
Synthesis Techniques for Low-Power Hard Real-Time Systems on Variable
Voltage Processors

Inki Hongy, Gang Quy, Miodrag Potkonjaky, and Mani B. Srivastavaz
yComputer Science Department, University of California, Los Angeles, CA 90095-1596 USA

zElectrical Engineering Department, University of California, Los Angeles, CA 90095-1596 USA

Abstract

The energy efficiency of systems-on-a-chip can be much
improved if one were to vary the supply voltage dynami-
cally at run time. In this paper we describe the synthesis
of systems-on-a-chip based on core processors, while treat-
ing voltage (and correspondingly, the clock frequency) as a
variable to be scheduled along with the computation tasks
during the static scheduling step. In addition to describ-
ing the complete synthesis design flow for these variable
voltage systems, we focus on the problem of doing the volt-
age scheduling while taking into account the inherent limi-
tation on the rates at which the voltage and clock frequency
can be changed by the power supply controllers and clock
generators. Taking these limits on rate of change into ac-
count is crucial since changing the voltage by even a volt
may take time equivalent to 100s to 10,000s of instructions
on modern processors. We present both an exact but im-
practical formulation of this scheduling problem as a set
of non-linear equations, as well as a heuristic approach
based on reduction to an optimally solvable restricted or-
dered scheduling problem. Using various task mixes drawn
from a set of nine real-life applications, our results show
that we are able to reduce power consumption to within 7%
of the lower bound obtained by imposing no limit at the rate
of change of voltage and clock frequencies.

1 Introduction

In recent years the demand for portable battery-operated
computing and communication devices has made low power
consumption an essential design attribute. The power re-
duction approaches that have emerged so far include reduc-
tion of switched capacitance, activity based system shut-
down, and aggressive supply voltage reduction via exploita-
tion of quadratic dependence of power on voltage together
with parallelism and pipelining to recoup lost throughput.
However, aggressive supply voltage reduction [1],the most
powerful of these techniques, is usable only if throughput
(data sample rate) is the sole metric of speed. A single tight

latency constraint, as is often present in embedded systems,
renders the technique ineffective.

The problem outlined above really arises because con-
ventional systems are designed with a fixed supply voltage.
However, there is no fundamental reason that the supply
voltage has to be fixed. Instead, it can in principle be varied
dynamically at run time. Indeed, advances in power supply
technology makes it possible to vary the generated supply
voltage dynamically under external control. While many
CMOS circuits have always been capable of operating over
a range of supply voltages, it is the recent progress in power
supply circuits [21, 9] that has made feasible systems with
dynamically variable supply voltages. Since both the power
consumed and the speed (maximal clock frequency) are a
function of the supply voltage, suchvariable voltagesys-
tems can be made to operate at different points along their
powervs. speed curves in a controlled fashion.

In particular a static or dynamic scheduler, in addition
to its conventional task of scheduling the computation op-
erations on hardware resources, may also schedule changes
in voltage as a function of timing constraints and chang-
ing system state. Such voltage scheduling would allow for
much higher energy efficiency (lower power) for a wider
class of applications than is possible by operating the sys-
tem at one or two fixed points on the power-speed curve,
as is done by conventional approaches of supply voltage re-
duction to a fixed value [1] and system shutdown [25]. The
benefits of quadratic dependence of power on voltage thus
become available even in event driven systems as well as in
the presence of joint latency and throughput constraints

In this paper, we develop the first approach for power
minimization of scheduling, instruction and data cache size
determination, and processor core selection. We establish
the theoretical framework for designing variable voltage sys-
tems by treating voltage as an optimization degree of free-
dom for the applications with real-time constraints and pro-
viding the optimal variable voltage scheduling algorithm for
some special cases, where the speed overhead for chang-
ing voltages is explicitly accounted for. We develop an ef-
fective scheduling heuristic for a general case based on the

optimal algorithm for the restricted problem. By selecting
the most efficient voltage profile in the presence of multiple
timing constraints under the realistic variable voltage hard-
ware model, our algorithms result in significant savings in
energy.

The rest of the paper is organized in the following way.
Section 2 presents the related work. Section 3 explains
the necessary background. Section 4 discusses the variable
voltage scheduling problem and provides an optimal solu-
tion to some special cases. The global design flow of the
novel synthesis approach is presented in Section 5. In Sec-
tion 6 we establish the computational complexities of the
variable voltage scheduling problem and propose an effec-
tive heuristic based on the optimal algorithm for some spe-
cial cases. Section 7 presents experimental data. Section 8
concludes.

2 Related work

Low power system synthesis has emerged as an impor-
tant area of research in last 5 years. Several good reviews
on power estimation and minimization techniques exist [20,
23]. We review the research results relevant to low power
systems based on dynamically variable voltage hardware.

2.1 Variable voltage system and design issues

Of direct relevance to our research is the prior research
activity on technology, circuits, and techniques for vari-
able voltage systems. At the technology level, efficient DC-
DC converters that allow the output voltage to be rapidly
changed under external control have recently been devel-
oped [21, 26].

At the hardware design level, research work has been
performed on chips with dynamically variable supply volt-
age that can be adjusted based on (i) process and temper-
ature variations, and (ii) processing load as measured by
the number of data samples queued in the input (or output)
buffer. Dynamically adapting voltage (and the clock fre-
quency), to operate at the point of lowest power consump-
tion for given temperature and process parameters was first
suggested by Macken et. al. [19]. Nielsen et al. [22] ex-
tended the dynamic voltage adaptation idea to take into ac-
count data dependent computation times in self-timed cir-
cuits. Recently, researchers at MIT [9] have extended the
idea of voltage adaptation based on data dependent compu-
tation time from [22] to synchronously clocked circuits. Be-
cause these approaches rely on run-time reactive approaches
to dynamic voltage adaptation, they work fine only where
average throughput. is the metric of performance. There-
fore, these approaches are inapplicable to hard real time
systems such as embedded control applications with strict
timing requirements.

