table 4.12 for both the GCM and CSM markets return the aggregate solutions when used in

the GCM and CSM market LCPs. See Appendix C.3 for more information.

4.6 Conclusions & Future Work

In conclusion, we explore the parameterization of the q vector of the general linear complementarity

problem and then apply that knowledge to a water supply market case study. In the theoretical

portion of the chapter, we establish general concepts such as complete information and overlapping

complementary cones that allow us to analyze properties of and evaluate solutions from the IO

quadratic program (4.3.46). We also cover the simplification of this general quadratic program

under different solution structure cases, thus providing a general but practical IO solution framework.

In the case study, the most important result we find is that the water supply market evaluated can

be influenced by levying taxes on upstream players to move the market toward system optimal.

This case study provides a blueprint for other markets to discover the incentives that must be

shifted in order to obtain system optimal by demonstrating the way in which to collapse a market

to one player, obtain system optimal solution(s), and then use those solution(s) in the inverse

optimization quadratic program (4.3.46) to find the right incentives.

With regard to future work, we would expand upon the idea of complete information from

both theoretical and practical points of view, seeing if we could find necessary and/or sufficient

conditions for complete information. We might also explore the degeneracy properties of z

solutions in the context of finding q. We would also explore more regarding the complementary
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cones and their role in the parameterization of the LCP problem. Furthermore, we would potentially

investigate if we could use this work to detect changes in equilibrium phenomenon. A change in

this phenomenon might be suggested if Zobs is forced to be subset into different parts due to the

feasibility check provided by the IO quadratic program (4.3.46). Finally, we would experiment

with more case studies to further demonstrate the power of this tool for market design.
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Chapter 5: Conclusion and Future Work

Having reached the end of this dissertation, we can discuss some important themes and

overarching concepts that this work suggests. First, as the first two projects demonstrate, when

using inverse optimization in conjunction with observational or simulation data, it is important to

design a train-test framework as discussed in [84] to ensure that that the parameters obtained from

inverse optimization can perform well on unseen data. Second, we see that inverse optimization,

as in the first two projects, can be used with simulation or observational data to find the hidden

parameters in models such as traffic models, but inverse optimization can also be used with

idealized or system optimal solutions, as in project three, to find the parameters that push the

equilibrium problem towards system optimal. In fact, project three’s methods could be used in

conjunction with project two’s concepts to improve overall traffic flow by aggregating the players

in project two’s transportation game, finding a system optimal solution, and then using the system

optimal solution to parameterize the original game theory model. Third, we see that there is still

much work to be done in parameterizing different equilibrium problems. Project one illustrates

this well in its sensitivity to parameterizations for some of the experiments. Inverse optimization

certainly helped in finding the “correct” protection decisions, but the stochastic mathematical

program with complementarity constraints was still quite sensitive to the parameterization even

being slightly off from the original.
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With regard to future work, we would certainly take the market design vision from the

third project and see if it could be applied to the first two projects. We would also explore

parameterization of additional classes of equilibrium problems in general, such as mixed complementarity

problems and potentially mathematical programs with equilibrium constraints. Overall, we would

further expand the conversation of these three projects with each other, such as exploring multiplicity

of solutions in projects one and two and considering expanded computational experiments in

project three.

For project one specifically, we would expand the traffic equilibrium model to handle the

stochastic user equilibrium case original proposed by [51], which would likely require more

computational innovations due to the presence of additional random terms in the formulation.

We would also explore if it would be possible to develop a stochastic network protection model

that could have scenario dependent traffic parameters and see what role inverse optimization

would play in those scenario dependent traffic parameters, potentially drawing upon methods

from [121] who use inverse optimization to parameterize risk functions. We do not believe this

work [121] is directly transferable because one would need to know the outcomes under each

scenario, which is impossible in a disaster relief context. However, perhaps this project paired

with simulation and other tools could give us new insights into estimating more detailed traffic

parameters.

For project two, we would apply the jointly convex GNEP framework to more applications

to further demonstrate its utility. We would also expand the traffic example to incorporate a more

sophisticated cost function and interaction function, such as the BPR function employed in the

first project, and to potentially integrate a more complex jointly convex constraint that would
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measure capacity as less of a ceiling and more of a gradual function.1 It would also be interesting

to expand other inverse optimization frameworks besides just [112] to the context of Nash and

generalized Nash models, particularly frameworks that deal with noisy observations [8, 13, 61].

For project three, it would be interesting to expand the parameterization of the LCP to

the M matrix, with the q fixed, which Huang [103] start to address. We could see if we could

generate simplification rules for the IO quadratic program that we and Huang [103] propose,

and we imagine that this work would take us into the world of semi-definite programming from

some very preliminary work we did on the subject in the beginning of the project. It would also

be interesting to tackle the idea of noisy observations in equilibrium problems in general, using

[8, 13, 61] as a guide.

In conclusion, this dissertation has applied inverse optimization to new applications and

expanded its reach to new classes of equilibrium problems. Our research presents new pathways

for using inverse optimization for the social good, and we aim to carry this social good focus

forward in our subsequent work beyond these pages.

1We credit anonymous reviewers for inspiring these insights regarding complicating the traffic model.
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Appendix A: A Hybrid Inverse Optimization-Stochastic Programming Framework

for Network Protection

Note: The contents of this appendix come mostly from a paper we have published on arXiv,

referenced here: [5]. There are certain additions that were made in response to the first round of

reviews from an academic journal.

A.1 Data Analysis Component: Inverse Optimization

A.1.1 Proof of dw −Nxw = 0

Lemma 2. For the following complementarity problem:

0 ≤ c(xw) +NTyw ⊥ xw ≥ 0, ∀w ∈ W (A.1.1a)

0 ≤ dw −Nxw ⊥ yw ≥ 0, ∀w ∈ W (A.1.1b)

dw − Nxw = 0 when there is a solution for (A.1.1) and when we assume that the c(x) function

is greater than 0 for all xw ≥ 0.

Proof. This proof is adapted from a proof seen in [15]. Assume that the c(xw) function is greater
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than 0 for all xw ≥ 0. Also assume for the sake of contradiction that

0 < dwi −

∑
l:(l,i)

xw(l,i) −
∑
j:(i,j)

xw(i,j)

 (A.1.2)

for some destination w ∈ W and for some i ∈ N .
∑
l:(l,i)

xw(l,i) represents the inflow at node i, and∑
j:(i,j)

xw(i,j) represents the outflow at node i. We know ywi = 0 by complementarity in (A.1.1b).

