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This dissertation consists of three research topics from numerical relativity:

waveforms from inspiral mergers of black hole binaries, recoils from head-on mergers

of black holes, and a new computational technique for error-reduction. The first two

topics present research from journal articles that I coauthored with my colleagues

in the NASA Goddard Numerical Relativity research group.

Chapter 2 discusses a heuristic model of black hole binary mergers and the

waveforms produced by them, based on simulations of nonspinning black holes.

The gravitational radiation is interpreted as the result of an implicit rotating source

that generates the radiation modes as the source multipoles rotate coherently. This

interpretation of the waveform phase evolution provides a unified physical picture of

the inspiral, plunge, and ringdown of the binaries, and it is the basis of an analytic

model of the late-time frequency evolution.

Chapter 3 presents a study of kicks in head-on black hole mergers, emphasizing

the distinct contributions of spin and mass ratio, as well as their combined effects,



to these radiation-induced recoils. The simpler dynamics of head-on mergers allow

a more clear separation of the two types of kick and a validation of post-Newtonian

predictions for the spin scaling of kicks.

Finally, Chapter 4 presents a technique I developed to improve the accuracy

of the field evolution in numerical relativity simulations. This “moving patches”

technique uses local coordinate frames to minimize black hole motion and reduce

error due to advection terms. In tests of the technique, I demonstrate reduction in

constraint violations and in errors in the orbital frequency derived from the black

holes’ motions. I also demonstrate an accuracy gain in a new diagnostic quantity

based on orbital angular momentum. I developed this diagnostic for evaluating the

moving patches technique, but it has broader applicability. Though the moving

patches technique has significant performance costs, these limitations are specific to

the current implementation, and it promises greater efficiency and accuracy in the

future.
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Preface

Unless otherwise noted, f represents a scalar function of one or more real vari-

ables. In the context of general relativity, f,µ indicates the partial derivative of f

with respect to the coordinate µ. In discussions of numerical analysis, f (n) indicates

the nth derivative of f . For indices from the beginning of the Latin alphabet, tensor

components represent the tensor independent of basis and convey the number of

arguments and covariance or contravariance of each argument (abstract index no-

tation). Indices from the Greek alphabet indicate spacetime tensor components in

a particular basis, with the indices running from 0 (time) to 3. Indices from the

portion of the Latin alphabet starting with i indicate purely spatial tensor compo-

nents with the indices running from 1 to 3. Roman font indicates four-dimensional

tensors (gab), while italic font indicates the three-dimensional counterparts (gab) of

those tensors. A metric without indices represents the determinant of the metric

(g = det gab), while any other matrix without indices represents the trace of that

matrix (U = trUab). Following the Einstein summation convention, the same letter

appearing as a superscript index and a subscript index in an expression indicates

summation over the range of the index (T iSi =
∑3

i=1 T iSi). Finally, following a com-

mon convention in general relativity, the speed of light in vacuum and the universal

gravitational constant are both set to 1, c ≡ G ≡ 1. As a result, lengths, times,

and masses have the same dimension, which is mass, another common convention

in general relativity.
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Chapter 1

Numerical Relativity

On November 2, 2005, “Numerical Relativity 2005: Compact Binaries”, a

workshop on numerical relativity cosponsored by NASA Goddard Space Flight Cen-

ter and the Center for Gravitational Wave Physics at Penn State University, began

with coffee and tea, and colleagues catching up on matters professional and personal,

like most such meetings. Soon it was clear the meeting was a momentous occasion

in a momentous year for the numerical relativity community, as the numerical rela-

tivity research groups from University of Texas at Brownsville and NASA Goddard

in succession presented the results of successful three-dimensional simulations of the

inspiral, plunge, and ringdown of two black holes. Frans Pretorius had announced

the successful simulation of a black hole merger on July 4, 2005. As the end of 2005

approached, the black hole binary challenge of general relativity, which had eluded

relativists for decades, was conquered.

I sat in the conference room, a second-year graduate student not fully appreci-

ating the years of effort leading up to this point and the importance of the moment.

Also, I could not know the rapid progress in the field that lay ahead after years

of struggle, progress to which I would contribute as a member of the Goddard nu-

merical relativity group. In this dissertation, I present three contributions I made.

Chapter 1 provides a brief introduction to numerical relativity with background
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material for the following chapters. Chapter 2 discusses a heuristic model of black

mergers and the waveforms produced by them, based on simulations of nonspinning

black holes, with an emphasis on the unified interpretation of phase to which I con-

tributed. Chapter 3 presents a study of recoil kicks in head-on black hole mergers I

carried out with Bernard Kelly and the rest of the Goddard group, emphasizing the

distinct contributions of spin and mass ratio. In Chapter 4, I present a technique I

developed to improve accuracy in calculations of the evolved fields, based on a sim-

plification of the black hole dynamics and an auxiliary coordinate frame. Beyond the

common basis in numerical relativity the three investigations share, they also share

a common philosophy: simplicity. The heuristic model of Chapter 2 uses a simpli-

fied representation of a black hole binary, the kick study in Chapter 3 investigates

the simpler head-on merger that approximates the plunge following the inspiral of

a black hole binary, and the technique in Chapter 4 is motivated by a simplification

of the merger dynamics. In all three cases, simplicity provides a starting point for

investigating the complex.

1.1 Numerical Relativity from General Relativity

General relativity describes the interaction of space and time with matter and

energy. Often it is described as a theory of gravity, to put it in a historical context

as both the successor to Newton’s theory of gravity and the extension of Einstein’s

theory of special relativity. To eliminate conflict between the instantaneous action of

Newton’s theory of gravity and the finite transmission time of all effects postulated
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by special relativity, Einstein proposed his theory of general relativity, which replaces

the force of gravity acting on matter by the distortion of a unified spacetime by

matter and energy, to explain the motion of matter and energy through spacetime.

Gravity is no longer a force separate from the other fundamental forces, but rather

a manifestation of the inherent nature of the spacetime in which the other forces

act.

Einstein’s equations,

Gab = 8πTab , (1.1)

relate the curvature (distortion) Gab of four-dimensional spacetime to the matter

and energy Tab present in it. Curvature is a departure from Euclidean geometry,

and it is meant to suggest curved surfaces, such as spheres, in three-dimensional

Euclidean space, surfaces on which the geometry is non-Euclidean. The curvature in

Einstein’s equations is defined within the four-dimensional spacetime. The definition

does not require a higher dimensional space, as an intuitive notion of curved two-

dimensional surfaces in three-dimensional Euclidean space does. The equations

are second-order partial differential equations for the four-metric gab, which defines

distances in spacetime. The equations are not written with respect to a particular

reference frame. This property of general covariance includes the unification of space

and time, but the implications are broader. There is no preferred reference frame,

and two frames are equally valid despite the acceleration of either with respect to

the other.

Numerical relativity simulates spacetimes based on Einstein’s equations. While
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the exact solutions of Einstein’s equations assume symmetries, such as time-invariance,

spherical or axial symmetry, or homogeneous energy distributions, and therefore rep-

resent very specialized physical scenarios, numerical relativity is able to investigate

more general solutions, including those representing more astrophysically relevant

scenarios, such as systems of black holes and neutron stars (generically known as

compact bodies).

Mergers of compact bodies are a primary focus of numerical relativity because

of their importance for physics, astrophysics, and astronomy. These mergers should

produce gravitational waves, propagating distortions of spacetime, which are caused

by the non-axially symmetric, time-varying mass distributions of the systems. The

direct detection of such waves is an important untested verification of general rel-

ativity, and the goal of a worldwide search at detectors such as LIGO, Virgo, and

GEO 600, as well as the space-based LISA mission in development by NASA and

the European Space Agency (ESA).

Beyond the importance of the detection itself, the gravitational waves carry

information about their sources, and therefore they offer a new way to investigate

astrophysical processes and astronomical sources. The waves also carry energy and

momentum away from their sources, which produces a decaying orbit (inspiral) and

eventual plunge for a compact binary. The resulting black hole continues to radiate

gravitational waves as it “sheds” energy in a process called ringdown, until it is

axially symmetric. If the linear momentum carried away by the gravitational waves

is asymmetric, the remnant black hole has a net linear momentum, which results

in a significant velocity in some cases. Numerical relativity provides predictions of
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and insights into the waves and their sources. Though complementary approaches

like post-Newtonian and perturbation analyses also study these phenomena, only

numerical relativity can analyze the transitional phase from inspiral to ringdown.

Thus numerical relativity makes crucial contributions to physics, astrophysics, and

astronomy.

1.2 Simulation

Numerical relativity treats the solution of Einstein’s equations as a constrained

initial value problem and uses the tools of numerical analysis to obtain the solution.

In this case, the initial data are not freely specifiable, but rather they are obtained

by solving constraint equations. These initial data, which describe spacetime at an

initial time, are evolved forward in time like other physical systems in simulations.

The evolution requires a choice of a time coordinate since general relativity describes

spacetime without reference to particular time and space coordinates. This choice of

time is referred to as a slicing or foliation of spacetime, since it slices four-dimensional

spacetime into three-dimensional “slices” and labels the slices sequentially by a time

coordinate t.

Simulating spacetime in numerical relativity divides into four parts conceptu-

ally, though the steps are interrelated. We must choose a formulation of Einstein’s

equations, specify a coordinate system, solve the constraint equations for the initial

state of the system (the initial data solve), and evolve the system along the time

dimension, starting from the initial data of the system. In addition, we must select
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appropriate methods from numerical analysis for the initial data solve and evolu-

tion, as well as making choices specific to those methods such as the computational

grid or the set of basis functions.

Before proceeding, I mention some issues related to the simulation on the grid.

The first is the dimensions of the quantities considered. As mentioned in the Preface,

from the start I have adopted the convenient practice that is common in discussions

of general relativity of setting c and G to 1, which immediately causes them to

disappear from all expressions and equations. Also it equates the dimensions of

space, time, and mass. Again following a common convention for general relativity,

I express all three in units of mass.

In numerical relativity simulations following these conventions, all quantities

are implicitly expressed relative to a computational mass unit, which is often written

M . Therefore, a length of 1.5 is 1.5M . Similarly, a time of 10 is 10M , and a mass

of 3 is 3M . Quantities derived from the fundamental quantities of mass, length,

and time, such as energy, momentum, and frequency, have units of M ξ where the

exponent ξ is determined by the derived quantity’s relationship to the fundamental

units. The computational M is a “bookkeeping” unit, since often it is more natural

to express all quantities in terms of a unit like the total mass of the system. In

that case, after computing that natural unit in terms of the computational M , we

rescale all quantities in terms of the fundamental unit, according to the power of

M in which each quantity is expresssed. Then M refers to the fundamental unit.

which is usually a mass.

Finally, simulations with different resolutions are compared according to the
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finest resolution present in each simulation. Though this does not fully describe the

resolution of the grid, the finest resolution is a fundamental characteristic of a simu-

lation since it establishes a ceiling on the simulation accuracy. Also, in comparisons

of simulations, the grids often have identical grid structures, up to an overall scaling

factor based on the ratio of the finest resolutions. In that case, comparing the finest

resolutions is the same as comparing the resolutions of the whole grid.

1.2.1 Formulations

To begin, we must choose the formulation of Einstein’s equations. Though

in all cases spacetime is sliced and then evolved forward from slice to slice along

some time direction, the different formulations of Einstein’s equations differ in the

slices and temporal parameters they use, as well as the quantities that are directly

simulated. (Derived quantities such as gravitational radiation are more similar since

they are driven by physical questions.) These differences are important because not

all formulations are “well-behaved”. Some formulations admit unstable solutions

that allow errors to grow rapidly.

The key requirements for well-behaved formulations are well-posedness and

hyperbolicity. In a well-posed system, the solutions are bounded by an exponential

function that does not depend on the initial data. That exponential function limits

the solutions’ growth for all initial data. This guarantees that small differences in

initial data result in small changes in the solutions, establishing a bound on the error.

Hyperbolicity describes the similarity between a system of evolution equations and

7



the simple wave equation, with strongly hyperbolic and weakly hyperbolic referring

to systems that are respectively more or less similar to the wave equation.

A precise definition of hyperbolicity and the types of hyperbolicity requires

rewriting the system in matrix form and analyzing the eigenvalues and eigenvectors

of the matrix that specifies the spatial derivatives. If the matrix has real eigenvalues

and eigenvectors that span the space, the system is strongly hyperbolic. A weakly

hyperbolic system has real eigenvalues, but it does not have a complete set of eigen-

vectors. Therefore the well-posedness of the system cannot be established, and it

may have solutions with arbitrarily large propagation speeds that lead to instability.

The most common formulations of Einstein’s equations in the numerical rela-

tivity community are BSSNOK (Baumgarte, Shapiro, Shibata, Nakamura, Oohara,

and Kojima) [84, 19, 97] and generalized harmonic coordinates [69]. Both formula-

tions foliate spacetime into spacelike slices, level sets of a time coordinate,1 but the

generalized harmonic formulation maintains the covariance of Einstein’s equations

and transforms them into wave equations for the four-metric coefficients gab. This

distinguishes it from BSSNOK and other common formulations of general relativity.

1.2.1.1 3+1 Decomposition, ADM, and BSSNOK

BSSNOK is a “3+1” formalism descended from the Arnowitt-Deser-Misner

(ADM) formulation [8, 113]. A “3+1” decomposition of Einstein’s equations sepa-

rates time from space, in contrast to generalized harmonic coordinates which remain

1More precisely, the gradient of this coordinate has an extremum for a future-pointing (and

therefore timelike) vector.

8



covariant. In both types of formulation, the data are evolved from each spatial slice

to the next, starting with the slice that has the initial data, but in the generalized

harmonic formulation the time coordinate is treated like the spatial coordinates in

the equations. A “3+1” formulation decomposes spacetime into a series of three-

dimensional slices labeled by the real parameter t, which serves as the time coordi-

nate. (See Fig. 1.1.) The slicing and the spacetime metric gab induce an intrinsic

geometry on each slice described by the spatial metric, gab. The covariant derivative

Da, the connection Γa
bc, the Riemann tensor Rd

abc, the Ricci tensor Rab, and the

Ricci scalar R are defined the same on the slices as they are in spacetime, except

that gab is substituted for gab.2 Because general relativity is covariant, we are free

to choose how to slice spacetime and how to assign spatial coordinates to points on

the slices.

The lapse α determines the slicing by specifying how quickly time evolves in

the direction orthogonal to the slice at each point. The shift βi specifies how the

coordinates on the slices change in time. Together, the lapse and shift constitute the

gauge, and our freedom to choose them is gauge freedom. Fig. 1.2 shows the lapse

and shift at a point on a slice with coordinates x0. nµ is a unit vector normal to the

slice at x0. These coordinates refer to a different location on the next slice because of

the shift. The combination tµ = αnµ + βi is the time vector field for the evolution,

along which the fields are evolved. In differential geometry, the Lie derivative of

a tensor along a vector field va (Lv) is the change in the tensor produced by an

infinitesimal displacement along va. Therefore the time derivative for the evolution

2Sec. A.2 of the appendix provides explicit expressions for these quantities.
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Figure 1.1: 3+1 decomposition of spacetime. Time (t) advances vertically. One spatial

dimension has been suppressed.
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Figure 1.2: Gauge for a 3+1 decomposition of spacetime. nµ is the unit normal vector of

the slice. tµ is the time evolution vector, and t is the time coordinate.

is the Lie derivative along tµ Lt.

A “3+1” decomposition separates Einstein’s equations into constraint equa-

tions which constrain the data on each slice and evolution equations that describe

the evolution of the data from one slice to the next. The decomposition also rewrites

the spacetime metric gab in terms of the spatial metric gab and the extrinsic curvature

Kab, which specifies how the spatial slice is embedded in the four-manifold. Also,

it is proportional to the Lie derivative of the spatial metric along the normal to the

slice, Kab = −1
2 Lngab. Einstein’s second-order-in-time equations for the spacetime
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metric gab become a system of first-order-in-time partial differential equations for

the spatial metric gab and the extrinsic curvature Kab. With the four-dimensional

manifold decomposed into time slices and Einstein’s equations transformed to ob-

tain evolution equations and constraint equations, the simulation of the spacetime

is an initial value problem starting from the data on the initial slice (initial data).

The data must satisfy the constraint equations on all the slices. In the contin-

uum limit, the evolution equations preserve the constraints, so that solutions of the

constraint equations continue to satisfy the constraint equations as those solutions

evolve and it is not necessary to solve the constraint equations on each slice. For

simulations at finite resolutions the evolution equations do not preserve the con-

straints exactly. Constraint violations, which are discussed later in this chapter,

measure the failure of the solutions to satisfy the constraint equations and reflect a

departure from physics as described by Einstein’s equations. Usually it is sufficient

to solve the constraints initially and then evolve the data forward to subsequent

slices using the evolution equations, while monitoring the constraint violations.

The ADM equations are a “3+1” Hamiltonian formulation of general relativ-

ity originally proposed by Arnowitt, Deser, and Misner [8].3 The original ADM

equations describe the spatial metric and its canonical conjugate momentum πij .

York later rewrote the equations in the form used today in the numerical relativity

community [113], which I will refer to as the “ADM” equations. In this formulation

3For an excellent derivation of the ADM equations, see [100]
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the constraint equations are

R + K2 − KijK
ij = 16πρ , (1.2)

and

Dj(K
ij − gijK) = 8πji . (1.3)

ρ = Tabnanb is the energy density at each point measured by an observer at rest on

the slice at that point, and ja = −gabncTbc is the momentum density as measured

by the same observer. So Eqs. (1.2) and (1.3) are called the Hamiltonian and

momentum constraint equations, respectively. In cases where there is no matter or

energy, such as black hole binaries, the right-hand side of the constraint equations

are zero since Tab = 0 in vacuum. Since I am considering only black hole simulations,

I will use the vacuum form of all equations.

The ADM evolution equations, which describe the change in time of the metric

and extrinsic curvature, are

∂0gij = −2αKij , (1.4)

and

∂0Kij = −DiDjα + α(Rij + KijK − 2KikK
k
j) , (1.5)

where ∂0 ≡ ∂t−Lβ.4 First we solve the constraint equations for gab and Kab on

the initial spatial slice, the initial data solve. Then we use the evolution equations

4Eqs. (1.4) and (1.5) are written using the ∂0 time derivative for conciseness. Because Lt =

Lαn+β = Lαn + Lβ , ∂0 is the time derivative orthogonal to the spatial slice Lαn. See Sec. A.1 of

the appendix for the Lβ terms and elaboration on the additive property of a Lie derivative across

its vector field.
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to evolve the data onto future slices. This dissertation focuses on the evolution.

The ADM formulation of general relativity as an initial value problem provides

an intuitive picture of the spatial metric and its evolution. Unfortunately, it is

only weakly hyperbolic, and it is not stable, so it can only be evolved for short

times. The BSSNOK formulation [19, 97, 84] is a more stable formulation of general

relativity for time evolution. It was originally developed by Nakamura, Oohara, and

Kojima [84], and later refined by Shibata and Nakamura [97] and Baumgarte and

Shapiro [19]. The improved stability of BSSNOK was demonstrated empirically by

Baumgarte and Shapiro [19] and investigated more formally by Alcubierre et al.[3].

Later, Sarbach et al.demonstrated that the system is strongly hyperbolic [92], in

support of the original empirical stability results.

Rather than evolve gij and Kij , BSSNOK evolves g̃ij, φ, Ãij , and K, which

are related to gij and Kij by

gij = e4φg̃ij , (1.6)

φ =
1

12
log g , (1.7)

Kij = e4φ

(
Ãij +

1

3
g̃ijK

)
, (1.8)

and

K = gijKij . (1.9)

From these defining equations, it follows that g̃ = 1 and Ã = 0. BSSNOK evolves
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an auxiliary variable Γ̃i,

Γ̃i ≡ g̃jkΓ̃i
jk (1.10)

= −g̃ij
,j , (1.11)

where Γ̃i
jk is the conformal connection associated with g̃ij. The identity on the

second line of Eq. (1.10) is proven in Problem 7.7f of [68].

In the definitions of the BSSNOK variables, we see three differences between

the BSSNOK and ADM formulations. Eqs. (1.6) and (1.8) are conformal transfor-

mations of the physical spatial metric and extrinsic curvature. The initial factor

in both equations is a conformal factor, which can be rewritten using Eq. (1.7) as

e4φ = e
1
12 log g = Ψ4 where Ψ = 1

12 g. Often φ is referred to as the conformal factor.

g is the volume element on the spatial slices, since it is the determinant of gij . So

we can see that the conformal transformation separates changes to the magnitude

of the physical spatial volume element from non scalar distortions of the metric and

extrinsic curvature. The “∼” over a variable indicates that the variable has been

conformally scaled. From Eqs. (1.8) and (1.9) we see that Ãij is also traceless, so

it is called the conformal traceless extrinsic curvature, and K is evolved separately.

Finally, all second derivatives of the conformal metric g̃ij appearing in the evolution

equations are reduced to a simple Laplace operator in the Ricci tensor, since the

other second derivatives are rewritten as first derivatives of the auxiliary conformal

connection variable Γ̃i.

From Eqs. (1.6)-(1.9) and Eq. (1.10) and the ADM evolution equations Eq. (1.4) and (1.5)
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the evolution equations for the BSSNOK variables are

∂0g̃ij = −2αÃij , (1.12)

∂0φ = −
1

6
αK , (1.13)

∂0Ãij = e−4φ [−DiDjα + αRij ]
TF +

α
(
KÃij − 2ÃikÃ

k
j

)
, (1.14)

∂0K = −DiDiα + α

(
ÃijÃ

ij +
1

3
K2

)
, (1.15)

and

∂tΓ̃
i = g̃jk∂j∂kβ

i +
1

3
g̃ij∂j∂kβ

k + βj∂jΓ̃
i−

Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j − 2Ãij∂jα+

2α

(
Γ̃i

jkÃ
jk + 6Ãij∂jφ−

2

3
g̃ij∂jK

)
, (1.16)

where again ∂0 ≡ ∂t − Lβ.5 TF indicates the trace-free portion of the quantity in

square brackets.

In addition to the differences in the BSSNOK variable definitions above, there

are two important elements of the BSSNOK formulation are present in the evo-

lution equations, Eqs. (1.12)-(1.16). In the K evolution equation Eq. (1.15), the

Hamiltonian constraint Eq. (1.2) has been used to substitute for the spatial Ricci

scalar R. Similarly, the momentum constraints Eq. (1.3) have been used to replace

the divergence of Ãij in the Γ̃i evolution equation Eq. (1.16). This substitution is

particularly important since without it, BSSNOK is unstable [19, 3].