There has been research on scheduling strategies for ad-
justing CPU speed so as to reduce power consumption. Most
existing work is in the context of non-real-time workstation-
like environment. Weiser et al. [29] proposed an approach
where time is divided into 10-50 msec intervals, and the
CPU clock speed (and voltage) is adjusted by the task-level
scheduler based on the processor utilization over the pre-
ceding interval. Govil et al. [8] enhanced [29] by propos-
ing and comparing several predictive and non-predictive ap-
proaches for voltage changes, and concluded that smooth-
ing helps more than prediction. Finally, Yao et al. [31] de-
scribed an off-line minimum energy scheduling algorithm
and an on-line average rate heuristic for job scheduling with
preemption for independent processes with deadlines under
the assumption that the supply voltage can be changed arbi-
trarily without any timing and power overhead.

Hong et al. [10] proposed an approach for the low power
core-based real-time system-on-chip based on dynamically
variable voltage hardware. While they developed thenon-
preemptivevariable voltage scheduling heuristic with the
assumption of zero delay in changing voltage levels, in this
paper we focus on thepreemptivevariable voltage schedul-
ing while taking into account the inherent limitation on the
rates at which voltage and clock frequency can be changed
by the power supply controllers and clock generators.

2.2 System level and behavioral level power esti-
mation

Landman and Rabaey have performed the work on the
macro and micro level power estimation [16]. The work at
Princeton and Fujitsu on the estimation of power consump-
tion for programmable processors [28] is of particular rele-
vance. Evans and Franzon [5] and Su and Despain [27] have
proposed power estimation model for cache, specifically for
SRAM.

2.3 System level and behavioral level power opti-
mization

One well known technique that results in substantial power
reduction is reducing the voltage to reduce the switching
power, which is the dominant source of power dissipation
in CMOS circuit and is proportional toV 2

dd whereVdd is
the supply voltage [1]. However, this reduction came with
a speed penalty due to increased gate delays. The gate de-
lay is proportional to Vdd

(Vdd�VT)2
, whereVT is the threshold

voltage [1]. Chandrakasan et al. [1] have shown that the
strategy of operating at a fixed reduced voltage can be cou-
pled with architectural level parallelism and pipelining to
compensate for lower clock rate due to voltage reduction so
that the overall throughput remains the same but the over-
all power is still lowered, although at the cost of increased
latency.

Microprocessor core Clock (MHz) MIPS Technology (�m) Area (mm2) Power diss. (mW) (Volt.)
StrongARM 233 266 0.35 4.3 300 (1.65)

ARM, 7 40 36 0.6 5.9 200 (5)
ARM, 7 Low-Power 27 24 0.6 3.8 45 (3.3)
LSI Logic, TR4101 81 30 0.35 2 81 (3.3)
LSI Logic, CW4001 60 53 0.5 3.5 120 (3.3)
LSI Logic, CW4011 80 120 0.5 7 280 (3.3)

DSP Group, Oak 80 80 0.6 8.4 190 (5)
NEC, R4100 40 40 0.35 5.4 120 (3.3)

Toshiba, R3900 50 50 0.6 15 400 (3.3)
Motorola, 68000 33 16 0.5 4.4 35 (3.3)
PowerPC, 403 33 41 0.5 7.5 40 (3.3)

ARM 710 (ARM7 / 8KB) 40 72 0.6 34 424 (5)
SA-110 (StrongARM / 32KB) 200 230 0.35 50 900 (1.65)

Table 1. The performance, area, and power data for a subset of processor cores.

Several researchers have addressed the issue of power in
event-driven systems, and proposed various techniques for
shutting down the system or parts of the system [25, 12,
4]. Compilation techniques for low power software have
emerged for both general-purpose computation [28] and DSP
computations [11]. Numerous behavioral synthesis research
efforts have also addressed power minimization [23].

Four research groups have addressed the use of multiple
(in their software implementation restricted to two or three)
different voltages [2, 13, 18, 24]. They used the term “vari-
able voltage” for a fixed number of simultaneously available
voltages.

3 Preliminaries

3.1 Task model

A set T of independent tasks is to be executed on a
system-on-chip. Each taskTi 2 T is associated with the
following parameters:

� ai its arrival time
� di its deadline
� pi its period
� Wi its required number of CPU cycles

We assume, without loss of generality, that all tasks have
identical periods. When this is not the case, a simple prepro-
cessing step and application of the least common multiple
(LCM) theorem [17] transforms an arbitrary set of periods
to this design scenario in polynomial time. As the conse-
quence, when the LCM theorem is applied, there may be
a need to run several iterations of a given task within this
overall period.

3.2 Variable voltage hardware model

The variable voltage generated by the DC-DC switch-
ing regulators in the power supply cannot instantaneously
make a transition from one voltage to another. For exam-
ple, [21] reported transition times of 6 msec/volt for a DC-
DC switching converter. In personal communications with

the authors, researchers at MIT and Berkeley have reported
transitions times of 10 to 100 microsec/volt.

Dual to the supply voltage variation is the accompanying
variation of the clock frequency. The time overhead asso-
ciated with voltage switching is significant in the order of
100s to 10000s of instructions in modern microprocessor.
Fortunately, the computation itself can continue during the
voltage and frequency change period. However, the speed
overhead during the transition period must be explicitly ac-
counted for.

As suggested in [21], we employ a linear model to de-
scribe the speed overhead. The maximum rate of voltage
change is specified for the power supply regulator, and we
can make a transition from a voltage to any other voltages
within the maximum rate.

3.3 Power model

It is well known that there are three principal compo-
nents of power consumption in CMOS integrated circuits:
switching power, short-circuit power, and leakage power.
The switching power, which dominates power consump-
tion, is given byP = �CLV

2
ddfclock, as indicated earlier.

