User's Guide for FSQP Version 1.0B
A Fortran Software for Solving
Optimization Problems with
General Inequality Constraints and
Linear Equality Constraints,
Generating Feasible Iterates

by J. Zhou and A.L. Tits

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 89-61r1

User’s Guide for FSQP Version 1.0B
A Fortran Software for Solving Optimization Problems with

General Inequality Constraints and Linear Equality Constraints,
Generating Feasible Iterates!

Jian Zhou and André L. Tits

Electrical Engineering Department
and
Systems Research Center

University of Maryland, College Park, MD 20742

Abstract

FSQP is a set of Fortran subroutines for the minimization of a smooth objective func-
tion subject to nonlinear smooth inequality constraints, linear inequality and linear equality
constraints, and simple bounds on the variables. If the initial guess provided by the user
is infeasible, FSQP first generates a feasible point from the given point. Subsequently the
successive iterates generated by FSQP all satisfy the constraints. The user also has the
option of requiring that the objective value decrease at each iteration after feasibility has
been reached. The user must provide subroutines that define the objective and constraint
functions and may either provide the subroutines that define the gradients of these functions
or require that FSQP estimate them by forward finite differences.

FSQP uses an algorithm based on Sequential Quadratic Programming (SQP), modified
so as to generate feasible iterates. A certain arc search ensures that the step of one is
eventually satisfied, a requirement for superlinear convergence. The merit function used in
this arc search is the objective function itself, and either an Armijo-type line search or a
nonmonotone line search borrowed from Grippo et al. may be selected.

1This research was supported in part by NSF’s Engineering Research Centers Program No. NSFD-CDR-
88-03012, by NSF grant No. DMC-88-15996 and by a grant from the Westinghouse Corporation

Contents

1

Introduction

Description of the Algorithm

Specification of Subroutine FSQPD
Description of the Output

User-Supplied Subroutines

Organization of FSQPD and Main Subroutines
Example of Use

Results for Test Problems

References

12
14
17

19

User’s Guide for FSQP 1

1 Introduction

FSQP (Feasible Sequential Quadratic Programming) is a set of Fortran subroutines for the
minimization of a smooth objective function subject to nonlinear inequality constraints,
linear inequality and equality constraints, and simple bounds on the variables. If the initial
guess provided by the user is infeasible, FSQP first generates a feasible point from the given
point. Subsequently the successive iterates generated by FSQP all satisfy the constraints.
The user also has the option of requiring that the objective value decrease at each iteration
after feasibility has been reached. The user must provide subroutines that define the objective
and constraint functions and may either provide the subroutines that define the gradients of
these functions or require that FSQP estimate them by forward finite differences.

FSQP implements an algorithm that follows the method described and analyzed in [1],
with some additional refinements. This method is based on a Sequential Quadratic Pro-
gramming (SQP) iteration, modified so as to generate feasible iterates. The SQP direction
is first “tilted” to yield a feasible direction, then “bent” to ensure that close to a solution the
step of one is accepted, a requirement for superlinear convergence. The merit function used
in searching along the resulting arc is the objective function itself, and either an Armijo-type
line search or a nonmonotone line search borrowed from Grippo et al. [2] may be selected.

FSQP invokes the quadratic programming routine QPSOL [3] which the user is supposed
to provide.

2 Description of the Algorithm

The algorithm described and analyzed in [1] is as follows. Given a feasible iterate z, the basic
SQP direction d° is first computed by solving a standard quadratic program using a positive
definite estimate H of the Hessian of the Lagrangian. d° is a direction of descent for the
objective function and is almost feasible in the sense that it is at worst tangent to the feasible
set. Next an essentially arbitrary feasible descent direction d' = d!(z) is computed and, for
a certain scalar p = p(z) € (0,1], a feasible descent search direction d = (1 — p)d® + pd*
is obtained, asymptotically close to d°. Finally a correction d = ci(a:, H) is computed, and
a search is performed along the arc = + td + 2d. The purpose of d is to allow a full step
of one to be taken close to a solution, thus allowing superlinear convergence to take place.
Conditions are given in [1] on d'(-), p(-), and d(-,-) that result in a globally convergent,
locally superlinear convergent algorithm.

The FSQP implementation corresponds to a specific choice of these functions, with some

User’s Guide for FSQP 2

modifications as follows. First d* is computed as a function not only of z but also of d° (thus
of H), as it appears beneficial to keep d! relatively close to d®. The analysis in [1] can be
easily extended to this case. Second, obvious simplifications are introduced concerning the
linear inequality constraints, and linear equality constraints are allowed as well. The iterates
are allowed (resp. forced) to stay on the boundary of these constraints and these constraints
are not checked in the line search. Finally, FSQP automatically switches to a “phase 1”
mode if the initial guess provided by the user is not in the feasible set.
Specifically, FSQP is designed to solve problems of form:

st. bl<z<bu
g](x)so7 j=1"")ni
g,(a:) = (cj—-nn$> _dj—-ng S 0, j=ni +1)'--7ti
(aj,IB) =bj j=17'--ale

with bl € R*; bu € R*;a; € R*,b; € R, j=1,...,l;; f : R* —» Rsmooth; g; : R* = R, j =
1,...,n; smooth; ¢; € R*,d; € R, j =1,...,t; —n,.
Algorithm FSQP.

Data. zo € R*, € > 0.

Parameters. n = 0.1, v =0.01, a =1.0x 1077, B=0.8.

Step 0: Initialization. Set k = 0 and Ho = I, the identity matrix. If z, is infeasible, find
a feasible point as discussed below.

Step 1: Computation of a search arc.

i. Compute dj by solving the strictly convex quadratic program

min %(do,deo) + (Vf(z),d%)

d9€Rn

s.t. bl <z +d° <bu
gi(ze) + (Vgi(ze),d®) <0, j=1,....¢
(aj,a:k+d°)=bj, j=1,...,le

Compute the Kuhn-Tucker vector

n ti le
V L(Tky Exy Aky 1) = V(@) + 2 kg + O Ak Vgi(@e) + D i
i=1

j=1 j=1

User’s Guide for FSQP 3

where the £ ;’s, Ag;’s, and pi;’s are the multipliers, for simple bounds
(only n possible active bounds at each iteration), inequality, and equality
constraints respectively, associated with this quadratic program.