We can rearrange the inequality in (A.1.2) to say:

0 ≤
∑
l:(l,i)

xw(l,i) < dwi +
∑
j:(i,j)

xw(i,j) (A.1.3)

for some w ∈ W (representing the final destination) and for some i ∈ N . We have that the∑
l:(l,i)

xw(l,i) term is greater than or equal to 0 because we know all xw ≥ 0. The inequality in

(A.1.3) produces three difference cases:

• Case 1: dwi = 0. This means at least one link in the
∑

j:(i,j)

xw(i,j) sum must be positive because

0 < dwi +
∑

j:(i,j)

xw(i,j). Therefore, for such a link (i, j), xw(i,j) > 0 forces the following

equality:

c(i,j)(x
w) + ywj − ywi = 0 (A.1.4)

We know ywi = 0, so we have c(i,j)(x
w) + ywj = 0. Since ywj ≥ 0, both components must

be zero but that contradicts the assumption that c(x) is greater than 0 for all x ≥ 0, thereby

contradicting (A.1.2).

• Case 2: dwi is negative. This means at least one xw(i,j) > 0 and contradiction follows as in

Case 1.
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• Case 3: dwi is greater than 0. This implies that i = w because only the final destination has

a positive value. There are some sub-cases to this case, but we first note that we know for

a general node k ̸= i: ∑
l:(l,k)

xw(l,k) −
∑
j:(k,j)

xw(k,j) = dwk (A.1.5)

for the cases of dwk = 0 or when dwk is negative, based on Cases 1 and 2.

– Sub-Case A:
∑

j:(i,j)

xw(i,j) > 0. In this case, we arrive at the same contradictions we

arrived at for the previous two cases.

– Sub-Case B:
∑

j:(i,j)

xw(i,j) = 0 and
∑
l:(l,i)

xw(l,i) = 0. In this case, we know there is some dwk

that is negative, which by (A.1.5) means
∑

j:(k,j)

xw(k,j) > 0. For any connecting nodes

q between node k and node i,
∑

l:(l,q)

xw(l,q) =
∑

j:(q,j)

xw(q,j) > 0. Therefore, for node i, the

inflow sum
∑
l:(l,i)

xw(l,i) must be greater than 0, contradicting our assumption. Overall,

we arrive at the contradiction because flow begins at a node, which produces outflow

to neighboring nodes, and this in turn produces inflow at node i.

– Sub-Case C:
∑

j:(i,j)

xw(i,j) = 0 and
∑
l:(l,i)

xw(l,i) > 0 but less than dwi . For any k nodes in

which dwk is negative, we know the absolute sum over these k nodes is equal to dwi

when i = w. Therefore, as in Sub-Case B, there are outflows at these k nodes due to

the relationship (A.1.5). There is also conservation of flow at the q nodes in which

dwq = 0. Therefore, for the q nodes connected to node i, the outflow from those nodes

must match the inflow from previous nodes, which if taken back to the k nodes, would

equal the total dwi sum. Therefore, for node i, the inflow sum
∑
l:(l,i)

xw(l,i) must be equal

to dwi . This contradicts our assumption that the inflow would be less than dwi . Overall,
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we arrive at the contradiction because flow would be pushed toward the i destination

in order to satisfy the relationships established by (A.1.5).

Consequently, we have shown that a solution to the traffic equilibrium problem will result in the

dw −Nxw = 0 if we assume the c(xw) function is greater than 0 for all xw ≥ 0.

A.1.2 Explanation of Forming the Inverse Model from Bertsimas et al. [21]

To form the inverse optimization mathematical program from Bertsimas et al. [21] for

our traffic equilibrium problem, we return to the VI formulation of the problem and notice the

structure (A.1.6)

c(x∗)Tx ≥ c(x∗)Tx∗ − ϵ, ∀x ∈ F (A.1.6a)

F =
{
x : x ∈ R|A|

+ s.t. Nx ≤ d
}

(A.1.6b)

Note, the F set is written slightly differently here than how it was initially introduced in equation

(2) in Section 3.1 in order to mirror the complementarity problem (2.3.3) and in order to represent

the fact that we only are working with one destination at a time (hence we do not need the w

index). We notice that we can turn the left hand side of the (A.1.6a) inequality into a minimization

problem

min
x∈F

c(x∗)Tx (A.1.7)

in which x∗ is fixed, and this minimization problem forms the tightest upper bound on the right

hand side of (A.1.6a) since we are choosing the x to minimize the left hand side of (A.1.6a)

[21, 64]. Because (A.1.7) is a linear program, we know strong duality holds, which means we
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can find the dual of this problem and know that there is no duality gap between the primal and

the dual [137, 197]. The dual of this problem is:

max
y

(−d)Ty (A.1.8a)

−NTy ≤ c(x∗) (A.1.8b)

y ≥ 0 (A.1.8c)

As in Bertsimas et al. [21], we then equate the dual objective and the primal objective, and our

final set of constraints representing the satisfaction of the variational inequality in (A.1.6) are:

c(x∗)Tx∗ + (d)Ty ≤ ϵ (A.1.9a)

−NTy ≤ c(x∗) (A.1.9b)

y ≥ 0 (A.1.9c)

which include the equating of the dual and primal objectives (A.1.9a) as well as the dual feasibility

constraints (A.1.9b-A.1.9c). Through this process, we have created a set of conditions that

encodes the satisfaction of the ϵ VI [21, 38]. Using these conditions, we can then form an
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optimization problem including each data point x̂j representing the flow on the network such

that:

• There is one OD pair for each instance x̂j .

• There is the same node-arc incidence matrix N for each x̂j .

