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Context has been one of the most important aspects in computer vision researches be-

cause it provides useful guidance to solve variant tasks in both spatial and temporal domain.

As the recent rise of deep learning methods, deep networks have shown impressive perfor-

mances on many computer vision tasks. Model deep context explicitly and implicitly in

deep networks can further boost the effectiveness and efficiency of deep models.

In spatial domain, implicitly model context can be useful to learn discriminative texture

representations. We present an effective deep fusion architecture to capture both the second

order and first older statistics of texture features; Meanwhile, explicitly model context can

also be important to challenging task such as fine-grained classification. We then present

a deep multi-task network that explicitly captures geometry constraints by simultaneously

conducting fine-grained classification and key-point localization.

In temporal domain, explicitly model context can be crucial to activity recognition and

localization. We present a temporal context network to explicitly capture relative context

around a proposal, which samples two temporal scales pair-wisely for precise temporal

localization of human activities; Meanwhile, implicitly model context can lead to better



network architecture for video applications. We then present a temporal aggregation net-

work that learns a deep hierarchical representation for capturing temporal consistency.

Finally, we conduct research on jointly modeling context in both spatial and temporal

domain for human action understanding, which requires to predict where, when and what

a human action happens in a crowd scene. We present a decoupled framework that has

dedicated branches for spatial localization and temporal recognition. Contexts in spatial

and temporal branches are modeled explicitly and fused together later to generate final

predictions.
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Chapter 1: Introduction

Deep networks have shown impressive performance on many computer vision tasks.

However, training such networks requires large amount of data and computing resources

due to the data-driven nature. Context can be used as a guidance to accelerate such learning

process. Our proposed works show that model deep context can further boost the effective-

ness and efficiency of deep models. In this dissertation, we develop approaches to model

deep context explicitly and implicitly in spatial (Chapter 3 and Chapter 4), temporal (Chap-

ter 5 and Chapter 6) domain. Finally, we conduct study on modeling context in both spatial

and temporal domain jointly (Chapter 7).

In the first work, we present a deep fusion model that implicitly capture deep context

in spatial domain for texture recognition. Recently, deep convolutional neural networks

(CNNs) have been used to learn discriminative texture representations. One of the most

successful approaches is Bilinear CNN model that explicitly captures the second order

statistics within deep features. However, these networks cut off the first order information

flow in the deep network and make gradient back-propagation difficult. We propose an

effective fusion architecture - FASON that combines second order information flow and

first order information flow. Our method allows gradients to back-propagate through both

flows freely and can be trained effectively. We then build a multi-level deep architecture

to exploit the first and second order information within different convolutional layers. Ex-

periments show that our method achieves improvements over state-of-the-art methods on

several benchmark datasets.
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In the second work, we present a deep multi-task model that explicitly capture deep

context in spatial domain for fine-grained classification. Fine-grained classification of ob-

jects such as vehicles, natural objects and other classes is an important problem in visual

recognition. It is a challenging task because small and localized differences between sim-

ilar looking objects indicate the specific fine-grained label. At the same time, accurate

classification needs to discount spurious changes in appearance caused by occlusions, par-

tial views and proximity to other clutter objects in scenes. A key contributor to fine-grained

recognition are discriminative parts and regions of objects. Past work has often attempted

to solve the problems of classification and part localization separately resulting in complex

models and ad-hoc algorithms, leading to low performance in accuracy and processing

time. We propose a novel multi-task deep network architecture that jointly optimizes both

localization of parts and fine-grained class labels by learning from training data. The lo-

calization and classification sub-networks share most of the weights, yet have dedicated

convolutional layers to capture finer level class specific information. We design our model

as memory and computational efficient so that can be easily embedded in mobile applica-

tions. We demonstrate the effectiveness of our approach through experiments that achieve

a new state-of-the-art 93.1% performance on the Stanford Cars-196 dataset, with a signif-

icantly smaller multi-task network (30M parameters) and significantly faster testing speed

(78 FPS) compared to recent published results.

In the third work, we present a deep model that explicitly capture deep context in tem-

poral domain for action detection. We present a Temporal Context Network (TCN) for

precise temporal localization of human activities. Similar to the Faster-RCNN architec-

ture, proposals are placed at equal intervals in a video which span multiple temporal scales.

We propose a novel representation for ranking these proposals. Since pooling features only

inside a segment is not sufficient to predict activity boundaries, we construct a representa-

tion which explicitly captures context around a proposal for ranking it. For each temporal

2



segment inside a proposal, features are uniformly sampled at a pair of scales and are input

to a temporal convolutional neural network for classification. After ranking proposals, non-

maximum suppression is applied and classification is performed to obtain final detections.

TCN outperforms state-of-the-art methods on the ActivityNet dataset and the THUMOS14

dataset.

In the fourth work, we present a novel deep architecture that implicitly capture deep

context in temporal domain for video applications. We present TAN, a temporal aggre-

gation network which decomposes 3D convolutions into spatial and temporal blocks of

convolutions. By stacking spatial and temporal convolutions repeatedly, TAN forms a deep

hierarchical representation for capturing spatio-temporal information in videos. Since we

do not apply 3D convolutions in each layer but only apply temporal convolutions once af-

ter each downsampling layer in the network, we significantly reduce the model complexity.

The use of dilated convolutions at different resolutions of the network helps in aggregating

multi-scale spatio-temporal information efficiently. Experiments show that our model is

well suited for dense multi-label action recognition, which is a challenging sub-topic of

action recognition that requires predicting multiple action labels in each frame. We outper-

form state-of-the-art methods by 6% and 3% on the Charades and Multi-THUMOS dataset

respectively.

In the fifth work, we propose approach on modeling spatial temporal human action un-

derstanding. It has been a hot research topic due to its vast application in video surveillance.

Such task requires to accurately predict where, when and what a human action happens si-

multaneously, which makes it most challenging. We present a decoupled framework that

has dedicated branches for spatial localization and temporal recognition. Contexts in spa-

tial and temporal branches are modeled explicitly and fused together later to generate final

predictions.

The remaining of this dissertation is organized as follows. We introduce the related

3



works in Chapter 2. In Chapter 3 to Chapter 7, we detailed describe all our works to model

deep context in spatial and temporal domain. Chapter 8 concludes the whole dissertation.
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Chapter 2: Related Work

2.1 Spatial Context Modeling

2.1.1 Texture Representations.

Texture descriptors have been well studied for decades. Classic methods include re-

gion co-variance [99], local binary patterns (LBP) [63] and other hand-craft descriptors.

Robust texture representations, such as VLAD [40] and Fisher vector [79] combining with

SIFT features [57] have been utilized to further improve performance on texture recogni-

tion tasks. Donahue et al.showed that deep networks can learn generic features from images

that can be usefully applied to many computer vision tasks including texture recognition

[20]. Zhou et al.fine-tuned such pre-trained models on specific texture and scene datasets

end-to-end to achieve better performance [122]. Later, Cimpoi et al.combined improved

Fisher vector encoding [67] with deep features, which further improves performance on

various texture recognition datasets [12]. They further collected a large dataset of texture

images, which is now considered as the state-of-the-art benchmark for texture recognition.

Most recently, Lin et al.modeled second order pooling in a deep learning framework and

proposed the bilinear network [98]. Later, they applied their framework to texture recog-

nition [54]. Gao et al.proposed a compact bilinear network that utilizes random Maclaurin

and tensor sketching to reduce the dimensionality of bilinear representations but preserves

the discriminative power at the same time [25].
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Researchers have realized the importance of fusing both first order and second order

statistics in feature learning. Hong et al.proposed a second order statistics based region de-

scriptor, named “sigma set” [36]. It was first constructed through Cholesky decomposition

on the covariance matrix and then fused with the first order mean vector. Later, Doretto

et al.fused central moments, central moment invariants, radial moments and region covari-

ance together in a compact representation [21]. This representation is invariant to scale,

translation, rotation and illumination changes. Recently, Li et al.proposed a feature encod-

ing method called locality-constrained affine subspace coding (LASC) that captures both

first order and second order information [52]. They showed improvement when fusing first

order information into their framework.

2.1.2 Fine-grained Classification

Fine-grained classification, using discriminative parts, has been the subject of active

research. [19] built a human-in-loop classification game that revealed the importance of

discriminative parts for the fine-grained task. [1] first demonstrated the usefulness of part

based one-versus-one discriminative features. [47] tried to detect parts using several unsu-

pervised part detectors. Later, [48] improved such work by proposing a co-segmentation

based method that can generate discriminative parts without using part annotations. Most

recently, [109] showed promising improvements in the use of parts by including geometric

constraints between triplets of discriminative parts.

Meanwhile, fine-grained classification performance has seen improvements owing to

developments in deep network architectures. [75] showed that simply using off-the-self

CNN features could lead to significant improvement over traditional hand-crafted features.

[20] combined deep convolutional activation features with a deformable parts model to

further improve fine-grained performance. More recently, part information has been used
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more directly in the training process for deep networks. [3] applied deep convolutional

networks to batches of image patches that were located and normalized by pose. Similarly,

[119] borrowed the idea of region-based CNN and fine-tuned it on object parts. These two

methods showed the great potential of merging part information into deep network models.

However, they required ground truth part annotations during testing for good performance.

To solve the part localization problem, [82] proposed a multi-proposal consensus network

to predict part locations. Recently, there is a trend toward trying to solve part localization

and fine-grained classification simultaneously. [53] proposed a valve linkage function that

connected part localization, alignment and classification together. However, this approach

attempted only to discriminate the heads of birds from their bodies. [55] proposed a net-

work containing two streams of appearance models combined with a bilinear pooling layer,

arguing that manually defined parts were sub-optimal and the bilinear pooling approach

could explore optimal parts implicitly. Although the approach benefited from data-driven

end-to-end learning of the deep network’s parameters, the degree to which parts were dis-

covered by the network was hard to interpret. [49], demonstrated the benefits of training

with larger amounts of data (and a larger number of classes) to a fine-grained recognition

task, even in the presence of noisy training labels. We consider our work separate from

that. The major purpose of this paper is to illustrate the benefits of a compact network

that can efficiently perform fine-grained classification and part localization simultaneously.

Most recently, [38] proposed a framework that solved localized network and fine-grained

classification together, which is most similar to this paper. However, this approach solved

part localization and fine-grained classification separately and used a region based feature

pooling around the parts to merge the discriminative information from parts. Although it

showed the effectiveness of localizing and utilizing of the parts, the framework does not

support end-to-end learning.
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2.2 Temporal Context Modeling

2.2.1 Action recognition.

Action recognition is one of the core components of video understanding. In early

works, 3D motion templates [2], or features such as SIFT-3D [80], Action MACH [77] were

used for representing temporal information for action recognition. Later, the introduction

of dense trajectories [102] and improved dense trajectories [103] provided a significant

boost in performance for feature based pipelines.

After the early success of deep learning [51, 89, 94] on image classification, early deep

learning based video recognition methods focused on utilizing deep features. Karpathy et

al. [46] evaluated different fusion methods for deep features. Wang et al. [105] pooled

deep-learned features based on trajectory constraints. A two stream network which learns

temporal dynamics on stacked optical flow was proposed by Simonyan et al. [90] and an

analysis of different ways of fusing information from these two networks was provided

by Feichtenhofer et al. [23]. Since these two stream networks were trained on very short

snippets, Wang et al. [107] further improved the two-stream network by introducing a

sparse temporal sampling strategy and video-level supervision to enable efficient learning

on whole videos.

Meanwhile, researchers explored novel designs of deep architectures specifically for

video classification tasks. Tran et al. [97] proposed a deep 3-dimensional convolutional

neural network (C3D) to learn spatial and temporal features simultaneously. More recently,

Carreira et al. [8] collected a large scale dataset of actions, which enabled them to train

a 3D convolution version of inception architecture. This network showed very impressive

performance on the UCF-101 dataset.

We describe a novel deep architecture specifically for video applications. However, un-
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like previous work, we do not simply apply 3D convolutions on existing ImageNet based

models. Instead, we decompose 3D convolutions into separate spatial and temporal con-

volutions. By stacking these two types of convolutions repeatedly, we effectively capture

appearance and spatio-temporal motion patterns. Since we have a single layer of temporal

convolutions after each downsampling layer, we significantly reduce the filters needed for

performing these tasks.

2.2.2 Multi-label prediction.

Multi-label dense action recognition is a considerably harder task than action recogni-

tion as it requires labeling frames with all the actions occurring in them. Yeung [112] first

proposed this task by densely labeling every frame within a popular sports action dataset

[42]. They further applied standard techniques such as LSTM, two-steam networks and

created a very strong baseline. Sigurdsson et al. [88] collected another multi-label dataset

by crowd-souring everyday activities at home. For recognizing these actions, Girdhar et

al. [28] proposed ActionVLAD, that aggregates appearance and motion features from two-

stream networks. Sigurdsson et al. [86] used a fully-connected temporal CRF model for

reasoning over various aspects of activities. Dave et al. [18] employed RNNs to sequen-

tially make top-down predictions and later then corrected them by bottom-up observations.

Most recently, Sigurdsson et al. [87] performed a detailed analysis on what kinds of infor-

mation are needed to achieve substantial gains for activity understanding among objects,

verbs, intent, and sequential reasoning.

2.2.3 Temporal action localization.

Unlike action recognition where we predict a label per video, action detection requires

predicting temporal boundaries of an action in an untrimmed video. [115] constructed a
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pyramid of score distribution features (PSDF) as a representation for ranking segments of

a video in a dense trajectories based pipeline. However, for large datasets, these methods

require significant computational resources to extract features and build the feature repre-

sentation after features are extracted. Because deep learning based methods provide better

accuracy with much less computation, hand-crafted features have become less popular.