�CL is defined to be effective switched capacitance. It is
also known that reduced voltage operation comes at the cost
of reduced throughput [1]. The gate delayT follows the fol-
lowing formula:T = k Vdd

(Vdd�VT)2
wherek is a constant [1]

andVT is the threshold voltage. From these equations to-
gether with the observation that the speed is proportional to
f and inversely proportional to the gate delay, the powervs.
speed curve can be derived. In particular, the normalized
powerPn (= 1 atVdd = Vref) as a function of the normal-
ized speedSn (= 1 atVdd = Vref). For example, assuming
Vref = 3.3 volts andVT = 0.8 volts, the powervs. speed
curve follows the following equation:

Pn = 0:164 � S3n +
p
0:893 � S2n + 1:512 � Sn � (0:173 �

S2n + 0:147 � Sn) + 0:277 � S2n + 0:059 � Sn

By varyingVdd, the system can be made to operate at
different points along this curve. From the equation, it is
easy to see that the power is a convex function of speed.

3.4 Target architecture

Several factors combine to influence system performance:
instruction and data cache miss rates and penalty, processor
performance, and system clock speed. Power dissipation of
the system is estimated using processor power dissipation
per instruction and the number of executed instructions per
task, supply voltage, energy required for cache read, write,
and off-chip data access as well as the profiling information
about the number of cache and off-chip accesses.

Data on microprocessor cores have been extracted from
manufacturer’s datasheets as well as from the CPU Center
Info web site [3]. A sample of the collected data is pre-
sented in Table 1, The last two rows of the table show two
integrated microprocessor products with on-chip caches and
their system performance data. We assume that the proces-
sor cores follow the power model described in the preceding
subsection.

Cache Line size
size 8B 16B 32B 64B 128B 256B 512B

512B 6.07 5.99 6.02 - - - -
1KB 6.44 6.13 6.07 6.23 - - -
2KB 6.88 6.52 6.36 6.34 6.51 - -
4KB 7.67 7.02 6.66 6.49 6.56 7.35 -
8KB 8.34 7.81 7.21 6.99 6.91 7.65 9.40
16KB 9.30 8.58 8.00 7.62 7.54 8.14 9.80
32KB 1.04e-08 9.45 8.91 8.59 8.69 9.30 10.04

Table 2. A subset of the cache latency model:
minimal cycle time (ns) for various direct-mapped
caches with variable line sizes.

We use CACTI [30] as a cache delay estimation tool with
respect to the main cache design choices: size, associativ-
ity, and line size. The energy model has been adopted from
[5] and [27]. The overall cache model has been scaled with
respect to actual industrial implementations. Caches typi-
cally found in current embedded systems range from 128B
to 32KB. Although larger caches correspond to higher hit
rates, their power consumption is proportionally higher, re-
sulting in an interesting design trade-off. Higher cache as-
sociativity results in significantly higher access time. We
use a recently developed compiler strategy which efficiently
minimizes the number of cache conflicts that considers direct-
mapped caches [14]. We have experimented with 2-way
set associative caches which did not dominate comparable
direct-mapped caches in a single case. Cache line size was
also variable in our experimentations. Its variations corre-
sponded to the following trade-off: larger line size results in
higher cache miss penalty delay and higher power consump-
tion by the sense amplifiers and column decoders, while
smaller line size results in large cache decoder power con-
sumption. Extreme values result in significantly increased
access time. We estimated the cache miss penalty based
on the operating frequency of the system and external bus
width and clock for each system investigated. This penalty
ranged between 4 and 20 system clock cycles. Write-back
was adopted in opposed to write-through, since it is proven

No optimizations Block buffering, sub-banking
and Gray code addressing [27]

Cache size 8B 16B 32B 8B 16B 32B
512B 0.330 0.378 0.468 0.291 0.322 0.401
1KB 0.356 0.394 0.463 0.295 0.299 0.345
2KB 0.422 0.444 0.489 0.317 0.271 0.271
4KB 0.651 0.666 0.694 0.456 0.334 0.273
8KB 1.146 1.156 1.175 0.769 0.504 0.347
16KB 2.158 2.164 2.174 1.412 0.869 0.530
32KB 4.198 4.202 4.209 2.702 1.608 0.922

Table 3. A subset of the cache power consumption
model: power consumption (nJ) estimation for vari-
ous direct-mapped caches with variable line sizes.

to provide superior performance and especially power sav-
ings in uniprocessor systems at increased hardware cost [15].
Each of the processors considered is able to issue at most a
single instruction per clock period. Thus, caches were de-
signed to have a single access port. A subset of the cache
model data is given in Tables 2 and 3. Cache access delay
and power consumption model were computed for a number
of organizations and sizes, assuming the feature size of 0.5
�m and typical six transistors per CMOS SRAM cell im-
plementation. The nominal energy consumption per single
off-chip memory access,98nJ , is adopted from [6].

4 Theory of variable voltage scheduling: spe-
cial solvable cases

Yao, Demers and Shenker [31] have provided the opti-
mal preemptive static scheduling algorithm for a set of in-
dependent tasks with arbitrary arrival times and deadlines.
The algorithm is based on the concept of critical regions
and the tasks in critical regions are scheduled by the ear-
liest deadline first (EDF) algorithm. The running time of
the algorithm isO(nlog2n) for n tasks. When there is a
limit on the maximum voltage change rates, then the prob-
lem becomes NP-complete, which is shown by the reduc-
tion from the SEQUENCING WITH DEADLINES AND
SETUP TIMES problem in page 238 of [7]. In this Sec-
tion, we discuss some special cases which can be solved
optimally.