The optimization problem becomes for J data points, parameters θ ∈ Θ with Θ as a convex

subset of RZ (Z representing a number of parameters), yj ∈ R|N |, and ϵ ∈ RJ :

min
θ∈Θ,y,ϵ

||ϵ||22 (A.1.10a)

−(N)Tyj ≤ c(x̂j; θ), j = 1, ..., J, (A.1.10b)

yj ≥ 0, j = 1, ..., J, (A.1.10c)

c(x̂j; θ)T x̂j + (dj)Tyj ≤ ϵj, j = 1, ..., J, (A.1.10d)

The set Θ is determined by the lower and upper bounds on the parameter values found in Table

2.1. This optimization problem tries to find the parameterization that minimizes the ϵ needed

from the approximate equilibrium [21, 38].
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A.2 Normative Model: Two-Stage Stochastic Model

A.2.1 Two-Stage Stochastic Model: Parameter Details

We adopt the notation from Fan and Liu [65], with the exception of the parameters in the

hsa(ua) function which, although inspired by [65], is of a different form:

• A: the set of network arcs, and m as the number of arcs.

• N : the set of network nodes, and n as the number of nodes.

• K: the number of destinations of flow in the network.

• S: the scenario set

• xk,sa : the flow on arc a that is destined for the kth destination in scenario s. The vector

xk,s ∈ Rm denotes the flow on all arcs that is headed for the kth destination in scenario s.

(units=thousands of vehicles)

• f s
a : the total flow on arc a in scenario s, and f s as the vector containing all of the f s

a decision

variables for scenario s. (units=thousands of vehicles)

• ua: the decision variable controlling resources used to protect an arc a against a crisis.

Some examples of potential protection decisions include protective measures against landslides

and flash floods as in the case of Nepal [152]. (units=proportion of necessary resources

needed to fully insure the arc)

• W : the node-link adjacency matrix. We use the definition from [129]’s work of this matrix

which states W ∈ {−1, 0, 1}|N |×|A| such that, for a given column (representing an arc),
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there is a -1 at the node in which the arc begins and a 1 at the node in which the arc ends.

• qk ∈ Rn: designates the amount of flow originating at each node that is headed to destination

k. We based our construction of the qk vectors upon the set-up from [129]’s such that

negative entries within the vector indicate the presence of and amount of demand at those

nodes and such that a single positive entry denotes location of the demand (and is the

absolute sum of the negative entries). (units = thousands of vehicles)

• hsa(ua): the capacity of an arc a given first stage decision ua under scenario s:

hsa(ua) =


capa if a /∈ Ā

capa −ms
a(1− ua) if a ∈ Ā

(A.2.1)

with capa representing capacity of the arc without it being affected by a disaster, ms
a

representing the amount of damage done to arc a in scenario s if not protected, and Ā

represents the set of arc vulnerable to the disaster. Note that ms
a could be 0 in certain

scenarios. (units = thousands of vehicles)

• ta(f s) represents the time per vehicle along arc a [124, 125] as a function of the flows f s in

scenario s. We explore multiple different forms for ta.

• λk,si as “the minimum time from node i to destination k” in scenario s [65]. (units=travel

time)

• dk,s as the vector of extra variables that acts as a buffer for any flow that cannot be properly

apportioned. (units=thousands of vehicles).
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• ps as the probability of each scenario s

A.2.2 Calculating the Mk,s
i,j Values

The Mk,s
i,j values are the numbers utilized in the disjunctive constraints in Section 2.3.2.1.

To calculate the Mk,s
i,j values, we use the following reasoning. First, we know that the maximum

flow on a given arc is 8. We also know from Table 2.1 that the maximum value of ϕa and βa is

10. Therefore, we input xa = 8 into ϕaxa + βa, obtain 90, and then multiply by the number of

arcs to obtain an upper bound, which can be increased if desired. We decide to increase it by

multiplying by 2. The resulting value represents an upper bound on the maximum travel time

between an origin and destination point in the networks under the linear cost function. It also

works for the BPR cost function because if we take the maximum value of that function for a

given arc, we would get 12, which is significantly below 90. The final value of Mk,s
i,j is 90(m)(2),

with m as the number of arcs.

A.3 Results

A.3.1 Flow Error under IO α

Allen et al. [4] define a flow error metric to evaluate whether or not an IO parameterization

is valid for their application. Since the α values (for the BPR functions) imputed through IO are

different from the original α values, we evaluate the flow error for each network used. This flow

error metric is the Frobenius norm between the flow values across all the arcs for all of the OD

pairs in a given trial. The flow error metrics for the two networks can be seen in Table A.1 below:
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4x4 Grid (Experiment IIA) Nguyen & Dupuis Network (Experiment IVA)

0.0002 1.57e-05

0.0001 2.93e-05

0.0002 7.11e-05

0.0002 3.08e-05

5.73e-05 8.62e-05

0.0007 0.0004

0.0001 4.02e-05

6.39e-05 4.43e-05

0.0001 2.26e-05

7.82e-05 6.06e-05

Table A.1: Flow Errors for BPR Functions on the Two Networks

From the small magnitude of these values, we see that the α recovered by the IO model produce

flow values that are very close to the flow values produced by the original α values.

A.3.2 Median/Min-Max Tables and Nguyen & Dupuis Boxplots

When examining the medians as a percentage of the budget for Experiments IA-IIIA in

Tables A.2 and A.3, the O-IO metric medians are quire small compared to the U-IO & U-O

metric medians, thus again supporting the claim that IO can be used to recover the original

cost protection decisions and that the protection decisions made under IO and original costs are

different from the protection decisions made under uniform cost.

Looking at Figure A.1, the metric data are not overlapping which supports the idea that the
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protection decisions under IO or original costs differ when compared to the protection decisions

under uniform or baseline cost parameters. In Figure A.3, we see that the decisions under uniform

cost do not differ from the IO imputed cost decisions in Experiment IVA as much as in other

experiments. However, this could be a result of the small interval in which α was allowed to vary.

In future work, it would be interesting to experiment with wider intervals to further understand

this behavior. At the same time, these results do not take away from our conclusion that IO is

able to impute costs that lead to protection decisions similar to those of the original cost.

