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Transition metal dichalcogenides (TMDCs) have attracted extensive interests due 

to outstanding electronic, optical, and mechanical properties, thus are highly promising in 

nanoelectronic device applications. However, comprehensive understanding of phonon 

mediated thermal transport in TMDCs is still lacking despite the important roles they play 

in determining the device performance. The topics requiring further explorations include 

the full Brillouin zone (BZ) phonons, temperature dependence of thermal properties, and 



  

structural-thermal relations of TMDCs. In determining above phonon transport 

characteristics, the anharmonic effect plays a central role.  

In this thesis, we present studies on the phonon properties of two TMDC materials, 

namely MoS2 and HfS2. In the first study, effect of folding on the electronic and phonon 

transport properties of single-layer MoS2 are investigated. The atomic structure, ground 

state electronic, and phonon transport properties of folded SLMoS2 as a function of 

wrapping length are determined. The folded structure is found to be largely insensitive to 

the wrapping length. The electronic band gap varies significantly as a function of the 

wrapping length, while the phonon properties are insensitive to the wrapping length. The 

possibility of modulating the gap values while keeping the thermal properties unchanged 

opens up new exciting avenues for further applications of MoS2. 

In the second study, we show that anharmonic phonon scattering in HfS2 leads to a 

structural phase transition. For the first time, we discover the 3R phase above 300 K. In 

experiments, we observe a change in the first-order temperature coefficients of A1g and Eg 

mode frequencies, and lattice parameters 𝑎𝑎  and 𝑐𝑐  at room temperature. Moreover, an 

anomalous phonon stiffening of A1g mode below 300 K is also observed. The first-principle 

simulations find a phase transition at 300 K which is characterized by a change in the 

stacking order from AAA to ABC. The simulations are validated by good agreements with 

experimental measurements on all the above temperature coefficients. By comparing DFT 

calculations under harmonic and anharmonic phonon approximation, we attribute the phase 

change to be due to phonon anharmonicity. The anomalous A1g phonon stiffening is due to 

decrease of the intralayer thickness of the HfS2 trailayer, as temperature increases. 
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in a trilayer) and interlayer distance hVDW (vertical distance between adjacent 

S layers) of HfS2. The effective interaction dominating out-of-plane vibrational 
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Figure 6.1. Schematics of proposed study on folding along different lattice orientations. 

Due to the hexagonal closed pack lattice structure, the angle between wrap axis 

and armchair orientation can vary between 0° to 30° to create different folds.
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Chapter 1 Introduction 

Transition metal dichalcogenides (TMDCs) have attracted overwhelming interests 

due to their potential applications in next-generation electronic, optoelectronic, and 

thermoelectric devices [1]. In all these applications, a comprehensive understanding of heat 

transfer is important as it is related to heat dissipation, energy conversion, and thermal 

management at a system or device level [2, 3]. In electronic and optoelectronic devices, the 

heat generation can significantly raise the operating temperature, which limits the device 

performance or even leads to device failure. Owing to the atomic thickness of two-

dimensional (2D) TMDCs, heat dissipation is even more challenging in TMDC-based 

devices. In thermoelectric devices, on the other hand, low thermal conductivity materials 

are preferred. This is because the efficiency of thermoelectricity is inversely related to the 

thermal conductivity. To design devices with desired thermal properties, it is essential to 

understand thermal transport in TMDCs.  

1.1 Literature review 

The growing interests on TMDCs can be traced back to the wide application of 

graphene. Ever since the discovery of atomically thin graphene in 2004 [4], the research 

filed on graphene took off rapidly. With its unique electronic band structure [5] , high 

carrier mobility [6], and superior thermal conductivity [7], graphene is highly promising in 

the application of electronic devices. However, due to its zero-bandgap or semi-metal 

nature, field effect transistors (FET) and optoelectronic devices built from graphene exhibit 
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very small on/off ratio. Various bandgap engineering approaches including nanostructuring 

[8], hydrogen adsorption [9], and applying high electric field [10] have been proposed to 

create a sizeable bandgap in graphene. Nevertheless, these approaches add to the device 

design complexity and often result in a decrease in the mobility. On the contrary, TMDCs 

such as MoS2 (1.29 eV) [11], WS2 (1.35 eV) [12], and HfS2 (1.2 eV) [13] have finite 

bandgap and promise to be a better candidate than graphene in electronic devices [14, 15]. 

Moreover, TMDCs have long been shown to possess a wide range of electronic, thermal, 

and optical properties [16]. Together with recent developments in sample preparation [17, 

18] and device fabrication [19], there has been a resurgent of research interests in TMDCs 

over the past decade. 

TMDCs are a class of materials with formula MX2, where M is a transition metal 

element (Mo, Hf, Ti, Zr and so on) and X is a chalcogen element (S, Se and so on). They 

share common layered structures where one layer of M atoms is sandwiched by two layers 

of X atoms, as shown in Figure 1.1(a). Known structures of TMDCs are characterized by 

trigonal prismatic (2H), octahedral (1T), or demerized 1T (1T′) coordination of the metal 

atom. The in-plane atoms are connected by strong covalent bonds while adjacent layers are 

held together by weak interlayer van der Waals (VDW) interactions. 
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Figure 1.1. (a) Atomic structure of SL TMDCs in trigonal prismatic (2H), distorted octahedral (1T) and 
dimerized (1T’) phases. The arrows denote the unit cell vectors. (b) Electronic band structure of bulk, 
quadrilayer, bilayer, and SL MoS2. The valance band and conduction band are represented by solid blue and 
red lines, respectively. The arrow indicates the lowest energy transition. With decreasing number of layers, 
the indirect bandgap in bulk gradually becomes the direct bandgap in SL. (c) Cross section of a WS2-
based FET. Thin flakes of WS2 coupled with an ionic liquid dielectric are placed between the gate electrode 
and substrate. (d) Schematic of SLMoS2-based FET. Figures are adapted with permissions from: (a) [20] © 
2017 Springer Nature (b) [21] © 2010 American Chemical Society (c) [22] © 2012 American Chemical 
Society (d) [14] © 2011 Springer Nature.  
 

Numerous works have studied the electronic and optical properties of TMDCs. The 

electronic band structure of TMDCs can be semiconducting (MoS2, WS2) [11, 12] or 

metallic (NbSe2) [23]. At Γ  point, the bandgap generally undergoes a transition from 

indirect to direct when exfoliated into 2D form [21, 24], as is shown in Figure 1.1(b). The 

finite bandgap and ultrathin thickness of single-layer (SL) TMDCs has enabled fabrication 

of FET with high on/off ratio and mobility [14, 22] [see Figure 1.1(c) and (d) for examples]. 

The electronic band structure can also affect optical properties of TMDCs. For example, in 
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MoS2, an increase in bandgap energy leads to improvements in photoconductivity, 

absorption spectra, and photoluminescence [21, 24]. As SLMoS2 has a larger bandgap than 

bulk MoS2, stronger photoluminescence of SLMoS2 enables its application in photostable 

sensors which can be used to probe nanoscale dimensions. Charge density wave (CDW), a 

phenomenon where lattice distortions lead to modulation of electron charge density, has 

also been discovered in TMDCs [25]. Another commonly seen state in bulk TMDCs is the 

superconductivity phase, which can either compete or coexist with CDW phase [26, 27]. 

These findings have evoked a renewed interest in the theory behind CDW and 

superconductivity [25, 28]. 

Due to its importance in the design and application of electronic devices, thermal 

transport in TMDCs has also been intensively investigated over the past few years. MoS2 

has received most attentions due to its promising electronic [24], optical [29], and catalytic 

[30] properties. Different experimental techniques have been applied to measure the 

thermal conductivity (𝜅𝜅) of MoS2. Using Raman method, the room-temperature 𝜅𝜅 in SL 

and 11-layer MoS2 was measured to be 34.5 ± 4 W/m/K [31] and 52 W/m/K [32], 

respectively. These values are significantly smaller than that of graphene. Another 

experiment using the same method shows that 𝜅𝜅 is 62.2 W/m/K at room-temperature which 

decreases to 7.45 W/m/K at 450K [33]. They attribute this temperature-dependence of 

thermal conductivity to increasing anharmonic phonon scattering as temperature is raised. 

The thermal bridge method has also been used to determine the room temperature 𝜅𝜅 of 4-

layer and 7-layer MoS2 to be 44-50 W/m/K and 48-52 W/m/K, respectively [34]. 𝜅𝜅 of bulk 

MoS2 has also been measured using time-domain thermoreflectance (TDTR) method to be 
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80±22 W/m/K [35]. Although the experimental data are fairly consistent, the theoretical 

calculations of MoS2 𝜅𝜅  scatter over almost one order of magnitude. A variety of 

computational approaches has been adopted in the theoretical calculations. Combining the 

non-equilibrium Green’s function (NEGF) and density functional theory (DFT) method, 

the calculated room-temperature 𝜅𝜅 of MoS2 nanoribbons is ~674 W/m/K (armchair) and 

~841 W/m/K (zigzag), which serve as the upper limits of 𝜅𝜅 [36]. The anisotropy in the in-

plane 𝜅𝜅 is attributed to different numbers of available channels for phonon transport along 

armchair and zigzag direction, in the frequency range [150, 200] cm-1. Another calculation 

estimates room-temperature 𝜅𝜅 to be ~300 W/m/K by employing a variational approach for 

solving the linearized phonon Boltzmann transport equation (BTE) [37]. It is found that for 

phonons in MoS2, the Normal scattering dominates over Umklapp scattering up to room-

temperature. On the other hand, several other calculations suggest a much lower 𝜅𝜅 at room-

temperature. Iterative solution of the phonon BTE shows that the room-temperature 𝜅𝜅 of 

bulk MoS2 is 98 W/m/K [38]. In this work, the MoS2 𝜅𝜅 changes from 98 W/m/K for bulk 

to 138 W/m/K for SL, exhibiting strong thickness dependence. Such increase in 𝜅𝜅 is a result 

of changes in phonon dispersion and anharmonicity induced by the change in thickness. 

Applying the single-mode relaxation time approximation (SMRTA) to solve the phonon 

BTE, a value of 83 W/m/K is obtained for 𝜅𝜅 of a typical sample size of 1 𝜇𝜇𝜇𝜇 at room 

temperature [39]. When the relaxation times (RTs) are estimated using the Klemens’ theory 

rather than phonon BTE, 𝜅𝜅 at room-temperature of SLMoS2 is calculated to be 26 W/m/K 

[40]. A similar value of 23.2 W/m/K for 𝜅𝜅 at room-temperature of SLMoS2 is obtained 

using the NEGF method [41]. The much lower 𝜅𝜅 compared to graphene is explained by 
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showing that the dominant phonon mean free path (MFP) is 30-fold smaller than that of 

graphene. The deviation among results of different theoretical calculations are attributed 

to different approximations and force fields adopted.  

Except MoS2, thermal properties of some other TMDCs have also been examined 

by experimental or theoretical methods. For Mo and W-based TMDCs, the in-plane and c-

axis 𝜅𝜅 have been calculated by adopting SMRTA to solve phonon BTE [42]. The result 

shows that the in-plane 𝜅𝜅 is always larger than the c-axis 𝜅𝜅 at all temperature. The reason 

is attributed to the weak interlayer VDW interactions. In WS2, 𝜅𝜅 at room-temperature of 

SL and bilayer are measured by Raman method to be 32 and 53 W/m/K, respectively [43]. 

This result agrees well with another DFT calculation that produces a value of 31.8 W/m/K 

for 𝜅𝜅 of SL [44]. In MoSe2, optothermal measurements obtain 59±18 and 42±13 W/m/K 

for the 𝜅𝜅 of SL and bilayer sample [45]. Another experiment using TDTR method gives a 

value of 35 W/m/K for 𝜅𝜅 of bulk MoSe2 [35]. These experimental data are consistent with 

theoretical calculations using non-equilibrium MD (NEMD) simulations that obtain 

43.88±1.33 (armchair) and 41.63±2.5 (zigzag) W/m/K for SLMoSe2 [46]. The room-

temperature 𝜅𝜅 for SLWSe2 with a typical sample size 1 𝜇𝜇𝜇𝜇 was found to be 3.935 W/m/K 

by solving phonon BTE, which is lower compared to other TMDCs [47]. The ultralow 𝜅𝜅 

is attributed to the ultralow Debye frequency and heavy atom mass of WSe2. The 𝜅𝜅 of HfS2 

was calculated by solving phonon BTE, of which the results are ~9 W/m/K for bulk [48] 

and ~14 W/m/K for SL [49]. To date, no experimental measurement data of HfS2 𝜅𝜅 is 

available. 
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Above published results on the thermal properties of TMDCs are summarized in 

Table 1.1. Various experimental and theoretical methods have been used to examine 

thermal transport in 2D TMDCs.  

Table 1.1. Summary of studies on TMDCs thermal transport properties. “Exp.” and “Theo.” represent 
experimental and theoretical studies, respectively. In the “number of layers” column, “∞” represents bulk. 
In the “thermal conductivity” column, room-temperature values are given if no specification is indicated. We 
limit our literature search mostly to the past decade in order to examine the most recent development in the 
research field of TMDCs. Representative works for each kind of experimental or computational method have 
been collected. 
 

  Ref. Method Number 
of layers 

Thermal conductivity 
(W/m/K) 

MoS2 

Exp. 

[31] Raman spectroscopy 1 34.5±4 
[32] Raman spectroscopy 11 52 

[33] Raman spectroscopy 1 62.2 at 300K 
7.45 at 450K 

[34] Thermal bridge 4 44-50 
7 48-52 

[35] TDTR ∞ 80±22 

Theo. 

[36] NEGF + DFT 1 ~674 (armchair)  
~841 (zigzag) 

[37] BTE ∞ ~300 

[38] BTE ∞ 98 
1 138 

[39] BTE 1 83 
[40] Klemens’ theory 1 26 
[41] NEGF 1 23.2 

WS2 
Exp. [43] Raman spectroscopy 1 32 

2 53 
Theo. [44] Slack theory 1 31.8 

MoSe2 
Exp. [45] Optothermal Raman 1 59±18 

2 42±13 
[35] TDTR ∞ 35 

Theo. [46] NEMD 1 43.88±1.33 (armchair) 
41.63±2.5 (zigzag) 

WSe2 Theo. [47] BTE 1 3.935 

HfS2 Theo. [48] BTE ∞ ~9 
[49] BTE 1 ~14 
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In summary, electronic and thermal transport properties of TMDCs have been 

widely studied in the past decade. The large and tunable bandgap, strong 

photoluminescence, and novel physics (CDW, superconductivity) of TMDCs suggest 

promising applications in nanoelectronics and optoelectronics. Thermal properties of 

TMDCs have been studied both experimentally and theoretically, where some general 

features such as low thermal conductivity and highly orientation anisotropic phonon 

properties are discovered. From a theoretical perspective, various computational 

approaches including molecular dynamics (MD), DFT and phonon BTE have been adopted 

to study thermal transport in TMDCs. 

1.2 Challenges in thermal transport modeling 

Despite the great progress made in understanding thermal properties of TMDCs, 

there are still many questions remaining to be answered. In this thesis, we will focus on the 

challenges in modeling thermal transport of TMDCs. 

First, an understanding of phonon properties in the full Brillouin zone (BZ) is 

lacking for some TMDCs. Phonons, the quantized collective modes of lattice vibrations, 

are the main heat carriers in non-metal crystals. Thermal transport properties of TMDCs 

are dictated by phonons. Full characterization of phonon properties includes phonon 

dispersion relation, group velocity, specific heat, and anharmonicity (RTs, MFPs, and so 

on) [50, 51]. To gain comprehensive knowledge of thermal transport in TMDCs, it is 

essential to examine the full BZ phonon properties. However, available data of the full BZ 

phonon dispersion relation and anharmonicity is still very limited for some TMDCs. For 
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instance, in HfS2, previous studies primarily focus on properties of phonons at the BZ 

center Γ [52, 53, 54, 55] whereas an understanding of phonons away from Γ is lacking, 

despite their relevance in determining the material thermal properties [56]. 

The second challenge lies in determining the temperature-dependent phonon 

properties of TMDCs. Experimentally, it has already been shown that the thermal 

properties of TMDCs have a strong temperature-dependence [33, 57]. However, only few 

theoretical calculations have been performed to investigate the temperature dependence of 

phonon properties. Gu and Yang calculated temperature dependent thermal conductivity 

of SL MX2 (M=Mo, W, Zr, and Hf, X=S and Se) by solving phonon BTE, which only 

includes three-phonon scattering processes [49]. But four-phonon scattering has been 

shown to contribute a significant portion to the thermal conductivity of solids [58]. It 

remains unclear whether the four-phonon and higher order scattering processes in thermal 

transport of TMDCs can be neglected. The ultralow thermal conductivity of TMDCs 

implies strong phonon anharmonicity and considerable contribution from higher order 

scattering processes, thus further questioning the validity of widely used BTE approach. 

On the other hand, the spectral energy density (SED) method includes anharmonic 

scattering to all orders. Only very recently, researchers have started to apply SED method 

to study thermal transport in TMDCs [59, 60, 61]. Nevertheless, these works are all MD 

simulation-based. Thus, quality of their results is limited by the accuracy of the empirical 

potentials used in MD. It is still challenging to examine the effect of temperature on thermal 

properties of TMDCs. 
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Third, c-axis thermal transport in TMDCs remains relatively unexplored, in 

contrast to the widely studied in-plane thermal transport. Most of the attention is paid to 

the in-plane thermal transport of TMDCs to explore their applications in heat spreading. 

This is because the in-plane thermal conductivity is significantly higher than the c-axis 

thermal conductivity [62, 63]. However, recent studies have suggested that the c-axis 

thermal transport plays a central role in determining the performance of TMDC-based 

devices [64, 65, 14]. It is important to study the c-axis thermal transport in TMDCs. 

Currently, understanding of the c-axis thermal properties is lacking. Several studies have 

calculated the c-axis thermal conductivity of TMDCs including MoS2, WSe2, and MoTe2, 

by solving phonon BTE under the SMRTA [42]. This result contains intrinsic error because 

it has been shown that thermal conductivity of TMDCs obtained from the SMRTA solution 

of BTE differs from the full iterative solution, which is more accurate, by 14%~54% [49]. 

A very recent experiment on MoS2 shows that the c-axis phonon mean free paths (MFPs) 

are at least ~10 nm, significantly larger than the kinetic theory estimate of 1.5-4 nm [66]. 

The existence of long c-axis MFP phonons have also been predicted by first-principle 

calculations in WS2 and WSe2 [49]. More theoretical investigations on the c-axis phonon 

characteristics such as RTs and MFPs are needed. 

Last, artificial structures enabled by twisting, stacking, or folding the flexible 

layered structure of 2D TMDCs have been shown to possess interesting electronic and 

optoelectronic properties [67, 68, 69]. However, thermal properties of these novel 

nanostructures have largely been unexplored. For instance, for MoS2, folding its SL flakes 

leads to a decrease in the interlayer coupling and an enhancement of the photoluminescence 
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emission yield [70]. Tuning the stacking pattern between the bilayers in the folded structure 

can evoke strong valley and spin polarizations [71]. These distinct properties of folded 

MoS2 are favored by valley-tronics and optoelectronics [72]. Nevertheless, the phonons 

and thermal properties of folded MoS2 are not fully understood yet.  

 

1.3 Objectives and outline 

The objective of this thesis is to provide insights into full BZ phonon properties, 

anisotropic thermal transport, and relation between temperature and phonon anharmonicity 

of TMDCs, as discussed in the previous section. This work focuses on modeling phononic 

thermal transport in MoS2 and HfS2. A variety of computational techniques including MD 

(see Sec. 2.2.1), DFT (see Sec. 2.2.2), and Car-Parrinello Molecular Dynamics (CPMD) 

(see Sec. 2.2.3) are used. The outline is as follows: 

In Chapter 2, the theory of phonons and an overview of various computational 

approaches are presented. The harmonic phonon properties including dispersion relation, 

group velocity, and specific heat are determined by the 2nd order terms in the Hamiltonian 

while the anharmonic phonon properties including RTs and MFPs are dominated by the 

higher order terms in the Hamiltonian. The methodologies of calculating the lattice 

Hamiltonian using MD, DFT, and CPMD approaches are presented.  

In Chapter 3, electronic and phonon properties of SL, bilayer, bulk, and folded 

MoS2 are examined. We create folded MoS2 by folding a SLMoS2 sheet onto itself, 

resulting in a racket-shape like edge and a bilayer region (see Figure 3.5). The equilibrium 
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atomic structure of fold MoS2 is obtained using a combination of classical and quantum 

methods. By varying wrapping length, we study how folding alters the configuration of 

MoS2. Subsequently, the electronic bandgap and phonon dispersion relation as a function 

of the wrapping length is determined. Thermal conductivity of folded MoS2 are calculated 

and compared with those of SL, bilayer, and bulk MoS2. 

 In Chapter 4, we present a DFT study of temperature-dependent phonon properties 

of HfS2 based on the quasi-harmonic approximation (QHA) (see Sec. 2.1.2). Phonon 

dispersion relation, group velocity, and specific heat of full BZ phonons are calculated. 

The Grüneisen parameters, derivative of phonon frequency with respect to lattice volume, 

are determined by a series of phonon calculations in deformed HfS2 lattice. The phonon 

RTs are estimated under the Klemens’ theory (see Sec. 2.3.2.1). Temperature effect on 

phonon RTs, phonon MFPs and 𝜅𝜅 are discussed. In addition, the characteristics of LO-TO 

splitting – coupling effect between optical Γ phonons and the electric field generated by 

the atomic displacements of the Γ phonons – are also examined. 

In Chapter 5, a structural phase change of HfS2 at around room-temperature is 

discovered. Such structural change is verified by both experiments and theoretical 

calculations. Raman spectroscopy and X-ray diffraction (XRD) experiments measure 

temperature-dependent Γ phonon frequency and lattice parameters of HfS2, respectively. 

Most notably, a change of temperature coefficient at 300 K is observed in phonon 

frequencies and lattice parameters. Moreover, an anomalous phonon stiffening was 

observed in c-axis phonon mode A1g below 300 K. Phonon frequencies calculated under 

QHA disagree with experimental data. Such disagreement is due to the simplification made 
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on phonon anhamonicity. Using CPMD simulations that consider anharmonicity to all 

orders, agreement between theory and experiments on phonon frequencies and lattice 

parameters are both achieved.  

In Chapter 6, the major contributions of this work are presented. Suggestions for 

possible future work are discussed. 
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Chapter 2 Theory of phonons and computational approach 

A Phonon is a quantum description of atomic vibrations. For a crystalline solid, its 

phonon properties are determined by the interatomic potential or the Hamiltonian of the 

lattice. The harmonic terms in the Hamiltonian give rise to harmonic phonon properties 

while the anharmonic terms dominates the anharmonic phonon properties. Therefore, the 

determination of the lattice Hamiltonian and its derivatives plays a central role in 

examining phonon properties. This can be accomplished using a variety of computational 

approaches, which are categorized by their assumptions made on atomic interactions. 

Using a properly defined Hamiltonian, phonon properties including the dispersion relation, 

group velocity, specific heat, RT and thermal conductivity can be computed. 

2.1 Theory of phonon 

2.1.1 Harmonic phonon 

In this section, the theory of lattice dynamics (LD) under the harmonic 

approximation (HA) will be introduced. The HA assumes that atoms perform small 

oscillations about their equilibrium positions, which is generally true for temperature well 

below the melting temperature of the crystal. 

A crystalline solid is often described by lattice, which is the periodic repetition of 

a unit cell in the real space. A unit cell is defined by three non-coplanar vectors: 𝒙𝒙𝟏𝟏, 𝒙𝒙𝟐𝟐, 

and 𝒙𝒙𝟑𝟑. Consider a crystal with a total number of 𝑁𝑁 = 𝑁𝑁1𝑁𝑁2𝑁𝑁3 unit cells and periodic 

boundary conditions. Each unit cell has 𝑛𝑛𝑎𝑎 atoms inside. Therefore the total number of 
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atoms is 𝑁𝑁𝑎𝑎 = 𝑛𝑛𝑎𝑎𝑁𝑁. We index the unit cells with a triplet of integers 𝑙𝑙 = (𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3) where 

𝑙𝑙𝛼𝛼 ∈ [1,𝑁𝑁 𝛼𝛼] (𝛼𝛼 = 1,3). The equilibrium position of the origin of each unit cell can be 

specified by 𝒓𝒓𝒍𝒍 = ∑ 𝑙𝑙𝛼𝛼𝒙𝒙𝜶𝜶3
𝛼𝛼=1 . Let us index the atoms in each unit cell with 𝑏𝑏 ∈ [1,𝑛𝑛𝑎𝑎] and 

represent the vector between origin of the unit cell and the atom by 𝒓𝒓𝒃𝒃, so the position of 

the 𝑏𝑏th atom in the 𝑙𝑙th unit cell is given by 𝒓𝒓(𝑙𝑙𝑙𝑙) = 𝒓𝒓𝒍𝒍 + 𝒓𝒓𝒃𝒃 + 𝒖𝒖(𝒍𝒍𝒍𝒍) where 𝒖𝒖(𝒍𝒍𝒍𝒍) is the 

displacement of this atom from its equilibrium position. Only the atom displacement is 

time dependent, therefore we have 𝒓̇𝒓(𝑙𝑙𝑙𝑙)=𝒖̇𝒖(𝑙𝑙𝑙𝑙). 

The harmonic phonon theory can be easily derived using the LD method. We start 

by deriving the equation of motion (EOM) of all atoms in the lattice using the Lagrangian’s 

method. Choosing the coordinates of all atoms as the generalized coordinates, the 

Lagrangian of a crystal is given by 

 ℒ = �
𝑚𝑚𝑏𝑏𝑟̇𝑟𝛼𝛼(𝑙𝑙𝑙𝑙)2

2
𝑙𝑙𝑙𝑙𝑙𝑙

− 𝑈𝑈 (2.1) 

where 𝑚𝑚𝑏𝑏 is the atom mass, U is the potential energy of the crystal. Replacing 𝒓̇𝒓(𝑙𝑙𝑙𝑙) with  

𝒖̇𝒖(𝑙𝑙𝑙𝑙) and imposing the HA that assumes small atom displacements, the potential energy 

can be expanded into a Taylor series around the equilibrium coordinates as 

 
𝑈𝑈 = 𝑈𝑈0 + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)

�
0
𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)

𝑙𝑙𝑙𝑙𝑙𝑙

+
1
2

� Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′)𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)𝑢𝑢𝛽𝛽(𝑙𝑙′𝑏𝑏′)
𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑏𝑏′𝛽𝛽

+ 𝑂𝑂(𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)𝑢𝑢𝛽𝛽(𝑙𝑙′𝑏𝑏′)𝑢𝑢𝛾𝛾(𝑙𝑙′′𝑏𝑏′′)) 

(2.2) 

The first term is a constant energy. The second term has to vanish since we are expanding 

about the equilibrium position, the gradients of the potential energy that appear in the 

coefficients are all zeros. The second term is the summation of 2nd order derivatives of the 
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potential energy with respect to the displacements of pairs of atoms, multiplied by the 

displacements of the atoms. The coefficient Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′) is a 3𝑁𝑁𝑎𝑎 × 3𝑁𝑁𝑎𝑎 matrix which is 

usually referred to as the force constant matrix 

 Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′) =
𝜕𝜕2𝑈𝑈

𝜕𝜕𝜕𝜕𝛼𝛼(𝑙𝑙𝑙𝑙)𝜕𝜕𝜕𝜕𝛽𝛽(𝑙𝑙′𝑏𝑏′)
 (2.3) 

. The higher than 2nd order terms in Eq. (2.2) are neglected under the HA. 

Taking Eq. (2.2) back into Eq. (2.1), we have 

 ℒ = �
𝑚𝑚𝑏𝑏𝑢̇𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)2

2
𝑙𝑙𝑙𝑙𝑙𝑙

−
1
2

� Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′)𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)𝑢𝑢𝛽𝛽(𝑙𝑙′𝑏𝑏′)
𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑏𝑏′𝛽𝛽

 (2.4) 

Using Eq. (2.4), we arrive at the Euler-Lagrangian EOM of the atoms 

 𝑚𝑚𝑏𝑏𝑢̈𝑢𝛼𝛼(𝑙𝑙𝑙𝑙) = − � Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′)𝑢𝑢𝛽𝛽(𝑙𝑙′𝑏𝑏′)
𝑙𝑙′𝑏𝑏′𝛽𝛽

 (2.5) 

Next, we assume a plane-wave solution that incorporates periodicity of the lattice as 

 𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙) =
1

�𝑚𝑚𝑏𝑏
𝐴𝐴𝛼𝛼(𝒒𝒒; 𝑏𝑏)𝑒𝑒𝑖𝑖𝒒𝒒∙𝒓𝒓𝒍𝒍−𝑖𝑖𝑖𝑖(𝒒𝒒)𝑡𝑡 (2.6) 

where 𝒒𝒒  is the wavevector, 𝐴𝐴𝛼𝛼(𝒒𝒒; 𝑏𝑏)  is the eigenvector, 𝜔𝜔(𝒒𝒒)  is the frequency. The 

wavevector 𝒒𝒒 is restricted by the size of the lattice through the Born-von Karman boundary 

conditions [73]. Here we introduce the reciprocal lattice vectors 𝒚𝒚𝜶𝜶(𝛼𝛼 = 1,3) that satisfy 

relation with the real-space lattice vectors 𝒙𝒙𝜶𝜶𝒚𝒚𝜷𝜷 = 2𝜋𝜋𝛿𝛿𝛼𝛼𝛼𝛼 . The allowed wavevector is 

given in terms of the reciprocal lattice vector as 

 𝒒𝒒 = �
𝑛𝑛𝛼𝛼
𝑁𝑁𝛼𝛼

𝒚𝒚𝜶𝜶
𝛼𝛼

,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝛼𝛼 ∈ [0,𝑁𝑁𝛼𝛼 − 1] (2.7) 



 

 

17 

 

In this way, we have defined a one-to-one mapping between the real-space lattice and the 

reciprocal space lattice. From now on, we will work in the 𝒒𝒒-space. 