We find the speed functionS(t) of the processor to mini-
mize the energy consumption during the time period[t1; t2].
The voltage functionV (t) can be easily obtained fromS(t)
[1]. We assume that the speed of the processor can be
changed betweenSmin andSmax with a maximum change
rateK, i.e., at any timet, the speedS(t) satisfies:

Smin � S(t) � Smax (1)
jS0(t)j � K (2)

Theamount of workthat the processor completes during
time interval[t1; t2] is given by:

W =
R t2
t1
S(t) dt (3)

Thepower, or energy consumed per unit time, is a con-
vex functionP (S) of the processor’s speed. The function

P(S) depends on the technology considered. The total en-
ergy consumed during the time interval[t1; t2] is:

E =
R t2
t1
P (S(t)) dt (4)

Lemma 1. Starting with speedS0, the workW that the
processor can complete, in the time interval[t1; t2], falls
into the range[Wmin;Wmax], with

Wmin = Sc(t2 � t1) +
(S0�Sc)

2

2K

Wmax = Sd(t2 � t1)�
(S0�Sd)

2

2K

whereSc = max(Smin; S0 �K(t2 � t1)) and
Sd = min(Smax; S0 +K(t2 � t1)).

t2t1

Smin

S0

(a)
t1

Smin

S0

(b)
t2 t1

S0

Smax

t2

(c)
t1

S0

Smax

(d)
t2

Figure 1. IllustratedWmin,Wmax for Lemma 1.
(a) Wmin if S0 �K(t2 � t1) < Smin

(b) Wmin if S0 �K(t2 � t1) � Smin

(c) Wmax if S0 +K(t2 � t1) � Smax

(d) Wmax if S0 +K(t2 � t1) < Smax

Since power is a convex function of the processor’s speed,
it is obvious that if we can start from any speed, to complete
a given workloadW in any time interval of fixed length
�t, we should run our processor at the constant speedW

�t .
When we do not have the freedom to choose the starting
speed, the following theorem shows that the best we can do
is to change the speed as fast and early as possible until we
reach a critical point, then keep the constant speed.

Theorem 1. With the same constraints as in Lemma 1, for
any workloadW 2 [Wmin;Wmax], there is a unique speed
function S : [t1; t2] ! [Smin; Smax] such that (1), (2),
and (3) are all satisfied and the energy (4) is minimized.
Moreover,S(t) is defined as:
if Wmin �W � S0(t2 � t1),

S(t) =

�
S0 �K(t� t1); if t1 � t � tc;
S0 �K(tc � t1); if tc < t � t2.

where tc = t2 �
q
(t2 � t1)2 +

2
K
[W � S0(t2 � t1)].

and ifS0(t2 � t1) �W �Wmax ,

S(t) =

�
S0 +K(t� t1); if t1 � t � tc;
S0 +K(tc � t1); if tc < t � t2.

where tc = t2 �
q
(t2 � t1)2 �

2
K
[W � S0(t2 � t1)].

Next we consider the case when there is a finishing speed
constraint. Similarly, we have the following results:

Lemma 2. Starting with speedS0, to reach the finishing
speedS1 at the end of the time interval[t1; t2], the work
W that the processor has to complete falls into the range
[Wmin;Wmax], with

Wmin = Sc(t2 � t1) +
(S0�Sc)

2

2K + (S1�Sc)
2

2K

Wmax = Sd(t2 � t1)�
(S0�Sd)

2

2K � (S1�Sd)
2

2K

whereSc = max(Smin;
(S0+S1)

2 �K
(t2�t1)

2) and

Sd = min(Smax;
(S0+S1)

2 +K
(t2�t1)

2).

Theorem 2. With the same constraints as in Lemma 2, for
any workloadW 2 [Wmin;Wmax], there is a unique speed
functionS : [t1; t2] ! [Smin; Smax] such that (1), (2), and
(3) are satisfied and the energy (4) is minimized. The speed
function will be a step function that satisfies the following:
if Wmin �W �W1,

S(t) =

8<
:
S0 �K(t� t1); if t1 � t � x1;
S0 �K(x1 � t1); if x1 < t � x2;
S1 �K(t2 � t); if x2 < t � t2.

if W1 �W �W2,

S(t) =

8<
:
S0 +K(t� t1); if t1 � t � x1;
S0 +K(x1 � t1); if x1 < t � x2;
S1 �K(t2 � t); if x2 < t � t2.

and ifW2 �W �Wmax ,

S(t) =

8<
:
S0 +K(t� t1); if t1 � t � x1;
S0 +K(x1 � t1); if x1 < t � x2;
S1 +K(t2 � t); if x2 < t � t2.

where W1;W2; x1; x2 are constants.

From Theorem 2, it is simple to see that the speed func-
tions which minimize energy are of some restricted shapes.
For example, ifS1 > S0, thenS(t) has to be one of the
following seven shapes in Figure 2.

S0

S1

t1 t2

(a)

S0

S1

t1 t2

(b)

S0

S1

t1 t2

(c)

S1

t1 t2

S0

(d)

S1

t1 t2

S0

(e)

S1

t1 t2

S0

(f)

S1

t1 t2

S0

(g)

Figure 2. All possible shapes of an optimal speed
function whenS1 > S0.

We consider the following scheduling problem:
Ordered Scheduling Problem (OSP):Given a partition
0 = t0 < t1 < t2 < ::: < tn�1 < tn = t of the time
interval [0; t], there is a workloadWi to be completed dur-
ing the interval[ti�1; ti], we want to find the speed function
S : [0; t]! [Smin; Smax], such that:

(i) S(0) = S0,
(ii) Smin � S(t) � Smax,
(ii) jS0(t)j � K,
(iv) Wi =

R ti
ti�1

S(t) dt, and

(v) E =
R t
0
P (S(t)) dt is minimized.

For this problem, we can use the following approach.
Let S(t) be a speed function that we are looking for and
xi = S(ti) for i = 1; 2; � � � ; n. Using the Theorem 2,

we can expressS(t) as a function of unknown variables
x1; x2; � � � ; xn. Now we can plug this expression into (v),
get a system of (non-linear) equations involvingxi’s from
the first order condition to minimize the energy function
(v). The system of (non-linear) equations is solved by us-
ing some numerical method, if the closed form solution can
not be found. The speed functionS(t) is determined by the
formulae in Theorem 2 and the solution(s) of the system of
(non-linear) equations.