5The BSSNOK variables except Γ̃i are tensor densities. See Appendix B for an explanation

of tensor densities and for the Lβ terms. All terms of ∂tΓ̃i are given above explicitly, since Γ̃i is

neither a tensor nor a tensor density.
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1.2.1.2 Harmonic

Though all the simulations presented in this dissertation use the BSSNOK

formulations, I will briefly describe the generalized harmonic coordinates formula-

tion because of its contribution to numerical relativity. Choquet-Bruhat used the

wavelike nature of the formulation’s equations to prove uniqueness and existence

theorems for Einstein’s equations [44]. Pretorius used generalized harmonic coordi-

nates for the first successful simulation of a black hole binary inspiral and merger

[90]. The Caltech-Cornell collaboration uses generalized harmonic coordinates with

spectral methods to produce high-accuracy simulations of black hole binary coales-

cence lasting many orbits [93].

The generalized harmonic coordinates formulation specifies the spacetime co-

ordinates xµ according to the wave equation,

!gx
µ = Hµ , (1.17)

where !g ≡ gab∇a∇b is the wave operator for curved spacetime. Through the

source functions Hµ we determine the coordinates. Using the coordinates specified

by Eq. (1.17), Einstein’s equations are rewritten as modified wave equations for the

components of the metric. The system of equations is strongly hyperbolic, and like

most strongly hyperbolic systems, it is well-posed. Generalized refers to these source

functions. The original harmonic formulation had no source functions (Hµ = 0).

The freely specifiable source functions give greater control of the gauge.
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1.2.2 Gauge

After choosing the formulation, we must choose the gauge because of the

covariance of general relativity. This choice of time and space coordinates affects

the stability, accuracy, duration, and values in a simulation. It includes the initial

coordinates and the evolution equations for the coordinates. As discussed above,

the choice of source functions Hµ constitutes the gauge choice in the generalized

harmonic coordinates formulation. For BSSNOK, the evolution equations for the

gauge must be specified. The gauge should:

• Avoid coordinate singularities.

• Avoid physical singularities.

• Evolve stably.

• Approach flat space in the weak field far from the black holes.

1.2.2.1 Lapse

To avoid coordinate singularities we need the coordinates to be well-behaved. g̃

must be positive definite and finite to prevent the spatial metric and its inverse from

diverging. Also Ãij must be nonsingular, and φ must be finite and non-negative.

To avoid physical singularities, the lapse should approach zero in the strong field

region where the physical singularities lie. Moving away from the strong field, the

spacetime should approach flat space, and the lapse should approach 1, so that t

becomes the proper time of the distant laboratory frame where physical quantities

18



should be measured. Therefore, the lapse will be a function of the spatial coordinates

on each slice, as well as a function of time.

The obvious first choice for a lapse condition is α ≡ 1 through space for all

times. This choice of lapse is called geodesic slicing since with this choice of α, the

coordinate time is the same as the proper time of observers on timelike geodesics, in

free fall. Physical intuition shows that this a poor choice for black hole spacetimes,

since all the points on our grid will fall onto the black holes in a finite time. Not

only will the simulation quickly become trivial as the physical extent shrinks, but

also the simulation will crash as the variables become singular. For example, an

observer at the event horizon of a Schwarzschild spacetime will reach the physical

singularity after evolving for a time equal to πM . Geodesic slicing also causes

coordinate singularities as the grid points coincide on the slices (focusing).

In the case of geodesic slicing the volume elements at the grid points go to

zero. Maximal slicing keeps these volume elements constant. This requires that

∇µnµ = 0 , (1.18)

and

K = 0 , (1.19)

where the second line comes from the definition of Kij . So maximal slicing requires

that K = ∂tK = 0, which in turn requires

D2α = KijK
ijα , (1.20)

from the K evolution equation Eq. (1.15) and the Hamiltonian constraint equation

Eq. (1.2). Though maximal slicing maintains the volume elements and avoids the
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physical singularities, Eq. (1.20) is an elliptic equation that must be solved at each

iteration, which is computationally expensive.

Today most groups evolving BSSNOK use some form of 1+log slicing, so

named because the version found through empirical studies of lapse conditions took

the form α = 1 + log g [6]. 1+log slicing belongs to the Bona-Massó family of

hyperbolic slicing conditions

∂tα = −α2f(α)K , (1.21)

with different choices of f(α) producing different slicing conditions [22]. Choosing

f = 2/α produces 1+log slicing. Because Eq. (1.21) is a hyperbolic evolution

equation, it is evolved like the physical BSSNOK variables, a much simpler procedure

than solving the elliptic equation Eq. (1.20) as required for maximal slicing, and yet

1+log slicing has favorable singularity-avoiding properties like maximal slicing. The

simulations in this dissertation use a modified 1+log slicing condition

∂tα = −2αK + βj∂jα . (1.22)

The second term is an advection term that is added to prevent zero-speed modes

accumulating around the black holes. Zero-speed modes are characteristic modes of

the evolution system that do not propagate. They remain on the grid and contribute

to constraint violations.

1.2.2.2 Shift

For the shift, which specifies how the spatial coordinates change between slices,

the two main objectives are preventing grid points from falling into the black holes
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and reducing distortion of the spatial metric. Both can be achieved by a Gamma

freezing shift condition ∂tΓ̃i = 0. This condition minimizes the change in the shape

of the volume elements.6 The Gamma freezing condition results in a system of three

coupled elliptic equations.

To use the Gamma freezing condition, we would need to solve the system

at each iteration, which would be computationally expensive. As an alternative,

Alcubierre et al.suggested the Gamma driver shift condition

∂2
t β

i = α2ξ∂tΓ̃
i , (1.23)

a hyperbolic driver condition that mimics the Gamma freezing condition through

a rapid evolution to a quiescent state [5]. ξ = ξ(xi, α) > 0 controls the evolution.

Since the initial proposal of the Gamma freezing condition, a damping term (∝ ∂tβi)

has been added to the evolution equation to prevent strong oscillations in the shift.

Also an advection term has been added that causes any zero-speed constraint viola-

tion modes occurring at the black holes’ initial locations to propagate to the outer

boundary of the simulation. The simulations in this dissertation use a “shifting”

shift condition that includes both additional terms,

∂tβ
i =

3

4
Γ̃i + βj∂jβ

i − ηβi , (1.24)

where η > 0 is a parameter that controls the damping term [104].

6See [2] for the connection between the Gamma freezing condition and the more stringent

minimal distortion shift condition originating from the work of Smarr and York [99, 98] which

minimizes the time variation of the conformal metric g̃ij over the spatial slice.
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1.2.3 Initial Data

With a formulation and a gauge, we turn to the initial data. Because of the

constraint equations, the initial data are not freely specifiable. Considering gij and

Kij which are symmetric, there are 12 degrees of freedom, but the constraint equa-

tions limit 4 of these, so there are only 8 degrees of freedom. The degrees of freedom

specify the properties of the spacetime, such as a single nonspinning black hole, a

black hole binary of a certain mass ratio, etc. In general the 12 quantities don’t

divide easily into constrained and free data. Considering the form of the constraint

equations, we must rewrite them into a form where we can specify the free quantities

and solve for the four constrained quantities. There are different approaches to that

process including the York-Lichnerowicz conformal decomposition, the Bowen-York

method (a particular case of the York-Lichnerowicz approach), the conformal thin

sandwich approach [112], the quasicircular method [41, 18], and quasiequilibrium

methods [48].

1.2.3.1 Bowen-York Initial Data

The York-Lichnerowicz conformal decomposition rewrites the spatial metric

in terms of a conformal factor, gij = Ψ4ḡij [67, 111, 112]. Though similar to the

BSSNOK approach to evolution, the conformal factor is not the same. The confor-

mal metric is specified, as well as K and a symmetric trace-free tensor (M̄ij) that

provides part of the conformal extrinsic curvature Āij . From these specified param-

eters, the York-Lichnerowicz method solves for Ψ and Āij , which in turn provide gij
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and Kij . For nonspinning, non-boosted black holes, the solution is exact for both

and reduces to the Brill-Lindquist initial data. Bowen-York initial data [23] add

linear momentum and spin to the black holes. It starts with the York-Lichnerowicz

conformal decomposition, and assumes the space is conformally flat and that K = 0.

If M̄ ij = 0, there is an exact solution for the conformal trace-free extrinsic curvature

Āij =
3

r2

[
niPj + njPi + nkP

k(ninj − δij)
]
+

3

r3
[εkimnj + εkjmni]S

mnk . (1.25)

ni is the unit vector pointing away from the origin, and P i and Si are the linear

and angular ADM momenta of a black hole at the origin. For N black holes, Āij is

the sum of N terms of the form Eq. (1.25), each term representing one of the black

holes with r defined as the coordinate distance from that black hole and P i and Si

defined as the linear and spin angular momentum of the black hole. In this case the

momenta are parameters, but they do correspond to momenta associated with each

black hole.

For a single black hole with no spin and no linear momentum, the Bowen-York

initial data represent a slice of fully extended Schwarzschild spacetime, an Einstein-

Rosen wormhole, which is two asymptotically flat spacetime regions connected by a

throat at or within the event horizon of each region. This initial slice is two three-

dimensional regions from which an open three-ball bounded by the event horizon

has been removed and which are connected by the shared event horizon. For more

general Bowen-York initial data of N black holes with spins and linear momenta, the

slice consists of a common asymptotically flat region plus N separate asymptotically

flat regions, with a throat connecting each of the N separate regions to the common

23



region.

With Āij given by the generalization of Eq. (1.25), we solve for the conformal

factor. In doing this, the boundary conditions are important. The outer boundary

condition is determined by the requirement of asymptotic flatness, which means

that the metric and extrinsic curvature should go to their flat space values. Since Ψ

becomes singular at the coordinate locations of the black holes, those points must

be removed from the solution domain. The missing points are called punctures. To

avoid the punctures, we need an inner boundary condition. One approach is to

demand an isometry that identifies points inside each throat with points outside the

throats. Such a condition provides inner boundary conditions, but it also requires

additional terms in the conformal extrinsic curvature to create the isometry.

The more common approach for Bowen-York initial data is the puncture ap-

proach pioneered by Brandt and Brügmann [26]. In this approach, the conformal

factor is written as Ψ = ΨBL + u where ΨBL is the Brill-Lindquist portion of the

conformal factor given by

ΨBL(.r) =
N∑

i

mi

2ri
. (1.26)

ri is the coordinate distance to black hole i. The Brill-Lindquist conformal factor

describes two nonspinning black holes initially at rest with u = 1. In that case,

the bare mass of ith black hole mi, is the contribution of that black hole to the

total ADM mass of the system. In the general case, the bare masses are parameters

that, with the coordinate separations and the momenta, determine the total ADM

mass. ΨBL is the singular portion of the conformal factor, and u is the remaining
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nonsingular portion, which is solved for numerically. In solving for u, it is no longer

necessary to exclude the punctures, and therefore there is no need for inner boundary

conditions. u is calculated with an elliptic solver such as AMRMG [28] or TwoPunctures

[7]. All the simulations in this dissertation use puncture initial data, Bowen-York

initial data solved by the puncture approach, from one of these two solvers.

1.2.4 Evolution

Since the evolution equations are hyperbolic partial differential equations (PDEs),

evolving the spacetime metric requires methods to both evaluate the spatial deriva-

tives and perform the time integration of the equations.

1.2.4.1 Spatial Derivatives

In the numerical relativity community the most common method to evaluate

spatial derivatives is finite differencing. For a function f = f(x), finite difference

methods replace f ′ and higher derivatives, at a point x0, with difference quotients,

linear combinations of f at points neighboring x0 divided by the spacing of the

neighboring points. The formulas for f ′ and higher derivatives can be derived from

Taylor polynomials T (x) of the function f ,

f(x) = Tn(x) + Rn(x) , (1.27)

where

Tn(x) = f(x0) +
n∑

k=1

f (k)(x0)

k!
(x − x0)

k , (1.28)

25



and

Rn(x) =
f (n+1)(ε)

(n + 1)!
(x − x0)

n+1 . (1.29)

Tn(x) is the nth-order Taylor polynomial, and Rn(x) is the nth-order residual term.

The derivatives of f up to f (n) must be continuous in [x0, x] and f (n+1) must exist

in (x0, x). ε lies in (x0, x). Since we want to approximate derivatives at points on a

discrete regularly spaced grid using other points from that grid, we can rewrite this

as

fj = f0 +
n∑

k=1

f (k)
0

k!
(jh)k + O(hn+1) , (1.30)

where j indexes grid points relative to x0, h is the space between adjacent points,

f0 = f(x0), fj = f(x0 + jh), f (k)
0 = f (k)(x0), and O(hn+1) is a term proportional to

hn+1. Using a linear combination of Eq. (1.30) for different j to eliminate all f (k)

terms except f (m), we create a stencil for f (m)(x0) from f at x0 and neighboring

grid points with an error proportional to hn+1−m.

The other commonly used approach to evaluating spatial derivatives is spectral

methods. With spectral methods, a function f(x) is written as a linear combination

of a set of basis functions fi(x), such as the Fourier series. Because the basis

functions are analytic, and their derivatives are known, evaluating the derivative of

f , is a simple algebraic operation. So if

f(x) =
∑

i

aifi(x) , (1.31)

then

f ′(x) =
∑

i

aifi′(x) . (1.32)
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Spectral methods have exponential convergence, but they also require very careful

treatment of boundary conditions and subdomains, so finite difference methods have

generally preceded spectral methods in reaching milestones in the general problem

of black hole binary mergers.

1.2.4.2 Time Integration

The most common approach to time integration in the numerical relativity

community is the method of lines using the fourth-order Runge-Kutta (RK4) algo-

rithm for integrating ordinary differential equations (ODEs). Given a PDE

∂tu = F (u, ∂xu, ∂2
xu, t) , (1.33)

where u is one or more functions that constitute the system, and F is a function of

u and its spatial derivatives, the method of lines rewrites the original PDE as an

ODE given by

d

dt
u = f(u, t) , (1.34)

where f represents the function that results from the spatial derivative treatment

(such as finite differencing or spectral methods). Then an integration method such

as RK4 solves the resulting ODE, Eq. (1.34). The method of lines changes the

PDE into an ODE by making the spatial derivative evaluations independent of the

integration, and since ODEs are simpler to solve than PDEs, in general, the method

of lines simplifies the integration.

With the RK4 algorithm, given Eq. (1.34) and the solution at tn, un ≡ u(tn),
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the solution at the next time step tn+1 = tn + ∆t is

un+1 = un +

(
k1 + 2k2 + 2k3 + k4

6

)
∆t , (1.35)

where

k1 = f(un, tn) , (1.36)

k2 = f(un + k1
1
2∆t, tn + 1

2∆t) , (1.37)

k3 = f(un + k2
1
2∆t, tn + 1

2∆t) , (1.38)

and

k4 = f(un + k3∆t, tn+1) . (1.39)

RK4 is an explicit time integration method since un+1 is an explicit function of

un. Precise cancellations in the sum of k terms results in an error proportional to

(∆t)5 at each timestep. Because the number of timesteps in a simulation is inversely

proportional to the size of the timestep, the integration error for the simulation is

fourth-order.

Implicit integration methods provide an alternative to explicit methods such

as RK4. In such methods, un+1 is given by an implicit equation involving un+1, un,

and possibly earlier values of u. A simple example is

un+t = un + f(un+t, tn+1)∆t . (1.40)

Solving such implicit equations is more complicated and time-consuming than ex-

plicit methods, and in general implicit methods cannot be used with the method of

lines since the spatial discretization is intimately connected to the time integration

with implicit methods. The advantage of these methods is that they allow for larger
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timesteps without loss of stability. We do not apply implicit methods in our simu-

lations, but the possibility of taking larger timesteps partially motivates my work

on the moving patches technique, which is discussed in Chapter 4.

1.2.4.3 Boundary Conditions

We must specify boundary conditions at the boundaries of the simulation

domain. In the case of simulations using finite differencing, the boundary conditions

allow us to evolve the data at the outer edge of the grid. The boundary conditions

provide data for the finite difference stencil points that lie beyond the grid. When

interior points are removed from the domain of a numerical relativity simulation, a

technique called excision that is discussed below, we also need boundary conditions

at the excision boundary, an inner boundary.

At the outer boundary, numerical relativity simulations often use the radiative

boundary condition. The radiative boundary condition assumes outgoing radiation

at the boundary, a Sommerfeld-type boundary condition. For a scalar field u in

three dimensions the condition is

U,r + U,t = 0 , (1.41)

where r is the distance from the wave source and U ≡ ur [109]. This condition

matches the outgoing radiation of a field u with a mean value of 0, and it produces no

inbound radiation for a linear wave with spherically symmetric data and a spherical

boundary.

For spacetime, the radiative boundary condition describes variation about a
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flat-space metric. Though this is an artificial condition, it approximates outgoing

radiation for boundaries sufficiently far from the strong field region.7 Since the flat-

space values of the spatial metric and extrinsic curvature are δij and 0, respectively,

the radiative boundary condition becomes

(∂t + ∂r)r(gij − δij) = 0 , (1.42)

and

(∂t + ∂r)rKij = 0 . (1.43)

These conditions are simple to implement, and given the wavelike nature of the

fields at the outer boundary, the radiative boundary condition approximates them

well. However, it does not satisfy the constraint equations, so the outer boundary

introduces nonphysical solutions that propagate into the simulation domain. For

this reason, the outer boundaries must be located far enough from the wave zone

and strong field regions that such error does not have sufficient time in a simulation

to reach those regions. An alternative approach is to compactify the coordinates so

that the edge of the finite grid is an infinite coordinate distance from the origin. This

can be thought of as applying an additional metric to the grid for the purpose of

calculation. Such a metric is conformally flat, with a conformal factor that becomes

large at the edge of the grid. Unfortunately compactification scatters outbound

radiation back into the grid, so it introduces errors as well.

7“Sufficiently far” can be estimated as the distance at which the field values of an analytic

approximation of the simulation spacetime are sufficiently close to flat space. Since the main

concern is error introduced by the artificial boundary condition, an empirical judgment based on

observation of error originating from the outer boundary is often more useful.
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1.2.4.4 Moving Punctures

Once Bowen-York initial data are solved by the puncture technique, the data

can be evolved. In the initial data case, the conformal factor Ψ is separated into a

singular part ΨBL(xi) and a nonsingular part u(xi), which is solved numerically. To

continue using the puncture technique for the evolution of the data, the puncture

locations must be kept constant since ΨBL is an analytical function of position. To

accomplish this, the shift must go to 0 at the puncture locations, so βi(t = 0) = 0

and β̇i ∝ Ψ−n = 0 for n > 0 at the puncture locations. While this gauge choice

does keep the puncture coordinates constant, it also forces the grid to “stretch” to

accommodate the physical motion of the black holes. The decreasing separation of

the binary requires that the physical spatial metric between the punctures go to 0

through the conformal factor Ψ or the conformal spatial metric g̃ij. The result is

either the evolved φ must go to −∞ or the inverse conformal spatial metric g̃ij must

diverge. In either case, this creates large field gradients, which in turn lead to large

numerical errors and instability. The tangential motions of the punctures cause a

twisting of the grid that also causes large errors and instabilities.

In response to these challenges, the numerical relativity groups at NASA God-

dard Space Flight Center and University of Texas Brownsville independently devel-

oped the moving punctures approach [34, 14]. By allowing the punctures to move

on the grid, each group evolved the merger and ringdown of a black hole binary.

Though the groups took slightly different approaches, the procedure had the same

two elements in each case. First, the conformal factor was no longer decomposed
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into a singular analytical part and an evolved nonsingular part. Second, each group

used a shift gauge condition that did not vanish at the punctures, but instead,

the shift at the punctures was responsible for moving the punctures on the grid.

The Goddard group evolved the BSSN φ = log Ψ variable as before, but without

splitting out the singular part, while the Brownsville group evolved a new variable

χ ≡ Ψ4 = e−4φ. The groups used slightly different Gamma driver conditions, but

in both cases, ∂t2βi ∝ ∂tΓ̃i and there was no power of Ψ in the shift evolution equa-

tions driving the shift to 0 at the punctures. The moving punctures approach has

become the established choice for numerical relativity puncture evolutions. All of

the simulations discussed in this dissertation used the moving puncture approach.

1.2.5 Tools and Techniques

1.2.5.1 Excision

The region of spacetime bounded by an event horizon is causally disconnected

from the rest of spacetime, and it contains the physical singularity of a black hole. So

one way to avoid the complications created by the singularity in numerical relativity

simulations is to excise a region of the simulation domain within the event horizon

that includes the singularity. If the boundary conditions at the excision boundary

are handled properly, the excision will have no effect on the physical results in the

simulation domain. This idea is attributed to Unruh by Thornburg [102], and it

was first implemented successfully by Seidel and Suen [96]. Though it eliminates

the problem of the singularities, it is computationally complex for general simu-
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lation domains. Excision was simplified by Alcubierre and Brügmann with their

introduction of simple excision [4]. They found that it is unnecessary to impose

boundary conditions at the excision boundary since all the characteristic fields are

ingoing within the event horizon, which includes the excision region by construction.

The introduction of moving punctures significantly reduced the use of excision, since

there was no need to excise singularities with this technique, and excision is com-

putationally expensive. Excision is still used in the numerical relativity community,

most notably by the Caltech/Cornell collaboration and when the initial data include

an excision region.

1.2.5.2 FMR

Large field gradients near the black holes, error propagating inward from the

outer boundary of the simulation grid, and finite computational memory create a

need for multiple resolutions in numerical relativity simulations. The large field gra-

dients present in the strong field region near the black holes require high resolution

in that region. Accurately resolving the gravitational radiation in the wave zone far

from the black holes requires significantly less resolution. The region between the

strong field region and the wave zone requires an intermediate resolution sufficient

to minimize dissipation of the waves as they propagate through it. Placing the

outer boundary of the grid far from the wave zone delays contamination from error

propagating in from the outer boundary. While in principle the high resolution of

the strong field region could be used for the entire grid, this would be very wasteful
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of finite computational memory, especially for longer simulations where the outer

boundary is farther from the wave zone. Fixed mesh refinement (FMR) divides the

simulation grid into zones and refines the grid in each zone to match the resolution

requirements of the physical region of the grid. The zone resolutions are fixed at the

beginning of the simulation. Adaptive mesh refinement (AMR) also divides the grid

into zones of different resolution, but it allows the portion of the grid included in

each refinement zone to change during the course of the simulation. This allows high

resolution around each black hole without an unnecessarily high resolution region

between the black holes. In simulations of widely separated black holes, this allows

more efficient use of memory. The high resolution zones track with the black holes.