If |V L(zk, &k, Ak, i) < €, stop.

i. Compute d} by solving the strictly convex quadratic program

dler}raligeR 3de—d & -)+
s.t. bl <z +d <bu
(Vf(z),d') < v
9i(zk) +(Vgj(zx), d') <, j=1,...,n
(cj,:l;k-i-dl)de, 17=1,...,t —n;
(aj,a:k—i-dl):bj, 7=1,...,1

ii. Set d, = (1 — pg)dS + prd}. with pr = ||d2)1>*/(||d2]|** + vk), where v} =
max(0.5, [|di[|**).

iv. Compute dy by solving the strictly convex quadratic program

min L{(dx + d), He(dk + d)) + (V f(z), dx + d)

s.t. blSmk+dk+J§bu
gi(zk + di) + (Vg;(zx),d) < —min(v||dill, |de]|*5), j=1,...,n

(Cj,$k+dk+d)§dj, g=1,...,t —n;

~

(aj,a:k+dk+d)=bj, i=1,...,1

If the quadratic program has no solution or if ||di|| > ||di]|, set dx = 0.

Step 2. Arc search. Compute i, the first number ¢ in the sequence {1, 3, 5?,...} satis-
fying
flax +td + 82dx) < fr + at(V f(z1), di)
g;i(xk + tdy +t2dk) <0, 7=1,...,n

where fi is equal to f(z) for the Armijo line search and to Jnax f(zg~) for the nonmono-

=Ujeeny

tone line search. (The line search rule and, when appropriate, the value of M, are selected
by the user: see explanation for mode in specification of FSQPD).

User’s Guide for FSQP 4

Step 3. Updates. Compute a new approximation Hyy to the Hessian of the Lagrangian
using the BFGS formula with Powell’s modification[4]. Set xy41 = zp+trds +tic§k. Increase
k by one. Go back to Step 1.

O

If the initial guess z¢ provided by the user is not feasible, FSQP first solves a strictly
convex quadratic program
e o)
st <zgog+v<bu
(Cj,:z:0+v)_<_dj, 1=1,...,ti —n;
(aj,a:0+v)=bj, j=1,...,1

Then, starting from the feasible point in R"*! = (z¢ + v, _max gi(zo + v)), it will iterate,
i=Tpeni

Tdyeenyiiy

using the algorithm just stated, on the problem .
a:egy,?ER C

s.t. bl<z<bu
gi(z) (¢, J=1,...,n
(Cj,:E)de, J=1...,t—n
(aj,x)zbj, j'—"‘-l,...,le
until a value { < 0 is reached. The corresponding iterate z will then be feasible for the
original problem.

3 Specification of Subroutine FSQPD

Only a double precision version of FSQP, FSQPD is currently available. The specification
of FSQPD is as follows:

subroutine FSQPD(nparam,nnl,nineq,neq,mode,M,iprint,miter,inform,
bigbnd,eps,objef,bndl,bndu,x,g,iw,ivsize,w,nwsize,
obj,constr,gradob,gradcn)
implicit double precision (a~h,o0-z)
dimension bndl(nparam),bndu(nparam) ,x(nparam),g(nineq+neq),
* iw(iwsize) ,w(nwsize)
external obj,constr,gradob,gradcn

User’s Guide for FSQP

Important: all real variables and arrays must be declared as double precision in the routine

that calls FSQPD. Followings are specifications of parameters and workspace.

nparam (Input) Number of free variables, i. e. , the dimension of x.

nnl (Input) Number (possibly zero) of nonlinear (inequality) constraints (n; in the

algorithm description).

nineq (Input) Total number (possibly equal to nnl) of inequality constraints (¢; in

the algorithm description).

neq (Input) Number (possibly zero) of linear equality constraints (I, in the algo-

rithm description).

mode (Input) Defines the type of line search:

mode = 0 : Armijo line search is selected, resulting in descent of the

objective function at each iteration.

mode = 1 : Nonmonotone line search is selected, resulting in descent
of the objective function within M iterations, where M is
given by the user. It is recommended to select M in the

range 1 <M< 10.

M (Input) Used only when mode =1 (see above).

iprint (Input) Variable indicating the desired output:

iprint=0:

iprint =1:

iprint =2:

iprint=3:

No information except for user-input errors is dis-
played.

At the end of execution, status (inform), iterate,
objective value, constraint values, number of eval-
uations of objective and nonlinear constraints, and
norm of the Kuhn-Tucker vector are displayed.

At the end of each iteration, the same information
as with iprint =1 is displayed.

At each iteration, the same information as with
iprint = 2, plus detailed information in the search

direction computation (Step 1), in the line search
(Step 2), and in the update (Step 3) is displayed.

User’s Guide for FSQP 6

miter (Input) Maximum number of iterations (Steps 1-3) allowed by the user before
termination of execution.

inform (Output) Integer indicating the results of FSQPD.

inform = 0: Normal termination of execution in the sense
that the norm of the final Kuhn-Tucker vector
VIL(z,, A, 1) is no greater than eps.

inform = 1 : The user-provided initial guess is infeasible and
FSQPD is unable to generate a point satisfying
all linear constraints.

inform = 2 : The user-provided initial guess is infeasible and
FSQPD is unable to generate a point satisfying
all constraints.

inform =3 : The maximum number miter of iterations has .
been reached.

inform = 4 : The line search fails to find a new iterate (step size
being smaller than the machine precision epsmac
(computed by FSQPD).

inform =5 : Failure in attempting to construct d°.

inform = 6 : Failure in attempting to construct d*.

inform = 7 : Input data are not consistent (with printout indi-
cating the error).

bigbnd (Input) It plays the role of Infinite Bound.

eps (Input) Final norm requirement for the Kuhn-Tucker vector (¢ in the algorithm
description). It should be bigger than the machine precision epsmac (computed

by FSQPD).
objef (Output) Value of objective function at the end of execution.

bndl (Input) Array of dimension nparam containing lower bounds for the compo-
nents of x. To specify a non-existent lower bound (i. e. bnd1(j) = —oo for some
7), the value used must satisfy bnd1(j) < —bigbnd.

bndu (Input) Array of dimension nparam containing upper bounds for the compo-
nents of x. To specify a non-existent upper bound (i. e. bndu(j) = oo for some
), the value used must satisfy bndu(j) > bigbnd.

User’s Guide for FSQP 7

iw

iwsize

W

nwsize

obj

constr

gradob

gradcn

(Input) Initial guess.
(Output) Final solution.

Array of dimension nineq + neq.
(Output) Values of constraints at x at the end of execution.

Integer workspace vector of dimension iwsize.

(Input) Integer workspace length for iw. It must be at least as big as: 3 x
nparam+ 2 X max(1l, nineq + neq) + 16.

Double precision workspace of dimension nwsize.

(Input) Workspace length for w. It must be at least as big as: 4 xnparan®+2 x
nparamX max(1l,nineq+neq)+22xnparam+10xmax(1,nineq+neq)+mm+21.
Here mm = M if mode = 1 and mm = 0 otherwise.