There are a few comments to be made about this ap-
proach. First, this approach is impractical since the (non-
linear) system of equations is very difficult to be solved in
many cases. Secondly, when applying Theorem 2 in this ap-
proach, we have to check another condition:Wmin(xi�1; xi)
� Wi � Wmax(xi�1; xi); which will make the problem
even more difficult. Thirdly, since the solution(s) to the
(non-linear) system of equations is the potential candidate
for our minimization problem, we have to apply (at least)
the second order condition to check it. Finally, there are
still some more mathematical details that we have to take
into consideration, e.g., the continuity and differentiability
of the power function. Therefore, some good heuristics will
be more useful in real life.

We note that the following special case of the OSP prob-
lem can be solved optimally.
Restricted Ordered Scheduling Problem (ROSP):With
the same constraints as in the OSP problem,S(ti) for i =
1; 2; � � � ; n are additionally given.

It is trivial to see that the Theorem 2 provides an optimal
speed function for the ROSP problem.

5 Global design flow

In this Section we describe the global flow of the pro-
posed synthesis system and explain the function of each
subtask and how these subtasks are combined into a syn-
thesis system.

Search for minimum power consumption configuration
of processor, I-Cache, D-Cache for all applications

Change processor, I-Cache, D-Cache configuration

System performance and power evaluation
and simulation platform

Performance and power optimization heuristic
for mapping basic blocks to I-Cache lines

System performance and power
consumption estimation

Variable voltage task scheduling

Applications Input data

Figure 3. The global flow of the synthesis approach.

Figure 3 illustrates the synthesis system. The goal is to
choose the configuration of processor, I-cache, and D-cache

and the variable voltage task schedule with minimum power
consumption which satisfy the timing requirements of mul-
tiple preemptive tasks. To accurately predict the system per-
formance and power consumption for target applications,
we employ the approach which integrates the optimization,
simulation, modeling, and profiling tools, as shown in Fig-
ure 5. The synthesis technique considers each non-dominated
microprocessor core and competitive cache configuration,
and selects the hardware setup which requires minimal power
consumption and satisfies the individual performance re-
quirements of all target applications. The application-driven
search for a low-power core and cache system requires us-
age of trace-driven cache simulation for each promising point
considered in the design space. We attack this problem by
carefully scanning the design space using search algorithms
with sharp bounds and by providing powerful algorithmic
performance and power estimation techniques. The search
algorithm to find an energy-efficient system configuration is
described using the pseudo-code shown in Figure 4.

Sort processor cores in a listL in an increasing order of
EnergyPerInstruction

SystemClockFrequency
at the nominal voltage 5V

Delete the dominated processor cores fromL
For each processor core inL in the order of appearance

For I-cache = 512B..32KB and CacheLineSize = 8B..512B
For D-cache = 512B..32KB and CacheLineSize = 8B..512B

Check bounds; if exceededbreak;
If (current I- and D-cache configuration has never been evaluated)

Evaluate performance and power consumption
Using the cache system analysis, evaluate the power consumption

of the entire system using variable voltage task scheduling
Memorize ConfigurationC if power consumption is minimal

Figure 4. Pseudo code for the search of power
efficient system configuration.

Since performance and power evaluation of a single pro-
cessor, I- and D-cache configuration requires a time-consuming
trace-driven simulation, the goal of our search technique
is to reduce the number of evaluated cache systems using
sharp bounds for cache system performance and power es-
timations. However, a particular cache system is evaluated
using trace-driven simulation only once since the data re-
trieved from such simulation can be used for overall system
power consumption estimation for different embedded pro-
cessor cores with minor additional computational expenses.

The algorithm excludes from further consideration pro-
cessor cores dominated by other processor cores. One pro-
cessor type dominates another if it consumes less power at
higher frequency and results in higher MIPS performance
at the same nominal power supply. The competitive proces-
sors are then sorted in ascending order with respect to their
power consumption per instruction and frequency ratio. Mi-
croprocessors which seem to be more power-efficient are,
therefore, given priority in the search process. This step
provides later on sharper bounds for search termination. The
search for the most efficient cache configuration is bounded

with sharp bounds. A bound is determined by measuring
the number of conflict misses and comparing the energy re-
quired to fetch the data from off-chip memory due to mea-
sured conflict misses and the power that would have been
consumed by twice larger cache for the same number of
cache accesses assuming zero cache conflicts. We termi-
nate further increase of the cache structure when the power
consumption due to larger cache would be larger than the
energy consumed by the current best solution. Similarly,
another bound is defined at the point when the energy re-
quired to fetch the data from off-chip memory due to con-
flict cache misses for twice smaller cache with the assump-
tion of zero-energy consumption per cache access, is larger
than the energy required for both fetching data from cache
and off-chip memory in the case of the current cache struc-
ture. We abort further decrease of the cache structure if the
amount of energy required to bring the data due to addi-
tional cache misses from off-chip memory is larger than the
energy consumed by the current best solution.

When evaluating competitive hardware configurations,
the target applications are scheduled with the variable volt-
age task scheduler using the predicted system performance
and power on the configuration considered.

Application
[executable binary]

SHADE

Binary translation

ANALYZER

User programmed

Trace

2231

C

A

B

Control Flow Graph

Profile Information

Trace, Basic Block
addresses...

Control Flow Graph Partitioning

Power and performance
optimization heuristics

Basic Block
relocation table

Address Original Address Optimized
0 20
40 80
120 600
... ...

DINERO - Cache Simulator

Cache performance evaluation

CPU and Cache Modeling Tools

I-Cache and D-Cache Descriptions

Cache Size, Line size, Associativity,

Replacement and write hit policies

Feature size, # I/O ports, Bus size,

Power estimation & max clock speed

Performance and power consumption METER

Cache misses

Instruction and data
access trace

Input data

non-optimized
application trace

optimized
application trace

Cache and processor
core model

System’s operational
voltage supply

Figure 5. The system performance and power eval-
uation and simulation platform.