Substituting Eq. (2.6) into Eq. (2.5), we obtain  

 𝜔𝜔2(𝒒𝒒)𝐴𝐴𝛼𝛼(𝒒𝒒; 𝑏𝑏) = �𝐷𝐷𝛼𝛼𝛼𝛼(𝒒𝒒; 𝑏𝑏𝑏𝑏′)
𝛽𝛽𝛽𝛽′

𝐴𝐴𝛽𝛽(𝒒𝒒; 𝑏𝑏′) (2.8) 

where 

 𝐷𝐷𝛼𝛼𝛼𝛼(𝒒𝒒; 𝑏𝑏𝑏𝑏′) = �
1

�𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏′𝑙𝑙′
Φ𝛼𝛼𝛼𝛼(𝒓𝒓𝑙𝑙′;𝑏𝑏𝑏𝑏′)𝑒𝑒

𝑖𝑖𝒒𝒒∙𝒓𝒓𝑙𝑙′  (2.9) 

is a 3𝑛𝑛𝑎𝑎 × 3𝑛𝑛𝑎𝑎 matrix which is called the dynamical matrix. Comparing Eq. (2.8) with Eq. 

(2.5), we find that the initial set of  3𝑁𝑁𝑎𝑎 coupled equations has been separated into 𝑁𝑁 sets 

of 3𝑛𝑛𝑎𝑎 uncoupled equations. 

The solution to Eq. (2.8) can be obtained by diagonalizing the dynamical matrix 

𝐷𝐷, which yields 3𝑛𝑛𝑎𝑎 eigenvalue-eigenvector pairs. One such pair is referred to as a phonon 

mode, indexed by 𝜑𝜑 = (𝒒𝒒, 𝜈𝜈)  where the index 𝜈𝜈  goes over all the 3𝑛𝑛𝑎𝑎  branches. The 

eigenvalue 𝜔𝜔𝜑𝜑  and eigenvector 𝑨𝑨𝜑𝜑  are the frequency and mode shape of the phonon, 

respectively. At each wavevector q, a distinct set of phonon modes is obtained. From a 

microscopic point of view where 𝑁𝑁  is a finite number, there are only 𝑁𝑁  allowed 

wavevectors. From a macroscopic point of view, for a real crystal where 𝑁𝑁 → ∞, the 

wavevector 𝒒𝒒 can be viewed as a continuous variable. In practice, usually a dense 𝒒𝒒 point 

grid is chosen for phonon calculations, in order to represent the continuous 𝒒𝒒 in a real 

material.  
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Having solved Eq. (2.8), we are able to formulate some important harmonic 

phonon properties. Phonon dispersion relation refers to the relation between phonon 

frequency 𝜔𝜔 and wavevector 𝒒𝒒, namely 𝜔𝜔𝜑𝜑(𝒒𝒒). Phonon group velocity originates from the 

wave nature of atom vibrations and is given by 𝒗𝒗𝜑𝜑 = 𝜕𝜕𝜔𝜔𝜑𝜑

𝜕𝜕𝒒𝒒
. In thermal transport, the 

volumetric specific heat is an important quantity connecting the temperature and internal 

energy, which is defined by 

 𝐶𝐶 =
𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕
�
V

 (2.10) 

where 𝐸𝐸  is the internal energy and the derivative is take at constant volume Ω , T is 

temperature. The energy of a specific phonon mode is  

 𝐸𝐸𝜑𝜑 = (𝑛𝑛 +
1
2

)ℏ𝜔𝜔𝜑𝜑 (2.11) 

where 𝑛𝑛 = 1
𝑒𝑒ℏ𝜔𝜔𝜑𝜑/𝑘𝑘𝐵𝐵𝑇𝑇−1

 is the phonon occupation number that obeys Bose-Einstein 

distribution, ℏ is the Planck constant, and 𝑘𝑘𝐵𝐵  is the Boltzmann constant,. The internal 

energy is composed of the ground state energy at 0 K (𝐸𝐸𝐺𝐺𝐺𝐺) and temperature dependent 

vibrational energy (𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 = ∑ 𝐸𝐸𝜑𝜑𝜑𝜑 ). Therefore we can rewrite Eq. (2.10) into 

 𝐶𝐶 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
V

=
𝜕𝜕(𝐸𝐸𝐺𝐺𝐺𝐺 + ∑ 𝐸𝐸𝜑𝜑𝜑𝜑 (𝑇𝑇))

𝜕𝜕𝜕𝜕
�
V

= �
𝜕𝜕𝐸𝐸𝜑𝜑
𝜕𝜕𝜕𝜕

𝜑𝜑

 (2.12) 

Plugging Eq. (2.11) into Eq. (2.12), we get  

 𝐶𝐶𝜑𝜑 = �𝐶𝐶𝜑𝜑
𝜑𝜑

= �𝑤𝑤𝒒𝒒𝑘𝑘𝐵𝐵(
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇

)2
𝜑𝜑

𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇

�𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇 − 1�

2 (2.13) 
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where 𝑤𝑤𝒒𝒒 is the weight for each discrete 𝒒𝒒 point in the BZ.  

2.1.2 Quasi-harmonic phonons 

Under the HA, phonons are described as non-interacting harmonic oscillators. The 

crystal is regarded as an idea phonon gas. Some of the thermodynamics properties, such as 

the specific heat, can be explained by the HA. However, there are some well-known 

thermodynamics properties of crystals, such as thermal expansion and thermal 

conductivity, that cannot be accounted for by the HA [74]. In a perfect crystal, harmonic 

phonon properties are independent of the configuration or the volume of the lattice, leading 

to zero thermal expansion coefficient (TEC) at all temperature. Moreover, no scattering 

between phonons under the HA would lead to an infinite thermal conductivity. To resolve 

above paradox, anharmonic effects have to be considered. 

One attempt to consider the phonon anharmonicity in thermodynamics properties 

evaluation, is by adopting the quasi-harmonic approximation (QHA). In the QHA theory, 

the lattice anharmonicity is restricted to thermal expansion while the phonons are still 

described as harmonic oscillators within the HA [75, 76, 77, 78]. The anharmonicity is 

accounted for by the volumetric dependence of phonons.  

To obtain phonon properties, one has to define an equilibrium lattice configuration 

first. In the QHA theory, the equilibrium lattice configuration is found by minimizing the 

Helmholtz free energy at a specific temperature. Starting from the HA, the partition 

function of a phonon mode with frequency 𝜔𝜔𝜑𝜑 is given by  
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 𝑍𝑍𝜑𝜑 = �𝑒𝑒−(𝑛𝑛+12)
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇

∞

𝑛𝑛=0

= 𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑
2𝑘𝑘𝐵𝐵𝑇𝑇� 𝑒𝑒−

𝑛𝑛ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇

∞

𝑛𝑛=0

=
𝑒𝑒−

ℏ𝜔𝜔𝜑𝜑
2𝑘𝑘𝐵𝐵𝑇𝑇

1 − 𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇

 (2.14) 

The partition function due to the vibrational contribution of the lattice consisting all the 

harmonic oscillators is  

 𝑍𝑍 = �𝑍𝑍𝜑𝜑
𝜑𝜑

= �
𝑒𝑒−

ℏ𝜔𝜔𝜑𝜑
2𝑘𝑘𝐵𝐵𝑇𝑇

1 − 𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇𝜑𝜑

 (2.15) 

Therefore, the Helmholtz free energy from the vibrational contribution is [79] 

 𝐹𝐹𝑣𝑣 = 𝑘𝑘𝐵𝐵𝑇𝑇 ln𝑍𝑍 = �𝑤𝑤𝒒𝒒 �
ℏ𝜔𝜔𝜑𝜑

2
− 𝑘𝑘𝐵𝐵𝑇𝑇 ln(1 − 𝑒𝑒−

ℏ𝜔𝜔𝜑𝜑
𝑘𝑘𝐵𝐵𝑇𝑇)�

𝜑𝜑

 (2.16) 

By including the ground state energy 𝐸𝐸𝐺𝐺𝐺𝐺 of the lattice, we get the total Helmholtz free 

energy of the lattice 

 

𝐹𝐹({𝑎𝑎},𝑇𝑇) = 𝐸𝐸𝐺𝐺𝐺𝐺({𝑎𝑎}) + 𝐹𝐹𝑣𝑣({𝑎𝑎},𝑇𝑇) 

= 𝐸𝐸𝐺𝐺𝐺𝐺({𝑎𝑎}) +
1
2
�𝑤𝑤𝒒𝒒ℏ𝜔𝜔𝜑𝜑({𝑎𝑎})
𝜑𝜑

− 𝑘𝑘𝐵𝐵𝑇𝑇�𝑤𝑤𝒒𝒒 ln�1 − 𝑒𝑒−
ℏ𝜔𝜔𝜑𝜑({𝑎𝑎})
𝑘𝑘𝐵𝐵𝑇𝑇 �

𝜑𝜑

 

= 𝐸𝐸𝐺𝐺𝐺𝐺({𝑎𝑎}) + 𝐹𝐹𝑣𝑣0({𝑎𝑎}) + 𝐹𝐹𝑣𝑣𝑇𝑇({𝑎𝑎},𝑇𝑇) 

(2.17) 

where {𝑎𝑎} represents a set of lattice parameters defining the lattice configuration, 𝐹𝐹𝑣𝑣0 is the 

zero-point vibrational energy. By varying {𝑎𝑎}  and finding the one with the minimum 

Helmholtz free energy given by Eq. (2.17), the equilibrium lattice configuration at specific 
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temperature 𝑇𝑇 is obtained. Subsequently, phonon dispersion relation can be determined by 

performing LD (see Sec. 2.3.1) calculations on the obtained equilibrium lattice structure. 

2.1.3 Anharmonic phonons 

The anharmonic parts of atomic potentials are the higher than 2nd order terms in Eq. 

(2.2). We can divide the atomic potential into harmonic (𝑈𝑈𝐻𝐻𝐻𝐻) and anharmonic (𝑈𝑈𝐴𝐴𝐴𝐴) parts 

by rewriting Eq. (2.2) as 

 

𝑈𝑈 = 𝑈𝑈𝐻𝐻𝐻𝐻 + 𝑈𝑈𝐴𝐴𝐴𝐴 

𝑈𝑈𝐴𝐴𝐴𝐴 =
1
𝑘𝑘!
� � Φ𝛼𝛼1,⋯𝛼𝛼𝑘𝑘

(𝑘𝑘) 𝑢𝑢𝛼𝛼1(𝑙𝑙1𝑏𝑏1)⋯𝑢𝑢𝛼𝛼𝑘𝑘(𝑙𝑙𝑘𝑘𝑏𝑏𝑘𝑘)
𝑙𝑙1𝑏𝑏1𝛼𝛼1,⋯,𝑙𝑙𝑘𝑘𝑏𝑏𝑘𝑘𝛼𝛼𝑘𝑘

∞

𝑘𝑘=3

 

𝑈𝑈𝐻𝐻𝐻𝐻 = 𝑈𝑈0 + �
𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)�0
𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)

𝑙𝑙𝑙𝑙𝑙𝑙

 

+
1
2

� Φ𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑏𝑏′)𝑢𝑢𝛼𝛼(𝑙𝑙𝑙𝑙)𝑢𝑢𝛽𝛽(𝑙𝑙′𝑏𝑏′)
𝑙𝑙𝑙𝑙𝑙𝑙,𝑙𝑙′𝑏𝑏′𝛽𝛽

 

(2.18) 

where Φ𝛼𝛼1,⋯𝛼𝛼𝑘𝑘
(𝑘𝑘) (𝑙𝑙1𝑏𝑏1,⋯ , 𝑙𝑙𝑘𝑘𝑏𝑏𝑘𝑘) = 𝜕𝜕𝑘𝑘𝑈𝑈

𝑢𝑢𝛼𝛼1(𝑙𝑙1𝑏𝑏1)⋯𝑢𝑢𝛼𝛼𝑘𝑘(𝑙𝑙𝑘𝑘𝑏𝑏𝑘𝑘)�
0
 represents the 𝑘𝑘th derivatives of the 

potential energy.  

When the anharmonic effects is weak, namely either at low temperature or in a 

crystal with weak anharmonicity, we can reasonably neglect the effect of 𝑈𝑈𝑁𝑁𝑁𝑁 and consider 

phonons to be harmonic. However, where 𝑈𝑈𝑎𝑎𝑎𝑎 substantially contributes to the potential 

energy, the HA breaks down as the anharmonic phonons can no longer be uncoupled. The 

phonon scattering effect has to be considered and the potential described by Eq. (2.18) is 

used. 
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To quantitatively evaluate the phonon anharmonicity, it is convenient to introduce 

the concept of phonon RT and MFP. In the kinetic theory, phonon RT 𝜏𝜏 is the time interval 

a phonon travels between successive collisions with other phonons [80]. The only property 

we postulate about 𝜏𝜏 is that the probability that the particle will make a collision in the 

infinitesimal time interval 𝛿𝛿𝛿𝛿 is 𝛿𝛿𝛿𝛿/𝜏𝜏. Similarly, the phonon MFP is defined by 𝚲𝚲𝝋𝝋 = 𝒗𝒗𝝋𝝋𝜏𝜏, 

which is the average distance a phonon travels between successive collisions with other 

phonons. Based on these definitions, the lattice thermal conductivity is given by [80] 

 𝜿𝜿 = �𝐶𝐶𝜑𝜑𝒗𝒗𝝋𝝋𝚲𝚲𝝋𝝋
𝜑𝜑

 (2.19) 

To predict lattice thermal conductivity, it is essential to calculate the phonon RTs of all 

modes. In Sec. 2.3.2, we will see this can be accomplished using a number of computational 

techniques. 

2.2 Computational approaches 

There is a broad range of computational approaches that can be used to solve 

phonon thermal transport problems in crystals. Different computational techniques apply 

to different characteristic length (𝐿𝐿) and time (𝑡𝑡) scales of the heat transfer processes, as 

shown in Figure 2.1 [81]. The length scale regime is decided by the phonon wavelength, 

phonon MFP and the device dimensions while the time scale regime is decided by the 

phonon collision or RT. The LD approach adopts the HA which only considers the 

harmonic terms in the lattice Hamiltonian and neglects the anharmonic terms. The DFT 

approach computes the lattice Hamiltonian using quantum mechanics method. Due to its 
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high computational cost, typically the system under interest contains at most a few 

thousand atoms. The MD approach computes the lattice Hamiltonian using classical 

mechanics method. It can be applied to systems with size varying from nanometers to 

micrometers, and the time scale can reach the same order with phonon RT. The BTE 

approach is valid for describing the thermal transport as long as the hear carriers – phonons 

can be viewed as particles. It spans over the length scale 𝐿𝐿 > Λ and the time scale 𝑡𝑡 > 𝜏𝜏𝑐𝑐, 

with the most capability to study multi-length and multi-time scale thermal transport.  

 

Figure 2.1. Schematic for range of length and time scale applicability of different phonon computational 
approaches (see Ref. [82]). 𝜆𝜆 is the phonon wavelength, 𝜏𝜏𝑐𝑐 is the phonon collision time. The figure is adapted 
with permission from [82] © 2018 Springer Nature. 
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2.2.1 Molecular dynamics 

MD is a computational technique that simulates the time evolution of a set of 

interacting atoms that are governed by Newton’s second law. It was first developed in 

1970s for studying dynamics of proteins [83] and enzymic reactions [84]. Ever since then, 

past few decades have seen a vast increase in the number of research works using MD 

approach. Nowadays, the size of the system in MD simulations can reach millions of atoms 

[85] and the time scale can reach milliseconds [86]. This advancement are largely due to 

the development in high performance computing and the cheap computational cost brought 

by the usage of classical potentials. In the field of thermal transport in 2D materials, MD 

has also been applied to investigate thermal properties of graphene [87], Si [88], MoS2 

[89], boron nitride [90], and so on.  

In MD simulations, the Newton’s EOM are integrated to capture the real-time 

trajectories of atoms. The most popular algorithm used in the integration is the Velocity 

Verlet algorithm [91] 

 

⎩
⎪
⎨

⎪
⎧𝒓𝒓𝑖𝑖

(𝑡𝑡 + ∆𝑡𝑡) = [2𝒓𝒓𝑖𝑖(𝑡𝑡) − 𝒓𝒓𝑖𝑖(𝑡𝑡 − ∆𝑡𝑡)] + 𝒂𝒂𝑖𝑖(𝑡𝑡)∆𝑡𝑡2 + 𝑂𝑂(∆𝑡𝑡4)

𝒗𝒗𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡) = 𝒗𝒗𝑖𝑖(𝑡𝑡) +
1
2

[𝒂𝒂𝑖𝑖(𝑡𝑡) + 𝒂𝒂𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡)]∆𝑡𝑡

𝒂𝒂𝑖𝑖(𝑡𝑡) = −
1
𝑚𝑚𝑖𝑖

𝑑𝑑U(𝒓𝒓1,⋯ , 𝒓𝒓𝑁𝑁𝑎𝑎)
𝑑𝑑𝑑𝑑

 (2.20) 

where 𝒓𝒓𝑖𝑖(𝑡𝑡), 𝒗𝒗𝑖𝑖, and 𝒂𝒂𝑖𝑖 are respectively the position, velocity, and acceleration of the 𝑖𝑖th 

atom at time 𝑡𝑡, ∆𝑡𝑡 is the timestep, 𝑚𝑚𝑖𝑖  is the mass of the 𝑖𝑖th atom, U(𝒓𝒓1,⋯ , 𝒓𝒓𝑁𝑁𝑎𝑎) is the 

interatomic potential that is a function of the positions of all 𝑁𝑁𝑎𝑎 atoms in the system. At 
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each step, the acceleration of every atom is evaluated using the potential and used to update 

its position. The general procedure of MD simulations is presented in Figure 2.2. 

 

Figure 2.2. Flow chart of the MD simulations using the Velocity Verlet algorithm. Here, 𝑇𝑇 represents the 
total simulation time. Notice that the velocities are updated after positions, in contrast to the intuitive thinking 
that one should update atomic velocities first before positions. The latter case will accumulate numerical 
errors in the integration scheme by integrating twice. Making use of the cancelation between Taylor 
expansion terms, the Velocity Verlet algorithm has higher order of accuracy than the integration by Taylor 
expansion alone. 
 

The choice of timestep ∆𝑡𝑡  should be carefully made for MD simulations. The 

timestep has to be chosen small enough to avoid discretization errors brought by Eq. (2.20) 

while not too small so as to simulate the system for a reasonable amount of time period. In 

practice, the maximum timestep is decided by the rate of fastest process in the system. For 

MD simulations on lattice vibrations, a reasonable choice of timestep is around one order 
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of magnitude smaller than the vibration period of highest frequency phonon mode. This is 

the common choice made for the timestep used in this thesis. 

2.2.2 Density functional theory 

2.2.2.1 Background 

An exact theory for a system involving ions and interacting electrons is based on 

the many-body Schrödinger’s Equation (SE): 

 𝐻𝐻�𝚿𝚿(𝒓𝒓𝒊𝒊;𝑹𝑹𝑰𝑰) = E𝚿𝚿(𝒓𝒓𝒊𝒊;𝑹𝑹𝑰𝑰) (2.21) 

where 𝐻𝐻� is the Hamiltonian operator of the system containing the kinetic energy operator 

and potential energy operator, 𝚿𝚿(𝒓𝒓𝒊𝒊;𝑹𝑹𝑰𝑰) is the many-body wavefunction as a function of 

positions of ions 𝒓𝒓𝒊𝒊  and variables of electrons (𝑹𝑹𝑰𝑰  where 𝐼𝐼  is the electron index). In a 

complete form 

 

𝐻𝐻� = −�
ℏ2

2𝑚𝑚𝑖𝑖𝑖𝑖

∇�𝒓𝒓𝒊𝒊
2 −�

ℏ2

2𝑚𝑚𝑒𝑒𝐼𝐼

∇�𝑹𝑹𝑰𝑰
2 −�

𝑍𝑍𝑖𝑖𝑒𝑒2

|𝒓𝒓𝒊𝒊 − 𝑹𝑹𝑰𝑰|𝑖𝑖𝑖𝑖

 

+
1
2
�

𝑒𝑒2

�𝑹𝑹𝑰𝑰 − 𝑹𝑹𝑱𝑱�𝐼𝐼𝐼𝐼

+
1
2
�

𝑍𝑍𝐼𝐼𝑍𝑍𝐽𝐽𝑒𝑒2

�𝒓𝒓𝒊𝒊 − 𝒓𝒓𝒋𝒋�𝑖𝑖𝑖𝑖

 

(2.22) 

where 𝑍𝑍 is the atomic number, 𝑚𝑚𝑒𝑒 is the mass of electron, 𝑒𝑒 is the electric charge of an 

electron, ∇� is the Laplacian operator. In Eq. (2.22), the first and second terms are kinetic 

energy operator of ions and electrons, the 3rd term is potential energy due to an electron 

being attracted to an ion, the 4th term is Coulomb interaction between electrons, and the 5th 

term is the ion-ion interactions. 
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 The Coulomb term in the exact SE makes solving it extremely difficult. Numbers 

of assumptions have been proposed to simplify Eq. (2.22). The first assumption introduced 

is the Born-Oppenheimer approximation which decouples the motion of ions and electrons, 

and assumes that electrons respond instantaneously to any ionic motion using the fact that 

electrons have much smaller mass than ions. In the context of calculating electronic states 

where ions are at rest, the first term turns to zero and the 5th term is simply a constant, the 

Hamiltonian Eq. (2.22) can be written as   

 𝐻𝐻� = −�
ℏ2

2𝑚𝑚𝑒𝑒𝐼𝐼

∇�𝑹𝑹𝑰𝑰
2 + �𝑈𝑈𝑒𝑒(𝑹𝑹𝑰𝑰)

𝐼𝐼

+
1
2
�

𝑒𝑒2

�𝑹𝑹𝑰𝑰 − 𝑹𝑹𝑱𝑱�𝐼𝐼𝐼𝐼

 (2.23) 

where we rewrite the ionic potential experienced by electrons as 𝑈𝑈𝑒𝑒.  

Despite having a simpler form of Eq. (2.23) under the Born-Oppenheimer 

approximation, the SE is still formidable to solve due to the nature of electrons – exchange 

and correlation. The exchange characteristic is the Pauli Exclusion Principle that 𝚿𝚿 should 

change sign if two electrons with the same spin interchange positions. The correlation 

characteristic means that the motion of every electron is affected by all the other electrons. 

Different attempts have been made to further simplify SE. They primarily focus on how to 

describe the exchange-correlation nature of electrons with high accuracy and reasonable 

computational cost. The DFT method is one of these attempts. The other attempts include 

the Hartree-Fock approximation, the X-𝛼𝛼 method, the GW approximation, and so on. The 

readers are referred to Ref. [92, 93] that discuss the many-body theory in solid state physics 

for more details. 
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2.2.2.2 Kohn-Sham equations and DFT 

In order to describe the exchange-correlation effect, Hohenberg, Kohn and Sham 

developed a different way of looking at the problem which is called the Hohenberg-Kohn-

Sham theorem [94, 95]. This theorem constitute the fundamental ideas behind the DFT.  

In DFT, the major assumption is that there is a one-to-one mapping between the 

electron wavefunction 𝚿𝚿 and electron density 𝜌𝜌(𝑹𝑹) which is defined as 

 𝜌𝜌(𝑹𝑹) = 𝑁𝑁𝑒𝑒 �𝚿𝚿∗�𝑹𝑹,𝑹𝑹𝟐𝟐,⋯ ,𝑹𝑹𝑵𝑵𝒆𝒆�𝚿𝚿(𝑹𝑹,𝑹𝑹𝟐𝟐,⋯ ,𝑹𝑹𝑵𝑵𝒆𝒆)𝑑𝑑𝑹𝑹𝟐𝟐⋯𝒅𝒅𝑹𝑹𝑵𝑵𝒆𝒆  (2.24) 

where 𝑁𝑁𝑒𝑒 is the number of electrons in the system. 

Taking Eq. (2.24) into Eq. (2.23), after some derivations, one arrives at the single-

particle equations (Kohn-Sham equations)  

 �−
ℏ2

2𝑚𝑚𝑒𝑒
∇�𝑹𝑹𝑰𝑰
2 + 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒[𝑹𝑹,𝜌𝜌(𝑹𝑹)]�𝜙𝜙𝐼𝐼(𝑹𝑹) = 𝜖𝜖𝐼𝐼𝜙𝜙𝐼𝐼(𝑹𝑹) (2.25) 

where 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒[𝑹𝑹,𝜌𝜌(𝑹𝑹)] = 𝑈𝑈(𝑹𝑹) + 𝑒𝑒2 ∫ 𝜌𝜌(𝑹𝑹′)
|𝑹𝑹−𝑹𝑹′|

𝑑𝑑𝑹𝑹′ + 𝛿𝛿𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹)]
𝛿𝛿𝜌𝜌(𝑹𝑹)  is the effective ionic 

potential, 𝜙𝜙  is the single-electron wavefunction, 𝐸𝐸𝑋𝑋𝑋𝑋  is the exchange-correlation 

functional of which the explicit expression is unknown. Finding a proper expression of 

𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹)] is the major challenge in DFT. 

2.2.2.3 Exchange-correlation functional 

The local density approximations (LDA) [96, 97] is one of the early attempts to 

model the exchange-correlation functional. The basic idea is that the exchange-correlation 

energy can be found by dividing the system into infinitesimally small volumes, each with 

a constant electron density. The contribution of such a volume to 𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹)] will be 
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equivalent to a homogeneous electron gas that has the same electron density as the volume. 

The LDA neglects non-local effect in the exchange-correlation effect, thus greatly saves 

the computational cost. However, LDA does not work well for systems where the electron 

density cannot be approximated by homogeneous gas.  

To better account for inhomogeneity in the electron density, the generalized-

gradient approximation (GGA) [98, 99] is developed. Under the GGA, the exchange-

correlation functional takes the form 𝐸𝐸𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹)] = ∫ 𝜖𝜖𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹),∇𝜌𝜌(𝑹𝑹)]𝜌𝜌(𝑹𝑹)𝑑𝑑𝑹𝑹 . The 

electron density of a specific infinitesimal volume depends on both the local density and 

the density of the neighboring volumes. The coupling effect between the infinitesimal 

volume and its neighbors are described using the gradient of the electron density. 

Numerous forms have been proposed for 𝜖𝜖𝑋𝑋𝑋𝑋[𝜌𝜌(𝑹𝑹),∇𝜌𝜌(𝑹𝑹)] , among which the most 

popular ones are the Perdew and Wang (PW91) [100] and the Perdew-Burke-Enzerhof 

(PBE) [101] forms. In this thesis, most DFT calculations employ the PBE form of 

exchange-correlation. 

2.2.3 Car-Parrinello Molecular Dynamics 

The MD approach may fail for covalent or metallic systems where the atomic 

interactions cannot be well represented by empirical potentials. The DFT approach, on the 

other hand, can provide an accurate description of chemical bonds in a variety of systems, 

but are limited by its demanding computational cost. The CPMD approach combines the 

advantages of MD and DFT approaches to achieve considerable accuracy and fast 

computational speed. 



 

 

30 

 

The CPMD method belongs to the class of Ab initio MD (AIMD) methods, which 

employ classical mechanics description of the ions and quantum description for the 

electrons. Historically, CPMD was a synonym for AIMD since it had dominated AIMD 

methods for a long time. The basic idea of AIMD is a generalized Lagrangian that includes 

treatment of both ionic and electronic degrees of freedom (DOF). 

2.2.3.1 Generalized extended Lagrangian’s method 

In the theory of AIMD, the generalized Lagrangian of a many-body system is [102] 

 ℒ�𝝐𝝐, 𝝐̇𝝐,𝜽𝜽, 𝜽̇𝜽� =
1
2
𝑚𝑚𝝐̇𝝐2 +

1
2
𝜇𝜇𝜽̇𝜽2 + 𝑘𝑘𝑠𝑠𝜇𝜇𝜇𝜇(‖𝜽𝜽 − 𝝑𝝑‖) − 𝐸𝐸(𝝐𝝐,𝝑𝝑) (2.26) 

where 𝝐𝝐  and 𝜽𝜽  are the generalized ionic and electronic coordinates, 𝜇𝜇  is the mass of 

electronic DOF, 𝝑𝝑 is a further electronic variable that is calculated from a function 𝝑𝝑 =

Ω(𝝐𝝐,𝜽𝜽), 𝐺𝐺(‖𝜽𝜽 − 𝝑𝝑‖) is a function positive everywhere and goes to zero at ‖𝜽𝜽 − 𝝑𝝑‖ = 0, 

𝑘𝑘𝑠𝑠 acts as a spring constant regulating the distance between the 𝜽𝜽 and 𝝑𝝑. From the Euler-

Lagrange equation, we can easily derive the EOM as 

 �
𝑚𝑚𝝐̈𝝐 = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝝐𝝐

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝝑𝝑

𝜕𝜕Ω
𝜕𝜕𝝐𝝐

+ 𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝝑𝝑

𝜕𝜕Ω
𝜕𝜕𝝐𝝐

𝜇𝜇𝜽̈𝜽 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝝑𝝑

𝜕𝜕Ω
𝜕𝜕𝜽𝜽

+ 𝑘𝑘𝑠𝑠𝜇𝜇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝝑𝝑

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝝑𝝑

𝜕𝜕Ω
𝜕𝜕𝜽𝜽
�
 (2.27) 

2.2.3.2 CPMD 

By choosing 𝝑𝝑 = 𝜽𝜽 in the extended Lagrangian, Eq. (2.27) simplifies to the CPMD 

form as 

 �
𝑚𝑚𝝐̈𝝐 = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝝐𝝐

𝜇𝜇𝜽̈𝜽 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜽̈𝜽

 (2.28) 
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which can be combined with the standard DFT method. 