AMR allows the zones outside the strong fields to vary as the gauge evolves in those

regions.

1.3 Implementation

hahndol is the finite difference numerical relativity code written by the NASA

Goddard group. It solves for the initial data as specified by input parameters,

and it evolves the resulting data according to the BSSNOK equations using gauge

conditions specified by the input parameters. The paramesh [74, 89, 88, 1] library

of Fortran 90 modules and subroutines provides the simulation grid as specified by

the application, hahndol. The library abstracts the details of the grid as well as

the parallelization of the grid, and hahndol implements the physics of numerical

relativity and methods of numerical analysis on the grid.
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1.3.1 The paramesh Grid

paramesh creates a simulation grid of the size and dimension (1, 2, or 3)

specified by the application, manages the field data and the information about the

grid, and carries out all of the tasks of maintaining, updating, and modifying the

grid. It decomposes the simulation grid into blocks and distributes the blocks over

the available processors, which allows parallel processing by the application using

paramesh. Also, the library handles the refinement and derefinement of the grid.

paramesh further divides each block into cells on a Cartesian grid. The

blocks are logically identical, which means that for each dimension, the number of

cells is the same for all blocks. Each block consists of interior cells and guard cells

that border the interior cells on the block faces. Each face has the same number

of layers of guard cells. hahndol uses three levels, currently. These guard cells

contain data from neighboring blocks, which allows local calculations on interior

cells of finite differences and other quantities that require data from neighboring

cells. paramesh maintains the coordinates and size of each block and uses this

coordinate information to determine the neighbors of each block, which it uses to

fill the guard cells of the block. At the boundaries of the simulation grid, paramesh

uses boundary conditions supplied by the application to fill the guard cells.

paramesh provides multiple resolutions on the grid for the application, through

FMR and AMR. It refines and derefines the blocks as specified by the application.

For any spatial region, the highest resolution blocks covering the region are leaf

blocks. When the application indicates that higher resolution is required for a block,
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paramesh refines the block by creating 2D child blocks of half the size and twice

the resolution where D is the dimension of the grid. Then paramesh fills the child

blocks from the original block (prolongation). The child blocks become leaf blocks,

and the original block becomes a parent block. Conversely, when the application

indicates that blocks should be derefined, paramesh fills the parent blocks from

the indicated leaf blocks (restriction), changes those parent blocks to leaf blocks,

and deactivates the child blocks. paramesh only does this when all the child blocks

of a parent block are marked for derefinement. The refinement and derefinement of

blocks provides true AMR to the application, instead of repeated FMR.

paramesh uses a common interpolator for three operations that are necessary

when the simulation grid contains multiple resolutions. In that case the grid consists

of multiple refinement levels. The refinement level of a block is the number of refine-

ments that generated the block, and all of the blocks of the same refinement level

comprise a refinement level of the grid, a region of common resolution. paramesh

interpolates to fill the guard cells of blocks on refinement boundaries, where different

refinement levels meet. It also interpolates in prolongation for block refinement and

in restriction for block derefinement. The interpolator uses Lagrange polynomials of

an order specified by the application. Because hahndol uses three levels of guard

cells at present, it specifies sixth-order polynomials for the paramesh interpola-

tor. This results in sixth-order error from paramesh interpolation to match the

sixth-order finite difference error in hahndol, as discussed below.
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1.3.2 The hahndol Application

1.3.2.1 Numerical Analysis

hahndol uses standard numerical analysis techniques. It uses sixth-order

centered finite differencing for spatial derivatives except those appearing in advection

terms. For these, it uses upwind differencing, in which the finite difference stencil

includes more points on the side away from the black hole. This produces fifth-

order error. For time integration, hahndol uses the method of lines with RK4

integration, which results in error that is fourth-order in the timestep. In practice,

the finite difference errors are much larger than the time integration errors, and

so they produce the leading order error. hahndol also includes its own sixth-

order interpolator that is separate from the paramesh interpolator. Similar to the

finite difference operators, the interpolator uses Eq. (1.30) to create an interpolation

stencil that has sixth-order error. As I will discuss in Chapter 4, the moving patches

technique uses the hahndol interpolator intensively. To prevent introducing lower-

order error from the interpolator in the implementation of the technique, I increased

the order of the hahndol interpolator from fourth-order to sixth-order.

hahndol uses a number of other techniques common in the numerical rela-

tivity community. Among these are constraint damping and artificial dissipation.

In the limit of infinitely high resolution, quantities proportional to ∆x go to 0. As-

suming that the constraints converge, adding multiples of the constraints to any

of the evolution equations should have no effect in the continuum limit. However,

for finite resolutions, such additions do change the behavior of the evolution in a

37



convergent manner. Constraint damping refers to the technique where terms are

added to reduce the constraint violations. hahndol uses the form of constraint

damping suggested by Duez et al.[42]. Again using additional terms that scale with

the resolution, and therefore vanish in the continuum limit, hahndol also uses ar-

tificial dissipation, which reduces high-frequency noise in the evolved fields. The

artificial dissipation terms are finite difference approximations of high-order spatial

derivatives scaled by the time step ∆t, with the order of the spatial derivatives cho-

sen sufficiently large to prevent introduction of lower-order error to the evolution.

hahndol uses Kreiss-Oliger dissipation [64].

1.3.2.2 Puncture Tracker

Finding a black hole in a simulation is not simple. Our lapse conditions pro-

duce spatial slices that avoid the physical singularity because of the instability that

occurs if the singularity is on the grid. So the intuitive choice of the physical sin-

gularity for the black hole location does not work. Instead, we use the puncture

position as the black hole location, keeping in mind that it is gauge-dependent and

that we must be careful in how we interpret it.

hahndol includes a puncture tracker. Based on the empirical observation

that in the neighborhood of a puncture,

βi(xi) = k2(xi − xi
p) + βi(xi

p) , (1.44)

where k is a real constant, and xi
p is the puncture location, the puncture tracker uses

the current puncture location and the shift at that location to predict the puncture
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location at the next iteration using an Euler integration,

xi
p,n+1 = xi

p,n − βi(xi
p,n)dt . (1.45)

Though the integration is first-order in time, the calculated puncture position is

driven back to the “true” puncture position by the first term in Eq. (1.44). The

“true” puncture position is the point that represents the other side of the wormhole.

(Once the puncture simulation begins, the puncture no longer represents the second

asymptotic infinity, but rather the most distant points of the region within the

throat [53, 55, 54, 27]).

1.3.2.3 Apparent Horizon Finder

In general relativity, an event horizon is the boundary of a region which no

null geodesics leave. For black hole spacetimes, often this is described as the bound-

ary of the region from which light cannot escape, with the outgoing light rays on

the event horizon “frozen” to the boundary. In numerical relativity simulations,

when there is no analytic expression for the metric, establishing the location of

the event horizon would require evolving to t = ∞ to establish the region from

no null geodesics leave. So in numerical relativity simulations, the related concept

of the apparent horizon is used instead. First, consider a single black hole and two

neighboring outgoing null geodesics (for which the spatial component of the velocity

points away from the black hole). If the geodesics escape from the black hole, the

separation between the geodesics on the spatial slices increases as time increases.

If the geodesics fall into the black hole, the separation decreases, and if they are
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marginally trapped, the separation remains constant. More formally, at time t0, for

a closed, two-dimensional surface σ around the black hole, if the tangent vectors

to outgoing null geodesics converge, the null geodesics are trapped, and the vol-

ume bounded by them is decreasing. However, if the bounded volume is constant,

the null geodesics are marginally trapped. This property is measured by expansion

which is the trace of the projection into σ of the covariant derivative of the tangent

vector,

θ = gµν(⊥σ)
α
µ(⊥σ)

β
ν∇αuβ , (1.46)

where ⊥σ is the projection operator and uµ is the tangent vector. So a marginally

trapped surface is a θ = 0 level set. For more general spacetimes, including black

hole binaries, there can be more than one marginally trapped surface. The apparent

horizon (AH) is the outermost marginally trapped surface. For any physically rea-

sonable spacetime, the apparent horizon does not lie outside the event horizon, so

the apparent horizon provides a conservative estimate of the event horizon. In par-

ticular, it provides a conservative boundary for the simulation domain region that

is causally disconnected from the outer simulation domain, which is interpreted as

the universe outside a black hole. This is necessary in numerical relativity simu-

lations that use excision since the excision boundary must be inside the apparent

horizon. Also, the apparent horizon can be used to measure the mass and spin of

individual black holes. hahndol locates and characterizes apparent horizons using

the Thornburg apparent horizon finder [103].

For spacetimes representing multiple black holes, the horizon mass measures
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the mass of each black hole.8 From the apparent horizon area AAH and the spin S

of the black hole, we calculate the horizon mass m with the Christodoulou formula

[40],

m2 = m2
irr +

S2

4m2
irr

, (1.47)

where mirr =
√

AAH/16π. With the horizon mass definition, we can define the mass

ratio q of a black hole binary by

q ≡
m1

m2
, (1.48)

and the symmetric mass ratio by

η ≡
m1 m2

(m1 + m2)2
. (1.49)

1.4 Analysis

1.4.1 Observables

Because general relativity is covariant, we must be careful in interpreting ten-

sor (including vector) components, since those components depend on the particular

coordinate system we are using. Such quantities are gauge-dependent, and there-

fore it is more difficult to identify physical effects from the effects of the particular

8In this case, the apparent horizon of a black hole must be defined as the outermost marginally

trapped surface surrounding the black hole. This definition is not rigorous since it requires a location

for the black hole. Also, as the black holes approach, a common outermost marginally trapped

surface forms, and this definition breaks down. In practice, the black holes can be associated with

puncture locations or other meaningful coordinate positions, and until the common horizon forms,

we can consider horizons of the individual black holes.

41



gauge. When possible, it is better to consider observables that do not depend on

gauge (scalars) or where the gauge is clearly defined.

1.4.1.1 Radiation: ψ4, ḣ, and h

General relativity predicts the existence of gravitational waves, distortions of

spacetime that propagate through spacetime, as electromagnetic waves propagate

through vacuum, and gravitational radiation is among the most important results of

numerical relativity simulations. Gravitational radiation is time-varying curvature

of spacetime that propagates away from a source (such as a black hole binary) and

which diminishes in amplitude inversely with distance from the source. In this way,

it is similar to electromagnetic radiation.

In vacuum, the Weyl tensor Cabcd, which is the trace-free part of the Riemann

tensor Rabcd, fully describes the curvature of spacetime (Rabcd = Cabcd in vacuum).

It can be decomposed into five complex scalars, the Weyl scalars (ψ0 - ψ4), using the

Newman-Penrose formalism. When so decomposed, the outgoing radiation compo-

nent is ψ4. The Newman-Penrose formalism decomposes tensors, such at Cabcd, with

respect to a null tetrad, a set of four null (zero-length) basis vectors. This tetrad

consists of two real vectors, 3a and na, and two complex vectors, ma and m̄a (the

conjugate of ma) which satisfy the orthogonality conditions

3ama = nama = 3am̄a = nam̄a = 0 . (1.50)

Often the vectors are normalized by the conditions

3ana = 0 , (1.51)
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and

mam̄a = 0 , (1.52)

a convention which I follow in this dissertation. The Weyl scalars are five compo-

nents of Cabcd in the tetrad basis which fully specify the ten independent components

of Cabcd. If we impose the three additional requirements that 3a lies along outgo-

ing null geodesics, na lies along ingoing null geodesics, and ma and m̄a lie along

orthogonal spatial directions, ψ4 which is given by

ψ4 ≡ Cabcd nam̄bncm̄d , (1.53)

is the component of Cabcd that represents outgoing radiation, a wave propagating

along outgoing geodesics with an inverse fall-off in amplitude along the geodesics

[101]. This is the gravitational radiation which we are interested in.

ψ4 is calculated directly from the evolved data in a numerical relativity simula-

tion. It measures spacetime curvature. Gravitational wave detectors measure strain

h ≡ ∆L/L, where L is a characteristic length of the detector and ∆L is the change

in length as a gravitational wave encounters the detector. Following the derivation

in Schnittman et al.[95] and Chap. 35 of [82], we connect h with ψ4 via Rabcd(= Cabcd

in vacuum) by the relation

ψ4 = −(ḧ+ − iḧ×) , (1.54)

where h+ and h× are the two orthogonal polarizations of the strain. This relation

assumes that h is written in the transverse-traceless gauge, a choice of coordinates in

which h is a purely transverse wave with no time component. It also assumes that
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ψ4 is computed with a tetrad satisfying the three additional tetrad requirements

described above.

While in some cases this tetrad is specified by coordinate expressions, such

as the Kinnersley tetrad for small perturbations of Kerr spacetime, in general the

correct tetrad is not known exactly for numerical relativity simulations, and a tetrad

must be computed, and it only approximates the correct tetrad. Some tetrads, such

as the quasi-Kinnersley tetrad, better satisfy the additional tetrad requirements,

but for 3+1 simulations, the symmetric tetrad,

3a ≡
1√
2
(τ̂ + r̂)a, (1.55)

na ≡
1√
2
(τ̂ − r̂)a, (1.56)

ma ≡
1√
2
(θ̂ + iϕ̂)a, (1.57)

and

m̄a ≡
1√
2
(θ̂ − iϕ̂)a , (1.58)

where τ̂ is the future-pointing unit vector normal to the spatial slice at all points,

and r̂, θ̂, and φ̂ asymptotically approach the standard spherical polar basis vectors

as the distance from the origin goes to infinity, offers greater efficiency due to its

computational simplicity. All the simulations in this dissertation use the symmetric

tetrad to calculate ψ4.

To better understand the structure of ψ4, we decompose it into components in

a suitable basis. Because the gravitational field is a rank-2 tensor, a natural basis is
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the set of spin-weight -2 spherical harmonics −2Ylm [85, 101]. In terms of this basis,

ψ4 =
∞∑

!=2

m=!∑

m=−!

ψ4,!m −2Y!m , (1.59)

with ψ4,!m the contribution of the (3, m) harmonic to ψ4. With such a decomposition,

we can more easily compare the radiation from different simulations. Also, because

each mode of the radiation corresponds to a multipole moment in a post-Newtonian

description of the source, the radiation has a simple modal structure in this basis.

h and ḣ can be decomposed into components in the same basis in an analogous

manner.

1.4.1.2 Mass and Momentum

A natural observable to consider for a spacetime is the total energy (mass) of

a spacetime, which is the energy density from Einstein’s equations integrated over

all space. Using the Hamiltonian constraint Eq. (1.2) this becomes

MADM = lim
r→∞

r2

16π

∮
r̂k

(
D0

jh
j
k − D0

kh
)
dΩ , (1.60)

where r̂i is the unit normal vector pointing away from the origin and dΩ is the solid

angle element. Note that this definition of the total energy of the spacetime, the

ADM mass [8], requires the integral be evaluated at spatial infinity. For simulations

with boundaries at a finite distance, this is not possible, and instead the integral is

integrated at r ≥ 50 MADM , where the fields are sufficiently weak to approximate the

flat-space fields are infinity. Richardson extrapolation of MADM to spatial infinity

from the values calculated at several radii can mitigate the error introduced by such

a finite radius evaluation.

45



Like the total energy, the total momentum of the system can be defined using

the momentum density from Einstein’s equations and Eq. (1.3) [8]. It takes a form

similar to MADM ,

P i
ADM = lim

r→∞

r2

8π

∮
r̂j

(
Ki

i − δi
jK

)
dΩ . (1.61)

From the standard definition of angular momentum (.r × .p), the ADM angular mo-

mentum is defined in a similar way [8] by

J i
ADM = lim

r→∞

r2

8π

∮

S

r̂lεijkxj (Kkl − δklK) dΩ , (1.62)

where εijk is the Levi-Civita tensor.

Though the ADM quantities defined above remain constant, gravitational

waves carry energy and momentum away from a radiating system, such as a black

hole binary. The radiated energy and momentum can be calculated directly from

ψ4 using

dE

dt
= lim

r→∞

r2

16π

∮ ∣∣∣∣

∫ t

−∞

ψ4dt′
∣∣∣∣
2

dΩ , (1.63)

and

dP i

dt
= lim

r→∞

r2

16π

∮
r̂i

∣∣∣∣

∫ t

−∞

ψ4dt′
∣∣∣∣
2

dΩ . (1.64)

Like the ADM energy and momentum, the radiated power and momentum flux

are evaluated at spatial infinity. The time integrals from ∞ to t reflect the effect

of all past values of ψ4 on the present flux. The waves also carry away angular

momentum. In Cartesian coordinates the expressions for the angular momentum

flux in terms of ψ4 for J̇x and J̇y use derivative operators that account for the

spin weight of gravitational waves. Because the simulations for this dissertation
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only involve angular momentum flux in the z direction, I include the much simpler

definition of J̇z,

dJz

dt
= − lim

r→∞

r2

16π
-

{∮ (∫ t

−∞

ψ∗
4dt′

)
∂φ

(∫ t

−∞

∫ t′

−∞

ψ∗
4dt′′dt′

)

dΩ

}

. (1.65)

∂φ is the partial derivative with respect to the azimuthal coordinate of spherical polar

coordinates. The flux only includes the real portion of the integrated expression.

1.4.2 Error

Numerical relativity simulations provide approximate solutions to Einstein’s

equations, and therefore the results inevitably include error. To assess the quality

of the results, we must estimate the magnitude of the error. To improve our simula-

tions, we need to understand the sources of the error. This is particularly important

for the discussion of moving patches in Chapter 4.

1.4.2.1 Error Sources

For any application of numerical analysis, different types of error result from

the representations of the numbers, the expressions, and the equations, as well as

the implementation of the numerical methods. Round-off error that results from

representing real numbers in the finite memory found in digital computers is the

most fundamental error source in the implementation of numerical analysis methods.

While rational numbers can be stored as two real numbers, irrational numbers must

be maintained symbolically, which is highly impractical, or truncated eventually.

Beyond this, digital computers are nearly exclusively binary, which means that

47



only integer powers of two can be represented exactly. Such fundamental issues of

numerical analysis are beyond the scope of this dissertation, so I mention them only.

Discretization error occurs when a continuous problem is replaced by a discrete

problem that approximates it (discretization), since the solution of the discrete

problem does not solve the original continuous problem. For example, a differential

equation y′ = f(x) could be changed into the algebraic equation D[y(xi)] = f(xi) for

the points xi of a grid by replacing the derivative of y by a finite-difference operator D

and evaluating f at the grid points, but the solution y(xi) of the algebraic equation

would generally not be a solution of the original differential equation, though it

might approach it as the grid resolution increases, since f is evaluated at a finite

number of discrete points.

When a function, operator, or procedure is approximated by a smaller number

of iterations or terms, the difference between the original quantity and the approx-

imation is the truncation error. Returning to the example of a finite differencing,

a finite difference operator approximates the derivative of a function using Taylor

polynomials of the function. In this case, the truncation error results from trun-

cating the Taylor series of the function. For spectral methods, truncation errors

result from the finite number of basis functions used to represent the fields. In our

finite difference simulations, several error sources originate from truncation errors.

These include finite differencing, RK4 integration, and interpolation by paramesh

and hahndol. As discussed previously, the truncation errors from finite differenc-

ing and both interpolators are sixth-order in the grid resolution, while the RK4

integrator is fourth-order in the timestep.
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The other major type of error is errors that result directly from the physical

model, both in the assumptions and the implementation of it. An example of this

“nonphysical error” is the radiative boundary condition. It is an approximation of

the true physics since it assumes purely outgoing radiation in all the fields at the grid

boundary, and it does not satisfy the constraints. Therefore it introduces error from

the outer boundary that propagates inwards. Another source of nonphysical error

is evaluating observables at finite radii. These errors occur because the observables,

such as ψ4, the ADM mass and momenta, and the radiated energy and momenta,

are defined in the limit that the observation points are infinitely far from the strong

fields (R → ∞). So all are subject to errors that scale as R −n for some positive

integer n. In fact, there may be error terms for multiple n, but in practice one

term usually dominates, and that is often the leading order term. A final example

of nonphysical error sources is dissipation. As discussed above, artificial dissipation

introduces error that is higher-order in the grid spacing. In addition, the simulation

grid produces dissipation that results in nonphysical error. The amplitude of waves

propagating on the grid diminishes because of the finite resolution. The reduction

depends on the wavelength, with shorter wavelengths reduced more down to the

Nyquist limit, twice the grid spacing, below which shorter wavelengths cannot be

resolved on the grid. In terms of frequency, the Nyquist limit is an effective low-

pass filter. Because this differential dissipation of the radiation is nonphysical, it

introduces error to the simulation.
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1.4.2.2 Convergence Testing

In a numerical simulation of a quantity ϕ, convergence is the approach of the

computed value f to the true value ϕ. A simulation using discrete time steps or a

spatial grid of discrete points is convergent if

fa − ϕ = εha
n (1.66)

for a constant ε, where ha is the discretization parameter, the time step or grid

spacing, and n is the order of convergence. A larger value of n indicates more rapid

convergence and therefore a more accurate simulation. When both time and space

are discrete, the simulation has separate orders of convergence in time and in space.

Eq. (1.66) provides a definition of convergence for a simulation. It does not

describe the error sources present in the simulation. A particular contribution to

the simulation error may be comprised of terms of different orders. For example, the

finite difference stencils result from eliminating lower-order terms from the Taylor

expansion at a point by combining field values in the neighborhood of the point.

In the case of the hahndol sixth-order approximations of the first derivatives,

the linear combination eliminates the f
′′

through f (6) terms. While the lowest-order

error term is sixth-order, higher-order terms do contribute to the error. Usually these

terms are insignificant, but if the resolution is too coarse, the higher-order terms

become larger than the leading-order terms, and the convergence order increases.

Therefore over-convergence often indicates under-resolved phenomena.

In general, different error sources scale with resolution at different orders, and

so while each error source may have a clear convergence order determined by the
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methodology, the aggregate convergence depends on the relative sizes of the different

error terms, the ε coefficients in Eq. (1.66) for the various error sources. It is possible

that higher-order error sources can dominate lower-order sources, and we find this

is the case for the finite difference and integration errors in hahndol simulations.

The sixth-order finite difference errors are much larger than the fourth-order RK4

errors.9 As in the case of individual error contributions, the aggregate convergence

also varies when the resolution becomes too coarse.

For these reasons, we analyze the convergence of various quantities in our

simulations to assess the quality of the simulation and to evaluate if the resolution

is sufficient. While we could use the highest resolutions possible, efficiency demands

we use resolutions where the various error sources are comparable in size. Also, if

the error is dominated by terms of a specific order, and we determine that order, we

can estimate the absolute size of errors.