For object detection in images, proposals are a critical elements for obtaining efficient

and accurate detections [76, 78]. Motivated by this approach, Jain et al. [39] introduced

action proposals which extends object proposals to videos. For spatio-temporal localization

of actions, multiple methods use spatio-temporal region proposals [27, 30, 64, 114]. How-

ever, these methods are typically applied to datasets containing short videos, and hence

the major focus has been on spatial localization rather than temporal localization. More-

over, spatio-temporal localization requires training data containing frame level bounding

box annotations. For many applications, simply labeling the action boundaries in the video

is sufficient, which is a significantly less cumbersome annotation task.

Very recently, studies focusing on temporal segments which contain human actions

have been introduced [5, 58, 60, 84, 92]. Similar to grouping techniques for retrieving

object proposals, Heilbron et al. [5] used a sparse dictionary to encode discriminative

information for a set of action classes. Mettes et al. [60] introduced a fragment hierarchy

based on semantic visual similarity of contiguous frames by hierarchical clustering, which

was later used to efficiently encode temporal segments in unseen videos. In [92], a multi-

stream RNN was employed along with tracking to generate frame level predictions to which

simple grouping was applied at multiple detection thresholds for obtaining detections.

Methods using category-independent classifiers to obtain many segments in a long

video are more closely related to our approach. For example, Shou et al. [84] exploit

three segment-based 3D ConvNets: a proposal network for identifying candidate clips that

may contain actions, a classification network for learning a classification model and a lo-

10



calization network for fine-tuning the learned classification network to localize each action

instance. Escorcia et al. [22] introduce Deep Action Proposals (DAPs) and use a LSTM to

encode information in a fixed clip (512 frames) of a video. After encoding information in

the video clip, the LSTM scores K (64) predefined start and end positions in that clip. The

start and end positions are selected based on statistics of the video dataset. We show that

our method performs better than global representations like LSTMs which create a single

feature representation for all scales in a video for localization of activities. In contempo-

rary work, Shou et al. [83] proposed a convolutional-de-convolutional (CDC) network by

combing temporal upsampling and spatial downsampling for activity detection. Such an

architecture helps in precise localization of activity boundaries. We show that the activity

proposals generated by our method can further improve CDC’s performance. Zhao et al.

[121] decomposed their model into separate classifiers for classifying actions and deter-

mining completeness. Meanwhile, due to success in object detection for localizing objects

in images, recent works started applying similar ideas to videos. Xu et al. [111] present

a R-CNN like action detection framework from C3D features. Dai et al. [16] argued for

the importance of sampling at two temporal scales to capture temporal context in a faster

R-CNN architecture.
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Chapter 3: FASON: First and Second Order Information Fusion Network

for Texture Recognition

3.1 Introduction

Features from pre-trained deep models have been successfully utilized for texture recog-

nition [12, 13, 20, 31]. By combining off-the-shelf deep features with second order encod-

ing methods such as Locally Aggregated Descriptors (VLAD) [40] and Fisher Vectors [79],

such approaches significantly improve texture recognition performance. However, these

approaches require multiple stages of processing including feature extraction, encoding

and SVM training, which do not take advantage of end-to-end optimization in deep learn-

ing.

Recently, researchers have designed network architectures specifically for texture recog-

nition. One of the most successful approaches is the deep bilinear model proposed by Lin

et al.[54, 98]. They model the second order statistics of convolutional features within a

deep network with a bilinear pooling layer that enables end-to-end training and achieved

state-of-the-art performance on benchmark datasets. However, it discards the first order

information within the convolutional features, which is known to be useful to capture spa-

tial characteristic of texture [35] and illumination [71]. The first order information is also

known to be essential for back-propagation based training [61]. Hence, previous deep bilin-

ear models neglect the potential of first order statistics in convolutional features and make

training difficult.
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We propose a novel deep network architecture that fuses first order and second order

information. We first extend the bilinear network to combine first order information into

the learning process by designing a leaking shortcut which enables the first order statistics

to pass through and combine with bilinear features. Our architecture enables more effec-

tive learning by end-to-end training compared to the original deep bilinear model. This

allows us to extend our fusion architecture to combine features from multiple convolution

layers, which captures different style and content information. This multiple level fusion

architecture further improves recognition performance. Our experiments show the pro-

posed fusion architecture achieves consistent improvements over state-of-the-art methods

on several benchmark datasets across different tasks such as texture recognition, indoor

scene recognition and fine-grained object classification.

The contribution of our work is two fold:

• We design a deep fusion architecture that effectively combines second order informa-

tion (calculated from a bilinear model) and first order information (preserved through

our leaking shortcut) in an end-to-end deep network. To the best of our knowledge,

our architecture is the first proposed method to fuse such information directly in a

deep network.

• We extend our fusion architecture to take advantage of the multiple features from

different convolution layers.

3.2 Deep Bilinear model

Deep bilinear models have shown promising results on several computer vision tasks

including fine-grained image classification and texture classification [25, 54, 98]. Although

bilinear models have only recently been integrated in a deep network with end-to-end train-

ing, the basic formulation of bilinear models has a long history in texture description. Given
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an input image I, we extract its deep convolutional features F ∈ Rw×h×ch from a CNN and

calculate the bilinear feature B ∈ Rch×ch as:

B(F) =
w

∑
i=1

h

∑
j=1

Fi, jFT
i, j (3.1)

This formulation is related to orderless texture descriptors such as VLAD , Fisher Vec-

tors and region covariance [98]. It has been shown to be effective to capture the second

order statistics of texture features. The diagonal entries of the output bilinear matrix repre-

sent the variances within each feature channel, while the off-diagonal entries represent the

correlations between different feature channels. The descriptor lies in a Riemannian Mani-

fold which makes quantization difficult and distance measurement between feature vectors

non-trivial [66]. Therefore, the bilinear feature is usually passed through a mapping func-

tion with signed square root and l2 normalization that projects it to Euclidean space [67]:

φ(x) =
sign(x)

√
|x|

‖sign(x)
√
|x|‖2

(3.2)

3.2.1 Dimension reduction

The high dimensionality of bilinear features makes end-to-end training difficult in a

neural network. Following [25], we use a technique called tensor sketching to reduce the

d = ch× ch bilinear output to a feature in a lower dimension c. Tensor sketching [9, 70],

which is known to preserve pairwise inner products, estimates the frequency of all elements

in a vector. It is a random projection technique to reduce feature dimensionality using

multiple random mapping vectors defined by simple independent hash functions.

Given two randomly sampled mapping vectors h ∈ Nd where each entry is uniformly

drawn from {1,2, · · · ,c}, and s ∈ {+1,−1}d where each entry is filled with either +1 or
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−1 with equal probability, the sketch function is defined as:

Ψ(x,s,h) = [C1,C2, · · · ,Cc] (3.3)

where

C j = ∑
i:h(i)= j

s(i) · x(i) (3.4)

To reduce the dimensionality of bilinear features, the ch× ch size bilinear feature is

first vectorized to x ∈Rd where d = ch×ch and further projected to a lower c-dimensional

vector E ∈ Rc by:

E (x) = F−1(F (Ψ(x,s,h))◦F (Ψ(x,s′,h′))) (3.5)

where s′ and h′ are drawn similarly to s and h, ◦ operator represents element-wise multi-

plication, and F represents the Fast Fourier Transformation. We reduce the bilinear repre-

sentation to c = 4096 dimensions in all experiments.

Figure 3.1: The core building block of our first and second order information fusion archi-
tecture compared to original bilinear model.
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3.2.2 First order information fusion by gradient leaking

Now we introduce our core building block of the first order and second order informa-

tion fusion. Although bilinear models exploit second order information from deep features

well, they often suffer from the problem of vanishing gradients when gradient flow back-

propagates through them, which makes it difficult to learn such models in an end-to-end

training process. Therefore, recent work usually places the bilinear layer after the last

convolutional layer to minimize this problem.

Inspired by the recent success of deep residual networks [34], we design a shortcut

connection that passes through the first order information and combines with the second

order information generated from the bilinear layer, as shown in Figure 3.1. Assuming

we generate the deep feature F from the previous convolutional layer, instead of using the

bilinear feature B(F) directly, we combine it with a leaking function M(F) that encodes

first order information. Since the bilinear layer essentially captures the covariance between

each feature channel, we define our leaking function as:

M (F) =
1

wh

w

∑
i=1

h

∑
j=1

Fi, j (3.6)

to provide the mean of each feature channel. This is analogous to global average pooling

for a convolutional feature map.

The first order information is then combined with the second order information as fol-

lows:

B̂(F) = E (B(F))⊕M (F) (3.7)

where ⊕ represents the vector concatenation operation.

With the proposed formulation, the first order information can be exploited for classifi-

cation, and the training can be stabilized as the architecture provides a direct pathway for
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the gradients to lower layers from the leak.

Figure 3.2: The illustration of how we accumulate first and second order information from
multiple convolutional layers.

3.2.3 First and second order fusion with multiple levels of convolutional

features

One benefit of our fusion framework is that we can fuse more convolutional features

into bilinear layers and conduct an effective end-to-end training as shown in Figure 3.2.

Given arbitrary convolutional feature maps F1,F2, · · ·Fi, we can fuse them together simply

by:

B̂(F) =
⊎

i

E (B(Fi))⊕M (Fi) (3.8)

where
⊎

i indicates concatenating features generated from different convolutional layers.

In this way, we force the network to utilize the first and second order information across

multiple convolutional feature maps, which generally captures different style and content

information.

We investigate two major network architectures: a single fusion at conv5 level (equiv-
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alent to features generated from conv5 4 of VGG-19 network) and a multiple fusion at

conv4, conv5 layers (equivalent to features generated from conv4 4 and conv5 4 of VGG-

19 network). For fair comparison, we also conduct experiments using typical bilinear net-

works without fusion on these same two setups. The detailed configurations of our archi-

tectures are shown in Figure 3.3.

3.3 Experiments

We evaluate the effectiveness and performance of our architecture and compare with

state-of-the-art methods on several datasets. We also adopt the artistic style transfer tech-

nique of [26] to visualize the qualitative improvements of our architecture.

Datasets. We evaluate our architecture on four benchmark datasets: DTD (Describable

Texture) dataset [12], KTH-T2b (KTH-TISP2-b) dataset [7], MIT-Indoor (MIT indoor

scene) dataset [73] and Stanford Car196 [50] dataset.

The DTD dataset is considered the most widely used benchmark for texture recognition.

It contains 47 texture categories with a total of 5640 images. All images are ”in the wild”,

from the web image rather than collected in a controlled setting. This dataset is challenging

due to its realistic nature and large intra-category variation. We report the 10-fold average

accuracy as in [54].

The KTH-T2b dataset contains 11 material categories with 4752 images total. Images

in each category are captured from 4 physical, planar samples under controlled scale, pose

and illumination. In our experiments, we follow the evaluation setup in [54] and report the

4-fold average accuracy.

The MIT-Indoor dataset contains 67 indoor scene categories with at least 100 images

per category and 15620 images total. The images can be considered as weakly structured
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Figure 3.3: The detailed configurations of our first and second order information fusion
architectures. Colored boxes represent convolutional layers with ”3× 3” filter size and
number of output channels. Notice that we group convolution layers by their spatial di-
mensions, such as conv4 and conv5. This allows us to maintain the same notation across
different network architectures. For all convolutional layers, we use padding size 1 and use
ReLU as activation layer. For all the max pooling layers, we use kernel size 2 and stride
size 2 without padding.
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and orderless textures, which provide a reasonable evaluation of the generalization power

of our texture models. We use the training and testing split provided with the dataset, for a

total of 5360 images for training and 1340 images for testing.

The Stanford Car196 dataset contains 196 different fine-grained car classes at the level

of make, model and year with 16185 images total. The images are further split into a 50-

50 split with 8144 training images and 8041 testing images. This dataset is considered as

one the most challenging fine-grained classification dataset. We evaluate on this dataset to

further test the generalization of our model.

Implementation details. We implement our architecture in a customized version of Caffe [41].

We adopt a two-stage training process to speed up training. We first fix all layers except the

last fully connected layer for classification in the network to form a convex learning prob-

lem, and then relax the network to fine-tune all the layers with a constant small learning

rate and high momentum. In detail, in the first training step, we use a fixed learning policy

with learning rate starting at 1, weight decay at 5×10−6 and run for up to 50 epochs. In the

second training stage, we fine-tune all the layers using a fixed learning policy with learning

rate of 0.001 and weight decay at 5× 10−4 for another 100 epochs. We did not use data

augmentation and dropout for fair comparison to previous work. Incorporating these tech-

niques may further improve the results. For experiments conducted on DTD, KTH-T2b and

Stanford Car196 datasets, we use a 224×224 input size, while for the MIT-Indoor dataset

we evaluate two setups with 224×224 and 448×448 input size.

3.3.1 Effectiveness of fusion

We first evaluate the effectiveness of our fusion architecture by comparing two networks

with and without first order information fusion on single (conv5) and multiple (conv4+conv5)

convolutional layers. For fair comparison, we use the same learning hyperparameters and
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Figure 3.4: Comparison of learning curves on bilinear model using single level of convolu-
tional feature (conv5) with and without our first order information fusion on DTD dataset.
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Figure 3.5: Comparison of learning curves on bilinear model using two levels of convolu-
tional features (conv4+conv5) with and without our first order information fusion on DTD
dataset.
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training/testing split on the DTD dataset. For the first 8 epochs, we only train the last layer

with a fixed learning rate 1. We then fine-tune all the layers with a fixed learning of 0.001.

Figure 3.4 and 3.5 show both the training loss and testing accuracy. The red vertical lines

highlight the point at which we switch from learning only the last layer to learning all

layers. As shown by the plots of testing accuracy (Figure 3.4b and Figure3.5b), our archi-

tecture with first order information fusion clearly outperforms the bilinear network without

fusion in both training stages. The training loss plots (Figure 3.4a and Figure3.5a) show

that our architecture can be trained more smoothly. This is more observable in the multiple

convolutional layer setup (Figure3.5a). In both setups, our experiments demonstrate the

effectiveness of our approach.