Experiment IA Experiment IIA Experiment IIIA Experiment IVA

Med (Min, Max) Med (Min, Max) Med (Min, Max) Med (Min, Max)

O-IO
0.0

0.0%
(0.0, 0.0004)

0.0006

0.01%
(0.0, 0.0076)

0.0027

0.05%
(0.0, 0.1309)

0.0014

0.02%
(0.0, 0.0181)

U-IO
0.3456

5.76%
(0.2208, 0.4372)

0.0446

0.74%
(0.0108, 0.1641)

0.2704

4.51%
(0.154, 0.3416)

0.0112

0.19%
(0.0, 0.1819)

U-O
0.3456

5.76%
(0.2208, 0.4371)

0.0447

0.74%
(0.0083, 0.164)

0.2729

4.55%
(0.1513, 0.3416)

0.004

0.07%
(0.0, 0.1819)

Table A.2: Medians, Medians as Percentage of I = 6 Budget, and Ranges for Experiments,
ϵ = 0.01
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Experiment IA Experiment IIA Experiment IIIA Experiment IVA

Med (Min, Max) Med (Min, Max) Med (Min, Max) Med (Min, Max)

O-IO
0.0

0.0%
(0.0, 0.0004)

0.0006

0.01%
(0.0, 0.0041)

0.0012

0.02%
(0.0, 0.1309)

0.001

0.02%
(0.0, 0.0941)

U-IO
0.3134

5.22%
(0.2194, 0.4717)

0.0472

0.79%
(0.0092, 0.2037)

0.2699

4.5%
(0.1494, 0.351)

0.0095

0.16%
(0.0, 0.1209)

U-O
0.3134

5.22%
(0.2194, 0.4716)

0.0472

0.79%
(0.007, 0.2032)

0.2733

4.56%
(0.1446, 0.3511)

0.0075

0.13%
(0.0, 0.1251)

Table A.3: Medians, Medians as Percentage of I = 6 Budget, and Ranges for Experiments A,
ϵ = 0.001

(a) Experiment IIIA Results for ϵ = 0.01 (b) Experiment IIIA Results for ϵ = 0.001

Figure A.1: Experiment IIIA Results: Nguyen & Dupuis Network with Linear Cost. The
parameter differences refer to the ϕ differences.
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(a) Experiment IVA Results for ϵ = 0.01 (b) Experiment IVA Results for ϵ = 0.001

Figure A.2: Experiment IVA Results: Nguyen & Dupuis Network with BPR. The parameter
differences refer to the α differences.

A.3.3 Run Time Results

The following box-plots illustrate the run time data for Experiments IA-IVA and for both

values of ϵ, which is the value of the g(k) error metric in which the iterations could stop (or if 300

iterations occurred). As a reminder, all of the experiments were run on an 8 core machine.

For ϵ = 0.01, most of the trials of the experiments were below 200 minutes and, for ϵ =

0.001, most of the trials of the experiments were below 500 minutes. It can be seen that there

were some outliers for Experiment II, which was likely due to the additional variables needed to

estimate the BPR function and the larger graph size.
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(a) Experiment A Timing for ϵ = 0.01 (b) Experiment A Timing for ϵ = 0.001

Figure A.3: Experiment A Timing Results (Minutes)

A.4 Code Attribution

Below are the various code resources, packages, etc. that we utilized over the course of the

project:

• Python (Version 3.8.5) Package

– pyomo 5.7.1 [95, 96]

– pysp 5.7.1 [192]

– networkx 2.5 [163]

– pandas 1.1.3 [131]

– numpy 1.19.2 [145, 184, 189]

– scipy 1.5.2 [184]

– matplotlib 3.3.2 [104]
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– scikit-learn 0.23.2 [150]

• Solvers

– gurobi Version 9.1.1 [90]

– ipopt [185]

• MATLAB 9.8.0.1417392 (R2020a) Update 4 [130]

• GAMS [78] with PATH solver [54, 70] (PATH website [71])

• Wolfram Alpha [198]

• Data:

– Nguyen & Dupuis Network [142]

• Important Sites with Example Code for pysp Implementation in Scripts:

– https://projects.coin-or.org/Pyomo/browser/pyomo/trunk/examples/

pysp/farmer/concrete/ReferenceModel.py?rev=9358

– https://github.com/Pyomo/pysp/blob/master/examples/farmer/

concreteNetX/ReferenceModel.py

– https://pyomo.readthedocs.io/en/stable/advanced_topics/pysp_

rapper/demorapper.html#ph
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Appendix B: Using Inverse Optimization to Learn Cost Functions in Generalized

Nash Games

Note: Most of the contents of this appendix come from our article published in Computers &

Operations Research: [4]. There have been a few additions due to the experiments in part B.

B.1 Variable Number Calculations for Lemma 1

In this section, we will provide the exact variable counts for problem (3.2.2) as the grid size

increases from 2x2 to 3x3 to 4x4, and so on, as well as a more general variable count for graphs

involving an arbitrary number of arcs. These variable counts are polynomial in the problem

input size and, when compared with the polynomial-time complexity of solving linear programs,

supports Lemma 1 in the main chapter. We will define N as the number of players and m as the

total number of nodes.

Grid: We first focus on the Grid family of networks, as used in Section 3.5 in the main chapter.

We note the following:

Number of Origin-Destination Pairs: (2)
(
m

2

)
(B.1.1a)
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Number of Arcs in a
√
mx

√
m Grid: (

√
m− 1)(

√
m)(2)(2) (B.1.1b)

For the same costs across all players, we have to consider the variables diag(C), c̄, vki , uki , ūk, ∀i, k

along with the variables utilized in creating the 1-norms for the residual model. This variable

count comes out to be for our code:

13Nm3 − 12Nm5/2 − 13Nm2 + 12Nm3/2 + 16m3 − 16m5/2 − 16m2 + 16m3/2 (B.1.2)

For different costs across all players, we consider the variables diag(Ci), c̄i, vki , uki , ūk, ∀i, k along

with the variables utilized in creating the 1 norms for the residual model. This variable count

comes out to be for our code:

21Nm3 − 20Nm5/2 − 21Nm2 + 20Nm3/2 + 8m3 − 8m5/2 − 8m2 + 8m3/2 (B.1.3)

Therefore, in big O notation, the order of both variable counts is O(Nm3).

General graphs: For any graph, we now define a as the number of arcs, with N as the number

of players and m as the total number of nodes. Again, the number of OD pairs will be (2)
(
m
2

)
.

The variable count for the same costs across players is for our code:

3aNm2 − 3aNm+m3N −m2N + 4am2 − 4am (B.1.4)

The variable count for not the same costs across all players is for our code:
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5aNm2 − 5aNm+m3N −m2N + 2am2 − 2am (B.1.5)

Therefore, in big O notation, the order of both variable counts is O(aNm2).