-

(Input) Name of the user-defined function that computes the value of the
objective function. This name must be declared as external in the calling
routine and passed as an argument to FFSQPD. The detailed specification is
given in Section 5.1 below.

(Input) Name of the user-defined function that computes the value of the
constraints. This name must be declared as external in the calling routine and
passed as an argument to FSQPD. The detailed specification is given in Section
5.2 below.

(Input) Name of the subroutine that computes the gradient of obj. This name
must be declared as external in the calling routine and passed as an argument
to FSQPD. The user must pass the subroutine name grobfd (and declare it as
external), if he/she wishes that FSQPD evaluate this gradient automatically,
by forward finite differences. The detailed specification is given in Section 5.3
below.

(Input) Name of the subroutine that computes the gradients of the constraints.
This name must be declared as external in the calling routine and passed as
an argument to FSQPD. The user must pass the subroutine name grenfd (and
declare it as external), if he/she wishes that FSQPD evaluate these gradients
automatically, by forward finite differences. The detailed specification is given
in Section 5.4 below.

User’s Guide for FSQP 8

4 Description of the Output

No output will be displayed before a feasible starting point is obtained. The following
information is displayed at the end of execution when iprint = 1 or at each iteration when
iprint = 2:

iteration Total number of iterations (iprint = 1) or iteration number (iprint = 2).

inform See Section 3. It is displayed only at the end of execution.

x Iterate.

objective Value of objective function at x.

maxobj (displayed only if mode= 1) Maximum value of objective function over the last
M iterations (including the current one).

constraints Values of the constraints at x.
ncallf Number of times the objective function has been evaluated (so far).
ncallc Number of evaluations of individual (scalar) nonlinear constraints (so far).

ktnorm Norm of the Kuhn-Tucker vector at the current iteration. If execution termi-
nates normally (inform = 0), then ktnorm < eps.

For iprint = 3, in addition to the same information as the one for iprint = 2, the following
is printed every iteration.

Details in the computation of a search direction (Step 1):
donorm Norm of the quasi-Newton direction df.

dinorm Norm of the first order direction d}.

d Search direction d = (1 — p)d3 + pd}..

dnorm Norm of d.

rho Coefficient pi in di, = (1 — px)d} + prdj.-

dtilde Correction dy.

User’s Guide for FSQP 9

dtnorm Norm of the correction direction Jk.

Details in the line search (Step 2):

trial step The trial steplength t in the search direction.

trial point Trial iterate along the search arc with trial step.
trial objective Value of the objective function at trial point.

trial constraints Values of nonlinear constraints up to the first one which is not fea-
sible at trial point.

Details in the updates (Step 3):

gradf Gradient of objective function at the new iterate.

gradg Gradients of constraints at the new iterate.

multipliers Multiplier estimates ordered as £’s, A’s, and pu’s (from quadratic program).

hess New estimate of the Hessian matrix of the Lagrangian.

5 User-Supplied Subroutines

At least two of the following four Fortran 77 subroutines, namely obj and constr, must be
provided by the user in order to define the problem. The name of all four routines can be
changed at the user’s will, as they are passed as arguments to FSQPD.

5.1 Function obj

The function obj, to be provided by the user, computes the value of the objective function
at a given iterate. The specification of obj for FSQPD is

function obj(nparam,x)
implicit double precision (a-h,o-z)
dimension x(nparam)

assigns to obj the value of the objective function
evaluated at x

User’s Guide for FSQP 10

return
end

Arguments:

nparam (Input) Dimension of x.

x (Input) Current iterate.

5.2 Function constr

The function constr, to be provided by the user, computes the value of the constraints. The
specification of constr for FSQPD is as follows

function constr(nparam,j,x)
implicit double precision (a-h,o-z)
dimension x(nparam)

c
c for given j, assigns to constr the value of the jth constraint
c evaluated at x
c
return
end
Arguments:

nparam (Input) Dimension of x.
j (Input) Number of the constraint to be computed.

x (Input) Current iterate.

The order of the constraints must be as follows. First the nnl (possibly zero) nonlinear
inequality constraints. Then the nineq-nnl (possibly zero) linear inequality constraints.
Finally, the neq (possibly zero) linear equality constraints.

User’s Guide for FSQP 11

5.3 Subroutine gradob

The subroutine gradob computes the gradient of the objective function. The specification
of gradob for FSQPD is as follows

0o o0 00

subroutine gradob(nparam,rteps,x,objef,gradf,dummy)
implicit double precision (a-h,o0-z)
dimension x(nparam),gradf (nparam)

assigns to gradf the gradient of the objective function
evaluated at x

return
end

The user may omit to provide this routine and require that forward finite difference approx-
imation be used by FSQPD via calling grobfd instead (see argument gradob of FSQPD).

Arguments:

nparam

rteps

p.d
objef
dummy

gradf

(Input) Dimension of x.

(Input) (used by grobfd) The square root of the machine precision epsmac
(computed in FSQPD).

(Input) Current iterate.
(Input) (used by grobfd) Value of the objective at x.
(Input) Used by grobfd.

(Output) Gradient of the objective function at x.

Note that rteps, objef, and dummy are passed as arguments to gradob to allow for forward

finite difference computation of the gradient.

5.4 Subroutine graden

The subroutine gradcn computes the gradients of the constraints. The specification of
gradcen for FSQPD is as follows

User’s Guide for FSQP 12

0O 0 00

subroutine gradcn (nparam,j,rteps,x,gj,gradg,dummy)
implicit double precision (a-h,o0-2z)

dimension x(nparam),gradg(nparam)

external constr

assigns to gradg the gradient of the jth constraint
evaluated at x

return
end

The user may omit to provide this routine and require that forward finite difference approx-
imation be used by FSQPD via calling grcnfd instead (see argument gradcn of FSQPD).

Arguments:
nparam
]

rteps

X
g]
dummy

gradg

(Input) Dimension of x.
(Input) Number of constraint for which gradient is to be computed.

(Input) (used by grcnfd) The square root of the machine precision epsmac
(computed by FSQPD).

(Input) Current iterate.
(Input) (used by grenfd) Value of the jth constraint at x.
(Input) Used by grenfd.

(Output) Gradient of constraint j evaluated at x.

Note that rteps, gj, and dummy are passed as arguments to gradcn to allow for forward
finite difference computation of the gradients.

6 Organization of FSQPD and Main Subroutines

6.1 Main Subroutines

FSQPD first checks for inconsistencies using the subroutine check. It then checks if the
starting point given by the user satisfies the linear constraints and if not, generates a point

User’s Guide for FSQP 13

satisfying these constraints using subroutine initpt. It then calls FSQPD1 for generating
a point satisfying linear and nonlinear constraints. Finally, it attempts to find a point

satisfying the optimality condition using again FSQPD1.

check

initpt

FSQPD1

Checks that all upper bounds on variables are no smaller than lower bounds;
checks that all input integers are nonnegative and appropriate (nineq > nnl,
etc.); and checks that eps is at least as large as the machine precision epsmac
(computed by FSQPD).