In general, the true value ϕ and the constant ε, are not known in advance,

so Eq. (1.66) is not directly useful, but if we have results from three resolutions,

we can determine the order of convergence using Eq. (1.66) at the three resolutions

(three-point convergence). After differencing the three resolutions of Eq. (1.66) in

two pairs, forming the ratio of the differences and solving for one of the differences

we have

|fa − fb| =

∣∣∣∣
ha

n − hb
n

hb
n − hc

n

∣∣∣∣ |fb − fc| , (1.67)

9Though the integration occurs in time and the differencing occurs in space, the timesteps scale

with the spatial resolution in our simulations. Since the scaling factor is the same for simulations

at different resolutions, the two errors sources affect convergence in both time and space.
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where [a, b, c] label the resolutions. The value of n for which Eq. (1.67) is true

is the order of convergence. Three-point convergence tests are often used to assess

quantities derived from the evolved fields, such as the real and imaginary components

or phase and amplitude of ψ4.

Convergence testing is based the suggestion by Richardson [91] that a finite-

difference solution for a quantity ϕ can be expressed as an expansion in the dis-

cretization parameter. Following Richardson’s suggestion, we can estimate the error

of a simulation based on the results from multiple resolutions. In the case where ϕ

is unknown, we perform a three-point convergence test using Eq. (1.67). If the test

shows that nth-order terms dominate the error, we difference Eq. (1.66) for two of

the resolutions, and solve for the error term coefficient ε,

ε =
fa − fb

hn
a − hn

b

, (1.68)

and the error estimate is εhn
c for the results from resolution hc, which could be ha,

hb, or a third resolution. We can use a similar procedure to estimate ϕ. Collectively,

these estimation procedures are known as Richardson extrapolation. It can be used

for any quantity for which the error is given by a power series in some parameter.

1.4.2.3 Constraint Violations

Though for many quantities ϕ is not known a priori, we know that the evolved

fields should satisfy the constraint equations in the continuum limit. Therefore we

define constraints

CH ≡ R + K2 − KijK
ij − 16πρ , (1.69)
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and

CM i ≡ Dj(K
ij − gijK) − 8πji , (1.70)

from the Hamiltonian constraint equation and the momentum constraint equations,

Eqs. (1.2) and (1.3). Nonzero values of the constraints are constraint violations, and

they quantify the departure of a solution from the physics, a measure of error.

Since ideally the constraint violations are zero, we know the true value, and

we can perform two-point convergence tests of the constraint violations using two

different resolutions. to determine the order of convergence (two-point convergence).

Substituting CH or CM i at two different resolutions for fa in Eq. (1.66), forming the

ratio of the resulting equations, and solving for the results at one resolution, we

have

Ca =

(
ha

hb

)n

Cb , (1.71)

where Ca represents the constraint at resolution a. Again, the order of convergence

is the value of n for which Eq. (1.71) is true.

1.4.2.4 Norms

To assess constraint violations in simulations of three-dimensional data in time,

it is simpler to reduce a constraint violation at each time to a single datum using

norms. For a function ϕ approximated numerically by f in a simulation, we define
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three norms

fL1(t) ≡
1

N

N∑

i=1

|fi(t) − ϕ(t)| , (1.72)

fL2(t) ≡

[
1

N

N∑

i=1

(fi(t) − ϕ(t))2

] 1
2

, (1.73)

and

fL inf(t) ≡
N

max
i=1

|fi(t) − ϕ(t)| , (1.74)

where in each case i labels the grid points of which there are N. Eq. (1.72) is the

mean average of absolute error, while Eq. (1.73) is a norm sensitive to regions of

larger error due to its root-mean-square form. Eq. (1.74) provides a ceiling on the

absolute error. While these norms can be computed for any quantity ϕ, most often

we use them for constraint violations, where ϕ = 0.

1.4.2.5 Puncture Track Angular Momentum

Finally, I present here a diagnostic related to Newtonian angular momentum

that I developed for the moving patches technique, since it is not specific to moving

patches, and it can be useful for simulations in general. I will discuss results of this

error measure in Chapter 4.

Early in a binary simulation, any eccentricity in the system produces oscil-

lations in the orbital frequency that dominate the secular frequency evolution and

complicate comparisons of frequency across resolutions. This eccentricity results

from angular momentum that exceeds the angular momentum of a quasi-circular

orbit at the binary’s separation. In the Newtonian limit, the oscillations in the
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orbital frequency from eccentricity remain, but the angular momentum does not os-

cillate since it is conserved. This suggests that angular momentum would be a better

diagnostic of the system’s dynamics. So from the puncture tracks I define a quantity

3PT ≡ r2ω which is the Newtonian orbital angular momentum of a unit mass in a

circular orbit. The virtues of 3PT are that we can calculate it from the puncture

tracks and that it is not affected by eccentricity in the Newtonian limit. We can use

it to estimate the relative accuracy of the orbital angular momentum L from dif-

ferent simulations. To better connect 3PT to L, I will include 1PN post-Newtonian

effects using (2.9b) from [62],

LPN = LN

{
1

2
v2(1 − 3η) + (3 + η)

m

r

}
, (1.75)

where LN is the Newtonian angular momentum, v is the velocity in the reduced

system, r is the separation in the reduced system, and η is the symmetric mass ratio

given by Eq. (1.49).

So the modified error measure, which I call the puncture track angular mo-

mentum to avoid confusion, is

LPT = LN + LPN . (1.76)

Note that I have not included spin-orbit corrections, since I originally this diagnostic

for systems in which the total spin is 0. In the future the definition could be extended

to include spin. I will discuss the behavior of LPT in Chapter 4 and use it to evaluate

the moving patches technique.

55



Chapter 2

A Simple Interpretation of Phase Evolution in Nonspinning

Black-Hole Binary Mergers

The material in this chapter was published in [11] in 2008, including work

by me in collaboration with the NASA Goddard Numerical Relativity group. This

chapter summarizes the results of the original article emphasizing the portions to

which I contributed significantly.

2.1 Overview

Non-eccentric black hole binaries are described by seven parameters: the mass

ratio of the black holes and the three spin components of each black hole. We ex-

pect vanishing eccentricity for astrophysical black hole binaries, due to radiation

of angular momentum, by the time they reach the separations found in numerical

relativity simulations. The first successful simulations of the inspiral, merger, and

ringdown of a black hole binary [29, 90, 34, 14, 13] involved equal mass black holes

with no spins. Several investigations of the accuracy of the equal-mass waveforms

and applications of the waveforms to data analysis followed [12, 30, 16, 17, 25]. At

this point the numerical relativity community began to investigate more general

parameter sets for black hole mergers, beginning with unequal-mass binaries. The

NASA Goddard Numerical Relativity group, to which I belong, made an early con-
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tribution to the investigation of such mergers and the influence of mass ratio on

the waveforms produced by them [11]. We showed an underlying simplicity that

dominates the waveforms, despite the complexity and nonlinearity of the system

of equations describing the binaries, and how the waveforms varied with mass ra-

tio. That simplicity suggests a heuristic description of the binaries’ dynamics, the

implicit rotating source or IRS model.

We performed a series of simulations of nonspinning black hole binary mergers

for four different values of the mass ratio q: 1, 2, 4, and 6. Each simulation is labeled

with the mass ratio as q : 1. All of the simulations included at least four orbits of

inspiral before merger. We find excellent agreement in the “rotational phase” as

calculated from the strain-rate for different modes in the q = 4 case and across

mass ratios. This agreement suggests an implicit rotating source that generates the

waveforms. Einstein’s equations are coupled, nonlinear, partial differential equations

describing the metric, a four-dimensional continuous tensor field. However, for much

of the inspiral, a nonspinning black hole binary approximates a rigid rotator of slowly

decreasing length. The strong curvature of the physical fields is sufficiently localized

that in the wave zone, the IRS approximation describes the dynamics well. Note that

this is even simpler than the post-Newtonian description. Because of the equality of

the 3 = m quasinormal modes, the IRS heuristic description holds through merger

and ringdown.

For a well-separated black hole binary with small velocities, post-Newtonian

analysis approximates the binary as a pair of point particles. In this case the weak

field is a perturbation to flat space, so in fact, in the post-Newtonian analysis, the
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gravitational radiation in the wave zone behaves as if there were a simple two-particle

system in the source region. Taking this a step further, from the gravitational

radiation we can infer a single quasi-stationary rotating massive body which we call

an implicit rotating source or IRS. The mass distribution generates gravitational

radiation from the quadrupole and higher moments as they rotate. In the post-

Newtonian analysis, the (3, m) modes of the radiation have frequencies mΩ to at least

2PN order, where Ω is a common shared frequency that describes the rotation of the

IRS as a whole. Ω is proportional to the symmetric mass ratio η (Eq. (1.49)). The

modes correspond to the source moments, and so from the radiation, it appears that

the moments rotate synchronously, and on orbital timescales, the IRS behaves as a

rigid rotator. It is quasi-stationary because the separation of the binary decreases as

it radiates energy, so the IRS is more accurately a rigid rotator of slowly decreasing

length.

The IRS goes beyond an ad hoc description. It provides a uniform physical

description from inspiral to ringdown. Building on the qualitative description of

the source during inspiral, we introduce an analytic model for the phase evolution

of the waveforms through merger, based on a continuous, monotonically increasing

rotational frequency. We find that, with appropriate scaling, the peak rate of change

of waveform frequency is the same across 3 = m modes and across mass ratios.

Based on this model, we establish a relationship between frequency and amplitude

evolution. Finally we use this extended IRS model in an analytic waveform model

based on the pseudo-4PN (p4PN) EOB model [32]. Though my focus will be on the

IRS phase model, I include the results built on it because of their importance and
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to establish the relevance of the phase description.

2.2 Simulations

The simulations were run with hahndol, starting with puncture initial data.

For the initial data, the constraints were solved using amrmg, a multi-grid ellipti-

cal solver that produces second-order error [28]. Though this is a lower convergence

order than the time integration and finite differencing, the magnitude of the error is

much smaller for amrmg than for the other two sources, so the convergence order of

the simulation is determined by the evolution operations. The initial momenta for

the punctures were determined according to Kidder [62], a 2PN estimate. The evo-

lutions used the moving puncture approach. The conventional BSSNOK variables

were evolved, except that e−2φ was evolved in place of φ itself. This quantity goes to

0 at the punctures, which eliminates a source of singularities and therefore instabil-

ities in the simulations. The simulations used the 1+log lapse and Gamma-freezing

gauge conditions suggested by [104], the constraint damping terms suggested by [42],

and the dissipation terms suggested by [64, 59]. The simulation grids were adap-

tively refined by paramesh, based on a criterion that the product of the square

root of the Coulomb scalar [20, 33] and the grid spacing remain roughly constant.

These simulations used fifth-order interpolation at the refinement boundaries on the

grid. Spatial derivatives were evaluated with sixth-order finite differencing except

for advection terms which used second-order lopsided upwinding.

Table 2.1 shows the initial parameters for the simulations. For convenience, I
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will refer to the simulations by a nominal mass ratio, the target mass ratio in the

initial data. In the simulations, the finest grid spacing varied from M/32 to 3M/224,

as shown in the table. For the 4:1 case, the simulations were run at three different

resolutions to provide convergence testing, so I will refer to the 4:1 simulations by

the resolutions, coarse (3M/160), medium (M/64 = 3M/192), and fine (3M/224).

The separations were chosen to produce at least five orbits before merger. The

simulations were scaled by the total mass, so for a given total mass scaling of a

simulation, the effective resolution for the smaller black hole was equal to the mass

ratio, and so larger mass ratios required higher resolutions. The outer boundaries

were placed 1000M or more from the punctures to prevent outer boundary noise

from propagating to the wave zone during the necessary durations of the simulations.

Table 2.2 lists initial masses and angular momentum for each simulation. In

addition to MADM, the total energy of the initial data, the table includes two different

calculations of the infinite-separation mass of the system, the total mass of the black

holes if they were infinitely far apart. The first is the sum of the apparent horizon

masses, which were calculated by ahfinderdirect [103]. The second infinite-

separation mass is calculated from MADM and the binding energy Eb of the binary

according to

Mrest = MADM − Eb . (2.1)

The binding energy, which is negative, is an effective-one-body [31] post-Newtonian

calculation based on the initial angular momentum J0. All the simulations use the

first infinite-separation mass (MAH) as the mass scale, except the 1:1 simulation,
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mass ratio hf m1,p m2,p r0 P0 η

1:1 M/32 0.4872 0.4872 10.800 0.09118 0.2500

2:1 3M/160 0.3202 0.6504 8.865 0.09330 0.2228

4:1 3M/224 0.1890 0.7900 8.470 0.06957 0.1601

M/64 0.1890 0.7900 8.470 0.06957 0.1601

3M/160 0.1890 0.7900 8.470 0.06957 0.1601

6:1 M/64 0.1338 0.8490 8.003 0.05559 0.1226

Table 2.1: Physical and numerical parameters of the initial data for all the runs presented.

m1,p and m2,p are the puncture masses of the two pre-merger holes. r0 and P0 are the

initial coordinate separation and (transverse) linear momentum, respectively. hf is the

spatial resolution of the highest refinement level for each run. Finally, η is the resulting

symmetric mass ratio, as determined from the two holes’ horizon masses.
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mass ratio hf J2
0 MADM MAH Mrest

1:1 M/32 0.9847 0.9907 — 1.0005

2:1 3M/160 0.8271 0.9889 0.9989 0.9990

4:1 3M/224 0.5893 0.9929 1.0003 1.0004

M/64 0.5893 0.9929 1.0003 1.0004

3M/160 0.5893 0.9930 1.0003 1.0005

6:1 M/64 0.4449 0.9942 1.0000 1.0001

Table 2.2: Masses and angular momenta. J0 is the total initial orbital angular momentum.

MADM is the total energy of the initial data. The total, infinite-separation mass M of the

system is measured in two ways – MAH, the sum of the initial (apparent) horizon masses

of the two holes, and Mrest, the sum of the ADM energy and the binding energy from

effective-one-body theory [31].

which was run before ahfinderdirect was implemented in hahndol and therefore

uses the second infinite-separation mass (Mrest).

2.3 Rotational Phase

From the gravitational radiation, we can calculate the rotational phase of an

implied source responsible for the radiation. Post-Newtonian analysis and gravita-

tional wave observation conventionally describe the radiation in terms of the strain.

As explained in Chapter 1, spin-weighted spherical harmonics provide an excellent

basis in which to decompose the strain h(t, .r). We can isolate the azimuthal varia-
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tion by writing the components as

Rh!m(t) =






H!meimΦ(h)
!m (t) (m > 0)

H!meimΦ(h)
!m (t) (−1)! (m < 0)

. (2.2)

The form of Eq. (2.2) reflects the circular polarization of the radiation. The radial

dependence is approximately removed by the leading R which represents the coor-

dinate radius at which the radiation is observed. The oscillatory time variation is

contained in the rotational phase function Φh
!m(t), which is a rescaling of the tradi-

tional phase description of h in anticipation of the implied source. The h superscript

indicates that the phase originates from the strain. For each (3, m) mode, we con-

sider an implied source multipole that generates the radiation mode as that source

rotates. The source rotational phase Φh
!m(t) produces the radiation phase mΦh

!m(t)

due to the m-fold symmetry of the multipole. In the post-Newtonian analysis is

valid, Φh
!m(t) agrees with the orbital phase of the system up to 2PN order, so during

the inspiral where the post-Newtonian approximation is valid, the rotational phase

should coincide with the orbital phase for any (3, m) mode. The remaining time

variation is represented by the H!m(t), a slowly varying function of time during the

inspiral. H!m represents the magnitude of the implied (3, m) source multipole. The

additional factor of (−1)! for m < 0 maintains the connection between the rotational

phase and the phase of the (3, m) waveform component.

Now consider the strain-rate defined as ḣ ≡ dh/dt. Because hahndol cal-

culates ψ4 directly from the evolved fields, the strain-rate allows computation of

the rotational phase from simulation results more directly. Calculating h from ψ4
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requires two time integrations, and for both of these an integration constant must

be set, which introduces additional assumptions. As in the case of the strain, the

strain-rate can be decomposed as

Rḣ!m(t) =






i A!meimΦ!m(t) (m > 0)

−i A!meimΦ!m(t) (−1)! (m < 0)

. (2.3)

The decomposition is analogous to Eq. (2.2), except that i is explicitly factored

out and Φ is not superscripted. The initial i corresponds to either an additional

factoring of the secular amplitude factor or a phase shift in the complex exponential.

In what follows, Φ!m is always the rotational phase calculated from the strain-rate,

so there is no need for a superscript. A direct differentiation of Eq. (2.2) produces

a similar expression and shows why Eq. (2.3) factored out the i. It was anticipating

the time differentiation. Comparing the two

A!meimΦ!m(t) =

[

|m|Φ̇(h)
!m(t) − i

Ḣ!m

H!m

]

H!meimΦ(h)
!m (t) (2.4)

for m > 0. The m < 0 case is identical except for a complex conjugation of

the bracketed expression. Because the secular change in H!m is so much smaller

than the variation from rotation, we can ignore the second term in the brackets.

A!m ∼ |m|H!mΦ̇(h)
!m holds up to 5PN order, and Φ!m = Φ(h)

!m up to 2.5PN order. So

we can determine the IRS rotational phase from strain-rate rather than the strain,

up to 2.5PN order.

If we decompose the strain-rate in a more conventional manner,

Rḣ!m(t) = V!m(t)eiϕ!m(t) , (2.5)
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set it equal to Eq. (2.3), and solve for Φ!m we find

Φ!m(t) =






1
m

(
ϕ!m(t) − π

2 + 2πn!m

)
(m > 0)

1
m

(
ϕ!m(t) + π

2 + 2πn!m + 3π
)

(m < 0)

, (2.6)

where n is an integer. The π
2 difference between the strain and the strain-rate

produces the π
2 term, and the (−1)! factor in the strain decomposition Eq. (2.2)

produces the 3π factor.

The origin of the 2πn!m term is less obvious. It may seem like a trivial phase

shift to the strain-rate, but identifying it was the crucial insight that allowed me to

compare the rotational phases. When the Bowen-York initial data has propagated

past the wave zone and the strain-rate amplitude is large enough to accurately

compute the phase, we start computing the accumulated phase in the strain-rate

modes. The initial phase has a 2π ambiguity, so adding a multiple of 2π would

seem to have no impact, but if it is not an integer multiple of 2πm, it results in

a nontrivial change in the rotational phase, a different orientation of the system,

when the phase is divided by m, as it is in Eq. (2.6). Therefore, to compare the

accumulated rotational phases computed from the different strain-rate modes, we

choose n!m so that the modes are consistent in the orientation.

There are m distinct values of the rotational phases that produce the same

value for the ḣ!m phase, even after eliminating trivial shifts. To eliminate the m-fold

phase degeneracy of the (3, m) mode, we compare it to the (3′m′) mode, where m and

m′ are relatively prime, and choose the smallest n!m that minimizes |Φ!m −Φ(!′m′)|,

the difference in the rotational phases determined from the two modes. Since the
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amplitude of the (2, 2) mode is larger than all other 3 > 0 modes, we expect it

to have the smallest relative error. So we compare it to another large amplitude

mode that is relatively prime in m and determine n22 as explained above. Then we

compare all other modes to (2, 2) to determine the remaining n!m values. Choosing

the n!m to minimize the rotational phase differences may seem arbitrary, but in

fact after the degeneracy is eliminated, it is no more arbitrary than omitting the

full-cycle phase shift terms.

2.4 Similarity of Phase Across Modes

For a simulation, agreement in the rotational phases calculated from different

modes suggests that the implicit multipoles rotate coherently, which is what we

would expect if the multipole moments described a rigid rotator. Conversely, if the

radiation were due to a rigid rotator source, we would expect that the phase of a

particular (3, m) mode would be mΦ, where Φ is the rotational phase of the rotator.

In the 4:1 case, the rotational phase Φ!m computed from different 3 = m modes

agrees to within π/60 as seen in the left panel of Fig. 2.1 which shows the rotational

phase from several different modes extracted at R = 45M . The Φlm are aligned

using the n!m procedure described above. The time axis has been shifted so that

the peak of Ė occurs at t = 0. The plot also includes Φ21 and Φ32, as well as the

phase of the punctures’ separation vector. The puncture phase tracks the 3 = m

rotational phases’ evolutions well, while Φ21 and Φ32 both have noticeable offsets

and different slopes than the 3 = m phases. The right panel of Fig. 2.1 shows
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the differences of the phases in the left panel from Φ22, and here the deviations

of the (2, 1) and (3, 2) modes are more clear, as is a phase shift of ∼ 0.2 in the

puncture phase. The (2, 1) strain-rate has the longest wavelength of the modes

shown, and since the wavelength of the mode sets the scale for finite R effects,

it is not surprising that the (2, 1) mode shows the impact of the finite extraction

radius more than the other modes since its effective extraction radius is smaller by a

factor of at least 2 compared to the other modes. To improve the phase calculation

for the 3 /= m modes, the right panel includes Richardson extrapolations of these

modes (indicated by *) which I performed using the waveforms extracted from the

R = 45M and R = 90M extraction radii. (see Eq. (1.68)) The extrapolated phases

are consistent with the other phases until approximately 50M before t = 0.

2.5 Phase Comparison Across Mass Ratios

Since we have seen the consistency of the rotational phase computed from

different modes in the 4:1 case, I will consider only the (2, 2) component in comparing

the rotational phase across mass ratios. Post-Newtonian analysis suggests that the

natural scale for time in such a comparison is the chirp mass M ≡ Mη3/5, rather

than the total mass M . That is, to the leading order post-Newtonian term, the

rotational phases of the different mass ratios should be the same when time is

divided by the chirp mass. Using this time scaling, Fig. 2.2 shows that comparison.

The rotational phase is again computed using Eq. (2.6). In addition to scaling time

by the chirp mass, the time and phase have been shifted such that at t = 0, the chirp
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Figure 2.1: Rotational phase Φ!m calculated from puncture tracks and strain-rate modes

extracted at 45 M for the 4:1 mass ratio case. The rotational phase is computed from

each mode using Eq. (2.6) and from the angle of the vector connecting the two punctures,

which remain in the x-y plane. The phase curves are aligned in time so that the peak of

Ė occurs at t = 0 for all curves. The left panel compares the different calculations of Φ!m,

while the right panel compares the differences between the phases and the rotational phase

from the (2,2) mode. In the right panel, we add Richardson extrapolations of the (2,1)

and (3,2) modes based on the 45 M and 90 M extractions of these modes and assuming

an R−2 error. The Richardson extrapolations are distinguished by asterisks in the figure.