B.2 Uniqueness Considerations for the VI

Furthermore, according to [92] and [75], we can obtain a unique solution to this VI if the

set X is compact and convex and if F defined by (3.3.4) is strictly monotone, which is defined in

the following definition:

Definition 20 (Strict Monotonicity ([75, 93, 147])). A function F is strictly monotone if

(F(x)− F(y))T (x− y) > 0, ∀x,y ∈ X, x ̸= y (B.2.1)

We achieve both criteria with our traffic game, as defined and discussed in Section 3.2,

because the equality constraints are linear, the player specific inequality constraints are convex,

the “coupled” constraints are convex [63, 92], the constraints create bounds on the feasible region,

and the F defined in (3.3.3) composed of the gradients of the objective functions of the players is

strictly monotone [75, 92]. Strict monotonicity of our F defined in (3.3.3) is implied by showing

it is strongly monotone [75, 93, 147], a property captured by the following definition:

Definition 21 (Strong Monotonicity ([75, 93, 147])). A function F is strongly monotone if for

some α > 0

(F(x)− F(y))T (x− y) ≥ α||x− y||22, ∀x,y ∈ X, x ̸= y (B.2.2)
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We recognize that a similar proposition regarding players that all have the same cost functions

and same origin-destination pairs appeared in [146] as described by [46], but our proof is specialized

to this problem.

Lemma 3. The F defined by (3.3.3) and created by the gradients of the objective functions defined

in (3.2.1) is strongly monotone if we assume C1 = C2 = ... = CN .

See Appendix B.3 for the proof. Note though that, just because the VI form for the

GNEP has one solution (due to the strong monotonicity property), this does not mean that the

original generalized Nash problem without the assumption of equal multipliers for the “coupled”

constraints would not have other solutions (see [63] for a simple example in Section 1). Furthermore,

if the Ci matrices are not all equal, then we are not guaranteed to have a strongly monotone F.

Lemma 4. The F defined by (3.3.3) and created by the gradients of the objective functions defined

in (3.2.1) is not in general strongly monotone if we assume the Ci are not all equal.

See Appendix B.4 for the counterexample.

B.3 Proof of Lemma 3

Proof. F is defined for (3.2.1) as follows:

F(x) =



2C1x1 + C1x2 + ...+ C1xN + c̄1

C2x1 + 2C2x2 + ...+ C2xN + c̄2

...

CNx1 + CNx2 + ...+ 2CNxN + c̄N


(B.3.1)
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In order to prove strong monotonicity, we must show that there exists a scalar α > 0 such that

(F(x)− F(y))T (x− y) ≥ α||x− y||2 ∀x,y ∈ X, x ̸= y. (B.3.2)

Through some algebra, it is not difficult to show that:

(F(x)− F(y))T (x− y) = (x− y)T



2C1 C1 . . . C1

C2 2C2 . . . C2
...

... . . . ...

CN CN . . . 2CN



T

(x− y) (B.3.3)

If we assume that C1 = C2 = ... = CN = C, we have

= (x− y)T



2C C . . . C

C 2C . . . C

...
... . . . ...

C C . . . 2C


(x− y) (B.3.4)

From Proposition 2.2.10 in [48], we know that, for symmetric, real valued matrices M and the

smallest eigenvalue of M referenced as λ1, we can write λ1||x||2 ≤ xTMx, ∀x. Therefore,

to prove the matrix in (B.3.4) is positive definite, we simply need to prove that its smallest
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eigenvalue is positive. We begin this process by splitting the matrix in (B.3.4) into two pieces

A =



C 0 . . . 0

0 C . . . 0

...
... . . . ...

0 0 . . . C


, B =



C C . . . C

C C . . . C

...
... . . . ...

C C . . . C


(B.3.5)

We state that A+ B = M , with M as the original matrix, and we note that A,B,M ∈ RnN×nN ,

with n as the number of arcs and N as the number of players. First, we prove that the eigenvalues

ofB are {0, ..., 0, N(eig(C))}. For this proof, we notice that the eigenvalue-eigenvector equation

for B is

Bz = λz (B.3.6)

Cz1 + ...+ CzN = λzi, i = 1, ..., N (B.3.7)

such that zi ∈ Rn, ∀i (not all zi = 0) and λ ∈ R. Because ∀i the left-hand sides of (B.3.7) are

the same, we can equate the right hand sides to say:

λz1 = λz2 = ... = λzN (B.3.8)

This provides two cases for the eigenvalues. Either λ = 0, or the zi are such that

z1 = z2 = ... = zN = w ̸= 0 (B.3.9)
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for some w ∈ Rn. This w can be substituted back into the equation in (B.3.7) to say

N Cw = λw (B.3.10)

which means the λ are the eigenvalues of NC and, since we already know that C is a positive

diagonal matrix, the eigenvalues are just those entries on the diagonal multiplied by N . Because

these diagonal values are positive and N is positive, then the resultant eigenvalues are positive.

Next, we use this information to prove that M is a positive definite matrix. Since we know

that A and B are real, symmetric matrices, Weyl’s Inequality [102, Theorem 4.3.1] states:

λ1(A) + λ1(B) ≤ λ1(A+B) = λ1(M) (B.3.11)

We know from above that λ1(B) = 0. We also know that λ1(A) > 0 because it is a diagonal

matrix with the C matrices on its diagonal and, since C has all positive values, then we know all of

the eigenvalues of A are positive. Consequently, λ1(A) + λ1(B) > 0 which means λ1(M) > 0.

As a result, we can write

(x− y)T



2C C . . . C

C 2C . . . C

...
... . . . ...

C C . . . 2C


(x− y) ≥ λ1(M)||x− y||2 (B.3.12)

and we know λ1(M) is a positive number. Thus, we have proven strong monotonicity of F.