From the Kohn-sham equation Eq. (2.25), the DFT functional of the total energy 

is given by  

 

𝐸𝐸[𝜙𝜙𝐼𝐼(𝑹𝑹),𝒓𝒓𝒊𝒊,𝛼𝛼𝜈𝜈] = 

�� 𝑑𝑑3𝑹𝑹𝜙𝜙𝐼𝐼⋆(𝑹𝑹) �−
ℏ2

2𝜇𝜇
∇�2�

𝑉𝑉
𝜙𝜙𝐼𝐼(𝑹𝑹)

𝐼𝐼

+ 𝑈𝑈[𝜙𝜙𝑖𝑖(𝑹𝑹), 𝒓𝒓𝒊𝒊,𝛼𝛼𝜈𝜈] 
(2.29) 

An additional parameter 𝛼𝛼𝜈𝜈  is introduced here to represent addition DOF due to the 

variations of the unit cell during CPMD simulations whereas the original Kohn-Sham 

equation considers fixed unit cell. 

In order to reduce the demanding computational cost in DFT, the CPMD method 

adopts a different approach which considers the minimization of the energy functional as 

an optimization problem [103, 104]. The objective function is the energy functional 𝐸𝐸 in 

Eq. (2.29). There are three groups of DOF in the system, namely the electron 

wavefunctions, ion positions, and unit cell shape and volume. Using unit cell vectors 𝒉𝒉 =

(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑), we can express the positions of ions in terms of the unit cell vectors as 𝒓𝒓𝒊𝒊 =

𝒉𝒉𝒉𝒉, where S is the relative coordinates of the ion with respect to the cell. Following the 

same idea, for electron wavefunctions 𝜙𝜙𝐼𝐼(𝑹𝑹), we can also express it in terms of the unit 

cell vectors as 𝜙𝜙𝐼𝐼(𝑹𝑹) = 1
√V
𝜙𝜙(𝒉𝒉−1𝑹𝑹) = 1

√V
𝜙𝜙(𝒔𝒔) where 𝑉𝑉 is the unit cell volume [104]. 

Assuming all the variables are time dependent, a Lagrangian is introduced 
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ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �

1
2

𝐼𝐼

𝜇𝜇 � 𝑑𝑑3𝑟𝑟�𝜙𝜙𝐼𝐼̇ (𝒔𝒔)�
2

𝑉𝑉
+ �

1
2
𝑚𝑚𝑖𝑖

𝑖𝑖

𝒓̇𝒓𝑖𝑖2 − 𝐸𝐸(𝜙𝜙𝐼𝐼 , 𝒓𝒓𝒊𝒊,𝛼𝛼𝜈𝜈) 

= 𝐾𝐾�𝜙𝜙𝐼𝐼̇ , 𝒓̇𝒓𝒊𝒊, 𝛼̇𝛼𝜈𝜈� − 𝐸𝐸�𝜙𝜙𝐼𝐼̇ , 𝒓̇𝒓𝒊𝒊, 𝛼̇𝛼𝜈𝜈� 

(2.30) 

which is consistent with Eq. (2.26) under the assumption that 𝝑𝝑 = 𝜽𝜽. Eq. (2.30) defines a 

classical kinetic energy 𝐾𝐾 which represents departure of the system from the self-consistent 

minimum of its total energy. Therefore, in a MD simulation, a diminishing 𝐾𝐾 means that 

the thermodynamics equilibrium has been reached. As always, the Lagrangian is subject to 

the constraints of the orthonormality of wavefunctions 

 � 𝑑𝑑3𝑹𝑹𝜙𝜙𝐼𝐼⋆(𝑹𝑹𝑰𝑰, 𝑡𝑡)𝜙𝜙𝐽𝐽⋆(𝑹𝑹𝑱𝑱, 𝑡𝑡)
𝑉𝑉

= 𝛿𝛿𝐼𝐼𝐼𝐼 (2.31) 

Finally, by taking derivative of the Lagrangian 𝐿𝐿 with respective to time, we arrive 

at a set of EOM for the generalized coordinates 𝜓𝜓𝐼𝐼, 𝒓𝒓𝒊𝒊, and 𝛼𝛼𝜈𝜈. 

 

⎩
⎪
⎨

⎪
⎧𝜇𝜇𝜓̈𝜓𝐼𝐼(𝑹𝑹𝑰𝑰, 𝑡𝑡) = −

𝛿𝛿𝛿𝛿
𝛿𝛿𝜓𝜓𝐼𝐼⋆(𝑹𝑹𝑰𝑰, 𝑡𝑡)

+ �𝜂𝜂𝐼𝐼𝐼𝐼𝜓𝜓𝐽𝐽�𝑹𝑹𝑱𝑱, 𝑡𝑡�
𝑗𝑗

𝑚𝑚𝑖𝑖𝒓̈𝒓𝒊𝒊 = −∇𝑟𝑟𝑖𝑖𝐸𝐸

𝜇𝜇𝜈𝜈𝛼̈𝛼𝜈𝜈 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝛼𝛼𝜈𝜈

 (2.32) 

where 𝜂𝜂𝑖𝑖𝑖𝑖 is the Lagrangian multiplier of the wavefunction orthonormality constraints, i.e. 

Eq. (2.31). The second equation in Eq. (2.32) represents ionic dynamics that could have a 

real physical meaning of the trajectories of ions. As the temperature associated with 𝐾𝐾 is 

reduced to zero by varying the generalized velocities 𝜓𝜓𝚤𝚤̇ , 𝑅̇𝑅𝐼𝐼 ,  and 𝛼̇𝛼𝜈𝜈, the equilibrium state 

is achieved.  
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2.3 Thermal transport calculations 

In the previous section, we visit the basic theory behind various computational 

approaches. We will focus on the application of these techniques in the calculation of 

thermal transport properties in this section. 

2.3.1 Phonon dispersion relation 

As is shown in Sec. 2.1.1, the phonon dispersion relation is calculated by 

diagonalizing the dynamical matrix D. One starts from the interactions between atoms to 

evaluate the force constant matrix Φ. Then the dynamical matrix of a phonon at a given 

point in the reciprocal lattice can be constructed and diagonalized. The resulting 

eigenvalues of the dynamical matrix are the phonon frequencies. 

Determination of the force constant matrix plays a central role in calculating the 

phonon dispersion relation. One way to achieve this is using the small displacement method 

[105, 106, 107]. The basic idea is displacing each atom in the unit cell by a small amount 

and evaluating the resultant forces exerted on the other atoms. In principle, 3𝑛𝑛𝑎𝑎 

calculations have to be performed since there are 3𝑛𝑛𝑎𝑎 DOF. However, this number can be 

substantially reduced, making use of the lattice symmetry. It should be noted that the force 

constant calculated in this way is a sum over the supercells of forces between one atom and 

all periodic images of another. It is not exactly the force constants entering the dynamical 

matrix, which are the ones for the infinite lattice. Therefore, it is required that the supercell 

size is large enough for the forces at the boundary of the supercell fall off to negligible 

values.  
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Another approach to determine the force constant matrix is the density functional 

perturbation theory (DFPT) [108, 109, 110] under the framework of DFT. The idea is based 

on the linear response theory and DFT. A phonon introduces displacements on the atoms 

that are described by the phonon polarization vectors. These displacements introduce 

perturbations to the potential, leading to a change in the electron density 𝜌𝜌(𝑹𝑹) that is 

expressed as 

 𝛿𝛿𝛿𝛿(𝑹𝑹) = �𝜍𝜍(𝑹𝑹,𝑹𝑹′)𝛿𝛿𝛿𝛿𝛿𝛿𝑹𝑹′ (2.33) 

where 𝛿𝛿𝛿𝛿 is the change in the potential due to the presence of phonons and 𝜍𝜍(𝑹𝑹,𝑹𝑹′) is the 

coefficient of linear response. Using the perturbed potential, the force constants can be 

calculated using the “2n+1” theorem [110]. 

2.3.2 Phonon relaxation time 

2.3.2.1 Klemens’ theory 

The Klemens’ theory relates the phonon RT to Grüneisen parameter [111, 112]. 

The Grüneisen parameter provides information about the thermal expansion and 

anharmonic phonon-phonon interactions. The volumetric Grüneisen parameter is defined 

as [113] 

 𝛾𝛾𝝋𝝋𝑉𝑉 = −
𝜕𝜕�ln𝜔𝜔𝝋𝝋�
∂(lnV) = −

𝑉𝑉0
𝜔𝜔𝝋𝝋0

𝜕𝜕𝜔𝜔𝝋𝝋
∂V

�
0

 (2.34) 

One can also work with a three-dimensional form of the Grüneisen parameter as 
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 𝛾𝛾𝝋𝝋𝛼𝛼 = −
𝜕𝜕�ln𝜔𝜔𝝋𝝋�
∂(ln𝑎𝑎𝛼𝛼) �

0
= −

𝑎𝑎0𝛼𝛼

𝜔𝜔𝝋𝝋0
𝜕𝜕𝜔𝜔𝝋𝝋
∂𝑎𝑎𝛼𝛼

�
0

 (2.35) 

where 𝑎𝑎𝛼𝛼 is the lattice parameter in the Cartesian direction 𝛼𝛼, the script “0” represents a 

quantity taken at the equilibrium lattice configuration. In practice, the Grüneisen 

parameters are calculated by taking the first derivative of phonon frequency with respect 

to the corresponding lattice parameter at equilibrium via applying a central difference 

scheme to Eq. (2.34) or Eq. (2.35). 

Using the obtained Grüneisen parameter, the phonon RT is calculated by [111, 112] 

 
1
𝜏𝜏𝝋𝝋

=
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚𝑣𝑣2𝜔𝜔𝐷𝐷

(𝛾𝛾𝜔𝜔𝝋𝝋)2 (2.36) 

where 𝜔𝜔𝐷𝐷 is the Debye frequency, 𝛾𝛾 is the Grüneisen parameter averaged over all phonon 

modes, and 𝑣𝑣 is the average phonon group velocity at the long-wavelength limit given by 

1
𝑣𝑣3

= 1
3

( 1
𝑣𝑣𝐿𝐿𝐿𝐿
3 + 1

𝑣𝑣𝑇𝑇𝑇𝑇
3 + 1

𝑣𝑣𝑍𝑍𝑍𝑍
3 ) [111]. To better account for the anisotropy in phonon modes, the 

mode-dependent 𝛾𝛾𝝋𝝋 and both the average velocity [41] and mode-dependent velocity [114, 

115] have been introduced into Eq. (2.36) 

 
1
𝜏𝜏𝝋𝝋

=
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚𝑣𝑣2𝜔𝜔𝐷𝐷

(𝛾𝛾𝝋𝝋 𝜔𝜔𝝋𝝋)2 (2.37) 

 
1
𝜏𝜏𝝋𝝋

=
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚𝜔𝜔𝐷𝐷

(
𝛾𝛾𝝋𝝋 𝜔𝜔𝝋𝝋
𝑣𝑣𝝋𝝋

)2 (2.38) 

2.3.2.2 Boltzmann transport equation 

The phonon BTE provides another route to compute the phonon RTs. The BTE 

governs the phonon distribution function 𝑓𝑓𝜑𝜑 by [80, 116] 
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𝜕𝜕𝑓𝑓𝜑𝜑
𝜕𝜕𝜕𝜕

+ 𝒗𝒗∇𝑓𝑓𝜑𝜑 = (
𝜕𝜕𝑓𝑓𝜑𝜑
𝜕𝜕𝜕𝜕

)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (2.39) 

The LHS represents the spatial and time variation of 𝑓𝑓𝜑𝜑 , the right-hand-side (RHS) 

represents the scattering processes that lead to deviation of 𝑓𝑓𝜑𝜑 from its thermal equilibrium. 

The scattering process can include various sources such as the phonon-phonon, phonon-

boundary, phonon-impurity scattering, and so on. In this thesis, the phonon-phonon 

scattering is considered.  

In most situations, the BTE can be linearized based on the assumption that both the 

deviation of 𝑓𝑓𝜑𝜑 from thermal equilibrium and temperature gradient ∇𝑇𝑇 is small [117, 118]. 

As a result, 𝑓𝑓𝜑𝜑 is written as 

 𝑓𝑓𝜑𝜑 = 𝑓𝑓𝜑𝜑0 − 𝑭𝑭𝜑𝜑∇𝑇𝑇
𝑑𝑑𝑓𝑓𝜑𝜑0

𝑑𝑑𝑑𝑑
 (2.40) 

where 𝑓𝑓𝜑𝜑0 = (𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇 − 1)−1 is the equilibrium distribution function that follows the Bose-

Einstein distribution and 𝑭𝑭𝜑𝜑  measures the deviation from equilibrium, which is the 

unknown we are solving for. The widely adopted relaxation time approximation (RTA) 

simplifies the RHS of Eq. (2.39) as [80] 

 (
𝜕𝜕𝑓𝑓𝜑𝜑
𝜕𝜕𝜕𝜕

)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑓𝑓𝜑𝜑0 − 𝑓𝑓𝜑𝜑
𝜏𝜏𝜑𝜑𝑅𝑅𝑅𝑅𝑅𝑅

 (2.41) 

where 𝜏𝜏𝜑𝜑𝑅𝑅𝑅𝑅𝑅𝑅  is the phonon RT. Combining Eq. (2.39), Eq. (2.40), and Eq.(2.41), the 

linearized phonon BTE equation is obtained 

 
𝑭𝑭𝜑𝜑 = 𝜏𝜏𝜑𝜑0 �𝒗𝒗𝜑𝜑 + ∆𝜑𝜑� 

(2.42) 
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∆𝜑𝜑=
1
𝑁𝑁𝑚𝑚

� [Γ𝜑𝜑𝜑𝜑′𝜑𝜑′′
+ �𝑭𝑭𝜑𝜑′′ − 𝑭𝑭𝜑𝜑′� +

1
2
Γ𝜑𝜑𝜑𝜑′𝜑𝜑′′
− �𝑭𝑭𝜑𝜑′′ + 𝑭𝑭𝜑𝜑′�]

±

𝜑𝜑′𝜑𝜑′′
 

1
𝜏𝜏𝜑𝜑0

=
1
𝑁𝑁𝑚𝑚

( � Γ𝜑𝜑𝜑𝜑′𝜑𝜑′′
+

+

𝜑𝜑′𝜑𝜑′′
+

1
2
� Γ𝜑𝜑𝜑𝜑′𝜑𝜑′′

−
−

𝜑𝜑′𝜑𝜑′′
) 

where a q mesh in the BZ centering at Γ and containing 𝑁𝑁𝑚𝑚 points is introduced. Γ𝜑𝜑𝜑𝜑′𝜑𝜑′′
±  is 

the three-phonon scattering rates that correspond to phonon creation and annihilation 

process. They can be calculated using the higher than 2nd order derivatives of the atomic 

potential, name the coefficients of 𝑈𝑈𝐴𝐴𝐴𝐴  in Eq. (2.18) [117]. 𝜏𝜏𝜑𝜑0  is the RT under the 

SMRTA, or referred to as the zeroth-order solution of phonon BTE. Solving (2.42) 

involves iterations where the values of 𝑭𝑭𝜑𝜑 and ∆𝜑𝜑 is updated in each iteration. As 𝑭𝑭𝜑𝜑 and 

∆𝜑𝜑 depend on each other, a self-consistent solution is obtained when both values of 𝑭𝑭𝜑𝜑 and 

∆𝜑𝜑 converge. Thus, the RT 𝜏𝜏𝜑𝜑𝑅𝑅𝑅𝑅𝑅𝑅 is obtained. 

2.3.2.3 Phonon spectral energy density 

Phonon RTs can also be calculated from the phonon SED approach. Derived from 

the anharmonic LD theory, the phonon SED is given by [119, 120]  

 Φ𝑆𝑆𝑆𝑆𝑆𝑆(𝒒𝒒,𝜔𝜔) = �𝐵𝐵𝜑𝜑

Γ𝜑𝜑
𝜋𝜋

�𝜔𝜔𝜑𝜑 − 𝜔𝜔�
2

+ Γ𝜑𝜑2

3𝑁𝑁𝑎𝑎

𝜈𝜈

 (2.43) 

where 𝐵𝐵𝜑𝜑 is a mode-dependent constant. The SED is a superposition of 3𝑁𝑁𝑎𝑎  Lorenzian 

functions centering at 𝜔𝜔𝜑𝜑, having linewidth Γ𝜑𝜑.  
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Alternatively, SED can be calculated from the atomic velocities. The kinetic energy 

normal mode coordinate q̇(𝜑𝜑, 𝑡𝑡) is expressed by atomic velocities 𝑢̇𝑢𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑡𝑡) and phonon 

eigenvectors 𝐴𝐴𝛼𝛼∗ (𝒒𝒒; 𝑏𝑏) as 

 q̇(𝜑𝜑, 𝑡𝑡) = � �
𝑚𝑚𝑏𝑏

𝑁𝑁
𝑢̇𝑢𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑡𝑡)𝐴𝐴𝛼𝛼∗ (𝒒𝒒; 𝑏𝑏)exp[𝑖𝑖𝒒𝒒 ∙ 𝒓𝒓𝒍𝒍]

3,𝑛𝑛𝑎𝑎,𝑁𝑁

𝛼𝛼,𝑏𝑏,𝑙𝑙

 (2.44) 

Given a set of atomic velocities from MD simulations and phonon mode eigenvectors, the 

SED can be calculated by 

 

Φ𝑆𝑆𝑆𝑆𝑆𝑆(𝒒𝒒,𝜔𝜔) 

= 2�𝑇𝑇(𝜑𝜑,𝜔𝜔)
3𝑁𝑁𝑎𝑎

𝜈𝜈

= 2� lim
𝜏𝜏0→∞

1
2𝜏𝜏0

�
1

√2𝜋𝜋
� q̇(𝜑𝜑, 𝑡𝑡)exp(−𝑖𝑖𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑
𝜏𝜏0

0
�
23𝑁𝑁𝑎𝑎

𝜈𝜈

 
(2.45) 

and be fitted to Lorentzian functions using Eq. (2.43) to obtain 𝜔𝜔𝜑𝜑 and Γ𝜑𝜑. The phonon 

RT is related to the half linewidth of the SED by τ𝜑𝜑 = 1
2Γ𝜑𝜑

. 
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Chapter 3 Phonon and electronic properties of folded single-

layer molybdenum disulfide 

The main content of this chapter appeared in the Journal article: Peng, Jie, Peter W. 

Chung, Madan Dubey, and Raju R. Namburu. "Tunable electron and phonon properties of 

folded single-layer molybdenum disulfide." Nano Research 11, no. 3 (2018): 1541-1553. 

Permission from [121] © 2018 Springer Nature. 

 

TMDCs have layered structure bonded by weak VDW interactions. Therefore it is 

possible to bend their SL forms to create novel nanostructures that possess interesting 

properties different from their bulk forms. Similar idea has already been realized in other 

2D materials such as graphene origami [122] and carbon nanotubes [123]. As one example, 

folding has already been shown to significantly change the photoluminescence spectrum 

and some in-plane properties of MoS2 [124, 125]. However, little has been identified about 

how those properties have been modulated. In this work, we investigate the atomic 

structure, the ground state electronic, and phonon transport properties of folded SLMoS2. 

Since the folded structure is created by curving a single sheet, the wrapping length decides 

the relative size of the bilayer region to the closed loop along the edge. Different methods 

including variational mechanics, classical MD, and DFT approaches are employed. 

Equilibrium configuration of different folded structure indicates that the shape of closed 

loop edge is insensitive to changing wrapping length. Calculations of the electronic band 

gap of the folds find that it varies significantly as a function of wrapping length and 
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converges from below to the infinite bilayer gap value. On the other hand, the phonons are 

insensitive to the wrapping length despite being largely modulated by folding compared to 

its bulk counterparts. Indeed, the overall thermal transport behavior along the fold axis is 

unchanged. By modulating the electronic band gap value while holding thermal properties 

unaffected opens up exciting new possibilities for this emergent material. 

3.1 Introduction 

SLMoS2 has attracted considerable interests for technological applications. It has 

an intrinsic direct band gap of 1.79 eV that is favored by electronic applications [126]. The 

large mobility of above 200 cm2V-1s-1 suggests its novel application in optoelectronics and 

energy harvesting devices [124]. By phonon engineering, the figure of merit ZT of SLMoS2 

and thermoelectric performance could be greatly enhanced [125]. 

A number of recent studies found that folds in SLMoS2 may occur naturally during 

fabrication or processing [70, 127]. Subsequent photoluminescence (PL) measurements of 

identified folded regions found a significant blue shift [127] that was attributed to exciton 

screening induced by the folded bilayer structure. Another experiment showed that varying 

layer stacking in folded SLMoS2 flakes leads to a decrease in interlayer coupling and 

enhancement of photoluminescence emission yield [70] which bodes well for new possible 

device concepts.   

Though only a few studies have specifically examined folds, a significant number 

of efforts that have examined the flat bilayer configuration. However, the folded 

configuration is merely the same single sheet placed into contact with itself to create a 
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bilayer structure with the fold along one edge. Thus, the understanding of bilayers should, 

in principle, provides insights into the structure and properties of the folded configuration. 

Bilayer studies of the effect of changing stacking pattern on the electronic band gap and 

optical nonlinearities [71], changing twist angle on PL [128], and strain effects [129, 130] 

should all convey when local fold effects are not of interest. It is also expected that studies 

of thermal properties [31, 131] will behave similarly. But a fundamental understanding of 

how folding changes the local ground state electronic and thermal properties is still lacking. 

Based on the previous experiments [127, 70], the fold does not appear to induce chemical 

reactivity and it therefore forms a well-defined structure whose properties are likely not 

sensitive to the manner in which it was created and therefore its properties may be readily 

reproduced. In situations where dimensions are on the order of mean free paths, knowledge 

of local properties and, perhaps more importantly, their convergence to the bilayer 

properties would be useful.   

In this work, using a combination of methods – variational mechanics, classical 

potentials and density functional theory – we determine the equilibrium structure, the 

phonon transport, and the ground state electronic properties of folded configurations of 

SLMoS2. Size-dependence of properties is examined by studying changes in properties as 

a function of the length of the overlapping bilayer region.  

3.2 Computational details 

Molecular statics, MD simulations using LAMMPS [132], and LD using GULP 

[133] were used to determine the folded configuration as well as estimate its thermal 
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properties. The classical potential is based on a parameterization for MoS2 of the Stillinger-

Weber potential [134] where the VDW interactions are described by a Lennard-Jones 

potential [135]. The DFT calculations employed Quantum-Espresso [136] to further 

optimize the folded configuration as well as determine the ground state electronic band 

structures. In all cases, structures from the molecular simulations were used as the starting 

configurations for DFT. We employed the PBE-GGA pseudopotential as implemented in 

Quantum-Espresso [101]. The VDW interaction was modeled using DFT-D2 which 

contains a semi-empirical force-field-based correction to the energy [137]. An energy 

cutoff of 40 Ry was used for all calculations with a convergence threshold for the self-

consistent-field (SCF) calculation of 0.001 Ry. The DFT-based optimization was 

performed using analytical energy gradients with respect to atomic coordinates using 

BFGS (Broyden Fletcher-Goldfarb-Shanno) quasi-newton algorithm for Hessian update. 

Full relaxations were performed until the average atomic force was smaller than 0.001 

Ry/a.u. and the energy difference between two consecutive relaxation configurations was 

smaller than 0.001 Ry.   

Structure evaluation using the variational mechanics approach assumes the 

dominant contributions to the energy originate from elastic bending in the folded region as 

a function of the displacement of the neutral plane of the sheet and the VDW interactions 

that produces the attraction in the bilayer tail region [138]. The bending energy and bilayer 

attraction compete to find an equilibrium which is found in the stationary value of the 

curvature 𝑝𝑝 that minimizes the folding energy relative to the energy of a single flat sheet  
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 ∆𝐸𝐸 = 𝑤𝑤 �� 𝐷𝐷𝑏𝑏𝑝𝑝2𝑑𝑑𝑑𝑑
𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

0
+ 𝜖𝜖𝑏𝑏

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2

� (3.1) 

The first term on the right hand side is the contribution from the bending energy and the 

second is from the bilayer attraction. Here, w is the width of the single layer in the direction 

parallel to the fold axis, 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the length of the folded region, 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the length of the 

flat region, 𝐷𝐷𝑏𝑏 is the elastic bending stiffness, and  𝜖𝜖𝑏𝑏 is the bilayer interaction energy per 

unit area. The dimensions are depicted in Figure 3.1 where 𝐿𝐿𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is the length of original 

flat sheet.  

 
Figure 3.1. Dimensions of folded SLMoS2 for variational mechanics solution. Left figure is the original flat 
sheet and right figure is of the folded sheet.  
 

The bending stiffness and bilayer interaction are material parameters. The bending 

stiffness was estimated from the relation 𝐸𝐸 = 1
2
𝐷𝐷𝑏𝑏𝑝𝑝2 using a sequence of molecular statics 

calculations of single-walled MoS2 nanotubes of defined radii where 𝐸𝐸 is the determined 

strain energy per unit area of the nanotube and 𝑝𝑝 is the inverse of the defined nanotube 

radius. To determine D𝑏𝑏, a rectangular sheet of length 𝑙𝑙 (armchair direction) and width  𝑤𝑤 

(zigzag direction) was rolled into a nanotube so that the circumference of the nanotube is 𝑙𝑙 

and tube length is 𝑤𝑤. The radius 𝑅𝑅 and the curvature of the nanotube can be calculated 

from the relation 𝑙𝑙 = 2𝜋𝜋𝜋𝜋 = 2𝜋𝜋
𝑝𝑝

. The strain energy per unit area was calculated as the 

energy difference between the nanotube and the original flat sheet after energy 
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minimization was performed. Ten nanotubes with radii between 159.1 and 15.5 Å were 

studied. These correspond to tubes whose circumference contains 186, 167, 149, 130, 112, 

93, 75, 55, 37 and 9 rectangular unit cells. All tubes were of length w=58.74 Å−1 (19 unit 

cells). The rectangular unit cell used in these constructions is shown in Figure 3.4. The 

respective equilibrated curvatures ranged from 0.006287 to 0.06462 Å−1. The resulting 

strain energies are shown in Figure 3.2 from which the bending stiffness was estimated to 

be 𝐷𝐷𝑏𝑏 = 8.6 eV, which is comparable to reported values of 𝐷𝐷𝑏𝑏 = 9.61 eV [139] and 𝐷𝐷𝑏𝑏 = 

8.8-13.4 eV [140]. The VDW interaction energy associated with the bilayer region is 

defined by 𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑤𝑤𝜌𝜌𝑉𝑉𝑉𝑉𝑉𝑉
𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
2

 where 𝜌𝜌𝑉𝑉𝑉𝑉𝑉𝑉  is the interaction energy per unit area 

𝜌𝜌𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−2𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2
𝐴𝐴

= −0.047𝑒𝑒𝑒𝑒/Å2. We determined 𝜌𝜌𝑉𝑉𝑉𝑉𝑉𝑉 by calculating 𝐸𝐸𝑆𝑆𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀2 

and 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 using molecular statics from single and bilayer stacked rectangular sheets of 

length 80.32 Å (armchair direction) and width 58.74 Å (zigzag direction) with in-plane 

periodicity. The supercell was sized so that the effective interlayer spacing was 25 Å to 

exclude image interactions. The equilibrated intralayer distance in the bilayer configuration 

was determined to be 2.433 Å by energy minimization.  
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Figure 3.2. Strain energy VS curvature of SLMoS2 nanotube. Open circles represent the strain energy 
obtained from molecular simulations and the line is the best fit used to estimate bending stiffness. Curvature 
𝑝𝑝 = 1

𝑅𝑅
 where 𝑅𝑅 is the radius of SLMoS2 nanotube which is defined as distance from center to middle Mo 

atomic layer.  
 

The procedure to produce a fold in initially-flat SLMoS2 sheets is as follows. The 

flat sheets of length L were placed in supercells whose widths are equal to the sheet width 

but whose other dimensions are twice the sheet length 𝐿𝐿 . Aside from the obvious 

continuation of the sheet along the width direction, no image interaction effects could be 

noticed using this supercell size. Periodic boundary conditions were applied on all sides of 

the supercell. A timestep of 2 fs was used. After an initial low temperature NVT 

equilibration for 105 steps, forces were applied on the first three rows MoS2 molecules on 

both ends of the flat sheet and three rows of molecules near the center were held fixed to 

facilitate the folding. When the two ends were brought together to within the VDW cutoff 

distance, the end forces and atom constraints were removed and attractive forces from the 

incipient bilayer interactions took over to produce a “zipping” effect that resulted in the 

configuration depicted schematically in Figure 3.1. After 5 × 105 steps subsequent NVT 
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equilibration steps, we switched to an NPT ensemble to further equilibrate the system for 

another 5 × 105 steps.  

Free edges were initially used in the folding to resemble the structures observed in 

experiments [127]. The free edge energy is subsequently estimated by 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

1
2𝑎𝑎

(2𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the energy of the single fold configuration and 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the dual fold energy which comes from placing together the equilibrated single 

fold configuration and its copy, rotated 180°. The result has the appearance of a flattened 

tube. In this new configuration, six system sizes were created with 2L=117.8 Å (22), 149.9 

Å (28), 192.8 Å (36), 235.6 Å (44), 278.4 Å (52), 310.6 Å (60) where the number in 

parentheses indicates the total number of unit cells in the wrap direction. A single unit cell 

is modeled along the fold direction. These sizes correspond to supercells containing 168, 

216, 264, 312 and 348 atoms, respectively. The resulting structures were subsequently 

equilibrated before recording the total energy.  The free edge energy was calculated to be 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 3.94 𝑒𝑒𝑒𝑒/Å. The dual-fold structures serve as the starting configurations for the 

optimizations that follow using DFT. The removal of free edges avoids dangling bonds and 

spurious edge states. 