We also evaluate the effectiveness of our fusion architecture on different deep networks

such as VGG-16 and VGG-19. Table 3.1 shows the performance of our architecture applied

to different models on the DTD dataset. Our fusion architectures gives consistent improve-

ments over a baseline bilinear network. The performance further boosts with our multiple

layer fusion when two level of convolutional layers conv4 and conv5 are combined. Further

combining lower layers in the network did not improve performance. Combining the im-

provements from first and second order information fusion with multi-layer feature fusion,

we obtain a 2% improvement from a strong bilinear CNN baseline for both VGG-16 and

VGG-19.

3.3.2 Comparison with state-of-the-arts

Texture recognition. We compare the performance of our fusion architecture with sev-

eral state-of-the-art methods such as [12, 13, 54] on the DTD dataset. All the results are

reported based on an input size 224× 224 for fair comparisons. The methods annotated

with * in the table indicates that multiple scales of inputs are used instead of a single input
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VGG-16 VGG-19
conv5 72.45 72.82
conv5+fusion 73.09 73.62
Improvements +0.64 +0.80
conv5+conv4 72.87 73.31
conv5+conv4+fusion 74.47 74.57
Improvements +1.60 +1.26

Table 3.1: Effectiveness comparison across different network architecture on one training
and testing split on DTD dataset. Our models gives consistent improvements from standard
Bilinear CNN.

Method Accuracy
DeCAF + IFV[12] 66.7 ± 0.9
FV-CNN [54] 67.8 ± 0.9
B-CNN [54] 69.6 ± 0.7
FASON (conv5) 72.3 ± 0.6
FASON (conv4+conv5) 72.9 ± 0.7
FC-VGG* [13] 62.9 ± 0.8
FV-VGG* [13] 72.3 ± 1.0
FC+FV-VGG* [13] 74.7 ± 1.0
FC-SIFT FC+FV-VGG* [13] 75.5 ± 0.8

Table 3.2: Comparison with state-of-the-art methods on the DTD dataset with 224× 224
input size.

size. Table 3.2 shows that our method achieves the best performance among all single-

feature methods. In particular, our best model gives 3% improvement over the B-CNN

baseline. Our method also outperforms FC-VGG and FV-VGG which use multiple input

scales. We also report the fusion results from previous work that use multiple features. Our

method is competitive with such methods but requires only one single network.

We also evaluate the performance of our fusion architecture on KTH-T2b dataset with

several state-of-the-art methods such as [12, 13, 54, 95]. Similar to the DTD dataset, all

reported results are based on input size 224×224, and * in the table also represents multiple
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Method Accuracy
TREE [95] 66.3
DeCAF [12] 70.7 ± 1.6
DeCAF + IFV [12] 76.2 ± 3.1
FV-CNN [54] 74.8 ± 2.6
B-CNN [54] 75.1 ± 2.8
FASON (conv5) 76.5 ± 2.3
FASON (conv4+conv5) 76.4 ± 1.5
FC-VGG* [13] 75.4 ± 1.5
FV-VGG* [13] 81.8 ± 2.5
FC+FV-VGG* [13] 81.1 ± 2.4
FC-SIFT FC+FV-VGG* [13] 81.5 ± 2.0

Table 3.3: Comparison with state-of-the-art methods on the KTH-T2b dataset with 224×
224 input size. * denotes results obtained from multiple scales.

scales are used. As shown in Table 3.3, our method also gains a 1.4% boost compared to

the B-CNN baseline. Our best model is only behind FV-VGG which uses deep features

calculated at three different scales. Our method with multiple convolutional layers FASON

(conv4+conv5) performances slightly worse than a single layer model FASON (conv5) in

this dataset. We believe this is caused by the smaller amount of training data provided

in the KTH-T2b dataset, which leads to over-fitting. Our method is again competitive to

previous approaches.

Indoor scene classification. In addition to the pure texture datasets, we evaluate our

models on the MIT-Indoor dataset and compare with state-of-the-art methods such as [13,

52, 54, 122]. We evaluate our model with both 224× 224 input size and 448× 448 input

size. Table 3.4 shows that our method is superior to previous methods and our best perfor-

mance is 0.7% better than previous state of the art method FV-CNN, which used multiple

scales. Again, our method largely outperforms the B-CNN baseline with about a 4% im-

provement consistently over input size 224 and 448. Meanwhile, our models also take
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Method
Input Size

224 448 ms
LASC [52] 63.4 – –
PLACE [122] 70.8 – –
FC-VGG [13] – – 67.6
FV-VGG [13] – – 81.0
FV-CNN [54] 70.1 78.2 78.5
B-CNN [54] 72.8 77.6 79.0
FASON (conv5) 76.0 80.8 –
FASON (conv4+conv5) 76.8 81.7 –

Table 3.4: Comparison with state-of-the-art methods on the MIT-Indoor dataset with dif-
ferent input sizes. ms denotes results obtained from multiple scales.

advantage of larger input size, which is consistent with previous results. Our method with

multiple convolutional layers FASON(conv4+conv5) further improves performance over a

single convolution layer FASON(conv5).

Fine-grained classification. We further evaluate our models on the Stanford Car196

dataset and compare with popular state-of-the-art methods. Following standard evalua-

tion protocol, we use the provided bounding box during training and testing. All images

are cropped around the bounding boxes and then resized to 224× 224. We compare with

state-of-the-art methods [47, 48, 109, 110] with the same input size. As shown in Table 3.5,

our models improve significantly over the bilinear model [98] when using the same VGG-

19 architecture. Meanwhile, our models result in a 1.2% and 1.5% improvement over the

best bilinear models mixing different architectures reported in [98]. Our best model is com-

parable to [48], which utilizes part information of cars to boost performance. Overall, our

fusion models have shown promising generalization ability in fine-grained classification

task and are competitive to state-of-the-art methods on the Stanford Car dataset.
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Method Accuracy
CNN [47] 70.5
ELLF [47] 73.9
CNN Finetuned [110] 83.1
FT-HAR-CNN [110] 86.3
BoT [109] 92.5
Parts [48] 92.8
FV-CNN [98] 85.7
B-CNN [98] 90.6
B-CNN (VGG16 + VGG19) [98] 91.3
FASON (conv5) 92.5
FASON (conv4+conv5) 92.8

Table 3.5: Comparison with state-of-the-art methods on the Stanford Car196 dataset using
224×224 input size.

3.3.3 Artistic Style Transfer

Artistic style transfer is a popular technique introduced in [26] that transfers the style

from one artistic image to another image. Because this technique utilizes a bilinear repre-

sentation to compute the style loss, performing style transfer provides an intuitive way to

visualize and understand what is learned in the networks. To generate visually plausible

style transfer results, the networks need to learn a good representation for both content and

style. Since the style of an image is closely related to its texture, we apply our learned net-

works, which have learned good texture representations, to the task of artistic style transfer.

We follow the suggested settings described in [26] and use conv4 2 layer for content

loss with weight 1 and use conv1 1, conv2 1, conv3 1, conv4 1 and conv5 1 layers for

style loss with weight 0.2. We run L-BFGS for 512 iterations in all experiments.

We compare our fusion architectures with the standard VGG network (using the weights

learned form the DTD dataset for classification task) on different combinations of content

and style images in Figure 3.6. The red boxes highlights the major differences in style. With
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Figure 3.6: Comparison of style transfer results using different models. The green box
highlights the content differences between images. The red box highlight the style differ-
ence between images.

the side-by-side comparison, our model shows richer styles (the cloud and wall appear more

stylish in the images) and more accurate content (the contours of building and tower appear

to be better preserved) in the generated images. These qualitative results suggest that with

our architecture can preserve style and content information more effectively. Furthermore,

our multi-layer fusion architecture is even better than our single-layer fusion architecture.

3.4 Conclusion

We presented a novel architecture that aggregates first and second order information

within a deep network. Experiments show that our fusion architecture consistently im-

proves over the standard bilinear networks. We additionally propose an architecture com-

bining information from the multiple levels of convolutional layers, which further improves
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overall performance. Our network can be trained end-to-end effectively. We achieve state-

of-the-art performance for a single network on several benchmark datasets. In addition,

the better learned texture representation from our network is shown qualitatively by the

improved artistic style transfer results.
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Chapter 4: Efficient Fine-grained Classification and Part Localization Us-

ing One Compact Network

4.1 Introduction

Fine-grained classification amongst various classes of man-made and natural objects

is currently an active area of research because of numerous practical applications. For

instance, recognizing make-models of vehicles can improve tracking of vehicles across

non-overlapping camera views, or searching for a given vehicle in a forensic investigation

using captured video from multiple locales. Similarly, recognizing types of birds can enable

their counting in an area or understanding patterns of migration. While related to generic

image classification, fine-grained classification is a significantly distinct problem because it

must focus on small, localized intra-class differences (e.g., make-models of vehicles, birds

species) instead of inter-class differences that are often easier to account for (e.g., vehicles

vs. birds). Accounting for differences between similar looking objects within a class to

recognize specific instances, while being robust to spurious changes caused by occlusions

and overlap with surrounding objects makes this task very challenging.

An important aspect of the solution to the fine-grained classification is locating dis-

criminative parts of objects. If a learning network can be designed to focus on parts such

as the position of car headlights, then it will learn representations that distinguish makes

and model of cars based upon different shapes of headlights. Also, it may enable us to

solve more challenging tasks, such as ”locate a Honda Civic 2006 with a dent on the left
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Figure 4.1: Overview of our deep multi-task learning architecture applied for joint part
localization and fine-grained classification. The localization network (b) and fine-grained
classification network (c) share the first four levels of convolution (a) and also have task-
specific dedicated convolution layers. The whole architecture is trained end-to-end. Our
multi-task network can simultaneously predict fine-grained class and part locations.

front door”, since we have an understanding of parts semantics and their relative geometry.

However, it is challenging to solve part localization and fine-grained classification simul-

taneously because the former is geometric in nature while the latter is a labeling problem.

Previous work either solved these two problems separately or fused them together in com-

plicated frameworks.

We describe a multi-task deep learning approach to simultaneously solve part localiza-

tion and fine-grained classification, and demonstrate the mutual benefits of the multi-task

approach. Our network architecture (see Figure 4.1) and training procedure are less com-

plex than competing methods while achieving better results with significant speedup and

with smaller memory footprint. In order to reduce the difference in the nature of localiza-

tion and classification problems, We model part localization as a multi-class classification

problem by representing parts as a label mask that annotates part locations, as opposed to

the traditional regression of geometric coordinates of parts. This narrows the gap between

part localization and fine-grained classification. It allows us to share a significant num-
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ber of network parameters between the fine-grained classification and the part localization

tasks and enables us to take advantage of pre-trained models as a starting point for opti-

mization. A set of fully-convolutional layers produce the part label mask while a mixture

of convolutional and embedded bilinear pooling layers are used for fine-grained classifica-

tion. The part localization loss and fine-grained classification loss are combined, enabling

an end-to-end multi-task data-driven training of all network parameters. Our contributions

are three-fold:

• We propose a novel multi-task deep learning and fusion architecture that have both

shared and dedicated convolutional layers for simultaneous part labeling and make-

model classification.

• The accuracy of our approach is competitive to state-of-the-art methods on both car

and bird domains.

• Our network architecture is more compact (30 M parameters) and runs much faster

(78 FPS) than competitors, enabling real-time, mobile applications.

4.2 Representation Learning with Deep Multi-task Architecture

Multi-task learning has proven to be effective in several computer vision tasks. Deep

networks with end-to-end training are well-suited for multiple tasks because they learn

generic representations in early layers prior to specialization in later stages of the network.

Recent work [56, 74, 119] has shown promising results by attaching multiple shallow and

task-specific output layers to the final fully connected layer, and training the network to

minimize combined losses for each task output. These approaches mainly change the last

fully connected layers dedicated to specific tasks while not learning any low or mid-level

representations that could influence the accuracy of multiple tasks. Our approach differs
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from previous vanilla multi-task models in: (i) its design of common low and mid-level

representation layers for multiple tasks, (ii) application of a careful analysis to select layers

that are suitable for sharing between the two tasks, and (iii) designing task-specific deep

sub-networks to capture task-specific representations. The end-to-end training for multiple

tasks ensures that the task-specific representations benefit from task-specific tuning, while

the shared representations are jointly influenced by the needs of both tasks. Such archi-

tecture enables joint learning of part localization and fine-grained classification effectively

and efficiently.

Choosing a Base Model. Our architecture is based upon a VGG-16 network pre-trained

on ImageNet [89]. We choose VGG due to several reasons. First, VGG mainly utilizes 3

by 3 convolutional kernels that can be efficiently computed. Meanwhile, the the layers of a

VGG network captured low and mid-level representations are easily interpreted. Since we

explicitly rely on learning common representations, VGG serves as an appropriate based

model for our fusion architecture. With portability in mind, we skip state-of-the-art In-

ception and ResNet models on purpose, although such models may further improve the

performance.

Determining Multi-task Structure. Previous approaches [56, 74, 119] implement

multi-task learning by sharing all network parameters up until the final fully-connected

(FC) layers; new FC layers are added for each task. Given the representational power of

a single FC layer, this strategy has limited effectiveness. Our multi-task architecture uses

deep sub-networks for different tasks, sharing earlier convolutional layers. Specifically,

our part localization network and our fine-grained classification network architectures (de-

scribed above) use the same architecture (VGG-16) in their first five convolutional layers.

