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Both the external world and our internal world are full of changing activities , and 

the question of how these two dynamic systems are linked constitutes the most 

intriguing and fundamental question in neuroscience and cognitive science. This 

study specifically investigates the processing and representation of sound dynamic 

information in human auditory cortex using magnetoencephalography (MEG), a non-

invasive brain imaging technique whose high temporal resolution (on the order of 

~1ms) makes it an appropriate tool for studying the neural correlates of dynamic 

auditory information.    

The other goal of this study is to understand the essence of the macroscopic 

activities reflected in non-invasive brain imaging experiments, specifically focusing 

on MEG. Invasive single-cell recordings in animals have yielded a large amount of 

information about how the brain works at a microscopic level. However, there still 



  

exist large gaps in our understanding of the relationship between the activities 

recorded at the microscopic level in animals and at the macroscopic level in humans, 

which have yet to be reconciled in terms of their different spatial scales and activities 

format, making a unified knowledge framework still unsuccessful.     

In this study, natural speech sentences and sounds containing speech-like 

temporal dynamic features are employed to probe the human auditory system. The 

recorded MEG signal is found to be well correlated with the stimulus dynamics via 

amplitude modulation (AM) and/or phase modulation (PM) mechanisms. 

Specifically, oscillations at various frequency bands are found to be the main 

information-carrying elements of the MEG signal, and the two major parameters of 

these endogenous brain rhythms, amplitude and phase, are modulated by incoming 

sensory stimulus dynamics, corresponding to AM and PM mechanism, to track sound 

dynamics. Crucially, such modulation tracking is found to be correlated with human 

perception and behavior.  

This study suggests that these two dynamic and complex systems, the external 

and internal worlds, systematically communicate and are coupled via modulation 

mechanism, leading to a reverberating flow of information embedded in oscillating 

waves in human cortex. The results also have implications for brain imaging studies, 

suggesting that these recorded macroscopic activities reflect ‘brain state’, the more 

close neural correlate of high-level cognitive behavior.  
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Chapter 1: Introduction 

 

We are living in a world full of changes in multiple dimensions. Even a stationary 

object changes in the spatial dimension, with different colors, textures and shapes 

occupying different spaces in the same object. In fact, it is just such a combination of 

‘change features’ that constitutes the ‘uniqueness’ of this object. When the object is 

moving, its position in space changes continuously, resulting in changes in another 

important dimension—time. From a broader perspective, we encounter and expect 

changes all the time; life would become tedious and boring if the external world 

stayed the same every day.  

The brain, a complex and important organ, is germane to our minds, thoughts, 

emotions, and importantly, the communication between our internal world and the 

complex, ever-changing outside world. Brains are made up of enormous numbers of 

neurons that work together to make us what we are. Interestingly, if we dig into the 

brain and look at its activities in real time, we will see again a rapidly changing 

world—individual neurons fire spikes occasionally even in the absence of any outside 

stimulus, neuron groups manifest changing activity, and local field potentials (LFP) 

display fluctuating patterns.  

A central puzzle in neuroscience is how those individual, semiautonomous 

neurons in the brain work together to link our internal world with the outside world in 
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real time, to receive information from it and to act upon it. Specifically, how is the 

dynamic outside world embedded and represented in the (also dynamic) inside world? 

What do the richly dynamic brain activities we observe represent and reflect? Are 

they a simple reflection of changes in the outside world, or are they some form of 

abstraction from the complex external environment? Or are they not directly related 

to the external world? Do they perhaps represent the ever-changing internal ‘mind 

states’?  

This thesis explores the tracking and representation of auditory stimulus dynamics 

in human auditory cortex, and the results can extend to other sensory domains. The 

auditory domain is a very interesting topic to begin with, for two reasons. First, a 

sound, reflecting changes in acoustic pressure, is endowed with innate dynamic 

properties. It unfolds in time, and one needs to attend to the changes in real time to 

perceive the sound and extract the pertinent information it contains. Audition is a 

natural example that is well suited to the study of cortical mechanisms for 

representing stimulus feature changes. Secondly, cortical processing of speech, a 

unique and complex communicative capability only humans are endowed with, 

remains important but obscure in auditory neuroscience. Speech is made up of 

complex acoustic signals from the perspective of signal processing, containing rich 

dynamic structure in both amplitude and frequency. To study the neural correlates of 

speech recognition, the most useful and direct evidence is obtained using natural 

speech stimuli or stimuli with speech-like dynamics, and the results from studies 

employing simple pure tones or noise may not be directly applicable.   
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Experimental results depend on the approaches and tools employed, and different 

perspectives will lead to various interpretations. When testing the ‘linking hypothesis’ 

between the outside and inside worlds, confusions will arise if the assumptions, 

mechanisms and limitations of the specific experimental approach are not considered. 

In addition, to combine results from different experimental techniques, one needs to 

be aware of the differences and the relationships among groups of data, even when 

they are recorded from the same brain at the same time. Data recorded with different 

tools manifest distinct formats and patterns, and to grasp the subtle information 

buried in large amounts of noise, their respective essential features, or ‘singular 

vectors’, need to be estimated before any conclusion is made. For example, in single-

cell recording in animals, the post-stimulus time histogram (PSTH), displaying the 

neuron’s time-varying spike rate pattern, is a generally accepted quantitative way to 

describe the activity of single neurons, or microscopic activity. However, this 

becomes more complicated for data at larger spatial scales—neuron population 

activities, system activities, and human brain imaging data, including fMRI, EEG and 

MEG. This complexity is due to the indirect relationship between microscopic 

activity and macroscopic activity. As ‘system theory’ points out, it may be impossible 

to interpret the behavior of the whole in terms of the behavior of the parts.    

The importance of dynamic properties in both natural sounds and brain activity 

will be detailed in section 1. In section 2, brain imaging techniques and various 

explanations of brain imaging data, especially the EEG/MEG data and their possible 

relationship with neurophysiological data, will be introduced. In sections 3 and 4, 
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previous results about the representation of sound dynamics in animals and humans, 

respectively, will be addressed, and a summary will be given in section 5.  

            

   

1.1 Dynamics is crucial 

1.1.1 What acoustic features characterize a sound? 

A sound is a form of ‘pressure wave’ produced by a vibration or oscillation that 

causes a periodic disturbance of the surrounding air or other medium. A sound is 

audible to the human ear if its frequency (number of vibrations per second) falls 

between 20 Hz and 20,000 Hz. A direct illustration of a sound is a temporal 

waveform, a 2-D representation, which indicates the physical disturbance of a 

medium over time. The most useful and popular representation of a sound is the 

spectrogram, a 3-D plot of the conjunctional spectral and temporal energy as a 

function of time. A simple sound such as a pure tone can be uniquely described by its 

intensity, frequency, starting phase and duration, and its spectrogram manifests a 

horizontal line, indicating its stationary nature—its unchanging frequency. The 

spectrograms of more complex sounds are full of dynamic structures rather than a flat 

line, indicating that their frequency components change over time.  Figure 1-1 shows 

the temporal waveforms and spectrograms of a simple pure tone and a human speech 

signal. 
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Figure 1-1 Simple sound example and complex sound example. Left: a 1 kHz pure tone. Right: a 

natural human speech signal. Upper panel: temporal waveform. Lower panel: spectrogram. Note 

that the complex speech signal contains rich dynamic structures in both amplitude (AM) and 

frequency (FM), compared to the simple pure tone.  

 

Obviously, it is not enough to characterize complex sounds in terms of the 4 

physical properties used to describe pure tones, since the properties (e.g., intensity 

and frequency here) change continuously as a function of time. A complex natural 

sound (e.g., human speech signal, etc.) is better characterized by a 3-D spectrogram, 

reflecting a specific spectrotemporal energy pattern. Note that this characteristic 

pattern contains components that change in both frequency (vertical axis) and 

amplitude (color) as a function of time (horizontal axis), defined as frequency 
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modulation (FM) and amplitude modulation (AM), respectively. In other words, to 

fully describe a complex sound, we need to introduce additional parameters or 

features to characterize its dynamic structures, including both FM and AM. One 

suitable way to extract and separate these two features is to perform a Hilbert 

transform of the sound, resulting in an envelope signal and a fine structure signal, 

each containing separate amplitude dynamic information and frequency dynamic 

information, corresponding to AM and FM features, respectively. Figure 1-2 

illustrates the Hilbert transform of a complex signal.  
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Figure 1-2 Hilbert transform of a speech signal. A complex signal is decomposed to an envelope 

signal and a fine structure signal, representing dynamics in amplitude (AM) and in frequency 

(FM).  
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Natural sounds, especially the species-specific communication sounds, contain 

rich dynamic structures in both amplitude and frequency. These acoustic transients 

occur within a broad variety of time scales, ranging from a few milliseconds to 

several hundred milliseconds and longer, and convey behaviorally relevant 

information. Thus, in contrast to relatively stationary simple pure tones, which can be 

characterized by stationary properties such as frequency content from performing a 

Fourier transform of the whole signal, the most necessary and important information 

about natural sounds lies in their temporal structures, depicted by corresponding AM 

and FM features.  

 

 

Figure 1-3 Species-specific communication sounds (Left: bird song; Right: marmoset calls) 

contain rich dynamic structures in both amplitude (AM, lower panel) and frequency (FM, upper 

panel).   
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1.1.2 What acoustic features do cortical neurons prefer? 

Neurons in sensory cortices are often assumed to be ‘feature detectors’, 

computing simple and then successively more complex features from the incoming 

sensory stream (Nelken et al., 2004). This dominant assumption has evolved from 

success in understanding the visual cortex; it is therefore not difficult to understand 

how concept such as ‘grandmother cell’, a cell whose firing denotes the recognition 

or identification of one’s grandmother, is coming from. Another dominant assumption 

in studying the sensory cortices is ‘point-to-point’ spatial mapping, which originates 

from the somatotopic mapping reported in earlier studies by Penfield and Rasmussen 

(1950).  

These two assumptions also guide and dominate auditory neuroscience research. 

For example, a tonotopic map was found in auditory cortex; in other words, 

frequency, the most elementary property of sound, is represented in different places in 

the auditory cortex. This map was proposed to have originated from the tonotopic 

map in cochlear and subcortical structures along the auditory pathway, and it has 

become a routine paradigm to quantize the ‘characteristic frequency’ of each recorded 

auditory neuron. As to the species-specific vocalizations, large efforts are made to 

seek ‘vocalization selective cells’, analogous to the ‘face cells’ found in monkeys. 

There are other relatively stationary auditory properties, such as pitch, that have also 

been found to be encoded in clustered areas (Bendor and Wang, 2005). 

As introduced in the previous section, temporal modulations are fundamental 

components of natural sounds and convey behaviorally important information. The 



 

 9 
 

neural representations of temporal modulations are present throughout the auditory 

pathway, and at the auditory periphery, auditory nerve fibers discharge spike patterns 

that faithfully represent the temporal structure of sound. Such precise tracking and 

representation degrades as it goes to higher stages of processing, and by the time one 

reaches the auditory cortex, neurons can no longer follow rapidly changing stimuli. 

Note that the investigations of temporal modulation tracking of neurons actually 

examine their temporal resolutions instead of their possible role as ‘temporal 

modulation feature detectors’. In other words, if temporal modulation is a feature that 

needs to be encoded and represented in auditory cortex, those auditory neurons 

should be selective for certain temporal modulation frequencies, or have a 

‘characteristic modulation frequency’ in addition to their ‘characteristic frequency’. 

Many findings suggest that temporal modulation features, especially the low 

frequency features, are widely represented in auditory cortex. The details of these 

findings will be addressed in section 3.  

Compared to fixing the stimulus ensemble according to the acoustic properties 

being investigated, such as frequency, pitch, temporal modulation, etc., and testing 

auditory neurons by varying stimulus values along one dimension, a more objective 

approach to examining the preference properties of auditory neurons is to employ 

reverse correlation techniques or spike-triggered averaging techniques, using a more 

random and less controlled stimulus ensemble. It is a commonly exploited 

characteristic function of neurons that describes their ‘response areas’ or preference 

features. Using these techniques, it is shown that the response properties of auditory 

cortical neurons are dominated by transient changes in both amplitude and frequency, 
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reflecting their selectivity for AM and FM features in the stimuli (deCharms et al., 

1998; Deprieux et al., 2001; Miller et al., 2002; Elhilali et al., 2004). Figure 1-4 gives 

several examples of the receptive fields of auditory cortical neurons. Interestingly, the 

reverse approach, which makes the theoretical assumption that the auditory system’s 

encoding mechanisms are shaped to represent natural sounds in the most optimal and 

efficient way, predicts again a preponderance of AM and FM response patterns in the 

receptive fields of auditory cortical neurons (Lewicki, 2002; Klein et al., 2003), in 

agreement with empirical findings about receptive fields.  

 

 

Figure 1-4 The spectrotemporal receptive fields of neurons in the primary auditory cortex of 

the awake primate show the patterns of sound features selected for by particular neurons. Note 
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that these auditory cortical neurons prefer transients in both amplitude (AM) and frequency 

(FM). (deCharms et al., 1998) 

 

In sum, temporal modulation features are well and widely represented in auditory 

cortex, and acoustic stimuli containing dynamic features rather than stationary 

features seem to be a better trigger for auditory neurons. Large numbers of auditory 

neurons have a specific characteristic receptive field, preferring a certain combination 

of AM and FM features in the incoming auditory sounds. In this sense, they are acting 

as an ensemble of ‘temporal modulation feature detectors’, and sounds are 

decomposed and encoded in parallel in ‘feature detector arrays’.       

 

1.1.3 Speech recognition with temporal modulation features 

As discussed previously, a complex sound is well characterized by a spectrogram, 

which contains all the detailed stationary and dynamic features that discriminate 

different sounds. This idea was also the basis of the speech recognition field back in 

the second World War, when the Sonograph was the main instrument in speech 

research by virtue of its detailed spectrographic portrait of the acoustic signal and its 

apparently objective and comprehensive description of all the details of the signal. 

However, a speech signal is not just an acoustic signal, in that not all the fine details 

in the spectrogram are required for humans to understand speech. In other words, we 

humans only extract certain relevant acoustic information from the speech signal for 

further comprehension, and therefore a detailed and precise description of speech is 

redundant to some extent. For example, we can tolerate many kinds of distortion in 
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speech, such as reverberation, noise influence, gap inserting, etc., and note that the 

spectrograms of this distorted speech are very different from the original spectrogram. 

This ‘perceptual invariance’ confirms the redundancy of the information contained in 

the spectrogram.  

Then, what are the acoustic features most relevant to speech recognition? This 

question is the key aspect of human speech recognition studies. In late 1930s, Homer 

Dudley and his colleagues at Bell Labs developed the channel vocoder (1939), which 

passed the speech spectrogram into twenty or fewer channels and modeled the 

production of a speech signal as the filtering of a source signal by these filters. The 

resultant energy fluctuation patterns from these filters were extracted and transmitted 

for re-synthesis at the target unit. They found that high intelligibility could be 

obtained by keeping only the fluctuations below 20 Hz, indicating that linguistic 

information contained in a speech signal is actually encoded in relatively slow AM 

features (below 20 Hz), and that fine spectral details are not required. These results 

open the door to a new way of characterizing the speech signal and allow the 

construction of a framework focusing on the temporal evolution of coarse spectral 

patterns as the primary carrier of information within speech signals.  

A modulation spectrum, which describes and quantizes spectral energy change 

over time, is computed by performing a spectral analysis of the signal’s envelope, or 

the AM patterns of the signal, and provides a statistical characterization of the 

signal’s temporal structure. For complex signals like speech signals, in which the 

energy change patterns or AM patterns differ for different frequency bands, the 

modulation spectrum needs to be calculated in band-limited frequency separately to 
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adequately reflect the signal’s temporal changes (Greenberg & Arai, 2001; 

Greenberg, 2003). For example, as we described in the previous paragraph, the 

channel vocoder employed 20 or fewer frequency bands. Dudley et al. found that the 

information below 20 Hz in the modulation spectrums of these bands is critical for 

speech recognition. Since only a coarse representation of a spectrogram is needed for 

speech recognition, further studies investigated the minimum requirements to reach 

enough intelligibility by varying frequency bands and low-passing the modulation 

spectrum. They found that the number of bands can be decreased to 7, even to 4, 

depending on the type of speech tested, and low-frequency information in the 

modulation spectrum is most critical. FM cues were shown to be able to enhance 

speech recognition in much noisier listening conditions and more difficult tasks, 

compared to conditions where only AM cues were available (Zeng et al., 2005). In 

sum, speech recognition studies showed the important role of temporal modulation 

features in speech recognition and suggested that temporal modulation features need 

to be extracted and processed in the human brain for speech processing. Figure 1-5 

shows the block diagram used in speech recognition studies to test the role of AM and 

FM cues in speech recognition and corresponding behavioral performances. 
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Figure 1-5 AM and FM cues contribute to speech recognition. Upper panel: signal processing 

block diagram. Lower panel: behavioral performances with AM and FM sounds; note the 

additional role when adding FM cues (Zeng et al., 2005). 

 

1.2 Microscopic and macroscopic activities  

Brain imaging techniques have brought exciting advances in neuroscience. 

Previous psychology methodologies were limited to the study of the input/output 
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relationship of the ‘black box’, which is actually an indirect estimation of innate 

activities and mechanisms. In contrast, these non-invasive brain imaging techniques 

enable us to open the ‘black box’ and observe the brain activity of normal humans 

directly, in real time. ,Ideally, by combining the advantages of hemodynamic and 

electromagnetic brain imaging techniques, we can observe high-quality 

spatiotemporal brain activities and possibly even achieve the goal of ‘reading the 

mind’.   

On the other hand, data from non-invasive brain imaging seem to be a less direct 

reflection of brain activity than data from single-cell recordings. For example, typical 

measured electromagnetic signals require synchronous activation of 10,000-100,000 

neurons (Wilson & Mcnaughton, 1987), and therefore brain imaging data are really at 

a more macroscopic level than traditional single-cell data.  

Furthermore, even in the ideal case where we record human brain activity with 

both high temporal and high spatial resolution, could we really achieve the dream of  

‘reading the mind’? Have we successfully gained comprehensive knowledge about 

animals in neurophysiological experiments by inserting electrodes in their brains and 

directly observing these neurons’ activities? What is the relationship between brain 

imaging data (macroscopic activities) and neurophysiological data (microscopic 

activities)?  Are there any new perspectives and information that we could acquire 

from brain imaging in addition to its advantages in reflection of human brain 

activities? These questions are not insignificant issues and their answers will have 

deep influences on this field. 
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1.2.1 Overview of brain imaging techniques 

In the last few years, the emergence of brain imaging techniques has helped 

neuroscience research enter a new era in which neuroscientists are able to see inside 

the living human brain as it performs various activities.. Brain imaging techniques 

include hemodynamic methods such as functional magnetic resonance imaging 

(fMRI) and positron emission tomography (PET), and electromagnetic techniques 

such as electroencephalography (EEG) and magnetoencephalography (MEG). 

Hemodynamic and electromagnetic brain imaging techniques have different spatial 

and temporal resolutions. Specifically, hemodynamic methods possess high spatial 

resolving power and therefore are suitable tools for determining anatomic 

organization and functional spatial distributions. Complementary to hemodynamic 

methods, electromagnetic methods are limited in their spatial resolution but virtually 

unlimited in their temporal resolution. Electromagnetic imaging techniques are 

temporally accurate to ~ 1 msec, a scale comparable to that of single-neuron spike 

patterns. Recently, numerous efforts have been made to integrate these two main 

types of brain imaging techniques and make use of their respective advantages, 

combining high-quality localization information provided by the hemodynamic 

methods with high-quality temporal data generated by the electromagnetic-based 

techniques in multiple ways (see the review by Horwitz & Poeppel, 2002). 

Take fMRI as an example, conventional fMRI experiments explore brain 

activation during a particular perceptual or cognitive task, with the goal of 

determining which regions of the brain are involved in this task. Therefore, the 

underlying assumption is ‘functional specialization’, the expression of neuronal 
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activity in response to the specific perceptual features or cognitive processes under 

investigation, or motor behavior controlled by specialized cortical areas. 

Correspondingly, the imaging data analysis usually consists of ‘cognitive 

subtraction’, in which the activation associated with two or more mental states at all 

sampled brain locations is compared. The resulting ‘activity difference map’ is 

consulted, and the locations on the map with statistically significant larger activation 

values are regarded as answers. This assumption and the corresponding analysis, as 

the original motivations in the application of neuroimaging techniques in 

neuroscience, have yielded great knowledge and understanding in many facets of the 

field. However, as many researchers have realized, such an appealingly simple model 

has overlooked many possible brain mechanisms, for example, ‘functional 

integration’, which emphasizes the representation of information via interaction 

among different brain areas instead of being contained in specific areas. Other fMRI 

experimental designs and analysis methods have been reviewed by Friston (1997).  

A main deficiency of the hemodynamic method lies in its coarse temporal 

resolution in measuring brain activities. As discussed previously, the small innate 

world, like the indefinite outside world full of changes, is dynamic all the time, and it 

is certainly necessary to include temporal information about brain activities. 

MEG/EEG are logical tools to employ for these purposes because of their excellent 

temporal resolution. MEG measures the magnetic field generated by neuronal current 

flow (Hamalainen, 1991, 1992). Because magnetic fields can pass undistorted 

through the skull, MEG is more spatially focal than EEG, which measures electric 

potentials mixed across many cortical areas. Due to the advantage of high temporal 
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resolution, when examining MEG/EEG activity, identifying the prominent activity 

(temporal peaks or troughs) in recorded signals is the main way to determine the 

neural correlates of certain cognitive tasks or mental states in time domain. Then 

source localization of these prominent responses can be computed by examining the 

corresponding magnetic field contour map at the critical time point or time window. 

A great deal of multi-disciplinary effort has gone into improving the ‘dipole 

localization’ algorithms for detailed source localizations, specifically for MEG, by 

employing various assumptions and incorporating data from other brain imaging 

techniques. 

  

1.2.2 Neurophysiology: microscopic activities  

The brain is an assembly of cells, each of which is a semiautonomous agent. Most 

neurons have similar structures and working mechanisms; they receive input at their 

dendrites and perform a wave-pulse conversion at their axons. A neuron acts on 

another neuron by sending a spike to its dendrite via the synapse, and the dendrite of 

the receiving neuron integrates the spike inputs it receives and transforms them to 

waves, which are transmitted to its axons, where the wave-pulse conversion is 

performed, and the ‘all or none’ spike with fixed height is generated. Therefore, the 

input and output of a single neuron are different in that the input is continuous 

dendritic waves whereas the output is discrete spike patterns and they have a 

nonlinear relationship.    

Single cells are microscopic in terms of size as well as representation. Take a 

single sensory receptor cell as an example. This type of neuron, as the interface 
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between the world and the brain as well as the first stage of representation and 

processing, is truly microscopic in the sense that each neuron is ‘seeing’ only a small 

part of the stimulus, for example, colors in vision, frequencies in sound. Such 

fragmental representation forms a spatial pattern which is transmitted in parallel into 

the brain. When we further trace the information flow in the brain, we still observe 

such ‘functional specialization’ in neurons even at higher levels, and the only 

difference may be that they represent more abstract properties related to perception 

and cognition. This ‘feature detector’ role of neurons is a widely accepted concept 

and is also a reasonable organizing mechanism for efficient signal processing in the 

brain, similar to the division of work among machinery in modern factories. Single-

cell recording studies have yielded enormously valuable information as to the 

functional structure of the brain, and most results support the framework of ‘feature 

maps’. For example, what are neurons encoding? Which neurons are encoding the 

crucial features of the stimulus? What are their encoding schemes?  However, the 

essential function of the brain is more complex than simply creating a stationary 

feature map, which begs the question: how are these features combined to form an 

integrated perception? This question is also known as the ‘binding problem’. Take 

hearing as an example. The basic goal of hearing is to identify objects in the 

environment and to localize them in space (Yost, 1991). It is certainly a more 

complex task to identify and separate objects from background noise than to merely 

recognize the combination of all features of the sound, and there are many influences 

on such identification, an important one among which is context. Although in recent 

developments, more and more single cells are found to encode or be related to more 
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high-level and complex cognitive tasks, such as decision making, attention, context-

dependent, preparation before vocalization, etc., the interpretations of these findings 

seem to ignore many secondary responses in these neurons and overemphasize the 

complex properties represented by these single cells.  

Single-cell recordings provide us with a direct measurement of microscopic 

activities in the brain and lay a solid foundation for further understanding the 

mysterious, complex inner world. However, even when we fully understand each 

neuron, it is still not enough for us to directly relate them to the understanding of 

higher-level processing due to several concerns. First, they are redundant and related 

representations of a fragmented external world, and constructing objects from them is 

not at all a mere jig-saw puzzle that can be solved by simply seamlessly combining 

them. Secondly, those individual neurons are connected via excitatory or inhibitory 

synapses, and there are also interactions with neurons even in spatially remote areas. 

Such complex, dynamic local and global interactions make those fragmented 

microscopic representations too variable to directly infer from them what is 

happening at the level of the system. This is also a reason for the second response 

found frequently in most single neurons. Such failures of the reductionistic view exist 

in many fields (e.g., thermodynamics, sociology, geology, engineering, etc.), and 

therefore ‘system theory’ provides a more appropriate framework for describing 

macroscopic-level properties. The basis of this new perspective is that the structure of 

a system, that is, the relationships among its components, is often just as important in 

determining its behavior as are the individual components themselves. Importantly, 

the most critical function of brain, the integration of incoming information and the 
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construction of a single perception from them, may actually be reflected in its 

macroscopic activities, which is difficult to assess and infer from single-cell recording 

data.  