With the dual-fold geometry obtained from the molecular simulations as the starting 

configuration, further optimization using DFT produced a representative supercell as 

shown in Figure 3.3. The resulting structure is clearly one-dimensional whose transport 

direction is only along the fold axis (zigzag) so that the q-point mesh in the BZ needs only 

to be resolved along the axis. Only the Γ-point was used for structure optimization, while 
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for the electronic band structure calculation the q-point mesh was set to 10 × 1 × 1. We 

also computed the optimized structure and electronic band structure of bulk MoS2, bilayer 

MoS2 and SLMoS2 to serve as references. The Monkhorst-Pack k-point meshes for these 

were 8 × 8 × 8, 8 × 8 × 8 and 10 × 10 × 1, respectively. 

 

Figure 3.3. The 10 × 1 × 1 supercell of dual fold SLMoS2 (wrap length 192.76 Å) in DFT simulations. (a) 
Side view. (b) Top view. Vacuum layers of >10 nm are used in the lateral directions. 
 

The Green-Kubo method relates the thermal conductivity to the equilibrium 

current-current autocorrelation function based on the fluctuation-dissipation theorem and 

linear response theorem 

 𝜅𝜅𝛼𝛼𝛼𝛼(𝑡𝑡) =
1

𝑉𝑉𝑘𝑘𝐵𝐵𝑇𝑇2
� 〈𝐽𝐽𝛼𝛼(𝜏𝜏)𝐽𝐽𝛽𝛽(0)〉𝑑𝑑𝑑𝑑
𝑡𝑡

0
 (3.2) 

where the angular brackets represent the ensemble average, 𝐽𝐽 is the heat current. This 

calculation can be performed directly in LAMMPS. For the trajectories, we used the same 

(a) 

(b) 
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configuration as was used in the phonon kinetic theory (see Sec. 2.1.3) and embark on a 

dynamics simulation with a timestep size of 1 fs. The dual fold supercell was created using 

10x1x1 unit cells as depicted in Figure 3.3. The system was first run in NVT with Nose-

Hoover heat bath for 105 timesteps to equilibrate at 300 K. Once the desired temperature 

was reached, we switched to the isothermal-isobaric ensemble (NPT) for another 4 × 105 

steps to further equilibrate the system at 300 K. Finally, a micro-canonical ensemble (NVE) 

which ran for 2 × 107  timesteps was used to obtain the autocorrelation function and 

eventually the thermal conductivity. The correlation length was set to 200 ps which had 

been tested to be sufficient for the autocorrelation function to vanish and for the thermal 

conductivity to converge.  

Phonon RT was obtained by fitting autocorrelation function given by MD 

simulations to a single exponential function: 

 
〈𝐽𝐽(𝑡𝑡)𝐽𝐽(0)〉
〈𝐽𝐽(0)𝐽𝐽(0)〉

= 𝐴𝐴𝑒𝑒−
𝑡𝑡
𝜏𝜏 (3.3) 

where 𝐴𝐴 is a constant. Applying the gray approximation in the phonon kinetic theory which 

considers an averaged value for phonon RT and group velocity, the thermal conductivity 

can be expressed as: 

 𝜅𝜅 = 𝐶𝐶𝑣̅𝑣𝛬𝛬̅ = 𝐶𝐶𝑣̅𝑣2𝜏𝜏̅ (3.4) 

where v is average phonon group velocity. So we can calculate the average phonon group 

velocity by 𝑣̅𝑣 = � 𝜅𝜅
𝐶𝐶𝜏𝜏�

 and the phonon MFP by 𝛬𝛬̅ = 𝑣̅𝑣𝜏𝜏̅. 
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Phonon calculations of bulk MoS2, bilayer MoS2 and SLMoS2 were also performed 

to serve as references. The respective Monkhorst-Pack q-point meshes for the unfolded 

configurations were 10 × 10 × 10, 10 × 10 × 10 and 10 × 10 × 1. Rectangular sheets of 

size 𝑙𝑙 = 74.97 Å and 𝑤𝑤 = 58.74 Å (19×14 unit cells) were used.  

 

3.3 Results and discussion 

3.3.1 Folded structure 

A SLMoS2 is comprised of a layer of Mo atoms sandwiched by two layers of S 

atoms. Interactions between atoms in SLMoS2 are mainly covalent bonds while in bulk 

MoS2, adjacent MoS2 layers are weakly attractive through VDW interactions. The stacked 

Mo and S layers of atoms are offset from one another to give a hexagonal structure that, in 

the bulk, forms a centrosymmetric trigonal prismatic crystal. The single layer and bulk 

lattices of MoS2 are shown in Figure 3.4 with their respective unit cells. In the MD 

simulations, we employ single layer lattice parameters 𝑎𝑎 = 3.09 Å , 𝑐𝑐 = 3.21 Å , bulk 

lattice parameters 𝑎𝑎 = 3.09 Å, 𝑐𝑐 = 12.1 Å and interlayer spacing distance 𝑑𝑑 = 2.445 Å, 

all of which were determined initially through molecular statics calculations using the 

classical potential described further below. The corresponding primitive unit cells are 

shown in the dashed-line boxes in Figure 3.4. The SLMoS2 flat sheet was constructed by 

periodic arrangement of a rectangular cell shown by the black line box in Figure 3.4, for 
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which the 1 × 1 × 1  unit cell has dimensions  √3𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎) × 𝑎𝑎(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧) × 𝑐𝑐 =

5.35 Å × 3.09 Å × 3.21 Å. A likewise construction was used for the bulk structure. 

 

Figure 3.4. Side views of (a) single layer of MoS2, (b) two layers of bulk MoS2, and (c) Top view along c-
axis. The top view for both SL and bulk appear identical. The primitive unit cells are shown in red line boxes. 
The rectangular unit cell is shown in the black line boxes. 
 

We label the wrap axis as the axis in the direction of the sheet that is folded back 

onto itself. The fold axis is orthogonal to the wrap axis and runs along parallel to the fold. 

In this work, the wrap axis is limited to the armchair direction and fold axis along the zigzag 

direction. Size effects are studied using the size of the sheet along the wrap axis while the 

size of the sheet along the fold axis is held fixed. Dependence of the properties on the wrap 

and fold directions relative to the lattice vectors is not presently considered. The fact that 

a fold is created necessarily limits later discussions on transport to only one-dimension 

parallel to the fold axis. 

The folded SLMoS2 nanostructure has the appearance of a racket-shape folded 

region and a bilayer region that is observably flat. The flat region is composed of two 

SLMoS2 sheets with the same stacking pattern and lattice parameter as bulk MoS2 which 

has the AB stacking pattern of 2H MoS2. In the direction of the fold axis, the lattice 

parameter remains unchanged from the SLMoS2 value. All of the present calculations 

(a) 

(b) 

(c) 
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produced bulk stacking in the bilayer region. The lattice parameter in the zigzag direction 

does not change as a consequence of folding. The structure is shown in Figure 3.5(a). The 

lengths of the flat and folded regions are denoted as 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and  𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , where both are 

measured using the centerplane of Mo atoms. The system size, or total wrap length, is thus 

defined as 2𝐿𝐿 = 2(𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). 

 

Figure 3.5. (a) Side view of equilibrium folded SLMoS2 with 2𝐿𝐿 = 192.8 Å  from DFT simulation. (b) 
Equilibrium configuration of folded SLMoS2 (2𝐿𝐿 = 235.6 Å) showing atomic coordinates from variational 
mechanics, molecular, and DFT methods. (c) Average atomic distance between folded SLMoS2 
nanostructure obtained from MD and DFT as functions of wrap length (2𝐿𝐿). The distances are divided by the 
single layer lattice constant 𝑎𝑎0. (d) Equilibrated lengths of flat and folded regions as a function of original 
sheet length. (e) Strain energy per unit length of fold versus wrap length. 

(a) 

(b) 

(d) (e) 

(c) 
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The varying methods to estimate the equilibrated folded structures were all in 

agreement including, remarkably, the variational mechanics solution. The resulting atomic 

structures from the three methods are depicted in Figure 3.5(b) for the case of 2𝐿𝐿 =

 235.6 Å. There is strong qualitative agreement in the prediction based on variational 

mechanics as evidenced by the coincidence of the center plane solution with nearly every 

Mo atom. The largest departures occur in the region adjacent to, but not at, the location of 

highest curvature and in the distant bilayer regions. The agreement of the solution with the 

classical potential result is expected to be slightly better than with the quantum result since 

the bending stiffness is obtained using the empirical potential.   

Differences are observable between the results of the classical and quantum 

methods. In Figure 3.5(c), the differences are shown using 𝑑𝑑/𝑎𝑎0 = 1
𝑎𝑎0𝑁𝑁𝑎𝑎

∑ �𝑟𝑟𝑖𝑖𝑀𝑀𝑀𝑀 −𝑁𝑁
𝑖𝑖=1

𝑟𝑟𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷� where 𝑎𝑎0 is the lattice constant of the single layer. Smaller wrap lengths appear to 

result in larger disparity between molecular and quantum results but average differences 

tend to be smaller than 15% of the lattice constant, or approximately 0.46 Å. The smallest 

length that remained stable after the folding procedure is 2𝐿𝐿 = 117.8 Å (22 unit cells). 

However, it resulted in a final equilibrium configurational energy that was significantly 

higher than the other lengths we considered and therefore was removed from further 

analysis. This is likely because of the disproportionate deformation experienced by the two 

different layers of S atoms, and the volume exclusion effects that lead to large repulsive 

forces among the S atoms in the inner layer indicates that having an equal number of S 

atoms inside and outside of the fold may be unphysical. Varying the number of S atoms by 
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removing them from the inner layer was not explicitly examined. Even smaller systems 

were either unable to maintain the racket shape or simply became flat again after releasing 

the folding forces. The largest of these, which is not shown here, was easily perturbed and 

preferred to take on spiral-like shapes with one of the free edges, aided by the exposed 

inner Mo layer, attaching orthogonally at random locations on the S surface. However, it 

was more common that the forces needed to maintain the fold were not sufficient to 

counteract the internal forces due to bending. 

No dependence is observed between the curvature in the fold and the wrap length. 

Thus the configuration in the fold region exhibits an intrinsic behavior that is independent 

of the size of the adjacent bilayer region. It is therefore expected that any fold that wraps 

the armchair axis onto itself will produce a structural feature that is approximately 5.0-5.6 

nm in distance between the points where curvature is finite. For all lengths studied, exactly 

20 Mo atoms traverse this distance. The smallest radius of curvature is approximately 4 Å. 

The sizes of the folded and flat regions with varying 2𝐿𝐿 are shown in Figure 3.5(d). The 

overall length of the sheet is not found to change appreciably due to folding. Namely, 2𝐿𝐿 =

2𝐿𝐿𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒. The bending of the sheet results in asymmetric amounts of deformation in the 

outer and inner S layers. By comparing the interatomic separation of S atoms in the folded 

region and in the flat sheet, we observe that the outer layer has a tensile strain of around 

11% while the inner layer has a compressive strain around 8%. To further confirm the lack 

of a size effect in the fold, the strain energy stored in the folded region is shown in Figure 

3.5(e). The strain energy also does not change substantially with varying system size. 
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3.3.2 Electronic band structure.  

The calculated bulk, bilayer, and single layer electronic band structures are shown 

in Figure 3.6, and their gap values compare well with known values as shown in Table 3.1. 

In the bulk, we estimate the indirect gap to be 0.99 eV from Γ to Σ = 0.25 × 2𝜋𝜋/𝑎𝑎. This 

compares to 1.23 eV from the experiments. Our model of bilayer MoS2 has an indirect 

band gap of 1.2 eV, which agrees well with the estimate of 1.2 eV from a DFT result using 

the PW91 exchange correlation functional pseudopotential. 

 
Figure 3.6. Electronic band structure of (a) Bulk MoS2. (b) Bilayer MoS2. (c) SLMoS2. Conduction bands 
(Red) and valance bands (Blue) and band gap (solid line arrow) are shown in the figure. The zero of the 
energy spectrum has been set to the valence band maximum (VBM) which is denoted by the horizontal 
dashed line. The conduction-band-minimum (CBM) is denoted as Σ. 
 
Table 3.1. Electronic band gap (eV) for bulk MoS2, bilayer MoS2 and SLMoS2. 

 Bulk MoS2 Bilayer MoS2 SLMoS2 
Folded 

SLMoS2 
Present 

calculation 0.99 1.2 1.81 0.43-1.05 

Experiments 1.23 [24] 

1.29 [141] 1.6 [24] 
1.8 [24] 

1.83-1.98 [21], 
[141] 

- 

Numerical 
simulations 

1 [21] 
1.29 [11] 

1.89 [11] 
1.2 [142] 

1.09 [143] 

1.78 [144] 
1.57 [142] 

1.9 [12] 
1.79 [124] 

- 
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Removing one layer in going from the bilayer to SL MoS2, the electronic band 

structure undergoes an indirect-to-direct transition such that in the single layer the VBM 

and CBM are both located at the K point with the gap increasing to 1.81 eV, whose value 

is confirmed both by experiment [24] and numerical simulations [124, 144]. 

Experimentally, the electronic band gap of flat SLMoS2 has been measured to be 1.83-1.98 

eV [21, 24]. This compares to the presently calculated direct gap of 1.8 eV. 

Upon folding, the direct band gap located at the 𝐾𝐾  point transitions back to a 

smaller indirect band gap as shown in Figure 3.7. The gap after folding is sensitive to the 

length of sheet that was folded, yielding gap values ranging from 0.43 eV to 1.05 eV among 

the configurations we examined. The CBM does not change as a function of 2L and are all 

located at Σ𝑚𝑚𝑚𝑚𝑚𝑚 = 0.35 × 2𝜋𝜋/𝑎𝑎. The VBM is located at Σ𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15 × 2𝜋𝜋/𝑎𝑎 for smaller 

sheet lengths, and is located at the Γ point for larger lengths. 

 

 
Figure 3.7. Electronic band structure of folded SLMoS2. (a) 2𝐿𝐿 = 149.9 Å. (b) 2𝐿𝐿 = 192.8 Å. (c) 2𝐿𝐿 =
235.6 Å . (d) 2𝐿𝐿 = 278.4 Å . (e) 2𝐿𝐿 = 310.6 Å . The high symmetry direction 𝛤𝛤 → 𝐾𝐾  corresponds to the 
zigzag direction in real space.  

 



 

 

56 

 

The calculated indirect band gaps appear to converge monotonically to the bilayer 

gap value with increasing size. The trend is depicted in Figure 3.8. With increasing system 

size (2𝐿𝐿), the configuration of the folded region stays invariant while the ratio between 

sizes of the flat and folded regions decreases. This indicates the fold is associated with 

local states and when 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  reaches approximately 0.53 we reach the largest gap 

among the finite-length folded sheets currently studied. The suggestion is that in the limit 

as size of the fold becomes vanishingly small relative to the bilayer region, the bilayer gap 

will be recovered. 

 
Figure 3.8. Calculated electronic band gap as a function of wrap length of folded SLMoS2. The value for the infinite 
bilayer is shown as a horizontal line.  

3.3.3 Thermal conductivity and Phonons.  

Phonon dispersion curves of bulk MoS2, bilayer MoS2 and SLMoS2 are shown in 

Figure 3.9. Bulk MoS2 has 9 atoms in its unit cell, thus having 18 phonon modes among 

which 3 are acoustic modes while other 15 are optic modes. Due to the inversion symmetry 

of bulk MoS2, all the phonon modes are split into two branches. And since the interaction 
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between two SLMoS2 layers in bulk MoS2 is weak, the splitting is very low. So when 

reduced to bilayer, the splitting is almost gone and in SLMoS2 which only has 3 atoms per 

unit cell, there is no splitting. Overall, phonon dispersion curves of bulk, bilayer and single-

layer MoS2 share a resemblance. 

 

Figure 3.9. Phonon dispersion curves and densities of states of (a) bulk MoS2. (b) bilayer MoS2. (c) SLMoS2. 
 

The phonon dispersion curves and densities of states (DOS) of folded SLMoS2 with 

variable wrap length are shown in Figure 3.10. A band gap is present in all of the cases 

starting at around 242 cm-1 of size 28 cm-1. We can observe a relatively small sensitivity 

of the gap size to wrap length where the gaps for the largest and smallest wrap lengths 

differ by about 10%. The calculated lattice specific heats, in units of 𝑁𝑁𝑘𝑘𝐵𝐵 , differ little 

among the different forms - bulk, bilayer, SL, and folded – as shown in Table 3.2. The 

largest value is observed for the single layer which is consistent, when used with the 

phonon gas model, with the observations that single layer transport is improved over 

multiple-layers [38]. This effect is seen in the dispersion curves where there is increasing 

degeneracy and the lowering of frequencies of some of the branches at Γ as one goes from 

the bulk to the single layer. The lowering of the frequency of a mode increases its relative 

(a) (b) (c) 
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contribution to the overall specific heat due to the dependence of the latter on the 

monotonically decaying function 𝑥𝑥2𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥)/[1 − 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) ]2  where 𝑥𝑥 = ℏ𝜔𝜔/𝑘𝑘𝐵𝐵𝑇𝑇. In the 

folded configuration, the specific heat of all of the folds that were studied was consistently 

around 2.52 𝑁𝑁𝑘𝑘𝐵𝐵 which is only moderately higher than the corresponding value in the bulk. 

This insensitivity to sheet length, coupled with the observation that the folded structure is 

also insensitive to length, suggests that the specific heat per unit length of fold is an intrinsic 

property of MoS2.  

 

Figure 3.10. Phonon dispersion curves and densities of states of folded SLMoS2. (a) 2L = 149.94 Å. (b) 
2L = 192.76 Å. (c) 2L = 235.6 Å. (d) 2L = 278.44 Å. (e) 2L = 310.58 Å. 
 
Table 3.2. Specific heat, phonon relaxation time, phonon group velocity, phonon mean free path and thermal 
conductivities. 

 Bulk Bilayer SLMoS2 
2L=149.

94 
2L=192.

76 
2L=235.

6 
2L=278.

44 
2L=310.

58 
Cv(NkB) 2.48337 2.49304 2.69225 2.52198 2.51942 2.52033 2.52138 2.52092 
τ(ps) 23.75 19.09 23.25 7.91 10.01 11.8 8.65 8.55 

V(m/s) 621.16 731.16 800.08 663.2 704.78 713.27 664.24 729.34 
Λ (nm) 14.75 13.96 18.60 5.24 7.06 8.42 5.74 6.23 
κ 

(Wm-1K-

1) 

75.37±2.
16 

84.26±3.
74 

132.68±4
.67 

24.74±2.
62 

35.89±3.
79 

44.71±5.
32 

26.29±3.
67 

31.45±4.
31 

 

The insensitivity to length carries over to thermal conductivity which was 

determined using both Debye phonon integration from lattice dynamics and the Green-

(a) (b) (c) (d) (e) 
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Kubo method using molecular dynamics. The thermal conductivities of bulk, bilayer, and 

single-layer forms are summarized in Table 3.3; the Green-Kubo method is consistently in 

the range of 24.74~44.71 Wm-1K-1. This compares to the estimates for bulk, bilayer, and 

single layer of 75.37±2.16, 84.26±3.24 and 132.68±4.67 Wm-1K-1 respectively. The effect 

of folding is a significant reduction in thermal conductivity of over 60% relative to the flat 

single layer value and, like the specific heat, conductivity is insensitive to the size of the 

sheet along the wrap axis once the fold has been created. The estimated thermal 

conductivity at 300 K along the fold axis (zigzag) as a function of sheet length is shown in 

Figure 3.11. By analyzing heat autocorrelation function from MD simulations we obtain 

single phonon RTs for bulk, bilayer, SL and folded MoS2, as shown in Table 3.2. The 

relaxation times of folded configurations of MoS2 are around 10 ps, almost 50% of the 

values in flat MoS2 systems which are around 20 ps. A smaller phonon relaxation time 

implies a faster rate at which heat current decays and stronger phonon scattering. We also 

compute and present the average phonon group velocity and phonon MFP in Table 3.2. We 

see the same trend as in thermal conductivity that phonon mean free paths of the folded 

sheet are smaller than SLMoS2, and also insensitive to the wrap length. We attribute the 

substantial decrease in thermal conductivity to increased anharmonic phonon scattering 

brought by the fold. Furthermore, the break in symmetry and the ensuing highly distorted 

bonds that drive the low energy-high group velocity modes to higher energies and reduce 

viable transverse modes along the fold axis also have the effect of frustrating heat carriers. 

Table 3.3. Thermal conductivity (Wm-1K-1) of bulk MoS2, bilayer MoS2, SLMoS2 and folded SLMoS2. 
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 Bulk MoS2 Bilayer MoS2 SLMoS2 Folded SLMoS2 
Present 

calculation 75.37±2.16 84.26±3.24 132.68±4.67 24.74~44.71 

Experiments 

52 [32] 
0.4-1.59 [145], 

[146] 
85-112 [147] 

~1.5 [148] 

77±25 [45] 34.5±4 [31] 
84±17 [45] - 

Numerical 
simulations 

98 [38] 
99.1 [149] 108 [38] 

23.2 [150] 
~5 [134] 

138 [38] 
≥83 [39] 

1.35 [151] 

- 

 

 
Figure 3.11. Thermal conductivity of folded SLMoS2 at T=300 K calculated by Green-Kubo method. 
Thermal conductivity of folded SLMoS2 is considerably smaller than thermal conductivity of SLMoS2. 

3.4 Summary 

We have shown that folding can evoke unique thermal and electronic properties 

with clear directionality in MoS2 relative to its bulk, bilayer, and single layer forms. In this 

study we examined in SLMoS2 the effect of folding and wrap length on physical, 

electronic, and phonon structures. Using multiple modeling techniques, the fold structure 

and dimensional features are determined to be independent of wrap length. A fold created 
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by wrapping the armchair axis in SLMoS2 onto itself will produce a loop feature that is 5-

5.6 nm. The electronic band gap showed clear modulation as a function of wrap length 

approaching the gap value for the bilayer structure monotonically from below. The size of 

the gap could be modulated by almost 50% by adjusting the wrap length used in the fold. 

On the other hand, thermal properties, while sensitive to folding by as much as 60% in 

reducing thermal conductivity, were remarkably insensitive to wrap length once the fold is 

formed. These observations suggest a promising route for device material designs 

involving MoS2 that simultaneously permits directed breaking of symmetry that modulates 

electronic band structures while holding thermal properties fixed. 
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Chapter 4 Temperature-dependent phonons in 1T-HfS2: a first-

principle study under quasi-harmonic approximation 

The main content of this chapter appeared in the Journal article: Peng, Jie, Sina Najmaei, 

Madan Dubey, and Peter W. Chung. "Dominant ZA phonons and thermal carriers in 

HfS2." Journal of Applied Physics 126, no. 16 (2019): 164302. Permission from [152] © 

2018 Springer Nature 

4.1 Introduction 

In recent years, TMDCs have attracted significant interest due to their unique 

electronic [14], optoelectronic [153], and catalytic [154] properties. MoS2 is one of the 

most widely studied TMDC material, thanks to its natural abundance and sizable electronic 

bandgap making it a potential alternative to gapless graphene [155]. However, the 

relatively low mobility and heavy electron effective mass limit its applications [156]. 

Recent studies have shown that HfS2 exhibits many promising properties. Its room-

temperature mobility has been calculated to be 1833 cm2V-1s-1, much higher than 340 

cm2V-1s-1 of MoS2 [157]. It has a finite bandgap of 1.2 eV [13]. Theoretical estimates of 

the current density of HfS2-based tunneling FET can be almost 100 times higher than that 

of MoS2 [158]. Additionally, the unique c-axis electron transport and anisotropy in the 

electronic properties of HfS2 promises new device applications [57]. Furthermore, ultrathin 

HfS2 phototransistors have been fabricated with high on-off current ratio, 

photoresponsivity, and photogain [159]. Kanazawa et al. have also fabricated few-layer 
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HfS2 transistors and found the drain current can be as high as 0.75 𝑚𝑚𝑚𝑚/𝜇𝜇𝜇𝜇, compared to 

the maximum value of 0.5 𝑚𝑚𝑚𝑚/𝜇𝜇𝜇𝜇 for a MoS2 FET [160]. 

In contrast to the large number of studies on the electrical and optical properties of 

HfS2, only few have focused on its thermal properties despite the important role they play 

in the stability and functionality of nano-electronic devices.  Several problems pertaining 

to the thermal properties of HfS2 are largely unanswered and are of primary interest. First, 

although it is generally known that thermal conductivities of TMDCs are highly 

anisotropic, due to the weaker interlayer VDW interactions compared to the planar covalent 

bonds [35], the underlying anisotropic thermal transport mechanism in HfS2 has not yet 

been explored. Existing efforts for treatment of HfS2 phonon and thermal properties have 

not gone beyond isotropic models [48]. It is therefore important to develop accurate models 

that incorporate the structural and phonon anisotropy intrinsic to the HfS2 crystal. 

Secondly, the determination of the origins of phonon anisotropy through incorporation of 

the complete BZ is essential to a comprehensive understanding of thermal properties in 

HfS2.  The actual contribution to phonon anisotropy can be a result of either intrinsic or 

extrinsic sources. The fundamental intrinsic anisotropy due to low symmetry of the bulk 

lattice can give rise to anisotropy of phonon dispersion and intrinsic scattering mechanisms. 

The latter is made evident by observing that Fermi’s Golden Rule has a strong dependence 

on lattice structure [161]. Indirectly, however, the phonon dispersion anisotropy causes the 

group velocities to also be anisotropic, which can lead to anisotropy of related transport 

properties such as energy transfer rates and RTs. The extrinsic causes of anisotropy are 

surfaces or mesostructures that bring structural disorder to the pristine bulk or serve as a 
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scatterer. To understand these sources of anisotropy, one must have a complete BZ 

understanding of the phonons. Previous efforts primarily provide information at the BZ 

center Γ [52, 53, 54, 55] or point averages of the Grüneisen parameter 𝛾𝛾 over acoustic 

phonon modes [48]. Moreover, experimentally it has been shown that the long-range 

Coulomb interactions significantly affect the lattice dynamics at Γ of HfS2, causing the 

splitting between longitudinal and transverse optical phonon frequencies (LO-TO splitting) 

[54, 55, 52]. Such splitting ultimately depends on the symmetry of the crystal structure, 

which also determines the phonon transport properties. The splitting is a marker for 

anisotropic phonon effects that can produce very long ranged fields enabling -- or even 

disabling – a material’s interesting properties. A theoretical quantification of the LO-TO 

splitting and Γ phonon properties in HfS2 would therefore help reveal the interplay between 

atomic interactions and lattice structure and suggest the presence of important long range 

fields.  

In this work, we examine the thermal properties of HfS2 via a complete BZ DFT 

calculation. We show for the first time the underlying mechanism and the degree of 

anisotropy in phonon transport of HfS2 and demonstrate that a single phonon branch carries 

roughly 80% of the total heat in all three dimensions. This is extraordinary as it is the 

largest single phonon branch contribution to phonon transport known among TMDCs, and 

may open new opportunities for manipulating thermal properties in HfS2. The remainder 

of this chapter is organized as follows.  Section 4.2 provides a description of the approaches 

and computational details of the calculations. This is followed by the calculations of lattice 

structure and phonon properties at 0K in Sec. 4.3.1. In Sec. 4.3.2, we discuss the effect of 
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the coupling between the optical phonons and the electric fields generated by the atomic 

displacements on Γ  phonon properties. The results for thermal properties at room 

temperature, including the Grüneisen parameters, the mode-dependent phonon group 

velocities, specific heats, RTs, MFPs, and thermal conductivities, are described in Sec. 4.4. 

The temperature dependence of the lattice structural and thermal properties is discussed in 

Sec. 4.4.4. Finally, we draw the conclusions in Sec. 4.5.  

4.2 Computational Methods 

4.2.1 DFT calculations 

We employed DFT calculations using the Quantum Espresso code to perform our 

calculations of structural, phonon, and thermal properties of HfS2 [162]. For lattice 

structural optimization at 0K, we tested and compared three forms of the exchange-

correlation functional - the LDA [163], the PBE-GGA [164], and an analytical form within 

the LDA (an-LDA) [165] -  to find the pseudopotential that produces lattice parameters 

that agree best with other published values (see Table 4.1). The interlayer VDW 

interactions were modeled following the approach of Grimme [166]. A plane wave energy 

cutoff of 50 Ry was chosen while the first BZ was sampled with a 10×8×8 Monkhorst-

Pack q point mesh grid. The structural optimization was performed using analytical energy 

gradients with respect to atomic coordinates using the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) quasi-Newton algorithm for the Hessian update. Full relaxation was performed 

until the average force acting on the atom was less than 1 × 10−5 Ry/Bohr and the energy 
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difference between two consecutive relaxed configurations was less than 1 × 10−6 Ry. 

Convergence tests were performed to ensure no dependence of the lattice parameters and 

atomic coordinates on above parameters used in the DFT models. 

All phonon calculations were performed using the DFPT. An 8 × 8 × 8 

Monkhorst-Pack q point mesh was used to calculate the dynamical matrices at these q 

points, from which the force constant matrix was extracted. Then the dynamical matrix at 

any q point in the BZ could be generated using the obtained force constant matrix. A total 

of 28117 q points in the BZ were chosen for calculating the phonon frequencies. The 

phonon group velocities, defined as the first derivative of the phonon frequency with 

respect to the wavevector, were calculated by a central difference scheme. The mode-

dependent specific heat was calculated using Eq. (2.13). 

4.2.2 The Grüneisen parameters 

The lattice directional Grüneisen parameter is calculated by Eq. (2.34) and Eq. 