We aim to fuse the two networks together such that they use the same weights for a number

of shared layers; if we share only the earliest layers, we may render ineffective gradient

flows from task-specific sub-networks to the fused layers. If we share too many layers,
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Figure 4.2: The experimental setups to determine which layers can be shared between
tasks. Blue means layers are for localization. Red are trained for classification. We switch
different weights between two network in different configurations, and retrain the later
layers. This leads us to check the probability of fusion at desired point

we may degrade performance of the later task-specific sub-networks. To find the appro-

priate number of layers to share, we conducted a series of experiments. We first of all

trained our localization network and classification networks separately to serve as a base-

line (shown in Figure 4.2 as ”Base”) for measuring performance on the two tasks. Next,

we switch the weights of the first three, four and five convolutional layers (shown in Fig-

ure 4.2 as ”Config1, Config2, Config3”), and retrain the latter stages of the networks (this

experiment is possible owing to the common architecture of the first layers of the two task

networks) . Swapping weights like this, and then measuring task performance, allows us

to establish which weights can be shared across tasks. For example, we found the perfor-

mance of both task-specific networks drops significantly when we aggressively switch all

convolution layers (”Config3”). The performance of both tasks with weights switched as

in ”Config2” indicated that features learned by the first four convolutional layers in both

task-specific networks can be applied effectively to the other task, so our final architecture
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(a) Shared layers
1 2 3 4 5 6 7

layer 2 × conv max 2 × conv max 3 × conv max 3 × conv
filter-stride-padding 3-1-1 2-2-0 3-1-1 2-2-0 3-1-1 2-2-0 3-1-1

#channel 64 64 128 128 256 256 512
activation relu idn relu idn relu idn relu

size 224×224 112×112 112×112 56×56 56×56 28×28 28×28
(b) Dedicated localization layers

8a 9a 10a 11a 12a 13a 14a 15a
layer max 3 × dconv max avg dconv conv conv fc

filter-stride-padding 3-1-1 3-2-1 3-1-1 3-1-1 3-12-1 1-1-0 1-1-0 -
#channel 512 512 512 512 512 1024 #part 1

dilation - 2 - - 12 - - -
activation idn relu idn idn relu relu relu softmax

size 28×28 28×28 28×28 28×28 28×28 28×28 28×28 28×28
(c) Dedicated classification layers

8b 9b 10b 11b
layer max 3 × conv embedding fc

filter-stride-padding 2-2-0 3-1-1 - -
#channel 512 512 1 1

activation idn relu idn softmax
size 14×14 14×14 8192 #class

Table 4.1: The detail configuration of our final multi-task architecture. The attributes of
the column ”conv”, ”max”, ”avg”, ”dconv”, ”embedding”, ”fc” represent ”convolution”,
”max pooling”, ”average pooling”, ”dilated convolution”, ”feature embedding” and ”fully
connected layer”.

shares these weights. The whole parameter setup of our deep multi-task architecture is

described in Table 4.1.

Multi-task training. We jointly train our multi-task architecture in an end-to-end fash-

ion using a typical multi-task fusion loss:

L f use = Lloc +λLcls , (4.1)

where λ is a weight factor to control the influence of each task during joint training. We

determine an appropriate value in our experiments below. Our architecture (figure 4.1)

shares layers between the two tasks, the detailed parameter setup is shown in Table 4.1. We

describe the detailed designs of dedicated layers for each tasks in the following sections.
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4.2.1 Localize Parts and Key-points with Pseudo-masking

Key-point (and, equivalently, part) localization has been widely studied for the purpose

of pose estimation [68, 69, 96] and has largely been solved by learning a regression layer

at the end of a deep network to extract the x,y coordinates of trained key-points. These

papers have demonstrated that the regression task is sufficiently different from the image

classification task that networks must be trained from scratch, rather than fine-tuned from

a pre-trained network; this not only increases the amount of training data required, but also

extends training time. Motivated by our desire to share layers between the localization task

and the fine-grained classification task, and inspired by recent successes in semantic seg-

mentation, rather than model part localization as a regression problem, we instead model

it as a multi-class part classification problem. This decision allows us to fine-tune from a

pre-trained classification network and enables weight-sharing with the fine-grained classi-

fication network. Our experiments show that this design decision also provides excellent

part localization performance.

Architecture. Our parts localization approach is based upon mask generation; to sup-

port this we modify the VGG-16 architecture to be fully convolutional in the latter stages

such that our output mask has dimensions 28× 28. Specifically, we keep the first four

convolution layers unchanged, except for dropping spatial pooling after conv4. We mod-

ify conv5 to use dilated (or atrous) convolutions, also without downsampling. In addition,

we change the fully connected layers into fully convolutional layers with kernels in spatial

size of 1× 1. These modification allow us to reuse the same pretrained VGG-16 network

weights, but output a 28× 28 spatial part localization mask instead - similar to semantic

segmentation, this mask is a labeled image, with pixels marked as background, or as con-

taining a particular model part, as appropriate. The detailed configuration can be viewed in

Table 4.1(b).
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Learning. Given a specific part pc ∈ P = {p1, p2, · · · , pK}, where c is the part class

(such as ”Front left light” of car) of total K classes (K + 1 is the background class label),

with normalized spatial coordinate x ∈ [0,1],y ∈ [0,1], we want our localization network

to generate a m×m spatial map S that predicts Su,v = c, with u = bx ·mc and v = by ·mc,

where bxc is the truncating operator to an integer from a real number. However, considering

the the area of part locations on this spatial map will be significant smaller k� m2, which

causes the learning process highly imbalanced (background vs. key-points ratio will be

m2−k
k → 1), we apply a pseudo-masking around ground-truth part locations to make the

learning easier. We define our pseudo masking strategy as

Mi, j =


K +1, if mindist((i, j),(xc,yc))≥ t

argmin
c

dist((i, j),(xc,yc)), otherwise
, (4.2)

where dist(·) is a function that measures the distance; t is a trade-off to control the background/key-

point ratio, we use t = 0.1m.

Our loss function is:

Lloc =−
m

∑
i=1

m

∑
j=1

log
f (i, j,Mi, j)

∑
K+1
c=1 f (i, j,c)

, (4.3)

where f (·) represents the network. The loss includes the background class K +1.

Inference. Although our localization network predicts a pseudo part map, we can still

recover the accurate key-point coordinate by exploring the probability maps underneath.

Differing from the approach of [38], we don’t need to set up a threshold to decide the ex-

istence of specific part location,since it is already handled by our pseudo masking strategy.

Given a m×m prediction map S and a m×m× (K + 1) probability map Prob extracted

from last fully convolutional layer of the part-localization network, the coordinate ic, jc of
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a part c can be inferred by:

(ic, jc) = argmax
i, j

{
Probi, j,c ·1Si, j=c

}
, (4.4)

where 1a is the indicator function which is 1 if condition a is true and 0 otherwise. Our

localization network design has multiple advantages:

• Our localization network shares the same amount of weights as VGG-16, hence can

be fine-tuned using existing models

• Our network requires a small 224× 224 input size , but yet generates a large part

prediction mask

• Most importantly, we model the localization task as a classification problem, which

enables straightforward fusion with the fine-grained classification task

4.2.2 Fine-grained Classification with Feature Embedding

We now describe the detailed implementations for our dedicated fine-grained classifi-

cation layers.

Embedded bilinear pooling. Bilinear pooling has been proven effective to represent

the feature variations from multiple streams of features. In a departure from previous

work [55] that utilizes two different networks to conduct bilinear pooling, we demonstrate

the effectiveness of using embedded bilinear pooling within a single network. Given a

w×h×ch shaped feature map F generated from a network, embedded bilinear pooling can

be calculated as:

E=
w

∑
i=1

h

∑
j=1

Fi, j ·F>i, j , (4.5)

where Fi, j is a ch-dimensional column vector. This form is closely related to region co-

variance [99], that captures second order statistics between features, and can improve the
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classification performance.

Dimensionality reduction. Embedded bilinear pooling reduces the training parameters

from w×h×ch× l to ch×ch× l, where l is the number of hidden units of fully connected

layer for prediction. However, this is still a large number that can overwhelm the whole

training process, and may also lead to inefficient utilization of learned weights. We use

compact bilinear pooling [24, 25], a projection method that further reduces the number of

dimensions in our feature vector while preserving desirable properties of the feature. Given

mapping vectors h ∈ Nd where each entry is uniformly sampled from {1,2, · · · ,c}, and

s ∈ {+1,−1}d where each entry is sampled with either +1 or −1 with equal probability,

the sketch function is defined as:

Ψ(x,s,h) = [C1,C2, · · · ,Cc] (4.6)

where

C j = ∑
i:h(i)= j

s(i) · x(i) (4.7)

To reduce the dimensionality of bilinear features, the ch× ch size bilinear feature E is

first vectorized to x ∈Rd where d = ch×ch and further projected to a lower c-dimensional

vector Ê ∈ Rc by:

Ê= F−1(F (Ψ(x,s,h))◦F (Ψ(x,s′,h′))) (4.8)

where s′ and h′ are drawn similarly to s and h, ◦ operator represents element-wise mul-

tiplication, and F represents the Fast Fourier Transformation. The result of the tensor

sketching process is a lower-dimensional version of E, Ê; the number of dimensions in E

and Ê used in our experiments are detailed in Table 4.1(c).

Classification loss. Finally, the reduced features Ê can be mapped to our C fine-grained
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Method Setup Input Resolution #Parameters Speed Accuracy
Deep-LAC[53] Parts 227 – – 80.3
Part-RCNN[120] BBox + Parts 227 60M <1 FPS 76.4
Parts[48] BBox 224 135M <1 FPS 82.8
Bilinear[D,M][55] BBox 448 70M 8 FPS 85.1
Stacked-CNN[38] BBox + Parts 448 115M 20 FPS 76.7
Ours BBox + Parts 224 30M 78 FPS 84.3

Table 4.2: Comparison with state-of-art methods on efficiency. The number of parameters
estimation is calculated as Caffe weight size.

Parts throat beak crown forehead right eye nape left eye back
Stacked-CNN[38] 0.908 0.894 0.894 0.885 0.861 0.857 0.850 0.807
Ours 0.963 0.952 0.950 0.960 0.939 0.937 0.943 0.867
Parts breast belly right leg tail left leg right wing left wing Overall
Stacked-CNN[38] 0.799 0.794 0.775 0.760 0.750 0.678 0.670 0.866
Ours 0.877 0.858 0.752 0.841 0.740 0.775 0.755 0.874

Table 4.3: APK comparison with state-of-art methods on the CUB 200 2011.

classes using a small fully connected layer f c(·), trained using multinomial logistic loss:

Lcls =−
C

∑
i=1

log
f c(Ê, i)

∑
C
c=1 f c(Ê,c)

. (4.9)

Our classification network design has multiple advantages:

• We greatly reduce the number of parameters by replacing fully connected layers with

an embedded bilinear layer.

• We are able to explore the second order information between feature maps through

our embedded bilinear layer.

• We further reduce number of parameters required by introducing a random mapping

technique.
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4.3 Experiments

We first compare the performance of our method on the fine-grained classification task

versus other leading methods considering both the performance and efficiency (speed and

memory usage). Next, we demonstrate the effectiveness of part localization. We do an

ablation study to illustrate that multi-task architecture improves classification performance

at the end.

Dataset. We evaluate our approach on two standard fine-grained benchmarks. The

Stanford Cars-196 [50] dataset contains 196 classes of car categories described by make,

model and year, and has a total of 16185 images. This dataset is challenging due to: the

large variation of car model, pose, and color; and often minor differences between models.

We use the provided car bounding boxes during training and testing. This dataset does not

provide information about parts, hence we manually annotated 30 images per class with

18 parts, such as ”front right light”, ”rear left bumper” and so on. Our second dataset is

Caltech-UCSD Birds (CUB-200-2011) [101], which contains 200 bird spices with 11788

images captured in the wild. Each image is annotated with a bounding box and 15 body

parts such as ”head”, ”breast”, etc. This dataset is used as a cross-domain reference that

shows our approach is easily applied to tasks from quite different domains.

Implementation. We implement our proposed multi-task network using a customized

Caffe [41] package. Each input image is cropped to the object’s bounding box and then

resized to 224× 224. We adopt a 3-step process to speed up the training process: 1) we

freeze the weights of the part localization sub-network and fine-tune the classification net-

work (including layers shared with the localization task); 2) we freeze the classification

network weights and fine-tune the localization network (including the shared weights); 3)

We fine-tune the whole network together with small learning rate and high momentum.

The training approach is a gradual specialization of the base VGG-16 weights by incre-
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mentally adapting the network to new tasks. Step 1 adapts the classification network to the

new image domain. Step 2, assisted by adapation of the shared layers in step 1, adapts the

part-localization sub-network to domain-specific parts. Step 3 tunes the entire network via

the multi-task loss, enabling task-to-task feedback via the shared layers.

4.3.1 Efficiency and Performance

We compare our method with several recent alternative methods [38, 48, 53, 55, 120]

that aimed to improve fine-grained classification problem by solving part localization. Each

method is evaluated with speed and memory usage on a few key factors: input resolution,

setup, number of training parameters, testing speed and accuracy, as shown in Table 4.2. All

the experiments were conducted on a single Titan X (Maxwell). Our implementation runs

significantly faster than all other methods, achieving about four times speed up compared

to the previous fastest method. The efficiency gain mainly comes from the benefits of

effective network fusion. Meanwhile, our classification performance is still competitive to

state-of-the-art methods.

We further evaluate our method on Stanford Car196 dataset with the state-of-art meth-

ods, such as [47, 48, 50, 55, 104, 109, 110] on the Cars-196 dataset. Table 4.4 shows

results; our multi-task approach achieves 93.1% top-1 accuracy and is better compared to

the previous best [48] with a 0.3% improvement. Considering the minor improvement pub-

lished recently, we think our improvement is noticeable. In addition, our approach is much

more computationally efficient and solve part localization at the same time.

We also evaluate our part localization performance using the APK (average precision

of key points) metric. This metric considers a predicted key-point (part location) to be

correct if it lies in a radius of α×(image size) around the ground-truth location. We use

α = 0.1 following [38] to compare the results on CUB 200 2011. As shown in Table 4.3,
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Method Accuracy
BB-3D-G[50] 67.6
LLC[104] 69.5
ELLF[47] 73.9
CNN Finetuned[110] 83.1
FT-HAR-CNN[110] 86.3
Bilinear[D,M] [55] 91.7
BoT[109] 92.5
Parts[48] 92.8
Ours 93.1

Table 4.4: Comparison with state-of-art methods on the Stanford Car-196.