214



B.4 Counterexample and MATLAB Code for Lemma 4

We will provide a counter example to demonstrate this lemma. In MATLAB, if we set the

rng seed to 1 with the ’twister’ option, we draw four arcs using the rand function and

multiply these numbers by 1000. We then form a C matrix by putting these four numbers along

the diagonal. Next, we form the following matrix:

A =



2C C C C

(500.1)C 2(500.1)C (500.1)C (500.1)C

(600.7)C (600.7)C 2(600.7)C (600.7)C

(700.8)C (700.8)C (700.8)C 2(700.8)C


(B.4.1)

Therefore, we see that we have formed a four player matrix game in which all of the players

do have different costs due to the different factors multiplying the C matrices. According to

[109, 196], a matrix with real values A is positive definite if and only if 1
2
(A + AT ) is positive

definite. We can check the smallest eigenvalue of this resultant matrix to find out if it is positive

definite. Using MATLAB’s eig function, we discover that the smallest eigenvalue of the matrix

1
2
(A + AT ) is -7.7307e+04. Therefore, A is not positive definite, thus demonstrating that, when

the costs are not the same across all players, we are not guaranteed to have a strongly monotone

F as defined by (3.3.3). See below for MATLAB code.

This is the MATLAB code utilized for the counterexample for Lemma 4:

rng(1,’twister’);

v=1000*rand(1,4);
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C=diag(v);

M=[2*C C C C

500.1*C 2*500.1*C 500.1*C 500.1*C

600.7*C 600.7*C 2*600.7*C 600.7*C

700.8*C 700.8*C 700.8*C 2*700.8*C];

w=eig(0.5*(M+M’));

minval=min(w)

B.5 Additional Experimental Set-Up Details

The PATH solver [54, 70] in GAMS generates the data used in the inverse optimization

residual model [112, 154]. The only default altered for the PATH solver was the tolerance

threshold for the solver to finish, which changed from 1e-6 to 1e-8. In the scripts, the PATH

solver can begin at a few different starting points in case one of the start points fails due to solver

error. For the case in which the costs are the same across all players, F defined by (3.3.3) is

strictly monotone, so the problem has a unique solution, which means the starting point does

not matter. For the case in which the costs are not the same across all players, multiple starting

points are still provided to ensure that a solution is obtained to the problem. Interestingly, all of

the different cost matrices for our experiments are positive definite, except for one in grid size

5x5 and player number 10.1 Then, the pyomo [95, 96] package in Python is utilized to construct

the inverse optimization residual model to find the parameterizations. The Gurobi solver [90] is

1In different costs, we use slightly different starting point options between when we run the simulation for the
original costs and when we run the simulation for the IO costs. This doesn’t appear to affect the results, as will be
seen in the next few sections. We also did a check for α = 10, grid 5x5, and N = 10 with the start points set to the
same values for the original costs and IO costs, and the resulting errors were the same as before.
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utilized to solve the pyomo models, and the BarQCPConvTol and the BarConvTol parameters are

set to 1e-14. The documentation for BarConvTol states that smaller values for this parameter can

lead to “a more accurate solution” [89]. The experiments are run on machines with 4 cores and

32 GB of RAM.

The original costs under which the simulation data is generated have to be selected, and this

was done randomly. MATLAB [130] was utilized to generate the random sets of numbers needed,

specifically the unifrnd random number function with 5 as the rng seed. This function draws

from a uniform distribution the original costs for the Ci and c̄i parameters in the simulation model

outlined in (3.4.1). For the same costs across all players set-up, one C and one c̄ are drawn but,

when the costs vary across all the players, a Ci and a c̄i are drawn for each player i. For each

experimental set up with a specified graph, number of players, and α level (the capacity level for

the “coupled” constraint), 10 trials are run.

For the different costs case, it should be noted that all of the F functions as defined by

(3.3.3) across the number of arcs present in the grids (2x2-5x5) and in Sioux Falls as well as the

number of players, with the exception of one trial in the 5x5 grid and 10 players case, are strongly

monotone functions. As indicated in Lemma 4 in Appendix B.2, we cannot make this guarantee

in general for players with different interaction costs. This matters because the different starting

point scheme for solving the simulation model is bolstered by the positive definiteness assumption

and, as can be seen in Appendix B.6, there is less of a chance that the matrix will be positive

definite as the number of players increases. Therefore, this suggests further computational work

that could be done to see if non-positive definite matrices of our type work in general in our

simulation framework.2

2Note that the one non-positive definite matrix in the 5x5 grid with 10 players and α = 10 example appears to
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B.6 Positive Definiteness of Different Costs Matrices with MATLAB rng(5)

In Figure B.1, we plot a sampling of the minimum eigenvalues for the “symmetric part”

[196] of random matrices of the form:

A =



2C1 C1 . . . C1

C2 2C2 . . . C2
...

... . . . ...

CN CN . . . 2CN


(B.6.1)

in which Ci are diagonal matrices whose diagonals are chosen as random numbers from the

uniform distribution from 1 to 5 using the MATLAB unifrnd function. We choose to set the

arc number to 76 (same number as the Sioux Falls arc number), and we gradually increase the

number of players N from 2 to 15. We do use the seed of 5 for rng but, since we draw all

of the numbers in one continuous session, the minimum eigenvalues here do not necessarily

match the eigenvalues of the matrices that correspond with our experiments. As discussed in

Appendix B.4 and according to [109, 196], we can check the positive definiteness of the matrix

A by finding the minimum eigenvalue of 0.5(A + AT ), which is what we do for the 10 random

matrices corresponding with each player setting. In return, we obtain Figure B.1, and we see that,

as player number increases, there is more and more of a chance that the minimum eigenvalue is

negative, thus making the matrix not positive definite.

This is important because we can only guarantee unique solutions to our problem when

the A matrix is positive definite, as explained in Section 3.3.1. This allows us to have multiple

work in the simulation framework because the flow error and objective function values are both low.
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starting points in our code for the simulation experiments.