(2.35). As the HfS2 lattice has a hexagonal structure with two lattice parameters 𝑎𝑎 and 𝑐𝑐, 

we have calculated three different Grüneisen parameters - 𝛾𝛾𝝋𝝋𝑎𝑎 (in-plane ), 𝛾𝛾𝝋𝝋𝑐𝑐 (c-axis), and 

𝛾𝛾𝝋𝝋𝑉𝑉  (volumetric). To generate the needed permutations in the structure, we applied 

homogeneous biaxial strains of ±0.4% in the in-plane directions, uniaxial strains in the c-

axis direction, and triaxial strains to determine 𝛾𝛾𝒒𝒒,𝑗𝑗
𝑎𝑎 , 𝛾𝛾𝒒𝒒,𝑗𝑗

𝑐𝑐 , and 𝛾𝛾𝒒𝒒,𝑗𝑗
𝑉𝑉 , respectively. The 

Grüneisen parameters were calculated by taking the first derivative of phonon frequency 

with respect to the corresponding lattice parameter at equilibrium via a central difference 

scheme applied to Eq. (2.34) and (2.35).  
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4.2.3 Thermal expansion coefficients 

The TECs are defined as 

 𝑎𝑎𝑖𝑖(𝑇𝑇) =
1

𝑎𝑎𝑖𝑖(𝑇𝑇)
𝑑𝑑𝑎𝑎𝑖𝑖(𝑇𝑇)
𝑑𝑑𝑑𝑑

 (4.1) 

where 𝑖𝑖 is the direction index. At temperature 𝑇𝑇, the equilibrium lattice configuration can 

be found by minimizing the Helmholtz free energy 𝐹𝐹(𝒂𝒂,𝑇𝑇) with respect to all the lattice 

parameters 𝒂𝒂 = {𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3}. Under the QHA (see Sec. 2.1.2), the Helmholtz free energy 

can be expressed as the sum of the lattice ground state energy 𝐸𝐸𝐺𝐺𝐺𝐺 and vibrational energy 

𝐹𝐹𝑣𝑣, as is shown by Eq. (2.17). The anharmonic effect brought by temperature is considered 

through lattice structural dependence of the phonon frequencies 𝜔𝜔𝝋𝝋(𝒂𝒂). The equilibrium 

lattice parameters can be obtained from 𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖
�
𝑇𝑇

= 0, so that one can express the TECs using 

the Grüneisen parameters by [113] 

 𝛼𝛼𝑗𝑗𝑗𝑗 = �𝐶𝐶(𝜔𝜔𝝋𝝋,𝑇𝑇)�
𝑆𝑆𝑗𝑗𝑗𝑗
𝑉𝑉0

𝛾𝛾𝝋𝝋𝑘𝑘
𝑘𝑘𝝋𝝋

 (4.2) 

where 𝑆𝑆𝑗𝑗𝑗𝑗 are the components of the elastic compliance tensor. For a hexagonal lattice with 

two independent lattice parameters, the linear TECs are found to be [167] 

 �
𝛼𝛼𝑎𝑎
𝛼𝛼𝑐𝑐� =

1
𝑀𝑀
� 𝐺𝐺33 −𝐺𝐺13
−2𝐺𝐺13 𝐺𝐺11 + 𝐺𝐺12

� �𝑌𝑌𝑎𝑎𝑌𝑌𝑐𝑐
� (4.3) 

where 𝐺𝐺𝑚𝑚𝑚𝑚 are the components of the elastic constant tensor, 𝑀𝑀 = (𝐺𝐺11 + 𝐺𝐺12)𝐺𝐺33 − 2𝐺𝐺132  

and 𝑌𝑌𝛽𝛽(𝑇𝑇) = ∑ 𝛾𝛾𝝋𝝋
𝛽𝛽𝐶𝐶(𝜔𝜔𝝋𝝋,𝑇𝑇)𝝋𝝋 . The elastic constants are determined by calculating the strain 

energy as a function of applied lattice strains and estimating the curvature of the energy vs 

strain relationship. Five different homogeneous and uniform strains were applied, where 
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the strain tensors and corresponding strain energies are (𝛿𝛿, 0,0,0,0,0) ↔ ∆𝐸𝐸 = 1
2
𝐶𝐶11𝛿𝛿2, 

(𝛿𝛿, 𝛿𝛿, 0,0,0,0) ↔ ∆𝐸𝐸 = 1
2

(𝐶𝐶11 + 𝐶𝐶12)𝛿𝛿2, (0,0, 𝛿𝛿, 0,0,0) ↔ ∆𝐸𝐸 = 1
2
𝐶𝐶33𝛿𝛿2, 

(𝛿𝛿, 𝛿𝛿, 𝛿𝛿, 0,0,0) ↔ ∆𝐸𝐸 = 1
2

(2𝐶𝐶11 + 2𝐶𝐶12 + 4𝐶𝐶13 + 𝐶𝐶33)𝛿𝛿2, (𝛿𝛿, 0, 𝛿𝛿, 0,0,0) ↔ ∆𝐸𝐸 =

1
2

(𝐶𝐶11 + 2𝐶𝐶33 + 2𝐶𝐶13)𝛿𝛿2. (The six elements of the strain tensor represent strains along x, 

y, z, xy, xz, and yz directions, respectively). To generate multiple configurations along 

each direction, we used 𝛿𝛿 = ±0.4%, ±0.3%, ±0.2%, and ±0.1%. Then, the calculated 

elastic constants, Grüneisen parameters, and specific heats are used in Eq. (4.3) to 

determine the TECs. The temperature dependent lattice parameters were calculated by 

integrating the TECs with respect to temperature.  

4.2.4 Phonon mean free paths, relaxation times, and thermal conductivities 

The phonon RTs are calculated under the Klemens’ theory (see Sec. 2.3.2.1). 

 The phonon MFP along different lattice orientations are calculated by 

 Λ𝝋𝝋𝛼𝛼 = 𝑣𝑣𝝋𝝋𝛼𝛼𝜏𝜏𝝋𝝋 (4.4) 

Then the thermal conductivity was calculated as a sum over a set of discrete 𝒒𝒒 points  

 

𝜅𝜅𝑖𝑖 = �𝜅𝜅𝝋𝝋𝑖𝑖
𝝋𝝋

 

= �𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�v𝑖𝑖�𝜔𝜔𝝋𝝋�v𝑖𝑖�𝜔𝜔𝝋𝝋�𝜏𝜏�𝜔𝜔𝝋𝝋,𝑇𝑇�
𝝋𝝋

 

= �𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�Λ𝑖𝑖�𝜔𝜔𝝋𝝋,𝑇𝑇�Λ𝑖𝑖�𝜔𝜔𝝋𝝋�
𝝋𝝋

 

(4.5) 
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In principle, all of the quantities in Eq. (4.5) are temperature dependent. However, this 

requires phonon calculations at every temperature that is of interest. To reduce 

computational cost, in this work we assume the phonon group velocities and Grüneisen 

parameters to be temperature independent and their values at 0K are used for all 

temperature dependent evaluations the terms in Eq. (4.5).  

4.3 Results and discussion 

4.3.1 Lattice structure of bulk HfS2 

HfS2 crystallizes in the CdI2-type lattice structure where one layer of hafnium atoms 

is sandwiched by two layers of sulfur atoms, which has the 𝐷𝐷3𝑑𝑑3 (𝑃𝑃3�𝑚𝑚1) space group 

symmetry, shown in Figure 4.1. The sandwiched layers of S-Hf-S are separated by a VDW 

gap between the adjacent S atom layers. 

 

Figure 4.1. (a) Top view and (b) side view of the HfS2 lattice structure. Each HfS2 unit cell, represented by 
the black boxes, consists of one Hf atom and two S atoms. The figures are generated using the XCRYSDEN 
[168] program. 

 
The calculated lattice parameters using all three pseudopotentials are compared 

with other published results (Table 4.1). Among all the DFT models, PBE+VDW yields 

the lattice parameters in closest agreement with experimental estimates. Values of the 
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lattice parameters in the literature are in the range 𝑎𝑎 ∈ [3.60 3.655] Å  and 𝑐𝑐 ∈

[5.837 5.88] Å, whereas our calculated estimate of 𝑎𝑎 using PBE+VDW falls within its 

range while 𝑐𝑐 is 3% lower than the smaller value in its range. The inclusion of VDW 

correction terms in the PBE pseudopotential leads to a notable decrease in 𝑐𝑐, while 𝑎𝑎 and 

Hf-S bond length are almost unaffected. This is because the lattice structural properties in 

the in-plane direction are dominated by covalent bonds that are much stronger than the 

interlayer VDW interactions.  

Table 4.1. Lattice parameter 𝑎𝑎 and 𝑐𝑐 from experiments, numerical simulations, and this work. dHf-S represents 
the bond length between Hf atom and its nearest neighbor S atom. 

 Methods 𝑎𝑎(Å) 𝑐𝑐(Å) dHf-S(Å) 

This work 

LDA no 
VDW 3.498 5.853 2.478 

an-LDA no 
VDW 3.483 5.659 2.486 

PBE 
no 

VDW 3.669 6.188 2.573 

VDW 3.653 5.654 2.562 

Exp [169] 3.635 5.837  
[53] 3.622 5.880  

Num 

[170] 3.640 5.860  
[171] 3.655 6.932  
[172] 3.635 5.837  
[173] 3.600 5.840  

 
4.3.2 Phonons, phonon normal modes, and LO-TO splitting 

The primitive unit cell of HfS2 has three atoms with nine phonon branches, the first 

three of which are acoustic. The irreducible representations of Γ point vibrational modes 

are given as: Γ = A1g(R) + Eg(R) + 2A2u(I) + 2Eu(I), of which one A2u and one Eu are 

acoustic modes [54].  We calculated the phonon dispersion curves and densities of states 
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(DOS) using the PBE models and further probe the effect of VDW correction on the 

phonon properties, as shown in Figure 4.2.  

 

Figure 4.2. Phonon dispersion curves and density of states (DOS) of bulk HfS2 calculated using the PBE and 
PBE+VDW DFT models. The experimentally measured A1g and Eg frequencies [52, 174] are marked by star 
symbols with a cyan color at Γ. DOS calculated by the PBE+VDW model is shown on the right as solid red 
lines. The high symmetry path 𝛤𝛤 −𝑀𝑀 − 𝐾𝐾 − 𝛤𝛤 is in the xy plane, while 𝛤𝛤 − 𝐴𝐴 is along the c-axis in the 
reciprocal space. The nine phonon branches are represented by longitudinal acoustic (LA) and optical (LO), 
transverse acoustic (TA) and optical (TO), and out-of-plane acoustic (ZA) and optical (ZO) symbols. The 
subscripts “1” and “2” represent R-active and IR-active modes, respectively. The absence of a gap in the 
phonon spectrum, as shown in the phonon DOS, implies frequent scattering among the acoustic and optical 
branches and, consequently, a low thermal conductivity of HfS2. 
 
Phonon dispersion determined using PBE with no VDW shows negative frequencies 

along Γ𝐴𝐴. This is consistent with the data shown in Table 4.1 where the bare PBE functional 

overestimates lattice parameter 𝑐𝑐 by over 6%, leading to unphysical phonon dispersions 

along the c-axis direction whereas the in-plane parameter 𝑎𝑎  only differs from the 

experimental values by around 1% and no negative frequency. Moreover, the inclusion of 

VDW correction terms leads to increases in most of the phonon frequencies due to 

increased atomic force constants brought by the additional energy terms. Based on the 
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results above, we have chosen the PBE+VDW model for subsequent calculations of 

thermal transport properties. The calculated frequencies of Γ phonon modes are listed in 

Table 4.2. Our results are in agreement with published results on Eg and A1g mode 

frequencies.  

Table 4.2. Comparison between 𝚪𝚪 phonon frequencies calculated in present work and the ones from literature.  
 Eu(LO) Eu(TO) Eg A2u A1g 

Present work 305.42 171.7 256.95 305.42 338.71 

Exp 

[54] 318 166    
[55] 318 166 262±2 325±2 337±2 
[52] 321 166 260 295 337 

[174]   260  337 
Num [175] 299 152 264 309 331 

The well-known phenomenon of LO-TO splitting can be observed in the LO1 and 

TO1 branches at Γ in Figure 4.2. This is a breaking of degeneracy between longitudinal and 

transverse optical phonon modes in the long-wavelength limit. The split is a consequence 

of polarizability and an indication that the HfS2 has nontrivial, and possibly anisotropic, 

Born effective charge tensors. The long-range nature of the Coulombic interactions gives 

rise to macroscopic electric fields for LO phonons in the long-wavelength limit. The 

coupling between the electric fields and optical phonons alters the dispersion 

characteristics and leads to the splitting of the LO and TO modes. The energy of the split 

can be evaluated quantitatively using DFT, based on a linear response approximation [176]. 

This entails the determination of a modified Hamiltonian through a linear combination of 

the perturbations due to the collective atomic displacements and the associated electric 

fields. The frequency of a phonon mode that is affected by the electric fields can be 

calculated as the 2nd derivative of the Hamiltonian. Thus, the coupling effect can be 

quantified by breaking down the force constant matrix, from which the phonon frequencies 
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are calculated. In the limit 𝒒𝒒 → 0, the force constant matrix elements can be split into a 

sum of analytic and nonanalytic contributions as [176, 177]: 

 Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗(𝒒𝒒 → 0) = Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗
𝑎𝑎𝑎𝑎 (𝒒𝒒 = 0) + Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) (4.6) 

where 𝑖𝑖 and 𝑗𝑗 here represent the direction index, not the atom index as in Chapter 2 and 

Chapter 3. The two terms, Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗
𝑎𝑎𝑎𝑎 (𝒒𝒒 = 0) and Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0), correspond to perturbations 

brought by the Γ phonons and the associated electric fields, respectively. The direction-

dependent term Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) takes the general form: 

 

Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) =

4𝜋𝜋 
𝑉𝑉
�∑ 𝑞𝑞𝑙𝑙𝑍𝑍𝑏𝑏,𝑙𝑙𝑙𝑙

∗
𝑙𝑙 ��∑ 𝑞𝑞𝑙𝑙′𝑍𝑍𝑏𝑏′,𝑙𝑙′𝑗𝑗

∗
𝑙𝑙′ �

∑ 𝑞𝑞𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖∞𝑞𝑞𝑗𝑗𝑖𝑖𝑖𝑖
 

=
4𝜋𝜋 
𝑉𝑉

(𝒒𝒒 ∙ 𝒁𝒁𝑏𝑏∗ )𝑖𝑖(𝒒𝒒 ∙ 𝒁𝒁𝑏𝑏∗ )𝑗𝑗
𝒒𝒒 ∙ 𝝐𝝐∞ ∙ 𝒒𝒒

 

(4.7) 

where 𝑍𝑍𝑏𝑏,𝑙𝑙𝑙𝑙
∗  is the Born effective charge tensor describing the force acting on an atom 𝑏𝑏 

along the 𝑖𝑖-direction induced by the electric fields, and 𝜖𝜖𝑖𝑖𝑖𝑖∞ is the dielectric permittivity 

tensor describing the electric fields generated by the atomic displacements. We have 

calculated the Born effective charge and dielectric permittivity tensors to be 𝒁𝒁𝐻𝐻𝐻𝐻∗ =

�
6.057

6.057
1.945

� , 𝒁𝒁𝑆𝑆∗ = �
−3.046

−3.046
−0.969

� , 𝝐𝝐∞ =

�
9.322

9.322
5.633

�   𝑒𝑒2

𝑅𝑅𝑅𝑅∙𝐵𝐵𝐵𝐵ℎ𝑟𝑟
, where the in-plane isotropy and out-of-plane 

anisotropy are evident. Thus, Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) clearly depends on the direction from which 

the wavevector 𝒒𝒒 approaches Γ.  
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 The LO-TO splitting phenomenon is also an indication that the in-plane and out-

of-plane force constants have different impacts on phonon frequencies. The phonon 

frequencies calculated by diagonalizing the dynamical matrix Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽(𝒒𝒒 → 0)  with 𝒒𝒒 

approaching Γ in the in-plane and c-axis directions, together with the visualized phonon 

modes are listed in Table 4.3. To first determine a reference zero-gap solution, we 

neglected the effect of the electric field by omitting the nonanalytic term in eq. (11) and 

obtained  𝜔𝜔[Eu(LO)]=ω[Eu(TO)]=172 cm-1. Then, including the effect of the electric fields 

as 𝒒𝒒 → Γ in the in-plane directions leads to a LO-TO splitting in the Eu mode (ω[Eu(LO)]-

ω[Eu(TO)]=131.52 cm-1), which has been observed in a number of experiments (152 cm-1 

[54, 55] and 155 cm-1 [52]. (The difference between our calculations and experiments is 

attributed to the error of the pseudopotential in DFT models that is amplified in the 

determination of LO-TO splitting using Eq. (4.6) and Eq. (4.7), since the LO-TO splitting 

value depends on Born effective charge and dielectric permittivity tensor that both require 

derivatives of the system Hamiltonian.) However, for 𝒒𝒒  approaching Γ  in the c-axis 

direction, there is no LO-TO splitting in the Eu mode. Such contrasting behavior of the LO-

TO frequencies can be more clearly understood by studying the force constant matrix. In 

the Eu mode, Hf and S atoms all vibrate in the in-plane direction. Thus, the mode 

frequencies are determined by the in-plane force constants. If we consider the term 

Φ𝐻𝐻𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) to represent the nonanalytic force constants only between Hf and S atoms 

in the x-direction, from (12) we see that 
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 Φ𝐻𝐻𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒 → 0) = lim

𝒒𝒒→0

4𝜋𝜋 
𝑉𝑉

𝑞𝑞𝑥𝑥2𝑧𝑧𝐻𝐻𝐻𝐻,𝑥𝑥𝑥𝑥
∗ 𝑧𝑧𝑆𝑆,𝑥𝑥𝑥𝑥

∗

𝑞𝑞𝑥𝑥2𝜖𝜖𝑥𝑥𝑥𝑥∞ + 𝑞𝑞𝑦𝑦2𝜖𝜖𝑦𝑦𝑦𝑦∞ + 𝑞𝑞𝑧𝑧2𝜖𝜖𝑧𝑧𝑧𝑧∞
 (4.8) 

from which it follows that Φ𝐻𝐻𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛 �𝒒𝒒𝒊𝒊𝒊𝒊−𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 → 0� = 4𝜋𝜋 

𝑉𝑉

𝑧𝑧𝐻𝐻𝐻𝐻,𝑥𝑥𝑥𝑥
∗ 𝑧𝑧𝑆𝑆,𝑥𝑥𝑥𝑥

∗

𝜖𝜖𝑥𝑥𝑥𝑥∞
 and 

Φ𝐻𝐻𝐻𝐻𝐻𝐻,𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒𝒄𝒄−𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 → 0) = 0. Therefore, the Eu mode frequency becomes ~304 cm-1 due to 

the non-zero term added to force constants when 𝒒𝒒 approaches Γ in the in-plane direction 

while staying unchanged at 172 cm-1 when 𝒒𝒒  approaches Γ  in the c-axis direction. 

Physically, the 𝒒𝒒-dependent phonon frequency is due to the 2D planar structure and polar 

bonds in HfS2 that give rise to anisotropic Born effective charge and dielectric permittivity 

tensors. 

Table 4.3. Phonon frequencies calculated from force constants representing the phonon perturbations [ 
Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽
𝑎𝑎𝑎𝑎 (𝒒𝒒 = 0)] and electric filed perturbations associated with phonons with 𝒒𝒒 approaching Γ from in-

plane [Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒𝒊𝒊𝒊𝒊−𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 → 0)] and c-axis [Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽

𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒𝒄𝒄−𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 → 0)] directions. The frequencies are in unit 
cm-1. Visualizations of the phonon modes are shown in the right column where the red arrows indicate the 
atomic displacements. 

 Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽
𝑎𝑎𝑎𝑎 (𝒒𝒒 = 0) Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽

𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒𝒊𝒊𝒊𝒊−𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 → 0) Φ𝑏𝑏𝑏𝑏,𝑏𝑏′𝛽𝛽
𝑛𝑛𝑛𝑛𝑛𝑛 (𝒒𝒒𝒄𝒄−𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 → 0)  

Eu(LO) 172 304 172 

 

Eu(TO) 172 172 172 
 

Eg(LO) 257 257 257 

 

Eg(TO) 257 257 257 
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A2u 305 305 323 

 

A1g 339 339 339 

 

 

To quantify the role of VDW interactions on the optical modes, we examine the 

frequencies of A1g mode, which is the out-of-plane optical (ZO) mode, for SL and bulk 

configurations across different TMDCs. In the SL configuration, the intralayer interactions, 

simplified as an effective “spring” connecting two S layers in one trilayer, dominate the 

A1g mode. Therefore, the frequency of ZO mode is expressed as 𝜔𝜔𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍 = �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑆𝑆

  where 𝑚𝑚𝑆𝑆 

is the mass of S atom and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the effective spring constant of the in-plane interactions. 

In bulk HfS2, the VDW interlayer interactions introduce an additional effective “spring” 

between adjacent S layers, represented by 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉, resulting in a higher ZO mode frequency 

𝜔𝜔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑍𝑍𝑍𝑍 = �𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉+𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑆𝑆
. Combining above two frequencies, we define the ratio between the 

VDW and in-plane effective spring constants 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 by 

 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 =
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= (
𝜔𝜔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑍𝑍𝑍𝑍

𝜔𝜔𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍
)2 − 1 (4.9) 

to be used as a fingerprint of the VDW interactions in HfS2. Moreover, 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 can also be 

calculated for other types of 2D materials to measure the relative strength of the interlayer 
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VDW interactions with respect to the in-plane bonds. We listed 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉  values of some 

typical TMDC materials in Table 4.4. 

Table 4.4. ZO mode frequencies in bulk and SL 2D TMDC materials and 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 calculated from Eq. (4.9). In 
the schematic of the ZO mode, the red circles represent the atoms, the blue arrows represent the atomic 
displacements, the springs represent the effective VDW and in-plane interactions. (We note that the ZO mode 
frequency of a 3±1-layer ZrS2 sample are taken as the 𝜔𝜔𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍 value here [178]. However, we consider the 
difference between the A1g frequencies of 3-layer and SL ZrS2 negligible since the frequency shows weak 
layer number dependence (going from 331.9 cm-1 for a 3-layer sample to 332.45 cm-1 for a 42-layer sample)). 

 HfS2 ZrS2 [178] MoS2 [179] WS2 [180] 
WSe2 

[180] 

𝜔𝜔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑍𝑍𝑍𝑍 (cm-1) 338.71 333.7±0.3 412 420.8 250.9 

𝜔𝜔𝑆𝑆𝑆𝑆𝑍𝑍𝑍𝑍(cm-1) 320.31 331.9±1.3 410.3 417.9 249.5 

𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 0.1182 0.0109 0.0083 0.0139 0.0113 

Schematic of 

the lattice 

structure and 

ZO mode    

 
The 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉  of HfS2 is distinctively larger than other 2D TMDCs having similar 

lattice structures, indicating the relatively higher VDW-to-in-plane strength ratio in HfS2. 

Since the interlayer VDW interactions in these layer materials are tightly related to their 

structural and thermal properties, HfS2 is expected to exhibit unique c-axis transport 

properties. 
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4.4 Phonon properties of HfS2 at 300K 

4.4.1 Group velocity and specific heat 

The mode-dependent phonon group velocities and specific heats calculated for 

HfS2 are shown in Figure 4.3. From Figure 4.3(a), it is seen that the group velocities are 

transversely isotropic. The anisotropy of phonon group velocities has already been shown 

to significantly affect thermal conductivity of VDW layered materials, usually manifesting 

in a much larger in-plane value than the c-axis value [181, 182]. Therefore, it is reasonable 

to anticipate a smaller thermal conductivity in the c-axis direction than the in-plane 

directions. Our calculated sound velocities in the long-wavelength limit for HfS2 are 506 

(ZA), 822.3 (LA), and 1357.1 m/s (TA), compared to 693.5 (TA) and 1108.8 m/s (LA) for 

single-layer (SL) MoS2 [41] and 3743 (TA) and 5953 (LA) m/s for graphene [183]. The 

mode-dependent group velocities as a function of frequency are shown in Figure 4.3(b). 

The group velocities of acoustic modes are generally larger than the optical modes, except 

a few optical modes with frequency between 200 and 300 cm-1 that have group velocities 

larger than the Γ acoustic modes. But Figure 4.3(c) shows that these high frequency optical 

modes have smaller specific heats than the low frequency acoustic modes at temperatures 

below 1000K. According to Eq. (2.19), a quantification of the mode-wise contribution 

towards the total thermal conductivity requires further information on the phonon RTs, 

which will be presented in Sec. 4.4.3.  
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Figure 4.3. (a) Mode-dependent phonon group velocities along 𝒒𝒒𝒙𝒙, 𝒒𝒒𝒚𝒚 and 𝒒𝒒𝒛𝒛 directions. For the in-plane 
group velocities, 𝑣𝑣𝑥𝑥 ≈ 𝑣𝑣𝑦𝑦 for almost all the phonon modes, so that the circle (red) dots are nearly all covered 
by the diamond (blue) dots, whereas the square (black) dots representing 𝑣𝑣𝑧𝑧 have significantly smaller values 
(b) Magnitude of phonon group velocity VS frequency in the full BZ. (c) Specific heat VS temperature of 
HfS2. The inset shows the branch-wise phonon specific heats. The acoustic branches have a larger 
contribution to the total specific heat than the optical branches at low T. As T increases, equipartition is 
gradually recovered. 
 

4.4.2 Grüneisen parameters 

The mode-dependent Grüneisen parameters 𝛾𝛾𝑎𝑎 , 𝛾𝛾𝑐𝑐 , and 𝛾𝛾𝑉𝑉  calculated from Eq. 

(2.34) and Eq. (2.35) are shown in Figure 4.4. Usually, 𝛾𝛾 is positive since the phonon 

frequency decreases as the force constants between atoms are reduced with the expanding 

lattice. In Figure 4.4(a)-(c), all three ZA mode Grüneisen parameters cross into the negative 

region. Negative 𝛾𝛾 for the bending mode ZA near Γ is common in 2D materials such as 

graphene [184], Si [185], and SL MoS2 [186] because of the coupling between XY and Z 
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vibrations caused by the orientation of the bonds between the metal and chalcogenide 

layers. Such coupling leads to hardened bending modes upon expansion, resulting in 

negative effective Grüneisen parameters. As has already been shown in Si and Ge [185], 

these negative 𝛾𝛾 modes lead to negative TECs according to Eq. (4.2). However, apart from 

the ZA modes, most of the other phonon modes in HfS2 have positive 𝛾𝛾. Therefore, the 

overall TECs are positive due to the relative dominance of the modes with positive 𝛾𝛾. The 

detailed TECs results and discussions are compiled in Sec. 4.4.4. 

The acoustic modes generally have larger Grüneisen parameters than the optical 

modes, suggesting that the acoustic modes are more sensitive to lattice deformations. It 

could be inferred that at higher temperature, the acoustic modes exhibit larger frequency 

shifts than the optical modes due to thermal expansion. Since all the components 

contribution to the thermal conductivity – phonon specific heat, group velocity, and RT – 

all depend on the phonon frequencies, such larger frequency shifts of acoustic modes are 

expected to manifest in greater sensitivity by the thermal conductivity to changes in 

temperature.   
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Figure 4.4. Gruneisen parameters (a) 𝛾𝛾𝑎𝑎 (b) 𝛾𝛾𝑐𝑐 (c) 𝛾𝛾𝑉𝑉 along high symmetry paths. (d) 𝛾𝛾𝑉𝑉 of all phonon modes 
in the BZ as a function of frequency. The volumetric Gruneisen parameter 𝛾𝛾𝑉𝑉  is used for subsequent 
calculations of RTs. 

4.4.3 Phonon relaxation time, mean free path, and thermal conductivity 

In Figure 4.5, the mode-dependent phonon RTs and MFPs are shown. Eq. (2.37) 

is used to evaluate the RTs.  However, in that expression, 𝜏𝜏 of an individual mode is 

inversely related to the square of its frequency 𝜔𝜔 and Grüneisen parameter 𝛾𝛾. Therefore, a 

singularity occurs in 𝜏𝜏 when 𝜔𝜔 = 0 or 𝛾𝛾 = 0. The case when 𝜔𝜔 = 0 for acoustic modes at 

Γ has been discussed for 2D semiconductors such as graphite [187] and MoS2 [41], where 

an ad hoc small cutoff frequency 𝜔𝜔𝑐𝑐 was defined below which smaller frequencies were 

simply not sampled to avoid the singularity. A study has shown that for most 

semiconductors, including phonons with frequencies higher than a cutoff value could 
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account for over 90% of the total thermal conductivity [188]. For a specific phonon branch, 

the cutoff value is chosen by finding the phonon of which the MFP is around 200 times 

smaller than the one at the BZ edge. Here, we utilize this method to choose the cutoff 

frequencies of 𝜔𝜔𝑐𝑐 =2.5 (ZA), 4.5 (TA), and 7.4 cm-1 (LA) for three acoustic branches. The 

other cause of singularities in 𝜏𝜏 are when 𝛾𝛾 = 0. A vanishing Gruneisen parameter implies 

the phonon frequency is unaffected by the lattice strains, or the vibrational energy is 

independent of lattice structural change. The statistical nature of phonons suggests that the 

probablity is identically zero of finding a phonon mode exactly at the point in the BZ 

coinciding with 𝛾𝛾 = 0. Thus we can reasonably exclude modes with 𝜔𝜔 = 0 or 𝛾𝛾 = 0 and 

calculate the mode-dependent RTs. These are shown in Figure 4.5(a)(b). The RTs of 

acoustic modes ZA, LA, and TA are generally larger than optical modes. For LA and TA 

modes, the RT  decreases as the wavevector leaves Γ and reaches a low value at the BZ 

edges, while for the ZA mode, the RT reaches several peak values between Γ and BZ edges. 