 

1.2.3 Brain imaging: macroscopic activities 

It has been suggested for a long time that a neuron population is a more 

reasonable candidate than the single neuron as processing blocks in the brain. This is 

a small step toward understanding the macroscopic activities of the brain, but it has 

raised a lot of technical difficulties. First, in order to record a population, many 

neurons need to be recorded simultaneously. Second, the recorded activity of a 

neuron population will be a large multi-dimensional data set, and a convincing 

encoding scheme which can be used to analyze such a data set has not been found. 

‘Temporal coherence’ among neurons in the neuron group has received a great deal 

of support and may be a reasonable elementary representation mechanism at the 

macroscopic level. In addition, direct examination of data in corresponding 

multidimensional space is also a reasonable way to look at the output of neuron 

populations.  

Brain imaging techniques have provided a natural means of recording brain 

activities at the macroscopic level. Since MEG is the main brain imaging method 

employed in my experiments and has reasonable spatial resolution and excellent 

resolution in time (~1 ms), I will mainly discuss MEG. The main source of the MEG 

signal is current flow in pyramidal cells’ apical dendrites, and typical measured MEG 
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signals require the synchronous activation of 10,000-100,000 neurons (Wilson & 

Mcnaughton, 1987). 

In keeping with traditional ERP studies, evoked responses averaged across many 

repetitive trials have received the majority of attention in MEG experiments. The 

underlying principles are that the brain will respond to the same stimulus condition 

with the same temporal response pattern, and in order to decrease the deleterious 

influence of background noise, averaging across trials could ideally recover the 

temporal response embedded across trials. Note that the assumption here is that the 

signal contained in each trial, specifically the temporal waveform, needs to be 

temporally phase locked to the trial onset, otherwise, the averaged response will be 

smeared due to temporal jitter. These averaged temporal waveforms can be regarded 

as the neural correlates of different stimulus or experiment conditions, and the 

prominent peaks and troughs occurring at certain points in the temporal waveforms 

will receive further attention in the form of detailed examination of properties such as 

amplitude, latency, and dipole localization. This method of analysis is straightforward 

and conceptually simple to understand because one of the main advantages of MEG 

over other brain imaging techniques is its temporal acuity, and it is this detailed 

temporal information that is the goal of MEG investigations. The most prominent 

evoked MEG response in the auditory field is the M100, an auditory response 

emerging 100ms after the onset of a sound stimulus that originates in the superior 

temporal gyrus (Lutkenhoner et al., 1998). The M100 can be found robustly in single 

subjects, and its two main parameters, amplitude and latency, have been found to be 

strongly correlated with spectral features of the acoustic signal. Further studies 
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suggest that, rather than being a pure auditory onset response, the M100 more closely 

reflects ‘change detection’ (Chait et al., 2005). Figure 1-6 illustrates an example of an 

M100 in a human subject.  
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Figure 1-6 M100 temporal waveform and corresponding magnetic contour map, with red 

indicating the source and green indicating the sink.  

 

The introduction of new signal processing methods and new perspectives on brain 

activity have brought important progress in the exploration of MEG responses. For 

example, spectrotemporal analysis, including induced wavelet analysis and evoked 

wavelet analysis, spectral analysis, temporal coherence analysis, principle component 

analysis (PCA), and independent component analysis (ICA), has been increasingly 

employed and has provided many important findings in this field. New algorithms 

have been developed by using more sophisticated signal processing theory and 

incorporating fMRI results have also enhanced dipole localization in MEG signals.   

However, there is a much deeper question underlying all the possible analysis 

methods. What does the MEG signal really reflect? What are the main dimensions 

along which we should investigate elicited MEG responses? These are challenging 

questions without any obvious answers. We are put in a difficult situation: we are 

provided with an enormous data set, but how do we decode the information contained 

in it, and how do we understand the language that is being used there to transmit 

information?     

A main feature of the MEG response is the dominance of continuous oscillations, 

especially at low frequencies (<20 Hz), and these oscillations can modulate and shape 

the corresponding evoked temporal waveform response to a large extent. For 

example, if we look again carefully at the averaged temporal response containing the 

M100 , we can see lots of other temporal peaks around 100ms. What do those peaks 

mean? Are they only minor noise fluctuations that can therefore be ignored? And if 
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we look at those temporal peaks channel by channel and explore their magnetic 

contour maps, we find that those additional peaks/troughs around the M100 are not 

random changes, but are closely related to the M100 and have the same origin. It is 

much easier to understand these characteristics of the waveform by regarding them as 

consecutive peaks/troughs of the same oscillating signal; the M100 is just the most 

prominent peak. In other words, traditional ERP analysis, by focusing on only one big 

peak at a certain time, misrepresents the complexity of the system, leading to 

misconceptions about how it actually works. The information contained in the MEG 

signal is not wholly conveyed in the form of large peaks at specific time points, but is 

transmitted continuously in dynamic oscillating waves that are slowly modulated by 

incoming stimuli or mental states. Figure 1-7 illustrates this oscillation in an evoked 

auditory MEG response.  
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Figure 1-7 Oscillations in an evoked temporal MEG response to a 50msec 1-kHz pure tone 

presented at 0 msec. The three contour maps in the upper panel correspond to the three 

temporal peaks below, indicated by lines. Note other peaks around M100 and their similar 

origin.  

 

The more reasonable way to look at an MEG signal is to regard it as waves 

oscillating at many frequencies and to examine changes in the properties of these 

oscillations. This view suggests that MEG responses are generated by the 

superposition of evoked oscillations with different frequencies (Makeig et al., 2002), 

and these different frequency bands have been proposed to play different functionally 

significant roles (Hari et al., 1997). In other words, this view differs dramatically 

from the view underlying traditional evoked temporal response analysis in that it 

considers oscillations at different frequency bands, rather than large, discrete peaks, 

to be the main information elements in MEG responses. This is a reasonable and 

logical way to look at macroscopic activities for several reasons. First, macroscopic 

activity is a reflection of system state activity, which consists of complex and 

dynamic patterns that are the result of numerous reciprocal interactions between 

excitatory and inhibitory neuron groups, and of information repeatedly flowing back 

and forth, both spatially and temporally. The main result of such a complex, dynamic 

system is oscillations. Secondly, oscillations provide a natural temporal coherence or 

means of temporal grouping because they reflect synchrony among underlying 

neuronal activity. And MEG/EEG signals actually reflect mass activation from the 

synchronization of large numbers of neurons. Thirdly, oscillations have properties 
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similar to those of our mental states—dynamic, continuous and integrative—and thus 

are reasonable candidates for representation of our innate world. 

Neural oscillations have received wide interest recently, specifically in the field of 

systems neuroscience, and many studies have found chaotic and rhythmic activity 

patterns in the nervous system. Walter Freeman (1975, 2000) proposed that chaos is 

important for flexibility in nervous system responses, enabling the dynamic system 

represented in the cortex to change the attractor it approaches based on changes in 

incoming stimuli or internal mental states. Rodolfo Llinas (1988, 2000), based on 

years of research in the thalamocortical system, proposed that the gamma band (~40 

Hz) plays a critical role in integrating content and context, and in embedding the 

external world in the internal world to construct one single entity—the self. In 

addition, there arises a new theory to explain the event-related potential (ERP) (note 

that the M100 is an example of an ERP), the oscillatory phase-resetting model, which 

suggests that oscillations in the theta (4~8 Hz) and alpha (8 ~ 13 Hz) frequency 

ranges undergo a significant phase resetting in response to the presentation of a 

stimulus (Makeig et al., 2002; Gruber et al., 2005), leading to the big peak observed 

in the ERP, for example, the M100. Figure 1-8 illustrates the phase alignment across 

trials that could account for the observed N1 and P1 components.  
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Figure 1-8 Phase alignment in theta band (upper panel) and alpha band (lower panel) across 

trials. Note that alpha phase synchronization after the stimulus onset shows better 

correspondence with the ERP components (while line) than theta phase alignment (Gruber et al., 

2005).  

 
 

1.2.4 Links between microscopic and macroscopic activities 

In response to a dynamic and rich outside world, single cells perform their 

responsibilities by extracting specific features and representing this information via 

spike coding. Neurons early in the processing hierarchy hand in the information they 

have acquired to neurons at later stages, which fire spikes to encode more complex 

features. Single neurons are microscopic in the sense that they are only seeing a 

fragmented part of the external world, and they therefore cannot be directly related to 

our integrated mental state, which requires a mechanism of representation that is 
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unified, systematic, and of critical relevance to behavior. It is not difficult for us to 

believe that the neural correlates of our ‘mental state’ should be a systematic property 

emerging from the activity of enormous numbers of neurons that does not depend on 

any one or even several neurons, but is yet related to all of these microscopic cells. As 

we discussed previously, the activity recorded with MEG/EEG provides an efficient 

way for us to observe at least part of the activity of the system, and the prominent 

features of this macroscopic activity are oscillations at multiple frequency bands.  

As discussed by Makeig (2002), studies of brain electrophysiology are dominated 

by two extreme subfields, single-cell spike histograms and ERP studies. These two 

methodologies are isolated from each other by differences in spatial scale, subjects 

recorded, and in part by modeling based on a simple averaging method. Meanwhile, 

the link between the timing of neuron spikes and the dynamics of the ERP remains 

largely mysterious. To achieve the goal of bridging this gap, investigators explore the 

intermediate stages between the two fields, specifically the dynamic information 

contained in single EEG/MEG trials, hoping to make progress toward understanding 

the dynamic consistencies between these fields in brain electrophysiology. 

Numerous efforts have been made to try to understand the neural mechanisms of 

oscillations and to model the macroscopic activities reflected in fMRI and MEG/EEG 

experiments in terms of the activity of an underlying neural population (see review by 

Horwitz et al., 1999). Because fMRI results mainly convey spatial information, it is 

relatively straightforward to explain the macroscopic activities reflected in fMRI data, 

especially the spatial map, in terms of activation of functionally specialized neurons. 

Meanwhile, it is a more challenging and difficult task to create links between 
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microscopic activities and macroscopic activities in the temporal scale, due to the rich 

dynamics and dominant oscillations in MEG/EEG signals, and neither the 

mathematical structure of neural oscillations nor their functional significance are 

understood yet. The key questions for understanding the source or the origin of the 

observed patterns of neural oscillation are: Are single cells generating these patterns, 

or are they a property of a large neural system? Are these oscillations an innate 

property of the neural system, or are they the result of outside input?  

At the single-cell level, collective oscillations in cortical neurons have been 

documented for several years and have been argued to be related to higher-order 

sensory representations (Basar, 1998); however, this idea continues to be hotly 

debated, because it is difficult to link oscillations to behavior. Therefore, when 

attempting to account for macroscopic oscillations in terms of the oscillatory activity 

of single neurons, a direct linear explanation seems to be a poor prospect.  

Synchronizing input to neurons from sensory code is a straightforward solution to 

produce oscillations, and it is also the main solution to ‘binding problems’. As early 

as 1974, Milner speculated that rhythmic activity patterns resulting from synchrony 

among neurons could play a role in binding parts of a perceptual pattern into a whole 

object from the environment. Gray and Singer (1989) later confirmed this speculation 

and proposed perceptual binding in terms of gamma-band synchronous temporal 

correlation among neurons. Temporal coherence is regarded as an additional coding 

dimension for building internal representations. Note that such an explanation more 

or less depends on the outside inputs. 
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Complex neuron communication along various spatial and temporal scales is 

another prominent explanation of oscillations; it does not directly depend on outside 

stimuli to account for the observed patterns, and it allows for the generation of innate 

oscillations as observed in brain background activity. Cortical structures have a wide 

range of intrinsic mechanisms that could generate synchronous activity. Inhibitory 

interneurons might be particularly important because of their ability to effectively 

entrain cortical neurons, thus making them good candidates for generating 

synchronized oscillations. In an effort to link ERP responses from MEG/EEG 

experiments to neural oscillations, it has been suggested that they are generated by the 

superposition of oscillations. Specifically, as noted previously, it is the phase resetting 

in low frequency bands (alpha, theta) in response to the presentation of a stimulus that 

leads to the large peaks seen in the waveform (e.g., P1, N1, M100). This perspective 

is very different from the more naïve view that regards these prominent peaks as the 

accumulation of activity in underlying neuron groups at a certain point in time. This 

view also reasonably explains the discrepancy between the long latency of these 

peaks in ERP and the short latency of onset spikes in single cells; the response 

resulting from the phase resetting of these long temporal windows (corresponding to 

low frequency bands) will occur relatively slowly. In a modeling study by David et al. 

(2005) that attempted to investigate the mechanism that shapes evoked MEG 

responses, the researchers constructed a neural mass model of hierarchically arranged 

areas using three kinds of inter-area connections (forward, backward and lateral), and 

studied how event-related dynamics depend on extrinsic connectivity. They found 

that adding backward connections could produce damped oscillations in the evoked 
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response, and adding bilateral connections could introduce damped oscillations as 

well as phase locking among areas. 

In sum, we need to understand macroscopic activities from a somewhat different 

perspective, regarding them as system states resulting from the complex interactions 

of underlying microscopic activities. Correspondingly, the way we investigate those 

activities, specifically the MEG/EEG response, should be different from the stimulus-

triggered spike pattern analysis used in single-cell data. Oscillation is a more 

elementary information block in macroscopic activities, and the aim is to study the 

dynamics in these oscillating signals in response to different stimulus conditions and 

mental states. The macroscopic information gained with MEG/EEG allows us to 

study the complex system from a systematic perspective, and the macroscopic-level 

activity is a more relevant neural correlate of behavior. Although macroscopic signals 

are concomitant with underlying neuronal activation, they cannot be simply and 

directly interpreted in terms of these microscopic activities.    

 
 

1.3 Tracking sound dynamics in animals: neurophysiological studies 

1.3.1 General approaches and neural encoding schemes 

Temporal modulations are fundamental components of species-specific 

communication sounds, and therefore have been widely studied in neurophysiological 

experiments. The aim is to understand how these wide ranges of time-varying 

features in sounds are represented at the single-cell level. Neural representations of 

two main types of temporal information have been mainly investigated: temporal 
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precision to temporary transients such as stimulus onset, and the ability to follow 

sustained repetitive transients such as click trains. The first inquiry is related to the 

ability to detect abrupt changes in the environment, and the latter inquiry is related to 

the ability to perceive continuous dynamic structures in the outside world. Neurons 

exhibit paradoxical responses to these two types of temporal dynamics (Elhilali et al., 

2004): on the one hand, many neurons have been demonstrated to have remarkable 

temporal precision of spikes in response to stimulus onset and other transients in 

single trials; on the other hand, these neurons fail to follow sustained repetitive 

stimuli beyond 20 Hz. This is called the resolution-integration paradox. Different 

stimuli have been used to investigate neural responses to both continuous and sudden 

changes in the environment. For example, tone onset and dynamic dots have been 

employed to study the transient response; click trains, amplitude- and frequency-

modulated tones and noise have been widely used to study sustained tracking 

performance in neurons.  

The investigation of sustained tracking performance is more relevant to 

understanding the mechanisms underlying speech processing and thus will be the 

emphasis in this thesis. The main analysis method used to quantify tracking 

performance is to calculate the ‘vector strength’ of the spike pattern in terms of the 

stimulus modulation rate. Note that the assumption behind this analysis is that the 

sustained temporal information in the stimulus is explicitly represented in single cells, 

and thus is the ‘explicit temporal coding’. There are other possible neural coding 

schemes that can theoretically be employed by cortical neurons, for instance, rate 
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coding, which changes the spiking rate according to the varying modulation rate in 

the stimulus.     

 

1.3.2 Tracking simple sound dynamics  

The dynamic stimulus with the simplest modulated format is sinusoidally 

modulated tones or noise. The rationale for using this kind of stimuli is that, as shown 

by the Fourier theorem, a dynamic signal can be regarded as the sum of sinusoidal 

waves with different periods, corresponding to different frequencies. By studying 

neurons’ representations of these ‘atomic dynamic signals’, we can gain fundamental 

knowledge about how fast and selective the modulation rate in the stimulus can be 

and still be tracked by the neurons. However, we should note that probably the 

performance of tracking complex stimuli probably cannot be fully inferred from the 

results for these atomic dynamic signals due to their complexity and nonlinearity.     

The neural representation of temporal modulations begins at the auditory 

periphery, where the auditory nerve fires in a phase-locked fashion to pure tones of 

up to several kHz, and to the envelope of amplitude-modulated tones at modulation 

rates above 1 kHz. The precision of this temporal representation decreases at later 

stages along the ascending auditory pathway. A possible reason for this decay is that 

neurons at later stages receive converging inputs and perform ‘temporal integration’, 

where more integrative and complex properties are represented, which does not 

require precise preservation of all temporal transients.  

In a series of studies by Xiaoqin Wang’s group investigating neural representation 

of temporal modulations in unanesthetized marmoset auditory cortical neurons, 
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various types of temporally modulated stimuli were employed (Liang et al., 2002; Lu 

et al., 2001; Wang et al., 2003). In a study using narrow-band and wide-band click 

trains, they found two largely distinct populations of neurons: one with traditional 

stimulus-synchronized discharge, which is an ‘explicit temporal encoding’ scheme, 

and the other with non-stimulus-synchronized discharge, which employs ‘implicit rate 

coding’.  The ‘temporal coding’ neuron group could represent click stimuli with ISI 

longer than 20 ms, corresponding to a modulation rate of up to approximately 50 Hz, 

and the ‘rate coding’ neuron group could represent the same class of stimuli with ISI 

shorter than 20 ms corresponding to a modulation rate above 50 Hz. These two 

observed groups of neurons, encoding sequential stimuli in distinct ways, 

complement each other by representing a wide range of temporal dynamics 

(corresponding to a range of modulation frequencies) in the stimulus, thus providing 

neuroscientists with evidence that helps explain the capability to perceive temporally 

modulated sounds across the wide range of time scales demonstrated in behavioral 

experiments in both humans and animals. Wang’s group also explored these two 

kinds of coding in auditory cortical neurons in response to sinusoidally amplitude- 

(sAM, with frequency fixed) and frequency- modulated (sFM, with amplitude fixed) 

tones. They found that the majority of neurons in A1 of awake marmosets showed 

similar selectivity for certain modulation rates in both sAM and sFM stimuli, 

indicating that the selectivity was a temporal rather than spectral phenomenon and 

confirming that temporal modulation is a general property represented in the cortex. 

Another important conclusion, arrived at by summarizing results across populations 

of A1 neurons, is that A1 is maximally synchronized to a temporal frequency of ~8 
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Hz, indicating that the low-frequency temporal modulation information, the crucial 

temporal scale for speech and melody recognition, is explicitly temporally encoded in 

spiking patterns, and the faster temporal transients, such as formant transients, may be 

implicitly coded by the neuron discharge rate.    

Temporal modulation is a prominent feature in natural sounds, and interestingly, 

it has also been shown that adding co-modulation across different frequency bands 

can facilitate the detection of tones in noise by humans, a phenomenon known as co-

modulation masking release (CMR). In a study by Nelken et al. (1999), they showed 

that co-modulation improved the ability of auditory cortical neurons to detect tones in 

noise, thus providing important evdience about the neural property underlying the 

behavioral CMR phenomenon. Another interesting observation from multi-electrode 

recordings in monkey auditory cortex is stimulus-induced gamma oscillations in local 

field potentials (Brosch et al., 2002). Although this result is not directly related to 

tracking sound dynamics, it provides some neurophysiological evidence for the 

macroscopic oscillations introduced in the previous section.    

 

1.3.3 Tracking complex sound dynamics 

Complex sounds contain more rich dynamic structure than simple sounds, and 

therefore the results from experiments using complex sounds, especially sounds with 

speech-like temporal modulation features, can contribute in a more direct way to our 

understanding of speech processing or natural sound processing in human brains. 

Additionally, because of the complexity of their temporal features and the 

nonlinearity of the auditory cortical system, the representations of complex sounds 
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are also more deeply embedded in some abstract format in the recorded signal, and 

such encoding schemes could not be estimated and inferred easily from the results for 

simple sounds.  

‘Ripple sounds’, a class of acoustic stimuli composed of broadband frozen noise 

or harmonic tones with various spectrotemporally modulated envelopes, are one type 

of complex sound in terms of their rich temporal structures, and they have the 

advantage of being easy to manipulate. Another important property of this kind of 

sound is that it is made up of broadband signals and, like natural sounds, contains 

temporal modulations in both amplitude and frequency. Therefore ripples are more 

similar to natural sounds than are simple dynamic sounds, which contain temporal 

modulations in either amplitude or frequency. By reverse-correlating neurons’ 

responses with the temporal modulations in the stimulus, spectrotemporal response 

fields (STRFs) can be computed, which indicate each neuron’s preferred 

spectrotemporal features. In a study by Elhilali et al. (2004), they separately 

investigated the STRFs associated with envelope and fine structure dynamics in ferret 

A1 area, corresponding to slow and fast spectrotemporal modulations, respectively. 

Note that the product of these two features is a ripple sound. This scheme was used 

for two main reasons: First, the researchers wanted to investigate the ‘resolution-

integration’ paradox by employing stimuli containing simultaneous slow and fast 

temporal modulations and to explore the relationship between these two aspects of 

cortical responses. Secondly, as mentioned previously, in speech recognition studies, 

it has been found that slow temporal modulation, which corresponds to the envelope 

dynamics here, is crucial to speech recognition, while fine structure dynamics are 
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helpful in much noisier environments. Therefore to explore their simultaneous 

representations in auditory cortex, and especially their relationship, would be very 

useful. Interestingly, by using these kinds of stimuli, they solved the paradox. They 

found that most neurons can track the envelope and fine structure modulations 

simultaneously and manifest a dual response, although this is contingent on the cell 

being driven by both of these modulations. This is a very interesting result, and it 

suggests that the failure to observe neurons firing phase-locked to fast temporal 

modulations is probably the result of using stimuli with only one type of temporal 

modulation . In other words, by employing more complex dynamic sounds that also 

have slow modulation features, neurons could express their ability to track the fast 

temporal modulations which could not be observed in simple dynamic sound 

experiments. Sounds with more natural dynamic structures seem to be a more 

efficient trigger of neurons’ ability to represent temporal modulation features, and 

these findings underline the importance of using dynamic sounds with more natural 

temporal structures.  

The responses of single cortical neurons to natural communication sounds have 

also been widely studied, which is a further step toward understanding the 

representation of speech in the brain. The auditory cortex plays an important role in 

the perception of complex sounds, especially species-specific communications. It has 

been found that many neurons in the primary auditory cortex of marmoset monkeys 

respond more robustly to conspecific vocalizations compared to the same 

vocalizations played in reverse, although physically the stimuli contained similar 

temporal structures. 
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A reasonable research assumption underlying the investigation of natural 

communication sounds is that neurons in the auditory cortex may shape their 

‘characteristic response area’ in terms of the statistical structure of natural sounds. 

Based on this view, many studies have analyzed temporal structure across wide 

ranges of natural sounds and have designed artificial acoustic stimuli containing the 

same temporal modulation features found in natural sounds. They investigated the 

cortical responses to these speech-like stimuli, and in order to determine whether they 

had succeeded in creating efficient triggering stimuli, they tested whether the features 

they had included were in fact the main features that auditory neurons were analyzing 

and processing (Woolley et al., 2005).  

Another more direct way of exploring the encoding of natural communication 

sounds in cortical neurons is to study whether spike trains in a single neuron can 

discriminate different communication sounds. In other words, can single neurons fire 

spiking patterns that encode the temporal structure of natural sounds? Based on the 

temporal information contained in spike trains, can we decode the natural sound the 

animals have heard? This is really an intriguing inquiry and has been tested in 

different types of animals. A study by Machens et al. (2003) exploring auditory 

receptors’ responses to individual songs in grasshoppers showed that short segments 

of single spike trains from one auditory receptor suffice to rapidly discriminate the 

songs of conspecific grasshoppers, provided that a time resolution of a few 

milliseconds is maintained. Strikingly, the researchers found distinct temporal scales 

for the success of this observed discrimination ability. Specifically, the spike trains 

need to be explored using a temporal window of about 5ms to get good discrimination 
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ability; smaller or larger temporal windows will decrease discriminability. In 

addition, the system needs at least 200ms–400 ms to begin to demonstrate 

discrimination ability. The first short time scale corresponds to the sustained 

discrimination temporal scale to be used to encode continuous dynamics in songs, and 

the second long time scale corresponds to the time that the receptor neurons require 

for integration of information before reliable tracking and discrimination arise. A 

similar scheme has been used in natural sound discrimination in songbirds; there 

again, two distinct temporal scales for such discrimination were found, although the 

specific values in each range are different (Narayan et al., 2006).  