The differences are smoothed to better show the trends.
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Figure 2.2: Rotational phase Φ22 for different mass ratios derived from ḣ22. The curves

are time shifted so that the chirp frequencies Ω22M = Φ̇22M are equal at t = 0.

frequency ωchirp is 0.033 and the rotational phase Φ is 0. The chirp frequency is the

rotational frequency multiplied by the chirp mass. (This is the appropriate rescaling

of frequency since frequency has dimensions of inverse time. If time is divided by

chirp mass, frequency should be multiplied by chirp mass to maintain consistency.)

As expected the rotational phases from the different mass ratios are close for several

hundred M approaching merger. The agreement continues for several hundred M

before and after t = 0, so the leading-order post-Newtonian approximation provides

a rough approximation even through the merger.
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2.6 IRS Interpretation of Phase Evolution

We have looked at simulations of black hole binaries for mass ratios between

1:1 and 6:1. In particular we have focused on the phase evolution leading up to

merger. We find that for a single mass ratio (4:1), different (3, m) modes of the

strain-rate show very close agreement up to merger, when the modes’ phases are

scaled by their m values, the azimuthal index of the mode. This agreement suggests

an underlying rotational phase in the system, as if the radiation originates from a

rigid rotator (IRS) that decreases in length on orbital time scales. The fields ap-

pear to be strongly tied to the black hole point sources, and apparent structural

integrity of the IRS continues through merger. In this heuristic description, the

synchronous source multipoles describing the mass distribution of the rigid rotator

generate the strain-rate modes as the IRS rotates according to the multipoles’ az-

imuthal symmetries. The dominant (2, 2) mode oscillates at twice the rotational

frequency because of a π-symmetric mass distribution rotating at the rotational fre-

quency, the (3, 3) mode that appears for unequal-mass binaries oscillates at three

times the rotational frequency because of a 2π/3-symmetric mass distribution rotat-

ing at the rotational frequency, and in general, the (3, m) mode oscillates at m times

the rotational frequency because a 2π/m-symmetric mass distribution rotating at

the rotational frequency. A similar phase agreement occurs within the modes of the

other mass ratios. Also, the phases of the (2, 2) modes of each of the mass ratios

agree closely when time is scaled by the chirp mass as suggested by post-Newtonian

analysis, which predicts that the phase scales as the symmetric mass ratio to the

70



5
3 power for early times. This phase agreement continues up through merger, well

past the regime for post-Newtonian approximations.

In the original article [11], we extend the IRS model through merger with a

quantitative model of frequency evolution in the transition from inspiral to ringdown,

based on the source model explained in this chapter. The source rotational frequency

is given by

g(t) = Ωi + (Ωf − Ωi)

(
1 + tanh[ln

√
κ + (t − t0)/b]

2

)κ

. (2.7)

The form of g(t) provides exponential growth from an initial frequency Ωi, followed

by a transition to an exponential decay to the final frequency Ωf , which we identify

with the fundamental quasinormal-ringing frequency by Ωf ≡ ωQNM/m, with m

the azimuthal index of a (3, m) mode. This is possible because of the approximate

equality of the 3 = m fundamental quasi-normal-ringing frequencies when scaled in

this manner. Then the re-parameterization

Ωi ≡ Ωf − 1
2bΩ̇0

(
1 +

1

κ

)1+κ

, (2.8)

connects the model explicitly with the “chirping” leading up to the peak of radiation

which marks the merger. With this substitution, the chirp rate ġ, the rate of change

of the frequency, peaks at Ω̇0 at time t0. Ωf , Ω̇0, and t0, along with κ and b, which

characterize the time scales for the exponential growth and decay, constitute the

model parameters.

Fitting g(t) to the data for strain-rate mode data via the parameters yields

agreement between the model and the data to within a few percent after t = −20,

for the (2, 2) mode of each mass ratio. The agreement is similar for the significant
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(3, m) modes of the 4:1 case, excluding the (3, 2) mode. While this mode may

be subject to an incorrect measurement procedure,1 and therefore, is not a good

reflection of the model accuracy, we do not claim that the model is valid for 3 /= m

modes. Also we find that Ω̇0Mf/Ωf ∼ 0.02 within the fit uncertainties, for all 3 = m

modes. The peak chirp rate is consistent across these modes when scaled by the final

frequency and mass, which provide natural scaling magnitudes since the chirp rate,

the instantaneous time rate of change of the frequency, reflects both the frequency

the mode is approaching and the time scale for observing the changes.

This frequency model, based on the IRS description, can be used through

merger and into the ringdown phase. Combined with an approximate relationship

between the amplitudes and frequencies of the waveform modes, which was estab-

lished in the original article [11], the frequency model provides a variation of the

p4PN EOB model found in [32]. Rather than match the inspiral p4PN waveform

to a superposition of the fundamental ringdown mode and a few overtones weighted

for continuity with the inspiral waveform, we can match the p4PN waveform to the

waveform derived from the IRS frequency model. As discussed in the original article,

this p4PN variation matches the numerical results from the nonspinning simulations

well, with an accuracy similar to that of the original p4PN EOB.

1The (3, 2) mode is subject to coupling with the much stronger (2, 2) mode, and therefore

it is sensitive to the surface used to measure the radiation. We use coordinate spheres for the

measurements, which are distorted from the areal-radius spheres required for greater accuracy. As

a result, the measured (3, 2) mode may mix the fundamental (2, 2) and (3, 2) quasinormal-ringing

frequencies.
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The IRS heuristic model provides a simple but accurate description of the

dynamics of nonspinning black hole mergers that offers both direct predictions of

the waveforms from such mergers and comparisons for subsequent simulations. In

particular, the IRS-EOB model has been used in studies of parameter estimation

by LISA [76] and the detectability and mass ratio degeneracy for observations of

moderate mass ratio black-hole binaries [76]. Also, later investigations of unequal-

mass mergers have confirmed our results, such as the importance of 3 > 2 radiation

modes for gravitational wave data analysis [46]. Finally, the generality of the IRS

description could be evaluated in simulations involving spin. For non-precessing sys-

tems, where the spins are aligned or antialigned with the orbital angular momentum

vector, the dynamics are similar to the nonspinning case, as shown in [36], and we

may reasonably anticipate a similar interpretation of the radiation.
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Chapter 3

Kicks Due to Mass Ratio and Spin in Head-On Black-Hole Binary

Mergers

The material in this chapter was published in [39] in 2007, including work

by me in collaboration with the NASA Goddard Numerical Relativity group. Dale

Choi initiated the research, but Bernard Kelly and I were responsible for most of the

simulations, as well as the analysis, with our coauthors. This chapter summarizes

the results of the original article, emphasizing the portions to which I contributed

significantly. These results were submitted for publication and made public on

arxiv.org, following successful simulations of merger kicks due to the effects of

unequal masses and spin, separately, but before inspiral simulations demonstrating

kicks due to the combined effect of unequal masses and spin. Therefore, they served

as an important transition from the original full-GR studies of kicks to the later,

more comprehensive kick studies.

3.1 Introduction

The gravitational radiation emitted by the inspirals of black hole binaries

carries energy, angular momentum, and linear momentum. This radiation is emitted

asymmetrically when the masses are not equal and when the black holes have spins.

When the radiation emission is asymmetrical, the total linear momentum of the
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radiation is not zero, and so conservation of linear momentum requires that the

binary must have an equal and opposite total linear momentum. During the inspiral

phase, the direction of the radiation asymmetry changes as the black holes orbit

each other, and over the course of a full orbit of the binary, the net momentum

flux in the radiation is near zero. At merger the radiation bursts in a time that is

very small compared to the orbital period, and there is a resulting net momentum

flux, and so the black hole formed in the merger has a net linear momentum, a

recoil “kick”. Such recoils can significantly alter the subsequent development of

astrophysical black holes, such as supermassive black holes in merged galaxies [77,

24, 51, 75, 110, 107, 66, 78] and intermediate-mass black holes in dense stellar clusters

[81, 80, 83, 79, 49, 50, 87].

Since the first successful simulations of a black hole binary inspiral, merger,

and ringdown in 2005 [90, 34, 14], there have been numerous studies of the kicks

produced in such simulations due to the effects of unequal masses and spins [57, 15,

47, 56, 63, 36, 35, 37, 9, 38, 45, 10, 71, 70, 105, 73]. In this chapter, I consider kicks

from head-on mergers because these systems have simpler dynamics than inspiralling

systems, and head-on mergers approximate the final plunge of a binary inspiral.

The elaborate dynamics of such inspirals complicate establishing the direction of

the final kick and its dependence on mass ratio and spin. For nonspinning head-on

mergers all motion occurs along the coordinate line defined by the initial positions

(longitudinal). Spin adds slight velocities perpendicular to this line (transverse) as

the black holes approach, but the dominant motion still occurs in initial line. In

either case, this coordinate line provides a meaningful reference for kick directions.
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Finally they provide clean tests of the leading-order post-Newtonian (PN) prediction

of orthogonality of spin and mass-ratio kicks and the scaling of spin kicks [62].

In this study of head-on mergers, we investigate the effects of mass ratio and

spin, individually and combined, on the resulting kicks. We use a mild mass ratio

of q = 2/3 and moderate spins (< 0.76) orthogonal to the black holes’ motions. In

the absence of spin, we observe modest longitudinal kicks for unequal-mass mergers,

with velocities of ∼ (2 − 5)km/s. In mergers of equal-mass holes with spin, the

observed kicks are transverse, and they roughly scale with the sum of the Kerr spin

parameters a1 + a2, with transverse velocities ∼ 15 − 30km/s. We find both types

of kick in mergers of unequal-mass black holes, with the direction of each kick type

independent of the other. In these cases, total velocities are still ∼ 15 − 30km/s

since the spin kicks are significantly larger than the mass-ratio kicks.

3.2 Initial Data

All of the simulations use puncture initial data [26]. In each case the punctures

start at rest. In the nonspinning cases, the constraints are solved exactly by Brill-

Lindquist initial data, while the cases that include spin are solved by Bowen-York

initial data. In both cases, AMRMG, a second-order-convergent multi-grid elliptic

solver [28], solves for the initial data on the grid. In all cases

aA ≡
|SA|
mA

, (3.1)
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the Kerr spin parameter.1

The initial configurations use either equal (EQ) and unequal (NE) black-hole

masses with various spins on the black holes. Table 3.1 lists the initial parameters

of the seven different cases are, while Table 3.2 provides initial derived quantities.

Lengths are scaled by the fiducial mass M (computational). The punctures are

located on the y-axis initially, with the center of mass at the coordinate origin. The

“proper separation” l of the holes measures the proper distance along the y-axis of

the closest parts of the apparent horizons. This is a convenient measure of the black

holes, but it is not necessarily the smallest physical distance between the holes in

the spatial slice, since the space-like geodesics may not lie on the coordinate axis due

to spin effects. We scale all distances such that the horizon mass of the lighter hole

m1 remains constant relative to the grid spacing. This provides a common “effective

resolution” across the simulations by maintaining a common level of resolution of

the smaller hole. With this restriction, we have attempted to maintain the same

proper separation l for the holes as well.

3.3 Methodology

Here we discuss two important parts of the methodology: calculating the

thrusts and kicks, as well as our method to reduce the error introduced by the

Bowen-York pulse. The original article includes full details of the methodology as

well as a discussion of convergence.

1Sometimes a is defined as the dimensionless Kerr spin parameter, |S|/M2 or S/M2. Here, we

use Eq. (3.1).
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Run m1,p/M m2,p/M y1/M y2/M Sz
1/M2 Sz

2/M2

EQ00 0.5000 0.5000 4.0 -4.0 0.0 0.0

NE00 0.4909 0.7478 4.8348 -3.2232 0.0 0.0

EQ+0 0.3444 0.5000 4.0 -4.0 0.2 0.0

EQ+− 0.3444 0.3444 4.0 -4.0 0.2 -0.2

NE+− 0.3436 0.7140 4.8 -3.2 0.2 -0.2

NEa+− 0.3436 0.7140 7.2 -4.8 0.2 -0.2

NEb+− 0.3436 0.5496 4.8 -3.2 0.2 -0.4486

Table 3.1: Directly specified parameters of the numerical simulations scaled by the fiducial

mass M . Sz
A is the spin (Bowen-York angular momentum) of hole A. (All spins lie on the

z-axis.) NEa+− (increased separation) and NEb+− (equal dimensionless spin parameter)

are variants of NE+−. See the text for further discussion of these simulations.
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Run m1 m2 q η a1 a2 a1/m1 a2/m2 l MADM

EQ00 0.514 0.514 1.0 0.250 0.0 0.0 0.0 0.0 12.24 1.0

NE00 0.514 0.771 0.667 0.240 0.0 0.0 0.0 0.0 12.24 1.24

EQ+0 0.516 0.514 1.004 0.250 0.389 0.0 0.758 0.0 12.24 1.0

EQ+− 0.514 0.514 1.0 0.250 0.389 0.389 0.758 0.758 12.4 ± 0.2 1.0

NE+− 0.516 0.773 0.668 0.240 0.388 0.259 0.752 0.335 12.6 ± 0.2 1.24

NEa+− 0.513 0.764 0.672 0.240 0.390 0.262 0.759 0.342 17.0 ± 0.2 1.25

NEb+− 0.516 0.784 0.658 0.239 0.388 0.572 0.752 0.730 13.0 ± 0.2 1.26

Table 3.2: Derived initial quantities scaled by the fiducial mass M . m1 is the horizon

mass of the lighter hole. q is the mass ratio defined by horizon masses. aA = |SA|/mA is

the approximate Kerr spin parameter of hole A. l is the “proper separation” of the holes.

(See the text for a discussion of this quantity.) MADM is calculated at a finite coordinate

distance from the origin (60M for all but run EQ+0), using Eq. (12) of [86]. Errors in

horizon masses m1 & m2 are ∼ 1.5%, which propagate into derived quantities q, η, a1, a2,

a1/m1, and a2/m2.
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3.3.1 Calculating Thrusts and Kicks

Because the recoil results from the emission of gravitational radiation, we

calculate the radiation momentum flux, or thrust, which is given by Eq. (1.64).

Then we integrate the thrust to calculate the total momentum radiated by the

system up to time t,

∆P i =

∫ t

t0

dt′
dP i

dt′
. (3.2)

Note that the time integration should begin at −∞ to include all previous thrust

contributions, but we must start at a finite time t0. The thrust calculation also

includes a time integration which should begin at −∞, but which we must start at

t0.

3.3.2 Bowen-York Radiation Pulses

Bowen-York black hole initial data includes extraneous radiation, the “Bowen-

York pulse”. This radiation is extraneous because it is not a result of the intended

astrophysical scenario, but also it is not error from solving the Hamiltonian con-

straint. It results from the nonphysical approximations, such as conformal flatness,

made in generating the initial data (cf. [52]). The pulse is concentrated near the

apparent horizons, and much of the extraneous radiation falls into the black holes,

producing an increase in the apparent-horizon masses of ∼ 1%. The radiation from

the pulse that does escape the black holes mixes with the physical radiation, and so

the pulse contributes to the error in the recoil kicks calculated from the radiation.

The pulse occurs immediately in the simulations, and it has a short duration, so it
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should be distinct from the astrophysical radiation.

Fig. 3.1 illustrates the Bowen-York pulse in the dominant (l = 2, m = 2)

mode of ψ4 (extracted at Rext = 30M), for the equal-mass configurations: zero-spin

(EQ00), single-spin (EQ+0) and double-spin (EQ+−). The three cases agree well in

the later “astrophysical” part of the waveform. The greatest differences occur early,

during the Bowen-York pulse. The pulse does not appear to influence the later

waveform.

By starting the time integrations in the thrust and kick calculations from a

time t0 after the Bowen-York pulse, we can minimize the error introduced by the

pulse. We estimate the duration of the pulse as 30M for the equal-mass (EQ)

simulations and 45M for the unequal-mass (NE) data. These estimates result from

treating each hole as a perturbed Kerr hole of approximately the derived mass and

spin from the initial data, and assuming that each relaxes to a Kerr black hole by

emission of quasinormal modes (QNMs). The most slowly damped mode will have

an “e-folding” time τe ≈ 12m for a hole of mass m [21], and it will have decayed by

two orders of magnitude after ∼ 55m. This serves as an upper limit on the duration

of the pulse.

3.4 Results

We study the effect of unequal masses and spin separately and then the com-

bined effect. Nonequal masses should produce a longitudinal kick, while adding
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Figure 3.1: The dominant mode (l = 2,m = 2) ψ4 extracted at coordinate distance

Rext = 30M for equal-mass configurations: EQ00 (solid/black), EQ+0 (dashed/red), and

EQ+− (dot-dashed/green).
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spin to equal-mass black holes should produce a transverse kick. (To produce equal

masses in the case where only one black hole has spin (EQ+0), we increased the

puncture mass of the second black hole.) The kicks for each simulation are listed

in Table 3.3. Because the punctures are located on the y-axis initially, ∆P y is the

longitudinal kick, and ∆P x is the transverse kick. The table includes the integration

start time t0 in each case. We estimate the kick errors by varying t0 by ±5M .

3.4.1 Kicks Due to Unequal Masses

For unequal-mass binaries without spin, the kicks are longitudinal and modest,

producing velocities of ∼ 2.7 km/s in the case of a mass ratio q = 1.5. Fig. 3.2

shows both the thrust dP y/dt (top panel) and the kick ∆P y for this case. While the

thrust varies in sign with the variation in radiation asymmetry, the resulting kick

of 1.14± 0.08 in the y direction shows the measurable net momentum flux from the

asymmetry. Because of the symmetries of the system, there are no thrusts in the

x or z directions. In dimensionful units, the kick velocity is ∼ 2.7 km/s. Fig. 3.2

includes the thrusts and kicks for four different extraction radii, and the final kicks

across radii match closely. The difference for the 30M and 40M extraction radii is

∼ 0.5%. The agreement between the 50M and 60M extraction radii is lower than

between the 40M and 50M radii. This appears to be because the 60M extraction

radius lies in a lower resolution portion of the grid. The final kicks across extraction

radii for the nonspinning mergers are listed as NE00 in Table 3.3.
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Figure 3.2: Longitudinal thrust dP y/dt (top) and kick ∆P y (bottom) for NE00 extracted

at four radii Rext: 30M , 40M(10.6M) , 50M(21.0M) and 60M(31.4M). The data are

aligned so that the highest thrust peaks coincide, consistent with time-shift formula Eq.

(14) in [43]. The necessary time shifts are listed in parentheses.
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3.4.2 Kicks Due to Spin with Equal Masses

For the equal mass cases where one or both black holes possess spin, with the

spins perpendicular to the initial infall direction, the kicks are transverse to both

the initial infall direction and the spins. With one spin (EQ+0), the velocities ∼ 15

km/s, while with two anti-aligned spins (EQ+0), the velocities ∼ 30 km/s. Fig. 3.3

includes the thrusts and resulting kicks for the two cases. Comparing them, the

EQ+− kick is roughly twice EQ+0, just as a1 + a2 is twice as large for EQ+− as for

EQ+0 . For EQ+0 the only interaction is “spin-orbit” since there is no other spin.

While “spin-spin” effects are possible in the case of two spins, the results suggest

that these effects are much smaller than the “spin-orbit” effects since the kicks scale

with the sum, rather than the product, of a1 and a2. This is consistent with PN

predictions of the interactions in which the “spin-spin” effects are higher PN order

than the “spin-orbit” effects [62]. Again, the final kicks for these cases are listed in

Table 3.3.

3.4.3 Kicks Due to Unequal Masses and Spin

When the black holes have unequal masses and spins, the kick magnitudes are

∼ 20 − 30 km/s, with the longitudinal kick magnitude 0.15 the magnitude of the

transverse kick. Again, the spins are perpendicular to the infall/kick plain, anti-

aligned, and magnitude ∼ 0.2 − 0.4M . In this case, the Bowen-York pulse and the

physical signal overlap in the transverse thrust as seen in Fig. 3.4, which includes
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Figure 3.3: Transverse thrust dP x/dt and kick ∆P x for the spinning, equal-mass cases

EQ+0 (black/solid) and EQ+− (red/dashed). The extraction radius Rext is 30M for both.
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one case with the same initial separation d used in previous cases (NE+−, d = 8)

and one case with a larger initial separation (EQ+0, d = 12). With the increased

separation, the thrust due to the Bowen-York pulse is more distinct, while the

physical thrust is very similar to the NE+− physical thrust, delayed by 22M . For

the more separated case, the physical thrust begins at approximately t = 114M at

extraction radius 60M . From this we infer that the NE+− physical thrust begins

at t = 92M which we choose as the integration start time for the NE+− kick,

t0 = 92M . In Figs. 3.5 and 3.6 we present the momentum kicks in the transverse

(x) and longitudinal (y) directions for the NE+− data set, comparing them with the

kicks seen from the NE00 and EQ+− cases before. Note that while the spin angular

momentum S on each black hole is the same for EQ+− and NE+−, the transverse

kick is actually larger for EQ+−, so the transverse kick is not a simple function of

|S1|+ |S2|. For NEb+−, the spin magnitude of the larger black hole is approximately

twice the spin magnitude of the smaller black hole, and the NEb+− transverse kick

is larger than the EQ+− and NE+− transverse kicks. Comparing NE+− and NEb+−

for which the total mass and the mass ratio are the same, we find that the transverse

kicks roughly scale with a1 + a2, as before. NE+− and NEb+− have sizable errors

because the Bowen-York pulse occurs so close to the burst in the physical radiation

which leads to uncertainty in t0. Within the kick uncertainties, the unequal-mass

cases are consistent. As before, Table 3.3 lists the kicks, both longitudinal and

transverse, for these combined cases.
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Figure 3.4: Transverse thrust dP x/dt (top) and kick ∆P x (bottom) for unequal masses and

spin, for coordinate separations 8M (NE+−; black/solid) and 12M (NEa+−; red/dashed).

NEa+− is the only case that uses a larger coordinate separation. The extraction radius

Rext is 60M in both cases.
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Figure 3.5: Transverse thrust dP x/dt (top) and kick ∆P x (bottom) for NE00 (black),

EQ+− (red), and NE+− (green), and NEb+− (blue). In all cases the extraction radius

Rext is 60M .
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3.4.4 Analysis of results

To further analyze the results in Table 3.3, we develop expectations of the

kicks due to mass ratio and black holes spins using post-Newtonian analysis. To

estimate the momentum flux and the resulting recoil kick, we adapt (3.31a-b) of [62]

to head-on mergers, yielding these expressions for the thrust

.̇PN =
16

105

δm

mT
η2

(mT

r

)4
ṙ

(
−ṙ2 +

2mT

r

)
êy , (3.3)

and

.̇PSO = −
16

15

η2ṙ2

r

(mT

r

)4
(a1 + a2)êx , (3.4)

where mT = m1 +m2, δm = m1−m2, and r is the separation of the two black holes.