The large RTs of these ZA modes are because they have 𝛾𝛾 values close to 0, as shown in 

Figure 4.4(c). A general trend of decreasing RT with increasing phonon frequency is seen 

from Figure 4.5(b), where 𝜏𝜏 of all BZ phonons range from 0.1 ps to 0.1 μs. The ZA modes 

with wavenumbers smaller than 60 cm-1 have substantially larger RTs than other modes, 

indicating a lower phonon scattering rate. This is due to the large ZA-optical phonon gaps, 

as shown in Figure 4.2, that hinder the energy transfer between the ZA and optical phonons 

whereas the LA-optical and ZA-optical phonon gaps are smaller, resulting in higher 

phonon scattering rates. Using these RTs, the phonon MFPs along three dimensions are 

calculated and shown in Figure 4.5(c)(d)(e) as a function of frequency. A very large 
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spectrum of MFPs is observed. The MFPs can be as small as 10-15 nm for certain optical 

modes that have almost zero group velocities. The largest MFP of ZA modes is 1 μm, 

which is significantly larger than the largest MFP in SLMoS2 which is 18.1 nm [41]. This 

is because the smallest Grüneisen parameter in HfS2 is 𝛾𝛾 ≈ 0.005 while the smallest in 

SLMoS2 is 𝛾𝛾 ≈ 1.  

 

Figure 4.5. Mode-dependent phonon RTs for ZA, LA, TA, and optical modes (a) along the high symmetry 
paths (b) in the full BZ and phonon MFPs along (c) x- (d) y- (e) z-directions of HfS2 at 300K. The dash line 
represents the lattice parameter 𝑎𝑎 of HfS2. Despite the unrealistically small MFP (≈ 10−15 nm) for some 
optical modes, our results show that most of the optical modes have MFP smaller than the lattice parameter, 
thus having negligible contribution (<1%) to the total thermal conductivity. Therefore, we replace the MFPs 
of these modes by the lattice parameter 𝑎𝑎 for a more reasonable estimate of thermal conductivity. 
 

The mode-dependent thermal conductivities are shown in Figure 4.6. Due to the 

small group velocities, low specific heats, and small RTs, most optical mode terms in the 

sum are smaller than 10-5 W/m/K and therefore contribute negligibly. The acoustic mode 

terms, on the other hand, are several orders of magnitude larger. The branch-wise 

contributions were determined by summing mode-dependent thermal conductivities along 
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each branch. The results are summarized in Table 4.5 along with comparable literature 

values for SLMoS2 and graphene. The ZA modes contribute 80.6% (𝜅𝜅𝑥𝑥), 80.5% (𝜅𝜅𝑦𝑦), and 

76.5% (𝜅𝜅𝑧𝑧) towards the total thermal conductivity. These numbers are significantly larger 

than those in SLMoS2 or graphene. Graphene has larger ZA contributions than SLMoS2. 

This is due to the symmetry selection rule that only allows even numbers of ZA phonons 

to be involved in phonon-phonon scattering [51]. The one-atom thickness structure greatly 

restricts the phonon-phonon scattering between ZA and other phonon modes in graphene 

[51] whereas the anti-symmetric trilayer structure of SLMoS2 loosens such restriction. In 

HfS2, the large ZA-optical phonon gap, in contrast to no ZA-optical gap in graphene, 

further restricts the scattering of ZA modes, resulting in an even larger ZA contribution to 

the total thermal conductivity.  

 
Figure 4.6. Mode-dependent thermal conductivities in (a) x-, (b) y-, and (c) z-direction of HfS2 at 300K. 
There is no substantial difference among the thermal conductivity distributions along different lattice 
directions. The thermal conductivity decreases with increasing frequency, suggesting that the largest 
contribution towards the total thermal conductivity comes from the lowest frequency ZA modes.   
Table 4.5. Calculated Phonon branch (ZA, LA, TA, and optical) contributions to total thermal conductivity 
of HfS2 at 300K with analogous literature values for graphene and SLMoS2.  

 ZA (%) LA (%) TA (%) Optical (%) Total 
(W/m/K) 

HfS2(𝜅𝜅𝑥𝑥) 80.6 5.3 12.6 1.5 8.77 
HfS2(𝜅𝜅𝑦𝑦) 80.5 5.6 12.4 1.5 8.73 
HfS2(𝜅𝜅𝑧𝑧) 76.5 0.9 14.9 7.7 2.12 

HfS2 (𝜅𝜅𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) [48]     ~9 
SLHfS2 (𝜅𝜅𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

[49]     ~14 
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Graphene (𝜅𝜅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎) 
[51] 76 15 8 1 ~3500 

SLMoS2 (𝜅𝜅𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
[189] 29.1 30.4 39.1 1.4 101 

 
The calculated in-plane thermal conductivities show good agreement with solutions 

from phonon BTE [48, 49]. The thermal conductivity and branch-wise contributions are 

almost identical along x- and y-directions, confirming the in-plane isotropy. The c-axis 

thermal conductivity is 4~5 times smaller than in-plane values. This is mainly attributed to 

smaller group velocities in the z-direction compared to the ones in the in-plane directions, 

as shown in Figure 4.3(a).  

Table 4.6. In-plane and c-axis thermal conductivities of HfS2 and other 2D materials. The anisotropy ratio 
𝑅𝑅𝑎𝑎𝑎𝑎 = 𝜅𝜅𝑐𝑐−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜅𝜅𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
. The unit for thermal conductivities is W/m/K. 

 HfS2 Graphene MoS2 [62] WS2 [63] MoSe2 
[35] 

WSe2 
[32] 

𝜅𝜅𝑖𝑖𝑖𝑖−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 8.77 1700~4100 [190] 105 124 35 42 
𝜅𝜅𝑐𝑐−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2.12 ~6 [7] 2 1.7 2.6 2.4 
𝑅𝑅𝑎𝑎𝑎𝑎 0.24 ~0.003 0.02 0.014 0.074 0.057 

 
To quantitatively evaluate the anisotropy of thermal conductance in HfS2, we 

summarize thermal conductivities of HfS2 and other typical 2D materials in Table 4.6. The 

c-axis thermal conductivities of these 2D materials all have similar values (1~10 W/m/K). 

However, the anisotropy ratio 𝑅𝑅𝑎𝑎𝑎𝑎 of HfS2 is considerably larger than other 2D materials, 

due to its much smaller in-plane thermal conductivity. This observation is consistent with 

earlier discussions in Sec. 4.3.2 that the 𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 is one order of magnitude larger than other 

TMDC materials, since the in-plane bonding strength in HfS2 is much weaker.  
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4.4.4 Temperature effect 

The changing lattice structure, as calculated under the QHA, is the present means 

by which the temperature influences the physical properties. The calculated elastic 

constants are listed in Table 4.7 in comparison to experimental and DFT calculations from 

the literature and the TECs as a function of temperature are shown in Figure 4.7(a). 

Notably, 𝛼𝛼𝑎𝑎 is negative below 40K, and the lattice parameter 𝑎𝑎 decreases by a negligible 

amount of 1.31 × 10−5Å from 0K to 40K. This is because at very low temperature, the 

excited phonon modes are primarily the low-frequency ZA modes. A number of ZA modes 

have negative Grüneisen parameter 𝛾𝛾𝑎𝑎, as shown in Figure 4.4(a), leading to negative 𝛼𝛼𝑎𝑎 

according to Eq. (4.2). At larger temperatures, more modes with positive 𝛾𝛾𝑎𝑎 are excited, 

and the 𝛼𝛼𝑎𝑎 becomes net positive. Both 𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑐𝑐 increase with temperature and approach 

constant values of 𝛼𝛼𝑎𝑎 = 10.56 × 10−6 K−1  and 𝛼𝛼𝑐𝑐 = 7.66 × 10−6 K−1  at high 

temperature.  

The temperature-dependent lattice parameters are shown in  

 

Figure 4.7(b)(c). Both lattice parameters 𝑎𝑎 and 𝑐𝑐  deviate from the experimental 

measurements. This is due to the harmonic phonon approximation in the QHA as described 

in Sec. 2.1.2. The Hamiltonian of a lattice at high temperature cannot be approximated only 
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to the second order and the higher order terms must be included. The missing higher order 

terms leads to inaccurate free energy surfaces at each temperature, resulting in inaccurate 

equilibrium lattice parameters and TECs. However, the QHA should be valid for relatively 

low temperature [191].  

Table 4.7. Elastic constants and bulk modulus of HfS2. All values are in GPa. 
 𝐺𝐺11 𝐶𝐶12 𝐺𝐺13 𝐺𝐺33 𝐺𝐺44 𝐺𝐺66 𝐵𝐵0 
This work 186.12 48.5 15.35 56.18 25.67 68.79 44.5 
Exp [192] 143(±7) 50(±15) 10(±1) 39.4(±1.4) 10.1(±0.4)   
DFT [193] 141.98 25.95 6.53 32.99 12.03 58.01 35.07 

 

 
Figure 4.7. (a) TECs along 𝑎𝑎 and 𝑐𝑐 directions, lattice parameter (b) a and (c) c VS temperature of HfS2. The 
XRD experiment showed that HfS2 decomposes to form HfO2 at 735℃ [194], therefore we limited the 
temperature to 1010K. In order to compare the temperature dependence rather than the absolute values, the 
experimentally measured lattice parameters have all been subtracted by a constant value which enforces them 
to agree with results of this work at room temperature.   
 

In this work, the specific heats, phonon MFPs, and RTs are all temperature 

dependent. To illustrate the temperature effect more clearly, we take the average of the 

phonon MFPs and RTs over the full BZ by 

 𝜏𝜏̅(𝑇𝑇) =
∑ 𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�𝑣𝑣2�𝜔𝜔𝝋𝝋�𝜏𝜏�𝜔𝜔𝝋𝝋,𝑇𝑇�𝝋𝝋

∑ 𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�𝑣𝑣2�𝜔𝜔𝝋𝝋�𝝋𝝋
 (4.10) 

 𝛬𝛬̅𝑖𝑖(𝑇𝑇) =
∑ 𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�𝑣𝑣𝑖𝑖�𝜔𝜔𝝋𝝋�Λ𝑖𝑖�𝜔𝜔𝝋𝝋,𝑇𝑇�𝝋𝝋

∑ 𝐶𝐶�𝜔𝜔𝝋𝝋,𝑇𝑇�𝑣𝑣𝑖𝑖�𝜔𝜔𝝋𝝋�𝝋𝝋
 (4.11) 

so that the total thermal conductivity can be expressed as 𝜅𝜅𝛼𝛼(𝑇𝑇) = 𝐶𝐶(𝑇𝑇)𝛬𝛬𝑖̅𝑖(𝑇𝑇)𝜏𝜏̅(𝑇𝑇). The 

results are shown in Figure 4.8. The initial increase of 𝜏𝜏̅, Λ�𝛼𝛼, and 𝜅𝜅𝛼𝛼 from 0K to around 
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30K are because more phonons are thermally excited to transport heat as temperature 

increases. However, phonon scattering – accounted for primarily in the RTs – starts to 

dominate thermal transport as temperature continues to increase, resulting in a continuous 

decrease starting at 30K. The components of the maximum thermal conductivity at 30K 

are 𝜅𝜅𝑥𝑥 = 61.2  W/m/K, 𝜅𝜅𝑦𝑦 = 61.8  W/m/K, and 𝜅𝜅𝑧𝑧 = 17.8  W/m/K. As seen from Eq. 

(2.37), RT is inversely related to temperature as 𝜏𝜏~ 1
𝑇𝑇
. This is also presented in Figure 

4.8(a). Despite that the specific heat 𝐶𝐶  increases with T, this inverse relation to T is 

preserved in the total thermal conductivity as shown in Figure 4.8(c). Such similarity 

between the temperature dependence of 𝜅𝜅 and 𝜏𝜏 further validates the dominant role phonon 

scattering plays over phonon population in thermal transport properties. The transverse 

isotropy of thermal conductivity is present at all temperatures, as seen from the agreement 

between the x and y values but contrast from the z value in Figure 4.8(c). The c-axis values 

are consistently around 4–5 times smaller than the in-plane values. 
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Figure 4.8. Temperature-dependent average (a) RT, three-dimensional (b) MFP, and (c) thermal conductivity. 
(d) Contribution from the ZA branch toward the total thermal conductivity of HfS2. In (c) and (d), the results 
calculated using Eq. (9) are marked with (v), while the ones from Eq. (10) are marked with (vq,j ). 
 

The nearly 80% contribution from the ZA branch towards the total thermal 

conductivity is shown in Figure 4.8(d), where it can be seen this holds true at almost all 

temperatures along all three directions. Such dominance of the ZA phonon modes in 

thermal properties of HfS2 is due to their larger specific heats [shown in Figure 4.3(c)], 

longer RTs (Sec. 4.4.3), and considerable group velocities [shown in Figure 4.3(b)] 

compared to other modes. Similar behavior has also been seen in WSe2 that ZA phonons 

contribute 80% to the thermal conductivity at room temperature due to their longer RTs 

[47].The fundamental cause of ZA phonon dominant thermal carriers in HfS2 is attributed 

to the relatively weak interlayer VDW interactions leading to low vibrational frequencies 

of out-of-plane phonon modes and subsequently resulting in the large ZA-optical phonon 

gap shown in Figure 4.2. The scattering between ZA modes and optical modes is restricted 

by the large energy gap, whereas other branches have small or no phonon gaps, thus leading 

to frequent scattering. It is therefore evident that a close relation between the thermal 

transport properties and the phonon gaps is dominant in HfS2 phonon properties.  

Furthermore, two forms of the relaxation time expression within the framework of 

Klemens’ theory give similar thermal conductivity and ZA contributions. In Figure 4.8(c), 

Eq. (2.37) and Eq. (2.38) produce consistent results of temperature dependent thermal 

conductivity, despite slight difference in the absolute values. In Figure 4.8(d), the ZA 

contributions to thermal conductivity are all higher than 76% at all temperatures, using 

either Eq. (2.37) or Eq. (2.38). 
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4.5 Summary 

In summary, we have explored the thermal properties of HfS2 using first principle 

DFT calculations of lattice structural and phonon characteristics. Our results, showing good 

agreement with experimental measurements, uncover important and distinctive properties 

of HfS2.  From the analysis of the out-of-plane optical modes at the Γ symmetry point, we 

discover that among other TMDCs, HfS2 has uncharacteristically strong out-of-plane 

VDW interactions relative to the in-plane bonds. This has significant effects on many 

phonon and thermal properties. The calculated mode-dependent Grüneisen parameters 

indicate an anomaly where specific ZA modes in HfS2 possess negative values caused by 

a hybridization between in-plane and out-of-plane atomic vibrations. Umklapp phonon 

scattering limited relaxation times and mean free paths are calculated to estimate the 

phonon transport properties and thermal conductivity of HfS2 in 0K to 500K temperature 

range. These are used to determine that large phonon populations and phonon gaps are 

associated with the ZA phonon modes, making them the overwhelmingly dominant mode 

for phonon transport. In fact, the ZA modes are found to be responsible for nearly 80% of 

the phonon contribution to the total thermal conductivity, highest among the TMDCs we 

considered. Additionally, a large crystal orientation dependent anisotropy in the thermal 

conductivity is found. The room temperature c-axis thermal conductivity of HfS2 is 

estimated to be 2.12 W/m/K and is 4-5 times smaller than the in-plane directions. 

Intrinsically, this is due to a weaker in-plane bonding strength in HfS2 compared to other 

2D materials that leads to a smaller in-plane thermal conductivity. Our results outline some 
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of the fundamental and unique phonon characteristics of HfS2 that can be explored for 

controlling the thermal properties of the material in thermal management and 

thermoelectric devices. 
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Chapter 5 Structural phase change and phonon stiffening in 

HfS2 

In Chapter 4, the thermal properties of HfS2 are studied under the QHA theory. The 

fundamental assumption in the QHA theory, as discussed in Sec. 2.1.2, is that phonons are 

still harmonic. However, this assumption would break down at high temperature or for 

materials with strong anharmonicity. It remains unclear whether the HfS2 phonons at finite 

temperature can be well represented under the QHA. 

In this Chapter, we will present experimental and theoretical studies on the 

temperature dependent structural and phonon properties of HfS2. Most remarkably, a 

structural phase transition at 300 K is discovered. Two unusual phenomenon are observed 

in the Raman and X-ray diffraction measurements on HfS2 from 80 K to 500 K. The first 

is that all the temperature coefficients of lattice parameters and phonon frequencies along 

both in-plane and c-axis orientation change at around 300 K. The second is that the c-axis 

phonon mode A1g exhibits anomalous phonon stiffening below 300 K and reverses into 

phonon softening above 300 K. Based on the two observations, the hypothesis of a 

structural phase transition at 300 K is proposed. From the first-principle simulations, we 

observe the 3R phase (>300 K) which is characterized by a different stacking order than 

the 1T phase (<300 K). The temperature coefficients obtained from Car-Parrinello MD 

simulations agree with experimental measurements within 40%, thus supporting our 

hypothesis of phase transition. The anomalous phonon stiffening in A1g mode is attributed 

to decreasing thickness of trilayers as temperature increases. By comparing first-principle 
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calculations adopting QHA and anharmonic approximation, the mechanism governing the 

phase transition is attributed to anharmonic phonon scattering that becomes more 

pronounced at high temperature. The discovered 3R phase, which can stabilize just above 

room temperature, would suggest a wide range of potential applications in electronic and 

optoelectronic devices.  

5.1 Introduction 

Transition-metal dichalcogenides (TMDCs) have attracted interests due to wide 

range of electronic, thermal, and optical properties they possess [16, 1]. They share 

common layered structures where one layer of M atoms is sandwiched by two layers of X 

atoms. Most widely known structures of TMDCs are characterized by trigonal prismatic 

(2H), octahedral (1T), or demerized 1T (1T′) coordination of the metal atom. Besides these 

commonly known phases, the so-called 3R phase also exists in some TMDCs such as MoS2 

[16, 195, 196], WS2 [196], and MoTe2 [197]. Distinguished from above central symmetric 

phases, the 3R phase can suppress the interlayer interaction and evoke strong valley 

polarization [198, 199]. In MoS2 and WS2, the 3R phase has been shown to possess better 

catalytic properties towards the hydrogen evolution reaction than their 2H phase 

counterparts [196]. 3R phase TMDCs also show great potential in novel applications of 

nonlinear optics and valleytronics due to the high frequency conversion efficiency and 

strong spin-orbit coupling [200, 201]. 

In this chapter, we report the first discovery of 3R phase in HfS2, which can stabilize 

just above the room-temperature. This is enabled by the experimental and theoretical 
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studies of the structural and phonon properties of HfS2. From Raman and X-ray diffraction 

measurements, a change in the temperature coefficients of lattice parameters and phonon 

frequencies are observed. In addition, in the c-axis A1g phonon mode, we observe an 

anomalous phonon stiffening below 300 K that reverses to phonon softening above 300 K. 

Based on experimental observations, the hypothesis of structural phase transition is made. 

The hypothesis is supported by first-principle calculations performed. The mechanism 

governing the structural phase transition and phonon stiffening is attributed to lattice 

anharmonicity.    

5.2 Experiments 

All the figures and data shown in this section are produced by experiments 

performed by Dr. Sina. Najmaei and his research group from the Army Research Lab 

(ARL, Adelphi, Maryland). 

We perform Raman spectroscopy and X-ray diffraction (XRD) measurements to 

examine the structural and phonon properties of HfS2. The results are shown in Figure 5.1. 

Opposite temperature dependence between the in-plane (Eg) and c-axis (A1g) phonon 

frequencies is observed below room-temperature. In Figure 5.1(b) and (f), below 300 K, 

the frequency of c-axis phonon mode A1g frequency 𝜔𝜔𝐴𝐴 increases as the temperature is 

raised. Normally, lattice expands as temperature increases. The thermal expansion leads to 

softened atomic bonds, thus resulting in a decrease of the phonon frequency or phonon 

softening. However, on the contrary, phonon stiffening is observed in the A1g mode. On 

the other hand, the in-plane mode Eg exhibits normal phonon softening below 300 K, as 
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seen from Figure 5.1 (a) and (e). No prominent thickness dependence of the phonon 

stiffening and softening is observed from Figure 5.1(a) and (b). The anomalous phonon 

stiffening has also been observed in other materials such as SiF3 [202, 203] and SnSe [204]. 

The underlying mechanism is attributed to negative thermal expansion coefficients (TECs) 

that stiffen atomic bonds as temperature increases. However, no negative TEC is observed 

in HfS2. As shown in Figure 5.1(c) and (d), both TECs 𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑐𝑐 are positive from 120 K 

to 400 K. Since the phonon frequencies are determined by the lattice configurations, the 

observation of phonon stiffening indicates unusual change of atomic structure as a function 

of temperature below 300 K. 
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Figure 5.1. Measurements on phonon frequencies and lattice parameters of HfS2. The scatters represent 
experimental data while the dash lines represent the linearly fitted curve. Temperature dependent Raman 
peaks of (a) Eg and (b) A1g modes for HfS2 samples with different thickness, in the temperature range [77, 
300] K. Approximately linear dependence on temperature is observed. Considering the lattice parameter c of 
HfS2 is around 0.583-0.88 nm [53, 169], the thinnest sample in the experiments contains over 10 layers. 
Therefore, all the samples are deemed to be bulk HfS2. XRD measured lattice parameters (c) 𝑎𝑎 and (d) 𝑐𝑐 of 

(a) (b) 

(c) (d) 

(e) (f) 
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HfS2 samples with 300nm thickness. The TEC of lattice parameter 𝑎𝑎 is calculated as 𝛼𝛼𝑎𝑎 = 𝑑𝑑𝜖𝜖𝑎𝑎
𝑑𝑑𝑑𝑑

. The strain is 

calculated as 𝜖𝜖𝑎𝑎 = 𝑎𝑎(𝑇𝑇)−𝑎𝑎(0)
𝑎𝑎(0)

 with 𝑎𝑎(0) = 3.622 Å  (interception of the fitted curve with y axis, which is 
considered as lattice parameter 𝑎𝑎  at 0K). The TEC of lattice parameter c is calculated using the same 
approach. Temperature dependent Raman peaks of (e) Eg and (f) A1g modes for HfS2 sample with thickness 
300 nm in the temperature range [77 500] K. 
 

We also observe that all the temperature coefficients of lattice parameters and 

phonon frequencies change at around 300 K. In Figure 5.1(c) and (d), both TECs 𝛼𝛼𝑎𝑎 and 

𝛼𝛼𝑐𝑐  change at 300 K. Specifically, 𝛼𝛼𝑎𝑎(𝑇𝑇 > 300𝐾𝐾) ≈ 4.8𝛼𝛼𝑎𝑎(𝑇𝑇 < 300𝐾𝐾)  and 𝛼𝛼𝑐𝑐(𝑇𝑇 >

300𝐾𝐾) ≈ 2.6𝛼𝛼𝑐𝑐(𝑇𝑇 < 300𝐾𝐾). In Figure 5.1(e) and (f), temperature coefficients of A1g and 

Eg phonon, namely 𝜒𝜒𝐴𝐴 and 𝜒𝜒𝐸𝐸  change at 300 K. Change in the TECs implies structural 

phase transition [205, 206].  

Our leading hypothesis is that the experimental observations are due to a solid-to-

solid structural phase transition that starts in the known 1T phase at low temperature (< 

300K) and arrives at a yet-to-be-discovered phase at high temperature (>300K). In the 1T 

phase below 300 K, the c-axis phonon A1g exhibits anomalous phonon stiffening. In the 

new phase above 300 K, A1g exhibits phonon softening. 

5.3 Theoretical calculations 

To provide a theoretical explanation for the experimentally measured temperature 

dependence of structural and phonon properties, QHA (see Sec. 2.1.2) and CPMD (see Sec. 

2.2.3) calculations are performed within the framework of the DFT theory.  



 

 

98 

 

5.3.1 QHA 

Same DFT parameters as the ones used in Sec. 4.2.1 are adopted. The equilibrium 

lattice structure as a function of temperature is determined by performing phonon 

calculations at 25 lattice configurations with different lattice parameters 𝑎𝑎 and 𝑐𝑐 . Five 

values of 𝑎𝑎 (from 3.458 Å to 3.958 Å with increment of 0.1 Å) and 𝑐𝑐  (from 5.502 Å to 

5.902 Å with increment of 0.1 Å) are chosen to generate the lattice configurations. The 

Helmholtz free energy of these configurations are calculated using Eq. (2.17). At a specific 

temperature, the calculated Helmholtz free energy are fitted to 𝑎𝑎 and 𝑐𝑐 as a third order 

polynomial. Then the parameters 𝑎𝑎 and 𝑐𝑐 of equilibrium lattice configuration is obtained 

by finding the minimum of the fitted function. We vary temperature from 0 K to 500 K 

with a 5 K interval. 

5.3.2 CPMD 

A series of CPMD simulations at temperature from 80 K to 500 K with 40 K 

increment are performed. In each simulation, a 3 × 3 × 3 HfS2 supercell containing 81 

atoms subject to periodic boundary condition is considered. A time step of 10 a.u. (1 

a.u.=0.024189 fs) is used.  The fictitious electron mass, i.e. 𝜇𝜇 in Eq. (2.30) and Eq. (2.32), 

is set to be 800 a.u. (1 a.u is the electron rest mass, 𝑚𝑚𝑒𝑒 = 9.109384 × 10−31 𝐾𝐾𝐾𝐾). The 

system is brought to thermal equilibrium at the target temperature via a sequence of 

different runs. Initially, we relax the system to ground state at 0 K. This is done by relaxing 

electrons, ions, and supercell DOFs to the minimum energy configuration. Convergence is 

achieved when the difference between total energy of two consecutive lattice 
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configurations is less than 1 × 10−6 Ry, all components of all forces acting on atoms are 

less than 1 × 10−3 Ry/a.u., and the kinetic energy is less than 1 × 10−5 Ry. Subsequently, 

a displacement is applied to every atom in the system to initiate a CP dynamics. The 

magnitude of the displacement is randomized between -0.01 and 0.01 a.u. (1 

a.u.=0.5291772 Å). The initial velocities of all atoms are set to zero. Next, the system is 

heated up to the target temperature by a NPT run of 50 ps. A Nose-Hoover thermostat is 

implemented to keep the temperature of ionic system constant [207]. Finally, data are 

collected from simulations in NPT ensemble for over 200 ps, where the atomic trajectories 

are sampled every 10 timesteps.  

5.4 Results and discussion 

From the QHA and CPMD calculations, we extract temperature dependent phonon 

frequencies and lattice parameters to compare with the experimental data.  

5.4.1 Structural phase transition 

In the CPMD simulations, we observe a structural phase transition at 300 K. The 

equilibrium lattice configurations at different temperature are shown in Figure 5.2. They 

are obtained by taking the time average of atomic coordinates and supercell vectors from 

the NPT ensembles in CPMD simulations. At T<300 K, HfS2 lattice stays as the commonly 

known 1T phase. However, as temperature approaches 300 K, the lattice experiences a 

structural phase transition. The new phase above 300 K is characterized by a shift between 

adjacent layers. The quantification of atomic coordinates indicates that each layer is shifted 
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with respect to the adjacent ones by (1
3
𝒙𝒙𝟏𝟏, 1

3
𝒙𝒙𝟐𝟐, 0), thus exhibiting a ABC stacking order. 

The ABC stacking order has been observed in other 2D layered materials. In trilayer 

graphene, it is found that the ABC (rhombohedral) stacking order is retained at high 

temperature (>800 ℃) and exhibits phonon and electronic properties different from those 

of the usual ABA (Bernal) stacking order [208, 209]. In MoS2, the ABC stacked (3R) phase 

also exists as well as the most stable AB stacked (2H) phase [198, 210]. Again, high 

temperature (≥850 ℃) is required for 3R-MoS2 to stabilize. There are two prominent 

differences between the ABC stacked HfS2 and other 2D layered crystals. First, ABC-HfS2 

can stabilize at much lower temperature (>300 K) than the ones required by the other 2D 

crystals. This indicates that the energy barrier for structural phase transition in HfS2 is 

significant lower than the values for 2D materials. Second, above ABC stacking phase are 

studied in trilayer or few-layer graphene and MoS2 samples whereas in our work, bulk HfS2 

samples are considered. The first observation of ABC-HfS2 in our work suggests a rout for 

exploring the effect of interlayer VDW interaction on phonon and electronic properties of 

HfS2. Similar work has already been done for MoS2 and graphene [208, 198]. 
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Figure 5.2. Equilibrium lattice configurations of HfS2 supercells at different temperature. The structural phase 
transition is characterized by a change in the stacking order between adjacent trilayers, as is denoted by the 
dash red lines. 

 

Figure 5.3. Temperature dependent (a) in-plane lattice parameter 𝑎𝑎, (b) c-axis lattice parameter 𝑐𝑐, (c) A1g 
phonon frequency 𝜔𝜔𝐴𝐴, and (d) Eg phonon frequency obtained from theoretical calculations and experimental 
measurements. In all the figures, the simulation data has been subtracted by a constant number to match with 
experimental data at 120K, in order to compare the temperature dependence rather than absolute values. In 

(a) (b) 

(c) (d) 
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(b), the lattice parameter 𝑐𝑐 of 3R-HfS2 is obtained by taking one third of the supercell dimension along c-
axis, since one supercell contains three unit cells along the c-axis direction. 
 
 

The CPMD simulations also successfully reproduce the phonon stiffening and 

softening behavior of A1g and Eg modes observed in experiments, as is shown in Figure 

5.3(c) and (d). To quantitatively compare experimental and theoretical data, we extract the 

temperature coefficients of lattice parameters and phonon frequencies via linear fitting of 

all the data shown in Figure 5.3. The temperature coefficients are summarized in Table 5.1. 