In sum, we can reach several conclusions based on neurophysiological studies of 

tracking complex sounds. First, natural sounds, although containing more complex 

dynamic features than simple sounds, making them more difficult to control,, may 

nonetheless be the more efficient and relevant stimuli ensemble for activating and 

exploring the auditory system. The reductionist perspective to infer the complex from 

the simple may not be applicable here. Secondly, at a minimum, we should 

investigate the auditory system using sounds that contain the main temporal structures 

and properties of natural sounds. For instance, we should design sounds that have 

simultaneous amplitude and frequency modulation instead of one or the other, as has 

been the in most studies, considering most natural sounds contain concurrent 

amplitude- and frequency-modulation features. Thirdly, the most relevant 

representation and encoding mechanism for complex natural sounds lies in the 

temporal information of responses, and therefore using temporal scales to quantify 

responses is an important dimension of analysis dimension that we should consider.           
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1.4 Tracking sound dynamics in humans: brain imaging studies  

1.4.1 fMRI/PET studies 

The cortex has been proposed to be the primary site for temporal information 

processing. A fundamental issue concerns the property of temporal information. Is 

time a general property that is represented in all areas in a relatively explicit way, or 

is it a specific property that is processed in a specialized area? Hemodynamic imaging 

techniques, including fMRI and PET, could provide important information about 

functional spatial localization and have been extensively used in various types of 

experimental designs to find a temporal information processing center.   

Another important issue is the lateralization of function found in auditory cortex. 

Many efforts have been made to try to link this lateralization to temporal information 

processing. Current studies are trying to understand the nature of such lateralization, 

for example, language processing in left hemisphere and music processing in the right 

hemisphere. One prevalent hypothesis proposes that such functional lateralization 

arises from differences in the early spectrotemporal computations performed in 

auditory cortices that transform sensory representations of signals into more abstract 

perceptual codes. More specifically, temporal features are predominantly processed in 

the left hemisphere and spectral features in the right hemisphere (Zatorre & Belin, 

2002).   

A related but different approach to explaining functional lateralization is the 

‘asymmetrical sampling in time’ hypothesis (Poeppel, 2003). In this theory, both 

hemispheres work together to analyze auditory signals on multiple temporal scales, 



 

 42 
 

with the relevant scales being short (~25–50 ms) and long (~200–300 ms) windows. 

These two scales have been shown to be the most important and behaviorally relevant 

time scales in information processing across many sensory domains. The 

lateralization emerges from having different principal temporal scales in the two 

hemispheres; information processed on longer timescales is routed predominantly to 

high-order right hemisphere cortices, whereas information processed on a shorter 

timescale primarily projects to the left cortices. This theory explains the observed 

functional lateralization in terms of this difference in the basic auditory information 

processing mechanism. On this view, the dominance of fast temporal transients (e.g., 

formant transitions, etc.) in language is what leads to the left-lateralized activation; 

the left hemisphere works at a faster temporal scale. Conversely, the dominance of 

relatively slow temporal changes in music results in these types of stimuli being 

routed primarily to the right hemisphere, which works at this longer time scale.  

This hypothesis has been tested and confirmed to some extent in an fMRI 

experiment (Boemio et al., 2005) using a stimulus ensemble with a parametrically 

varying segmental structure affecting primarily temporal properties. Specifically, the 

9-s auditory stimuli were designed by concatenating short-duration narrowband noise 

segments. The bandwidth and center frequency of each segment was chosen to match 

speech formants. Two types of segments with different local spectrotemporal 

variations were designed: in one type, the frequency remained constant throughout 

the signal; in the other, frequency was swept linearly upward or downward at random. 

Therefore, the ensembles of stimuli differ in two dimensions and have two controlled 

acoustic properties: the temporal structure introduced by varying segment length and 
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the local spectrotemporal properties introduced by using different types of segment 

structure. The stimuli were effective at activating auditory cortex selectively and 

robustly. Boemio et al. found that both early and higher-order auditory cortical areas 

are exquisitely bilaterally sensitive to temporal structures, and local spectrotemporal 

structures are differentially processed within the superior temporal gyrus. In addition, 

in higher-order superior temporal sulcus, slowly modulated signals preferentially 

drive the right hemisphere. These findings support hemisphere lateralization in STS, 

possibly due to neuron populations working at different time scales (short or long) in 

STG differentially targeting STS, with the right hemisphere receiving afferents 

carrying information processed on the long time scales, and the left hemisphere 

receiving information processed on short time scales.  

In addition to mere spatial localization information, many researchers also look at 

the sound-evoked, blood oxygen level-dependent signal response with fMRI, which 

could provide additional temporal information. In an fMRI experiment by Seifritz et 

al. (2002), they used independent component analysis (ICA) in a hierarchical 

combination of spatial ICA and temporal ICA to blindly decompose the evoked blood 

oxygen level-dependent signal into its constituent spatiotemporal sources. They found 

that the temporal auditory response could be decomposed into a transient and a 

sustained component, which predominated in different portions—core and belt—of 

the auditory cortex. These findings suggest that in analyzing incoming sound, the 

higher-order auditory areas (the belt area here), which show sustained activity, 

process and analyze auditory information continuously, accounting for the detailed 
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analysis of sound information. The low-order areas (the core area here) may play a 

role in the detection of a new sound object via transient responses.  

In another fMRI experiment, Harms and Melcher (2002) investigated the 

influence of noise burst repetition rates on properties of fMRI signals. They found a 

systematic change in the form of fMRI response rate-dependencies from low to high 

levels in the auditory pathway. Specifically, at lower stages (the inferior colliculus 

and the medial geniculate body), response amplitudes increase with increasing 

stimulus rate, and the response shape remains relatively unchanged. In auditory 

cortex, the response wave shape changes dramatically with increases in stimulus 

rate—low rates elicit a sustained response, whereas high rates elicit an unusual phasic 

response. It was suggested that the transition from a sustained to a phase response 

shape may be correlated with the perceptual shift from burst trains to a fused 

continuous auditory event. In other words, the investigators proposed that the neural 

correlates of auditory perception lie in corresponding population activities in auditory 

cortex that are reflected in the shape of the fMRI response. They designed new fMRI 

studies to try to understand exactly which properties of sound determine the cortical 

response shape by employing various kinds of temporally modulated stimuli. They 

found that the temporal envelope is the characteristic of sound that determines 

whether the fMRI response is phasic or not. They further proposed that the fMRI 

response wave shape reflects the segmentation of the auditory environment into 

meaningful events and could be a window allowing us to observe underlying neural 

activities. These results reconfirm that the macroscopic activities reflected in brain 

imaging responses play significant roles in perception and provide novel information 
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about population activity, adding meaningfully to our understanding of information 

processing in the brain.  

Recently, a new research field has emerged to try to directly assess how well a 

mental state can be reconstructed from non-invasive measurements of brain activities 

in humans by employing new statistical pattern recognition analysis (see review by 

Haynes & Rees, 2006). The fundamental difference between the assumptions here 

and those of traditional fMRI analysis is that here it is assumed that the information 

contained in the recorded macroscopic activities is not spatially localized, but is 

embedded in the whole spatial map. Correspondingly, the way to seek the relevant 

activity pattern is not to determine which specific brain region is statistically 

significantly involved in a certain task or temporal course, but to regard the whole 

spatiotemporal pattern as providing information. Such a pattern-based multivariate 

analysis approach could in principle allow considerable increase in the amount of 

information that can be gained compared to traditional strictly location-based 

univariate approaches. The pattern-based approach allows the investigation of other 

information-carrying mechanisms, for instance, ‘across-place’ joint representation.  

These techniques and  assumptions have contributed a great deal to the question 

of ‘mind reading’. Although most successful examples are in the visual domain, they 

could be extended to audition. For example, recent work demonstrates that pattern-

based decoding of BOLD contrast fMRI signals can successfully predict the 

perception of low-level perceptual features (e.g., orientation, direction of motion, 

etc.), whereas conventional approaches cannot (Kamitani & Tong, 2005; Haynes & 

Rees, 2005a). In an fMRI experiment investigating binocular rivalry, researchers 
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found that the perceptual fluctuations could be dynamically decoded from fMRI 

signals in the visual cortex by training a pattern classifier to distinguish between the 

distributed fMRI response patterns associated with the dominance of each monocular 

percept (Haynes & Rees, 2005b). Although these findings were not in the auditory 

domain, they at least in principle convey several important points about the essence of 

macroscopic activities. This is especially true considering that there are many 

common processing mechanisms between different sensory domains: the neural 

correlates of much higher-order perception or mental state are in a complex and 

dynamic format, and they are spatially distributed. We need to develop broader 

methods of analysis in order to understand system-level activities. Also, 

representational mechanisms in multiple dimensions should be given more emphasis.  

 

1.4.2 MEG/EEG studies 

Electromagnetic brain imaging methods, including MEG and EEG, have been 

used widely in recent investigations of brain mechanisms due to their high temporal 

resolution. The popularity of these techniques is not surprising in view of the fact that 

many experimental findings suggest that temporal information is crucial for our 

understanding of the brain’s working machinery. MEG/EEG techniques are especially 

attractive and appropriate tools for investigating questions in the auditory domain 

because of the dynamic nature of this field.  

As with research in neurophysiology, at the beginning, studies examining the 

representation of auditory temporal features in the human brain use simplified 

versions of sounds that have atomical temporal modulation features, for instance, 
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click trains, amplitude- and frequency-modulated tones, amplitude-modulated noise, 

etc. Motivated by results in single-cell recordings that suggest that temporal 

information is explicitly and temporally represented in spike trains, researchers are 

also expecting to find some temporal representation of temporal modulations in 

elicited EEG/MEG responses. The simplest example is to study EEG/MEG responses 

to click trains, and if activity in the brain can track the click train, the recorded 

EEG/MEG signals should be phase-locked to the consecutive clicks, as has been 

found in neuron spike trains. It is true that we find an elicited response in the 

temporal waveform for each click when the click trains are slow enough (SOA > ~ 

500 ms), however, we do not find such explicit tracking when click trains become 

fast. The reasons for this are as discussed before: the recorded macroscopic signals 

were not simply the sum of underlying microscopic activities; they have their own 

characteristics, oscillations, and examining only the elicited temporal response may 

not be an appropriate way to decode such representations. In most MEG and EEG 

experiments in humans using AM or FM stimuli or click trains, the auditory steady 

state response (aSSR), an elicited response that has the same frequency as the 

corresponding stimulus modulation frequency, is the main approach to examine AM 

and FM representations in these recorded EEG/MEG signals. The principle 

underlying aSSR is that if responses show tracking of temporally modulated sound, in 

the corresponding spectrum we should observe the frequency component at this 

modulation frequency. A second principle of aSSR is that analysis in the spectral 

domain is better than analysis in the temporal domain because the target signal may 

be deeply masked by background activities across many frequencies and may 
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therefore be difficult to decode from such a mixed signal. aSSRs have been found for 

stimulus modulation rates up to 200 Hz (Ross et al., 2000, 2005; Picton et al., 2003). 

The principles of aSSR analysis are illustrated in Figure 1-8. 
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Figure 1-9 Principles of aSSR analysis. Analysis in the spectral domain is more robust to 

background noise than is direct examination of the temporal waveform by detecting the spectral 

peaks at corresponding target modulation frequency (black arrow).  

 

Interestingly, aSSRs have been found to be maximal when the stimulus 

modulation frequency is around 40 Hz; these findings hold for various stimulus types 

and across sensory domains. From the perspective of systems neuroscience, it has 

been suggested that the elicitation of the 40-Hz brain rhythm by transients in the 

sensory input could account for the maximum at 40 Hz in aSSR, because when the 
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stimulus modulation rate is 40 Hz, the elicited gamma-band response for each 

transient will be in phase with and enhance each other, and the cumulative result isa 

strong aSSR at 40 Hz (Galambos et al., 1981). Such stimulus-elicited gamma 

oscillations have also been directly observed in the spectrograms of EEG signals, 

adding further support to this explanation (see Boemio thesis, 2003). In addition, a 

comprehensive study of the aSSR using pure AM sound (Ross et al., 2000) 

systematically examined the effects of stimulus properties (modulation frequency, 

carrier frequency) on the aSSR (amplitude and phase), suggesting that properties of 

the 40-Hz brain oscillation are modulated by the properties of incoming sensory 

stimuli. 

A more important aspect of this explanation of aSSR is that the observed 

EEG/MEG signals were actually superpositions of oscillations with various 

frequencies, and any representations will exist in terms of the changing properties of 

these oscillations, such as amplitude and phase. These waves modulate their own 

properties in response to external stimuli. For example, here, the sustained acoustic 

transients (amplitude or frequency) elicit specific gamma-band oscillations, leading to 

the observed aSSR at the stimulus modulation frequency in the spectral domain. As 

for the M100 example introduced previously, it is the phase resetting of low-

frequency bands (theta and alpha) after detecting a sound stimulus that contributes to 

the emergence of this prominent auditory response.  

Finding neural correlates of natural communication sounds in EEG/MEG signals 

is more challenging due to several unsolved problems. Although in principle, we 

should find different activities for different sound stimuli, practically, we lacked 
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sufficient knowledge about the dimensions that we could depend on to robustly 

decode and discriminate these complex sounds. There are several MEG experiments 

that could provide inspiration. 

An MEG study by Ahissar et al. (2001) explored whether they could find neural 

correlates of temporal information in speech sentences, motivated by speech 

recognition studies showing that temporal information is most crucial for speech 

intelligibility. In a speech comprehension task, they tested subjects using temporally 

compressed speech at varying compression ratios, corresponding to different levels of 

intelligibility, and recorded responses from auditory cortex using MEG. By 

performing principle component analysis (PCA), they found that the first three 

principle components could account for more than 90% of the variance within the 

sensor array. They tested whether these principle components, containing time-

varying information, could account for the different degrees of intelligibility of the 

compressed speech stimuli. They found that the first principle components have a 

time course corresponding to the temporal envelopes of the stimuli when analyzed in 

the spectral domain, where the similarity between the prominent frequencies and 

phase locking could account for the intelligibility of the corresponding compressed 

speech. Specifically, stronger similarity indicates high intelligibility and vice versa. In 

other words, they found a striking link between temporal response in brain activities 

and behavioral performance. Their results support the notion that behaviorally 

correlated representations in macroscopic activities are complex and need to be 

examined in a more abstract way across time and space, and they emphasize the key 

role of temporal information in such representations.  
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Another very interesting MEG study, by Patel and Balaban (2000), explored 

whether music-like tone sequences could be reliably tracked and represented in 

human cortical activity. Motivated by previous aSSR studies, they used amplitude 

modulation of unfamiliar, long tone sequences to try to label stimulus-related MEG 

temporal responses. They successfully demonstrated that the temporal patterns of 

recorded MEG responses tracked the pitch contour of tone sequences, with the 

accuracy of tracking increasing as tone sequence became more predictable in 

statistical structure. Specifically, it is the phase of the elicited aSSR at the amplitude-

modulation frequency that reliably tracked the tone sequence. These results also 

support the significance of temporal information in the MEG signal for representing 

complex dynamic stimuli. Furthermore, as shown in neurophysiological studies of 

ferrets using ripple sounds, it seems to be most efficient for the brain to track the 

features of complex dynamic sounds that are variable in both envelope and fine 

structure simultaneously. Another important indication from this study is that when 

examining the macroscopic-level activity reflected in MEG and EEG signals via 

spectrotemoral analysis, phase information should receive equal attention with 

frequency power as a candidate for information-carrying elements of the signal..    

 

1.5 Summary  

From a reductionist perspective, a complex system can be understood in terms of 

relatively simple components. Such a linear view is appropriate and useful at the start 

of research in especially complex systems, and this view has yielded a great deal of 

information about how the brain works. Two main directions in brain research follow 
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from reductionist views: understanding complex information processing in terms of 

simple information processing, and understanding system activities in terms of 

microscopic activities.  

As mentioned previously, temporal modulations are dominant features in both the 

external and internal worlds, and therefore understanding their representation in the 

brain is a crucial undertaking. Large numbers of studies have employed stimuli with 

the simplest versions of temporal modulation features to explore this question and try 

to infer the mechanisms underlying complex and natural temporal feature processing. 

However, due to the complexity of the auditory system, there may be a bottleneck for 

such approaches.  

The reductionist perspective on analysis of brain imaging activities may overlook 

many other formats in which information is embedded in the macroscopic-level 

output, leading to misinterpretation or overemphasis of what are perhaps 

epiphenomenal response components. For example, peaks and troughs in the temporal 

waveforms of MEG signals have traditionally been regarded as the main information 

carriers relevent to certain stimulus conditions or cognitive tasks, whereas new 

evidence has shown that they are actually an epiphenomenal component resulting 

from other representational mechanisms. Overinterpreting these components 

underestimates the complexity of the system and will mislead research in this field.    

Efforts should be made to overcome the confusion resulting from reductionist 

views, in terms of both understanding natural auditory information processing and 

employing new perspectives to examine macroscopic activities. This thesis covers 

several inquiries into these unsolved problems in the auditory domain using MEG. 
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The main question is, how are the temporal structures of a complex sound represented 

and processed in human auditory cortex?  

Although many different types of stimuli could be used to investigate these 

questions, complex sounds with speech-like temporal features and natural human 

speech sounds will be used. Several new methods of MEG analysis based on various 

perspectives of MEG activities will be introduced in order to try to decode the 

information hidden in the dynamic and complex macroscopic signal. Two important 

beliefs guide the whole framework of this thesis: first, brains are constructed to 

process natural, unified stimuli in the best and most efficient manner; secondly, we 

need to find an appropriate way to decipher the information buried in the observed 

MEG responses.  
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Chapter 2: Tracking simultaneous acoustic AM and FM features  

 

2.1 Introduction 

A fundamental issue in auditory neuroscience concerns the nature of the 

computation that transforms the raw sensory signal into a representation that is useful 

for auditory tasks (Smith & Lewicki, 2006). Complex sounds, especially natural 

sounds, can be parametrically characterized by many acoustic and perceptual features, 

one among which is temporal modulation. Temporal modulations describe changes of 

a sound in amplitude (amplitude modulation, AM) or in frequency (frequency 

modulation, FM).  

Amplitude modulation (AM) and frequency modulation (FM) are two important 

physical aspects of communication sounds, corresponding to the independent 

envelope and carrier dynamics of a sound. They are found in a wide range of species-

specific vocalizations for both animals and humans (Doupe & Kuhl, 1999). In speech 

recognition studies, acoustic envelope (i.e. AM) cues were shown to be crucial to 

speech intelligibility (Drullman et al., 1994, Shannon et al., 1995). Analogously, Zeng 

et al (2005) have shown that acoustic carrier (e.g. FM) cues significantly enhance 

speech recognition performance even under noisy listening conditions, in contrast to 

AM cues, which enhance recognition only under ideal listening conditions.  
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Furthermore, these temporal modulation features are known to be encoded in the 

auditory system. Numerous neurophysiological studies in animals have indicated that 

precise timing information is preserved throughout the ascending auditory pathways 

(Heil, 1997; Oertel, 1997, 1999; Eggermont, 2002; Philips et al., 2002; Elhilali et al., 

2004; Rose & Metherate, 2005). Using reverse correlation techniques, it can be 

shown that the response properties of auditory cortical neurons are dominated by 

transient changes in both amplitude and frequency, reflecting their selectivity for AM 

and FM features in the stimulus sounds (deCharms et al., 1998; Deprieux et al., 2001; 

Miller et al., 2002; Elhilali et al., 2004). Interestingly, the reverse approach, which 

makes the theoretical assumption that that the auditory system’s encoding 

mechanisms are shaped to represent natural sounds in the most optimal and efficient 

way, predicts a preponderance of AM and FM response patterns in the receptive 

fields of auditory cortical neurons (Lewicki, 2002; Klein et al., 2003). 

Physiological responses to both AM and FM sounds have been widely studied in 

non-human species (Schreiner & Urbas, 1986, 1988; Eggermont, 1994; Gaese et al., 

1995; Heil & Irvine, 1998; Liang et al., 2002), as well as in humans, using 

electroencephalography (EEG) and magnetoencephalography (MEG) (Rees et al., 

1986; Ross et al., 2000; Picton et al., 2003), fMRI (Giraud et al., 2000), and intra-

cranial recordings (Liegeois-Chauvel et al., 2004). There is also a rich psychophysical 

literature of behavioral responses to modulations (Zwicker, 1952; Viemeister, 1979; 

Moore & Sak, 1996). However, it is still debated whether AM and FM sounds are 

processed using the same or different mechanisms and pathways (Saberi & Hafter, 

1995; Moore & Sek, 1996; Patel & Balaban, 2000, 2004; Dimitrijevic et al., 2001; 
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Liang et al., 2002). Animal studies show that cortical neurons can fire phase-locked to 

amplitude modulated sounds up to tens of Hertz (Schreiner & Urbas, 1986, 1988; 

Eggermont, 1994; Gaese et al., 1995). However, rate coding instead of temporal 

coding has been observed for higher rates (Lu et al., 2001). In addition, there is a high 

degree of similarity between cortical responses to AM and FM stimuli (Liang et al., 

2002), suggesting at least some shared representation of temporal modulations by 

cortical neurons (Wang et al., 2003).  

Neuroimaging techniques have also been extensively used as a tool to study the 

processing and representation of temporal modulation features in human auditory 

cortex. Functional Magnetic Resonance Imaging (fMRI) and intracortical recording 

experiments have revealed sustained cortical responses to AM and FM sound stimuli 

that vary in magnitude and shape as the stimulus modulation rates increase above 10 

Hz (Giraud et al., 2000; Harms & Melcher, 2002; Hart et al., 2003; Liegeois-Chauvel 

et al., 2004; Haller et al., 2005). In most MEG and EEG experiments on humans 

using AM or FM stimuli, the auditory steady state response (aSSR), an elicited 

response with the same frequency of the corresponding stimulus modulation 

frequency, is the main approach to examining AM and FM representations. aSSRs 

have been found for stimulus modulation rates up to 200 Hz (Ross et al., 2000, 2005; 

Picton et al., 2003), consistent with the stimulus-synchronized discharge (or the 

temporal coding) observed in animal studies. Cumulatively, these results reveal that 

cortex apparently encodes incoming auditory signals by decomposing them into 

envelope and carrier (Smith et al., 2002).  
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 Although AM and FM have been widely studied in both animals and humans, the 

auditory systems are often probed with either AM or FM stimuli. Natural sounds, 

however, contain simultaneously modulated envelope and carrier frequencies (both 

AM and FM). Therefore, instead of manipulating the envelope or carrier dynamics 

separately, the auditory cortex may be probed using stimuli with both dynamic 

envelope and carrier. ). In other words, AM and FM always co-occur and are 

inseparable acoustic features of an auditory object, and therefore the auditory system 

should be able to co-track them to achieve ‘perceptual unity’ of the incoming sound. 

Note that ‘co-tracking’ refers to a combinational encoding of AM and FM features, 

and it differs from simultaneous tracking, in which the resultant neuronal activity is 

simply a sum of the two separate tracking signals for AM and FM, respectively. The 

latter example is an EEG experiment (Dimitrijevic et al., 2001), which employed 

independent amplitude and frequency modulation (IAFC) stimuli with relatively 

higher modulation frequencies (above 80 Hz) and found independent aSSR responses 

for both AM and FM. There have been at least two examples of such ‘co-tracking’ 

found in auditory systems. Elhilali et al. (2004) have shown that single units from 

primary auditory cortex (AI) in ferrets lock to both slow AM and FM modulations 

and to the fast fine structure of the carrier (up to carrier frequencies of a few hundred 

Hz). Patel & Balaban (2000, 2004), using MEG, investigated the processing of 

sinusoidally amplitude modulated tone sequences (co-modulation of both envelope 

and carrier where the slow frequency modulation is periodic but not sinusoidal), and 

showed that the phase of the aSSR at the envelope modulation frequency tracks the 

tone sequences, i.e. the carrier changes. These results indicate a relation between the 
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representation of AM and FM features processing in human auditory cortex and a 

possible co-tracking mechanism.  

How might auditory cortex co-represent envelope and carrier dynamics 

simultaneously? Modulation encoding is one important possibility. Modulation is a 

way to describe stimulus dynamics, such as the AM and FM signals, it is also a very 

important method to embed a general information-bearing signal into a second signal, 

or to co-represent two signals. AM, FM, and related modulation schemes are widely 

used encoding techniques in both nature and electrical engineering. One class of 

modulation encoding is AM, in which the modulation signal is used to modulate the 

amplitude of another signal, called the carrier. Another important class is phase 

modulation (PM), in which the signal needing to be transmitted modulates the phase 

of the carrier signal. FM is a generalized PM, in which the signal needing to be 

transmitted modulates the time derivative of the carrier phase (which is also equal to 

the carrier’s instantaneous frequency). There are also a wide variety of other 

modulation encoding methods used for other radio transmission applications, 

including single sideband, single sideband with suppressed carrier, and double 

sideband with suppressed carrier. These encoding schemes have the advantage of 

efficiently transmitting signals even in the presence of noise. These encoding schemes 

can be used to transmit signals even in the presence of noise, whether 

electromagnetically in the radio band, or neurally in the auditory system (Oppenheim 

& Willsky, 1997).  

In the Fourier domain, modulated signals have distinctive signatures, which may 

be easier to detect and decode than their time-domain versions. A narrowband carrier 
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appears as a single peak in the spectrum at ƒcarrier, the carrier frequency. The 

modulations due to either pure AM or pure PM appear as sideband frequency patterns 

in the spectrum. Specifically, the spectrum will have an upper sideband at ƒcarrier + 

ƒmodulation and a lower sideband at ƒcarrier - ƒmodulation (often accompanied by additional, 

lower power, sidebands at more distant frequencies), and different modulation-type 

signals (e.g., AM, FM, and PM signals) can be distinguished based on the phase 

relationships among those sidebands and the carrier.  At least one example of 

modulation encoding is seen in human auditory cortex: at extremely slow frequency 

modulations (~0.1 Hz), the phase of the envelope modulation frequency aSSR tracks 

the carrier change, i.e. a form of PM encoding (Patel & Balaban, 2000, 2004). 