To estimate the system performance and power on the
configuration under consideration, we use the system per-
formance and power evaluation and simulation platform based

on SHADE and DINEROIII [14, 15]. SHADE is a tracing
tool which allows users to define custom trace analyzers and
thus collect rich information on runtime events. SHADE
currently profiles only SPARC binaries. The executable bi-
nary program is dynamically translated into host machine
code. The tool also provides a stream of data to the trans-
lated code which is directly executed to simulate and trace
the original application code. A custom analyzer composed
of approximately 2,500 lines of C code, is linked to SHADE
to control and analyze the generated trace information. The
analyzer sources relevant trace information from SHADE
and builds a control flow graph (CFG) corresponding to the
dynamically executed code. The analysis consists of two
passes. The first pass determines the boundaries of basic
blocks, while the second pass constructs a CFG by adding
control flow information between basic blocks. We also col-
lect the frequencies of control transfers through each basic
block, and branch temporal correlation. Once the CFG is
obtained, an algorithm is employed to reposition applica-
tion basic blocks in such a way that instruction cache misses
and cache decoder switching activity are minimized. Our
experimentation uses a basic block relocation look up table
to simulate the relocation of basic blocks in main memory.
An entry in the basic block relocation table consists of two
elements: the original and optimized starting address of the
basic block. To simulate cache performance of a given ap-
plication and data stream, we use a trace-driven cache sim-
ulator DINEROIII. Cache is described using a number of
qualitative and quantitative parameters such as instruction
and data cache size, replacement policy, associativity, etc.

The system optimization process is composed of a se-
quence of activations of these tools. The SHADE analyzer
traces program and data memory references as well as the
CFG. The CFG is used to drive the code reposition module
which produces a new application mapping table. Stream
of references are sent to a program that uses the basic block
relocation look-up table to map from the original address
space into the optimized address space. The re-mapped
trace of addresses, along with all unmodified data memory
references, is sent to DINEROIII for cache simulation.

6 Variable voltage scheduling

In this Section, we first formulate thevariable voltage
schedulingproblem to minimize power consumption and
propose an efficient and effective heuristic for the problem.

6.1 Problem formulation

Let T be a set of tasks and, associated with each task
Ti 2 T areai its arrival time,di its deadline and,Wi its
workload, e.g., CPU cycles required. We are using a single
variable voltage (variable speed) processor as described in
Section 4 to execute the setT . Let t0 = minfai : Ti 2 T g

andt1 = maxfdi : Ti 2 T g. A schedulerof T is a pair of
functions defined on[t0; t1], such that for anyt 2 [t0; t1],
S(t) is the speed of the processor andT (t) is the task being
processed at timet. A scheduler isfeasibleif

�
R di
ai
S(t)�(T (t); Ti) dt �Wi,

where�(x; y) is 1 if x = y and 0 otherwise.
� S(t) 2 [Smin; Smax]

� jS0(t)j � K

Thescheduling problemis to determine, for any given set
of tasks, whether there is a feasible scheduler. Thepower
minimization problemis to find a feasible scheduler such
that the total energy consumedE is minimized, whereE =R t1
t0
P (S(t)) dt.

6.2 Heuristic scheduler for a single preemptive
variable voltage processor

As described in Section 4, the preemptive scheduling of
a set of independent tasks with arbitrary arrival times and
deadlines on avariable voltageprocessor with a limit on
the maximum voltage change rates is an NP-complete task.
We have developed an efficient and effective heuristic for
the general variable voltage task scheduling problem, which
leverages on the least-constraining most-constrained heuris-
tic paradigm as well as the optimal algorithm for the ROSP
problem in Section 4 in order to obtain competitive solu-
tions. The algorithm is described using the pseudo-code
shown in Figure 6.

Input: a set ofm tasksT = f(ai; di;Wi)g, the processor’s speed range
[Smin; Smax] and the maximal speed change rateK.

Output: a feasible scheduler which minimizes the power consumption to
completeT .

1. Use the critical regions [31] to find a partition0 = t0 < t1 < � � �
< tn�1 < tn = t of the time interval[0; t]

2. Assign the workloadWi for the taskTi in the interval[tj�1; tj] if
Ti appears exactly once in the partition.

3. REPEAT f
4. Determine the priority of the remaining tasks.
5. Assign the workload to all time intervals of the taskTi with the

highest priority in a least constraining way.
6. g UNTIL (All tasks are assigned its workload)
7. Find an optimal solution to the corresponding ROSP problem.
8. Relax constraints onS(ti)’s and improve the solution.

Figure 6. Pseudo code for the variable voltage task
scheduling algorithm.

The global flow of the heuristic consists of the follow-
ing three phases. The heuristic first reduces the problem to
the ROSP problem by carefully scheduling the tasks and as-
signing the workload using the most constrained least con-
straining heuristic paradigm. Next, the reduced problem is
solved optimally. Finally, the solution is further improved
by relaxing the starting and finishing speed constraints from
the ROSP problem.

Step 1 can be performed in polynomial time using the
algorithm given in [31]. In step 2, we first assign the full
workload for the tasks with only one time interval. In step 4,
the constrainedness of a taskTi is determined by theCOST
function:

COST (Ti) =
Pp

j=1((SL(ij)�Sij)
2+(SR(ij)�Sij)

2).
ij is thejth time interval for the taskTi with p time inter-

vals. L(ij)(R(ij)) is the left(right) neighboring time inter-

val to the time intervalij . Sij =
WORKij

length of time interval ij
,

whereWORKij = Wi �
length of time interval ij

length of all time intervals of Ti
,

if ij is not already assigned workload andWORKij is as
assigned otherwise. In step 5, we assign the workload to all
time intervals of the taskTi with the highest priority in such
a way that it minimizes theCOST (Ti).