(a) (b)

Figure 4.3: The visualization selected results of key-point localizations on both Stanford
Car-196 (a) and CUB-200-2011 (b). Solid dots represent the key-point location we predict.
The transparent mask presents the part map we predict.

the localization performance is significantly better than the previous approach [38] in all

part categories except ”right leg” and ”left leg”. Qualitative part localization results are

shown in Figure 4.3. Our approach is capable of precisely pinpointing parts across a range

of pose and aspect variations for both birds and cars.

4.3.2 Ablation Study

We first analyze the influence of the parameter λ that controls the balance between part

localization and classification loss during training, and then illustrate the positive influence

of multi-task training on the classification task. Figure 4.4 shows the evolution of test

loss during training for both classification and part localization, with λ = {0.1,0.2,0.5,1}
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Figure 4.4: The influence of different λ value chosen on the multi-task training.

and using a small fixed learning rate over 70 epochs. Our experiments indicate that as λ

increases, the gradient flow from the part localization sub-network overwhelms the training

of the classification sub-network. Our best performance is with λ = 0.2.

We now evaluate the effectiveness of our multi-task architecture. We use a fine-tuned

VGG-16/ImageNet as a baseline model, which archives a reasonable performance on both

the CUB 200 2011 and Stanford Cars-196 datasets. In order to compare the performance

before and after multi-task training, we disable the localization sub-network during training

to form a classification standalone result. As shown in Table 4.5, our multi-task architecture

performs better than the baseline and standalone-trained model on both datasets. This

demonstrates the effectiveness of our multi-task training.

Base Class Part Stanford Car196 CUB 200 2011
X 89.1 80.0
X X 92.7 83.9
X X X 93.1 84.3

Table 4.5: Evaluating the effectiveness of the multi-task training on datasets .
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4.4 Conclusion

In this paper, we propose a compact multi-task architecture that simultaneously per-

forms part localization and fine-grained classification. We are able to fuse the localization

network and classification network effectively and efficiently. Experiments demonstrate

that our approach is general, being competitive on both the Stanford Cars-196 and the Cub-

200-2011 birds datasets. Furthermore, our proposed network is both significantly smaller

and faster than previous state-of-the-art methods, which makes real-time mobile applica-

tions possible.

With the success of such compact multi-task architecture, our future work will mainly

focus on applying this architecture on car specific tasks, such as car re-identification and

searching. Enhancement of the techniques presented in this paper will help solve multiple

problems such as crowd-sourcing car re-identification problem with wearable devices and

specific instance recognition problems using features such as a ”dent” in a specific location.
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Chapter 5: Temporal Context Network for Activity Localization in Videos

5.1 Introduction

Recognizing actions and activities in videos is a long studied problem in computer

vision [2, 4, 33]. An action is defined as a short duration movement such as jumping,

throwing, kicking. In contrast, activities are more complex. An activity has a beginning,

which is triggered by an action or an event, which involves multiple actions, and an end,

which involves another action or an event. For example, an activity like “assembling a fur-

niture” could start with unpacking boxes, continue by putting different parts together and

end when the furniture is ready. Since videos can be arbitrarily long, they may contain mul-

tiple activities and therefore, temporal localization is needed. Detecting human activities in

videos has several applications in content based video retrieval for web search engines, re-

ducing the effort required to browse through lengthy videos, monitoring suspicious activity

in video surveillance etc. While localizing objects in images is an extensively studied prob-

lem, localizing activities has received less attention. This is primarily because performing

localization in videos is computationally expensive [22] and well annotated large datasets

[6] were unavailable until recently.

Current object detection pipelines have three major components - proposal genera-

tion, object classification and bounding box refinement [76]. In [22, 84] this pipeline was

adopted for deep learning based action detection as well. LSTM is used to embed a long

video into a single feature vector which is then used to score different segment proposals
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in the video [22]. While a LSTM is effective for capturing local context in a video [92],

learning to predict the start and end positions for all activity segments using the hidden state

of a LSTM is challenging. In fact, in our experiments we show that even a pre-defined set

of proposals at multiple scales obtains better recall than the temporal segments predicted

by a LSTM on the ActivityNet dataset.

In [84], a ranker was learned on multiple segments of a video based on overlap with

ground truth segments. However, a feature representation which does not integrate infor-

mation from a larger temporal scale than a proposal lacks sufficient information to predict

whether a proposal is a good candidate or not. For example, in Figure 5.1, the red and

green solid segments are two proposals which are both completely included within an ac-

tivity. While the red segment is a good candidate, the green is not. So, although a single

scale representation for a segment captures sufficient information for recognition, it is inad-

equate for detection. To capture information for predicting activity boundaries, we propose

to explicitly sample features both at the scale of the proposal and also at a higher scale

while ranking proposals. We experimentally demonstrate that this has significant impact

on performance when ranking temporal activity proposals.

By placing proposals at equal intervals in a video which span multiple temporal scales,

we construct a set of proposals which are then ranked using features sampled from a pair of

scales. A temporal convolution network is applied over these features to learn background

and foreground probabilities. The top ranked proposals are then input to a classification

network which assigns individual class probabilities to each segment proposal.

5.2 Approach

Given a video V , consisting of T frames, TCN generates a ranked list of segments

s1,s2, ...,sN , each associated with a score. Each segment s j is a tuple tb, te, where tb and te
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Figure 5.1: Given a video, a two stream network is used to extract features. A pair-wise
sampling layer samples features at two different resolutions to construct the feature repre-
sentation for a proposal. This pairwise sampling helps to obtain a better proposal ranking.
A typical sliding window approach (Green line box) can miss the context boundary infor-
mation when it lies inside the activity. However, the proposed pairwise sampling with a
larger context window (Red line box) will capture such information and yield better pro-
posal ranking. These pair-wise features are then input to a ranker which selects proposals
for classification. The green boxes on the left represent K different proposals which are
placed uniformly in a video.
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denote the beginning and end of a segment. For each frame, we compute a D dimensional

feature vector representation which is generated using a deep neural network. An overview

of our method is shown in Figure 5.2.

5.2.1 Proposal Generation

Our goal in this step is to use a small number of proposals to obtain high recall. First,

we employ a temporal sliding window of a fixed length of L frames with 50% overlap.

Suppose each video V has M window positions. For each window at position i (i ∈ [0,M]),

its duration is specified as a tuple (bi,ei), where bi and ei denote the beginning and end of a

segment. We then, generate K proposal segments (at K different scales) at each position i.

For k ∈ [1,K], the segments are denoted by (bk
i ,e

k
i ). Also, the duration of each segment, Lk,

increases as a power of two, i.e Lk+1 = 2Lk. This allows us to cover all candidate activity

locations that are likely to contain activities of interests, and we refer them as activity

proposals, P= {(bk
i ,e

k
i )}

M,K
i=0,k=1. Figure 5.1 illustrates temporal proposal generation. When

a proposal segment meets the boundary of a video, we use zero-padding.

5.2.2 Context Feature Representation

We next construct a feature representation for ranking proposals. We use all the features

F = { f1, f2, ..., fm} of the untrimmed video as a feature representation for the video. For

the kth proposal at window position i (Pi,k), we uniformly sample from F to obtain a D

dimensional feature representation Zi,k = {z1,z2, ...,zn}. Here, n is the number of features

which are sampled from each segment. To capture temporal context, we again uniformly

sample features from F , but this time, from Pi,k+1 — the proposal at the next scale and

centered at the same scale. Note that we do not perform average or max-pooling but instead

sample a fixed number of frames regardless of the duration of Pi,k.
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Figure 5.2: Temporal Context Network applies a two stream CNN on a video for obtaining
an intermediate feature representation.

Logically, a proposal can fall into one of four categories:

• It is disjoint from a ground-truth interval and therefore, the next scale’s (larger) label

is irrelevant

• It includes a ground-truth interval and the next-scale has partial overlap with that

ground truth interval.

• It is included in a ground-truth interval and the next level has significant overlap with

the background (i.e., it is larger than the ground truth interval).

• It is included in a ground-truth interval and so is the next level.

A representation which only considers features inside a proposal would not consider

the last two cases. Hence, whenever a proposal is inside an activity interval, it would not

be possible to determine where the activity ends by only considering the features inside the

proposal. Therefore, using a context based representation is critical for temporal localiza-

tion of activities. Additionally, based on how much background the current and next scales

cover, it becomes possible to determine if a proposal is a good candidate.
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5.2.3 Sampling and Temporal Convolution

To train the proposal network, we assign labels to proposals based on their overlap with

ground truth, as follows,

Label(S j) =


1, iou(S j,GT )> 0.7

0, iou(S j,GT )< 0.3
(5.1)

where iou(·) is intersection over union overlap and GT is a ground truth interval. During

training, we construct a mini batch with 1024 proposals with a positive to negative ratio of

1:1.

Given a pair of features Zi,k, Zi,k+1, from two consecutive scales, we apply temporal

convolution to features sampled from each temporal scale separately to capture context

information between scales, as shown in Figure 5.2. A temporal Convolutional Neural

Network [45] enforces temporal consistency and obtains consistent performance improve-

ments over still-image detections. To aggregate information across scales, we concatenate

the two features to obtain a fixed dimensional representation. Finally, two fully connected

layers are used to capture context information across scales. A two-way Softmax layer

followed by cross-entropy loss is used at the end to map the predictions to labels (proposal

or not).

5.2.4 Classification

Given a proposal with a high score, we need to predict its action class. We use bilinear

pooling by computing the outer product of each segment feature, and average pool them to

obtain the bilinear matrix bilinear(·). Given features Ẑ = [z1,z2, ...zl] within a proposal, we
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conduct bilinear pooling as follows:

bilinear(Ẑ) =
l

∑
i=1

ẐT
i Ẑi (5.2)

For classification, we pool all the features l which are inside the segment and do not

perform any temporal sampling. We pass this vectorized bilinear feature x = bilinear(Ẑ)

through a mapping function with signed square root and l2 normalization [67]:

φ(x) =
sign(x)

√
x

||sign(x)
√

x||2
(5.3)

We finally apply a fully connected layer and use a 201-way (200 action classes plus

background) Softmax layer at the end to predict class labels. We again use the cross entropy

loss function for training. During training, we sample 1024 proposals to construct a mini

batch. To balance training, 64 samples are selected as background in each mini-batch. For

assigning labels to video segments, we use the same function which is used for generating

proposals,

Label(S j) =


lb, iou(S j,GT )> 0.7

0, iou(S j,GT )< 0.3
(5.4)

where iou(·) is intersection over union overlap, GT is ground truth and lb is the most

dominant class with in proposal S j. We use this classifier for the ActivityNet dataset but

this can be replaced with other classifiers as well.

5.3 Experiments

In this section, we provide analysis of our proposed temporal context network. We

perform experiments on the ActivityNet and THUMOS14 datasets.
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Figure 5.3: Performance of our proposal ranker on ActivityNet validation set. (a) The
Recall vs IoU for pyramid proposal anchors; (b) The Recall vs IoU for our ranker at 1, 5,
20 proposals; (c) Recall vs number of proposals for our ranker at IoU 0.5, 0.75 and 0.95

Figure 5.4: The effectiveness of context-based proposal ranker is shown in these plots. The
Recall vs IoU plots show ranker performance at 1, 5, 20 proposals with and without context
on ActivityNet validation set

5.3.1 Implementation details

We implement the network based on a customized Caffe repository with Python inter-

face. All evaluation experiments are performed on a workstation with a Titan X (Maxwell)

GPU. We initialize our network with pre-trained TSN models [107] and fine-tune them on

both action labels and foreground/background labels to capture “actionness” and ”back-

groundness”. Later, we concatenate these together as high-level features input to our pro-

posal ranker and classifier. For the proposal ranker, we use temporal convolution with a

kernel size of 5 and a stride of 1, followed by ReLU activation and average pooling with

size 3 and stride 1. The temporal convolution responses are then concatenated and mapped

to a fully connected layer with 500 hidden units, which is used to predict the proposal score.

To evaluate our method on the detection task, we generate top K proposals (K is set to 20,
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Figure 5.5: Comparing the ranker performance using different relative scale for context
based proposals on ActivityNet validation set

we apply non-maximum suppression to filter out similar proposals, using an NMS thresh-

old set as 0.45) and classify them separately. While classifying proposals, we also fuse two

global video level priors using ImageNet shuffle features [59] and “actionness” features to

further improve classification performance, as shown in [93]. We also perform an ablation

study for different components of classification. For training the proposal network, we use

a learning rate 0.1. For the classification network, we set learning the rate to 0.001. For

both cases, we use a momentum of 0.9 and 5e-5 weight decay.

5.3.2 ActivityNet Dataset

ActivityNet [6] is a recently released dataset which contains 203 distinct action classes

and a total of 849 hours of videos collected from YouTube. It consists of both trimmed

and untrimmed videos. Each trimmed video contains a specific action with annotated seg-

ments. Untrimmed videos contain one or more activities with background involved. On

average, each activity category has 137 untrimmed videos. Each video on average has 1.41

activities which are annotated with beginning and end points. This benchmark is designed

for three applications: untrimmed video classification, trimmed activity classification, and

untrimmed activity detection. Here, we evaluate our performance on the detection task

in untrimmed videos. We use the mean average precision (mAP) averaged over multiple

overlap thresholds to evaluate detection performance. Since test labels of ActivityNet are
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mAP@.5 mAP@.75 mAP@.95
without context 15.91 3.11 0.13

with context 36.17 21.12 3.89

Table 5.1: Evaluation on the influence with and without context on ActivityNet validation
set

not released, we perform ablation studies on the validation data and test our full model on

the evaluation server.

Proposal anchors We sample pair-wise proposals within a temporal pyramid. In Figure

5.3(a), we present the recall for the pyramid proposal anchors on ActivityNet validation set

with three different levels. This figure shows the theoretical best recall one can obtain

using such a pyramid. Notice that even with a 4-level pyramid with 64 proposals in total,

the coverage is already better than the baseline provided in the challenge, which uses 90

proposals. This ensures our proposal ranker’s performance is high with a low number of

proposals.