Whether other methods are used, and what method is used at higher frequencies, is 

largely unknown.  

Figure 2-1a illustrates these basic concepts from the engineering encoding point 

of view. Figure 2-1b shows the hypothesized spiking activity corresponding to neural 

modulation encoding (third row: PM encoding; fourth row: AM encoding) of the 

considered stimulus with sinusoidally modulated carrier frequency (first row, FM) 

and amplitude (second row, AM). An ensemble of PM encoding neurons (third row) 

will produce an evoked neural PM signal similar to that shown in the middle of the 

lower panel of Figure 2-1a (obtained mathematically by low-pass filtering the spike 

train). Similarly, an ensemble of AM encoding neurons (fourth row) will produce an 

evoked neural AM signal similar to that shown in the middle of the upper panel of 

Figure 2-1a.  
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Figure 2-1 Modulation as an encoding method in engineering, and proposed neural mechanisms. 

a) A modulation signal modulates either the amplitude or the phase of the carrier signal to 

produce either an AM signal or a PM signal. Both signals produce a two-sideband pattern in 

spectrum (right). b) Possible neural modulation encoding mechanisms for AM encoding and PM 

encoding to simultaneously represent both stimulus carrier (first row, changes in stimulus 

carrier frequency) and stimulus envelope (second row, changes in stimulus amplitude) dynamics. 

A neuron employing PM encoding (third row) fires one spike per stimulus envelope cycle, as 

indicated by the dotted line, and the firing phase in each cycle depends on the instantaneous 
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stimulus carrier frequency. A neuron employing AM encoding (the last row) changes firing rate 

according to the instantaneous stimulus carrier frequency, while keep the firing phase within 

each cycle fixed (aligned with the dotted line).  

 

The ability of auditory cortex to track stimulus dynamics via the aSSR is limited. 

The aSSR to AM sounds can be recorded with MEG from humans at stimulus rates 

up to ~100 Hz, with a large peak around 40 Hz (Ross et al., 2000); EEG responses 

follow to higher rates (see, e.g. Picton et al., 2003) but responses at those higher rates 

are not generated by auditory cortex. The aSSR at the modulation frequency, 

however, is generated only by neural temporal coding, whereas many neurons employ 

rate coding for rapidly modulated stimuli (Lu et al., 2001). Therefore, it is still not 

fully understood how - and how fast - auditory cortex can track a stimulus, 

particularly for stimuli modulated in both envelope and carrier, as is typical of most 

ecologically relevant signals. 

We designed sound stimuli that were sinusoidally modulated in both amplitude 

(AM, at rate ƒAM) and frequency (FM, at rate ƒFM). These stimuli are a simplification 

of natural sounds containing simultaneous AM and FM, but their dynamics can be 

simply described by two frequency parameters: ƒAM and ƒFM. In turn, we can examine 

their representations in the human brain by checking the spectrums of the measured 

MEG responses at those frequencies related to these stimulus dynamics parameters 

(ƒAM, ƒFM). In addition, by varying these dynamics parameters, we can investigate 

coding transitions as a function of stimulus rate dynamics. 
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 The present study was designed to address three questions: First, how does 

human auditory cortex represent or co-represent simultaneous AM and FM. Second, 

how fast can human auditory cortex track the carrier dynamics (FM). Third, is there 

any coding transition as the rate of carrier dynamics increases? To address these 

issues, we take advantage of the high temporal resolution of MEG, which has shown 

to be a method with outstanding sensitivity to record from human auditory cortex.  

 
 

2.2 Materials and Methods 

2.2.1 Subjects 

Slow-FM Experiment 

12 subjects (8 males) with normal hearing and no neurological disorders provided 

informed consent before participating in this experiment. The subjects’ mean age was 

25 and all were right handed. A digitized head shape was obtained for each subject 

for use in equivalent-current dipole source estimation. 

 

Fast-FM Experiment 

11 subjects (including several subjects from Slow-FM Experiment) with normal 

hearing and no neurological disorders provided informed consent before participating 

in this experiment.  

 

2.2.2 Stimuli 

Slow-FM Experiment 
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Nine stimuli were created, using custom-written MATLAB programs (The 

MathWorks, Natick, MA), with a sampling frequency of 44.1 kHz. The stimuli were 

sinusoidally frequency modulated tones with modulation frequencies (ƒFM) of 0.3, 

0.5, 0.8, 1.0, 1.7, 2.1, 3.0, 5.0, 8.0 Hz and frequency deviation between 220 Hz to 880 

Hz. In addition, the entire stimulus amplitude was modulated sinusoidally at a fixed 

rate of 37 Hz (ƒAM) with modulation depth of 0.8. All stimuli were 10 s in duration 

and shaped by rising and falling 100 ms cosine squared ramps. Each stimulus was 

presented 10 times. Figure 2-2 shows the spectrogram (higher panel), the spectrum 

(middle panel) and the temporal waveform (lower panel) of example stimuli, 

confirming that the stimulus sounds contain both sinusoidally modulated temporal 

envelope at ƒAM (37 Hz) and sinusoidally modulated carrier frequency at ƒFM (0.8 Hz 

and 2.1 Hz as examples drawn here). Because the frequency range of the carrier 

ranges from 220 Hz to 880 Hz, the stimuli have the broadband spectra shown in 

middle panel.  

To ensure that subjects attend to the long stimulus sequences, 36 distracter stimuli 

were created and inserted into the experiment for subjects to detect. Those distracters 

were the same as the normal stimuli except single short-duration FM sweeps were 

inserted at random time in the stimulus. Subjects were instructed to press a button 

when detecting the distracter stimuli. Normal stimuli (90 = 9 × 10) and distracter 

stimuli (36) were mixed and played in a pseudo-random order at a comfortable 

loudness level to subjects. Subjects performed the required task fairly well (average 

miss rate: ~ 3/36; average false alarm rate: ~ 1/36). The entire experiment was 
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divided into 4 blocks with breaks between them. Only the data for normal stimuli 

were further analyzed. 

 

 

Figure 2-2  Slow-FM Experiment stimulus examples. Top: the spectrograms of stimuli with ƒFM 

equal to 0.8 Hz and 2.1 Hz. The carrier frequency was modulated at a particular frequency (left, 

0.8 Hz and right, 2.1 Hz), sinusoidally from 220 Hz to 880 Hz. Middle: the corresponding spectra 

of the stimulus examples in upper panel (left, 0.8 Hz and right, 2.1 Hz). Note that the spectra are 

broadband. Bottom, temporal waveform of stimulus with ƒFM equal to 2.1 Hz. The envelope of 

the stimulus is modulated sinusoidally at 37 Hz. Only one segment from 0.2 sec to 1.4 sec is 

shown to let the 37 Hz AM be seen more clearly. The carrier change can also be seen here. The 

stimuli have both dynamic envelope (lower panel) and carrier (upper panel).  
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Fast-FM Experiment 

The same custom-written MATLAB programs (The MathWorks, Natick, MA) 

was used to design another 9 stimuli with a sampling frequency of 44.1 kHz. The 

stimuli were also sinusoidally frequency modulated tones but with relatively higher 

modulation frequencies (ƒFM) of 2.1, 3.1, 5.1, 8.0, 10.3, 15.1, 20.1, 24.3, and 30 Hz 

and frequency deviation between 220 Hz and 880 Hz. Note that the stimulus ƒFM 

values overlapped between Slow-FM Experiment and Fast-FM Experiment in 4 

values (2.1 Hz, 3.1 Hz, 5.1 Hz and 8.0 Hz) to check the robustness of results.  

In addition, the entire stimulus amplitude was also modulated sinusoidally at a 

fixed rate of 37 Hz (ƒAM) with modulation depth of 0.8. They were also 10 s in 

duration. Similarly, 36 distracter stimuli were created and inserted into the 

experiment for subjects to detect to ensure that subjects attend to the long stimulus 

sequences. These distracters were identical to the high-ƒFM normal stimuli here except 

that single short-duration FM sweeps were inserted at random times in the stimulus. 

Subjects also performed the required detection task fairly well (average miss rate: ~ 

4/36; average false alarm rate: ~1/36). Only the data for normal stimuli were further 

analyzed. Figure 2-3 shows the temporal waveform (higher panel), the spectrogram 

(middle panel), and the spectrum (lower panel) of two example stimuli, confirming 

that the stimulus sounds contain both a sinusoidally modulated temporal envelope at 

ƒAM (37 Hz) and a sinusoidally modulated carrier frequency at ƒFM. The stimuli also 

have the long-term broadband spectra shown in the lower panel.  
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Figure 2-3 Fast-FM Experiment Stimulus examples with ƒFM of 8.0 Hz (a) and 15.1 Hz (b) 

respectively. Top: temporal waveform of stimulus. The temporal envelope was sinusoidally 

modulated at 37 Hz (ƒAM). Only one segment from 0.5 sec to 1.0 sec is shown to let the 

modulation be seen more clearly. Middle: the spectrogram of the same temporal segment (0.5 

sec–1.0 sec) of the stimulus. Note the carrier frequency is also sinusoidally modulated (a, 8.0 Hz; 

b, 15.1 Hz) in the range from 220 Hz to 880 Hz. Bottom: spectrum of the stimulus (10sec 

duration). Note that the spectra are broadband.   
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2.2.3 MEG recordings 

All experiment procedures were approved by the Institutional Review Board 

(IRB) of the University of Maryland. Neuromagnetic signals were recorded 

continuously with a 157 channel whole-head MEG system (5 cm baseline axial 

gradiometer SQUID-based sensors, KIT, Kanazawa, Japan) in a magnetically 

shielded room, using a sampling rate of 1000 Hz and an online 100 Hz analog low-

pass filter, with no high-pass filtering. Each subject’s head position was determined 

via five coils attached to anatomical landmarks (nasion, left and right pre-auricular 

points, two forehead points) at the beginning and the end of recording to ensure that 

head movement was minimal. Head shape was digitized using a three-dimensional 

digitizer (Polhemus, Inc.).  

 

2.2.4 Data analysis 

Data analysis has been done in Slow-FM Experiment and Fast-FM Experiment 

separately using the same data analysis procedures. First, auditory steady state (aSSR) 

responses were obtained by calculating the discrete Fourier Transform (DFT) of the 

concatenated responses from 10 trials (100 s = 10 ×  10 s) for each of the 9 stimulus 

conditions (Slow-FM Experiment: ƒFM = 0.3-8.0Hz; Fast-FM Experiment: ƒFM = 2.1-

30.0Hz), giving frequency resolution 0.01 Hz. These calculations were computed for 

all 157 MEG channels, all 9 stimulus conditions, and all subjects (Slow-FM 

Experiment: 12 subjects; Fast-FM Experiment: 11 subjects). In addition, the phase 

coefficients were adjusted with respect to the 60Hz hardware notch filter properties in 
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order to remove the phase shift introduced by the notch filter. These Fourier 

coefficients were stored for further analysis for each subject. 

 

Phasor representation and Channel selections 

For each channel, the steady state response (aSSR) at 37 Hz (ƒAM) is 

parameterized by the DFT component’s magnitude and phase at 37 Hz (ƒAM). The 

result is a map of complex aSSR, i.e. a map of complex magnetic field values. An 

example of such a map can be seen in Figure 2-4b, where the complex magnetic field 

at each channel is represented by a phasor, i.e. an arrow with length proportional to 

the complex field magnitude and with direction given by the complex field phase 

(Simon and Wang, 2005). Then, the 50 channels per subject with the largest 

magnitudes across all the channels in both hemispheres at the 37 Hz (ƒAM) 

modulation frequency were regarded as channels representative of auditory cortical 

activity and selected for further analysis, motivated by the positive relationship 

between tracking performance and response strength at ƒAM found in an MEG 

experiment exploring representation of tone sequence in human auditory cortex (Patel 

and Balaban, 2004). The remaining channels were not further analyzed. 

 

aSSR and M100 Equivalent-Current Dipole localization 

To localize the neural source of the aSSR, the complex aSSRs corresponding to  

ƒFM = 0.3 Hz in Slow-FM Experiment were analyzed to determine the best (least 

mean square) fit for a pair of equivalent-current dipoles (Simon and Wang, 2005). 

The resulting complex dipoles’ positions, one in each hemisphere, are the estimates of 
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the source locations. These aSSR source locations are compared to the M100 source 

locations, estimated by the purely real version of the same algorithm. The M100 was 

measured in a pretest experiment, in which subjects were instructed to count the 

number of 1 kHz pure tones they heard. The M100 component is believed to originate 

in the superior temporal cortex on the upper bank of the superior temporal gyrus 

slightly posterior to Heschl’s gyrus on the planum temporale (Lutkenhoner and 

Steinstrater, 1998). This direct comparison permits an analysis of the aSSR location 

without requiring magnetic resonance image (MRI). Such dipole localization was 

only performed in Slow-FM Experiment.  

 

Sideband frequencies 

Target sideband frequencies were defined for different ƒFM as upper sideband 

(ƒAM + ƒFM) and lower sideband (ƒAM – ƒFM), leading to 18 (9 ×2) frequencies in both 

Slow-FM Experiment (upper: 37.3, 37.5, 37.8, 38, 38.7, 39.1, 40, 42, 45 Hz; lower: 

36.7, 36.5, 36.2, 36, 35.3, 34.9, 34, 32, 29 Hz) and Fast-FM Experiment (upper: 39.1, 

40.1, 42.1, 45, 47.3, 52.1, 57.1, 61.3, 67 Hz; lower: 34.9, 33.9, 31.9, 29, 26.7, 21.9, 

16.9, 12.7, 7 Hz). The DFT amplitude and phase at every target sideband frequency 

were extracted for all 50 channels (selected specifically per subject), and for every 

stimulus condition, giving a 18 × 9 × 50 × 12 data set in Slow-FM Experiment and a 

18 × 9 × 50 × 11 data set in Fast-FM Experiment (frequency × stimulus_condition × 

channel × subject). 

 

Sideband amplitude matrix (Aupper, Alower) 
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We examined the presence of sideband patterns (ƒAM ± ƒFM) in the spectra of the 

MEG signal, a distinctive signature of modulation encoding, by checking whether 

each specific stimulus condition (characterized by stimulus ƒFM) induced significant 

spectral peaks at corresponding sideband frequencies (ƒAM ± ƒFM) and not at other 

sideband frequencies. This analysis was performed for both Slow-FM Experiment 

and Fast-FM Experiment separately. 

The amplitudes of a specific sideband frequency were examined for all 9 stimulus 

conditions and for all 50 selected channels, and the results were summed across 50 

channels, giving a 9-value vector, which was then normalized by dividing by its 

mean. This 9-value vector represented the normalized elicited spectral power at this 

specific sideband frequency under all 9 stimulus conditions, so ideally, the maximum 

value will occur for the entry corresponding to the appropriate stimulus condition. 

The same procedure was followed for all sideband frequencies (9 upper and 9 lower 

sideband frequencies separately), giving two 9×9 matrices, corresponding to the 

upper sideband amplitude matrix (Aupper) and the lower sideband amplitude matrix 

(Alower). In each amplitude matrix, the 9 rows represent the 9 different target sideband 

frequencies (in Aupper: ƒAM + ƒFM; in Alower: ƒAM - ƒFM), and the 9 columns represent the 9 

different stimulus conditions. Each element in the matrix represents the normalized 

spectral power at this specific sideband frequency (corresponding row) for a specific 

stimulus condition (corresponding column).  

 

Encoding-type parameter α 
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Sidebands naturally occur for all types of modulation coding (including AM and 

PM). To help determine which modulation coding created the sidebands, an 

encoding-type parameter ( α, defined below, ranging between 0 and 2π) was 

calculated to distinguish AM encoding from PM encoding. Both encoding 

mechanisms (see Figure 2-1b) elicit two sidebands, but with different phase 

relationships across the sidebands and carrier, characterized by the encoding-type 

parameter α (itself a generalized phase taking on values between 0 and 2π). The 

encoding-type parameter α is defined as 

 
  
α = (θupper − θ fAM

) + (θ lower − θ fAM
)   

, where θ  is the phase at that frequency, upper = fAM + fFM , and lower = fAM − fFM . 

AM encoding produces α near 0 (or 2π) and PM encoding produces α near π.   

The mathematical derivation follows. For neural response carrier frequency fc  

(identified with  fAM ), neural response modulation frequency fm  (identified with fFM ), 

and modulation index m, this is shown for the neural response case of AM: 

  

SAM (t) = (1+ mcos(2π fmt + φ1))cos(2π fct + φ2 )

= cos(2π fct + φ2 ) +
m
2

cos(2π ( fc + fm )t + φ1 + φ2 ) +
m
2

cos(2π ( fc − fm )t + φ2 − φ1)

= cos(2π fct + φ2 ) +
m
2

cos(2π fuppert + θupper ) +
m
2

cos(2π flowert + θ lower )

. 

Where we have set 
 
θupper = φ1 + φ2  and θlower = φ2 − φ1 . Thus, 
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α AM := (φupper − φ2 ) − (φ2 − φlower ) = ((φ1 + φ2 ) − φ2 ) − (φ2 − (φ2 − φ1)) = 0 , which is also 

equivalent to   α AM = 2π . 

Correspondingly in the neural PM case,  

SPM (t) = cos(2π fct + φ3 + mcos(2π fmt + φ4 ))
= cos(2π fct + φ3)cos(mcos(2π fmt + φ4 )) − sin(2π fct + φ3)sin(mcos(2π fmt + φ4 ))
≈ cos(2π fct + φ3) − msin(2π fct + φ3)cos(2π fmt + φ4 )

≈ cos(2π fct + φ3) +
m
2

cos(2π fuppert + φ3 + φ4 +
π
2

) +
m
2

cos(2π flowert + φ3 − φ4 +
π
2

)

≈ cos(2π fct + φ3) +
m
2

cos(2π fuppert + θupper ) +
m
2

cos(2π flowert + θlower )

 

Where we have set 
 
θupper = φ3 + φ4 +

π
2

 and θlower = φ3 − φ4 +
π
2

giving, 

  
α PM = (θupper − φ3) − (φ3 − θ lower ) = ((φ3 + φ4 +

π
2

) − φ3) − (φ3 − (φ3 − φ4 +
π
2

)) = π , 

concluding the mathematical derivation. 

Experimentally, the encoding-type parameter α may take either of these values or 

any value between, and so a distribution of measured values is expected. α was 

calculated for all 9 sideband frequency pairs under the corresponding stimulus 

condition, for all 50 selected channels and all 11 subjects. Circular statistics were 

used to estimate the (circular) mean and (circular) standard error of α across all 

samples (Slow-FM Experiment: 600 samples =50 channels × 12 subjects; Fast-FM 

Experiment: 550 samples = 50 channels × 11 subjects) for each of the 9 

corresponding sideband frequency pairs. To calculate the circular mean value α , for 
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each ƒFM, all the α were first converted into complex vectors ( eiα ) and the mean of 

those complex vectors was determined. The circular mean α  is the four-quadrant 

inverse tangent of this complex vector mean. The circular standard error of α (SEα) 

was calculated using bootstrap (balanced, 1000 instances) across the α of all samples. 

(Efron & Tibshirani, 1994; Fisher, 1996) 

 

Vector strength of α 

The vector strength of α (vα, ranging between 0 and 1) is used to examine the 

robustness of the encoding-type parameter α. Larger vα indicates narrower 

distribution of α, and smaller vα indicates wider distribution of α (in fact 1–vα is 

mathematically equal to the circular variance of the distribution). It is defined as 

 
  
vα =

1
N

( sin(α i )
i=1

N

∑ )2 + ( cos(α i )
i=1

N

∑ )2 .  

vα is calculated for all 9 sideband frequency pairs and 9 stimulus conditions across all 

samples (Slow-FM Experiment: 600 samples; Fast-FM Experiment: 550 samples), 

giving a 9×9 matrix Vα. In Vα, the 9 rows represent the 9 sideband frequency pairs (ƒAM 

± ƒFM) and 9 columns represent the 9 different stimulus conditions. Each element in 

the matrix represents the vα value of this specific sideband frequency pair 

(corresponding row) for a specific stimulus condition (corresponding column). 

Ideally, the corresponding stimulus condition should elicit a robustly narrow α 

distribution and therefore the maximum vα value in each row. 

 

Phase difference parameters 



 

 74 
 

Another two phase parameters, θUpperdiff and θLowerdiff, are used to examine the 

phase properties of upper and lower sideband frequencies, respectively, 

complementary to the amplitude properties of sidebands characterized by Aupper and 

Alower. They are defined as:  

 
θUpperdiff = θUpper − θ fAM

θLowerdiff = θLower − θ fAM

  

Therefore,  

 
  
α = (θUpper − θ fAM

) + (θLower − θ fAM
) = θUpperdiff + θLowerdiff   

 θUpperdiff and θLowerdiff were calculated for all target sideband frequencies (9 upper 

sideband frequencies and 9 lower sideband frequencies), all selected 50 channels, all 

9 stimulus conditions, and all subjects (Slow-FM Experiment: 12 subjects; Fast-FM 

Experiment: 11 subjects). The same circular statistics used to calculate α were used to 

estimate the mean and standard error of θUpperdiff and θLowerdiff. Their vector strengths 

were defined as: 

 

  

vUpperdiff =
1
N

( sinθUpperdiff
i=1

N

∑ )2 + ( cosθUpperdiff
i=1

N

∑ )2

vLowerdiff =
1
N

( sinθLowerdiff
i=1

N

∑ )2 + ( cosθLowerdiff
i=1

N

∑ )2

  

These calculated vector strength values were used to construct two 9×9 vector 

strength matrices (VUpperdiff, VLowerdiff) using the same configuration as that for Vα. In 

addition, θUpperdiff and θLowerdiff were adjusted according to corresponding sideband 

frequencies to compensate for a group delay (latency) estimated by the slope of the 

θUpperdiff-frequency and θLowerdiff-frequency curves, termed as adj
Upperdiffθ and adj

Lowerdiffθ . Note 
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that they would have the same vector strength and standard errors as that of θUpperdiff 

and θLowerdiff. 

 

Asymmetry index for amplitude and vector strength. 

The amplitude asymmetry index AIA and vector strength asymmetry index AIV 

quantify any asymmetry between the upper and lower sidebands. They are normalized 

to lie between –1 and 1 and defined as 

 

AI A = diag(
AUpper − ALower

AUpper + ALower

)

AIV = diag(
VUpperdiff − VLowerdiff

VUpperdiff + VLowerdiff

)

  

 

Simulations 

We constructed a model neuron population whose SSR amplitude and phase are 

both modulated by the stimulus FM. In this model we posit that the phase modulation 

index is fixed (at π/8, as observed by Ross et al. (2001)), but the amplitude 

modulation index m may vary with ƒFM. The goal was to see if an increase in the AM 

portion of the response, i.e. an increase in m, could account for the observed single 

sideband signal (SSB) for high ƒFM rates. Simulated encoding signals with neural 

carrier frequency of 37 Hz (ƒAM) and modulation frequency of 8 Hz (one example of 

ƒFM) were created with additive Gaussian white noise (GWN) at a relative level of 15. 

The amplitude modulation index m varies from 0 to 0.8. The parameter θ, 

characterizing the phase shift of amplitude modulation contribution to  S(t)  in relation 
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to the phase modulation contribution of S(t) , varies from 0 to 2π. We performed 300 

simulations for each amplitude modulation index parameter m from 0 to 0.8 in step of 

0.08 and for each phase shift parameter θ from 0 to 2π in step of 
4
π , and calculated 

parameters ( , , , ,adj adj
Upperdiff Lowerdiff A vAI AIθ θ α ) of the simulated signals.  

 ( ) (1 cos(2 )) cos(2 cos(2 ))
8FM AM FM

Amplitude Modulation
Phase Modulation

S t m f t f t f t GWNππ θ π π= + + × + +�����	����
 ������	�����

 (1) 

 

 For comparison, we also constructed a model containing a pair of neural 

populations. The SSR amplitude of one population is modulated by the stimulus FM 

(AM encoding population, ( )AMS t ), whereas the SSR phase of the other population is 

modulated by the stimulus FM (PM encoding population, ( )PMS t ). Both ( )AMS t  and 

( )PMS t  were created with carrier frequency of 37 Hz (ƒAM) and modulation frequency 

of 8 Hz (one example of ƒFM). The phase modulation index in ( )PMS t  and the 

amplitude modulation index in ( )AMS t  are fixed (at π/8 and 0.25 respectively, as 

measured by Ross et al. (2001)). The simulation mixed signal ( )S t  were created by 

combining ( )AMS t  and ( )PMS t  using different mixing weights τ (pure PM: τ = 0; pure 

AM: τ = 1) and then by adding Gaussian white noise (GWN). The parameter θ, also 

characterizing the phase shift of amplitude modulation contribution to  S(t)  in relation 

to the phase modulation contribution of S(t) , varies from 0 to 2π. The relative 

increase in the AM contribution to the response is given by the mixing weight 

parameter τ.  