In step 7, we can get a scheduler which is feasible as well
as optimal subject to the condition thatat timeti, we have
to operate the processor at speedS(ti). Note that this con-
dition is not necessary for the original problem. Then we
may apply the approach described in Section 4 to the OSP
problem and find the optimized values for eachS(ti). As
discussed in Section 4, however, this approach may not be
practical. Thus, in step 8, we relax constraints onS(ti)’s
from step 7 and improve the solution. The optimal sched-
uler for the ROSP problem provides the local optimal speed
functions in each interval[ti�1; ti] which are given by The-
orem 2. Recall the shapes of the speed functions given in
Theorem 2. For example, if we have a speed function con-
sisting of a shape (a) followed by a shape (b), then it will
create a “pike” at the joint point. In this case, if we use a
slower speed at the joint point, the speed function can be
smoothed. Further calculation shows that this “pike” can be
completely eliminated with a slower speed. Based on this
observation, in step 8, the local optimal solution obtained
from step 7 approaches the global optimal by eliminating
all the “pikes”.

7 Experimental results

7.1 Design descriptions

We used nine applications to demonstrate the effective-
ness of the approach. All nine applications are in public
domain and can be obtained via the Internet.

JPEG encoder/decoder from the Independent JPEG Group
implements JPEG baseline, extended-sequential, and pro-
gressive compression processes. We used integer DCT for
decoding a JPEG file to a PPM file. Integer DCT and pro-
gressive compression process options were used for com-
pression.

GSM encoder/decoder (Technische Universit¨at, Berlin)
is an implementation of the European GSM 06.10 provi-
sional standard for full-rate speech transcoding, prI-ETS
300 036, which uses RPE/LTP (residual pulse excitation/long

I-cache D-cache Energy Consumption (J)
Task Set Processor Core Cache Size Block Size Cache Size Block Size Lower Bound New Approach [31]+ROSP

10 tasks LSI CW4001 512B 64B 1KB 128B 2.39 2.48 3.05
LSI CW4001 512B 64B 1KB 128B 2.39 2.48 3.05

20 tasks LSI TR4101 512B 64B 4KB 32B 10.6 11.8 13.9
Motorola 68000 1KB 128B 2KB 64B 10.9 11.5 14.1

30 tasks PowerPC403 1KB 32B 2KB 64B 45.3 49.0 61.2
LSI CW4011 1KB 64B 2KB 64B 46.5 48.1 63.9

40 tasks PowerPC403 1KB 32B 2KB 32B 72.6 78.2 87.5
PowerPC403 1KB 32B 2KB 32B 72.6 78.2 87.5

50 tasks LSI CW4011 1KB 64B 2KB 64B 100.2 108.6 128.6
LSI CW4011 1KB 64B 2KB 64B 100.2 108.6 128.6

Table 4. The most power-efficient configurations obtained by the proposed approach.

term prediction) coding at 13 kbit/sec. A 16 bit linear PCM
data file is used to measure execution parameters of the
GSM encoder. The measurement of the GSM decoder exe-
cution characteristics was done using the output of the GSM
encoder.

EPIC (Efficient Pyramid Image Coder), from University
of Pennsylvanian, implements lossy image compression and
decompression utilities.

Mipmap, Osdemo, and Texgen from University of Wis-
consin use a 3-D graphic library called Mesa. Osdemo is a
demo program that draws a set of simple polygons using the
Mesa 3-D rendering pipe. Finally, Texgen renders a texture
mapped version of the Utah teapot.

7.2 Experimental data

The processor cores described in Table 1 are used with
the assumption that they can be operated at the dynami-
cally variable [0.8, 5.0] V supply voltage. Performance
and power consumption data have been scaled according
to the performancevs. voltage and powervs. voltage re-
lationships, respectively. The limit on the voltage change
rate is assumed to be 10000 instructions/volt for all proces-
sor cores. We consider several different mixes of the above
nine applications. The details of the application mixes and
deadlines are provided in the technical report version of this
paper.

The most power-efficient processor, I-cache and D-cache
configurations for the target scenarios by the proposed allo-
cation heuristic using Yao’s optimal preemptive scheduling
algorithm with no limit on voltage change rates, Yao’s op-
timal preemptive scheduling algorithm with the ROSP so-
lution taking into account the rate change limits, and our
scheduling heuristic with limit on voltage change rates, re-
spectively, are described in Table 4. For each task set, the
first row represents the best configuration for the proposed
allocation heuristic using Yao’s optimal preemptive schedul-
ing algorithm with no limit on voltage change rates, while
the second row provides the best configuration for the pro-
posed allocation heuristic using our scheduling heuristic.
Columns 7, 8, and 9 provide the energy consumption of the

target scenarios by Yao’s optimal scheduling algorithm un-
der ideal condition, our scheduling heuristic, and Yao’s op-
timal scheduling algorithm with the ROSP solution under
rate change limits, respectively, where the numbers in bold
represent the best energy consumption achieved for each al-
gorithm.

Our approach resulted in only6.8 % more energy con-
sumption over the power consumption lower bound which
was obtained by using Yao’s optimal preemptive scheduling
algorithm with no limit on voltage change rates, which al-
ways results in a solution better than or equal to the optimal
preemptive solution with any limit on voltage change rates.
Our approach also resulted in20.2% reduction in energy
consumption from Yao’s optimal preemptive scheduling al-
gorithm with the ROSP solution under the rate change lim-
its. Among the five application mixes, three cases resulted
in the same configurations for both scheduling algorithms,
while their actual task schedules were different.