Performance of our ranker We evaluate our ranker with different numbers of propos-

als. Figure 5.3(b) shows the average recall at various overlap thresholds with top 1, top 5

and top 20 proposals. Even when using one proposal, our ranker outperforms the Activi-

tyNet proposal baseline by a significant margin when the overlap threshold is greater than

0.5. With top 20 proposals, our ranker can squeeze out most of the performance from pyra-

mid proposal anchors. We also evaluate the performance of our ranker by measuring recall

as the number of proposals varies (shown in Figure 5.3(c)). Recall at IoU 0.5 increases to

90% with just 20 proposals. At higher IoU, increasing the number of proposals does not

increase recall significantly.

Effectiveness of temporal context We contend that temporal context for ranking pro-

posals is critical for localization. To evaluate this claim, we conduct several experiments.

In Figure 5.4, we compare the performance of the ranker with and without temporal con-
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text. Using only the best proposal, without context, the recall drops significantly at high

IoU (IoU > 0.5). This shows that for precise localization of boundaries, temporal context is

critical. Using top 5 and top 20 proposals, without context, the recall is marginally worse.

This is expected because as the number of proposals increases, there is a higher likelihood

of one having a good overlap with a ground-truth. Therefore, recall results using a single

proposal are most informative. We also compute detection metrics on the ActivityNet val-

idation set to evaluate the influence of context. Table 5.1 also shows that detection mAP

is much higher when using the ranker with context based proposals. These experiments

demonstrate the effectiveness of our method.

Varying context window for ranking proposals Another important component for

ranking proposals is the scale of context features which are associated with the proposal.

Consider a case in which a proposal is contained within the ground truth interval. If the

context scale is large, the ranker may not be able to distinguish between good and bad

proposals, as it always see a significant amount of background . If the scale is small, there

may be not enough context to determine if the proposal is contained within the ground

truth or not. Therefore, we conduct an experimental study by varying the scale of context

features while ranking proposals. In Figure 5.5, we observe that the performance improves

up to a scale of 2. We evaluate the performance of the ranker at different scales on the

ActivityNet validation set. In Table 5.2 we show the impact of varying temporal context at

different overlap thresholds, which validates our claim that adding more temporal context

would hurt performance, but not using context at all would reduce performance by a much

larger margin. For example, changing the scale from 2 to 3 only drops the performance by

3% but changing it from 1.5 to 1 decreases mAP by 15% and 12% respectively.

Influence of number of proposals We also evaluate the influence of the number of

proposals on detection performance. Table 5.3, shows that our method doesn’t requires a

large number of proposals to improve its highest mAP. This demonstrates the advantages
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Context Scale mAP@.5 mAP@.75 mAP@.95
1 15.91 3.11 0.13

1.5 30.51 15.56 2.23
2 36.17 21.12 3.89

2.5 36.04 17.08 0.92
3 33.29 14.35 1.03

Table 5.2: Impact of varying temporal context at different overlap thresholds on Activi-
tyNet validation set

#Proposal/Video mAP@.5 mAP@.75 mAP@.95
1 25.70 16.08 2.80
5 34.13 20.72 3.89

10 35.52 21.02 3.89
20 36.17 21.12 3.89
50 36.44 21.15 3.90

Table 5.3: Impact of number proposals on mAP on ActivityNet validation set

Components mAP@.5 mAP@.75 mAP@.95
B. F. G.
X X X 36.17 21.12 3.89
X X × 33.83 20.05 3.77
X × × 30.31 17.80 2.82
× × × 26.35 15.27 2.66

Table 5.4: Ablation study for detection performance using top 20 proposals on the Activi-
tyNet validation set. B - Bilinear, F - Flow, G - Global prior
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Evaluation Server
Method mAP@.5 mAP@.75 mAP@.95 Average

QCIS[108] 42.48 2.88 0.06 14.62
UPC[62] 22.37 14.88 4.45 14.81
UMD[92] 28.67 17.78 2.88 17.68

Oxford[93] 36.40 11.05 0.14 17.83
Ours 37.49 23.47 4.47 23.58

Table 5.5: Comparison with state-of-the-art methods on the ActivityNet evaluation sever
using top 20 proposals

of both our proposal ranker and classifier.

Ablation study We conduct a series of ablation studies to evaluate the importance of

each component used in our classification model. Table 5.4 considers three components:

”B” stands for “using bilinear pooling”; “F” stands for “using flow” and “G” stands for

“using global priors”. We can see from the table that each component plays a significant

role in improving performance.

Comparison with state-of-the-art We compare our method with state-of-the-art meth-

ods [62, 93, 93, 108] submitted during the CVPR 2016 challenge. We submit our results on

the evaluation server to measure performance on the test set. At 0.5 overlap, our method is

only worse than [108]. However, this approach was optimized for 0.5 overlap and its per-

formance degrades significantly (to 2%) when mAP at 0.75 or 0.95 overlap is measured.

Even though frame level predictions using a Bi-directional LSTM are used in [92], our

performance is better when mAP is measured at 0.75 overlap. This is because [92] only

performs simple grouping of contiguous segments which are obtained at multiple detection

thresholds, instead of a proposal based approach. Hence, it is likely to perform worse on

longer action segments.
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5.3.3 The THUMOS14 Dataset

We also evaluate our framework on the THUMOS14 dataset[42], which contains 20

action categories from sports. The validation set contains 1010 untrimmed videos with 200

videos as containing positive samples. The testing set contains 1574 untrimmed videos,

where only 213 of them have action instances. We exclude the remaining background

videos from our experiments.

Note that solutions for action and activity detection could be different in general, as

activities could be very long (minutes) while actions last just a few seconds. Due to their

long duration, evaluation at high overlap (0.8 e.g.) makes sense for activities, but not for

actions. Nevertheless, we also train our proposed framework on the validation set of THU-

MOS14 and test on the testing set. Our model also outperforms state-of-the-art methods

on proposal metrics by a significant margin, which shows the good generalization ability

of our approach.

Performance of our ranker Our proposal ranker outperforms existing algorithms like

SCNN[85] and DAPs[22]. We show proposal performance on both average recall calcu-

lated using IoU thresholds from 0.5 to 1 at a step 0.05 (shown in Table 5.6) and recall at IoU

0.5 (shown in Table 5.7) using 10, 50, 100, 500 proposals. Our proposal ranker performs

consistently better than previous methods, especially using small number of proposals.

In Table 5.8, it is clear that, the proposal ranker performance improves significantly

when using a pair of context windows as input. Hence, it is important to use context

features for localization in videos, which has been largely ignored in previous state-of-the-

art activity detection methods.

Comparison with state-of-the-art Using off the shelf classifiers and our proposals, we

also demonstrate noticeable improvement in detection performance on THUMOS14. Here,

we compare our temporal context network with DAPs[22], PSDF[43], FG[81] SCNN[85]
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Method
Avg.Recall [0.5:0.05:1]

@10 @50 @100 @500
DAPs 3.0 11.7 20.1 46.7
SCNN 5.5 16.6 24.8 48.3
Ours 7.7 20.5 29.6 49.2

Table 5.6: Average Recall from IoU 0.5 to 1 with step size 0.05 for our proposals and other
methods on the THUMOS14 testing set

Method
Recall(IoU=0.5)

@10 @50 @100 @500
DAPs 8.4 29.2 46.9 85.5
SCNN 13.0 35.2 49.6 84.1
Ours 17.1 42.8 59.8 88.7

Table 5.7: Recall evaluation at IoU 0.5 between our proposals and state-of-the-art methods
on THUMOS14 testing set

and CDC[83]. We replace the S-CNN proposals originally used in CDC with our pro-

posals. For scoring the detections in CDC, we multiply our proposal scores with CDC’s

classification score. We show that our proposals further benefit CDC and improve detection

performance consistently at different overlap thresholds.

5.3.4 Qualitative Results

We show some qualitative results for TCN, with and without context. Note that only

top 5 proposals are shown. The ground truth is shown in blue while predictions are shown

in green. It is evident that when context is not used, multiple proposals are present inside or

just at the boundary of ground truth intervals. Therefore, although the location is near the

actual interval (when context is not used), the boundaries are inaccurate. Hence, when de-

Method Avg.Recall@100 mAP@0.5
Ours w/o Context 22.5 20.5
Ours w/ Context 29.6 25.6

Table 5.8: Evaluation on the influence with and without context on THUMOS14 testing set
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Method mAP@.4 mAP@.5 mAP@.6 mAP@.7
DAPs[22] —- 13.9 —- —-

FG[81] 26.4 17.1 —- —-
PSDF[43] 26.1 18.8 —- —-
SCNN[85] 28.7 19.0 —- —-

SCNN+CDC[83] 29.4 23.3 13.1 7.9
Ours+CDC 33.3 25.6 15.9 9.0

Table 5.9: Performance of state-of-the-art detectors on the THUMOS14 testing set

tection metrics are computed, these nearby detections get marked as false positives leading

to a drop in average precision. However, when context is used, the proposals boundaries

are significantly more accurate compared to the case when context is not used.

5.4 Conclusion

We demonstrated that temporal context is helpful for performing localization of activi-

ties in videos. Analysis was performed to study the impact of temporal proposals in videos

by studying precision recall characteristics at multiple overlap thresholds. We also vary the

context window to study the importance of temporal context for localization. Finally, we

demonstrated state-of-the-art performance on two challenging public datasets.
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Figure 5.6: Visualization of top 5 ranking results, the blue bar denotes the ground-truth
while the green one represents proposals.
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Chapter 6: Temporal Aggregation Network for Dense Multi-label Action

Recognition

6.1 Introduction

Convolutional Neural Networks (CNNs) have seen tremendous success across different

problems including image classification [17, 34, 51], object detection [14, 29, 76, 91], style

transfer [10, 15, 26], action recognition [8, 72, 90, 97] and action localization [16, 117,

118]. In each of these problems, several application specific changes to network design

have been proposed. In particular, for action recognition, a two-stream network compris-

ing two parallel CNNs, one trained on RGB images and another trained on stacked optical

flow fields, showed that incorporating temporal information into the network architecture

provides a significant benefit in performance [90]. Since optical flow computation is an

additional overhead, network architectures like C3D [97] operate only on a sequence of

images and perform 3D convolutions in each layer of the network. However, 3D convolu-

tions in each layer increase the model complexity and with just 3x3x3 convolutions, it is

hard to capture larger temporal context. Therefore, we need to design a network architec-

ture which can learn semantic representations of actions efficiently.

While it is important to design efficient network architectures, they should also be ca-

pable of learning all the variations which appear in videos during training. In a video, mul-

tiple frames aggregated together represent a semantic label, so the amount of computation

needed per semantic label is an order-of-magnitude larger compared to recognition tasks on
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Figure 6.1: An illustration of the spatial and temporal variances of human activities

images. The difficulty is further amplified because actions can span multiple temporal and

spatial scales in videos, shown in Figure 6.1. Short actions like micro-expressions (raising

an eyebrow) require high-resolution spatio-temporal reasoning, while other longer actions

like running or dancing involve large spatial movements, which can be identified with fea-

tures with lower spatial resolution. Therefore, it is essential to aggregate multi-resolution

spatio-temporal information without blowing up network complexity.

For image recognition tasks like object detection and semantic segmentation, dilated

convolutions [11, 76] have been widely adopted to increase receptive field sizes without

increasing model complexity. By applying dilated convolutions with different filter sizes,

multi-scale context can be efficiently captured. Multi-scale spatio-temporal context is im-

portant for video recognition tasks. To this end, we propose TAN, which applies multi-

scale dilated temporal convolutions after every spatial downsampling layer in the network.

Since the spatial receptive field of the network doubles after each downsampling layer, our

network has the capacity to learn fine-grained motion patterns in the feature-maps gen-
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erated closer to the input. Large scale spatio-temporal patterns are captured in deeper

layers which have coarse resolution. By only applying temporal convolutions after each

downsampling layer, the computational burden and model complexity are reduced when

compared to methods which apply 3D convolutions in each layer of the network. The use

of dilated convolutions also facilitates capturing larger temporal context efficiently. We

conducted extensive ablation studies to verify the effectiveness of our approach.

Our architecture is especially suitable for the dense action labeling task as it offers a

good balance between temporal context and bottom up visual features computed at a par-

ticular time instant. By modeling short-term context efficiently with convolutions, TAN

obtains state-of-the-art results on two benchmark datasets, Charades and Multi-THUMOS

for the dense action prediction task, outperforming existing methods by 5% and 3% respec-

tively. Although TAN is designed for dense action prediction, we also applied it to action

detection where it obtains state-of-the-art results, showing the effectiveness of TAN in a

variety of tasks.

6.2 Architecture

In this section, we introduce our Temporal Aggregation Network (TAN) in detail. We

summarize existing methods and describe the difference. A detailed analysis and intuition

of our key building blocks is then provided.

6.2.1 Temporal Modeling

Current approaches to temporal modeling generally fall in two categories:

2D Convolution + Late fusion. Many previous works treat video as a collection of

frames. A common approach is to extract frame-by-frame features from deep networks

pre-trained on the ImageNet classification task. Subsequently, these frame-wise features
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are fused using variants of pooling, temporal convolutions or LSTMs. To compensate for

missing motion cues from static image features, a second network extracts motion features

from flow or improved dense trajectories (IDT) separately - commonly known as two-

stream approaches.

3D Convolution. Alternatively, 3D convolutions can be used to model video directly.

3D convolutions are a natural extension to traditional 2D convolutions with an extra di-

mension spanning the temporal domain. 3D convolution networks form a hierarchical rep-

resentation of spatio-temporal data. However, because of an additional dimension in the

convolution kernels, 3D convolutional networks have significantly more parameters com-

pared to 2D networks, which leads to difficulty in optimization and over-fitting.

Temporal Aggregation Network. Our approach differs from both previous approaches.