 

 77 
 

 

  

SPM (t) = cos 2π fAMt +
π
8

cos(2π fFMt)
⎛
⎝⎜

⎞
⎠⎟

SAM (t) = 1+ 0.25cos(2π fFMt + θ)( )cos(2π fAMt)

S(t) = τSAM (t) + (1− τ )SPM (t) + GWN

 (2) 

 
Functionally, this paired neural population model is not distinguishable from the 

previous single neural population model since both of them test for the effect of an 

increase in the AM contribution of the response: an increase in m in the single neural 

population model and increase in τ in the paired neural population model). Either 

could account for the observed single sideband signal (SSB) for high ƒFM rates. 

However, they are different in the hypothesized underlying neuron population 

structure and encoding properties.  

 

2.3 Results 

2.3.1 Auditory steady-state response at ƒAM and phasor representation 

Clear stimulus-evoked aSSR at ƒAM (37 Hz) was observed for all subjects under 

all 9 stimulus conditions in both Slow-FM Experiment and Fast-FM Experiment, 

since all the stimulus conditions have the same ƒAM at 37 Hz and only differ in ƒFM 

(Slow-FM Experiment: 0.3-8.0 Hz; Fast-FM Experiment: 2.1-30 Hz ). Figure 2-4a 

shows the discrete Fourier transform of one channel of a representative subject in 

Slow-FM Experiment, including the aSSR at ƒAM (37 Hz). The spectrum shows a 

clear peak at 37 Hz, the AM frequency ƒAM. Because of the limited signal-to-noise 

ratio in the MEG signal, other peaks (external narrowband noise) are also observable 

(and known to be not due to movement or related artifacts, or from bad sensors). The 
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relevance of using sidebands to detect neural modulation coding is that the vast 

majority of the noise peaks cannot interfere with the sidebands. Figure 2-4b shows the 

corresponding phasor representations for aSSR at 37 Hz for all channels (Simon and 

Wang, 2005). There is a clear bilateral auditory cortical origin for aSSR at 37 Hz. 

Figure 2.4c shows the grand average results for both the aSSR equivalent-current 

dipole (red) and the M100 (green).  The dipole locations of aSSR and of M100 

activity were compared across all subjects, and it was found that they have 

displacement not significantly different from 0 (for right hemisphere: ∆x = -1.1±5.3 

mm, ∆y = 4.6±7.6 mm, ∆z = -2.4±5.8 mm; for left hemisphere: ∆x = -0.0±3.2 mm, ∆y 

= 4.4±8.2 mm, ∆z = -4.1±5.4 mm). This result supports the idea that the source of 

aSSR is in superior temporal cortex since the M100 component is believed to 

originate there (Lutkenhoner and Steinstrater, 1998). This result is consistent with the 

aSSR localization results of Ross et al. (2000) given the resolution limitations of this 

data set. Figure 2-5 also illustrated the aSSR at ƒAM at 37 Hz (Figure 2-5a: black 

arrows) in one representative subject in Fast-FM Experiment and corresponding 

phasor representation (Figure 2.5b).  

 

Figure 2-4 Auditory steady state response (aSSR) at envelope modulation frequency (37 Hz). a) 

Spectrum of the response from one representative channel of one subject in Slow-FM 

Experiment. The arrow indicates the evoked aSSR at 37 Hz. b) The phasor representation of 

aSSR at 37 Hz. It clearly shows a bilateral auditory MEG contour map. The arrow in each 

channel represents the Fourier coefficient at 37 Hz. The arrow length represents the magnitude 

and the arrow direction represents the phase. c) Grand average of dipole location for the aSSR 

at 37 Hz (red) and M100 (green), in axial, sagittal and coronal views. The two dipoles are 

localized in similar position of superior temporal cortex.
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2.3.2 Auditory steady-state response at sidebands 

Figure 2-5 and Figure 2-6 show the aSSR at upper sidebands for the same channel 

in the same subject at different stimulus conditions for Slow-FM Experiment and 

Fast-FM Experiment respectively. First, the aSSR at 37 Hz (ƒAM) can be seen for all 9 

different stimulus conditions (black arrow); Secondly, stimuli with specific ƒFM 

elicited corresponding sidebands (here, only upper sidebands are shown, grey arrows; 

the lower sidebands, not shown, do not necessarily follow the same pattern). For 

example, in Figure 2-5 (Slow-FM Experiment), for stimulus ƒFM = 0.5 Hz, the 

response at 37.5 Hz (= 37 + 0.5) is elicited, and when stimulus ƒFM = 1 Hz, the 

response at 38 Hz (= 37 + 1) is elicited. For this one channel, the upper sideband for 

ƒFM of 5 Hz is not visible. Note that narrowband noise coexists with the sidebands we 

want to detect. Similarly, as illustrated in Figure 2-6 (Fast-FM Experiment), each 

stimulus with different ƒFM (2.1–30 Hz) elicited corresponding sidebands, indicated 

by grey arrows. For example, for stimuli with ƒFM of 8 Hz, the response spectrum 

showed a peak at 45 Hz (37 + 8 Hz); for stimuli with ƒFM of 10.3 Hz, there was a 

peak at 47.3 Hz (37 + 10.3 Hz); for stimuli with ƒAM of 15.1 Hz, a spectral peak at 

52.1 Hz (37 + 15.1 Hz) was elicited. Note that Figure 2-5 and Figure 2-6 both 

illustrate the spectrum of the same channel under 9 different stimulus conditions, and 

it clearly indicates that in this case the observed sideband frequency peak was 

stimulus-elicited. Direct FM generated aSSR, i.e. at the frequencies of ƒFM (2.1–30 

Hz), were also observed, in agreement with previous findings (Picton et al., 1987; 

Dimitrijevic et al., 2001; Luo et al., 2006). For example, the stimulus with ƒFM of 8 

Hz elicited an aSSR response peak at 8 Hz, and the stimulus with ƒFM of 30 Hz 
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elicited an aSSR response peak at 30 Hz, in addition to any sidebands around the AM 

generated SSR. 

 

 

Figure 2-5  Spectrum and auditory-steady state response (aSSR) at sidebands at one channel in a 

representative subject in Slow-FM Experiment. Each of the 9 figures represents the spectrum for 

each of the 9 different ƒFM stimulus conditions. The black arrow points to the aSSR at envelope 

modulation frequency (37 Hz) and can be observed for all the stimulus conditions. The grey 

arrows indicate the aSSR at corresponding upper sideband (ƒAM + ƒFM). For example, the 

stimulus with ƒFM of 0.3 Hz elicited 37.3 Hz aSSR (grey arrow). For this specific channel, all the 

stimulus conditions elicited corresponding upper sidebands except the stimulus with ƒFM of 5 Hz 

(grey arrow). 



 

 82 
 



 

 83 
 

Figure 2-6  Auditory steady state response (aSSR) at ƒAM (37 Hz) and upper sideband (37 + ƒFM). 

a) Spectrum of the response from one representative channel of one subject under all 9 stimulus 

conditions (different stimulus ƒFM), denoted by the subtitle value. The black arrows point to the 

aSSR at ƒAM (37 Hz) and the grey arrows indicate the corresponding upper sideband frequency 

(ƒAM + ƒFM) for each specific stimulus condition. For example, the stimulus with ƒFM of 8.0 Hz 

(the first figure in the second row) elicited aSSR at 45 Hz (37+8.0, gray arrow). b) The phasor 

representation of aSSR at ƒAM (37 Hz). It clearly shows a bilateral auditory MEG contour map. 

The arrow length in each channel indicates the aSSR amplitude at 37 Hz, and the arrow 

direction represents the aSSR phase. Note that the channels with largest arrows (largest aSSR at 

37 Hz) are centered in the bilateral auditory cortex positions, representing the origin of the 

elicited aSSR and are the main places where the 50 channels were selected from for further 

analysis.  

 

2.3.3 Transition from two sidebands to one sideband  

As can be seen in Figure 2-5 and Figure 2-6, narrow-band system noises coexist 

with the spectral responses we want to detect (ƒAM, ƒFM, sidebands), which in turn 

makes the direct detection of the narrowband response at sideband frequencies more 

difficult. A method to check the significance of the narrowband response, elicited at a 

target sideband frequency by the corresponding stimulus, is by an across-condition 

comparison, shown in the sideband amplitude matrices (AUpper, ALower). 

 Figure 2-7 shows the grand average of the upper (AUpper) and lower (ALower) 

sideband amplitude matrices across subjects, and for both Experiment I (Figure 2-

7a,d; ƒFM: 0.3–8 Hz; 12 subjects) and Fast-FM Experiment (Figure 2-7b, e; ƒFM: 2.1–

30 Hz; 11 subjects). In these matrices, most rows peak on the diagonal, which 

indicates that those sideband frequencies (rows) were significantly elicited by the 
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corresponding stimulus (and not by any other stimulus condition). In addition, there 

are noticeable differences between AUpper (Figure 2-7a,b) and ALower (Figure 2-7d,e). 

Specifically, AUpper shows a strong dominantly diagonal pattern, whereas this pattern 

was much murkier and noisier in ALower, especially in the high ƒFM range (Figure 2-

7e).   

Such asymmetrical performance between AUpper and ALower can be seen more 

clearly in plots below in Figures 2-7c and 2-7f, illustrating the corresponding 9-value 

diagonal value vector of Aupper and Alower, respectively. Slow-FM Experiment data 

(grey line) and Fast-FM Experiment results (black line) are plotted in the same figure 

for comparison. Note that there are 4 overlapping ƒFM stimulus conditions (2.1, 3.1, 

5.1, 8 Hz) which show consistently good results. The horizontal starred line indicates 

the mean amplitude level at this frequency, i.e. the noise floor. Specifically, for 

stimuli with low ƒFM ( <: 5 Hz), both upper and lower sidebands are strongly elicited 

(with the exception of two outliers in the upper sideband, ƒFM at 0.3 and 0.5 Hz, 

which are artificially small due to system narrowband noise at 37.3 and 37.5 Hz (Luo 

et al., 2006)). For stimuli with faster FM rates (5 Hz  <:  ƒFM  <: 24 Hz), there is an 

asymmetry between the upper and lower sideband amplitudes: as the modulation 

frequency increases, the lower sideband level decreases toward the noise floor, 

whereas the upper sideband level remains well above the noise floor. For the fastest 

stimuli (ƒFM  >: 24 Hz), both upper and lower sidebands decrease to the noise floor. In 

summary, we observed a two-sideband-to-one-sideband spectral pattern transition 

with increasing stimulus ƒFM (up to 24.3 Hz), with the transition occurring at ƒFM ~ 5 

Hz.  
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Figure 2-7  Amplitude matrix AUpper and Alower for both Slow-FM Experiment (ƒFM: 0.3–8 Hz) and 

Fast-FM Experiment (ƒFM: 2.1–30 Hz), and the corresponding diagonal value vectors. a) AUpper of 

Slow-FM Experiment. b) AUpper of Fast-FM Experiment. d) ALower of Slow-FM Experiment. e) 

ALower of Fast-FM Experiment. Each box represents the normalized amplitude at the particular 

target upper sideband frequency (vertical axis) under specific stimulus condition (horizontal 

axis). c) Diagonal value vectors of AUpper (grey dotted line: Slow-FM Experiment; black solid line: 

Fast-FM Experiment). f) Diagonal value vectors of ALower for both Slow-FM Experiment and 

Fast-FM Experiment. The starred lines in the plots indicate the noise floor at each specific target 

frequency. Note that ƒFM around 5.0 Hz marked the transition from ‘Two sidebands’ to ‘One 

sideband’. 

 

2.3.4 Transition from PM to unreliable encoding-type parameter α 

Sidebands naturally occur for all types of modulation coding (including AM and 

PM). To help determine which modulation coding created the sidebands, an 

encoding-type parameter ( α, defined below, ranging between 0 and 2π) was 

calculated to distinguish AM encoding from PM encoding. Both encoding 

mechanisms (see Figure 2-1) elicit two sidebands, but with different phase 

relationships across the sidebands and carrier.     

Figure 2-8 summarizes the behavior of the encoding-type parameter α for both 

Slow-FM Experiment (grey line) and Fast-FM Experiment (black line). Figure 2-8a 

shows the circular mean and standard error of α, which lies roughly in the PM 

encoding region (~ π) for slower ƒFM ( <: 5 Hz) and transitions into a regime of 

undetermined values with increasing ƒFM rate (as stated above, the outlier at ƒFM = 0.3 

Hz is due to the narrowband system noise at 37.3 Hz).  
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The vector strength of α (Vα) is calculated to further examine the robustness of 

modulation encoding and the reliability of observed modulation encoding type. 

Figure 2-8b illustrates the entire matrix Vα and the corresponding diagonal value 

vectors for both Slow-FM Experiment and Fast-FM Experiment. Specifically, the Vα 

for Slow-FM Experiment (ƒFM: 0.3–8 Hz, left matrix of Figure 2-8b) manifests a 

dominantly diagonal pattern, especially for ƒFM below 5 Hz (1st to 7th row), 

compared to the Vα for Fast-FM Experiment (ƒFM: 2.1–30 Hz, right matrix of Figure 

2-8b), in which only the first 3 rows (corresponding to ƒFM of 2.1, 3.1, and 5.1 Hz) 

show a dominant diagonal. The corresponding diagonal value vectors (Figure 2-8c) 

decrease to the baseline vα value as stimulus ƒFM increases, reflecting that the 

encoding-type parameter α becomes increasingly noisier and more unreliable for 

faster stimulus ƒFM ( >: 5 Hz), although the α value seemed to shift roughly to the AM 

encoding region (~ 0 or 2π) in Figure 4a. In summary, we observe a transition of α 

from the PM encoding region (~ π) to unreliable and noisy values as the stimulus rate 

ƒFM increases, with a transition point of ƒFM ~ 5 Hz.  
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Figure 2-8  Encoding-type parameter α and the corresponding vector strength matrix Vα. a) α 

plot for different ƒFM stimulus conditions (grey dotted line: Slow-FM Experiment; black solid 

line: Fast-FM Experiment) using circular statistics. Grey bars represent the PM encoding region 
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(middle, ~ π) and AM region (upper and lower, ~ 0 or 2π). b) Vα of both Slow-FM Experiment 

(left matrix) and Fast-FM Experiment (right matrix). Each box in the matrix represents the 

vector strength calculated from α samples (Slow-FM Experiment: 600 samples; Fast-FM 

Experiment: 550 samples), for the specific sideband frequency pair (row) under different 

stimulus conditions (column). Vector strength is also equal to 1 minus the circular variance of 

the distribution. c) Diagonal vectors of Vα (Slow-FM Experiment: grey dotted line; Fast-FM 

Experiment: black solid line). The starred line indicates the corresponding mean vector strength 

value of each row representing the background vector strength of α across all 9 stimulus 

conditions. Note that ƒFM around 5.0 Hz again marked the transition from ‘Reliable’ to 

‘Unreliable’. The dotted rectangle indicates the reliable range of α, where corresponding vα is 

above background level (starred line).  

 

 

2.3.5 Transition from symmetry to asymmetry in phase  

There are two primary motivations to investigate the behavior of θUpperdiff and 

θLowerdiff, the two subcomponents of α. First, as stated above, we found that α becomes 

noisier and unreliable for ƒFM  >:  5 Hz (Figure 2-8), but at least the upper sideband 

response is still significantly elicited (Figure 2-7a, b), indicating the sustained 

presence of some form of modulation encoding. Therefore, by examining the 

corresponding changes of these two subcomponents of α, we can show underlying 

reasons for α becoming noisier. Secondly, we can use these subcomponents to 

investigate the phase performances for the upper and lower sidebands separately, as 

we did for amplitude analysis. From the signal processing side, the vector strengths of 

θUpperdiff and θLowerdiff (vUpperdiff, vLowerdiff) reflect the temporal precision (latency, 

starting phase, etc.) of the elicited MEG response.  
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 Figure 2-9 illustrates the VUpperdiff (a-c) and VLowerdiff (d-f) results for both Slow-

FM Experiment (Figure 2-9a, d) and Fast-FM Experiment (Figure 2-9b, e). We can 

observe the dominantly diagonal pattern in most of the four matrices, indicating that 

these phase parameters (θUpperdiff, θLowerdiff) manifested smaller variance (larger vector 

strength) under the corresponding stimulus conditions (compared to other stimulus 

conditions). In addition, there is some difference between VUpperdiff (Figure 2-9a, b) 

and VLowerdiff (Figure 2-9d, e). Specifically, VUpperdiff showed a dominantly diagonal 

pattern, whereas this pattern is much murkier and noisier in VLowerdiff, especially for 

the high ƒFM range (Figure 2-9e). Such asymmetrical behavior between VUpperdiff and 

VLowerdiff is also reflected in Figures 2-9c and 2-9f, which illustrate the corresponding 

9-value diagonal value vector of Vupperdiff and Vlowerdiff ,respectively, for both Slow-FM 

Experiment (grey line) and Fast-FM Experiment (black line). The horizontal starred 

line indicates the mean vector strength for this phase parameter across all stimulus 

conditions. Specifically, for stimuli with low ƒFM ( <: 5 Hz), vector strengths for both 

θUpperdiff and θLowerdiff (vUpperdiff, vLowerdiff) were significantly above the noise floor (with 

the exception of the ƒFM = 0.3 Hz outlier in vupperdiff, due to system narrowband noise 

at 37.3). For stimuli with faster FM (ƒFM  >:  5 Hz), there is an asymmetry between 

vUpperdiff and vLowerdiff: vLowerdiff decreases toward the noise floor (Figure 2-9a-c) 

whereas vUpperdiff remains well above (Figure 2-9d-f). In summary, with increases in 

stimulus ƒFM, we observe a symmetry-to-asymmetry transition in the vector strength 

of phase parameters between upper and lower sidebands, where the transition point is 

ƒFM ~ 5 Hz. This symmetry-to-asymmetry transition is similar to the two-to-one 

sideband transition in the amplitude matrix (Figure 2-7), indicating a certain 
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relationship between the two groups of parameters: the phase parameters (VUpperdiff, 

VLowerdiff) and the amplitude parameters (AUpper, ALower).  
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Figure 2-9  Phase vector strength matrix VUpperdiff and Vlowerdiff for both Slow-FM Experiment 

(ƒFM: 0.3–8 Hz) and Fast-FM Experiment (ƒFM: 2.1–30 Hz), and the corresponding diagonal 

value vectors. a) VUpperdiff of Slow-FM Experiment. b) VUpperdiff of Fast-FM Experiment. c) VLowerdiff 

of Slow-FM Experiment. d) VLowerdiff of Fast-FM Experiment. Each box represents the calculated 

vector strength of the specific phase parameter (θUpperdiff, θLowerdiff) (vertical axis) under specific 

stimulus condition (horizontal axis). c) Diagonal value vectors of VUpperdiff (grey dotted line: Slow-

FM Experiment; black solid line: Fast-FM Experiment). f) Diagonal value vectors of VLowerdiff for 

both Slow-FM Experiment and Fast-FM Experiment. The starred lines indicate the mean of each 

corresponding row, indicating the phase vector strength background level. Note that ƒFM around 

5.0 Hz marked the transition from ‘Symmetry to ‘Asymmetry’. 

 

Additionally, θUpperdiff and θLowerdiff were adjusted to compensate for a 40 ms group 

delay (latency) estimated from the θUpperdiff-frequency and θLowerdiff-frequency curves. 

This 40 ms value also matches well with the results of Ross et al. (2000). The circular 

means and standard errors of the adjusted θUpperdiff and θLowerdiff are plotted in Figure 2-

10a. 

 

2.3.6 Transition in both amplitude and phase from symmetry to asymmetry  

The strong correlation between the phase and amplitude parameters for both 

Slow-FM Experiment (triangle) and Fast-FM Experiment (circle) is summarized in 

Figure 2-10c&d, which plot the amplitude asymmetry index AIA and the phase vector 

strength asymmetry index AIV, respectively, as a function of ƒFM . Specifically, both 

AIA and AIV are near zero for the lowest and highest ƒFM ranges (ƒFM < 5.1 Hz, ƒFM > 

20.1 Hz), indicating commensurate results in both amplitude and phase reliability 

between the upper and lower sidebands (as before, the two outliers at ƒFM of 0.3 and 
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0.5 Hz are due to system narrowband noise at 37.3Hz and 37.5 Hz). For the middle 

ƒFM range (5 Hz  <:  ƒFM  <:  20 Hz), both AIA and AIV increase significantly above zero, 

indicating the emergence of an asymmetry between the upper and lower sideband 

responses; here the asymmetry favors the upper sideband in both amplitude and 

phase. These results are consistent with the previous amplitude, encoding-type 

parameter, and phase results (Figure 2-7, 2-8, 2-9), and they reconfirm the coding 

transition from pure PM encoding (two elicited sidebands, robust phase at both 

sidebands, α approximately π) to a different encoding strategy (elicited upper 

sideband only, robust phase at only upper sideband, α becoming noisier and 

unreliable). In summary, a transition from PM encoding to single sideband encoding 

(SSB) is confirmed here.  

 

2.3.7 Simulation results 

Figure 2-10 shows simulation results for a single neural population model. The 

simulation results, a function of both modulation index m and phase shift parameter θ 

are illustrated in Figure 2-10i-l, in matrix form. For each θ, all the simulations show 

complex transitions as m changes. The results for θ = 
2
π , shown in Figure 2-10e-h, 

show transitions that are strikingly similar to those found in the data (Figure 2-10a-d), 

not only for the measured parameters (Figure 2-10a,b) but also for their distributions 

(Figure 2-10c,d). For other values of θ, the matching performance may be good for 

some of the parameters, but not all of them. These results suggest that introduction of 

fixed 90-degree phase delay, a quadrature relationship, between the amplitude 
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modulation contribution to S(t) and the phase modulation contribution to S(t) is 

necessary to account for the observed PM-to-SSB transition as we observed.  

 

The simulation results for θ = 
2
π  (Figure 2-10e-h) can be divided into 3 regions: PM-

dominated, PM-AM-mixture, and AM-dominated, corresponding to small, middle, 

and large m, respectively. The most interesting and relevant range is the mixture 

region. Specifically, as the role of the subsidiary AM encoding increases (increasing 

m), adj
Upperdiffθ  (black line) remains relatively fixed with small error bars throughout the 

range of m, whereas adj
Lowerdiffθ (grey line) manifests a rough transition through π and 

with larger error bars. At the same time, the encoding type parameter α shows a 

transition from PM encoding region (~π) to AM encoding region (~0). As for the 

asymmetry index performance, both AIA and AIV are strongly positive in the mixture 

range, reflecting the dominance of the upper sideband in the signals. The simulation 

results match the empirical results in many facets (Figure 2-10a-d), suggesting that 

the observed transition from a PM encoding signal to a SSB signal may be due to the 

increasing importance of a subsidiary AM encoding mechanism (invoked in the 

simulation by increasing the amplitude modulation index m) in addition to the already 

present PM encoding, as a monotonic function of ƒFM. 

 

 Similar simulation results are found from the paired neural population model and 

thus not illustrated here. Specifically, the simulation results can also be divided into 

three regions: PM-dominated, PM-AM-mixture, and AM-dominated, corresponding 
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to small, middle, and large τ, respectively. As τ increases, adj
Upperdiffθ , adj

Lowerdiffθ , α, AIA, 

and AIV of simulated signals showed the similar transition pattern as that of single 

neural population model in Figure 2-10, suggesting that additional involvement of 

activities of a subsidiary AM encoding neural population in the response of an 

already present PM encoding neural population could account for the observed 

transition from pure PM encoding to SSB signal. Importantly, it also requires a 90-

degree phase shift between the two neural populations’ modulation signals ( ( )AMS t  

and ( )PMS t ). Such a precise phase relationship between two independent neural 

populations is an extra required assumption, which leads us to favor and emphasize 

the single neural population model. 
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Figure 2-10 Comparisons between experiment results (a–d, Slow-FM Experiment: triangle; Fast-

FM Experiment: circle) and simulation results (i–l: simulation matrix results as a function of 

both AM modulation index m and phase shift parameter θ; e–h: simulation result plots for θ at 

2
π

). a,e,i) adj
Upperdiffθ (black line) and adj

Lowerdiffθ (grey line). b,f,j) Encoding type parameter α. c,g,k) 

Amplitude asymmetry index (AIA) between upper and lower sideband. d,h,l) Phase vector 

strength asymmetry index (AIV) between phase parameter adj
Upperdiffθ and adj

Lowerdiffθ . The starred 

line at 0 in AIA and AIV plots indicate the symmetrical performance between upper and lower 

sideband performances. Black boxes indicate large values in matrices results. Note that the 

simulation result plots (e–h) reproduce to one part of (blue rectangle) the simulation matrix 

results (right column). Note that the simulation results for θ at 
2
π

(e-h) matched well with the 

experiment results (a-d): adj
Upperdiffθ  (a,e, black line) remains flat with small error bars; 

adj
Lowerdiffθ (a,e, grey line) manifests a rough transition through π with larger error bars; encoding 

type parameter α (b,f) shows a transition from ~π to ~0; both AIA and AIV manifest a transition 

from 0 to positive values (c,d,g,h).  