Attempts to generate a feasible point satisfying simple bounds and all linear

constraints.

Main subroutine used twice by FSQPD, first for generating a feasible iterate as
explained at the end of Section 2 and second for generating an optimal iterate
from that feasible iterate.

FSQPD1 uses the following subroutines:

dir
step
hesian
out

grobfd

grenfd

Computes an arc search direction (Step 1 in algorithm FSQP).
Computes a step size along the arc (Step 2 in algorithm FSQP).
Performs the Hessian updates (Step 3 in algorithm FSQP).
Print the output for iprint = 1 or iprint = 2.

(optional) Computes the gradient of the objective function by forward finite
differences with mesh size equal to rteps X max(1.0, |z;|) (rteps is the square
root of epsmac, the machine precision computed by FSQPD).

(optional) Computes the gradient of a constraint by forward finite differences
with mesh size equal to rteps x max(1.0,|z;|) (rteps is the square root of
epsmac, the machine precision computed by FSQPD).

6.2 Other Subroutines

In addition to QPSOL and subroutines associated with it, the following subroutines are used:

dio dil dtilde error ident indexs
matrvc nullve gphess scaprd small subout

User’s Guide for FSQP 14

7 Example of Use

The following problem is borrowed from [5] (Problem 32). It contains simple bounds on
the variables, nonlinear inequality constraints, linear equality constraints. The objective
function f is defined for z € R3® by

f(z) = (21 4 3z + 3)° + 4(z1 — 23)°
The constraints are

0 <z, 1=1,---,3
23— 6z, —423+3<0 l—21—2—23=0

The feasible initial guess is: zo = (0.1, 0.7, 0.2)T with corresponding value of the objective
function f(zo) = 7.2. The final solution is: z* = (0., 0., 1.)7 with f(z*)=1. .A
suitable main program is as follows.

Cc

¢]

problem description

implicit double precision (a-h,o0-z)
dimension bndl(3),bndu(3),x(3),g(2),iw(29),w(275)
external obj32,cntr32,grob32,grcn32

nparam=3
nnl=1
nineq=1
neq=1

mode=0
iprint=1
miter=500
bigbnd=1.4+10
eps=1.4-08
iwsize=29
nwsize=275

bnd1(1)=0.
bnd1(2)=0.

User’s Guide for FSQP

bnd1(3)=0.

bndu(1)=bigbnd
bndu(2)=bigbnd
bndu(3)=bigbnd

c
give the initial value of x
c
x(1)=0.1
x(2)=0.7
x(3)=0.2
c

call FSQPD(nparam,nnl,nineq,neq,mode,M,iprint,miter,inform,
bigbnd,eps,objef,bndl,bndu,x,g,ivw,ivsize,w,nwsize,
obj32,cntr32,grob32,grcn3?2)

stop

end

Following are the subroutines defining the objective and constraints and their gradients.

function obj32(nparam,x)
implicit double precision (a-h,o0-z)
dimension x(nparam)

c
obj32=(x(1)+3.d0*x(2)+x(3)) #%2+4.d0* (x (1) -x(2)) **2
return
end

c
function cntr32(nparam,j,x)
implicit double precision (a-h,o-z)
dimension x(nparam)

c

go to (10,20),]
10 cntr32=x(1)**3-6.d0%x(2)-4.40%x(3)+3.d0
return
20 cntr32=1.d0-x(1)-x(2)-x(3)
return
end

subroutine grob32(nparam,rteps,x,objef,gradf,dummy)

User’s Guide for FSQP

implicit double precision (a-h,o0-z)
dimension x(nparam) ,gradf (nparam)

fa=2.d0.*(x(1)+3.d0*x(2)+x(3))
fb=8.d0*(x(1)-x(2))

gradf (1)=fa+fb

gradf (2)=3.d0*fa-fb

gradf (3)=fa

return

end

subroutine gren32(nparam,j,rteps,x,gj,gradg,dunny)
implicit double precision (a-h,o-z)
dimension x(nparam),gradg(nparam)

go to (10,20), j

10 gradg(1)=3.d0*x(1)*%*2
gradg(2)=-6.40
gradg(3)=-4.d0
return

20 gradg(1)=-1.d0
gradg(2)=-1.d0
gradg(3)=-1.d0
return
end

After running the algorithm on Sun 3/160, the following output is obtained:

------------- FSQPD OUTPUT -------------

The given initial point is feasible:
0.10000000000000e+00
0.70000000000000e+00
0.20000000000000e+00

iteration 3
inform 0
X 0.00000000000000e+00

0.00000000000000e+00
0.10000000000000e+01

16

User’s Guide for FSQP 17

objective 0.10000000000000e+01

constraints -0.10000000000000e+01
0.00000000000000e+00

ktnorm 0.31401849173676e-15

ncallf 3

ncallc 6

Normal termination: You have obtained a solution !!

8 Results for Test Problems

Table 1 contains results obtained for some test problems from [5]. P.No. indicates the
problem number as in [5], nnl the number of nonlinear constraints, ncallf the total numher
of evaluations of the objective function, ncallc the total number of evaluations of the (scalar)
nonlinear constraint functions, iter the total number of iterations, objective the final value
of the objective, ktnorm the norm of Kuhn-Tucker vector at the final iterate, eps the user-
provided Kuhn-Tucker norm requirement. The value of parameter mode (the type of line
search) is indicated in column “mode”. mode = 1 with M = § was always attempted, wherever
results are not provided they are identical to those obtained with mode = 0. All these results
were obtained on SUN 3/160 with -fipa compiling option.

Acknowledgment

The authors are indebted to Dr. E.R. Panier for a great many invaluable comments and
suggestions.