Three out of four temperature coefficients calculated from CPMD approach - 𝜒𝜒𝐸𝐸 , 𝛼𝛼𝑎𝑎 , 

and  𝛼𝛼𝑐𝑐  - all agree with experimental data within 35%. The only exception is the 

temperature coefficient of A1g phonon frequency, which is 8 times (T<300 K) and 6 times 

(T>300 K) larger than the experimental value. However, qualitatively, the phonon 

stiffening (T<300 K) and softening (T>300 K) behavior are both successfully reproduced 

by the CPMD simulations. 

Table 5.1. Temperature coefficients of lattice parameters (𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑐𝑐) and phonon frequencies (𝜒𝜒𝐴𝐴 and 𝜒𝜒𝐸𝐸). 
The frequencies are fitted to a linear equation 𝜔𝜔(𝑇𝑇) = 𝜔𝜔0 + 𝜒𝜒𝜒𝜒 where 𝜔𝜔0 is the frequency at ground state 
and 𝜒𝜒 is the temperature coefficient. The lattice parameters are fitted to a linear equation 𝑔𝑔(𝑇𝑇) = 𝑔𝑔0(1 +
𝛼𝛼)𝑇𝑇 where 𝑔𝑔0 is the lattice parameter at ground state and 𝛼𝛼 is the temperature coefficient. The percentage 

difference between experimental and simulation data, calculated as �𝑠𝑠𝑠𝑠𝑠𝑠−𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒

� × 100%, are shown in the 
square. 

 T<300 K T>300 K 
 Exp CPMD QHA Exp CPMD QHA 

𝜒𝜒𝐴𝐴(cm-1/K) 0.0011 0.0082 -0.0034 -0.0013 -0.0077 -0.0034 
𝜒𝜒𝐸𝐸(cm-1/K) -0.0043 -0.0046 -0.0011 -0.01 -0.0093 -0.0011 
𝛼𝛼𝑎𝑎(10−6/𝐾𝐾) 4.6 4.3 (-6.5%) 3.2 (-30.4%) 22.1 20.5 (-7.2%) 5.7(-74.2%) 
𝛼𝛼𝑐𝑐(10−6/𝐾𝐾) 14.9 9.4 (-36.9%) 3.4 (-77.2%) 38.5 50.6 (31.4%) 4.2 (-89.1%) 
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5.4.2 Lattice anharmonicity 

The mechanism governing the structural phase transition from 1T to 3R phase is 

the more and more pronounced anharmonic phonon scattering as temperature increases. 

This is discussed in the following analysis on theoretical calculations. The lattice 

parameters 𝑎𝑎 and 𝑐𝑐 obtained from the QHA calculations, CPMD simulations, and XRD 

measurements are plotted in Figure 5.3(a) and (b). Both the in-plane and c-axis parameters 

calculated by the CPMD approach agree well with experimental data at all temperature. 

On the other hand, the values obtained from QHA calculations deviate from experimental 

measurements significantly. The difference between QHA and CPMD results can be 

understood from a free energy perspective. A stable phase of a crystal is always associated 

with minimum free energy under specified thermodynamic conditions. In the case of HfS2 

here, the Helmholtz free energy can be chosen which is given by [79] 

 
𝐹𝐹({𝑎𝑎},𝑇𝑇) = 𝐸𝐸𝐺𝐺𝐺𝐺({𝑎𝑎}) + 𝐹𝐹𝑉𝑉({𝑎𝑎},𝑇𝑇) 

= 𝑈𝑈𝐻𝐻𝐻𝐻({𝑎𝑎}) + 𝑈𝑈𝐴𝐴𝐴𝐴({𝑎𝑎}) + 𝐹𝐹𝑉𝑉({𝑎𝑎},𝑇𝑇) 
(5.1) 

where {𝑎𝑎} represents a set of lattice parameters defining the lattice configuration, 𝑇𝑇 is the 

temperature, 𝐸𝐸𝐺𝐺𝐺𝐺 is the ground-state energy, 𝐹𝐹𝑉𝑉({𝑎𝑎},𝑇𝑇) is the vibrational energy, 𝑈𝑈𝐻𝐻𝐻𝐻({𝑎𝑎}) 

and 𝑈𝑈𝐴𝐴𝐴𝐴({𝑎𝑎}) represent the harmonic and anharmonic terms in the Taylor expansion of 

interatomic potential respectively. At any temperature, the equilibrium lattice 

configuration is the one with the lowest free energy 𝐹𝐹({𝑎𝑎},𝑇𝑇). In QHA calculations, the 

anharmonic terms 𝑈𝑈𝐴𝐴𝐴𝐴 are completely neglected. Moreover, the lattice is ascribed with 1T 

phase under the QHA - only the variance of 𝑎𝑎, 𝑐𝑐, and the internal atomic coordinates are 



 

 

104 

 

considered. No phase other than 1T is considered in QHA calculations. In CPMD 

simulations, all the anharmonic terms 𝑈𝑈𝐴𝐴𝐴𝐴 are considered without neglecting any higher 

order terms. Therefore, all degrees of freedom of the lattice configuration are allowed to 

relax and equilibrate in a thermodynamic ensemble. It is able to sample through all possible 

configurations and stabilize as the minimum energy configuration. As a result, it stabilize 

as 1T phase at T<300 K and ABC phase at T>300 K. The anharmonic terms 𝑈𝑈𝐴𝐴𝐴𝐴({𝑎𝑎}) at 

T>300 K leads to the fact that 3R phase is more thermally stable than 1T phase. 

5.4.3 Phonon stiffening and bonding length 

The anomalous phonon stiffening of A1g mode can be explained by the temperature 

dependence of the bonding length. The intralayer (ℎ) and interlayer (ℎ𝑉𝑉𝑉𝑉𝑉𝑉) distances at 

different temperature, which are obtained by taking time average in CPMD simulations, 

are plotted in Figure 5.4. We can qualitatively express A1g frequency as 

 𝜔𝜔𝐴𝐴1𝑔𝑔 = �
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑆𝑆
 (5.2) 

since A1g phonon corresponds to atomic vibrations along c-axis direction (see Sec. 4.3.2). 

We assume that the relations 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉~ 1
ℎ𝑉𝑉𝑉𝑉𝑉𝑉

 and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ 1
ℎ

 stand. This is because as the 

atomic bonds are stretched along c-axis direction, the bonding strength are decreased. 

Combining these relations with (5.2), we have a qualitative relation between 𝜔𝜔𝐴𝐴 and layer 

distances as 𝜔𝜔𝐴𝐴~ 1
ℎ𝑉𝑉𝑉𝑉𝑉𝑉

  and 𝜔𝜔𝐴𝐴~ 1
ℎ
. Furthermore, as the intralayer bonds are much stronger 
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compared to VDW interactions, therefore 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 < 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The influence of ℎ on 𝜔𝜔𝐴𝐴1𝑔𝑔 is 

more prominent than ℎ𝑉𝑉𝑉𝑉𝑉𝑉. 

 

Figure 5.4. Temperature dependent intralayer distance h (vertical distance between S layers in a trilayer) and 
interlayer distance hVDW (vertical distance between adjacent S layers) of HfS2. The effective interaction 
dominating out-of-plane vibrational mode A1g is represented by 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, respectively.  
 

 The contradicting temperature dependence of 𝜔𝜔𝐴𝐴  below and above 300 K, is 

explained by the lattice structural change as a function of temperature. At T<300 K, as 

temperature increases, ℎ  decreases while ℎ𝑉𝑉𝑉𝑉𝑉𝑉  increases. As the effect of ℎ  on 𝜔𝜔𝐴𝐴 

overwhelms that of ℎ𝑉𝑉𝑉𝑉𝑉𝑉, overall 𝜔𝜔𝐴𝐴 increases as temperature is raised. At T>300 K, the 

trend of temperature dependence of ℎ and ℎ𝑉𝑉𝑉𝑉𝑉𝑉 reverses. As a result,  𝜔𝜔𝐴𝐴 decreases as 

temperature is raised. 

5.5 Summary 

In summary, we have examined temperature dependent lattice structural and 

phonon properties of HfS2 via QHA, CPMD, and experimental approaches. For the first 
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time, we identify the 3R phase above 300 K, which is characterized by the ABC stacking 

order different from AAA stacking order in its 1T phase below 300 K. In experiments, we 

observe a change in the first-order temperature coefficients of A1g and Eg mode 

frequencies, and lattice parameters 𝑎𝑎 and 𝑐𝑐 at room temperature. An anomalous phonon 

stiffening of A1g mode below 300 K is also observed in Raman spectroscopy 

measurements. However, this trend reverses to phonon softening above 300 K. The CPMD 

simulations discovers a phase transition at 300 K which is characterized by a change in the 

stacking order from AAA to ABC. The structural change at 300 K is validated by good 

agreements between CPMD simulations and experimental measurements on all the above 

temperature coefficients. By comparing the CPMD and QHA results, we attribute the phase 

change to be due to phonon anharmonicity. The anomalous A1g phonon stiffening is due to 

decrease of the intralayer thickness of the HfS2 trailayer, as temperature increases.  
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Chapter 6 Conclusions and outlook 

6.1 Summary and contributions 

In this thesis, we have studied phonon-mediated thermal transport in two TMDC 

materials – MoS2 and HfS2.  

In Chapter 2, we presented the theory of phonons and various computational 

approaches used to investigate thermal transport properties. Using LD method, we showed 

that the lattice phonon properties are decided by the derivatives of Hamiltonian with respect 

to atom displacements. The higher than 2rd order terms in the Taylor expansion of the 

Hamiltonian dominates the phonon anharmonicity. Different assumptions - the HA, QHA, 

and FAA - can be made to include of phonon anharmonicity to different levels. Following 

the discussions on phonons, we briefly described the theory behind computational 

approaches including MD, DFT, and CPMD. Finally, methodologies of applying these 

computational techniques to calculating different thermal transport properties components 

were presented. 

In Chapter 3, the electronic and phonon transport properties of folded MoS2 were 

investigated. This was the first theoretical study of how the electronic and thermal 

properties of MoS2 can be modulated by folding. Previously, folding had been discovered 

only by experiments that measured optical and electronic properties of MoS2 [70, 127]. We 

calculated the atomic structure of folded SLMoS2 using a combination of MD and DFT 

methods. The atomic structure is composed of a racket shape folding edge and a bilayer 

region, as shown in Figure 3.5. The dimensional feature of the folded structure were found 
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to be independent of the wrapping length. Subsequent DFT calculations showed that the 

electronic bandgap exhibits a strong dependence on the wrapping length, monotonically 

converging (from below) to the bandgap value of the bilayer structure. On the other hand, 

MD calculations showed that the thermal conductivities are insensitive to the wrapping 

length and much smaller compared to the one of SL. These findings suggested a new route 

for designing MoS2-based electronic device where its electronic properties can be tuned 

without affecting the thermal aspect. 

The key contributions are: 

• The atomic structure of folded SLMoS2 was discovered (see Sec. 3.3.1). This 

provides a theoretical understanding on the folded structure observed in 

experiments [70, 127]. 

• The structural, electronic, and phonon properties show different dependence on 

the wrapping length (see Sec. 3.3). As the wrapping length is varied, the 

configuration of the folding edge is unchanged. Such structural dependence on 

the wrapping length leads to different characteristics of the electronic and 

phonon properties. The electronic band gap increases (see Figure 3.7) while 

thermal conductivity does not change (see Figure 3.11), when the wrapping 

length is increased. 

• Reduction in the thermal conductivity of folded SLMoS2 as compared to the 

one of SLMoS2 sheet is attributed to the increased anharmonic phonon 

scattering (see Sec. 3.3.3). This was supported by the evidence that the phonon 

RT of folded SLMoS2 is only around half of the value for SLMoS2 sheet (see 
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Table 3.3). Physically, the increase in the phonon scattering is due to the break 

of lattice symmetry introduced by folding.  

In Chapter 4, we studied the temperature dependent phonon properties of 1T-HfS2 

under the QHA. For the first time, anisotropy and temperature dependence of full BZ 

phonons in bulk HfS2 were determined by performing DFT calculations. The LO-TO 

splitting, namely breaking of the degeneracy between longitudinal and transverse optical 

phonon modes, were identified. The magnitude of splitting was calculated using the atom 

force constants. The mode dependent phonon RTs were estimated under the Klemens’ 

theory. The obtained RTs were used in combination with group velocities and specific heat 

to calculate thermal conductivity, under the kinetic phonon theory (see Sec. 2.1.3). We 

identified contributions from different phonon modes towards the thermal conductivity 

where a surprisingly high portion (~80%) comes from the ZA phonons. The anisotropy and 

temperature dependence of the phonon transport components were analyzed. 

The key contributions are: 

• ZA phonons dominate thermal transport in HfS2. The ZA branch contributes 

almost 80% to the total thermal conductivity from 0 K to 500 K [see Figure 

4.8(d)]. This is due to the larger specific heats [see Figure 4.3(c)], longer RTs 

[see Sec. 4.4.3], and considerable group velocities [see Figure 4.3(b)] of ZA 

modes compared to other modes. 

• HfS2 exhibits uncharacteristically strong VDW interaction relative to the in-

plane bonds. The ratio between the VDW and in-plane interaction of HfS2 is 
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order of magnitude larger than the values of other TMDCs including ZrS2, 

MoS2, WS2, and WSe2 (see Table 4.4). This is due to weak in-plane atomic 

interactions. As a result, the in-plane thermal conductivity of HfS2 is 

significantly smaller than other 2D materials (see Table 4.6).  

• Effect of temperature on lattice structure and thermal transport components 

were examined (see Sec.4.4.4). The temperature dependence of thermal 

properties were illustrated by discussing the interplay between phonon 

scattering effect and thermally excited phonon population (see Sec. 4.4.4).   

In Chapter 5, we examined the temperature dependent lattice structural and phonon 

properties of HfS2 via QHA, CPMD, and experimental approaches. Anomalous phonon 

stiffening was observed in A1g mode via Raman spectroscopy measurements. XRD 

measurements were performed to probe the lattice structural properties. Interestingly, the 

first-order temperature coefficients of A1g and Eg frequency, and lattice parameters 𝑎𝑎 and 

𝑐𝑐 all change at room temperature. Subsequent QHA and CPMD calculations were carried 

out to explore the underlying mechanisms. From these calculations, all the above 

temperature coefficients are obtained and compared with experimental values. The CPMD 

simulations discovered a structural phase transition at 300 K, which is characterized by a 

change in the stacking order from AAA to ABC. The structural change at 300 K is validated 

by good agreements between the temperature coefficients obtained from CPMD 

simulations and experimental measurements. By comparing the CPMD and QHA results, 

we attribute the phase change to be due to anharmonicity effects. The anomalous A1g 
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phonon stiffening is due to the decrease of the intralayer thickness of the HfS2 trailayer, as 

temperature increases.  

The key contributions are: 

• The 3R phase (>300 K) with ABC stacking order was discovered. This was 

enabled by the inclusion of full phonon anharmonicity in CPMD simulations 

(see Sec. 5.4.2).   

• An anomalous phonon stiffening as temperature increases was found via Raman 

spectroscopy measurements. The mechanism is the decreasing thickness of 

trilayer as temperature is raised (see Sec. 5.4.3). 

6.2 Future works 

6.2.1 Temperature dependence and anharmonicity of phonons 

Temperature plays a vital role in phonon mediated thermal transport. In studying 

the temperature dependence of phonon properties, how to account for phonon 

anharmonicity is a primary obstacle. Most previous work adopts the QHA [75, 76, 77, 78] 

or phonon BTE methods [117, 118], limiting the phonon scattering under consideration to 

at most the three-phonon processes. In Chapter 5, we have performed CPMD calculations 

to account for full anharmonic phonon scattering in examining the thermal properties of 

HfS2. As a result, a novel structural change at room temperature is discovered. On the other 

hand, the QHA (see Chapter 4) and BTE approaches [159, 160] fail to capture such a lattice 
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phase change. This approach by combining MD technique with SED method provides an 

effective route for determining accurate anharmonic phonon properties.  

The details of applying above computational approach are: 

1) Calculate the temperature dependent phonon RTs, MFPs, group velocities, 

and specific heat using the phonon BTE and QHA method. These are 

fundamental phonon components of thermal transport properties [see Sec. 

2.1.3 and Eq.(2.19)]. 

2) Perform MD simulations at different temperature to relax the lattice to 

thermal equilibrium and collect thermodynamics data including lattice 

configuration, atomic trajectories, velocities, and so on. 

3) Use the atomic trajectories and phonon eigenvectors as the input to the SED 

method and calculate phonon RTs. 

4) Compare phonon RTs calculated from QHA, phonon BTE, and SED 

method. The difference among these RTs will reveal the effect of volume, 

three-phonon scattering, and higher than 3rd order scattering on the phonon 

properties. Contributions from the harmonic and anharmonic parts to the 

thermal conductivity can be quantified. 

6.2.2 Thermal transport in HfS2 

The distinct anisotropy between c-axis and in-plane interactions (see Sec. 4.3.2), 

together with the structural change from 1T to 3R phase, lead to our belief that the thermal 

properties of HfS2 are very unique. However, very little is known about the thermal 
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transport properties of HfS2. Previous works only consider the 1T phase [159, 160], leaving 

the thermal transport in the higher temperature 3R phase unexplored. Using the various 

computation approaches introduced in Chapter 2, we could gain a deeper understanding of 

the phonon-mediated thermal transport in HfS2 at different temperature. 

6.2.3 Folded MoS2 and origami nanostructures 

Due to its three-fold rotational symmetry, thermal conductivity of SLMoS2 is 

isotropic in all in-plane orientations [134, 211]. Folding will change the atomic structure 

of SLMoS2 into a 1D nanostructure, the question of whether the isotropy of thermal 

conductance will be preserved when SLMoS2 is folded along different lattice orientations 

needs to be answered. The effect of folding on phonon properties such as group velocity, 

RTs, and thermal conductivity as a function of lattice orientation can be studied. The 

dependence of electronic properties on lattice orientation also remains to be explored. 

These studies will permit application of folded SLMoS2 into devices where transport 

properties along certain lattice orientation is favored. An overview of proposed study on 

folding lattice orientations is shown in Figure 6.1. 

 
Figure 6.1. Schematics of proposed study on folding along different lattice orientations. Due to the hexagonal closed 
pack lattice structure, the angle between wrap axis and armchair orientation can vary between 0° to 30° to create different 
folds. 
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Building up upon the above studies, device application of origami MoS2 

nanostructures is promising. The origami graphene nanostructures have already been 

shown to possess interesting mechanical [122], spintronic [212], and optical [213] 

properties. Therefore, SLMoS2 can potentially be folded to create novel origami 

nanostructures that possess promising properties.  

 

 

 

 

  



 

 

115 

 

Bibliography 

 

[1]   Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, 

"Electronics and optoelectronics of two-dimensional transition metal 

dichalcogenides," Nature nanotechnology, vol. 7, no. 11, p. 699, 2012.  

[2]   N. Choudhary, M. D. Patel, J. Park, B. Sirota and W. Choi, "Synthesis of large 

scale MoS2 for electronics and energy applications," Journal of Materials 

Research, vol. 31, no. 7, pp. 824-831, 2016.  

[3]   J. Peng, G. Zhang and B. Li, "Thermal management in MoS2 based integrated 

device using near-field radiation," Applied Physics Letters, vol. 107, no. 13, p. 

133108, 2015.  

[4]   K. S. Novoselov, A. K. Geim, S. V. Morozov, Y. Z. D. Jiang, S. V. Dubonos, I. 

V. Grigorieva and A. A. Firsov., "Electric field effect in atomically thin carbon 

films," science, vol. 306, no. 5696, pp. 666-669, 2004.  

[5]   A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov and A. K. Geim, "The 

electronic properties of graphene," Reviews of modern physics, vol. 81, no. 1, p. 

109, 2009.  

[6]   A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. 

Ponomarenko, P. Blake, K. S. Novoselov, K. Watanab, T. Taniguch and A. K. 



 

 

116 

 

Geim, "Micrometer-Scale Ballistic Transport in Encapsulated Graphene at 

Room Temperature," Nano letters, vol. 11, no. 6, pp. 2396-2399, 2011.  

[7]   A. A. Balandin, "Thermal properties of graphene and nanostructured carbon 

materials," Nature materials, vol. 10, no. 8, p. 569, 2011.  

[8]   M.-W. Lin, C. Ling, Y. Zhang, H. J. Yoon, M. M.-C. Cheng, L. A. Agapito, N. 

Kioussis, N. Widjaja and Z. Zhou, "Room-temperature high on/off ratio in 

suspended graphene nanoribbon field-effect transistors," Nanotechnology, vol. 

22, no. 26, p. 265201, 2011.  

[9]   R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. 

Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. 

Hammer, T. G. Pedersen, P. Hofmann and Liv, "Bandgap opening in graphene 

induced by patterned hydrogen adsorption," Nature materials, vol. 9, no. 4, p. 

315, 2010.  

[10]   Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, 

Y. R. Shen and F. Wang, "Direct observation of a widely tunable bandgap in 

bilayer graphene," Nature, vol. 459, no. 7248, p. 820, 2009.  

[11]   H. Shi, H. Pan, Y. W. Zhang and B. I. Yakobson, "Quasiparticle Band Structures 

and Optical Properties of Strained Monolayer MoS2 and WS2," Physical Review 

B., vol. 87, p. 155304, 2013.  



 

 

117 

 

[12]   A. Kuc, N. Zibouche and T. Heine, "Influence of Quantum Confinement on The 

Electronic Structure of The Transition Metal Sulfide TS2," Physical Review B., 

vol. 83, p. 245213, 2011.  

[13]   C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace and K. Cho, "Band 

alignment of two-dimensional transition metal dichalcogenides: Application in 

tunnel field effect transistors," Applied Physics Letters, vol. 103, no. 5, p. 

053513, 2013.  

[14]   B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti and A. Kis, "Single-

layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, p. 147, 2011.  

[15]   Y. Cui, R. Xin, Z. Yu, Y. Pan, Z. Ong, X. Wei, J. Wang, H. Nan, Z. Ni, Y. Wu, 

T. Chen, Y. Shi, B. Wang, G. Zhang, Y. Zhang and X. Wang, "High‐

Performance Monolayer WS2 Field‐Effect Transistors on High‐κ Dielectrics," 

Advanced Materials, vol. 27, no. 35, pp. 5230-5234, 2015.  

[16]   J. Wilson and A. Yoffe, "The transition metal dichalcogenides discussion and 

interpretation of the observed optical, electrical and structural properties," 

Advances in Physics, vol. 18, no. 73, pp. 193-335, 1969.  

[17]   K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. 

Morozov and A. K. Geim, "Two-dimensional atomic crystals," Proceedings of 

the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, 2005.  

[18]   X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, 

E. Tutuc, S. K. B. L. Colombo3 and R. S. Ruoff, "Large-Area Synthesis of High-



 

 

118 

 

Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, no. 

5932, pp. 1312-1314, 2009.  

[19]   J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. 

B. Goldberg and R. S. Ruoff, "Transfer of CVD-grown monolayer graphene onto 

arbitrary substrates," ACS nano, vol. 5, no. 9, pp. 6916-6924, 2011.  

[20]   S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, "2D 

transition metal dichalcogenides," Nature Reviews Materials, vol. 2, no. 8, p. 

17033, 2017.  

[21]   A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli and F. Wang, 

"Emerging Photoluminescence in Monolayer MoS2," Nano letters., vol. 10, pp. 

1271-1275., 2010.  

[22]   D. Braga, I. G. Lezama, H. Berger and A. F. Morpurgo, "Quantitative 

determination of the band gap of WS2 with ambipolar ionic liquid-gated 

transistors," Nano letters, vol. 12, no. 10, pp. 5218-5223, 2012.  

[23]   M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-

Aristizabal, H. Ryu, M. T. Edmonds, H.-Z. Tsai, A. Riss, S.-K. Mo, D. Lee, A. 

Zettl, Z. Hussain, Z.-X. Shen and M. F. Crommie, "Characterization of collective 

ground states in single-layer NbSe2," Nature Physics, vol. 12, no. 1, p. 92, 2016.  

[24]   K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, "Atomically Thin MoS2: A 

New Direct-Gap Semiconductor," Physical Review Letters., vol. 105, p. 

136805., 2010.  



 

 

119 

 

[25]   J. A. Wilson, F. J. D. Salvo and S. Mahajan, "Charge-density waves and 

superlattices in the metallic layered transition metal dichalcogenides," Advances 

in Physics, vol. 24, no. 2, pp. 117-201, 1975.  

[26]   E. Revolinsky, G. A. Spiering and D. J. Beerntsen, "Superconductivity in the 

niobium-selenium system," Journal of Physics and Chemistry of Solids, vol. 26, 

no. 6, pp. 1029-1034, 1965.  

[27]   T. Valla, A. V. Fedorov, P. D. Johnson, J. Xue, K. E. Smith and F. J. DiSalvo, 

"Charge-density-wave-induced modifications to the quasiparticle self-energy in 

2H-TaSe2," Physical review letters, vol. 85, no. 22, p. 4759, 2000.  

[28]   M. Calandra, "2D materials: Charge density waves go nano," Nature 

nanotechnology, vol. 10, no. 9, p. 737, 2015.  

[29]   S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim and H. Choi, "Exciton 

dynamics in atomically thin MoS2: interexcitonic interaction and broadening 

kinetics," Physical Review B, vol. 88, no. 7, p. 075434, 2013.  

[30]   M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, 

"Enhanced hydrogen evolution catalysis from chemically exfoliated metallic 

MoS2 nanosheets," Journal of the American Chemical Society, vol. 135, no. 28, 

pp. 10274-10277, 2013.  

[31]   R. Yan, J. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, 

H. Walker, A.R. and H. Xing, "Thermal Conductivity of Monolayer 



 

 

120 

 

Molybdenum Disulfide Obtained from Temperature-dependent Raman 

Spectroscopy," ACS nano., vol. 8, pp. 986-993, 2014.  

[32]   S. Sahoo, A. P. Gaur, M. Ahmadi, M. J. F. Guinel and R. S. Katiyar, 

"Temperature-Dependent Raman Studies and Thermal Conductivity of Few-

Layer MoS2," The Journal of Physical Chemistry C., vol. 117, pp. 9042-9047, 

2013.  

[33]   A. Taube, J. Judek, A. Łapińska and M. Zdrojek, "Temperature-dependent 

thermal properties of supported MoS2 monolayers," ACS applied materials & 

interfaces, vol. 7, no. 9, pp. 5061-5065, 2015.  

[34]   I. Jo, M. T. Pettes, E. Ou, W. Wu and L. Shi, "Basal-plane thermal conductivity 

of few-layer molybdenum disulfide," Applied Physics Letters, vol. 104, no. 20, 

p. 201902, 2014.  

[35]   P. Jiang, X. Qian, X. Gu and R. Yang, "Probing Anisotropic Thermal 

Conductivity of Transition Metal Dichalcogenides MX2 (M= Mo, W and X= S, 

Se) using Time‐Domain Thermoreflectance," Advanced Materials, vol. 29, no. 

36, p. 1701068, 2017.  

[36]   J.-W. Jiang, X. Zhuang and T. Rabczuk, "Orientation dependent thermal 

conductance in single-layer MoS2," Scientific reports, vol. 3, p. 2209, 2013.  

[37]   A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri and N. Marzari, 

"Phonon hydrodynamics in two-dimensional materials," Nature 

communications, vol. 6, p. 6400, 2015.  



 

 

121 

 

[38]   X. Gu, B. Li and R. Yang, "Layer Thickness-Dependent Phonon Properties and 

Thermal Conductivity of MoS2," Journal of Applied Physics., vol. 119, p. 

085106, 2016.  

[39]   W. Li, J. Carrete and N. Mingo, "Thermal Conductivity and Phonon Linewidths 

of Monolayer MoS2 from First Principles," Applied Physics Letters., vol. 103, 

p. 253103, 2013.  

[40]   X. Wei, Y. Wang, Y. Shen, G. Xie, H. Xiao, J. Zhong and G. Zhang, "Phonon 

thermal conductivity of monolayer MoS2: A comparison with single layer 

graphene," Applied Physics Letters, vol. 105, no. 10, p. 103902, 2014.  

[41]   Y. Cai, J. Lan, G. Zhang and Y.-W. Zhang, "Lattice vibrational modes and 

phonon thermal conductivity of monolayer MoS2," Physical Review B, vol. 89, 

no. 3, p. 035438, 2014.  

[42]   D. O. Lindroth and P. Erhart, "Thermal transport in van der Waals solids from 

first-principles calculations," Physical Review B, vol. 94, no. 11, p. 115205, 

2016.  

[43]   N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong and T. Yu, "Thermal 

conductivity determination of suspended mono-and bilayer WS2 by Raman 

spectroscopy," Nano Research, vol. 8, no. 4, pp. 1210-1221, 2015.  

[44]   B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang and H. Zhu, "Thermal conductivity 

of monolayer MoS2, MoSe2, and WS2: interplay of mass effect, interatomic 

bonding and anharmonicity," Rsc Advances, vol. 6, no. 7, pp. 5767-5773, 2016.  



 

 

122 

 

[45]   X. Zhang, D. Sun, Y. Li, G.-H. Lee, X. Cui, D. Chenet, Y. You, T. F. Heinz and 

J. C. Hone, "Measurement of lateral and interfacial thermal conductivity of 

single-and bilayer MoS2 and MoSe2 using refined optothermal raman 

technique," ACS applied materials & interfaces., vol. 7, pp. 25923-25929, 2015.  

[46]   Y. Hong, J. Zhang and X. C. Zeng, "Thermal conductivity of monolayer MoSe2 

and MoS2," The Journal of Physical Chemistry C, vol. 120, no. 45, pp. 26067-

26075, 2016.  