 

 

2.4 Discussion 

In this set of experiments, we have investigated the mechanisms of co-

representation of simultaneous acoustic AM and FM, two of the most significant 

acoustic properties of natural communication sounds, for a possible coding transition 

at increased stimulus dynamic rates. Using sounds with simultaneous sinusoidally 

modulated amplitude (AM, ƒAM = 37 Hz) and carrier frequencies (FM, ƒFM = 0.3–30 

Hz), the elicited MEG responses were analyzed. We had two important findings: 
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First, by confirming the presence of elicited spectral sideband pattern, modulation 

encoding was found in human auditory cortex to co-represent the envelope and 

carrier dynamics simultaneously. Secondly, we observed a modulation encoding 

transition in the MEG responses with increase of stimulus dynamic rates, from pure 

PM encoding signals, to signals containing only the upper sideband in the spectrum 

(SSB). A neuronal model was constructed and suggested that the introduction of a 

subsidiary AM encoding mechanism onto the already present PM encoding would 

explain the occurrence of SSB encoding.  

 

2.4.1 Relationship to previous aSSR findings 

Consistent with previous research (Ross et al., 2000), we find a robust aSSR at 

ƒAM (37 Hz here), which means auditory cortex demodulates the incoming sound and 

extracts the envelope. The aSSR at ƒFM is consistent with EEG studies using pure 

frequency modulated stimuli (Picton et al., 1987), which is one way auditory cortex 

represents pure carrier dynamics, although they tested much higher modulation 

frequencies (>80 Hz) than those used here. Dimitrijevic et al. (2001), used 

independent amplitude and frequency modulation (IAFM) stimuli with also higher 

modulation frequencies and found separate AM and FM aSSR responses that are 

relatively independent of each other, suggesting separate and independent encoding 

of envelope and carrier. We also found the aSSR at ƒFM, but since our AM frequency 

was fixed, we cannot estimate whether the aSSR at ƒAM and ƒFM were independent of 

each other. When the source of the aSSR was localized using equivalent-current 
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dipoles, no significant difference was found between the location of these dipoles and 

those of the (well-studied) M100.  

We found that for slower ƒFM stimuli (< 5 Hz), the encoding-type parameter α is 

approximately π, indicating that those sidebands are due to the phase modulation of 

ƒAM by ƒFM. In other words, the phase of the aSSR at ƒAM tracked the stimulus carrier 

frequency change, and because the carrier frequencies changed at certain frequencies 

(ƒFM), the phase of ƒAM also changed at the corresponding ƒFM frequencies. These 

results for slower ƒFM were consistent with Patel & Balaban (2000) where the phase 

of the aSSR reliably tracked the carrier frequency contour of the tone sequences. 

There the carrier was a long, periodic, series of concatenated tone segments (ƒFM ~0.1 

Hz), rather than the sinusoidally modulated carrier in our experiment. These results 

suggest that for stimuli with slow carrier dynamics (ƒFM < 5 Hz), auditory cortex 

tracks the carrier dynamics, i.e. the stimulus carrier frequency change, by modulating 

the phase of the aSSR at ƒAM accordingly.  

 

2.4.2 Modulation encoding for feature grouping 

Temporal modulation features characterize the dynamics in a sound. AM 

describes changes in temporal amplitude (envelope), and FM describes changes in 

carrier frequency (fine structure). Stimuli with temporal modulation features are often 

used to examine the extent to which sensory neurons can fire spikes following the 

temporal structures of the stimuli. For this reason the concept of modulation is useful 

to describe both the stimulus dynamics and the corresponding stimulus-locked 



 

 100 
 

responses. Elhilali et al. (2004) have shown that in ferret AI, neural responses lock 

not only to envelope dynamics (e.g. AM), but also to the carrier dynamics (e.g. FM). 

Cariani (2004), among the many possible temporal neural codes, proposes 

multiplexing, a method widely used in telecommunication, as a perceptual grouping 

mechanism. In this view, the same neural element may be responsible for both 

concurrent representation and transmission of multiple signals. Similarly here, by 

observing a significant spectral peak with robust phase behavior at sideband 

frequencies, we demonstrate that modulation encoding, an efficient encoding method 

to multiplex two features’ representations, can track stimulus AM and FM 

simultaneously. It provides a natural means of perceptual grouping.  

The modulation encoding signal could possibly be accounted for by a single 

auditory nerve fiber with a specific characteristic frequency in the cochlea. For 

example, the firing of an auditory nerve with a characteristic frequency of 440 Hz 

will be modulated by both stimulus amplitude transients (ƒAM) and frequency 

transients (ƒFM), resulting in a co-modulated signal (we could also call it a ‘beating’ 

signal) that contains a two-sideband pattern in its spectrum, as we observed in this 

experiment. However, this interpretation cannot account for many other aspects of 

our results here. First, the resultant modulated response would be a purely amplitude-

modulated signal, while we observed pure phase modulation for low ƒFM stimulus 

conditions. Secondly, this account cannot explain the observed coding transitions. 

Note also that the channels selected per subject for further analysis are based on a 

single criterion, the amplitude of aSSR at ƒAM of 37 Hz, and not on any specific 

sideband frequencies. In addition, the selected channels show a bilateral pair of 
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origins in auditory cortex, confirming that the results reflect the activities there 

(Figure 2b).  

 

2.4.3 Neural modulation encoding 

The two most simple modulation encoding types are amplitude modulation (AM) 

encoding and phase modulation (PM) encoding: these arise naturally when the aSSR 

amplitude or phase depend on the carrier frequency of the stimulus, and so would be 

expected to occur when the carrier frequency is modulated. Correspondingly, neurons 

employing AM encoding (Luo et al., 2006) and PM encoding (Patel & Balaban, 

2004) have both been proposed. Both types of neurons fire spikes that are phase-

locked to the stimulus AM (at frequency ƒAM), but they differ in the way they encode 

FM features. Specifically, in each ƒAM cycle, the AM encoding neuron changes its 

firing rate to represent the carrier frequency, whereas the PM encoding neuron 

changes its firing pattern in time to represent the carrier frequency. In other words, 

both the AM and PM neurons employ temporal coding to track the AM feature, but 

use rate and temporal coding, respectively, to simultaneously represent the FM 

feature (ƒFM). These spiking patterns were illustrated in our previous paper (Luo et 

al., 2006). Gymnarchus, an African wave-type electric fish, provides a natural 

example of the modulation-encoding neuron we propose. This species needs to 

compares timing of sensory feedback from its high-frequency electric organ 

discharges received at different parts of its body surfaces in order to execute 

‘jamming avoidance’. This timing comparison mechanism is realized by integrating 

amplitude and phase difference information in the received electrosensory signals. 
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Interestingly, amplitude-sensitive and differential phase-sensitive neurons were found 

to project to an overlapping area where neurons respond to simultaneous amplitude 

and phase modulations (Kawasaki & Guo, 1998).  

 

2.4.4 Coding transitions  

We observe a PM-to-SSB transition as ƒFM increases from 0.3 Hz to 30 Hz. 

Specifically, stimuli with slow ƒFM ( <: 5Hz) elicit both significantly stronger peaks 

and robust phase at both upper and lower sideband frequencies, and the encoding-

type parameter α is robustly within the PM encoding region (~ π). As stimulus ƒFM 

increases (5 Hz  <:  ƒFM  <:  20Hz), only upper sidebands are elicited and have robust 

phase, whereas the lower sideband decreases and has noisy phase. Correspondingly, 

the encoding-type parameter α, the sum of phase parameters for the upper and lower 

sidebands, also becomes noisy and unreliable. We propose the engagement of a 

subsidiary AM encoding in addition to the already present PM encoding, which 

combine in such a way as to cancel the lower sideband, and thus accounts for the 

observed PM-to-SSB transition. Specifically, for stimuli with slow ƒFM, the neurons 

rely solely on a PM encoding mechanism to track the AM and FM features 

simultaneously. As stimulus ƒFM increases, these neurons also begin to employ an 

AM encoding mechanism, also co-representing AM and FM features. Then, both AM 

and PM encoding mechanisms are present, adding constructively (for the upper 

sideband) and destructively (for the lower sideband) to generate a SSB signal, and 

used for concurrent encoding.  
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It is apparent that a PM encoding mechanism, as seen for slow ƒFM stimuli, 

requires more temporal precision and resolution for co-representation and thus also 

more resource intensive than does an AM encoding mechanism, since it changes the 

spike firing time to indicate the carrier frequency. AM encoding, in contrast, requires 

less temporal precision and resolution and only roughly needs to change firing rate to 

track FM. Therefore, it is reasonable that only PM encoding is involved when 

tracking stimuli with slower carrier frequency dynamics, and that for tracking stimuli 

with faster FM requiring more neural resources, the relative contribution of the 

coarser and more economic AM encoding mechanism is increasingly engaged. These 

findings parallel findings in marmoset, using click train stimuli, where there is a 

temporal-to-rate coding switch as the click trains became faster (Lu et al., 2001). Our 

results are also consistent with fMRI experiments (Giraud et al., 2000; Harms & 

Melcher, 2002) that have documented changes in the shape and magnitude of 

sustained responses to AM and FM stimuli as modulation frequency increases. 

Psychophysical studies have also proposed FM-to-AM transduction (Saberi & Hafter, 

1995) and two-stage detection (Moore & Sek, 1996) for FM sound perception. 

Although this body of research refers to pure AM or FM detection, the underlying 

ideas apply straightforwardly to our hypothesis.  

 

2.4.5 Asymmetry was not due to different background signal-to-noise ratio 

An alternative explanation for the asymmetry between upper and lower sideband 

performance that must be ruled out is the different signal-to-noise ratios at those 

frequencies. For example, the decreased performance at the lower sidebands for faster 
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stimuli might be due to the stronger background noise at lower frequencies, where the 

lower sideband frequency (ƒAM - ƒFM) for higher ƒFM is located, which in turn would 

lead to asymmetric results. To test this explanation, we analyzed the direct FM aSSR 

(aSSR at ƒFM, not at a sideband), using the same amplitude matrix analysis as that of 

the sideband frequencies. Since some of the target ƒFM frequencies (0.3 Hz–30 Hz) 

are located in an overlapping frequency region to that for lower sideband frequencies 

with deteriorated performance, if the poor performance for those lower sidebands was 

due to noisier background, the background noise should also influence the 

performance of the aSSR at ƒFM. However, we did not find any decreased 

performance at this region; on the contrary, the responses at those ƒFM frequencies 

were strongly elicited. Therefore, the very same analysis on the same frequency 

region but using different criteria leads to diverse results, suggesting that it was an 

encoding transition rather than changes in signal-to-noise that accounted for the 

asymmetry between upper and lower sideband performances.    

 

2.4.6 Neurons performing specific phase delay 

In our neuronal model, AM encoding signals required a specific phase 

relationship (90-degree phase shift) with PM encoding signals, which accounts well 

for the observed SSB signals. Neurons with a specific phase shift relative to other 

neurons have been observed in several studies. For example, in a sound localization 

study by Fitzpatrick et al. (2000), three types of ITD-sensitive neurons in the inferior 

colliculus (IC) were found (peak-type, trough-type, intermediate-type); these differ in 

their characteristic phase, even when they have the same characteristic delay. In other 
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words, their response patterns are phase-shifted versions of one another. In an ITD 

discrimination model study, Hancock and Delgutte (2004) have also proposed that the 

involvement of a phase shift mechanism in a system of solely internal delays could 

predict psychophysical performances more accurately. In the visual domain, ‘lagged 

cells’ have been reported in both LGN and V1 (Saul & Humphrey, 1990; DeValois et 

al., 2000; Saul et al., 2005). These cells show a specific lagged phase (e.g. by 90°) in 

their responses compared to ordinary ‘non-lagged cells’ and are argued to solve the 

problem of encoding long and variable delays since a given phase difference provides 

longer time differences at low frequencies. Thus, the hypothesized phase shift in our 

model is not unrealistic, and most importantly, constructing an additional phase-

shifted version of the encoding signal using a different coding scheme (here AM 

modulation encoding) seems to be an efficient way to establish another dimension of 

representations of periodic modulation features.  

 

2.4.7 Relationship with systems neuroscience 

Brain rhythms are widely studied and are argued to have important functions in the 

cerebral cortex (see review by Sejnowski & Paulsen, 2006). It has been suggested that 

gamma-band oscillations (~ 40 Hz) may solve the binding problem (Llinas & Ribary, 

1993; Singer & Gray, 1995; Bertrand & Tallon-Baudry, 2000) by synchronously 

referring diverse fragmented sensory feature representations into a coherent temporal 

framework to achieve a single cognitive state. This 40 Hz oscillatory activity has been 

proposed to result from the resonant properties of the thalamocortical system (Llinas, 

2000) and interactions between excitatory and inhibitory neurons (Freeman, 2000). It 
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has also been suggested that the elicited aSSRs reflect the resetting of this 40-Hz 

brain rhythm by transients in the sensory input, which could also explain the 

maximum aSSR for modulation frequency around 40 Hz across various stimulus 

types (Stapells et al., 1984; Rees et al., 1986; Picton et al., 1987; Regan, 1989; Ross 

et al., 2000). A study of the aSSR to pure AM sound (Ross et al., 2000) 

systematically examined the effects of stimulus properties (modulation frequency, 

carrier frequency) on the aSSR (amplitude and phase). Their results suggest that 

properties of the 40-Hz brain oscillation are modulated by the incoming sensory 

stimulus. Therefore, an alternative explanation for the encoding transition from the 

perspective of systems neuroscience is that it reflects a transition between brain 

states. Specifically, for stimuli with slow dynamics, the brain’s 40 Hz rhythms are set 

by changes in the amplitude of the stimulus envelope (at rate ƒAM), and the timing of 

this resetting response, which is reflected in the starting phase of this signal, depends 

on the fine structure of the incoming stimulus, here, the carrier frequency. As the 

stimulus fine structure modulations become faster, there arises a more complex 

pattern in the brain oscillations, which are still reset by envelope changes, while both 

the resetting gain and resetting phase depend on the incoming stimulus carrier 

frequency.  

 
 

2.5 Summary 

In this set of studies, we probed the human auditory system with stimuli 

specifically designed to have two important properties shared by natural 

communication sounds: First, they are temporally modulated. As introduced 
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previously, temporal modulations are important physical aspects of communication 

sounds, and are capable of  characterizing sound dynamics. They are found in a wide 

range of species-specific vocalizations in both animals and humans, and are well 

represented and preferentially responded to by auditory cortical neurons. They were 

also shown to be critical for the intelligibility of human speech in speech recognition 

studies. Secondly, unlike most auditory studies, which traditionally use only AM or 

FM stimuli, our stimuli have simultaneous sinusoidal AM and FM. This co-

modulation characteristic is also consistent with properties of natural stimuli in that 

most natural communication sounds (e.g., human speech, marmoset calls, bird songs, 

etc.) contain simultaneous temporal modulations in both amplitude and frequency; in 

other words, AM and FM always co-occur and are inseparable acoustic features of an 

auditory object. Therefore, in order to ensure that our results are more directly 

applicable to the auditory system, we designed and employed dynamic stimuli with 

the simplest forms of these crucial properties of natural communication sounds.  

The fundamental motivation underlying these studies is that since AM and FM are 

inseparable and simultaneous acoustic features of an auditory object, they should be 

co-represented to achieve ‘perceptual unity’ of the incoming sound, and we were 

seeking such a ‘co-representation’ or ‘binding’ mechanism to perceptually unify AM 

and FM acoustic features. By performing a series of data analysis procedures in the 

spectral domain, we confirmed that ‘modulation encoding’ is the fundamental 

mechanism to co-track and co-represent the two temporal modulation features 

simultaneously and unify them.  
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Furthermore, we examined the possibility of a coding transition at higher 

modulation rates, motivated by temporal-to-rate coding transition findings in 

neurophysiological studies. Interestingly, we confirmed a smooth transition in the 

recorded MEG response, from pure phase modulation encoding to a single-upper-

sideband-only response pattern (SSB) in the response spectrum. 

What is the corresponding neural mechanism underlying this observed PM-to-

SSB transition? From a pure engineering point of view, as shown in the results of our 

simulation, the additional involvement of amplitude modulation encoding responses 

to ongoing phase modulation could account for this transition. Still, what does that 

mean? Is there any more explicit explanation for such a transition? What do the 

underlying neuron populations do to encode these types of dynamic stimuli? Do these 

MEG results provide any predictions for neurophysiological studies?  

This series of questions is deeply related to the various perspectives on MEG and 

the relationship between macroscopic and microscopic activities, as was discussed 

largely in chapter 1. The first view, a more intuitive and simple one, is that the 

modulation-encoding signals recorded with MEG reflect the spiking activity of 

underlying neuron groups in a relatively linear and direct way. For example, on this 

view, the interpretation of an aSSR at the corresponding modulation frequency in 

response to a pure AM sound is that a neuron fires spikes that are phase-locked to the 

amplitude transients. However, many single-cell recordings in cortical neurons could 

support this explanation only for lower modulation rates, despite MEG/EEG studies 

that showed aSSRs at much higher modulation frequencies, up to 100 Hz. Another 

interpretation is that although individual neurons cannot track fast AM sounds, the 
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neural population may achieve this by combining the efforts of many neurons. This is 

still a linear interpretation of the aSSR; it interprets the MEG/EEG signal as the linear 

sum of the output of a group of neurons, each of which fires spikes that partly track 

transients. In addition to this limitation, many aSSR studies using different stimuli 

and in different sensory domains found a common phenomenon that the maximum 

aSSR was elicited when the modulation frequency was around 40 Hz. This finding 

cannot be interpreted using the ‘linear’ view. The hypothesis that posits separate AM 

and PM neuron groups (see Figure 2-1) also belongs to the linear view in that the 

‘modulation encoding’ refers to the encoding mechanism of a single neuron or groups 

of neurons, and their spiking activity results in the observed modulated signals in 

MEG responses.  

The second view is more or less from an engineering perspective and regards the 

brain as a passive signal processing box with a specific impulse response. Each rising 

edge of the stimulus signal envelope will trigger an intrinsic middle latency waveform 

pattern with frequencies around 40 Hz, and the aSSR is generated by periodic 

superposition of those transient responses, as first hypothesized by Galambos (1981). 

This explanation could account for the aSSR amplitude peak at 40 Hz, but it is not 

compatible with several experimental results. As stated in Ross et al. (2005):  “For 

example, superimposed evoked responses could not explain either the time course of 

ASSR onset or the frequency dependencies of ASSR. The long-lasting ASSR 

perturbation that was induced by the omission of a single click, in a series of 40-Hz 

click stimuli, also could not be explained by superimposition of the response to a 

single click”.   
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The final view is different from the first view in that it seeks to explain the 

MEG/EEG signal as an ‘indirect’ reflection of the activity of underlying neural 

ensembles rather than as a simple sum of neural spikes. Instead, on this view, these 

recorded macroscopic activities reflect dynamic interactions within and across neuron 

groups and have a very distinct format. This view is also distinguished from the 

second view in suggesting that the aSSR reflects induced activity rather than the 

superposition of repetitive evoked responses, and is facilitated by rhythmic 

stimulation at frequencies close to the best responding frequency of the underlying 

neural network (Ross et al., 2005). The fundamental building blocks of these system 

responses are continuous oscillations at various frequencies, which are modulated 

according to incoming stimuli. Correspondingly, the observed aSSR response at 

particular stimulus modulation frequencies actually reflects these stimulus-driven 

oscillatory brain activities rather than evoked responses (Ross et al., 2005). Therefore, 

from the perspective of systems neuroscience, an alternative explanation for the 

observed encoding transition is that it reflects a transition between brain states. 

Specifically, for slow modulated stimuli, the 40 Hz brain rhythms are partially phase 

reset by stimulus amplitude transients, and the timing of this resetting response 

depends on the carrier frequency of the incoming stimulus. For fast modulated 

stimuli, the reset response shows a more complex pattern dependent on the carrier 

frequency (fine structure) and modulated both in terms of gain and time. 
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Chapter 3: Tracking natural speech sentences 

 

3.1 Introduction 

How natural speech is represented in the auditory cortex is the most crucial 

question in cognitive science. We are in a world full of natural sounds, the most 

important and frequent one among which is natural human speech. From evolutionary 

perspectives, the brain mechanisms underlying auditory sound processing should 

evolve and be optimized to process natural speech signals efficiently. Therefore, 

understanding the neural mechanism of speech processing in the human brain would 

yield valuable knowledge about the principles of the human auditory system. In 

addition, in the speech processing field, more efforts have been made to treat speech 

signals as pure engineering signals composed of many acoustic features and to seek 

the most behaviorally relevant feature through extensive mathematical computations. 

The main application of the findings in this field is in telecommunication, where 

speech signals are manipulated, stored, transmitted and recovered using  the smallest 

possible coefficients while maintaining intelligibility and high resistance to 

background noise. Understanding the real biological mechanism of speech processing 

in the human brain could provide direct information about the way the brain encodes 

speech , leading to great advances in many practical fields, such as 

telecommunication, artificial intelligence, and others.    
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However, understanding how natural speech is represented in the auditory cortex 

also constitutes a major challenge in auditory neuroscience. Human speech is a 

complex auditory signals that require specification in many dimensions in order to be 

fully described and represented, and so the crucial question becomes, which 

dimension is the one the brain utilizes and counts on to process speech? As we 

introduced previously in detail, speech signals are not stationary—they change over 

time in both amplitude and frequency. These temporal modulation features have been 

shown to be closely related to speech intelligibility in speech recognition studies 

(Shannon et al., 1995; Smith et al., 2002; Zeng et al., 2005) and may be the main 

dimension in terms of which speech signals are represented in the brain. However, it 

is still very difficult to explore this question, because the dynamics of natural speech 

signals are complex, non-regularized, and unpredictable to some extent. Most 

importantly, we have not yet identified the dimension along which brain activities 

(specifically those recorded via neuroimaging techniques) should be examined to sort 

out the neural correlates of speech processing, especially the processing of ongoing 

speech.  

In response to these challenges, the ‘reductionist view’ has been widely used to 

try to solve the problem gradually. By ‘reductionist view’, I refer to probing the 

auditory system with simplified versions of natural speech that contain one or more 

regularized and manipulated fundamental acoustic properties. For example, 

commonly used stimuli are pure tones, FM sweeps, amplitude-modulated sounds, 

frequency-modulated sounds, etc. Reductionism is closely tied to the field of speech 

recognition, insofar as studies in the auditory neuroscience domain mainly focus on 
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those acoustic features that are found to be crucial to speech recognition. The 

‘reductionist view’ is also the main perspective most neuroimaging studies adopt to 

find the neural correlates of speech processing, both spatially and temporally. In 

PET/fMRI studies, seeking the ‘speech-specialized’ areas on hemodynamic spatial 

maps is the main focus, and finding such an area is tantamount to a conclusion. Most 

of these studies compared speech with non-speech, and although this paradigm could 

possibly answer the question of where these speech signals are processed, the results 

still lack very crucial information due to the limitation of this technique: How are 

these speech signals processed? How are different speech signals represented 

differently? In other words, a complex question has been reduced to a ‘where’, the 

answer to which will be the same for all speech; furthermore, the processing 

mechanism for dynamic properties of speech has been neglected. MEG and EEG, as 

neuroimaging techniques with high temporal resolution, are ideal tools for exploring 

this question, but so far too much attention has been paid to localizing a dipole at a 

single time point.  

This complex question has also been investigated intensively in animal 

neurophysiology using species-specific communication sounds (Nelken et al., 1999; 

Wang et al., 2003; Nelken 2004; Machens et al., 2003, 2005; Woolley et al., 2005; 

Narayan et al., 2006). The advantage of single-cell recording is its good resolution 

both spatially and temporally. Spatially, some neurons are found to be selective to 

species-specific vocalizations and not others. For example, it has been shown that 

natural vocalizations of marmoset monkeys produce stronger responses in A1 than do 

spectrally similar but temporally altered vocalizations (Wang et al., 2003). When 
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testing responses to these sound pairs in the auditory cortex of the cat, whose A1 

shares similar basic physiological properties with marmosets, neurons in the cat A1 

did not differentiate the natural marmoset vocalizations from their time-reversed 

versions. These observations suggest that this constructed selectivity of cortical 

neurons depends on the behavioral relevance of these signals in the species’ 

environment and on learning-induced cortical organization. However, although 

regions found to selectively process conspecific call sounds have been confirmed in 

many animals, it is not known precisely ‘what’ (stimulus properties, recognition of 

acoustic objects or call-sound meaning) is represented and ‘how’ different conspecific 

calls are discriminated in the responses. Temporally, the neuron spiking pattern in 

response to these communication calls is examined and compared to the spiking 

pattern to call-like or non-call-like complex sounds. Many studies showed that single 

auditory neurons or neuron groups fire relatively temporally precise and similar spike 

patterns across trials, compared to other formats of complex sounds. In an experiment 

by Hsu et al. (2004) investigating neural encoding of songs by single neurons in zebra 

finches, they calculated the mutual information contained in the time-varying mean 

firing rate of the neural responses, and compared song, song-like synthetic sound, and 

non-song-like synthetic sound. They found that the songbird auditory system showed 

selectivity for song and song-like sound, and the corresponding spike trains carried 

more information than other formats of complex synthesized songs in that the 

temporal spike trains were more similarly precise across trials. Machens et al. (2003) 

investigated whether single auditory neurons in Chorthippus biguttulus could 

discriminate conspecific communication signals, by performing a classification 
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analysis based on the temporal spike train response to different communication 

signals. They confirmed that information sufficient to distinguish songs is readily 

available at the single-cell level when the spike trains are analyzed on a millisecond 

time scale. A similar analysis was performed on song birds to investigate the song 

discrimination ability of single cortical neurons, and this ability was confirmed again 

when spike trains were analyzed on the millisecond temporal scale (Narayan et al., 

2006). Together, these observations suggest that species-specific communication 

sounds are well represented and processed in animal auditory cortex by some neurons 

that act as ‘call-detectors’, and these neurons fire temporally precise and stable spike 

patterns to their preferred conspecific sounds. In other words, specialized neurons are 

representing and encoding communication sounds, and the information that allows 

discrimination of different communication sounds is carried in their temporal spike 

patterns.     