ṙ < 0, so both expressions predict momentum loss due to radiation.

The relationship between black hole spins and the kicks resulting from them

in black hole mergers was uncertain before such mergers were simulated. Sums of

the magnitudes of the spin angular momenta (S), the Kerr parameters (S/m), or

the dimensionless Kerr parameters (a/m) are possible scaling factors for the kicks.

Eqs. (3.3) and (3.4) suggest that the kicks scale with a1 + a2, the sum of the Kerr

parameter magnitudes. The results of our simulations support this prediction, and

the initial parameters were chosen to test the prediction and other possible scaling

factors. The accuracy of the prediction is surprising since the radiation responsible
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Figure 3.6: Longitudinal thrust dP y/dt (top) and kick ∆P y (bottom) for NE00 (black),

EQ+− (red), and NE+− (green), and NEb+− (blue). In all cases the extraction radius

Rext is 60M
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Rext t0 ∆P x ∆P y vx vy v
(M) ×10−5(M) (km/s)

NE00

30M 51.0 0.0 1.12 ± 0.02 0.0 2.71 ± 0.05 2.71 ± 0.05
40M 61.7 0.0 1.14 ± 0.04 0.0 2.76 ± 0.10 2.76 ± 0.10
60M 82.9 0.0 1.16 ± 0.04 0.0 2.81 ± 0.10 2.81 ± 0.10

EQ+0

20M 46.1 −5.13 ± 0.04 0.0 −15.38 ± 0.12 0.0 15.38 ± 0.12
30M 56.6 −5.51 ± 0.01 0.0 −16.52 ± 0.03 0.0 16.52 ± 0.03

EQ+−

30M 59.6 −10.70 ± 0.08 0.0 −32.08 ± 0.24 0.0 32.08 ± 0.24
40M 70.0 −10.53 ± 0.09 0.0 −31.57 ± 0.27 0.0 31.57 ± 0.27
60M 90.5 −10.81 ± 0.15 0.0 −32.41 ± 0.45 0.0 32.41 ± 0.45

NE+−

40M 72.0 −8.47 ± 0.31 1.36 ± 1.10 −20.41 ± 0.75 3.28 ± 2.65 20.67 ± 0.85
60M 92.0 −8.50 ± 0.27 1.52 ± 1.36 −20.48 ± 0.67 3.66 ± 3.28 20.80 ± 0.88

NEa+−

40M 94.0 −7.89 ± 0.26 1.04 ± 0.08 −18.92 ± 0.63 2.49 ± 0.20 19.08 ± 0.63
60M 114.0 −7.89 ± 0.21 1.00 ± 0.07 −18.92 ± 0.51 2.40 ± 0.17 19.07 ± 0.51

NEb+−

40M 72.0 −12.33 ± 0.56 2.03 ± 0.64 −29.41 ± 1.34 4.84 ± 1.53 29.81 ± 1.35
60M 92.0 −12.44 ± 0.39 2.00 ± 0.55 −29.67 ± 0.93 4.77 ± 1.31 30.05 ± 0.94

Table 3.3: Final integrated momentum kicks and corresponding kick velocities. In each

case, we have removed “BY pulse” effects through deferring integration until after the

passage of the pulse. Quoted errors at each extraction radius are obtained by varying the

integration starting time by ±5M .

92



for the kicks occurs late in the merger when the post-Newtonian approximations

no longer hold. Fig. 3.7 compares transverse thrusts of the other spin runs to

EQ+−. Because the total mass mT of the black holes provides the length scale of

the system, the spin scaling factor is (a1 + a2)/mT . The thrust amplitude for each

run is scaled by its spin scaling factor relative to the EQ+− spin scaling factor. In

other words, the factor for the EQ+− transverse thrust is set to 1, and the remaining

transverse thrusts are scaled accordingly. Time is scaled by the ADM mass MADM ,

and the thrusts are aligned so the peaks coincide. With the PN-predicted scaling,

the thrust amplitudes agree within 20% and thus validate the PN prediction outside

its expected time regime.

3.5 Discussion

In this study of head-on black hole mergers, we investigated recoil kicks pro-

duced by spins and unequal masses. The spins were perpendicular to the initial

separation vector of the puncture black holes, which is analogous to spins parallel

or anti-parallel to the orbital angular momentum in inspiral mergers. A head-on

collision approximates the plunge of an inspiral merger, but it has simpler dynamics.

The infall direction is clear, which provides clear directionality for the recoil kicks

and simplifies separation of the mass ratio and spin kicks. This allows us to interpret

our results unambiguously. In our simulations the spin kicks are orthogonal to and

significantly larger than the mass ratio kicks. The thrust and kick scale with the
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Figure 3.7: Transverse thrust dP x/dt for all spinning data sets: EQ+0, EQ+−, NE+−,

NEa+−, and NEb+−. Time has been rescaled by the ADM mass for each data set, and

translated relative to EQ+− to line up peaks. Amplitudes have been scaled relative to

EQ+− according to PN predictions. These data were extracted at Rext = 30M .
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sum of the Kerr parameter magnitudes a1 + a2. These results are consistent with

leading-order PN predictions (see [62]), which predict the orthogonality of the two

types of kicks and the spin scaling. Since the PN predictions are not valid in the time

regime when the bulk of the kick-producing radiation is emitted, this consistency is

surprising. In the PN analysis the mass ratio kick results from coupling of the mass-

quadrupole and mass-octupole moments, while the spin kick results from coupling

of the mass-quadrupole and current-quadrupole moments. Spin does not contribute

to the mass-octupole, and to leading-order, it does not contribute to the mass-

quadrupole. This is validated by the mass-quadrupole-dominated (l = 2, m = 2)

waveforms of the equal-mass cases (EQ00, EQ+0, and EQ+−) in Fig.3.1. The three

cases are indistinguishable after the initial Bowen-York pulses, despite the presence

of spins in later cases.

The head-on kick study provides a transition from mass ratio kick investiga-

tions to more extensive investigations of combined kicks. The head-on collisions

allow us to directly separate the spin kick from the mass ratio kick rather than

determining the angle separating the kick contributions by fitting the data, which is

necessary in the case of inspirals. Therefore, the head-on kick study provides clear

validation of PN expressions (as in [62]) to predict the spin scaling of kicks in the

orbital plane (“in-plane kicks”).

Exploration of kicks has progressed since the present results were published,

as numerical relativity simulations have encompassed larger mass ratios (with 100:1

results published recently [72]) and sampled the space of spin configurations more

generally. Among the most important results is “superkicks”, which are not present
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in the head-on results. These are kicks oriented out of the plane, with magnitudes

significantly larger (∼ 10 times) than in-plane spin kicks, that originate from com-

ponents of spin within the orbital plane. They were suggested in [38] and later

investigated for equal-mass [45] and unequal-mass [10] cases.

With these developments, the empirical formulas used to predict recoil kicks

have evolved as well [105, 73]. The study of these formulas has been an ongoing

endeavor of the Goddard group. As a member of the group, I have contributed to

this study, while I developed the moving patches technique discussed in Chapter 4.

In the process, I have coauthored four papers on the subject of kick formulas.[39,

9, 10, 105] The revised formulas, motivated by PN analysis, maintain the same

form and spin scaling confirmed by the head-on study discussed in this chapter

(Eqs. (3.3) and (3.4)), with the addition of the out-of-plane superkick component.

Beyond the empirical description of kicks they provide, these formulas are cru-

cial for calculations of astrophysical processes such as the retention of the remnant

supermassive black holes in galactic mergers [77], the formation of supermassive

black holes through hierarchical structure formation in the early universe [106], and

growth of intermediate-mass black holes in globular clusters [58]. By predicting

magnitudes, probabilities, and distributions for the recoil kicks essential to these

astrophysical processes, the formulas are critical for evaluating different models of

the processes. Therefore the accuracy of the kick formulas, to which the present

results contributed, is crucial for the study of the astrophysical processes.
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Chapter 4

Moving Patches

The material in this chapter describes the moving patches technique, a project

I conducted independently, while I was a member of the NASA Goddard Numerical

Relativity group. Though I was fortunate to receive assistance from the members

of the group, the research discussed in this chapter is my own. It was my primary

focus from 2009 to 2011.

4.1 Overview

A black hole binary merger simulation calculates a spacetime that represents

two black holes, but we treat the black holes as separate entities that approach and

merge, and this suggests a natural division of the dynamics

1. the motion of the black holes across the grid

2. the evolution of the individual black holes

where the first is a dynamical process while the second is a secular process. The

division holds well until merger when the positions of the individual black holes

become meaningless. Such a division is suggested by the heuristic IRS model dis-

cussed in Chap. 2 and in [11], which treats the binary as a rigid body rotating at the

orbital frequency with a secular decrease in length. Considering the black holes as
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separate bodies and dividing the dynamics as above suggests a technique to improve

the accuracy of black hole binary simulations:

1. Track the positions of the black holes.

2. Evolve the fields near each black hole in a coordinate frame that moves with

the black hole’s position. (comoving)

This eliminates the dynamical component of the fields’ evolution. What remains

is the secular evolution. Because the secular evolution is much slower, we may be

able to calculate it more accurately, as we might calculate a single non-moving black

hole. The dynamical component of the simulation becomes the task of tracking the

black hole positionon the simulation grid.

Consider a simulation of a single non-moving black hole representing the Kerr

black hole. The Kerr black hole is stationary, so the metric components are constant

in time. For a suitable choice of gauge, the simulated black hole should be stationary

as well. In fact, this is a requirement of a suitable gauge. In actual simulations of

a single non-moving black hole, the fields are very close to constant in time after

an initial period of rapid gauge adjustment. After the gauge “settles in”, the fields’

evolution equations become

∂tua ≈ 0 (4.1)

for all the fields ua, as we would expect for the Kerr black hole. Since the fields

are not changing, we can calculate them more accurately. For Eq. (4.1) to be true

requires that the right-hand-sides of the actual evolution equations approach 0.

This involves the precise cancellation of terms involving different fields and their
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derivatives so that the sum remains 0. Once the fields’ time variation ceases, the

evolution equation maintains this quiescent state. The fields are not stationary

in a black hole binary simulation, but the variation is dominated by advection of

the fields, so it is like two non-moving black holes with advection added. On the

right-hand-sides, the non-advection terms almost cancel each other with the residual

producing the secular evolution. Errors from the large advection terms disrupt the

near-cancellation and interfere with the secular evolution. Evolving each black hole

in a comoving frame eliminates the advection terms and therefore increases the

accuracy of the evolution near the black hole.

4.1.1 Motivation

The most direct impact of the technique suggested above would be increased

accuracy in the evolved fields. Normally, greater accuracy is gained through higher

resolution in time and space. For three-dimensional finite difference simulations,

increasing the spatial resolution by 20% typically requires 72% more memory and

twice the computational speed. Though the available computational power continues

increasing, numerical relativity simulations demand ever-increasing resolution as

they explore more ambitious initial configurations, such as the recent results of a

100:1 mass ratio merger by Lousto and Zlochower [72] and the merger of black holes

with near-extremal spins (â = 0.95) by Lovelace et al.. The effective resolution of a

simulation is determined by the mass of the smaller black hole. So a simulation with

a nominal maximum resolution of MADM/80 in terms of the total ADM mass and
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a smaller black hole of mass m< = MADM/10 has an effective resolution of m</8,

the resolution of a MADM = 1 single black hole simulation of maximum resolution

MADM/8. Extremal spin also reduces the effective resolution of a simulation since

the spin produces a more compact black hole. This can be seen in the case of a

Kerr black hole, where a maximal spin reduces the innermost stable circular orbit

from a radius of 6M for a Schwarzschild black hole to 1M . The moving frame

technique could produce the increased accuracy required by more ambitious initial

configurations without increasing the spatial resolution. Also it could increase the

speed of simulations, since a given accuracy could be obtained from a lower spatial

resolution. This would allow simulations of longer inspirals, and therefore longer

waveforms. Finally, since the technique eliminates much of the dynamics near the

black holes, it could allow larger time steps when combined with an implicit time

stepping scheme, which would also increase the speed of simulations.

4.1.2 Changing Coordinate Systems

General relativity is a covariant theory, so the tensor equations do not depend

on the particular coordinate system, and we can choose the coordinate system used

to express the equations. The coordinates specify points in spacetime, and also they

provide a natural basis for the tensor components in calculations. If we were using a

coordinate basis, and we changed the coordinate system, normally we would change

to the new coordinate basis, but we could use the previous coordinate basis, just as

we could use other non-coordinate bases. For the technique suggested above, there is
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no need to change bases, so all quantities are expressed in the fixed grid coordinate

system where the black holes move. This technique of changing the coordinate

system without changing the basis is a modification of the dual coordinate technique

[94] used by the Caltech-Cornell collaboration for numerical relativity simulations.

In a simulation of a black hole binary, suppose that xi is the fixed coordinate

system in which the black holes move, and ua is one of the fields, a function of time

and space:

ua = ua(x
i, t) . (4.2)

Now let xj′ be a coordinate system that moves with one of the black holes. There

exist transformations between the two coordinate systems, xj′ = xj′(xi, t) and its

inverse xi = xi(xj′ , t). If we substitute the inverse transformation into Eq. (4.2), we

obtain a new function of xj′ and t,

ũa(x
j′, t) = ua(x

i(xj′ , t), t) . (4.3)

Making such a coordinate transformation modifies the system of evolution

equations by changing the functional form (Eq. (4.3)) and the derivatives. For spatial

derivatives, the coordinate transformation adds a factor to the partial derivative,

∂j′ũa = ∂iua
∂xi

∂xj′
. (4.4)

where ∂j′ and ∂i are the spatial derivatives in the moving and fixed coordinate

systems, respectively. Since this approach changes only the spatial coordinates, time

derivatives are taken with respect to the same time coordinate, but the coordinate

transformation does add an additional term to the time derivative. From Eq. (4.3)
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we have,

∂tũa = ∂tua + ẋi∂iua . (4.5)

In a black hole binary the inspiral motion of each black hole consists of a slow

radial infall and a tangential velocity, so one approach to comoving coordinates is

global linear transformations. The dual coordinates method [94] uses a rotation

and a rescaling of the coordinate system. Rotating the coordinate system with

angular frequency Ω, matched to the orbital motion of the system, counteracts the

tangential velocities, while rescaling the coordinates by a factor a(t) counteracts the

radial infalls. The approach presented below is much simpler since it requires no

rotations or rescalings.

4.1.3 Moving Patches Technique

We create a local comoving coordinate system around each black hole as sug-

gested above, where the coordinate transformation to the fixed grid is a simple

translation rather a global transformation. For black hole A, the transformation is

xi
A(t) = δi

j′x
j′

A − qi
A(t) , (4.6)

where qi
A(t) is a translation that minimizes the motion of black hole A in its lo-

cal coordinates xj′

A. The label A is necessary since each black hole has a sepa-

rate transformation to the fixed grid coordinate system. With this transformation,

Eqs. (4.4) and (4.5) become,

∂j′ ũa = δi
j′∂iua , (4.7)
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and

∂tũa = ∂tua − ∂tq
i∂iua . (4.8)

These smaller grids, or patches, “move” over the larger fixed grid. The movement

is manifested through the coordinate transformations between the patches and the

fixed grid. Each patch boundary introduces a boundary for the fixed grid, and

the patch and the fixed grid must communicate field data at the boundary. The

coordinates of the boundary points are transformed for these communications, and

the change of the coordinates reflects the motion of the grid.

The moving patches technique is the use of a local patch coordinate system

moving with the black hole to calculate the fields’ evolution near each black hole.

In the patch coordinate system the evolution equations acquire an additional ad-

vection term that corresponds to the black hole’s motion on the larger grid. The

advection velocity appearing in the additional terms is the patch velocity, the time

derivative of the coordinate transformation to the fixed grid from the patch grid.

The technique improves the accuracy of the evolved fields and the data derived from

them. By eliminating the black holes’ motion on the grid, the technique also reveals

the impact of black holes’ motion on simulation errors. In what follows, I present

my implementation of the technique in hahndol as well as comparisons between

simulations using the technique (“patch” runs) and simulations using a single grid

(“non-patch” runs) to evaluate the technique and investigate the error generated

from black hole motion.
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4.2 Implementation

The moving patches technique requires

• creation of a patch grid for each black hole

• specification of the coordinate transformation between each patch and the

fixed grid

• modification of the evolution equations on the moving patches

• synchronization of field data between each patch and the fixed grid at their

interface

4.2.1 Grid Generation and Initial Fill

Since paramesh is block-based, creating a patch grid for a black hole in

hahndol means creating a collection of blocks that cover a region including and

surrounding the black hole. The coordinates of these blocks are in the local coordi-

nate system associated with the black hole, and the blocks are assigned a common

number for the patch number field (which is a paramesh user-defined block field).

This implicitly defines the patch. The patch is also explicitly defined by a data

structure in hahndol, patch, which stores metadata about the patch, such as the

black hole with which the patch is associated and the coordinate range of the patch.

The standard initial grid creation procedure in hahndol reads rules for fixed-

mesh refinement (FMR) from a parameter file. These FMR rules define refinement

zones with reference to the fixed coordinate system origin or a puncture location.
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For moving patches hahndol creates one patch grid for each puncture following

the FMR rules associated with that puncture. The patch grid only includes the

highest refinement levels with the minimum patch level specified by the parameter

file. hahndol maintains an association between the patch grid and the puncture

in patch and updates the patch’s coordinate transformation based on the motion

of the puncture. paramesh assumes a single coordinate system for all blocks. To

avoid assigning overlapping coordinates to patch and fixed grid blocks, hahndol

sets the initial translation qi
A(0) to an integer multiple of the maximum dimension

of the fixed grid, qi
A(0) = δi

1n ∗max
(
xk

max − xk
min

)
, (k = 1, 2, 3). Though this initial

translation is necessary to place the patch in a separate computational domain in

paramesh, it has no effect on the evolution.

The moving patches technique offers no benefit in solving the constraints for

the initial data, so hahndol solves for the initial data on the fixed grid. Then

hahndol copies the field data to each patch from the corresponding portion of the

fixed grid.

4.2.2 Evolution

Once the evolution begins, hahndol updates q̇i
A at the beginning of each

iteration to minimize the puncture motion on the patch. Recall that the puncture

tracker performs a first-order Euler integration of −βi(xj
p) to calculate the track

of each puncture. With moving patches, hahndol uses βi(xj
p) for puncture A to

update q̇i
A, the velocity in the advection term Eq. (4.8) that is added to the field
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evolution equations. Currently, q̇i
A = −βi(xj

A), so in principle qi
A(t) is the same

as puncture track A, In the future, q̇i
A could be a function of β̇i(xj

p) or a higher

time derivative of βi(xj
p) to provide a smoother function. The current choice for

q̇i
A eliminates all puncture motion on the local patch. By comparison, the dual

coordinates approach [94] uses a feedback control system to drive the apparent

horizon centers back to their initial values by adjusting ∂3a/∂t3 and ∂3Ω/∂t3, rather

than adjusting the scaling factor a and the rotational frequency Ω directly. If q̇i
A

were driven to 0 by a similar feedback control system, there would be slight puncture

motion on the patch but the smoother coordinate transformations might further

reduce the errors in simulations using the moving patches technique.

While q̇i
A is updated at each iteration, the coordinate transformation xi

A(xj′

A, t)

must be updated within the RK4 iteration. The patches are in motion, so when

a field ua is evaluated at the midpoint of an iteration, the patch locations are dif-

ferent than their locations at the beginning of the iteration, and so the coordinate

transformation from each patch to the fixed grid is different as well. Specifically,

the transformation for patch A, at the midpoint and end of iteration tn is

xi
A(xj′

A, tn + 1
2 ∆t) = xi

A(xj′

A, tn) + 1
2 ∆t q̇i

A , (4.9)

and

xi
A(xj′

A, tn+1) = xi
A(xj′

A, tn + 1
2 ∆t) + 1

2 ∆tq̇i
A (4.10)

where ∆t is the integration timestep. If the coordinate transformations are not

updated at the midpoint, the two-way synchronization between each patch and the

fixed grid uses incorrect grid points, and the simulation becomes unstable. Though
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xi
A is updated within the RK4 iteration, the result is not an RK4 integration of

xi
A, since ẋi

A is constant throughout the iteration. hahndol performs the two-way

synchronization between each patch and the fixed grid after the paramesh guard

cell filling. In the first step of the synchronization, hahndol interpolates from the

fixed grid to fill the guard cells on the outer boundary of each patch, and in the

second step, it interpolates from each patch back to the portion of the fixed grid

overlapped by that patch.

The interpolation in the synchronization could introduce error that would

counteract the accuracy gain from the coordinate transformation. Since the finite

differencing in hahndol is sixth-order, I increased the accuracy of the hahndol

interpolator to sixth-order by increasing the stencil to six points. I confirmed the

accuracy of the interpolator with polynomial test data. For a sixth-order polynomial

function of the coordinates, the interpolation error was sixth-order convergent, while

for lower-order polynomial functions, the error was zero to machine precision. Since

then the sixth-order interpolator has been used routinely for simulations by the

Goddard group.

Initially the fixed grid includes the same refinement levels as the patches.

Since the patches overwrite the portions of the fixed grid that they overlap, and

the patches include the higher refinement levels around the punctures, there is no

need for the fixed grid to include those higher refinement levels. Once evolution

begins, the AMR procedure derefines the fixed grid until the maximum refinement

level of the fixed grid is one less than the patches’ minimum refinement level. For

the initial implementation of moving patches in hahndol, AMR does not run on
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the patches because refinement to and derefinement from the patch minimum level

is more complicated than the existing AMR in hahndol. Therefore, the patches

maintain their initial coordinate sizes and cube shapes, but since the patches move

with the black holes, grid adaptation is not crucial.

4.3 Evaluating the Moving Patches Technique

The goal of the moving patches technique is to reduce the error in black

hole simulations due to the motion of the black holes. Each evolution equation

Eqs. (1.12)-(1.16) includes an advection term proportional to βk∂kua. The shift can

be written as

βi(xj) = βi
str(x

j) + βi
adv , (4.11)

where βi
str is the portion of the shift that counteracts grid stretching, and βi

adv is a

spatial constant equal to the shift at the puncture position. It is responsible for the

puncture’s motion on the grid. On the fixed grid, where the evolution equations are

unaltered, this component of the shift produces the active field evolution responsible

for the bulk motion of the black hole.