Figure B.1: Minimum Eigenvalues for 10 Trials,N = 2−15, rng(5), and Arc Number=76, which
is the same number of arcs as Sioux Falls

B.7 Objective Function Values for the Experiment Groups

Overall, it is important to remember that, for all the experiments, the objective function

values are small, on the order of 1e-6 or lower. However, it is also relevant to identify patterns

where present. For experiment group 1, in Figure B.2, increasing grid size sometimes leads to

a higher median objective function value in certain subsets of the experiments, including when

there are 2 players and α = 1, when there are 5 players and α = 2.5, and when there are

10 players and α = 5. These are all subsets in which alpha was cut in half according to the

number of players present, which indicates that there could be a mild trend of increasing objective

function values as grid size increases when the problem is more constrained. Overall, however,

the objective function values are small, with the highest outlier in terms of absolute value being a

little over 2.5e-6 in the case of a 5x5 grid with 10 players and α = 5.3 For experiment group 2, in
3Note that there are a few negative values, but this isn’t concerning because their corresponding flow errors are

still low.
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Figure B.3, the objective values are overall quite low, with one outlier for 10 players and α = 5

above 8e-6. They over all appear comparable to the grid objective function values once the scales

of the two graphs are taken into account.4 For experiment group 3, in Figure B.4, although the

objective function values of the inverse optimization residual model are on the order of 1e-6, the

median values under the α = (0.5)N capacity are bigger than the α = N median values. One

theory for this trend is that the more constrained problems are more difficult to solve and hence

lead to larger objective function values. The ranges for these objective function values is about

1.5e-6 higher in the positive direction than the corresponding range for the values in Experiment

group 1 (see Figure B.2). For experiment group 4, Figure B.5 demonstrates that most of the

values fall below 1e-6, except for the N = 5, α = 2.5 experiment, whose maximum is close to

4e-6. This does appear to mirror the the objective function values for experiment group 2 in terms

of the general range, which also fell below 1e-6.

Figure B.2: Objective Function Values for Experiment Group 1: The labeling at the bottom of
the graph indicates attributes of the boxplot, specifically the Grid Size/Number of
Players/Alpha Value

4There do again appear to be some negative values but, again, this isn’t concerning because their corresponding
flow errors are still low.
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Figure B.3: Objective Function Values for Experiment Group 2: The labeling at the bottom of the
graph indicates attributes of the boxplot, specifically the Number of Players/Alpha
Value

Figure B.4: Objective Function Values for Experiment Group 3: The labeling at the bottom of the
graph indicates attributes of the boxplot, specifically the Number of Players/Alpha
Value. Note: Only 6 trials are included for 5/10/5.0, see note in the text.
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Figure B.5: Objective Function Values for Experiment Group 4: The labeling at the bottom of the
graph indicates attributes of the boxplot, specifically the Number of Players/Alpha
Value. Note: The trials did not finish in time for N = 10 and α = 5, hence that
boxplot is not included.

B.8 Timing for the Experiment Groups

In this section of the Appendix, we present the timing graphs for the experiment groups.

In Figure B.6, timing increases with grid size for all of the subsets of α and number of players.

In Figure B.7, the timing increases as the player number increases. Both of these trends are

understandable because of the effect on variable count that both grid size and player number

have, as demonstrated by Appendix B.1. In Figure B.8, we see that all of the timing data is

obscured by the large outlier of the experiment with grid 5x5, 10 players, and α = 5. This

experiment took quite a while and, as previously noted, only 6 of the trials for the experiment

finished in under 24 hours (the 1st, 2nd, 3rd, 4th, 5th, and 7th). We hypothesize that having the

largest grid, the most number of players, the more constrained α value of the two, and the more

difficult task of determining different sets of cost parameters for each player caused the large

time amounts. In Figure B.9, again noting that the trials did not finish in time for N = 10 and
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α = 5, it appears that there are not trends to discuss, although note that all the experiments but

N = 5, α = 2.5 have consistent timing data across trials.

Figure B.6: Timing for Experiment Group 1: The labeling at the bottom of the graph indicates
attributes of the boxplot, specifically the Grid Size/Number of Players/Alpha Value

Figure B.7: Timing for Experiment Group 2: The labeling at the bottom of the graph indicates
attributes of the boxplot, specifically the Number of Players/Alpha Value
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Figure B.8: Timing for Experiment Group 3: The labeling at the bottom of the graph indicates
attributes of the boxplot, specifically the Grid Size/Number of Players/Alpha Value.
Note: Only 6 trials are included for 5/10/5.0, see note in the text.

Figure B.9: Timing for Experiment Group 4: The labeling at the bottom of the graph indicates
attributes of the boxplot, specifically the Number of Players/Alpha Value. Note: The
trials did not finish in time for N = 10 and α = 5, hence that boxplot is not included.
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B.9 Part B: Additional Results

Figure B.10: 3× 3 Grid Train Test Same Costs

Figure B.11: 5× 5 Grid Train Test Same Costs
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Figure B.12: 3× 3 Grid Train Test Different Costs

Figure B.13: 5× 5 Grid Train Test Different Costs

226



B.10 Code Attribution

In this section, we would like to cite the various packages and software that we used in the

project. We would also like to note that the code for this project was built off of another code

base that is for another on-going project (not published yet).

• Python Packages:

– pyomo [95, 96]

– networkx [91]

– matplotlib [104]

– numpy [145, 184, 189]

– scipy [184]

– pandas [131]

• MATLAB 9.8.0.1323502 (R2020a) [130]

• GAMS [77, 78] with PATH solver [54, 70] (PATH website [71])

• Solvers:

– gurobi Version 9.1.1 [90]; Gurobi Documentation [123]

• Data: Sioux Falls data [120, 179]

These are some of the helpful resources we utilized for writing our code:

• These articles [23, 128] were helpful in determining some of the constraints that equalized

necessary variables in my code.
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• We learned much about simulation from [55] and [17, 18], specifically about running

multiple trials and the importance of randomization.
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Appendix C: Inverse Optimization for Linear Complementarity Problems and

for Incentive Design in Markets

C.1 Principle Minors Algorithm

In Section 4.5.2.1, we mention finding the principle minors for the MGCM and MCSM

matrices. This is the brute-force algorithm we devised to find all of the principle minors for the

two matrices:
Algorithm 6: Principle Minor Brute-Force Algorithm

Data: Initialize the M matrix.