User’s Guide for FSQP 18
P.No. mode nnl ncallf ncallc iter objective ktnorm eps
pl2 0 1 7 19 7 —.300000000E+402 .43E—06 .10E-05
p29 0 1 13 22 10 —.226274170E+02 .72E—08 .10E-05

1 12 22 11 —.226274170E4+02 .11E-09 .10E-05
p30 0 1 16 31 16 .100000000E+01 .36E—08 .10E-07
p3l 0 1 13 33 8 .600000000E4+-01 .17E—06 .10E-04

1 9 31 9 .600000000E+01 .34E—05 .10E-04
p32 0 1 3 6 3 .100000000E+01 .31E—-15 .10E-07
p33 0 2 4 14 4 —.400000000E+-01 .12E—11 .10E-07
p34 0 2 7 28 7 —.834032445E4+-00 .54E—-09 .10E-07
p43 0 3 15 88 10 —.440000000E+02 .84E—06 .10E-04

| 10 71 10 —.440000000E+02 .84E—06 .10E-04
p44 0 0 6 0 6 —.150000000E+02 .0 10E-07
pol 0 0 11 0 9 .505655658E—15 .68E—07 .10E-05
po7 0 1 15 17 3 .306463061E—01 .29E—05 .10E-04
p66 0 2 8 30 8 .518163274E4+00 .47E—-09 .10E-07
p76 0 0 6 0 6 468181818E—-01 .34E—04 .10E-03
pd4 0 6 4 42 4 —.528033513E4-07 .0 10E-07
p86 0 0 8 0 (f —.323486790E+02 .12E-13 .10E-07
p93 0 2 14 66 11 135076021E4-03 .46E—03 .10E-02

1 14 68 12 .135076021E4+-03 .18E—03 .10E-02
pl00 0 4 37 237 16 .680630057E4+03 .53E—04 .25E-03

1 19 198 19 .680630057E4-03 .21E—04 .25E-03
pl10 0 0 12 0 9 —.457784697E+4+02 .76E—10 .10E-07
pl13 0 5 12 150 12 .243063769E+02 .34E—03 .20E-02
pl17 0 5 18 216 18 .323486790E+02 .33E—04 .10E-03
pl18 0 0 19 0 19 .664820450E+03 .13E—14 .10E-07

Table 1: Results for Test Problems

User’s Guide for FSQP 19

References

[1] E.R. Panier & A.L. Tits, “On Feasibility, Descent and Superlinear Convergence in In-
equality Constrained Optimization,” Systems Research Center, University of Maryland,
Technical Report SRC-TR-89-27, College Park, MD 20742, 1989.

[2] L. Grippo, F. Lampariello & S. Lucidi, “A Nonmonotone Line Search Technique for
Newton’s Method,” SIAM J. Numer. Anal. 23 (1986).

[3] P.E. Gill, W. Murray, M.A. Saunders & M.H. Wright, “User’s Guide for SOL/QPSOL:
A FORTRAN Package for Quadratic Programming,” Stanford Univ., Technical Report
SOL 83-7, 1983.

[4] M.J.D. Powell, “A Fast Algorithm for Nonlinearly Constrained Optimization Calcula-
tions,” in Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630, G.A.
Watson, ed., Springer-Verlag, 1978, 144-157.

[5] W. Hock & K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems (187), Springer Verlag, 1981.

SRC TR 89-63

Error Exponents for a Class of
Multiterminal Detection Systems

By

H.M.H. Shalaby and A. Papamarcou

ERROR EXPONENTS FOR A CLASS OF MULTITERMINAL
DETECTION SYSTEMS

Hossam M. H. Shalaby and Adrian Papamarcou

Systems Research Center and Electrical Engineering Department

University of Maryland, College Park, MD 20742

ABSTRACT

We discuss the asymptotic performance of a multiterminal detection system compris-
ing a central decision maker and r remote sensors that have access to discrete, spatially
dependent, and temporally memoryless observations. We assume that prior to transmit-
ting information to the decision maker, each sensor compresses its data at a rate which
approaches zero as the blocklength tends to infinity; and that on the basis of the com-
pressed data from all sensors, the decision maker seeks to determine whether the data
are governed by an r-variate distribution ¢ or by an alternative Q. Under the classical
criterion that stipulates minimization of the type II error rate subject to an upper bound €
on the type I error rate, we show that the error exponent achievable by such a system has
a simple characterization, is independent of the value of ¢, and is insensitive to changes in

compression rate as long as the asymptotic rate on all sensors is zero.

ERROR EXPONENTS FOR A CLASS OF MULTITERMINAL
DETECTION SYSTEMS

Hossam M. H. Shalaby and Adrian Papamarcou

Systems Research Center and Electrical Engineering Department

University of Maryland, College Park, MD 20742

1. Introduction

We consider the problem of testing a simple hypothesis H versus a simple alternative
H on the basis of compressed data from a discrete-time, discrete-alphabet, memoryless
multiple source. In its simplest. form, our setup comprises a detector or decision maker
linked to two remote sensors Sx and Sy. The sensors Sx and Sy observe the respective
components of the random sequence {(X;,Y;)}™,, and encode their observations using a
maximum of nRx(n) and nRy(n) bits, respectively. Upon receipt of the two codewords,
the detector accepts or rejects H in accordance with the classical criterion that stipulates
minimization of the type II error rate (the probability of accepting H when H is true)
subject to a fixed upper bound € on the type I error rate (the probability of rejecting H

when it is true).

Distributed detection systems of the above type have been widely studied in the recent
literature. The models most frequently encountered employ compression rates Ry (n) and
Ry (n) such that the codeword lengths are constant in n and often equal to unity [7-10]. In
such cases, the detector receives from each sehisor what amounts to a local decision, possibly
accompanied by an assessment (on a fixed finite-valued scale) of the sensor’s confidence in
that decision. Yet the information-theoretic formulation given above clearly allows more
general forms for Rx(n) and Ry(n); indeed, the models discussed in this paper and in

[1-4] employ codebook sizes that are varying with n.

It is worth noting that one particular model, namely that for which Rx(n) = Ry(n) =

1

00, admits a rather simple analysis. In that case, neither sensor needs to compress its data,
and the detector knows the observed sequence {(X;,Y;)}? ; precisely. The optimal decision
rule is then specified by the Neyman-Pearson lemma, and the resulting minimum type II

error rate (,(e) satisfies

.1 =
—llill-ﬁlogﬁn(e) = D(Pxy||Pxy) -

The quantity appearing on the left-hand side of the above equation (which is due to
Stein [5]) is termed the error exponent for the hypothesis testing problem. On the right-
hand side, D(-||-) denotes informational divergence, and Pxy (resp. Pxy) the distribution

of (X;,Y;) under H (resp. H).

Unfortunately, in the case of arbitrary Rx(n) and Ry(n), the determination of the
optimal detector is a highly complex task that also involves the optimization of the data
encoders at Sx and Sy. For this reason, it is preferable to study tractable compres-
sion/decision schemes which are asymptotically optimal, i.e., achieve the same error ex-
ponents as their optimal counterparts. The investigations in [2,3] are examples of such

studies.