Our goal is to model spatio-temporal information by decomposing 3D convolutions into

spatial and temporal dilated convolutions. By stacking both types of convolutions repeat-

edly, we form a temporal aggregation network (TAN) that not only captures spatio-temporal

information but also creates hierarchical representations.

6.2.2 Proposed Temporal Aggregation Module

A Temporal Aggregation module combines multiple temporal convolutions with dif-

ferent dilation factors (in the temporal domain) and stacks them across the entire network.

This supports the capture of context information across multiple spatio-temporal scales.

Temporal convolution is a simple 1D convolution. A dilated convolution is a convolution

whose filter has been dilated in space by a specific factor. They have been widely used

in semantic segmentation and object detection tasks [113] to capture spatial context across

scales. Here, we apply 1D dilated convolutions in the temporal dimension, see Fig. 6.2.

They enable capturing larger context without reducing the resolution of the feature-map.
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Figure 6.2: The proposed temporal aggregation module. It consists of one temporal con-
volution and several temporal dilated convolutions to capture motions at multiple temporal
resolutions.

Multiple temporal dilated convolutions not only help to model context across temporal

scales but also form an internal attention mechanism to match a large range of motion

frequencies.

Implementation. Given any feature inputs from previous layers, we apply one tempo-

ral convolution with a filter size of 3 and two dilated temporal convolutions with filter size

3 and dilation factors 2 and 3 respectively. All temporal convolutions are applied across

all spatial positions and channels, which help to learn temporal patterns among different

filter activations. Inspired by the recent success of residual networks [34], we also add a

residual identity connection from previous layers. The responses from all convolutions are

further accumulated by conducting element-wise sum followed by a ReLU non-linear acti-

vation, which together behave as a soft attention based weighted selection among different

temporal resolutions. The proposed module is illustrated in Figure 6.2.

Relation to LSTM. Long short term memory (LSTM) units are normally used in se-

quence modeling. By using a gated connection, LSTM allows a network to ”remember”
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important context clues over time. Our temporal aggregation network behaves similarly by

modeling temporal information using temporal convolutions. Additionally, our module is

capable of distinguishing motion frequency differences among temporal resolutions, which

is particularly useful when applied to action recognition tasks where actions having varying

lengths.

Relation to Wavenet. Our temporal aggregation module is partially inspired by the

Wavenet [100] model. Our module also uses dilated convolutions to model different tem-

poral context at many time-scales. But there are significant differences. The major one is

that our module is used in conjunction with spatial convolutions to capture both low-level

and high-level temporal consistency among spatial positions, which is critical for modeling

spatio-temporal relationships. Additionally, since we apply our module across different

channels of spatial filter responses, it also behaves as a object instance trajectory learner

similar to [105].

Relation to stack of convolutions with different filter sizes. It is possible to model

multiple temporal resolutions by just stacking convolutions with different filter sizes. How-

ever, one of the main reasons we choose dilated convolution over convolution is computing

cost. Multi-scale convolutions such as those used in models like inception [94], have to

largely increase the size of learnable filters. To accomplish effective learning, one usually

needs to resort to dimensionality reduction as the response channels increase in size rapidly.

By using dilated convolution, we are able to achieve the same goal without reducing tem-

poral resolution.

6.2.3 Spatial and Temporal Convolution Stacking

As discussed previously, we repeatedly stack spatial and temporal convolutions to model

spatio-temporal information and create a hierarchical spatio-temporal representation. We
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need a deep architecture that can be effectively trained. Multi-entity actions, like “person

picking a book”, typically involve larger and semantically richer spatio-temporal motion

patterns which are better represented in deeper layers. On the other hand, other actions

may be specific to an object instance, like “person smiling” which require high resolution

spatio-temporal features (for smiling) while still understanding deeper semantic concepts

like “person”. We seek to capture high-level semantic concepts while preserving high-

resolution features generated in the early layers of the network. Residual networks are a

good candidate since their linear structure with residual connections preserves information

learned across different convolution levels.

To model spatial information, we borrow the bottleneck structure from residual net-

works. A bottleneck block is a stack of 3 convolution layers with filter size 1x1, 3x3 and

1x1. The 1x1 convolution layers are used to adjust dimensions and the 3x3 convolution

layer behaves as a bottleneck with smaller input/output dimensions. A residual identity

connection is also attached to accelerate learning. Each bottleneck block is followed by a

ReLU non-linear activation.

Figure 6.3: A closer look of our network architecture. Our model contains four levels. Each
level consists of several bottleneck blocks and one temporal aggregation module at the end.
The spatial resolution is reduced by two after each level, while the temporal resolution is
not reduced.

The intuition behind repeatedly stacking spatial and temporal blocks among different
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levels is straight-forward. In the early stage of the network, we capture small spatio-

temporal patterns using temporal convolutions as the spatial receptive field is small. In

the deeper stages of the network, we progressively capture larger spatio-temporal patterns

using temporal convolutions as the spatial receptive field increases. Meanwhile, our tempo-

ral aggregation blocks support capturing both fast and slow actions across temporal scales

and across spatial levels. In this way, we form hierarchical spatio-temporal representations.

Stacking filters in the same block was first proposed in the VGG network [89] in which

a single large convolution of size 7x7 was broken down into three successive kernels. Such

a stacking of convolution kernels increased the depth of the network and also reduced the

model complexity (as three 3x3 kernels have fewer parameters than one 7x7 kernel). The

receptive field of the network was also the same as the original network which used 7x7

convolutions. Since neural networks are prone to over-fitting, by reducing the model com-

plexity while preserving the desirable characteristics of the network (Zeiler and Fergus

[116]), the VGG network reduced over-fitting and hence was able to improve its perfor-

mance significantly on the image classification task. Our approach of stacking tempo-

ral convolutions after spatial convolutions employs a similar strategy for reducing model

complexity - albeit for modelling spatio-temporal patterns, where over-fitting is a serious

concern.

6.2.4 Full Model

The final architecture consists of four levels of bottleneck blocks for spatial modeling

and temporal aggregation blocks for temporal modeling. In each level, there are multi-

ple bottleneck blocks following by one temporal aggregation block similar to a residual

network.

The weights of bottleneck blocks can be initialized using pre-trained ImageNet models.
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The spatial resolution is reduced after the initial convolution and pooling layers and after

every level with max pooling. Notice that there is no temporal resolution reduction due

to dilated convolutions in our temporal aggregation blocks. After all four levels of feature

learning, the final feature outputs are pooled by average pooling and mapped to semantic

space by a fully connected layer. Depending on the specific task, our network can both

output an aggregated prediction or dense predictions with no extra cost. Our full model is

illustrated in Figure 6.3.

6.3 Experiments

We conducted a series of ablation studies to illustrate the efficiency and effectiveness

of our model. We then compare to state-of-the-art methods on dense multi-label action

recognition tasks. Lastly, we apply the model to the action detection task.

Datasets. Charades [88] contains 157 action classes from common everyday activities

collected by 267 people at home. It has 7986 untrimmed videos for training and 1864

untrimmed videos for validation with an average length of 30 seconds. It is considered as

one of the most challenging multi-label action recognition dataset. MultiTHUMOS [112]

contains 65 action classes and another 413 videos apart from the original THUMOS datatset

[42] and extends it to a dense multi-label task with 1.5 labels per frame and 10.5 distinct

action categories per video. It is suitable for an in-depth study of simultaneous human

actions in video. THUMOS14 [42] contains 20 sport action classes from over 24 hours of

videos. The detection task contains 2765 trimmed videos for training, 1,010 untrimmed

videos for validation, but only 200 untrimmed videos in validation and 213 untrimmed

videos in testing set have foreground labels. This dataset is quite challenging because it

contains long videos of multiple short action instances.
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Method Frame mAP Video mAP
Res50-2D 11.7 21.1
Res50-3D 10.3 19.0
Res50-TAN (Ours) 14.2 25.5

Table 6.1: Comparison of different temporal modeling architectures on Charades.

Components Frame mAP Video mAP
Lv. 4 Lv. 3 Lv. 2 Lv. 1 Dilation
X × × × X 12.2 22.1
X X × × X 13.1 23.6
X X X × X 13.7 24.9
X X X X X 14.2 25.5
X X X X × 12.2 22.4

Table 6.2: Ablation study for placing temporal aggregation module at different levels and
the effectiveness of dilation

6.3.1 Ablation Study

Analysis of Temporal Modeling Methods. We first compare our model with two

baselines. The three models are:

• Res50-2D: A model based on ResNet-50, trained frame-by-frame and with an LSTM

at the end to generate predictions.

• Res50-3D: A model using 3D convolutions to replace all 2D convolutions in ResNet-

50. For example, we use 3x3x3 convolutions instead of 3x3 convolutions and use a

stride size of 2x2x2 instead of 2x2 when needed.

• Res50-TAN: Our proposed method with spatial convolution layers initialized from

ResNet-50.

All models take a 16 frame clip with 224x224 resolution as input in 4 FPS, which corre-

sponds to about 4 seconds. As 3D convolutions require large number of training data, to
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Sampling rates 1 FPS 2 FPS 4 FPS 8 FPS
Video mAP 21.3 25.3 25.5 24.1

Table 6.3: Comparison of performance using different temporal stride on Charades

maintain fairness in experiments, all models are pre-trained on the recently released large

scale Kinetics dataset [8] and then fine-tuned and tested on the Charades dataset [88]. The

results are shown in Table 6.1. We evaluated on both frame-level mAP and video-level

mAP. Our proposed TAN clearly outperforms the baseline methods, while the 3D convolu-

tion version performs worst due to the reduction of temporal resolution.

Effectiveness of the Temporal Aggregation Module. We evaluate the effectiveness

of our network architecture by conducting an ablation study by varying the position of

the temporal aggregation module in the network, such as only at the final level 4, only at

level 3,4 and at level 2,3,4. We also describe an experiment by replacing our temporal

aggregation module with a simple 3x1x1 temporal convolution. Table 6.2 shows the com-

parative results. As more temporal aggregation modules are added, performance improves.

This shows that our model can learn hierarchical spatio-temporal patterns. Meanwhile, we

also evaluate the effectiveness of temporal dilated convolutions in the temporal aggregation

module. When we replace our temporal aggregation module with a simple temporal con-

volution, performance drops significantly by 2% on Frame mAP and 3.1% on Video mAP.

This shows that our temporal aggregation module is more effective at modeling temporal

information from multiple temporal scales.

Impact of Sampling Rate in Videos. We train and test our model with four different

video sampling rates of 1,2,4,8 FPS. As seen in Table 6.3, the performance doesn’t drop

significantly until we aggressively drop the video sampling rate to 1FPS. Our model shows

reasonable immunity to variances of temporal resolution.

Impact of Networks Layers. We also conduct an ablation study to investigate the
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Number of layers 50s +12t 101s +12t 152s +12t

Frame mAP 14.2 15.5 17.6
Video mAP 25.5 27.5 31.0

Table 6.4: Comparison of performance using different depth of spatial convolutions on
Charades

Method Frame mAP Video mAP
Ours w/o pretraining 14.0 25.3
Ours w/ pretraining 17.6 31.0

Table 6.5: Comparison of performance with and without Kinetics pretraining on Charades

influence of depth of networks. Here, we only vary the number of bottleneck blocks used

in level 3 and level 4, similar to ResNet, leaving the temporal blocks unchanged at the end

of each level. Table 6.4 shows that our model can further benefit from deeper networks.

Impact of Pretraining. Finally, we conduct an ablation study to investigate the influ-

ence of pretraining. Table 6.5 shows that our model can further benefit from larger dataset,

meanwhile even without pretraining, our method still achieves state-of-the-art performance

compared to previous approaches.

6.3.2 Multi-label Action Recognition

We conduct experiments on two popular multi-label action recognition datasets and

compare our results to state-of-the-art methods.

Implementation details. For all datasets, we use a temporal aggregation network based

on ResNet-152 with a 16 frame temporal resolution. It is pre-trained on the Kinetics dataset

and fine-tuned later. For the Charades dataset, we use a sampling rate of 4 FPS. We op-

timized our model using the Adam optimizer with a learning rate of 10−4 for the first 10

epochs and 10−5 in the following 10 epochs. It is evaluated using two metrics following

[88]: one is a video level mAP for video based multi-label classification and the other is a
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Method Frame mAP Video mAP
Random [88] – 5.9
C3D [97] – 10.9
IDT [103] – 17.2
Two-stream [23] 8.9 14.3
Asynchronous Temporal Field [86] 12.8 22.4
ActionVLAD [28] – 21.0
Predictive-corrective [18] 8.9 –
R-C3D [111] 12.7 –
Ours 17.6 31.0

Table 6.6: Comparison with state-of-the-art methods on Charades

Method Frame mAP
IDT [103] 13.3
Single-frame CNN [89] 25.4
Two-Stream [23] 27.6
Multi-LSTM [112] 29.6
Predictive-corrective [18] 29.7
Ours 33.3

Table 6.7: Comparison with state-of-the-art methods on MultiTHUMOS using frame level
mAP

frame level mAP uniformly extracted at 25 frames per video to approximate the multi-label

action detection task. For video level classification, average pooling is used to map dense

frame level labels to video level labels. For MultiTHUMOS, we use a sampling rate of

10 FPS following [112]. We also optimized our model using the Adam optimizer with a

learning rate of 10−4 for the first 10 epochs and 10−5 in the following 5 epochs. Finally,

MultiTHUMOS is also evaluated using the standard frame level mAP metric.

Comparison with state-of-the-art. On Charades, we compare with several state-of-

the-art methods such as [18, 23, 28, 86, 88, 97, 103]. Our results are shown in Table 6.6.