On the patch, the black hole motion is manifested only in the coordinate

transformation to the fixed grid. Because of the changes to the evolution equations

Eq. (4.8), the puncture does not move on the patch, and so βi
adv = 0 on the patch,

which eliminates part of the advection term and any error associated with it. hah-

ndol uses fifth-order one-sided differencing near the puncture, so the fifth-order

error should be reduced on the patch with the reduction proportional to βk
adv∂kua.
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Therefore the error reduction should be greater in the strong field region and greater

for large puncture momentum, since the advection on the grid corresponds to the

puncture momentum. Moving away from the puncture, where spatial derivatives

of the fields are smaller and the advection terms are higher-order, the effect of the

moving patches technique should be less dramatic. The actual error will depend on

∂iua. Also, other larger error sources may mask the error reduction.

Constraint violations and puncture coordinate positions provide estimates of

the error reduction. Because the constraints combine the evolution variables, con-

straint violations indicate the error of the system rather than the error of a particular

field. Norms of constraint violations measure error for refinement levels. In contrast,

puncture coordinate errors are local in space, and they are direct results of errors in

the shift, though they represent errors in the system because of the coupling of the

evolution equations. Though the puncture positions depend on the gauge choice, we

can use them to assess the errors in a system’s dynamics. Specifically we can mea-

sure errors in the phase, frequency, and a quantity we define which is equal to the

local unit Newtonian angular momentum 3PT , as calculated from the two puncture

tracks. As we will see below, these errors indicate errors in the gravitational radi-

ation, and accurate gravitational waveforms are among the most important results

from numerical relativity (NR) simulations.

The moving patches technique, as implemented in hahndol with paramesh,

slowed down the simulations considerably, so evolutions using the technique did

not evolve long enough to make direct comparisons of waveforms. The patch syn-

chronization process, which updates the patches and the fixed grid at the patch
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boundary, could not be integrated into the regular paramesh guard cell filling

procedures that update the guard cells at block boundaries as well as the outer

boundary of the grid. While paramesh uses efficient MPI communications that

minimize interprocessor communications and allow data exchange between multiple

processor pair simultaneously, the patch synchronization uses the hahndol inter-

polator, which was designed for much smaller data exchanges and therefore uses the

relatively inefficient MPI broadcast communications. The performance limitations

are discussed further in the Performance subsection below.

4.3.1 Head-On Runs

Head-on runs provide a simple test of the moving patches technique with a

non-trivial evolution. Since they use octant symmetry, the head-on runs are faster,

which facilitates testing the code. For the head-on runs, I used Brill-Lindquist initial

data (no linear momentum or spin) with equal-mass punctures located at x = ±8M

on a grid that extended 128M from the origin. I performed the simulation at three

resolutions: M/16, M/20, and M/24, both with and without moving patches.

Since constraint violations show deviations from Einstein’s equations Eq. (1.1)

and therefore error, I compared the Hamiltonian constraint convergence with and

without moving patches to make sure that the moving patches technique did not

decrease the order of convergence. In particular, I was concerned that the synchro-

nization between the fixed grid and the patches would introduce error that would

counteract any gain in accuracy on the patches themselves. Though I had tested
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the interpolator with test data, I wanted to make sure it would work in an actual

evolution.

At t = 30M , I compared one-dimensional cuts along the x axis at the boundary

between a patch and the fixed grid. The boundary is located in refinement level 7

of the fixed grid, the finest fixed grid level in the moving patches runs. Initially, the

patch boundary crosses the x axis at x = 4 on the inner side, closest to the origin,

and x = 12 on the outer side. As the simulation runs, both crossing points drift

toward the origin as the black hole falls inwards and the patch moves with it.

While these one-dimensional cuts show the convergence at specific points

in space, the presence of high frequency noise complicates their interpretation.

Nonetheless, they are useful for evaluating the convergence behavior at the edge

of the patch. Because the punctures follow straight-line trajectories in head-on sim-

ulations (for nonspinning punctures), we can make meaningful comparisons between

the cases with and without patches. For more general simulations, such as inspirals,

one-dimensional cuts are less informative since the punctures move across the grid,

and they generally do not lie on the cuts. The L1 norm over an entire refinement

level is more useful in these cases because it provides a broader evaluation of the

constraint convergence, and the puncture positions affect the norm less.

We can expect convergence up to sixth-order for CH . The finite differencing

error increases to sixth-order moving away from the puncture as the upwinding for

the advection terms decreases. The time integration error is much smaller than

other error sources, and so it does not determine the overall convergence. At refine-

ment boundaries, we expect the convergence order of CH to decrease by two, since
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it includes second. When the finite difference stencils include points from different

resolutions, the cancellations necessary for sixth-order convergence are incomplete,

and the finite differencing decreases by one order for first derivatives and two or-

ders for second derivatives [61]. The constraint convergence is even lower near the

puncture due to the large field gradients.

The one-dimensional cuts show similar fifth-order convergence for CH for the

patch and non-patch runs. I only compared the portion of level 7 of the fixed

grid that was not covered by the patch, since the covered portion is overwritten

during every iteration. Fig. 4.1 shows CH on level 7 of the fixed grid in the inner

portion, while Fig. 4.2 shows CH in the outer portion. Because the patch runs show

convergence at the same order as the non-patch runs, the interpolation shows no

sign of decreasing the constraint convergence.

4.3.2 Inspirals

Inspirals should provide the most robust and realistic test of the moving

patches technique. Head-on mergers provide an initial test of the technique, but

they are a special case. Inspirals address the question of advection-generated error

in a more general case and better demonstrate the technique’s usefulness. The mov-

ing patches technique would be especially useful for inspiral cases such as large mass

ratio inspirals and inspirals of highly spinning black holes. Large mass ratio simula-

tions require higher resolution to adequately resolve the smaller black hole. Highly

spinning black holes require higher resolution because their characteristic scales are
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Figure 4.1: CH to the left of the patch (level 7 of the fixed grid) for the head-on tests.

The convergence is fifth-order, both with and without moving patches.
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Figure 4.2: CH to the right of the patch (level 7 of the fixed grid) for the head-on tests.

The convergence is fifth-order, both with and without moving patches.
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smaller relative to their masses. By improving the accuracy of simulations, moving

patches could lower the resolution required for both types of simulations.

For the inspiral tests, I used the moving patches technique to rerun a simulation

previously run by the Goddard group and compared the patch results with the

existing results. The previous simulation was a merger of two spinning equal-mass

black holes with the spin axes of the first and second black hole aligned and anti-

aligned, respectively, with the orbital angular momentum vector. For both black

holes, the magnitude of the dimensionless spin parameter â was 0.8.

The initial data were calculated with the TwoPunctures elliptic solver [7] using

initial data parameters derived from Husa et al.[60], which sought to reduce eccen-

tricity in black hole binary evolutions with a post-Newtonian evolution up to the

desired coordinate separation of 11M . Husa et al.[60], used the momenta at separa-

tion 11M in the post-Newtonian evolution as the starting momenta for a puncture

evolution of equal-mass, nonspinning black holes initially separated by 11M . The

momenta and coordinate separation from Husa et al.[60] were used for the Goddard

simulations (both with and without patches). Since the Goddard simulations added

spin to the black holes, the initial puncture masses were decreased to keep the ap-

parent horizon masses at 0.5M . The parameters for the initial data are listed in

Table 4.1.

The outer boundaries were located 1536M from the origin. The previous

simulation was performed at the following resolutions: 3M/128, 3M/160, M/64,

and 3M/224. To emphasize the relative resolutions of the simulations, I will refer
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Puncture mp (M) y (M) P x (M) P y (M) Sz/M2

1 0.301805 -5.5 0.0900993 0.000709412 0.8

2 0.301805 5.5 -0.0900993 -0.000709412 -0.8

Table 4.1: Initial data parameters for inspirals. x = 0, z = 0, P z = 0, Sx = Sy = 0 for

both punctures.

to these simulations as I128, I160, I192, and I224, respectively.1 The simulation with

patches had a resolution of 3M/128, and I will refer to it as P128. It used patches

for the top three refinement levels, levels 12-14.

As currently implemented in paramesh, simulations using moving patches

are inefficient on the large numbers of processors required for these runs, and the

moving patches technique is not ready for production applications. Nonetheless,

we can apply the currently limited code to study the impact of moving patches on

accuracy of simulations. Because of the performance impact of the moving patches

technique, P128 ended at t = 173M .

4.3.2.1 Constraint Violations

As discussed previously, by reducing error in the advection terms of the fields’

evolution equations, the moving patches technique should decrease the error in the

fields, which in turn should reduce the constraint violations. Fig. 4.3 shows the L1

1The label for the M/64 simulation results from the identity 1
64

= 3
192
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norm of the Hamiltonian constraint (|CH |L1) for level 14, the highest refinement

level, for all the simulations. P128 lies between I160 and I192, and it is smoother than

all of the non-patch runs indicating a lower level of numerical noise. Fig. 4.4 shows

the L1 norm of the x momentum constraint (|CMx|L1) for level 14. For |CMx|L1 the

P128 results are similar to the I160 results. The relative improvement in accuracy is

less for |CMx|L1 than for |CH |L1. |CMx|L1 is roughly 20 times smaller than |CH |, and

so it may already be less affected by error from the advection terms. Also note that

CH includes second spatial derivatives of gij in the spatial scalar curvature R while

CM i only has first spatial derivatives of Kij and K. The second derivatives are more

sensitive to noise, and so the advantage of eliminating the fields’ advection across

the grid using the moving patches technique is more likely to be observed in CH .

The results for |CMy |L1 and |CMz |L1 are similar, though |CMz |L1 is much smaller.

Figs. 4.5 and 4.6 show |CH |L1 and |CMx|L1 for the second finest level, level 13.

For |CH |L1 P128 is similar to I160, after the first 30M of evolution. For |CMx|L1 P128

is very close to I128. For level 13, |CMy |L1 and |CMz |L1 are similar to |CMx|L1, as

they were for level 14. Fig. 4.7 shows |CH |L1 for level 12, the coarsest patch level.

In this case, the error is larger for P128 than for I160, though it is still significantly

less than that of I128. |CMx|L1, |CMy |L1, and |CMz |L1 are not shown for level 12, but

they are similar to the results for level 13. So the moving patches technique shows

the greatest error reduction, as measured by the constraint L1 norms, at the highest

refinement level, and the relative error reduction decreases moving into more coarse

patch levels farther from the punctures.

Fig. 4.8 and 4.9 show |CH |L1 and |CMx|L1 for level 9, which is on the fixed
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Figure 4.3: Hamiltonian constraint (L1 norm) for level 14 (finest) in the inspi-

ral test. The Hamiltonian constraint for the patches run shows a significant

reduction.
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Figure 4.4: X momentum constraint (L1 norm) for level 14 (finest) in the

inspiral test. The X momentum constraint for the patches run shows a re-

duction, though it is is not as large as the reduction for the Hamiltonian

constraint in Fig. 4.3.
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Figure 4.5: Hamiltonian constraint (L1 norm) for level 13 (second finest) in

the inspiral test. The reduction is not as large as the reduction for the finest

level in Fig. 4.3.
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Figure 4.6: X momentum constraint (L1 norm) for level 13 (second finest) in

the inspiral test. No reduction is evident.
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Figure 4.7: Hamiltonian constraint (L1 norm) for level 12 (coarsest patch

level) in the inspiral test. Some reduction is still observed.
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grid and which includes the wave zone. For both constraints, P128 is very similar

to I128. (|CMy |L1 and |CMz |L1 are similar to |CMx|L1 again.) The patches do not

overlap any part of level 9, so they affect this level indirectly. Therefore the similar

constraint results for patch and non-patch runs are expected. Since radiation is

extracted in the wave zone, these results suggest that the moving patches technique

has not adversely affected the region in which the quantities of primary interest are

computed. Combined with the constraint results for the higher levels, this indicates

that with regard to the constraints, the moving patches technique offers increased

accuracy approaching the punctures for a given resolution. This is consistent with

the earlier heuristic decomposition of the field dynamics into the black holes’ orbital

motions and the gradual changes as angular momentum is lost and the black holes’

approach. Moving away from the punctures, the orbital motions’ have less impact

on the fields, and therefore the moving patches technique offers less advantage.

As explained in Chapter 1, we conventionally describe the resolutions of sim-

ulations simply by referencing the finest resolution present in each, but when com-

paring simulations that differ in the sizes of the various refinement regions, the

highest resolution is an insufficient description. Because P128 does not use AMR on

the patches, while the non-patch inspiral runs do, it has a different grid structure.

P128 maintains the FMR grid specified in the hahndol parameter file, while the

non-patch runs refine their grids to adjust to the fields. The highest refinement

zones (levels 12-14) for the non-patch runs are smaller than those zones in P128.

Table 4.2 lists distance s from a puncture for regions of different maximum grid

spacing max∆x, for P128, I128, and I160. s is not a radial distance, but rather the
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Figure 4.8: Hamiltonian constraint (L1 norm) for level 9 (wave zone) in the

inspiral test. There is no significant impact from the interpolation on the

patch boundary.
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Figure 4.9: X momentum constraint (L1 norm) for level 9 (wave zone) in the

inspiral test. There is no significant impact from the interpolation on the

patch boundary.
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Run 3M
32

3M
64

3M
128

P128 3.23165 1.61583 0.80791

I128 2.78132 1.55281 0.65175

3M
40

3M
80

3M
160

I160 2.78132 1.55281 0.65175

Table 4.2: Size of regions for maximum grid spacing. The first column is the run identifiers.

The headings of the remaining columns are maximum grid spacings. The table lists the

linear size in M units of the portion of the grid for which the grid spacing does not

exceed the grid spacing listed in the column heading, for three inspiral runs. Larger sizes

correspond to higher resolution grids.

half-side length of a cube of the same volume as the region, so s is the distance to

the region’s edge along a coordinate direction. P128 includes more of the grid than

I128 for each max∆x, so it has a higher effective resolution. Because I160 is higher

resolution, each region has max∆x smaller by a factor of 0.8, while s is the same

as for I128. Fig. 4.10 makes the comparison between P128 and I160 more clear. It

compares s as a function of max∆x for the three cases, and we see that P128 lies

between I160 and I128

The different grid structure of P128 and the resulting higher effective resolution

that it produces complicates comparisons of the constraint violations norms with

the non-patch runs. Some of the improvement may be due to the increased effective

resolution of P128. The constraint violations are normalized by volume, so differ-
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Figure 4.10: Maximum grid spacing ∆x for distance s from punctures. s is a
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ences in size do not impact the norms directly, but farther from the punctures, the

field gradients decrease, and so the finite differencing becomes more accurate. So

including portions of the grid farther from the puncture should decrease the norms

of any refinement level. Fig. 4.10 suggests that the effect of differing grid structures

may make P128 comparable to a non-patch run with resolution between the I128 and

I160 resolutions. The constraint accuracy of P128 surpasses that of I160 in the finest

grid regions, an effect that cannot be ascribed to the grid structure.

4.3.2.2 Error in Phase and Frequency

To detect gravitational waves and to characterize the sources of the waves,

accurate phase is crucial. Because of the low signal-to-noise ratio expected for

gravitational waves, detector signals are matched to a template bank of calculated

gravitational waves from different possible sources. Such matched filtering correlates

the data to templates in the bank. A high correlation to a template indicates the

presence of that waveform in the data. Therefore minimizing waveform phase error

is crucial in black hole binary merger simulations, motivating special attention to

the impact of patches on this type of error.

In a NR simulation, the phase, frequency, and amplitude of a given 3m mode

of the gravitational radiation vary by resolution. The different resolutions start

with the same initial data, representing the same initial physical configuration, and

the same initial gauge and gauge conditions. Variations in the physical and gauge

fields result from solving for the initial data and evolving the fields, which are both
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resolution-dependent. Quantities derived from the fields, such as the phase, fre-

quency, and amplitude of the radiation, also vary by resolution. Comparing the

results for different resolutions allows us to evaluate the quality of simulations and

estimate the error. Though phase is important for gravitational wave detection, fre-

quency provides a better indication of the error in a simulation at any point in time.

The phase at a point in time is the result of the entire evolution up to that point.

If resolution-dependent error sources instantly disappeared, the accumulated phase

difference across resolutions would remain. Phase error accumulates. So when we

compare two different resolutions, we cannot separate new phase error from existing

phase error except by zeroing out the relative phase between two different resolu-

tions and comparing the phases after the zero point. As the time derivative of phase,

frequency better indicates the instantaneous state of the system. So comparing the

frequency in time across resolutions better indicates the development of error in the

system.

4.3.2.3 Frequency as a Measure of Error

Ultimately, we are interested in the phase and frequency of the gravitational

radiation produced by the merger. To evaluate the moving patches technique, we

want to compare the frequency error when patches are used to the error when patches

are not used. Because of the performance issues in the implementation of the moving

patches technique I was not able to run a patch simulation long enough to measure

radiation. So as an alternative, I examined the orbital frequency calculated from
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the puncture tracks, which is suggested by Fig. 2.1.

First, we must consider the relationship between this puncture frequency and

the orbital frequency calculated from the radiation. Fig 4.11 shows the relative error

in frequency as calculated from ḣ22 and from the puncture tracks for I128, I160, and

I192. The relative error is defined as

δωsrc,res =

∣∣∣∣1 −
ωsrc,res

ωsrc,224

∣∣∣∣ . (4.12)

src = rad and PT for the radiation and puncture track frequencies, respectively,

and res = 128, 160, and 192, indicates the resolution. I224 is the reference resolution.

While this reference resolution does not represent the exact answer, it provides a

simple error estimate. For a more precise error measure, I could perform a Richard-

son extrapolation, but as the goal is to demonstrate the similar behavior of the

radiation and puncture frequencies, I have used the simpler error estimate.

In each resolution case, the relative errors of the radiation and puncture track

frequencies track closely until the approach of merger and the formation of a common

apparent horizon. At this point, we can no longer treat the system as though it

were two separate bodies, and the puncture tracks no longer represent the system’s

dynamics well. The relative errors of the radiation frequencies show high frequency

noise. I have used a logarithmic scale to compare the different resolutions better,

but it does distort the noise. Fig. 4.12 shows a similar relative error measure earlier

in the simulation. Here I define the relative error slightly differently,

δωsrc,res = 1 −
ωsrc,res

ωsrc,224
. (4.13)

I use this definition for Fig. 4.12 because early in the simulation, the noise in ωrad
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overshadows the trend, and the previous definition makes the trend unclear. This

modulated high-frequency noise is routinely observed in hahndol simulations. It

appears to result from propagating initial data error that reflects off refinement

boundaries in the simulation grid, and therefore it is separate from the error trend

we are investigating. Again we see that the puncture frequency provides a good

indication of the variation in the radiation frequency across resolutions until the

approach of merger. The variation with resolution is established early. In particular,

in both the puncture and the radiation frequencies, we can see I128 separating from

I160 and I192 as early as t = 150M , a trend that continues up through merger.

Fig. 4.13 shows relative error in puncture frequency for I128, I160, I192, and P128,

using Eq. (4.12) to define relative error and I224 as the reference frequency. P128 has

a smaller relative error than both I128 and I160. Though P128 ends at t=173M be-

cause of the performance limitations mentioned earlier, the improvement provided

by the moving patches technique is already evident. Since the late frequency vari-

ation is established early, this improvement would continue through later times as

well. The comparison of P128 with the non-patch runs is more straightforward for

frequency than for the constraint violation norms because ω is determined by the

shift values at the puncture locations only. Moderate variations (< 20%) in the

refinement boundaries far from the punctures (in terms of grid spacing) would have

little influence on the punctures. In calculating puncture frequency, moving patches

increases the effective resolution of P128 to at least 3M/160.
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Figure 4.11: Relative frequency errors based on ḣ22 and puncture tracks (non-

patch). At each resolution, the relative errors for frequency, calculated with

Eq. (4.12), from puncture tracks and ḣ22 agree until approximately 100M

before merger. I224 is the reference for the error calculations.
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agree at each resolution early in the simulations. Though qualitatively similar

to Fig. 4.11, these early error comparisons use Eq. (4.13) to better show the

trends for significantly smaller error magnitudes.
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Figure 4.13: Relative frequency errors based on puncture tracks. The patch

run errors are consistent with higher resolution non-patch runs.
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4.3.2.4 A Comparison of Puncture Track Angular Momenta

The last section considered orbital frequency as a proxy for the secularly evolv-

ing state of the system, which was discussed previously and in more detail in [16, 17].

However, as we have seen, the orbital frequency is subject to noise and unintended

eccentricity. Therefore, we return to the puncture track angular momentum LPT

that I developed in Chapter 1, since it may allow a more clear evaluation of the

accuracy of the moving punctures technique.

Starting from Eq. (1.76) and adapting to the inspiral tests we are considering,

we find that

LPT = LN +
6.75

32LN
. (4.14)

I assume a total mass of 1M , equal masses (η = 0.25), circular motion (v = r−
1
2 ),

and a total spin of 0. With these assumptions, LN = 0.253PT . I will use J for the

actual angular momentum of the system to distinguish it from LPT . Because the

total spin of the system is 0, J is the same as the orbital angular momentum L.

Initially LPT does not reflect the system’s angular momentum. As an example,

Fig. 4.14 shows that 3PT for I224 starts at 0 and rapidly increases. Figs. 4.15 and 4.16

show the r2 and ω factors of 3PT separately, for the same run. r2 has an initial

modest adjustment, while ω has a more dramatic adjustment. r2 is a function of

the coordinates of the punctures while ω is a function of the puncture velocities,

ω = r
∣∣ẋi

p1 − ẋi
p2

∣∣. The puncture velocities are 0 initially because ẋi
p = −βi(xj

p), and

initially the shift at the puncture locations does not correspond to the momenta

of the punctures, but it evolves rapidly until the puncture velocities do reflect the
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Figure 4.14: r2ω for ultra-fine run (non-patch). After a brief initial adjustment

period, r2ω demonstrates physical behavior.

punctures’ momenta. In the case of I224, this occurs at approximately t = 60M ,

as shown by Fig. 4.17. At this point, 3PT and therefore (LPT become relevant for

examining the angular momentum in the simulation.