In [2], Ahlswede and Csiszar discussed the problem of one-sided fixed-rate compres-
sion (i.e., Rx(n) = Rx and Ry(n) =c0). In the special case of hypothesis testing against
independence (i.e., Pxy = Px x Py), they obtained a single letter characterization of the
error exponent by recourse to entropy characterization techniques. Also, in the general
case where Pxy > 0, they showed that the error exponent is independent of the value
of the upper bound € on the probability of type I error. Yet the problem of single-letter
characterization of the error exponent in the case Pxy # Px X Py remained unsolved;
single-letter lower bounds to that exponent were obtained in both [2] and [3] using compres-

sion/decision schemes whose asymptotic optimality was not established. In a somewhat

different model involving exponentially decaying bounds on the type I error rate, Han and

2

Kobayashi [4] developed good upper bounds on the error exponent for two-sided fixed-rate

compression.

In this paper we consider the problem of one-sided compression at asymptotically
zero rate; in other words, we assume that Rx(n) — 0 and Ry(n) = co. Our inquiry
was motivated by the study in [3] of one-sided one-bit compression, i.e., nRx(n) = 1 and
Ry(n) = oo. For that situation, Han proposed a simple scheme that compressed both Sx
and Sy to one bit, was invariant in €, and yielded a simply characterized lower bound on
the error exponent. He then established the tightness of the lower bound (and hence also
the asymptotic optimality of the proposed scheme) for values of € lying in an interval (0, €),
where ¢ < 1. In this work we extend the above results under the condition Pxy > 0 by

showing that
(a) the said lower bound is tight for all € in (0,1);
(b) the proposed compression scheme, albeit employing one-bit compression of Sx and

Sy, is actually asymptotically optimal among all schemes such that Rx(n) — 0 and

Ry(n) = oco.

In other words, all systems effecting one-sided compression at asymptotically zero rate
can be optimized so as to yield the same error exponent, which is independent of the actual

rate constraint Rx(n) and level € for € € (0,1).

The precise formulation of our problem is given in Section 2, and the main results

appear in Section 3. In Section 4, we extend our results to hypothesis testing involving

r-variate distributions, where r > 2.
2. Problem Statement and Preliminaries

(a) General notation. The observations of Sx and Sy are denoted by the sequences
X" =(X1,...,Xn) € X" and Y™ =(11,...,Y,) € V", respectively, and the alphabets

X and Y are assumed finite. Since the multiple source is memoryless, the sequence of

3

pairs ((X1,Y1),...,(Xn,Yn)) € (X x Y)" is i.i.d. under both hypotheses. In what follows,
it will be convenient to deal with the product space X™ x Y" instead of (X x)", and

thus the observations will be collectively represented by the pair (X, Y™") € X" x Y.

By virtue of the aforementioned i.i.d. assumption, all distributions of interest can
be specified through bivariate distributions on & x Y. Under the null hypothesis, the
distribution of any pair (X;,Y;) is denoted by Pxy, and its respective marginals by Px
and Py. The distributionsof X™, Y™ and (X", Y ™) under the same hypothesis are denoted
by P%, Py and P%y, respectively. The i.i.d. assumption then implies that for all (2",y™)
in X" x Y, .

Piy(z™y") = [[Pxv(esu) -

=1
Analogous notation is employed for the alternative hypothesis, with P replacing P. We

will also have occasion to use auxiliary distributions]5XY and PXY on X x Y, which will

yield marginals and higher-order distributions in the same manner as Pxy and Pxy.

The compression of X is effected by the encoder f,, where
fn:X—{1,...,M,},
and the codebook size M, is constrained by

1
M, > 2, lim —log M, =0. (2.1)
n n

The corresponding detector is represented by the function
bn:{l,..., Mp} x Y" = {0,1},

where the output 0 signifies the acceptance of the null hypothesis H, and 1 its rejection.
This induces a partition of the original (i.e., non-compressed) sample space XY™ x Y™ into

an acceptance region

An E {(@™y™) € X X Y™ : $u(fala™),y™) = 0},

4

and a critical (or rejection) region D, = A5. By nature of the encoding process, the
acceptance region can be decomposed into M, rectangles C; x F; in X™ x Y™ that possess

disjoint projections C; on X'™. More precisely, if for every 1 < i < M,, we define
Ci = {2 e&X": fu(a")=1} and F = {y" €Y :¢a(i,y") =0},
then we can write

Mn
A = |JCix Fi, where (Vi£j) CinC;j=0. (2.2)
=1

(b) The hypothesis testing problem. In the above framework, the problem of testing
H : P versus H : P can be formulated as follows: for a given level € € (0,1), minimize

P2 (A,) (the probability of type II error) over all acceptance regions A,, that

(C1) yield a value of Py (A%) (probability of type I error) less than or equal to ¢;
and

(C2) satisfy condition (2.2).
The resulting minimum probability of type II error is denoted by £,.(M,¢), and the asso-

ciated error exponent is given by

0(M,e) % —lim (M,)

provided the limit on the right-hand side exists.

Note that in the absence of constraint (C2), the above formulation reduces to the
ordinary hypothesis testing problem mentioned in the introduction, in which the optimal

acceptance region is directly obtainable from the pointwise likelihood ratio
Pgy(a™y™)/Pxy(z",y")

(cf. the Neyman-Pearson lemma). The said constraint, however, denies us a compact

representation of the optimal region, and we restrict ourselves to the study of the asymp-

totic behavior of B,(M,€) as n approaches infinity, a task which does not require precise

knowledge of the optimal region.

More specifically, we show that under the positivity condition Pxy > 0, for every
sequence M, satisfying (2.1) and every e € (0,1), the error exponent 8(M,¢€) is given by
the minimum of the quantity

D(Pxy||Pxy)
over all bivariate distributions Pxy on X x) whose marginals on X and Y agree with
those of Pyy. The positive result, namely the existence of a sequence of acceptance regions
that achieve the above value, was shown in [3]. Our main result here is a strong converse,
i.e., we show that for every value of € € (0,1) and every sequence of acceptance regions A,

satisfying constraints (C1) and (C2), the following is true:

1 - n _
—liminf - log Pxy(An) £ min D(Pxvy||Pxy) .
n Y:

(c) Typical sequences. Our proofs rely on the concept of a typical sequence, as devel-

oped in [6]. Here we cite some basic definitions and facts on typical sequences.

The type of a sequence 2™ € X" is the distribution A, on &X' defined by the relationship

1
(Va € X) Ae(a) E ~ N(alz"),
where N{a|z™) is the number of terms in 2™ equal to a. The set of all types of sequences

in X", namely {\; : 2™ € X"}, will be denoted by P,(X).

Given a type Px € Pn(X), we will denote by ’_f’}} the set of sequences z™ € &A™ of type

Px:

Mn def n n D

T = {z" € X : A = Px}.
Also, for an arbitrary distribution Px on X and a constant > 0, we will denote by ’f}}, , the
set of (]SX, n)-typical sequences in X™. A sequence z" is (Px,n)—typical if |Az(a)—Px(a)| <
n for every letter a € X and, in addition, \;(a) = 0 for every a such that Px(a) = 0.