We first show results of our model without Kinetics pre-training, and it still outperforms

state-of-the-art methods by 1.2% on frame level mAP and 2.9% on video level mAP. Our

model with Kinetics pre-training obtains a significant improvement over other methods and
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Method Frame mAP
Single-frame CNN [89] 34.7
Two-Stream [23] 36.2
Multi-LSTM [112] 41.3
Predictive-corrective [18] 38.9
CDC [83] 44.4
Ours 46.8

Table 6.8: Comparison with state-of-the-art methods on THUMOS14 using frame level
mAP

Figure 6.4: Visualization of network filter responses from multiple levels. From top to
bottom row, each row shows filter responses of a layer from lower to higher layer.

outperforms them by 4.8% on frame level mAP and 8.6% on video level mAP respectively.

On MultiTHMOS, we compare with [18, 23, 89, 112] in Table 6.7. Our model performs

3.6% better than the previous state-of-the-art method [18]. We also compare our model

with several recent network on THUMOS14, such as [18, 23, 83, 89, 112]. As seen in

Table 6.8, our model again outperforms previous state-of-the-art methods [83] by 2.4% on

frame-level evaluation.
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Figure 6.5: Visualization of representative filter responses after each level of temporal
aggregation block.

6.3.3 Visualization

We visualize the filter responses of our network to better understand what is learned

in different levels in Figure 6.4. In the example, we observe that the early layer filters

have responses spread over a larger part of the image, while the later layers learn to focus

where the action is present. To better understand how the network learns spatial-temporal

consistency, we also visualize representative filter responses after each level of temporal

aggregation block, shown in Figure 6.5. In spatial domain, the sallow layers tend to high-

light fine-grained movement (such as facial, hand movement) and the deep layers tend to

highlight large movement (such as body movement), due to the spatial effective receptive

window increases as network goes deep. In temporal domain, the network is capable of

capturing action sequence of variable length, thanks to our temporal aggregation blocks.
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Figure 6.6: Qualitative results on the Charades dataset. Red and green dashed boxes show
the ground-truth and our predictions respectively. Our network is able to correctly localize
multiple actions of variable durations simultaneously.
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Meanwhile, it is interesting to see that how spatial-temporal responses group up as the

network advances. This demonstrates that our model progressively constructs hierarchical

spatio-temporal representations for recognizing human actions.

We also present qualitative results for different samples in Figure 6.6. These results

show that our network is effective in localizing both long and short duration actions simul-

taneously. Notice that it also predicts labels of multiple actions happening at the same time

instance.

6.4 Conclusion

We presented a temporal aggregation module that combines temporal convolution with

varying levels of dilated temporal convolutions to capture spatio-temporal information

across multiple scales. We compare our design with multiple temporal modeling methods.

Based on this, we designed a deep network architecture for video applications. Our model

stacks spatial convolutions and the new temporal aggregation module repeatedly to learn a

hierarchical spatio-temporal representation. It is both efficient and effective compared to

existing methods such as 3D convolution networks and two-stream networks. We conduct

ablation studies to analyze our model and experiments on multi-label action recognition

and pre-frame action recognition datasets prove the effectiveness of our method.
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Chapter 7: Spatial Temporal Human Action Understanding

7.1 Introduction

Video application has been one of long-lasting interests in computer vision commu-

nities. Thanks to recent progress of deep learning methods, there have been significant

improvement over traditional video tasks such as action recognition [8, 97, 106] and activ-

ity localization [16, 22, 111]. However, spatial temporal action understanding still haven’t

seen large breakthrough. Although there have been several early attempts, the problem is

still under well-studied and has been recognized as one of the most challenging task in

video analysis research. It is hard due to the requirement of instance-level awareness that

needs a system to predict where, when and what action happens for each person in a crown

scene, which has multiple potential applications in video surveillance. It can be understood

as a task combining both object detection and action localization.

There have been significant progress in object detection. State-of-the-art methods often

shares a two-stage structure that first generate object proposals and then refine predictions.

Although these models archive promising results in still image, the performance will be

largely deteriorated when applied to moving object. In order to accurately localize a ob-

ject, the deep networks are usually trained to highlight specific appearance features, which

can be easily disturbed by any motion blurs, video refocuses, changes of explosion and

nonlinear view projections from camera movement. Even worse, when apply object detec-

tion to human body, since human beings are not a rigid object, it often results as a bounding
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box cutting off the moving legs and hands, which part may ne crucial to help recognize an

action.

Most recently, there has been a widely practice to re-integrate motion clues into deep

networks for moving object detection and action recognition. Several works have success-

fully adopted optical flow to smooth and improve feature quality to assist moving object

detection. Others have tried to utilized optical flow to improve action recognition. In fact,

the success of such methods indicate the lacking of motion learning in current image-level

ImageNet pre-trained deep networks. Meanwhile, it is interesting to see that, Optical Flow,

although has been used for decades in video applications, has not been throughly studied

for possible formulations in spatial temporal action understanding.

In this work, we first investigate the context difference between localizing human in

spatial domain and recognizing action in temporal domain. We then propose a decoupled

framework built based on existing two-stage object detector that has both dedicated spatial

branch and temporal branch to model the spatial and temporal context difference. Such

approach has been proved effectively when evaluated on state-of-the-art benchmarks.

7.2 Decoupling Spatial and Temporal Context in a Network

We first present a decoupled framework for spatio-temporal action detection in which

action localization in the spatial domain and action classification in temporal domain are

decoupled, shown in Figure 7.1. To obtain the final action probability for an RoI, we

multiply the actionness score (which is class-agnostic) with the fine-grained classification

score. Our approach uses the Faster-RCNN architecture which is trained with 2 classes

(action/no action). For fine-grained classification, a separate network is employed. Our idea

is based on the assumption that spatial action localization and action recognition require

different cues. Trying to solve these two problems jointly may require more data, which is
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Figure 7.1: A overview of our decoupled framework, which has dedicated branches for
spatial localization and temporal recognition. Contexts in spatial and temporal branches
are modeled explicitly and fused together at last.

hard to collect in this setting.

7.2.1 Two-stream Faster-RCNN for Human Detection

We use a two-stream Faster-RCNN which accepts a short chunk of video (K frames)

as an input and predicts the bounding box position of the middle frame of the chunk. The

first stream is RGB which contains the middle frame of the chunk. The second stream uses

a stack of optical-flow frames as an input. The features are combined after conv4 for RPN

and after conv5 for the classification head. The classification head has 2 fully connected

layers and generates action/not-action probability for each proposal. For recognizing the

action in these RoIs, we use a separate network, described in the next section. Features

for the network are generated like R-CNN, i.e. by cropping and re-sizing these RoIs to

224x224. The recognition scores and actionness scores are finally multiplied to obtain the

final score of an action.
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7.2.2 Multi-span Temporal Aggregation Network for Action Recognition

We present Temporal Aggregation Network (TAN) which decomposes 3D convolutions

into spatial and temporal aggregation blocks. By stacking spatial and temporal convolutions

repeatedly, TAN forms a deep hierarchical representation for capturing spatio-temporal

information in videos. Since we do not apply 3D convolutions in each layer but only apply

temporal aggregation blocks once after each spatial downsampling layer in the network,

we significantly reduce the model complexity. The use of dilated convolutions at different

resolutions of the network helps in aggregating multi-scale spatio-temporal information

efficiently. Experiments show that our model is well suited for dense multi-label action

recognition, which is a challenging sub-topic of action recognition that requires predicting

multiple action labels in each frame.

A Temporal Aggregation module combines multiple temporal convolutions with dif-

ferent dilation factors (in the temporal domain) and stacks them across the entire network.

This supports the capture of context information across multiple spatio-temporal scales.

Temporal convolution is a simple 1D convolution. A dilated convolution is a convolution

whose filter has been dilated in space by a specific factor. They have been widely used in

semantic segmentation and object detection tasks to capture spatial context across scales.

Here, we apply 1D dilated convolutions in the temporal dimension. They enable capturing

larger context without reducing the resolution of the feature-map. Multiple temporal di-

lated convolutions not only help to model context across temporal scales but also form an

internal attention mechanism to match a large range of motion frequencies.

We repeatedly stack spatial and temporal convolutions to model spatio-temporal infor-

mation and create a hierarchical spatio-temporal representation. We need a deep archi-

tecture that can be effectively trained. Multi-entity actions, like “person picking a book”,

typically involve larger and semantically richer spatio-temporal motion patterns which are
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better represented in deeper layers. On the other hand, other actions may be specific to

an object instance, like “person smiling” which require high resolution spatio-temporal

features (for smiling) while still understanding deeper semantic concepts like “person”.

We seek to capture high-level semantic concepts while preserving high-resolution features

generated in the early layers of the network.

The intuition behind repeatedly stacking spatial and temporal blocks among different

levels is straight-forward. In the early stage of the network, we capture small spatio-

temporal patterns using temporal convolutions as the spatial receptive field is small. In

the deeper stages of the network, we progressively capture larger spatio-temporal patterns

using temporal convolutions as the spatial receptive field increases. Meanwhile, our tempo-

ral aggregation blocks support capturing both fast and slow actions across temporal scales

and across spatial levels. In this way, we form hierarchical spatio-temporal representations.

Meanwhile, the dilated convolution in our temporal aggregation block enables our net-

work to learn from arbitrary length of input frames. Hence, a multi-span input approach

can be utilized to further capture temporal context among different length and frequency.

7.3 Experiments

We conduct experiments on two challenging spatial temporal action detection datasets,

UCF101-Detection and AVA to evaluate the performance of our methods. We first eval-

uate the performances of spatial and temporal branches separately to demonstrate the ef-

fectiveness of each component. Later we compare with state-of-the-art methods to show

advantage of our system
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7.3.1 Datasets

UCF101-Detection is a widely used action recognition dataset. When evaluated on

spatial temporal detection task, a subset of 24 sport classes with 3207 videos is used. Sim-

ilar to previous works, we evaluate our method on the first train/test split only. We used

frame-mAP as the standard metric.

AVA is a newly released dataset. This dataset is challenging due to its multi-label

recognition setup. It contains video 15 minutes clips from 430 movies, where 235 are

used for training, 64 for validation and 131 for testing. It densely annotates 80 atomic

actions (only 60 are used in evaluation) in 57.6K video segments at an one second interval.

Since the test set is only evaluated on official evaluation sever during challenge. We run

experiments only on validation set and use frame-mAP as a metric.

7.3.2 Ablation Study

We conduct several ablation studies to demonstrate the effectiveness of each component

in our framework.

Performance of human detection

Figure 7.2: Recall Comparison between two-stream human detector and standard faster-
rcnn detector

We first evaluate the performance of our two-stream faster-rcnn detector. As discussed

85



Span mAP
f7s7 14.3
f7s7 + f7s3 14.9
f7s7 + f7s3 + f7s14 15.3
f7s7 + f7s3 + f7s14 + f16s4 + f16s8 + f16s16 16.5

Table 7.1: Influence of multiple spans on performance on AVA validation set. ”f” means
frame, ”s” means stride.

in introduction, object detection trained on still image often suffers significant performance

drop when applied to moving object. In this ablation study, we compare our proposed two-

stream framework compared to the standard RGB approach. Shown in Figure 7.2, our two-

stream human detector out-performs baseline method at a significant margin at all IoUs.

This demonstrates that by integrating optical flow in our framework, we can better enhance

the feature quality for spatial detection.

Performance of multi-span action recognition

Another important component is the our multi-span action recognition method. Since

we don’t do human tracking or linking, the performance of action recognition is solely

depended on the length of input clip, which faster movement requires fewer frames at a

dense stride and slower movement requires more frames at a sparse stride. Shown in table

7.1, by combing input clips with different length of frames at multiple stride, we can further

improve the action recognition performance (2.2%). The influence of multiple spans on

performance is obvious.

7.3.3 Compared to State-of-the-art

We compare our final framework with multiple state-of-the-art methods [32, 37, 44,

65]. On UCF101-Detection dataset, we out-perform previous best method [44] by 1.5%,

shown in Table 7.3. On AVA, we also archive state-of-the-art performance and lead a 0.9%
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Method Frame mAP@0.5
Faster RCNN [76] 11.2
Google [32] 15.6
Ours 16.5

Table 7.2: Comparison with state-of-the-art methods on AVA validation set

Method Frame mAP@0.5
Two-stream RCNN [65] 65.7
ACT-detector [44] 67.1
T-CNN [37] 41.4
Ours 68.6

Table 7.3: Comparison with state-of-the-art methods on UCF101-24

improvement over [32], shown in Table 7.2. Considering [32] has used rgb and optical flow

from a clip of 40 frames, we think our improvement is significant by just using 16 frames.

Overall, our framework is competitive to other state-of-the-art methods, which proves its

effectiveness.

7.4 Conclusion

In this work, we present a decoupled framework for spatial temporal human action un-

derstanding, which is a hot research topic due to its vast application in video surveillance.

The proposed framework has both dedicated branches for human detection and instance

action recognition. It can predict where, when and what a human action happens simulta-

neously. Further experiments demonstrate the effectiveness of our framework.
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Chapter 8: Conclusion and Open Problem

The success of large scale image classification has largely accelerated deep architec-

tures to learn better spatial representations for image applications. However, in temporal

domain, people were unable to achieve similar performance due to the lack of large-scale

datasets. Thanks to the recent released datasets for large scale action classifications, re-

searchers can now train novel architectures to learn better temporal representations for

video applications. Meanwhile, such trend raises a new question: Is it possible to find a

unified deep architecture that works for both spatial and temporal domain? More formally,

given a deep model, the architecture should be invariant to the temporal lengths of videos.

When provided with a single image, the network should effectively capture spatial context;

When provided a clip of continuous images, the network should capture both spatial and

temporal context simultaneously.

So, one interesting open problem is to find a deep architecture for both spatial and tem-

poral domain. People have long-time observed that using image pre-trained deep networks

would assist the temporal learning process, as it provided meaningful spatial represen-

tations. It is interesting to determine whether networks pre-trained on large scale video

classification datasets can further accelerate spatial learning process, as the network may

be aware of the potential 3D spatial information by inferencing from temporal informa-

tion. Exploring such direction can further help find the common connections of spatial and

temporal context, thus, benefit both domains.
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