Many brain imaging studies have showed that some areas of the brain are 

significantly associated with speech processing, and the elicited cortical brain signals 

provided valuable information about the spectral and temporal processing of speech 

stimuli (Suppes et al., 1999; Giraud et al., 2000; Ahissar et al., 2001; Zatorre et al., 

2002;  Griffiths et al., 2004; Boemio et al., 2005; Luo et al., 2005, 2006; Scott et al., 

2006). However, what exactly are the components of these macroscopic brain 

activities that can reliably track and discriminate speech sentences? This question 

remains unanswered, due to a dearth of knowledge about the relationship between 

macroscopic and microscopic activities.   
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We hypothesized that the phase pattern of cortical rhythms might be a possible 

encoding mechanism to track ongoing natural speech signals. Our hypothesis was 

motivated by several findings. First, as observed in single-cell studies, cortical 

neurons or neuron groups fire different spike patterns in response to different 

communication sounds, thus demonstrating that temporal information is crucial to 

this discrimination ability (Machens et al., 2003; Narayan et al., 2006). Secondly, 

failure to find a significant differentiator in the evoked temporal waveform in 

previous EEG/MEG experiments makes us re-examine ongoing electromagnetic 

responses using other analysis methods. Thirdly, EEG/MEG signals were found to be 

mainly dominated by stimulus-induced changes in endogenous brain dynamics rather 

than by stimulus-evoked brain events, and these inherent brain rhythms have also 

been found to have functional significance in auditory object perception, and this 

constitutes a very different activity format compared to results from single-cell 

studies (Hari et al., 1997; Engel et al., 2001; Makeig et al., 2002; Penny et al., 2002). 

Therefore, brain oscillations at certain frequencies may be more likely to carry 

information than the evoked temporal waveform, which comes from the sum of the 

components of all frequencies. Finally, the phase of ongoing brain rhythms was found 

to be crucial for tracking ongoing stimulus feature changes; in other words, stimulus-

dependent phase modulation of certain ongoing brain oscillations is a very possible 

mechanism of representation reflected in macroscopic activities. For example, in a 

MEG study investigating tone sequence tracking in human auditory cortex (Patel & 

Balaban, 2000), researchers found that the phase of the elicited aSSR at the envelope 

modulation frequency could reliably track the tone sequence even in single trials, and 
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that this tracking ability is best for stimuli with the statistical structure of music. In 

addition, as described in Chapter 2, we confirmed that phase modulation encoding is 

employed to track fine structure changes in the stimulus. In sum, the ongoing phase 

pattern of certain frequencies in MEG responses is hypothesized to represent and 

track speech signal dynamics.  

Due to low signal-to-noise ratio in EEG/MEG responses and certain 

characteristics of these macroscopic activities, it is difficult to describe and test the 

unique pattern shown in each single trial response, as is possible with 

neurophysiological experiments. A common way to address this problem is to remove 

noise bv averaging responses across trials; however, this technique is not applicable 

here. Instead, I took a simple first step to test this hypothesis, motivated by results 

from single-cell studies that show that for specific communication sounds, cortical 

neurons will fire reliable spike patterns in single trials, and different communication 

sounds will elicit different spike patterns. Correspondingly, if the phase pattern of the 

MEG response to one natural speech signal in a single trial contains information 

specific to this speech signal and distinct from that of other speech signals, the cross-

trial phase coherence, characterizing how similar the phase patterns of responses are 

across trials, should be larger for responses to the same speech signal than  for 

composites made up of responses to different speech signals. In addition, motivated 

by neurophysiology studies that show that communication sounds are processed 

mainly in auditory cortex, human studies should also find that tracking more or less 

takes place in the auditory cortex.  
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Other relevant and important questions: Even if we confirm such a tracking 

pattern, are these mechanisms specific to processing speech, or are they general 

mechanisms for representing all auditory sounds? Do these neural correlates relate to 

behavioral perception, for example, to speech intelligibility (Narain et al., 2006; Scott 

et al., 2006)?  

 
 

3.2 Materials and Methods 

3.2.1 Subjects and MEG data acquisition 

Six native English speakers with normal hearing and no neurological disorders 

provided informed consent before participating in the experiment. Neuromagnetic 

signals were recorded continuously with a 157 channel whole-head MEG system (5 

cm baseline axial gradiometer SQUID-based sensors, KIT, Kanazawa, Japan) in a 

magnetically shielded room, using a sampling rate of 1000 Hz and an online 100 Hz 

analog low-pass filter, with no high-pass filtering.  

 

3.2.2 Stimuli 

Three natural speech sentences (“It made no difference that most evidence points 

to an opposite conclusion."; "He held his arms close to his sides and made himself as 

small as possible."; "The triumphant warrior exhibited naive heroism.") with 

sampling frequency of 16 kHz were selected from the TIMIT speech database and 

their durations were in the range of 4000 ms to 4700ms. For each speech sentence, we 

constructed 4 types of speech-noise chimaeric stimuli (Env4, Fin1, Env1, Fin8), the 
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spectrogram of which were shown in Figure 3-1. These speech-noise chimaeras 

contain speech information in either their envelope (ENV) or their fine structure 

(FIN) and another important variable is the number of frequency bands used to split 

sound (See Smith et al., 2002). The intelligibility scores for Env4, Fin1, Env1 and 

Fin8 were shown in a previous behavioral study to be 0.85, 0.7, 0.05 and 0.2, 

respectively (Smith et al., 2002). Correspondingly, they can be separated into 

‘intelligible speech stimuli’ containing original, Env4 and Fin1, and ‘unintelligible 

speech stimuli’ containing Env1 and Fin8. The whole stimuli set were then amplitude 

modulated at 50 Hz.   
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Figure 3-1.  Spectrograms of sentence materials and their manipulated versions. Each of the 

three original sentences was turned into chimaeral stimuli. Orig, Env4, and Fin1 are intelligible 

at different levels (100%, 85%, 70%, respectively); Env1 and Fin8 are not intelligible (and were 

always used as the second sentence in a given trial). Only intelligible sentences were analyzed. 

 

 
 
 

3.3.3 Experiment procedures 

In an initial pretest, the participants were presented with 1 kHz tone pips (duration 

50 ms) to determine their M100 evoked responses. Subjects were then told to listen to 

the (original and degraded) versions of spoken sentences. On each speech trial, two 

sentences were presented sequentially with 1-sec interval between them; subjects 

were instructed to indicate by button-press whether they were same or different 

sentences. The first one was always drawn from the intelligible set (original, Env4, 

Fin1), the second one was always unintelligible (Env1, Fin8). Each of the nine 

intelligible conditions (3 sentences, 3 intelligible conditions) was presented 21 times 

at a comfortable loudness level (~70 dB). Eleven other duration-matched sentences 

from the TIMIT database were selected and their unintelligible versions (Env1, Fin8) 

were constructed.  These unintelligible speech stimuli were randomly selected as the 

second stimulus in each speech trial. Only cortical responses to intelligible stimuli 

were extracted for further analysis.  

 
 

3.3.4 Data analysis 

‘Across-group’ signal construction  
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All response trials (21 here) for the same original speech stimulus are termed as 

‘within-group’ signals (3 ‘within-group’ signals corresponding to 3 original 

sentences). Then, 7 response trials (one third of the total 21 trials for each stimulus 

condition) are randomly chosen from each of the 3 ‘within-group’ signals and 

combined to construct a 21-trial ‘across-group’ signal. Three ‘across-group’ signals 

are constructed by repeating the random combination procedure 3 times.  

 

Dissimilarity function 

For each of the six 21-trial signals (3 ‘within-group’ and 3 ‘across-group’ 

signals), the spectrogram of the first 4000 ms of each single trial response was 

calculated using a 500 ms time window in steps of 100 ms for each of the 157 MEG 

recording channels, and the calculated phase and power as a function of frequency 

and time were stored for further analysis. The ‘cross-trial phase coherence (Cphase )’ 

and ‘cross-trial power coherence (Cpower )’ were calculated as: 
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Where nijθ  and nijA  are the phase and amplitude at the frequency bin i and 

temporal bin j in trial n, respectively. Both Cphase and Cpower will be in the range 
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of [-1 1]. Note that larger Cphase  value corresponds to strong cross-trial phase 

coherence, whereas smaller Cpower value corresponds to strong cross-trial power 

coherence. These calculated cross-trial coherence parameters (Cphase ,Cpower ) 

were compared between each of the 3 ‘within-group’ signals and each of three 

‘across-group’ signals separately. The dissimilarity function for each frequency bin i 

was defined as: 
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The resulted 3 dissimilarity functions (3 ‘within-group’ - ‘across-group’ pairs) were 

averaged, and in results, each of the 157 MEG channels has two dissimilarity 

functions as a function of frequency ( _Dissimilarity phase , _Dissimilarity power ), 

in which the value significantly above 0 indicates larger cross-trial coherence of 

‘within-group’ signal than that of ‘across-group’ signal.  

 

Phase dissimilarity distribution map 

The _Dissimilarity phase  function was then divided into 5 canonical 

electrophysiological frequency bands (Theta: 4~8 Hz; Alpha: 8~14 Hz; Beta1: 14~20 

Hz; Beta2: 20~30 Hz; Gamma: 30~50 Hz) and the average values within each 

frequency band was calculated, resulted in 5 _Dissimilarity phase  values for the 5 
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frequency bands respectively. ‘Phase dissimilarity distribution map’ for the 5 

frequency bands were then constructed separately in terms of the corresponding 

_Dissimilarity phase  value of all 157 channels in this frequency band, and drawn as 

a spatial map with large values represented by stronger red color and small values 

represented by stronger green color. For comparisons, for each subject, the pretest 

M100 responses at the latency of M100 were also extracted and the absolute values of 

all 157 MEG channels were drawn as a spatial map.    

 

Channels selection 

For each subject, 20 channels with maximum _Dissimilarity phase  value in 

Theta band (4~8 Hz) were selected for further classification and grand average 

analysis.  

 

Classification performance 

The classification analysis was performed on the selected 20 channels with 

maximum theta phase dissimilarity values, for each of the 6 subjects separately, to 

verify whether the theta band phase pattern is sufficiently robust to discriminate 

among the sentence stimuli in single MEG response trials. For each sentence, the 

‘theta phase pattern’ as a function of time for one single trial response under one 

sentence condition was arbitrarily chosen as a template response for that sentence. 

The ‘theta phase pattern’ of the remaining trials of all conditions was calculated and 

their similarity to each of the 3 templates was defined as the distance to the templates. 

The single trial response was then classified to the closest sentence template. The 
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classification was computed 1000 times for all the 21 trials in each stimulus 

condition, and for all the selected 20 channels in each subject, by randomly choosing 

template combinations. The classification results were then averaged to be in the 

range from 0 to 1, indicating the percent that an empirical single-trial response to a 

specific stimulus condition is classified to one stimulus condition.  

For the 9-condition classification analysis, because of the large computation 

requirement, the classification was only computed 200 times by randomly choosing 

template combinations.  

 

3.3 Results 

3.3.1 Theta-band phase pattern could discriminate speech signals 

To investigate whether information in the electrophysiological responses can be 

relied on to discriminate different speech sentence stimuli, we developed an analysis 

that could easily test the cortical activity patterns relevant to the representation of 

specific sentences in single trials. We call the response to trials for the same sentence 

conditions as ‘within-group’ signals. Correspondingly, we constructed ‘across-group’ 

signals by randomly mixing trials from different stimulus conditions (Figure 3-2a). 

The logic here is that if the phase pattern at specific frequencies successfully 

discriminates between sentences, as we hypothesized, the phase patterns of ‘within-

group’ signals should be more similar across trials than that of ‘across-group’ signals. 

In turn, the cross-trial phase coherence of ‘within-group’ signals should be larger than 

that of ‘across-group’ signals, because the response trials of formal signal contain 

relatively similar encoding activities for a specific same speech stimulus, whereas the 
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response trials of the latter signals are responses to different speech stimulus. On the 

other hand, if the hypothesis is wrong and there are no common activities across 

response trials to the same sentence, there should be no difference between the 

‘within-group’ and ‘across-group’ signals. The differences between these two types 

of signals were characterized by ‘Phase dissimilarity function’ (Figure 3-2b).  

We observed well-defined peaks in the 4-8 Hz frequency range in this ‘phase 

dissimilarity function’ in many channels (Figure 3-2b, upper row), indicating that the 

phase pattern in the theta band (4-8 Hz) rather than other frequencies could 

discriminate between the different sentence stimuli. The averaged ‘phase dissimilarity 

function’ across 20 selected channels representative of tracking ability confirms the 

role of theta band (Figure 3-2 b, right). To assess whether the observed phase-based 

discrimination ability is accompanied by corresponding discrimination ability in the 

power of the theta band response, we calculated the ‘power dissimilarity function,’ 

characterizing the difference in the across-trial power coherence between ‘within-

condition’ and ‘across-condition’ signals. There were no significant peaks in this 

analysis (Figure 3-2b, bottom row), confirming that stimulus discrimination is based 

on pure phase information.   
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Figure 3-2 Spectrograms of sentence stimuli and representative MEG data for one subject. a, 

Example stimuli and single-trial responses (blue, red, green) from one channel. ‘Within-group’ 

bins (same color) constitute responses to the same condition, ‘across-group’ bins (mixed colors) 

to a random selection of trials across conditions. b, Left: ‘Phase dissimilarity function’ (upper) 

and ‘Power dissimilarity function’ (lower) as a function of frequency (0-50 Hz) for the same 

example channel. Grey box denotes the theta range (~4-8 Hz) where the ‘phase dissimilarity 

function’ shows peaks above 0. Right: averaged dissimilarity functions across 20 selected 
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channels showing maximum phase dissimilarity values in theta band for same subject (mean and 

standard error). c, ‘Phase dissimilarity distribution map’ for 5 frequency bands in same subject. 

Channels  depicted with stronger red colors represent large phase dissimilarity values. The 

‘theta phase dissimilarity distribution map’ shows the ‘dipolar’ distribution typical of auditory 

cortex responses.   

 
 

3.3.2 Auditory cortex origin of Theta-band phase tracking 

We examined the corresponding spatial distributions of such ‘theta phase 

dissimilarity function’, by drawing a spatial map indicating the dissimilarity values of 

all 157 MEG channels. Interestingly, the ‘theta phase dissimilarity distribution map’ 

showed a clear auditory cortex origin (Figure 3-2c). The spatial distributions for other 

frequency ranges were noisy and not indicative of localized underlying activity 

(Figure 3-2c). This analysis strengthens the argument that it is the phase of theta band 

activity in auditory cortex that tracks the sentential stimuli.  

Crucially, a ‘theta phase dissimilarity distribution map’ with auditory origin was 

observed in every subject (Fig 3-3, middle). For comparison, the contour maps for the 

M100/N1m, the largest and most robust auditory response originating in superior 

temporal cortex, are shown for each subject (Figure 3-3, left). This response is 

generated in superior temporal cortex roughly 100 ms after sound onset 24 and was 

elicited here in a pretest using 1 kHz pure tones pips. Despite large differences in 

response amplitude, the two spatial maps show a good spatial match, confirming the 

auditory cortex origin of the theta-band phase pattern. Note that the ‘theta phase 

dissimilarity distribution map” (Figure 3-3, middle) also shows right hemisphere 

lateralization. For each subject, the 20 MEG channels with the largest theta phase 
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dissimilarity were selected for further analysis and are the channels with stronger red 

color. 

 

 

 

 

 

 

 

Figure 3-3  Auditory cortex identification, ‘theta phase dissimilarity distribution map,’ and 

classification performance for all subjects. Left: M100 contour map for each subject. Red 

indicates large absolute response value at M100 peak latency. Middle: Theta phase dissimilarity 

distribution map. Right column: Classification performance. The horizontal axis represents the 

stimulus condition (Sen1, Sen2, Sen3) and the bar color represents the category (Sen1, Sen2, 

Sen3) this stimulus was classified to. The height of the bar represents the proportion that one 

single-trial to this stimulus condition (horizontal axis) was classified to this stimulus category 

(bar color). Note that the sum of the three clustered bars is 1. 
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3.3.3 Classification performances 

Strikingly, the data from all subjects showed good classification performance 

(Figure 3-3, right). For each of the 3 sentences, trials were classified with higher 

proportion into the correct category than not, indicating that the ‘theta phase pattern’ 

could be relied on for sentence discrimination in single trial responses.  

 

3.3.4 Discrimination ability correlates with speech intelligibility 

Beyond successful sentence classification, it can be demonstrated that the phase 

of the theta band response has compelling perceptual correlates. We show that the 

discrimination ability of ‘theta phase pattern’ correlates with intelligibility of the 

speech materials, by performing the same classification analysis on responses to 

degraded versions of the same sentences - the speech-noise chimaeras. We 

constructed two chimaeras for each sentence, 4-band chimaeras containing only 

acoustic envelope information (Env4), and 1-band chimaeras containing only fine 

structure information (Fin1). Their intelligibility level (proportion correct) is 0.85 and 

0.70, respectively, based on previous studies. This analysis reveals degraded 

classification performance (Figure 3-4, middle, lower) compared to that of the 

original sentence stimuli (Figure 3-4, upper), although the classification performance 

for these degraded speeches is still very good in all subjects. The less intelligible a 

sentence is, the less reliable is the theta phase pattern. Figure 3-5 showed the grand 

average of classification performance for the three speech versions across the six 

subjects. 
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Figure 3-4 Classification performances for all 6 subjects. Upper: Original speech sentence 

classification. Middle: Env4 speech-noise chimera classification. Lower: Fin1 speech-noise 

chimera classification 

 

 
 

 
 
Figure 3-5 Classification performance as a function 

of intelligibility. Less intelligible stimuli show 

parametrically degrading classification. Top: 

Discrimination of 3 original sentences. Middle: 

Discrimination of three Env4 sentences. Bottom: 

Discrimination of three Fin1 sentences. The percent 

value in each figure indicates the intelligibility score 

from a previous experiment  
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3.3.5 Category membership  

We tested whether the ‘theta phase pattern’ could reflect ‘category membership’ 

of Env4 and Fin1 responses to the corresponding original (undistorted) speech signal 

by doing the same classification across all nine stimulus conditions (3 sentences ×  3 

stimulus manipulations). The grand average of the nine-condition classification 

performance is summarized in a 9-by-9 classification matrix for illustration purposes 

(Fig. 3-6a). The elements on main and sub- diagonal axes denoted by red lines 

indicate the correct classification to the stimulus condition itself and the classification 

to other versions of the same sentence, respectively. These diagonal axes more or less 

showed peak values. Such ‘clustering’ of different versions of the same sentence is 

shown more explicitly in Figure 3-6b. The three versions (Orig, Env4 and Fin1) of 

each sentence were mostly classified into the corresponding sentence category 

(rectangular boxes) rather than into other groups. Moreover, among the three versions 

of each sentence, Fin1 stimuli showed the lowest classification performance, in 

accordance with the corresponding lower intelligibility scores.   
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Figure 3-6  ‘Theta phase pattern’ reflects category membership. a, Grand average of 9-condition 

classification matrix across 6 subjects. Each cell in the matrix represents the percent that a 
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response trial for this stimulus condition (corresponding row) was classified to this stimulus 

category (corresponding column). The sum of each row is 1. Red lines indicate the main diagonal 

and sub-diagonals, where the response was classified to stimulus itself or members in the same 

category (different versions of same sentence). b, Classification histograms for each of the 9 

stimulus conditions (3 sentences ×  3 manipulated conditions). Rectangles indicate the range of 

corresponding correct category membership. For example, for all 3 versions of sentence 1 

denoted by red vertical line (upper three rows), the rectangle covers the stimulus conditions all 

belonging to sentence 1, and should be classified into with higher percent than into other 

rectangles. Error bars indicate the standard error across 6 subjects.        

 

3.3.6 Classification performance develops over time 

We examined the time course of the classification performance in terms of theta 

band phase pattern in each trial. We extracted the temporal segment (first 500 ms, 

first 1000 ms, first 2000 ms, first 3000 ms and first 4000 ms) of recorded MEG 

responses and did the same classification performances as we did before on them 

separately and compared the classification performances. Interestingly, we confirmed 

a gradual development of such classification ability based on theta phase pattern. 

Specifically, the correct classification began to emerge around 2000 ms from the 

beginning of speech sentence stimulus onset, as shown in Figure 3-7. 
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Figure 3-7  Sample classification matrices as a function of integration time for 2 subjects. A six-

condition (Original and Env4 versions of 3 sentences) classification analysis is shown. For 

example, 500-ms classification performance was calculated on only the first 500 ms of response, 

1000-ms classification performance was calculated on the first 1000 ms of response, and so on. 

Unsurprisingly, because of the long period of theta (~200 ms), the MEG-recorded response must 

be collected over several periods before it becomes a robust discriminator. For Subject 2, robust  

discrimination ability emerged around 2000 ms, and for subject 4, the discrimination ability 

emerged around 3000 ms. 

 

 

3.4 Discussion 

3.4.1 MEG data reflect system activities 

Different views of macroscopic activities in neuroimaging studies lead to different 

analysis methods employed to examine MEG/EEG activities. Although in animal 

neurophysiology studies using species-specific communication sounds, single 
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neurons were found to fire precise temporal spike patterns for the same stimulus 

across lots of trials (Mechans et al., 2003; Narayan et al., 2006), such precise and 

stable response could not be confirmed in MEG/EEG activities. It is often argued that 

the reasons for these noisy macroscopic responses are the low signal-to-noise ratio of 

such recording, and the mixture of different temporal spike patterns of underlying 

single neurons firing. Based on this view, averaging temporal waveform of 

MEG/EEG response across lots of trials is regarded to be able to more or less remove 

the noise. In addition, also from the same perspectives, the temporal peaks/troughs in 

the recorded MEG temporal waveform are regarded as the important information-

carrying components at macroscopic level corresponding to those spiking at 

microscopic level. However, this linear view could not explain many discrepancies 

between activities at the macroscopic and microscopic level. For example, M100, a 

MEG big response happened around 100 ms after stimulus onset, is traditionally 

viewed as onset response and is resulted from the peaky spiking activities of 

underlying neurons. However, single-cell studies showed that single neurons actually 

fire spikes only several milliseconds after stimulus onset. Therefore, the temporal 

peaks/troughs in macroscopic activities (here MEG) could not be simply explained by 

microscopic single-cell activities, even considering the transfer delay.  

On the other hand, in spite of good spatial and temporal resolution in 

neurophysiological recordings, there still exist many problems that single cell studies 

could not answer directly or possible, especially at cortical level where neurons seem 

to do more abstract and complicated work. For example, it is still hotly debated 

whether there are ‘call specific’ cells in animal auditory cortex, because although 



 

 139 
 

these cells show preference to calls, they seem to be also involved in many other 

tasks, even in other sensory domains. It has been confirmed that many acoustic 

features are well represented in some cortical neurons, but the whole picture of the 

representation of a unified auditory object remains obscure, because of the 

microscopic-level recording, and it is analogous to ‘see trees instead of forest’.  

Complementarily, MEG/EEG is an ideal technique to overcome these 

shortcomings of single-cell studies in animals. We could observe normal human brain 

activities in real time, non-invasively, and thus could get the most direct information 

about human brain responses during normal cognitive tasks. Secondly, MEG/EEG 

activities come from activities and interactions of large numbers of underlying 

neurons and reflect the system activities or brain states which could not be assessed 

from single-cell recordings. System activities have been shown to be significantly 

important in stimulus encoding, category learning, memory in previous studies, and 

are argued to be more behaviorally relevant. For example, in a neurophysiology 

studies (Ohl et al., 2001), where Mongolian gerbils were trained to categorization of 

frequency-modulated sweeps with different sweeping direction (‘rising’ or ‘falling’), 

electrical activities in the auditory cortex were recorded during this learning process. 