Generate all the combinations of indices for creating principle submatrices in set IPM

Initialize determinant list

for i ∈ IPM do
determinant list.append(determinant(M [i, i]))

end

229



C.2 Full q Table from Aggregate z Solution IO Quadratic Program Solve

qGCM = qCSM qAGGCMIO , q0 zeros qAGGCMIO , q0 = qGCM qAGCSMIO , q0 zeros qAGCSMIO , q0 = qCSM

−α1 + c
ops
1 -20.0 -16.3127 -16.3127 -17.4 -17.4

−α2 + c
ops
2 -30.0 -28.0 -28.0 -28.0 -28.0

−α3 + c
ops
3 -39.9999 -40.0 -40.0 -40.0 -40.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

ccu1,1 0.6667 0.6667 0.6667 0.6667 0.6667

ccu1,2 1.0 1.0 1.0 1.0 1.0

ccu1,3 1.3333 0.0 1.3333 0.0 1.3333

ccu2,1 3.3333 3.3333 3.3333 3.3333 3.3333

ccu2,2 5.0 5.0 5.0 5.0 5.0

ccu2,3 6.6667 0.0 6.6667 0.0 6.6667

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

0 0.0 0.0 0.0 0.0 0.0

n1 − r
fc
1 10.0 6.1309 10.0 6.4933 10.0

n1 + n2 − r
fc
2 10.0 10.0 10.0 9.8 10.0

n1 + n2 + n3 − r
fc
3 10.0 10.0 10.0 10.0 10.0

Table C.1: q Recovered from IO for GCM and CSM Markets Using One Aggregate z Solutions

C.3 Verifying the q for System Optimal IO Solve

We verify that the q coefficient values obtained from all of the IO quadratic program trials

in Table 4.12 for both the GCM and CSM markets return the aggregate solutions when used

in the GCM and CSM market LCPs. We return the GCM aggregate solution using the GCM

market model in conjunction with the qAGGCMIO from Table 4.12. For the CSM model, using

qAGCSMIO when q0 was set to 0s, results in a z solution from the CSM market model that has
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0.0001 in positions 13 and 22 in which the value should be a 0 (see Table 4.9). We attribute this

to numerical precision issues. For the CSM model, using qAGCSMIO when q0 was set to qCSM

resulted in one alteration for theW P
2 value, changing it from 1.6883 to 1.6867. As was mentioned

before, the W P
2 variable can take on a range of solution values, so its change to a different value

inside the expected range we reported from the starting point method is not alarming.

C.4 Code Attribution

Below are the code resources we utilized for this project:

• Python (Version 3.8.5) Packages

– pyomo 5.7.1 [95, 96]

– pandas 1.3.4 [131]

– numpy 1.19.2 [145, 184, 189]

– scipy 1.5.2 [184]

• Solvers

– gurobi Version 9.1.1 [90]; Gurobi Documentation [123]

• MATLAB 9.8.0.1323502 (R2020a) [130]

• GAMS [79] with PATH solver [54, 70] (PATH website [71])

231

pyomo
pandas
numpy
scipy
gurobi


Bibliography

[1] Shadi Abpeykar and Mehdi Ghatee. Supervised and unsupervised learning dss for incident
management in intelligent tunnel: A case study in tehran niayesh tunnel. Tunnelling and
Underground Space Technology, 42:293–306, 2014.

[2] Richa Agarwal and Özlem Ergun. Network design and allocation mechanisms for carrier
alliances in liner shipping. Operations research, 58(6):1726–1742, 2010.

[3] Ravindra K Ahuja and James B Orlin. Inverse optimization. Operations Research,
49(5):771–783, 2001.

[4] Stephanie Allen, Steven A Gabriel, and John P Dickerson. Using inverse optimization to
learn cost functions in generalized nash games. Computers & Operations Research, page
105721, 2022.

[5] Stephanie Allen, Daria Terekhov, and Steven A Gabriel. A hybrid inverse
optimization-stochastic programming framework for network protection. arXiv preprint
arXiv:2110.00488, 2021.

[6] Daniel Alvear, Orlando Abreu, Arturo Cuesta, and Virginia Alonso. Decision support
system for emergency management: Road tunnels. Tunnelling and underground space
technology, 34:13–21, 2013.

[7] Ali Asadabadi and Elise Miller-Hooks. Optimal transportation and shoreline infrastructure
investment planning under a stochastic climate future. Transportation Research Part B:
Methodological, 100:156–174, 2017.

[8] Anil Aswani, Zuo-Jun Shen, and Auyon Siddiq. Inverse optimization with noisy data.
Operations Research, 66(3):870–892, 2018.

[9] Anil Aswani, Zuo-Jun Max Shen, and Auyon Siddiq. Data-driven incentive design in the
medicare shared savings program. Operations Research, 67(4):1002–1026, 2019.

[10] Chaitanya Awasthi. Forward and inverse methods in optimal control and dynamic game
theory. PhD thesis, University of Minnesota, 2019.

232



[11] Chaitanya Awasthi and Andrew Lamperski. Inverse differential games with mixed
inequality constraints. In 2020 American Control Conference (ACC), pages 2182–2187.
IEEE, 2020.

[12] Pranjal Awasthi, Bahman Kalantari, and Yikai Zhang. Robust vertex enumeration for
convex hulls in high dimensions. In International Conference on Artificial Intelligence
and Statistics, pages 1387–1396. PMLR, 2018.

[13] Aaron Babier, Timothy CY Chan, Taewoo Lee, Rafid Mahmood, and Daria Terekhov.
An ensemble learning framework for model fitting and evaluation in inverse linear
optimization. Informs Journal on Optimization, 3(2):119–138, 2021.

[14] Jeff X Ban, Henry X Liu, Michael C Ferris, and Bin Ran. A general mpcc model and its
solution algorithm for continuous network design problem. Mathematical and Computer
Modelling, 43(5-6):493–505, 2006.

[15] Xuegang Jeff Ban. Quasi-variational inequality formulations and solution approaches for
dynamic user equilibria. The University of Wisconsin-Madison, 2005.

[16] Gulay Barbarosoglu and Yasemin Arda. A two-stage stochastic programming framework
for transportation planning in disaster response. Journal of the operational research
society, 55(1):43–53, 2004.
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[46] Roberto Cominetti, José R Correa, and Nicolás E Stier-Moses. Network games with
atomic players. In International Colloquium on Automata, Languages, and Programming,
pages 525–536. Springer, 2006.

[47] GAMS Development Corporation. Jams and logmip, 2022.

[48] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Complementarity
Problem. Academic Press, Inc, 1992.

[49] Teodor Gabriel Crainic, Xiaorui Fu, Michel Gendreau, Walter Rei, and Stein W Wallace.
Progressive hedging-based metaheuristics for stochastic network design. Networks,
58(2):114–124, 2011.

[50] ARTURO Cuesta, DANIEL Alvear, ORLANDO Abreu, and DELFÍN Silió. Real-time
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