Having defined LPT and discussed its early behavior, I now establish its useful-

ness as a diagnostic for angular momentum evolution. Fig. 4.18 compares J to LPT

for the two highest resolutions in the non-patch case. J is calculated by subtracting

the radiated angular momentum from the initial angular momentum as calculated
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Figure 4.15: r2 for ultra-fine run (non-patch). r2 has a slight initial adjustment.
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from the initial data. For both resolutions, LPT follows J closely and therefore

provides a good early indication of the system’s angular momentum evolution. LPT

deviates from J significantly close to merger, but the variation due to resolution is

apparent by this time. Fig. 4.19 shows the relative error in LPT for I128, I160, and

I192, using I224 as the fiducial value. The periodic bursts of noise in LPT coincide

with one of the punctures crossing a coordinate axis. Similar bursts of noise in

the puncture frequency as either puncture crosses an axis are routinely observed in

hahndol simulations. There is no reason crossing an axis would generate noise

directly. However when a puncture crosses a coordinate axis, it is moving parallel

to the other coordinate axis. (Recall that the simulations were performed in bitant

symmetry, so the punctures remain in the z = 0 plane.) The motion parallel to a

coordinate axis is a more likely source of the noise, but I have not investigated it

further. I mention it only to eliminate any confusion it might cause.

With LPT as a diagnostic, we can compare the patch run to non-patch runs.

Fig. 4.20 compares LPT for P128 and all the non-patch runs. P128 matches I224

better than I128 and I160 and as well as I192. Fig. 4.21 shows this more clearly. It

compares the relative error of P128, I128, I160, and I192, using I224 as the fiducial

value. Based on LPT , the patches technique at resolution M/128 performs at an

accuracy comparable to I192, supporting similar conclusions based on puncture-track

frequency in Sec. 4.3.2.3. As in the case of puncture frequency, LPT is measured far

from the refinement boundaries, and so the comparison is straightforward.
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Figure 4.18: Angular momentum for runs (non-patch). LPT and J = Jinitial−

Jradiated agree from early in the simulations until near merger.
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Figure 4.19: Relative error in LPT (non-patch). Relative errors in I128, I160,

and I192 I224 are compared to I224. The periodic bursts of noise are associated

with crossing coordinate axes.
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in its agreement with I224.
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Figure 4.21: Relative error in r2ω for non-patch and patch runs. As in

Fig. 4.20, P128 agrees with I224 at the same level as I192 (M/64).
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4.3.3 Performance

The moving patches technique as implemented in hahndol is very time-

consuming. To assess the performance, I performed three runs with moving patches

using the same parameters as P128 and varying the number of processors for each

run. In addition I performed one run without moving patches with the same param-

eters on 128 processors. Each run lasted approximately two hours. The runs are

summarized in Table 4.3.3. The impact of the moving patches is clear. Comparing

the runs with 128 processors, the non-patch run evolves to t = 11.7M in 117 min-

utes, while the patch run evolves to t = 1.50M in 121 minutes, for a performance

ratio of 7.8. The patch run evolves 7.8 times more slowly. Also, note the scaling

behavior of the three patch runs. When the processor count is increased to 256 pro-

cessors, the simulation reaches t = 2.07, a 33% increase for a doubling in processing

power. A further doubling in processor count to 512 produces no increase in the

time the simulation reaches.

The significant performance reduction results from the synchronization be-

tween the patches and fixed grid, in particular the interpolation from the patches

back to the fixed grid. In the inspiral runs, the patches cover approximately 70

blocks of the fixed grid. In the P128 case, each block contains 3375 grid points in-

cluding guard cells, so hahndol interpolates approximately 240,000 points, four

times per iteration, for 24 fields, which results in approximately 23 million inter-

polations per iteration. Interpolation from the fixed grid to the guard cells on the

patch outer boundaries is quick in comparison. The patches contain 560 blocks,
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Processor Count Iterations Final t (M) Simulation Duration (min)

128 128 1.50 121

256 177 2.07 121

512 177 2.07 120

128 (NP) 1000 11.7 117

Table 4.3: Performance of moving patches. “NP” indicates the run without moving

patches. The table shows the results of performance tests of moving patches with the

results of a run that did not use moving patches. Moving patches has a significant perfor-

mance cost. The columns are: the number of processors used for the test, the number of

simulation iterations, the final coordinate time in the test, and the time required to run

the test.
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with approximately 43 block faces on each of the two outer boundaries and 675

guard cells on each face, which results in approximately 5.5 million interpolations

per iteration.

Though these estimates are specific to P128, they demonstrate the considerable

computational cost of the synchronization. This is due to the hahndol interpo-

lator, which relies on interprocessor communications. These communications are

slow compared to operations local to a processor, and all of the processors call the

interpolator for the same set of points simultaneously. Each processor searches the

local grid for the points and broadcasts the interpolated data to all processors, if it

finds the points. Because this synchronous interpolation uses broadcast communi-

cations, it requires little coordination between processors, but it is inefficient, since

it is a serial process. For the small number of points for which the interpolator

was designed originally, the inefficiency is insignificant. For the patch synchroniza-

tion, which requires on the order of a million points interpolated per iteration, the

inefficient process produces a significant delay.2

Despite this limitation, I made the patch synchronization more efficient via

several improvements to hahndol. First, I modified the interpolator so that multi-

ple points are interpolated by a single function call, which reduces the interprocessor

2Using communications between pairs of processors would be much faster since the interpolated

points are distributed across the processors, and multiple synchronizations could occur simulta-

neously. However, such a parallel process requires careful coordination of the pairwise commu-

nications to prevent deadlocks where processors wait indefinitely for responses. Therefore the

hahndol interpolator does not use this approach.
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communications. Next, I reordered the calculations, so that multiple fields are in-

terpolated at each point in the same call, and eliminated redundant calculations.

Finally, I rewrote the patch synchronization procedure to use the hahndol in-

terpolator more efficiently. Previously, the processors in turn requested points for

interpolation. During each call of the interpolator, most processors were neither

sending nor receiving useful data. In the modified procedure, each processor creates

a local list of points for which it requires data. Where possible, it fulfills the request

locally. Next, all of the processors broadcast their local point lists. As a result, each

processor has the list of points needed by all of the processors. Then, the processor

creates a “chunk” of points, a list comprising points from multiple processors, and

calls the interpolator with the chunk. Many more processors send and receive useful

data for each interpolator call. The chunk and interpolate sequence repeats until

the global point list is exhausted. For each iteration in the synchronization process,

the chunk comprises equal numbers of points from each processor. The efficiency

gain is limited by the chunk size, which in turn is determined by memory limits on

the simulation host. These changes improve the efficiency of the synchronization

substantially, but the synchronization process remains a serial process with limited

efficiency. Therefore, this part of the technique still severely limits the duration of

simulations using moving patches in hahndol.

The other components of the moving patches technique do not contribute sig-

nificantly to the time required to run a simulation. The creation of the patch grids

and copy of initial data to the patch grids only occur once. The modifications to the

evolution equations require additional calculations at each point on the patches, but
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they do not require additional interprocessor communications, and the number of

additional calculations are not significant compared to the number of calculations

required by the modified evolution equations. Updating the coordinate transfor-

mations has an insignificant impact on performance since it uses data local to the

processors and involves simple calculations.

4.4 Conclusions

4.4.1 Results

The moving patches technique does reduce errors in simulations as shown by

the constraint violations and errors in orbital frequency and LPT . Synchronization

between the patches and the fixed grid introduces interpolation error, but the head-

on runs show that it does not lower the convergence of the constraint violations at

the patch boundary. In the inspiral runs, the reduction in the constraint violation

norms is larger for refinement zones closer to the punctures. This is consistent with

expectations since the field gradients are larger closer to the punctures. The patch

run has larger refinement zones and therefore higher effective resolution. This is

partially responsible for the error reduction, and it is unclear how much the moving

patches technique reduces the constraint violations.

The patch run has a finest resolution of 3M/128, but it performs at higher

effective resolutions for calculating frequency and LPT from the puncture tracks.

Error reduction for frequency and angular momentum is more clearly due to the

moving patches technique because the puncture tracks are not strongly affected by
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the specifics of the grid refinement.

In the case of the frequency, the patch run has a lower relative error than the

non-patch run that has a finest resolution of 3M/160, and therefore the patch run

has an effective resolution of at least 3M/160 by this measure. The behavior of

the frequency derived from the puncture tracks is very similar to the frequency of

the gravitational radiation, especially in comparisons of different resolutions. So the

error reduction in the puncture frequency in the patch run indicates a similar error

reduction would occur for the radiation frequency in a longer patch run.

For LPT , which is an approximation of J for the system, the patch run performs

at an effective resolution of at least M/64 since it has a lower relative error than the

non-patch run at M/64. As in the case of frequency, LPT behaves very similarly to

the radiation-derived J for the system, and this indicates that a longer patch run

would demonstrate a more accurate angular momentum for the system.

LPT could be used as a diagnostic quantity in other simulations giving an early

indication of error related to angular momentum. It is less affected by eccentricity

facilitating comparisons of different runs. Also, since it is derived from the puncture

tracks, it gives a much earlier indication of error than radiation-derived quantities

such as J that use information from the wave zone which are delayed by the propa-

gation time from the strong field region to the wave zone and by the time it takes the

radiation amplitudes to increase sufficiently to extract accurate information. LPT

using patches is also less noisy since it is not subject to the noise associated with

punctures crossing coordinate axes.
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4.4.2 Future Development

The most important development for the moving patches technique is increas-

ing the efficiency of it. The current implementation of moving patches in hahndol

is very inefficient, and it scales poorly. So it cannot evolve interesting simulations.

The poor performance is due to the synchronization between the fixed grid and

the patches. The synchronization uses the hahndol interpolator which uses broad-

cast communications between processors. Such broadcast communications are slow

compared to operations local to a processor. The regular paramesh guard cell filling

routines fill many more points in a shorter time using point-to-point communications

which allow data exchanges between multiple processor pairs simultaneously. Using

such point-to-point communications for the interpolations in the synchronization is

a promising route for improving the efficiency of moving patches.

Another route for improving the efficiency is to only synchronize a buffer region

of the fixed grid at the patch boundary. This would decrease the number of fixed

grid points interpolated during the synchronization. The remaining fixed grid region

covered by the patches would not need to be evolved.

A less promising route is to integrate the patches with paramesh. paramesh

aggregates contiguous blocks of data on the same processor, which decreases the

need for interprocessor communications. The patches are implemented in hahndol

above paramesh, so paramesh distributes the blocks from the patches, according

to the local coordinates, on a small number of processors. If paramesh utilized

the patch coordinate transformations, the patch blocks could be placed on the same
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processor as corresponding fixed grid blocks, which would allow much faster syn-

chronization. Because this would require significant modifications of paramesh, it

is not a promising route, but it should be taken into account for future implemen-

tations of the moving patches technique with another grid system, such as carpet

in the cactus framework.

In addition to efficiency gains, the moving patches technique can be fully

implemented by

• Allowing AMR on the patches

• Integrating patches with other hahndol tools such as the Apparent Horizon

finder

• Adding a mechanism to “peel off” patch levels as the patches approach each

other

• Tuning the coordinate transformation to make it smoother

The first two items are related to the infrastructure of hahndol and paramesh,

the mechanism for grid refinement and how coordinates are treated. paramesh han-

dles grid refinement at the block level. When it refines a block, paramesh changes it

into a parent block and creates eight child (leaf ) blocks that cover the same portion

of the grid as the parent block at twice the resolution. The parent block continues

to be updated with data from the child blocks. When paramesh derefines blocks, it

deactivates the eight child blocks of a common parent block and changes the parent

block back into a leaf block. If the derefined blocks are on the minimal refinement
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level of a patch, the parent block no longer has valid data since paramesh cannot

use the coordinate transformation information that exists at the hahndol level.

The minimum patch level can be treated as the minimum refinement level for AMR

on the patch grid, but this constrains AMR and leads to poor grid refinement. Also,

currently the patch boundaries are specified as static coordinate ranges because of

the complexity of describing a more generic boundary consisting of the outer faces

of the blocks in the minimum patch level.

If AMR ran on the patches, the patch boundaries no longer could be described

as simple coordinate ranges, and a new boundary specification would be required.

To integrate moving patches with other hahndol tools, all of hahndol would

need to be capable of using the patch coordinate transformations. Currently parts

of hahndol use the paramesh block coordinate information explicitly, such as to

calculate the distance of a grid point to a puncture. All such procedures would need

to make the appropriate transformations to the coordinate information provided

by paramesh. Though straightforward, this process must be done for all such

procedures.

The second two items are directly related to the moving patches technique. As

the punctures inspiral in a black hole binary simulation using moving patches, the

moving patches will eventually overlap. While in principle this is acceptable since

they would interact through their synchronizations with the fixed grid, it would

introduce additional error because the exchange between patches would result from

interpolations to and from the fixed grid. Also, the synchronizations would need to

be carefully sequenced.
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A better alternative is to eliminate the minimum refinement level on each

patch and add that level to the fixed grid. This “peeling off” of the patch level

would consist of adding the level to the fixed grid using AMR, interpolating to the

new maximum fixed grid level from the patches, and eliminating the level from the

patches. The patch refinement levels would be peeled off in sequence as the separa-

tion of the patch outer boundaries subsequently approached some minimum, such as

√
3

2 times the block size. A similar procedure would work for patch implementations

on other platforms such cactus/carpet.

The coordinate transformation in the current implementation of moving patches

produced smooth results in the tests. The patch velocities are adjusted at each iter-

ation, which prevents large jumps in the velocities or the coordinate transformations

derived from them. Nonetheless, smoother velocities would likely benefit both the

evolution on the patches, which uses the patch velocities in the additional advection

terms, and the synchronization of data between the patches and the fixed grid, which

uses the derived coordinate transformations. As suggested previously, a feedback

control system similar that used for dual coordinates [94] seems promising. In the

case of moving patches, the control parameter for such as system would be the patch

velocity q̇i
A itself, and the condition would be q̇i

A → 0. This would be achieved by

adjusting ∂2q̇i
A/∂2

t .
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4.4.3 Future Applications

In addition to decreasing error associated with black hole advection in simula-

tions, the moving patches technique would allow larger time steps when used with

an implicit time integration scheme. Currently hahndol and other NR codes use

explicit time integration schemes,3 such as RK4. In such schemes, the Courant–

Friedrichs–Lewy (CFL) condition,

∆t ≤ ∆tC = C∆x , (4.15)

limits the time step ∆t to a multiple of the grid resolution ∆x. The multiplier C

is a constant determined by the system of equations and the integration scheme.

For BSSNOK simulations using hahndol and RK4, 0.5 < C < 1.0. If ∆t >

∆tC , the system solution will not converge in time. The CFL condition reflects

the requirement that the domain of dependence of a given grid point (the portion

of the simulation domain that affects the point) from the finite difference stencils

include the analytical domain of dependence from the differential equations. The

analytical domain of dependence is determined by the fastest characteristic modes

of the system. The CFL condition requires that the time step be small enough that

modes outside the finite difference domain of dependence of a grid point cannot reach

the point. For BSSNOK using 1+log slicing, the fastest modes can be non-physical

gauge waves [5], in which case ∆tC is determined by non-physical dynamics.

3Lau et al.[65] demonstrated a implicit-explicit (IMEX) integrator for simulations of a scalar

field on curved backgrounds, but at this time implicit time integration is not used for simulations

of black hole binary mergers in full general relativity.
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The fields’ time variation also bounds the time step by some ∆tD that char-

acterizes the fastest physical dynamics of the system. If ∆t > ∆tD, the simulation

will not accurately resolve these dynamics. To get a rough estimate of this bound,

consider a moving punctures inspiral simulation, like the one used to test moving

patches. For a field ua, the relative change in one time step is approximately

∣∣∣∣
∆ua

ua

∣∣∣∣ = ∆t

∣∣∣∣
vi

D ∂iua

ua

∣∣∣∣ (4.16)

= ∆t
∣∣vi

D ∂i log ua

∣∣ . (4.17)

For accuracy, we can impose the condition that |∆ua/ua| < ε. Then solving for ∆t,

we have that

∆t < ∆tD ≡
ε

|vi
D ∂i log ua|

. (4.18)

We can estimate ua ∼ rn
p where rp is the distance to the nearest puncture, and

|n| ≤ 3 based on [54] where the strongest radial dependence is r−3 for Ãij . Set

n ≡ 3 for definiteness, assuming the strongest radial dependence and discarding the

negative sign because of the absolute value function present in Eq. (4.18). Also,

express rp as a multiple k of the grid spacing ∆x. We then find

∆tD =
ε k ∆x

3vD
. (4.19)

Fig. 4.17 shows that the puncture velocities are less than 0.15 for the first two-thirds

of I224. So take vD = 0.15 to be a representative velocity for the dynamics of the

inspiral. Setting ε = 0.01 for a conservative condition that the field changes no more

than 1% in a timestep and substituting for vD, we have

∆tD =
k ∆x

45
. (4.20)
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For I224, the grid spacing is approximately 75 points/M . The apparent horizon is

approximately 0.5M from the puncture in binary simulations, which corresponds to

k ∼ 38 above. So at the apparent horizon ∆tD ∼ ∆x ∼ ∆tC . Because the apparent

horizon lies inside the event horizon, and physical influences cannot escape the event

horizon, this gives us a good estimate of ∆tD.

Implicit time integration schemes are not subject to the CFL condition, but

they are still limited by the dynamics of the simulation. They are also computa-

tionally expensive, so even if ∆tD were slightly larger than ∆tC , an implicit scheme

would not increase the speed of the simulation since the slightly larger time steps

would take considerably longer. If we could slow down the dynamics considerably,

we could use an implicit scheme with much larger time steps to speed up our simu-

lations. Moving patches offers much slower dynamics, so we could use much larger

time steps on the patches. We can see from Eq. (4.19), that decreasing vD leads to

an arbitrarily large ∆tD. Taking ε = 0.01 as before and setting vD = 0.001 to esti-

mate the very small puncture velocity on a moving patch, we see that ∆tD ∼ 3k∆x.

For points well within the apparent horizon (k ∼ 33), ∆tD ∼ 100∆x, which would

result in much faster simulations, even with the computational expense of implicit

time integration. Such a combined strategy could be used on the moving patches

while explicit time integration was used on the fixed grid. Since the fixed grid would

have considerably larger grid spacing than the finest portion of the moving patches,

it could use proportionally larger time steps.

The estimates above show that the moving patches technique could allow much

faster simulations if combined with implicit time integration. Though they are
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rough, they demonstrate the dependence of the time steps on the physical dynam-

ics, and the enormous efficiency gain possible when black hole motion is minimized.

Combined with the accuracy gains in frequency and angular momentum demon-

strated in the inspiral tests, they show the great potential this technique has for

improving black hole simulations.
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Appendix: Mathematical Details

A.1 Spatial Analogs

The Einstein tensor Gab appearing in Einstein’s equations is defined as

Gab ≡ Rab − 1
2R gab , (21)

where Rab is the Ricci tensor and R is the Ricci scalar.

In the “”3+1” decomposition of spacetime, these and other four-dimensional

tensors have spatial analogs on the three-dimensional spatial slices. The spatial

tensors have the same definitions and expressions as the spacetime tensors with gab

replacing gab. Below I give explicit expressions for these quantities.

The spatial metric gab defines distances on a spatial slice. It has an inverse gab,

defined by gabgbc = δa
c. gab lowers contravariant indices on spatial tensors, and gab

raises covariant indices on spatial tensors. Because the slice is three-dimensional,

the trace of gab is 3.

Given gab, there is a unique derivative Da that satisfies the condition Dagbc = 0.

This is the covariant derivative for the spatial metric. The spatial Christoffel symbol

(usually called the spatial connection)

Γa
bc = 1

2g
ad (gdb,c + gdc,b − gbc,d) (22)

provides the connection between Da and the ordinary derivative ∂a.

Using gab and Γa
bc, the spatial versions of the Riemann tensor, Ricci tensor,
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and Ricci scalar are

Rd
abc = Γd

ac,b − Γd
bc,a + Γe

ac Γ
d

eb − Γe
bc Γ

d
ea , (23)

Rab = Rc
acb , (24)

and

R = Ra
a . (25)

A.2 Lie Derivatives

According to (C.2.14) of [108], the Lie derivative of an arbitrary tensor field is

LvT
a1...ak

b1...bl
= vc ∇cT

a1...ak
b1...bl

−
k∑

i=1

T a1.c.ak
b1...bl

∇cv
ai+

l∑

j=1

T a1...ak
b1.c.bl

∇bj
vc , (26)

where va is the vector field with respect to which the Lie derivative is defined,

T a1...ak
b1...bl

is the arbitrary tensor field with k contravariant and l covariant indices,

and ∇a is any derivative operator.4 In the explicit sums, c is a dummy index that

replaces one of the tensor field indices, while the missing index appears on v or ∇

as appropriate.

A.2.1 Lie Derivatives of γij and Kij

From Eq. (26) the Lie Derivatives of gij and Kij are

Lβ gij = βk∂kgij + gik ∂jβ
k + gkj ∂iβ

k , (27)

4In this section, for convenience and for consistency with the referenced equation, the dimension

of tensors is not indicated by typeface. All tensors are of the same unspecified dimension.
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and

LβKij = βk∂kKij + Kik ∂jβ
k + Kkj ∂iβ

k . (28)

A.2.2 Additive Property of Lie Derivatives

If va = ua + wa, then Eq. (26) becomes

Lu+wT a1...ak
b1...bl

= (uc + wc)∇cT
a1...ak

b1...bl

−
k∑

i=1

T a1.c.ak
b1...bl

∇c(u
ai + wai) +

l∑

j=1

T a1...ak
b1.c.bl

∇bj
(uc + wc) . (29)

The addition of vectors and the derivative operator are linear. So, after distributing

ua and wa and collecting terms by vector, Eq. (29) becomes

Lu+wT a1...ak
b1...bl

= LuT
a1...ak

b1...bl
+ LwT a1...ak

b1...bl
(30)

= (Lu + Lw) T a1...ak
b1...bl

. (31)

Therefore, the Lie derivative is additive in the vector field va, with respect to which

it is defined.

A.2.3 Lie Derivatives of Tensor Densities

A tensor density is a tensor times gw/2 where g is the determinant of the

metric. w is the weight of the tensor density. If T is the tensor density, βa is the

vector along which the Lie derivative is computed, and ∂ is the derivative operator

associated with the metric, then according to (22) of [5],

LβT = [LβT ]w=0
∂ + w T∂kβ

k . (32)
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The first term is the Lie derivative of T treated as a tensor using the ∂ derivative

operator, and the second term is the additional term due to the factor of gw/2.

So from Eq. (32), the omitted Lβ terms are

Lβ φ = βk∂kφ + 1
6φ ∂kβ

k , (33)

Lβ g̃ij = βk∂kg̃ij + g̃ik ∂jβ
k + g̃kj ∂iβ

k − 2
3 g̃ij ∂kβ

k , (34)

LβÃij = βk∂kÃij + Ãik ∂jβ
k + Ãkj ∂iβ

k − 2
3Ãij ∂kβ

k , (35)

and

LβK = βk∂kK . (36)

K is a scalar, and so its Lie derivative is just the partial derivative along βi.
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