8 Conclusion

Voltage is an important dimension that, with appropri-
ate CAD tools and schedulers, can be actively manipulated
at run time instead of just the static optimization of a fixed
voltage as is currently done. However, for this to happen,
the CAD tools must incorporate an understanding of the
limitations inherent to variable voltage hardware. In this
paper we have accomplished this by describing, in the con-
text of a core-processor based system-on-a-chip synthesis
design flow, a scheduler that not only schedules a set of
computation tasks on hardware resources but also sched-
ules changes in voltage (and correspondingly the clock fre-
quency) while meeting constraints on the rate of voltage
change imposed by the voltage regulator. Our results show
that the proposed heuristic algorithm is extremely effective
and is within 7% of the best possible variable voltage hard-
ware system. Moreover, our research for the first time for-
malizes how synthesis tools might leverage run-time con-
trolled variation of supply voltage while taking into account
inherent limitations of the physical voltage and clock regu-
lation circuits.

References

[1] A. P. Chandrakasan, S. Sheng, and R.W. Broderson. Low-
power CMOS digital design.IEEE Journal of Solid-State
Circuits, 27(4):473–484, 1992.

[2] J.-M. Chang and M. Pedram. Energy minimization using
multiple supply voltages. InInternational Symposium on
Low Power Electronics and Design, pages 157–162, 1996.

[3] http://infopad.eecs.berkeley.edu/CIC/.
[4] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk

spin-down policies for mobile computers. InUSENIX Sym-
posium on Mobile and Location-Independent Computing,
pages 121–137, 1995.

[5] R.J. Evans and P.D. Franzon. Energy consumption modeling
and optimization for SRAM’s.IEEE Journal of Solid-State
Circuits, 30(5):571–579, 1995.

[6] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. Mc-
Gaughy, D. Patterson, T. Anderson, and K. Yelick. The
energy efficiency of IRAM architectures. InInterna-
tional Symposium on Computer Architecture, pages 327–
337, 1997.

[7] M.R. Garey and D.S. Johnson.Computer and Intractability:
A Guide to the theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, 1979.

[8] K. Govil, E. Chan, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting of a low-power CPU. In
ACM International Conference on Mobile Computing and
Networking, pages 13–25, 1995.

[9] V. Gutnik and A. Chandrakasan. An efficient controller for
variable supply-voltage low power processing. InSympo-
sium on VLSI Circuits, pages 158–159, 1996.

[10] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-
tava. Power optimization of variable voltage core-based sys-
tems. InDesign Automation Conference, pages 176–181,
1998.

[11] I. Hong, M. Potonjak, and R. Karri. Power optimization us-
ing divide-and-conquer techniques for minimization of the
number of operations. InIEEE/ACM International Confer-
ence on Computer-Aided Design, pages 108–113, 1997.

[12] C. Hwang and A.C.-H. Wu. A predictive system shutdown
method for energy saving of event-driven computation. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 28–32, 1997.

[13] M. C. Johnson and K. Roy. Datapath scheduling with multi-
ple supply voltages and level converters.ACM Transactions
on Design Automation of Electronic Systems, 2(3), 1997.

[14] D. Kirovski, C. Lee, W. Mangione-Smith, and M. Potkon-
jak. Application-driven synthesis of core-based systems.
In IEEE/ACM International Conference on Computer-Aided
Design, pages 104–107, 1997.

[15] D. Kirovski, C. Lee, W. Mangione-Smith, and M. Potkonjak.
Synthesis of power efficient systems-on-silicon. InAsia and
South Pacific Design Automation Conference, 1998.

[16] P. E. Landman and J. M. Rabaey. Activity-sensitive architec-
tural power analysis.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(6):571–587,
1996.

[17] E. L. Lawler and C. U. Martel. Scheduling periodically oc-
curing tasks on multiple processors.Information Processing
Letters, 12(1):9–12, 1981.

[18] Y.-R. Lin, C.-T. Hwang, and A.C.-H Wu. Scheduling
techniques for variable voltage low power designs.ACM
Transactions on design Automation of Electronic Systems,
2(2):81–97, 1997.

[19] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey.
A voltage reduction technique for digital systems. InIEEE
International Solid-State Circuits Conference, pages 238–
239, 1990.

[20] F. N. Najm. A survey of power estimation techniques
in VLSI circuits. IEEE Transactions on VLSI Systems,
2(4):446–455, 1994.

[21] W. Namgoong, M. Yu, and T. Meng. A high-efficiency
variable-voltage CMOS dynamic DC-DC switching regula-
tor. In IEEE International Solid-State Circuits Conference,
pages 380–381, 1997.

[22] L. S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel.
Low-power operation using self-timed circuits and adap-
tive scaling of the supply voltage.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2(4):391–397,
1994.

[23] M. Pedram. Power minimization in IC design: principles
and applications.ACM Transactions on Design Automation
of Electronic Systems, 1(1):3–56, 1996.

[24] S. Raje and M. Sarrafzadeh. Variable voltage scheduling.
In International Symposium on Low Power Design, pages
9–14, 1995.

[25] M. Srivastava, A. P. Chandrakasan, and R. W. Broder-
sen. Predictive system shutdown and other architectural
techniques for energy efficient programmable computation.
IEEE Transactions on VLSI Systems, 4(1):42–55, 1996.

[26] A. J. Stratakos, S. R. Sanders, and R. W. Brodersen. A
low-voltage CMOS DC-DC converter for a portable battery-
operated system. InPower Electronics Specialist Confer-
ence, volume 1, pages 619–626, 1994.

[27] C.-L. Su and A.M. Despain. Cache design trade-offs for
power and performance optimization: a case study. InIn-
ternational Symposium on Low Power Design, pages 63–68,
1995.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embed-
ded software: a first step towards software power minimiza-
tion. IEEE Transactions on VLSI Systems, 2(4):437–445,
1994.

[29] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. InUSENIX Symposium on Op-
erating Systems Design and Implementation, pages 13–23,
1994.

[30] S.J.E. Wilton and N.P. Jouppi. CACTI: an enhanced cache
access and cycle time model.IEEE Journal of Solid-State
Circuits, 31(5):677–688, 1996.

[31] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. InIEEE Annual Foundations of
Computer Science, pages 374–382, 1995.