Thus, if || - || denotes the sup norm and < denotes absolute continuity, we have

To o (am e x| — Pxll <, A < Px) .

6

In the same manner, we will denote by T'; , the set of (Px,7)- typical sequences in .X™.

The proofs of the following lemmas appear in [6]. As usual, |A| denotes the cardinality

of A.

LEMMA 2.1. For any Px in Pn(X),
(n+ 1) ¥lexplnH(Px)] < [T} < exp[nH(Px)],

and

(n+1)7* exp[-nD(Px||Px)] < PR(TR) < exp[-nD(Px||Px)] .

LEMMA 2.2. For any distribution Px on X and n > 0,

¥

PR(TE,) 21 = 35

One can easily modify the above exposition to accommodate pairs (z™,y™) €X™ x Y*
by reverting to their representation in (X x))™. Thus the type of (z*,y™) is the distribution
Azy on X x Y such that

Aap(ad) = 2[5 (@) = @)

and the sets P,(X x), as well as T2, CX™ x Y* and Txy, CX™ x V", are defined

#

accordingly.

In the following section we will omit the superscript n from T, as n will be essentially

constant.

3. The main theorems.

THEOREM 3.1. Let Pxy be arbitrary, and Pxy > 0. Forall ¢ € (0,1) and sequences
M, and A, satisfying conditions (2.1) and (2.2) respectively, the following is true: if for

every n,

Pxy(Az) <e,

then
1 — - _
—liminf —log P¥y(Ap) < © min D(Pxyl||Pxy) .
n n Pyy:

15X=Px, ﬁy:PY
PROOF. By (2.2), we have

My,

=1

where the C;’s are pairwise disjoint. Assume that P%y(A°) <e, or equivalently, P%, (A) >

1 — €. Then there exists an index 7¢ such that

1-—-¢

P}}Y(Cio XFio) > M,

Letting C' = C;, and F = F;,, we can rewrite the above as
Piy(Cx F) > exp(—néy), (3.1)

where

1 1
n = ——1 — “log M, ,
) og(lw, €) + —log

and 6, — 0 by condition (2.1). Equation (3.1) clearly implies that

P%(C) > exp(—nb,) and Py (F) > exp(—né,) . (3.2)

Thus asymptotically, neither C nor F' has “exponentially small” probability. By the

blowing-up lemma [6], this fact implies that both sets possess Hamming k,-neighborhoods

8

which are asymptotically “as thin” as the sets themselves (i.e., kn/n — 0), and whose prob-
abilities approach unity as n tends to infinity. More precisely, let d(-,-) denote Hamming

distance, and define the Hamming k-neighborhood I'*C of C' by
ke & urexm - (32" € C)d(au") <k} .

The blowing-up lemma asserts that under condition (3.2), there exist sequences k,, and 7y,
satisfying
kn/n—0 and Yo — 0,

and such that
PR(T*C) = 1—4n and PEIMF) > 1—17,. (3.3)
In what follows, we will use k instead of k. in all superscripts.
Equation (3.3) clearly holds true if we replace P by P, where Pxy satisfies the
marginal constraints
Px = Px and Py =Py .
Using the elementary property Pr(AN B) > Pr(A) + Pr(B) — 1, we then obtain

pry(TkC x T*F) > PR(T¥C) + PR(I*F) - 1,

and hence

Pr (T*C xTEF) > 1—2y, . (3.4)

Thus under the n-fold product of Pxy, the probability of the rectangle I'kC x Tk F
approaches unity as n tends to infinity. By Lemma 2.2, the same is true of the set of

TXy,n—typical elements in X" x V", since

Bn (o X1V
Piy(Txva) 2 1= -

Hence, for all sufficiently large n, we obtain

—

PR ((T*C x TR N Txy,) > =. (3.5)

Do

By definition of TXY,n, we have the following decomposition:

Txyny = U Txy .
By y €Pn(XXY):
HPxy~Pxyli<n,

Pxy<FPxy

Thus, observing that the elements of a given Txy are equiprobable under any i.i.d. measure,

we can rewrite (3.5) as

(T*C x T*FY N Txy| o1
Txy] T2

> Pxy(Txv)
Pxy €EPn(XXY):
NPxy-Pxyll<n,
Pxy<Pxy

At least one of the fractions in the above sum must be greater than or equal to 1/2; hence

there exists a type Pyy € Pn(X x) satisfying
|Pxy — Pxy|| < 7 and Pxy < Pxy ,

and such that
l(I‘"C X I‘kF) NTxy| > l
1Txv] T2

Since pairs (z™,y") of the same type are also equiprobable under P%y,, we conclude that

for the above type ﬁxy,

PR (D*C x TFF) > P2, (TFC x T*F) N Txy)

(C*C xTFF)NTxy| _ 1

o (3.6)
~ Z _ny(TXY) .
[Txv]

= Pﬁy(fxv)l

We have thus established that the probabilities of the sets [*C x I'*F and T'xy are
of the same exponential order under P%,. We now show that the same is true of the pair

I'*C xT*F and C x F.

10

Consider an arbitrary element (u™,v"™) of I*C x T* F. By definition of I'*, there exists
at least one element (2",y") € C x F such that (z;,y;) differs from (u;,v;) for at most

2k,, values of 7. We thus have

Pgy(u™,o™) = [] Pxy(ui,v)
i=1

n
< p—2k HPXY(xi’yi) = p—2kﬁ§y(wn,yn) ’ (37)
=1
where
def . =
le Pxy(z,y) > 0.
p xeg\’rfnz}ey Xy(x y)

As (u",v™) ranges over I'*C x T*F, each element (z",y") of C' x F will be selected at

most |T*(2™)|-|T*(y™)| times. By virtue of this, (3.7) yields
PRy(T*C xT*F) < p7 P @™)|IT*(y™)| PRy (C x F) .

From [6] we have the upper bound

)l < espfn(a(22) + R iogial)]

where h(-) denotes the binary entropy function. Thus we may write

Pry(TFC x T*F) < exp(nén)P3y(C x F) (3.8)
where
kn\ kn 2k
bn = 2h(=2) + log(1X||¥) - =2 logp > 0.

As a final step, we combine equations (3.6) and (3.8) with the upper bound on

P2 (Txy) provided by Lemma (2.1). Thus

PRy(C x F) > 2 exp(=nt) Py (Txy)
4 1)1l .
> D coplon(D(PrylIPxy) +)
> exp[-n(D(Pxy||Pxy) + v)],

11

for every v > 0 and n sufficiently large. By continuity of the divergence functional, we can

choose the typicality constant i such that
|Pxy — Pxvl|| <7 = D(Pxy||Pxy) — D(Pxvyl|Pxy)| < v,
whence we obtain that
Py(C x F) > expl-n(D(Pxy||Pxy) +2v)]
and consequently
——limninf%log PRy(An) < D(Pxyl|Pxy)+2v .