The behavioral transition to successful learning of categorization could not be 

observed in activities in single unit. However, when regarding the population 

activities as a multiple dimension signal space, they showed a strikingly correlation 

with behavioral transition. In other words, it is the complex and dynamic brain state 

and population activities that are of close relevance to behavioral perception. Recent 

advances in neuroimaging have also shown that it is possible to accurately decode a 
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person’s conscious experience based only on employment of pattern-based 

approaches in non-invasive measurements of their brain activities. For example, 

multivariate neuroimaing approaches, in contrasts to strictly location-based 

conventional analyses in fMRI studies, by taking into account the full spatial pattern 

of brain activities measured simultaneously at many locations, could dramatically 

increase the information that can be decoded about the current mental states. Recent 

work demonstrated that pattern-based decoding of BOLD fMRI signals acquired at 

relatively low spatial resolution can successfully predict the perception of low-level 

perceptual features, for example, the orientation, direction of motion and even 

perceived color of a visual stimulus presented to an individual subject (Kamitani & 

Tong, 2005; Haynes & Rees, 2005). In a fMRI study examining binocular rivalry, by 

training a pattern classifier to distinguish between distributed fMRI response pattern 

associated with the dominance of each percept, this classifier could achieve a 

dynamic prediction of any perceptual fluctuation with high temporal precision 

(Haynes & Rees, 2005). These fMRI findings also strongly indicate that population 

activities across multiple locations and dynamic system activities contain important 

information about an individual’s current perception and cognitive state. MEG/EEG 

techniques, non-invasive recordings of macroscopic activities, provide an easy and 

direct way to examine the system activities which are difficult to be gained and 

computed in neurophysiology studies.   
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3.4.2 Information are embedded in endogenous brain oscillations 

Considering the novel information MEG/EEG responses provide, new 

perspectives to examine them are also necessarily required. Different from traditional 

view regarding MEG/EEG temporal responses as event-related temporal 

peaks/troughs patterns, it has been suggested for a long time that these event-related 

potentials are generated by a superposition of evoked oscillations at various 

frequencies, and in response to stimulus presentation, these brain rhythms undergo a 

significant resetting or changes in phase and amplitude (Basar, 1998). In other words, 

this view, distinct from viewing onset MEG/EEG responses (e.g., M100, N1, P1, etc) 

as some big response peaking from baseline in response to stimulus, interprets the 

emergence of this peaks/troughs as reorganization and adjustment of ongoing brain 

rhythms according to incoming stimulus onset (e.g., Makeig et al., 2002; Gruber et 

al., 2005). This view has several indications: First, brain background activities or 

spontaneous activities are dominated by endogenous oscillations at various 

frequencies, different from traditional view of regarding them as a static flat baseline. 

Secondly, in response to incoming stimulus, these ongoing oscillations modulate their 

properties (e.g, phase resetting, amplitude resetting, etc) accordingly to track the 

dynamic structure, different from traditional stimulus-evoked peaks view. Thirdly, the 

advantage of this view over traditional view is that it can provide a better and realistic 

brain working mechanism underlying human ‘innate world’, which is continuously 

ongoing and not directly related with outside stimulus. This view could also solve a 

crucial ‘context dependent’ problem by regarding the background brain oscillations as 

‘context’ in which the incoming information is incorporated and processed. As stated 
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in a review by Penny et al. (2002), “this is a radically different perspective, which 

could cast new light onto how cognitive and perceptual processes are implemented in 

the brain”. 

Concerning the tracking mechanism of oscillations, phase and amplitude are the 

most two important features to describe a change in an oscillation at some specific 

frequency, and correspondingly, amplitude modulation and phase modulation of these 

brain rhythms according to outside stimulus are the possible main mechanisms 

employed. Freeman and Schneider demonstrated the existence of AM mechanism on 

the olfactory bulb. Specifically, the EEG is a strong periodic waveform, with a spatial 

distribution of amplitude over the bulb that is consistently different for each specific 

odor. Partial phase synchronization and resetting has been found to happen in 

response to visual stimulus onset and working memory task. As described in Chapter 

2, our experiment using co-modulated stimuli also confirmed the phase modulation 

encoding as a way to co-represent the simultaneous envelope and fine structure 

dynamics.  

In this study, we observed the phase modulation of Theta band (4~8Hz) in 

tracking natural speech sentences, confirming the phase modulation as a general 

macroscopic activities information carrier. These finding also explained the reasons 

for the failures in finding the stimulus-specific response in single trials in many 

previous studies. The observed temporal response in each trial is actually sum of 

brain oscillations at various frequencies, each of which works in a stimulus related or 

non-related manner, and therefore, the tracking correlates will be deeply immerged in 

this summed and complicated oscillation responses. In addition, even when we only 
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look at responses at theta band, we still could not find the stimulus specific pattern, 

because it is the phase here rather than amplitude that represents and tracks the 

incoming stimulus, whereas the temporal waveform is a complex composite of these 

two factors. These findings also indicate that the main dimensions along which we 

investigate these macroscopic dynamic responses to seek perceptual correlates are 

properties of brain oscillation at various frequencies, and it may be one band or 

multiple bands, and it may be amplitude or phase, or both that contribute to such 

representation and be of close relevance with behavior. Our previous experiment 

using simultaneous amplitude- and frequency-modulated sounds also suggest that 

gamma band (~40 Hz) modulate their phase to track the fine structure dynamics (Luo 

et al., 2006). Interestingly, in a study investigating somatosensory system of rats 

(Ahissar et al., 1997), temporally encoded information in sensory input (whisker 

movements) was found to be decoded actively via ‘phase comparators’. Specifically, 

single units in the somatosensory cortices are found to exhibit spontaneous 

oscillations around 10 Hz, and the oscillations could track the induced rhythmic 

whisker movements via the frequency-dependent phase difference. It was further 

found that these neurons functions as phase comparators that compare cortical timing 

expectation with the actual timing, rather than passive phase tracking. In sum, 

tracking stimulus dynamics via phase modulation mechanism is in fact a general 

mechanism neuron ensembles employ.  
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3.4.3 200ms temporal processing window 

Different cortical oscillations have been found to play different roles in cognitive 

tasks and here we found it was theta band that shows significant correlates to speech 

sentence processing and speech intelligibility. The reasons underlying this specific 

frequency band is probably the statistic temporal structure of speech signals (Dau et 

al., 1997; Elhilali et al., 2003). 

Neurons throughout the auditory system are subject to adaptive processes, 

tailoring their encoding schemes to match the local sensory environment. Many 

studies have shown that auditory neurons are tuned for acoustic features found in 

species-specific communication sounds and process their vocalizations in a more 

efficient and optimized manner. Neural plasticity studies also found that neurons 

adjust their response properties according to the statistic structure of incoming 

complex sounds, to improve the encoding efficiency (Nelken et al., 1999; Dean et al., 

2005). Corresponding to the speech processing in human auditory cortex, it is the 

statistical structure, especially the main dynamic temporal properties of human 

speech signal (Greenberg, 2003; Poeppel, 2003), that tunes the auditory encoding 

schemes in human brain.  

The basic unit of speech perception is syllable, and reliable information pertaining 

to syllable appears to be essential for understanding of speeches. The typical length of 

a syllable in fluent speech is around 200 ms, which is also a important temporal value 

long enough to provide some measures of perceptual stability through correlations 

across many parts of the brain, and at the same time, short enough to provide a 

sufficiently dynamic representation of the stimulus. It is also a ubiquitous interval in 
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sensory-motor integration, and a minimum time for a motor reaction to occur. In 

other words, 200 ms is a critical value not only in statistical temporal structure of 

speech signals, but also reflect a general cortical processing scale. Therefore, it is 

reasonable that Theta band (4-8 Hz), the frequency corresponding to ~ 200ms, were 

found to be the main brain working rhythm that track and represent the speech 

sentence stimuli.  

One of the most important roles played by the auditory system is to provide 

segmental information. It has been shown that hearing impaired patients could gain 

significant benefits from additional segmental information, which provide 

independent information about these phonetic boundaries. In absence of such 

segmentation information, the ability to understand speech will be severely 

compromised. Therefore, in order to grasp and extract the information of the syllable-

like units in the speech stream, the most naïve and efficient brain working mechanism 

is to analyze the incoming continuous acoustic streams by temporal window with 

length of also around 200ms. This window slides over time and resets in a way to 

mark the syllable boundaries, in result, the dynamic speech information is processed 

and stored in a most efficient manner. This is what exactly observed in this MEG 

experiment that theta phase pattern could reliable discriminate different speech 

sentences, which indicates that the 200ms temporal window (period of theta band) 

resets in a particular pattern (leading to different phase) closely correlated with each 

specific speech sentence. Note that different speech sentences all contain syllables 

with same length and rate, but the detailed timing information is distinct. Therefore, 

to track those different temporal patterns in each speech sentence, the 200ms 
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temporal window manifest different resetting timing pattern, leading to different 

phase pattern in theta band observed in our experiment. This interpretation could also 

account for the noisy classification performances here (see Figure 3.5). If the 

proposed 200ms temporal window resets according to the syllable boundaries in each 

sentence, the resulting phase patterns across trials should be coherent only at time 

points when syllable boundaries occur and not at others. Correspondingly, the 

classification performance, by using the theta phase pattern of single-trial responses 

as a template, would deteriorate because of the noisy theta phase values at non-

syllable-boundary time points.  

A way to test directly whether the theta phase is reset according to syllable 

boundaries is to look for any relationship between the stimulus and the theta-band 

phase coherence. This was difficult because there is not a natural way of defining 

syllable boundaries in terms of the speech spectrogram. I did a preliminary analysis to 

approximate the stimulus-response relationship, as shown in Figure 3-8. So far, my 

investigations have not revealed which acoustic features or transients in the speech 

stimulus are represented or tracked by the theta-band phase in the brain response.  
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Figure 3-8 Stimulus-response relationships. Upper panel: spectrograms of the 3 natural 

speech sentences. Lower panel: theta-band phase coherence as a function of time, averaged 

across 20 channels and 6 subjects.  

 

Another interesting question is that whether these 200ms temporal window found 

here is a ubiquitous property for all the sensory processing, or is unique for speech 

signals because of their statistical properties. Further experiments using other 

auditory signals or in other sensory domain could provide convincing answers. 

 

3.4.4 Stimulus-related or perceptual-related  

We also found that the discrimination ability of theta phase pattern in recorded 

MEG signals were correlated with speech sentence intelligibility. In other words, the 

phase tracking in theta band was found to be related with behavior and perception. 

Here we constructed less intelligible speech signals by manipulating their acoustic 
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properties (e.g., envelop information, fine structure information, etc), and therefore a 

related interpretation is that maybe such manipulation itself degraded the speech 

signals, specifically, the boundaries between syllables may become murkier, and may 

lead to the worse tracking ability of responses. A good test to see whether this 

tracking is stimulus-related or perceptual-related is to use same stimulus on subjects 

with different language experiences. For example, non-English subjects may show 

worse tracking ability when compared to English subjects using same speech 

sentence stimuli.   

 

3.4.5 Control experiment  

We amplitude modulated all of our sentence stimuli at 50 Hz, because we 

originally expected to find some properties of 50 Hz could track speech sentence 

dynamics. This hypothesis was motivated by previous experiments (Patel & Balaban, 

2000) which showed that when employing amplitude modulated tone sequences, the 

response phase at the amplitude modulation frequency (37 Hz in that experiment) 

could track the tone sequence. The observed theta band phase discrimination ability 

does not depend on the 50 Hz amplitude modulation of the sentences: All stimuli 

were amplitude modulated at 50 Hz, and the observed discrimination ability was at 

theta band, far away from the 50 Hz range. We ran a control subject using 4 sentence 

stimuli (including the 3 used in this experiment) without 50 Hz amplitude modulation 

and we observed fine classification performance based on the theta band phase 

pattern and reasonable auditory cortex origin (Figure 3-8) 
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Figure 3-9 Performance of one control subject tested with 4 original speech sentences without 

amplitude modulation. 

 
 

 
 

3.5 Summary 

The coding of natural speech in the auditory cortex remains a central but thorny 

problem. Neurophysiological studies have shown the remarkable encoding 

possibilities provided even by single cells. However, these are not linked to speech 
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intelligibility in humans. Similarly, hemodynamic imaging studies provide data on 

intelligibility and the role of human auditory cortex, but the recordings are by 

necessity indirect. In this study, we probed the human auditory system with natural 

speech sentences and examined the representation mechanism manifested in MEG 

responses. Specifically, could the MEG response in a single trial contain information 

that reliably tracks sentences and can be relied on to discriminate sentences? 

Moreover, we asked whether this discrimination ability is related to speech 

intelligibility, by additionally employing degraded speech sentences.  

We demonstrate that response attributes in single trials of MEG-derived cortical 

responses suffice to discriminate among sentence stimuli. Specifically, the ongoing 

phase pattern of theta band (4-8 Hz) responses from human auditory cortex robustly 

tracks and represents sentences. The discrimination performance evolves over the 

time of a trial and is strongly present by 1000-2000 ms post-stimulus onset. The 

ability to distinguish among stimuli is correlated with sentence intelligibility and 

depends on the difference in both acoustic envelope and fine structure of the speech. 

Another very novel and consistent finding is that the representation and 

discrimination ability showed right hemisphere lateralization.  

On our view, these data have four major implications. First, the newly observed 

‘theta phase tracking’ mechanism supports the systems neuroscience view of EEG 

and MEG activity on which such electrophysiological data represent endogenous 

brain states and reflect stimulus-induced modulation of brain rhythms that are core 

attributes of the system. Specifically, the ongoing theta band undergoes phase 

resetting or phase modulation according to temporal transitions in speech sentence 
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stimuli, leading to the observed discrimination ability of the theta phase pattern.  

Secondly, the theta band (4~8 Hz) corresponds to a temporal window of 125~250 ms, 

which is the mean length of syllables across languages, also matching with the 

sensory efficient coding theory that the auditory system is shaped by the main 

statistical temporal structure of species-specific communication sounds. Thirdly, the 

observed rightward lateralization of the theta phase pattern supports a critical role for 

the right hemisphere in processing speech sentences, specifically at a relatively 

slower temporal scale of ~200ms (the period of the theta band). Finally, the theta 

band phase findings can be seen as a direct invasive cortical measure of the speech 

transmission index (STI), the standard metric used to quantify the relevance of 

temporal modulation to spoken language understanding in psychophysical research 

on intelligibility (Greenberg & Arai, 2001; Elhilali et al., 2003). 

Cumulatively, our results suggest that sentence stimuli are continuously 

segmented by a temporal window of ~200 ms duration, a value optimized for one 

crucial aspect of the statistical temporal structure of speech, roughly the syllable flow. 

This ongoing sampling window—in our data somewhat biased towards the right 

hemisphere (see Figure 3.3) even though we are presenting speech—resets in a 

pattern closely tied to the dynamic structure of speech, including both envelope and 

fine structure changes. The findings thus support the rightward lateralization of a 

hypothesized long temporal window in speech and hearing, and the critical role of 

this temporal window in speech sentence understanding. 
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Chapter 4: Conclusions 

 

The main goal of the current research is to understand the way in which auditory 

stimulus dynamics are represented and tracked in the human auditory system, 

particularly in cortex.  Because MEG has been the main tool used in this endeavor, a 

pertinent question is how magnetic fields recorded from the human scalp should be 

interpreted and related to the activity of underlying neuron ensembles. This chapter 

summarizes the results reported in Chapters 2 and Chapter 3 and proposes their 

implications for general brain mechanisms on the macroscopic scale.   

 

4.1 Research summary 

To study the representation of auditory dynamic in human auditory cortex, I 

probed the human auditory system with a set of stimuli containing rich speech-like 

temporal dynamic structures and recorded the magnetic responses elicited. In 

Experiment I, as detailed in Chapter 2, relatively simple auditory stimuli were 

employed. These stimuli were designed to have dynamics in both amplitude (AM) 

and fine structure (FM) in order to address a fundamental question in auditory 

neuroscience: how are these two fundamental temporal modulation features (AM and 

FM), which always occur simultaneously in natural communication sounds, co-

represented in human auditory cortex to achieve ‘auditory object unity’? Furthermore, 

we systematically increased the stimulus dynamics in order to examine possible 
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encoding transitions concomitant with gradual changes in temporal modulation rate. 

The key finding in this study is that we identified ‘modulation encoding’ as the 

binding mechanism that unifies these two temporal modulation features. In addition, 

based on the smooth transition we observed in many aspects of the response, we 

proposed a corresponding transition from phase-to-amplitude modulation encoding.  

In Experiment II, detailed in Chapter 3, rather than employing artificially 

designed ‘atomic’ dynamic auditory stimuli, natural human speech sentences were 

used to investigate the neural correlates of natural complex auditory signals. The 

principal finding was that the phase of the theta-band (4~8 Hz) recorded from human 

auditory cortex robustly tracked speech sentence stimuli in real time, and could be 

relied on to discriminate sentences, even in single trials. Crucially, this phase tracking 

ability and robustness strongly depended on the intelligibility of the speech sentence 

stimuli.  

Both experiments addressed the main topic of this thesis-how sound dynamics are 

tracked by the human auditory system. Importantly, both studies employed either 

auditory stimuli containing relevant speech-like temporal modulation features or 

natural speech sentences to investigate the most crucial and challenging issue in 

cognitive neuroscience-finding the neural correlates of human speech processing and 

recognition. This issue is also essential to understanding the human auditory system 

from an evolutionary perspective that proposes the development of its functional 

structure was geared towards optimizing the processing of species-specific 

communication sounds. .Furthermore, the two experiments used MEG, an appropriate 

and advanced non-invasive brain imaging technique with very high temporal 
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resolution (~1 ms), to monitor brain responses to dynamic auditory stimuli. In the 

search for the link between the dynamic internal world and the dynamic external 

world, a new perspective has emerged; researchers are starting to move from past 

traditional MEG analysis, which focuses on large peaks and troughs in the signal and 

on dipole localization, and are beginning to explore the spectral domain, motivated by 

the idea that MEG/EEG signals are really the sum of innate brain oscillations at 

various frequency bands, each of which plays a distinct and crucial role in sensory 

and cognitive tasks. Experimental findings based on this new analysis provide novel 

perspectives on the MEG signal and the relationship between different recording 

scales (microscopic activity and macroscopic activity). Most importantly, the 

macroscopic responses reflected in the MEG data were found to be directly pertinent 

to behavioral perception, suggesting their critical relevance to human cognition.    

 

4.2 Tracking sound dynamics 

In single-cell recording studies, neurons have been found to fire spikes that track 

temporal transients in amplitude or in frequency; these cells also showed selectivity 

for specific modulations, characterized by the temporal modulation transfer function. 

At this microscopic level, two main encoding schemes are widely employed to 

represent and track dynamic sound: temporal coding and rate coding. The former, by 

firing spikes temporally locked to stimulus amplitude or frequency transients, 

explicitly encodes and tracks the ongoing feature changes in an incoming stimulus. 

The latter, in contrast, implicitly encodes and tracks stimulus dynamics by firing 

spikes at a rate that is related to the modulation rate of the stimulus. These two 
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fundamental encoding schemes encompass most if not all of the representation 

mechanisms reported in neurophyisological studies. This is not really surprising, 

considering that single cells fire all-or-none spikes with relatively fixed-amplitudes, 

and the only parameters neurons can adjust in their spike patterns for encoding 

purposes are spiking rate and spiking time, corresponding to rate coding and temporal 

coding respectively. 

The Experiment I explored the co-representation mechanism for concurrent AM 

and FM features. The results point to a combinational encoding scheme that 

simultaneously tracks transients in stimulus amplitude and fine structure. Specifically, 

this co-representational encoding method unifies rate coding and temporal coding into 

a combinational encoding scheme by varying the firing rate to represent AM features 

and by simultaneously varying the local firing time (PM encoding neuron groups) or 

firing rate (AM encoding neuron groups) to represent FM features.  

The Experiment II investigated neural representation of natural speech sentences 

and revealed a distinct tracking scheme that is robustly present in all 6 human 

subjects tested and in single trials. The results indicate that it is the ongoing phase of 

the theta-band (4~8Hz) in the MEG signal that tracks and discriminates speech 

stimuli, and neither spectral power nor the oscillations at other frequency bands are 

found to be involved in the representation of speech dynamics. In other words, the 

stimulus-related dynamic information manifests a more complex format in the 

corresponding macroscopic activities, and is embedded in and carried by a certain 

parameter (the phase pattern here) of certain brain oscillation rhythms (here, the theta 

band). Most interestingly and crucially, this observed tracking ability is correlated 
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with human subject behavior in that only intelligible speech sentences elicited robust 

representation; the MEG signal evoked by less intelligible speech shows a less robust 

tracking pattern, suggesting that this distinct representation and tracking mechanism 

(embedded in the parameters of certain brain oscillations) found in macroscopic 

activities may constitute a direct neural correlate of high-level cognitive processing in 

humans.  

Let us return now to Experiment I. If we revisit the results of Experiment I in light 

of evidence showing the critical role of gamma-band (30~50 Hz) modulations in 

constructing the aSSR (Ross et al., 2005), we can make the outcome more 

commensurate with findings from Experiment II by reinterpreting the results of the 

Experiment I in terms of oscillatory brain activity. Instead of explaining recorded 

activity from the perspective that neuron groups achieve modulation encoding by 

manipulating spiking rate/time, we take the position that the recorded signal is the 

result of oscillatory brain activity and that parameters (amplitude and phase) of the 

gamma band (30~50 Hz) are modulated to track stimulus dynamics. The gamma band 

co-represents stimulus transients via modulations in its amplitude and phase.    

Unifying Experiment I and Experiment II, we conclude that sound dynamics are 

tracked by different representational mechanisms and have different formats at the 

microscopic activity level (single-cell recordings) and the macroscopic activity level 

(MEG/EEG signals). At the macroscopic level, cortical responses to dynamic stimuli 

manifest induced, continuous amplitude- or phase- modulation at certain brain 

rhythms to track the ongoing feature changes in incoming stimuli. Specifically, the 

gamma band and theta band played critical roles in Experiment I and Experiment II, 
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respectively The distinct frequency bands observed in these two experiments may be 

related to the statistical structure of the stimuli and also suggest that the brain may 

function on multiple temporal scales (temporal period corresponding to frequency 

band), specifically, a short (~ 40ms) temporal window (corresponding to the gamma 

band) and a long (~200ms) temporal window (corresponding to the theta band).      

 

4.3 Modulation schemes as a general representation mechanism 

Macroscopic brain activity is dominated by oscillations at various frequencies, 

which are the basic information-carrying components at this level. These rhythms are 

endogenous innate oscillations; that is, they are continuously present in background 

brain activities, and they show their own complex dynamics not directly triggered by 

outside input. As previously discussed, at the single-cell (microscopic) level, rate and 

time are the two basic parameters of a spike firing pattern that could be employed to 

carry information, leading to rate coding and temporal coding, respectively. Similarly, 

at the macroscopic level (reflected in the MEG/EEG signal), where oscillations at 

various frequencies are the main working components, the amplitude and phase of 

these oscillations are the two main properties that could be the basic elements of 

representation, corresponding to amplitude modulation (AM) and phase modulation 

(PM), respectively (See review by Penny et al., 2002). Both of these modulation 

representation schemes have been observed in the two experiments, and importantly, 

they are found to be closely related to perception and cognitive tasks.  

Of these two encoding schemes possibly employed by innate brain rhythms, phase 

modulation (PM) is especially interesting and important because of its capacity to 
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incorporate more precise temporal information and its closer relationship with the 

concept of temporal windows. Phase modulation means that the oscillations are 

constantly resetting their phase to reflect transients in an incoming stimulus, such as 

stimulus onset, amplitude change, fine structure change, segmental information, etc. 

In other words, a temporal window with length equal to the period of oscillation 

rhythms segments the incoming information continuously, resetting the phase in order 

to track the external transients. The critical roles of the gamma band (30~50 Hz) and 

the theta band (4~8 Hz) suggest the presence of multiple temporal processing 

windows in brain working mechanisms, specifically, a short temporal window of ~ 40 

ms and a long temporal window of ~ 200 ms.    

In sum, the outside world is not represented and reflected in the inside world in a 

direct way. Instead, these two complex, dynamic systems are coupled indirectly via 

modulation schemes. Specifically, the inside world works through various innate 

rhythms that are modulated by the outside world to achieve a unified, dynamic image 

that bridges the external and internal worlds.         

 

“We are confronted with a system that addresses the external world not as a 

slumbering machine to be awoken by the entry of sensory information, but rather as a 

continuously humming brain. This active brain is willing to internalize and 

incorporate into its intimate activity an image of the external world, but always 

within the context of its own existence and is own intrinsic electrical activities.”  

 

- Rodolfo R. Llinas ‘i of the vortex: From Neurons to Self’ 
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4.4 Essence of MEG activities 

What new information can be gained from non-invasive brain imaging 

techniques, specifically MEG? The most obvious and foremost advantage is that 

MEG allows measurement of human brain activity during normal cognitive tasks, 

which is impossible to achieve with invasive neurophysiological studies in animals. 

High temporal resolution and fine spatial resolution are also widely cited benefits of 

this recording technique. However, even in the ideal case, where we could record 

from the human brain with high resolution in both the temporal and spatial domains 

simultaneously, as is possible with electrodes in animal studies, could we really 

acquire comprehensive knowledge about the mechanisms of the brain? MEG data 

actually can provide us with novel perspectives and new information about how the 

brain works.  

Typical measured electromagnetic signals require synchronous activation of 

10,000-100,000 neurons, and therefore MEG data cannot be treated as the linear sum 

of single-cell activities, but instead more or less reflect temporal coherence across 

large neuron populations-in other words, the ‘working rhythms’ of the brain machine. 

Temporal coherence across neurons is believed to be the neurological mechanism that 

underlies perceptual unity and the conjunction of individually derived sensory 

components. Therefore, the MEG signal naturally and directly reflects high-level 

cognitive processing, which is difficult and even impossible to assess from single-cell 

recordings. In other words, MEG data reflect the system activities and ‘brain state’ 

that are closely relevant to perception and behavior, and manifest a dynamic and 
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flexible coordinates within which external sensory stimuli and internal mental states 

are unified seamlessly. Correspondingly, the interpretation of the MEG signal should 

come from the perspective of systems neuroscience: these fluctuating magnetic 

signals must be understood as modulations of various endogenous, oscillating 

rhythms in the brain.  

 

“Mapping connectedness in the time domain, superimposed on top of the limited 

possibilities of spatial connectedness, creates a vastly larger set of possible 

representations through the almost infinite possibilities of combination”.  

 

- Rodolfo R. Llinas ‘i of the vortex: From Neurons to Self’ 
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