Since v is arbitrary and Pxy satisfies the appropriate marginal constraints, the proof is

complete. A
The above result, in conjunction with the positive part of Theorem 5 in [3], yields

THEOREM 3.2. If Pxy > 0, the error exponent for the hypothesis testing problem
formulated in Section 2 is given by
6(M,e) = min D(Pxy||Pxy)
ISX =PX),{};5;/=PY

for all € € (0,1) and sequences M,, satisfying condition (2.1). A

4. Extensions and concluding remarks

In the case of a discrete memoryless multipi:e source with r components, where r > 2, the
salient problem becomes one of testing H : @) versus H : @), where Q and Q are r-variate
distributions, and Q > 0. Again, one assumes that Q > 0, and that all source components
but one are compressed at asymptotically zero rate. One can then prove an analog of
Theorem 3.2 stating that the error exponent is given by the minimum of D(Q||Q) over

all r-variate distributions whose univariate marginals agree with those of Q. We give a

12

sketch of the proof for the case of three sensors Sx, Sy and Sz, the first two of which are

compressed at asymptotically zero rate. Here QQ = Pxyz and Q = Pxyz.

Direct part. Following the proof of Theorem 5 [3], we propose a sequence of acceptance

regions A, in X" x V" x Z" defined by
An = T, x Ty, x Tz, ,

where 7 is chosen so that the sup norm distance between the univariate marginals of Pxyz
and Pxyz is at least 277. One can easily show that A, DT%y ;. for suitable ¢ > 0, and
thus by Lemma 2.2.,

Piyg(An)21—c¢

for all sufficiently large n. Also, by the type-counting argument given in [3}, one can
establish the relationship
o1 , . _
—lim —log PYy z(An) = min D(Pxyzl||Pxvyz) -
nn FPxyz:

Px=Px, ﬁy:Py,
}52=PZ

Converse part. Assuming that X™ and Y™ are compressed to a maximum of M,, and
N, bits, respectively, we can write any acceptance region Ap in X7 x Y* x Z* as

M, Np

.An = UUCiXEjXFij.

i=1j=1
Here the F};’s are subsets of 2", and the C;’s and Ej’s form partitions of A" and Y%,

repectively. Thus there exists a subset C x £ X F of A, such that

1—e¢
M,N,

Piyvz(CxExF) >

Since the asymptotic zero rate condition (2.1) is also valid for IV, one obtains the coun-

terpart of (3.1), namely

P%yvz(C x E x Fy > exp(—né,) ,

13

and the proof proceeds as before. A

Note that the proof of the positive theorem involved one-bit compression per source
component. Thus under any criterion based solely on the error exponent, distributed de-
tection systems employing one-bit compression per sensor can attain the same asymptotic
performance as more complex systems employing asymptotically zero-rate compression on

r — 1 sensors, and no compression at all on the remaining sensor.

The above result also covers the general case of a multiple source with r =r.+r,
components, r. of which are compressed at asymptotically zero rate, while the remaining
ry are not compressed. The error exponent in this situation is given by the minimum of
D(Q||Q) over all distributions Q that agree with Q on

(i) the univariate marginals corresponding to the compressed source components;
and

(i1) the ry-variate marginal corresponding to the r, components which are not com-
pressed.

Thus the latter 7, components are essentially treated as one. It also follows easily that
in the case r, > 1, the error exponent attainable by systems of the above type is higher
than the corresponding figure for systems with asymptotically zero-rate compression on

all components (unlike the case r, = 1 discussed above).

The positivity assumption on the alternative hypothesis is pivotal to the proof of the
converse result (Theorem 3.1); without this assumption, the application of the blowing-up
lemma fails. The same difficulty was encountered in the proof of the converse result in [2,
Theorem 6], which also employed the blowing-up lemma. We hope that this obstacle will

eventually be removed.

In the meantime, we note that we have found instances where Q ¥ 0, and D(Q||Q)
is trivially minimized by Q = Q. In such cases, the resulting minimum is equal to the

error exponent in the case of no data compression (cf. Stein’s lemma), and the converse

14

result follows immediately. We should also note that Theorem 3.2 does not subsume its
counterpart in [3]. Although the converse theorem appearing in that work was valid for
one-bit compression of Sx and for € € (0, ¢p) only, the hypothesis of that theorem did not

impose any constraints on Pxy other than D(Pxy||Pxy) < co.

15

[1]

[2]

[3]

[4]

[6]

[9]

REFERENCES

T. Berger, “Decentralized estimation and decision theory,” presented at the IEEE

Seven Springs Workshop on Information Theory, Mt. Kisco, NY, September 1979.

R. Ahlswede and I. Csiszar, “Hypothesis testing with communication constraints,”

IEEE Trans. Inform. Theory, vol. IT-32, pp. 533-542, July 1986.

T. S. Han, “Hypothesis testing with muliterminal data compression,” IEEE Trans.
Inform. Theory, vol. IT-33, pp. 759-772, Nov. 1987.

T. S. Han and K. Kobayashi, “Exponential-Type Error Probabilities for Multiterminal
Hypothesis Testing,” IEEE Trans. Inform. Theory, vol. IT-35, pp. 2-14, Jan. 1989.

S. Kullback, Information Theory and Statistics. New York: Wiley, 1959.

I. Csiszar and J. Koérner, Information Theory: Coding Theorems for Discrete Mem-
oryless Systems. New York: Academic, 1982 and Budapest, Hungary: Akadémiai
Kiado, 1981.

R. R. Tenney and N. R. Sandell, “Detection with distributed sensors,” IEEE Trans.
Aerospace and Electronic Sys., vol. AES-17, pp. 501-510, July 1981.

J. J. Chao and C. C. Lee, “A distributed detection scheme based on soft local deci-
sions,” the 24th Annual Allerton Conference on Communication, Control, and Com-

puting, Monticello, Illinois, Oct. 1-3, 1986.

S. C. Thomopoulos, R. Viswanathan, and D. C. Bougoulias, “Optimal decision fusion
in multiple sensor systems,” IEEE Trans. Aerospace and Electronic Sys., vol. AES-23,
pp- 644-653, Sep. 1987.

A. R. Reibman and L. W. Nolte, “Optimal detection and performance of distributed
sensor systems,” IEEE Trans. Aerospace and Electronic Sys., vol. AES-23, pp. 24-30,

Jan. 1987.

16