[47]   W.-X. Zhou and K.-Q. Chen, "First-principles determination of ultralow thermal 

conductivity of monolayer WSe2," Scientific reports, vol. 5, p. 15070, 2015.  

[48]   G. Yumnam, T. Pandey and A. K. Singh, "High temperature thermoelectric 

properties of Zr and Hf based transition metal dichalcogenides: A first principles 

study," The Journal of chemical physics, vol. 143, no. 23, p. 234704, 2015.  

[49]   X. Gu and R. Yang, "Phonon transport in single-layer transition metal 

dichalcogenides: A first-principles study," Applied Physics Letters , vol. 105, 

no. 13, p. 131903, 2014.  

[50]   G. A. Slack, "Nonmetallic crystals with high thermal conductivity," Journal of 

Physics and Chemistry of Solids, vol. 34, no. 2, pp. 321-335, 1973.  

[51]   L. Lindsay, D. A. Broido and N. Mingo, "Flexural phonons and thermal transport 

in graphene," Physical Review B, vol. 82, no. 11, p. 115427, 2010.  



 

 

123 

 

[52]   A. Cingolani, M. Lugara, G. Scamarcio and F. Lévy, "The Raman scattering in 

hafnium disulfide," Solid state communications, vol. 62, no. 2, pp. 121-123, 

1987.  

[53]   Greenaway, D. L. and R. Nitsche, "Preparation and optical properties of group 

IV–VI2 chalcogenides having the CdI2 structure," Journal of Physics and 

Chemistry of Solids, vol. 26, no. 9, pp. 1445-1458, 1965.  

[54]   G. Lucovsky, R. M. White, J. A. Benda and J. F. Revelli., "Infrared-reflectance 

spectra of layered group-IV and group-VI transition-metal dichalcogenides," 

Physical Review B, vol. 7, no. 8, p. 3859, 1973.  

[55]   L. Roubi and C. Carlone, "Resonance Raman spectrum of HfS2 and ZrS2," 

Physical Review B, vol. 37, no. 12, p. 6808, 1988.  

[56]   F. VanGessel, "Phonon Modeling in Nano-and Micro-scale Crystalline 

Systems," 2018. 

[57]   S. Najmaei, M. R. Neupane, B. M. Nichols, R. A. Burke, A. L. Mazzoni, M. L. 

Chin, D. A. Rhodes, L. Balicas, A. D. Franklin and M. Dubey., "Cross‐Plane 

Carrier Transport in Van der Waals Layered Materials," Small, vol. 14, no. 20, 

p. 1703808, 2018.  

[58]   T. Feng, L. Lindsay and X. Ruan, "Four-phonon scattering significantly reduces 

intrinsic thermal conductivity of solids," Physical Review B, vol. 96, no. 16, p. 

161201, 2017.  



 

 

124 

 

[59]   A. Mobaraki, A. Kandemir, H. Yapicioglu, O. Gülseren and C. Sevik, 

"Validation of inter-atomic potential for WS2 and WSe2 crystals through 

assessment of thermal transport properties," Computational Materials Science, 

vol. 144, pp. 92-98, 2018.  

[60]   P. Anees, M. C. Valsakumar and B. K. Panigrahi, "Anharmonicity of optic 

modes in monolayer MoS2," Applied Physics Letters, vol. 108, no. 10, p. 

101902, 2016.  

[61]   A. Mobaraki, C. Sevik, H. Yapicioglu, D. Çakır and O. Gülseren, "Temperature-

dependent phonon spectrum of transition metal dichalcogenides calculated from 

the spectral energy density: Lattice thermal conductivity as an application," 

Physical Review B, vol. 100, no. 3, p. 035402, 2019.  

[62]   G. Zhu, J. Liu, Q. Zheng, R. Zhang, D. Li, D. Banerjee and D. G. Cahill, "Tuning 

thermal conductivity in molybdenum disulfide by electrochemical intercalation," 

Nature communications, vol. 7, p. 13211, 2016.  

[63]   A. Pisoni, J. Jacimovic, R. Gaál, B. Náfrádi, H. Berger, Z. Révay and L. Forró, 

"Anisotropic transport properties of tungsten disulfide," Scripta Materialia, vol. 

114, pp. 48-50, 2016.  

[64]   R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H.-C. Cheng, H. Wu, Y. Huang 

and X. Duan, "Few-layer molybdenum disulfide transistors and circuits for high-

speed flexible electronics," Nature communications, vol. 5, p. 5143, 2014.  



 

 

125 

 

[65]   S. Das and J. Appenzeller, "Screening and interlayer coupling in multilayer 

MoS2," physica status solidi (RRL)–Rapid Research Letters, vol. 7, no. 4, pp. 

268-273, 2013.  

[66]   A. Sood, F. Xiong, S. Chen, R. Cheaito, F. Lian, M. Asheghi, Y. Cui, D. 

Donadio, K. E. Goodson and E. Pop, "Quasi-Ballistic Thermal Transport Across 

MoS2 Thin Films," Nano letters, vol. 19, no. 4, pp. 2434-2442, 2019.  

[67]   Z. Gong, G.-B. Liu, H. Yu, D. Xiao, X. Cui, X. Xu and W. Yao, 

"Magnetoelectric effects and valley-controlled spin quantum gates in transition 

metal dichalcogenide bilayers," Nature communications, vol. 4, p. 2053, 2013.  

[68]   B. Zhu, H. Zeng, J. Dai, Z. Gong and X. Cui, "Anomalously robust valley 

polarization and valley coherence in bilayer WS2," Proceedings of the National 

Academy of Sciences, vol. 111, no. 32, pp. 11606-11611, 2014.  

[69]   A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, 

W. Yao and X. Xu, "Spin–layer locking effects in optical orientation of exciton 

spin in bilayer WSe2," Nature Physics, vol. 10, no. 2, p. 130, 2014.  

[70]   A. Castellanos-Gomez, H. S. van der Zant and G. A. Steele, "Folded MoS2 

Layers with Reduced Interlayer Coupling," Nano Research., vol. 7, pp. 572-578, 

2014.  

[71]   T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu 

and S. Wu, "Valley and Band Structure Engineering of Folded MoS2 Bilayers," 

Nature nanotechnology., vol. 9, pp. 825-829, 2014.  



 

 

126 

 

[72]   W. Yao, D. Xiao and Q. Niu, "Valley-dependent optoelectronics from inversion 

symmetry breaking," Physical Review B, vol. 77, no. 23, p. 235406, 2008.  

[73]   N. D. M. Neil W. Ashcroft, Solid State Physics, Saunders College, 1976.  

[74]   N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.  

[75]   M. T. Dove, Introduction to lattice dynamics, New York: Cambridge university 

press, 1993.  

[76]   B. Pamuk, "Nuclear Quantum Effects in Ices Phases and Water from First 

Principles Calculations (Doctoral dissertation, State University of New York at 

Stony Brook)," 2014.  

[77]   I. L. Locht, A. Fasolino and P. C. M. Christianen, "The effect of temperature on 

the phonon dispersion relation in graphene (Doctoral dissertation, Master thesis, 

Radboud University of Nijmegen: Nijmegen, Netherlands)," 2012.  

[78]   N. Mounet and N. Marzari., "First-principles determination of the structural, 

vibrational and thermodynamic properties of diamond, graphite, and 

derivatives," Physical Review B, vol. 71, no. 20, p. 205214, 2005.  

[79]   P. Mazur, E. W. Montroll, A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. 

P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, New 

York: ACADEMIC PRESS INC, 1956.  

[80]   J. Ziman, Electrons and Phonons: the theory of transport phenomena in solids, 

New York: Oxford University Press, 2006, pp. 264-267. 



 

 

127 

 

[81]   F. VanGessel, J. Peng and P. W. Chung, "A review of computational phononics: 

the bulk, interfaces, and surfaces," Journal of materials science, vol. 53, no. 8, 

pp. 5641-5683, 2018.  

[82]   R. A. Escobar, S. S. Ghai, M. S. Jhon and C. H. Amon, "Multi-length and time 

scale thermal transport using the lattice Boltzmann method with application to 

electronics cooling," International Journal of Heat and Mass Transfer, vol. 49, 

no. 1, pp. 97-107, 2006.  

[83]   J. A. McCammon, B. R. Gelin and M. Karplus, "Dynamics of folded proteins," 

Nature, vol. 267, no. 5612, p. 585, 1977.  

[84]   A. Warshel and M. Levitt, "Theoretical studies of enzymic reactions: dielectric, 

electrostatic and steric stabilization of the carbonium ion in the reaction of 

lysozyme," Journal of molecular biology, vol. 103, no. 2, pp. 227-249, 1976.  

[85]   X. Z. Jiang, M. Feng, K. H. Luo and Y. Ventikos, "Large-scale molecular 

dynamics simulation of flow under complex structure of endothelial 

glycocalyx," Computers & Fluids140-146, vol. 173, pp. 140-146, 2018.  

[86]   V. A. Voelz, G. R. Bowman, K. Beauchamp and V. S. Pande, "Molecular 

simulation of ab initio protein folding for a millisecond folder NTL9 (1− 39)," 

Journal of the American Chemical Society, vol. 132, no. 5, pp. 1526-1528, 2010.  

[87]   J. Hu, X. Ruan and Y. P. Chen, "Thermal conductivity and thermal rectification 

in graphene nanoribbons: a molecular dynamics study," Nano letters, vol. 9, no. 

7, pp. 2730-2735, 2009.  



 

 

128 

 

[88]   S. G. Volz and G. Chen, "Molecular dynamics simulation of thermal 

conductivity of silicon nanowires," Applied Physics Letters, vol. 75, no. 14, pp. 

2056-2058, 1999.  

[89]   J.-W. Jiang, H. S. Park and T. Rabczuk, "Molecular dynamics simulations of 

single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, 

mechanical properties, and thermal conductivity," Journal of Applied Physics, 

vol. 114, no. 6, p. 064307, 2013.  

[90]   C. Sevik, A. Kinaci, J. B. Haskins and T. Çağın., "Characterization of thermal 

transport in low-dimensional boron nitride nanostructures," Physical Review B, 

vol. 84, no. 8, p. 085409, 2011.  

[91]   L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical 

properties of Lennard-Jones molecules," Physical review, vol. 159, no. 1, p. 98, 

1967.  

[92]   F. Aryasetiawan and O. Gunnarsson, "The GW method," Reports on Progress in 

Physics, vol. 61, no. 3, p. 237, 1998.  

[93]   L. Hedin and S. Lundqvist, "Effects of electron-electron and electron-phonon 

interactions on the one-electron states of solids," Solid state physics, vol. 23, pp. 

1-181, 1970.  

[94]   P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, 

vol. 136, no. 3B, p. B864, 1964.  



 

 

129 

 

[95]   W. Kohn and L. J. Sham, "Self-consistent equations including exchange and 

correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.  

[96]   D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic 

method," Physical Review Letters, vol. 45, no. 7, p. 566, 1980.  

[97]   J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional 

approximations for many-electron systems," Physical Review B, vol. 23, no. 10, 

p. 5048, 1981.  

[98]   J. P. Perdew, "Density-functional approximation for the correlation energy of the 

inhomogeneous electron gas," Physical Review B, vol. 33, no. 12, p. 8822, 1986.  

[99]   J. P. Perdew, "Erratum: Density-functional approximation for the correlation 

energy of the inhomogeneous electron gas," Physical review B, vol. 34, no. 10, 

p. 7406, 1986.  

[100]   J. P. Perdew and W. Yue, "Accurate and simple density functional for the 

electronic exchange energy: Generalized gradient approximation," Physical 

review B, vol. 33, no. 12, p. 8800, 1986.  

[101]   J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized gradient approximation 

made simple," Physical review letters, vol. 77, no. 18, p. 3865, 1996.  

[102]   J. Hutter, "Car–Parrinello molecular dynamics," Wiley Interdisciplinary 

Reviews: Computational Molecular Science, vol. 2, no. 4, pp. 604-612, 2012.  



 

 

130 

 

[103]   R. Car and M. Parrinello, "Unified approach for molecular dynamics and 

density-functional theory," Physical review letters, vol. 55, no. 22, p. 2471, 1985.  

[104]   M. Bernasconi, G. L. Chiarotti, P. Focher, S. Scandolo, E. Tosatti and M. 

Parrinello, "First-principle-constant pressure molecular dynamics.," Journal of 

Physics and Chemistry of Solids, vol. 56, no. 3-4, pp. 501-505, 1995.  

[105]   G. J. F. Kresse and J. Hafner, "Ab initio force constant approach to phonon 

dispersion relations of diamond and graphite," EPL (Europhysics Letters), vol. 

32, no. 9, p. 729, 1995.  

[106]   S. Wei and M. Y. Chou, "Ab initio calculation of force constants and full phonon 

dispersions," Physical review letters, vol. 69, no. 19, p. 2799, 1992.  

[107]   D. Alfè, G. D. Price and M. J. Gillan, "Thermodynamics of hexagonal-close-

packed iron under Earth’s core conditions," Physical Review B, vol. 64, no. 4, 

p. 045123, 2001.  

[108]   P. Giannozzi, S. D. Gironcoli, P. Pavone and S. Baroni, "Ab initio calculation of 

phonon dispersions in semiconductors," Physical Review B, vol. 43, no. 9, p. 

7231, 1991.  

[109]   S. Baroni, P. Giannozzi and A. Testa, "Green’s-function approach to linear 

response in solids," Physical Review Letters, vol. 58, no. 18, p. 1861, 1987.  



 

 

131 

 

[110]   S. Baroni, S. D. Gironcoli, A. D. Corso and P. Giannozzi, "Phonons and related 

crystal properties from density-functional perturbation theory," Reviews of 

Modern Physics, vol. 73, no. 2, p. 515, 2001.  

[111]   P. G. Klemens and D. F. Pedraza, "Thermal conductivity of graphite in the basal 

plane," Carbon, vol. 32, no. 4, pp. 735-741, 1994.  

[112]   P. G. Klemens, "Theory of the thermal conductivity of solids," in Thermal 

conductivity, vol. 1, Academic Press, 1969, pp. 17-25. 

[113]   N. a. N. M. Mounet, "First-principles determination of the structural, vibrational 

and thermodynamic properties of diamond, graphite, and derivatives," Physical 

Review B, vol. 71, no. 20, p. 205214, 2005.  

[114]   X.-H. Zha, J. Zhou, Y. Zhou, Q. Huang, J. He, J. S. Francisco, K. Luo and S. Du, 

"Promising electron mobility and high thermal conductivity in Sc2CT2 (T= F, 

OH) MXenes," Nanoscale, vol. 8, no. 11, pp. 6110-6117, 2016.  

[115]   X.-H. Zha, Q. Huang, J. He, H. He, J. Zhai, J. S. Francisco and S. Du, "The 

thermal and electrical properties of the promising semiconductor MXene 

Hf2CO2," Scientific reports, vol. 6, p. 27971, 2016.  

[116]   R. Peierls, "Zur kinetischen theorie der wärmeleitung in kristallen," Annalen der 

Physik, vol. 395, no. 8, pp. 1055-1101, 1929.  



 

 

132 

 

[117]   W. Li, J. Carrete, N. A. Katcho and N. Mingo, "ShengBTE: A solver of the 

Boltzmann transport equation for phonons," Computer Physics 

Communications, vol. 185, no. 6, pp. 1747-1758, 2014.  

[118]   D. A. Broido, A. Ward and N. Mingo, "Lattice thermal conductivity of silicon 

from empirical interatomic potentials," Physical Review B, vol. 72, no. 1, p. 

014308, 2005.  

[119]   J. M. Larkin and A. J. Mcgaughey, "Vibrational Mode Properties of Disordered 

Solids from High-Performance Atomistic Simulations and Calculations," 

Pittsburgh, PA, 2013. 

[120]   A. J. McGaughey and J. M. Larkin, "Predicting phonon properties from 

equilibrium molecular dynamics simulations," Annual Review of Heat Transfer, 

vol. 17, 2014.  

[121]   J. P. W. C. M. D. a. R. R. N. Peng, "Tunable electron and phonon properties of 

folded single-layer molybdenum disulfide," Nano Research, vol. 11, no. 3, pp. 

1541-1553, 2018.  

[122]   S. Zhu and T. Li, "Hydrogenation-assisted graphene origami and its application 

in programmable molecular mass uptake, storage, and release," ACS nano, vol. 

8, no. 3, pp. 2864-2872, 2014.  

[123]   P. M. Ajayan, "Nanotubes from carbon," Chemical reviews, vol. 99, no. 7, pp. 

1787-1800, 1999.  



 

 

133 

 

[124]   B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti and A. Kis, "Single-

layer MoS2 Transistors.," Nature nanotechnology., vol. 6, pp. 147-150, 2011.  

[125]   Z. Jin, Q. Liao, H. Fang, Z. Liu, W. Liu, Z. Ding, T. Luo and N. Yang, "A Revisit 

to High Thermoelectric Performance of Single-layer MoS2," Scientific reports., 

vol. 5, pp. 18342-18342, 2014.  

[126]   E. S. Kadantsev and P. Hawrylak, "Electronic Structure of A Single MoS2 

Monolayer," Solid State Communications., vol. 152, pp. 909-913, 2012.  

[127]   F. Crowne, M. Amani, A. Birdwell, M. Chin, T. O’Regan, S. Najmaei, Z. Liu, 

P. Ajayan, J. Lou and M. Dubey, "Blueshift of The A-Exciton Peak in Folded 

Monolayer 1H-MoS2," Physical Review B., vol. 88, p. 235302, 2013.  

[128]   S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier and M. S. 

Dresselhaus, "Probing The Interlayer Coupling of Twisted Bilayer MoS2 Using 

Photoluminescence Spectroscopy," Nano letters., vol. 14, pp. 5500-5508., 2014.  

[129]   H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr, S. T. Pantelides and K. I. 

Bolotin, "Bandgap Engineering of Strained Monolayer and Bilayer MoS2," Nano 

letters., vol. 13, pp. 3626-3630, 2013.  

[130]   P. Koskinen, I. Fampiou and A. Ramasubramaniam, "Density-Functional Tight-

Binding Simulations of Curvature-Controlled Layer Decoupling and Band-Gap 

Tuning in Bilayer MoS2," Physical review letters., vol. 112, p. 186802, 2014.  



 

 

134 

 

[131]   Z. Ding, Q. X. Pei, J. W. Jiang and Y. W. Zhang, "Manipulating the Thermal 

Conductivity of Monolayer MoS2 via Lattice Defect and Strain Engineering," 

The Journal of Physical Chemistry C., vol. 119, pp. 16358-16365., 2015.  

[132]   S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," 

Journal of computational physics., vol. 117, pp. 1-19, 1995.  

[133]   J. D. Gale, "GULP: A Computer Program for the Symmetry-adapted Simulation 

of Solids," Journal of the Chemical Society, Faraday Transactions., vol. 93, pp. 

629-637., 1997.  

[134]   J. W. Jiang, H. S. Park and T. Rabczuk, "Molecular Dynamics Simulations of 

Single-Layer Molybdenum Disulphide (MoS2): Stillinger-Weber 

Parametrization, Mechanical Properties, and Thermal Conductivity," Journal of 

Applied Physics., vol. 114, p. 064307, 2013.  

[135]   T. Liang, S. R. Phillpot and S. B. Sinnott, "Parametrization of a Reactive Many-

Body Potential for Mo–S Systems," Physical Review B., vol. 79, p. 245110., 

2009.  

[136]   P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. 

Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo and A. Dal Corso, "QUANTUM 

ESPRESSO: A Modular and Open-Source Software Project for Quantum 

Simulations of Materials," Journal of physics: Condensed matter., vol. 21, p. 

395502, 2009.  



 

 

135 

 

[137]   S. Grimme, "Semiempirical GGA‐Type Density Functional Constructed with a 

Long‐Range Dispersion Correction," Journal of computational chemistry., vol. 

27, pp. 1787-1799., 2006.  

[138]   B. J. Cox, D. Baowan, W. Bacsa and J. M. Hill, "Relating Elasticity and 

Graphene Folding Conformation," RSC Advances., vol. 5, pp. 57515-57520., 

2015.  

[139]   J. Jiang, Z. Qi, H. Park and T. Rabczuk, "Elastic Bending Modulus of Single-

Layer Molybdenum Disulfide (MoS2): Finite Thickness Effect," 

Nanotechnology., vol. 24, p. 435705, 2013.  

[140]   S. Xiong and G. Cao, "Bending Response of Single Layer MoS2," 

Nanotechnology., vol. 27, p. 105701, 2016.  

[141]   T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. 

Mazur and J. Pollmann, "Band Structure of MoS2, MoSe2, and α−MoTe2: Angle-

resolved Photoelectron Spectroscopy and Ab initio Calculations," Physical 

Review B., vol. 64, p. 235305, 2001.  

[142]   S. Ahmad and S. Mukherjee, "A Comparative Study of Electronic Properties of 

Bulk MoS2 and Its Monolayer Using DFT Technique: Application of 

Mechanical Strain on MoS2 Monolayer," Graphene., vol. 3, p. 52., 2014.  

[143]   Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen and J. Lu, "Tuning Electronic Structure of 

BIlayer MoS2 by Vertical Electric Field: A First-Principles Investigation," The 

Journal of Physical Chemistry C., vol. 116, pp. 21556-21562, 2012.  



 

 

136 

 

[144]   S. Lebegue and O. Eriksson, "Electronic Structure of Two-Dimensional Crystals 

from Ab Initio Theory," Physical Review B., vol. 79, p. 115409, 2009.  

[145]   R. C. McLaren, "Thermal Conductivity Anisotropy in Molybdenum Disulfide 

Thin Films," pp. (Doctoral dissertation, University of Illinois at Urbana-

Champaign), 2009.  

[146]   J. Y. Kim, S. M. Choi, W. S. Seo and W. S. Cho, "Thermal and Electronic 

Properties of Exfoliated Metal Chalcogenides," Bulletin of the Korean Chemical 

Society., vol. 31, pp. 3225-3227, 2010.  

[147]   J. Liu, G. M. Choi and D. G. Cahill, "Measurement of The Anisotropic Thermal 

Conductivity of Molybdenum Disulfide by The Time-resolved Magneto-Optic 

Kerr Effect," Journal of Applied Physics., vol. 116, p. 233107, 2014.  

[148]   C. Muratore, V. Varshney, J. J. Gengler, J. Hu, J. E. Bultman, A. K. Roy and A. 

A. Voevodin, "Thermal anisotropy in nano-crystalline MoS2 thin films," 

Physical Chemistry Chemical Physics., vol. 16, no. 3, pp. 1008-1014, 2014.  

[149]   A. N. Gandi and U. Schwingenschlögl, "Thermal Conductivity of Bulk and 

Monolayer MoS2," EPL (Europhysics Letters)., vol. 113, p. 36002, 2016.  

[150]   Y. Cai, J. Lan, G. Zhang and Y. W. Zhang, "Lattice Vibrational Modes and 

Phonon Thermal Conductivity of Monolayer MoS2," Physical Review B., vol. 

89, no. 3, p. 035438., 2014.  



 

 

137 

 

[151]   X. Liu, G. Zhang, Q. X. Pei and Y. W. Zhang, "Phonon Thermal Conductivity 

of Monolayer MoS2 Sheet and Nanoribbons," Applied Physics Letters., vol. 103, 

p. 133113, 2013.  

[152]   J. Peng, S. Najmaei, M. Dubey and P. W. Chung, "Dominant ZA phonons and 

thermal carriers in HfS2," Journal of Applied Physics, vol. 126, no. 16, p. 

164302, 2019.  

[153]   A. Pospischil, M. M. Furchi and T. Mueller, "Solar-energy conversion and light 

emission in an atomic monolayer pn diode," Nature nanotechnology, vol. 9, no. 

4, pp. 257-261, 2014.  

[154]   D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao and Y. Cui, "Synthesis 

of MoS2 and MoSe2 films with vertically aligned layers," Nano letters, vol. 13, 

no. 3, pp. 1341-1347, 2013.  

[155]   S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang and C. J. e. al., "High-

mobility and low-power thin-film transistors based on multilayer MoS2 crystals," 

Nature communications, vol. 3, p. ncomms2018, 2012.  

[156]   X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-H. Lee and D. A. C. e. 

al., "Multi-terminal transport measurements of MoS2 using a van der Waals 

heterostructure device platform," Nature nanotechnology, vol. 10, no. 6, p. 534, 

2015.  



 

 

138 

 

[157]   W. Zhang, Z. Huang, W. Zhang and Y. Li, "Two-dimensional semiconductors 

with possible high room temperature mobility," Nano Research, vol. 7, no. 12, 

pp. 1731-1737, 2014.  

[158]   G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, 

S. K. Banerjee and L. Colombo, "Electronics based on two-dimensional 

materials," Nature nanotechnology, vol. 9, no. 10, p. 768, 2014.  

[159]   K. Xu, Z. Wang, F. Wang, Y. Huang, F. Wang, L. Yin, C. Jiang and J. He, 

"Ultrasensitive Phototransistors Based on Few‐Layered HfS2," Advanced 

Materials, vol. 27, no. 47, pp. 7881-7887, 2015.  

[160]   T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka 

and Y. Miyamoto, "Few-layer HfS2 transistors," Scientific reports, vol. 6, p. 

22277, 2016.  

[161]   A. Togo, L. Chaput and I. Tanaka, "Distributions of phonon lifetimes in Brillouin 

zones," Physical Review B, vol. 91, no. 9, p. 094306, 2015.  

[162]   P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. 

Ceresoli and e. al., "QUANTUM ESPRESSO: a modular and open-source 

software project for quantum simulations of materials," Journal of physics: 

Condensed matter, vol. 21, no. 39, p. 395502, 2009.  

[163]   N. Troullier and J. L. Martins, "Efficient pseudopotentials for plane-wave 

calculations," Physical review B, vol. 43, no. 3, p. 1993, 1991.  



 

 

139 

 

[164]   J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized gradient approximation 

made simple," Physical review letters, vol. 77, no. 18, p. 3865, 1996.  

[165]   S. Goedecker, M. Teter and J. Hutter, "Separable dual-space Gaussian 

pseudopotentials," Physical Review B, vol. 54, no. 3, p. 1703, 1996.  

[166]   S. Grimme, "Semiempirical GGA‐type density functional constructed with a 

long‐range dispersion correction," Journal of computational chemistry, vol. 27, 

no. 15, pp. 1787-1799, 2006.  

[167]   C. K. Gan and Y. Y. F. Liu, "Direct calculation of the linear thermal expansion 

coefficients of MoS2 via symmetry-preserving deformations," Physical Review 

B, vol. 94, no. 13, p. 134303, 2016.  

[168]   A. Kokalj, "XCrySDen—a new program for displaying crystalline structures and 

electron densities," Journal of Molecular Graphics and Modelling, vol. 17, no. 

3-4, pp. 176-179, 1999.  

[169]   M. Traving, T. Seydel, L. Kipp, M. Skibowski, F. Starrost, E. E. Krasovskii, A. 

Perlov and W. Schattke, "Combined photoemission and inverse photoemission 

study of HfS2," Physical Review B, vol. 63, no. 3, p. 035107, 2001.  

[170]   R. Murray, R. Bromley and A. Yoffe, "The band structures of some transition 

metal dichalcogenides. II. Group IVA; octahedral coordination," Journal of 

Physics C: Solid State Physics, vol. 5, no. 7, p. 746, 1972.  



 

 

140 

 

[171]   H. Jiang, "Structural and electronic properties of ZrX2 and HfX2 (X= S and Se) 

from first principles calculations," The Journal of chemical physics, vol. 134, no. 

20, p. 204705, 2011.  

[172]   C. kreis, S. Werth, R. Adelung, L. Kipp, M. Skibowski, E. E. Krasovskii and W. 

Schattke, "Valence and conduction band states of HfS2: From bulk to a single 

layer," Physical Review B, vol. 68, no. 23, p. 235331, 2003.  

[173]   L. Mattheiss, "Band structures of transition-metal-dichalcogenide layer 

compounds," Physical Review B, vol. 8, no. 8, p. 3719, 1973.  

[174]   T. Iwasaki, N. Kuroda and Y. Nishina, "Anisotropy of Lattice Dynamical 

Properties in ZrS2 and HfS2," Journal of the Physical Society of Japan, vol. 51, 

no. 7, pp. 2233-2240, 1982.  

[175]   J. Chen, "Phonons in bulk and monolayer HfS2 and possibility of phonon-

mediated superconductivity: A first-principles study," Solid State 

Communications, vol. 237, pp. 14-18, 2016.  

[176]   X. Gonze, "First-principles responses of solids to atomic displacements and 

homogeneous electric fields: Implementation of a conjugate-gradient 

algorithm," Physical Review B, vol. 55, no. 16, p. 10337, 1997.  

[177]   P. Giannozzi, S. D. Gironcoli, P. Pavone and S. Baroni, "Ab initio calculation of 

phonon dispersions in semiconductors," Physical Review B, vol. 43, no. 9, p. 

7231, 1991.  



 

 

141 

 

[178]   S. Mañas-Valero, V. García-López, A. Cantarero and M. Galbiati, "Raman 

spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers," Applied sciences, 

vol. 6, no. 9, p. 264, 2016.  

[179]   A. Molina-Sanchez and L. Wirtz, "Phonons in single-layer and few-layer MoS2 

and WS2," Physical Review B, vol. 84, no. 15, p. 155413, 2011.  

[180]   W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, 

P. H. Tan and G. Eda, "Lattice dynamics in mono-and few-layer sheets of WS2 

and WSe2," Nanoscale, vol. 5, no. 20, pp. 9677-9683, 2013.  

[181]   G. A. Slack, "Anisotropic thermal conductivity of pyrolytic graphite," Physical 

Review, vol. 127, no. 3, p. 694, 1962.  

[182]   A. N. Gandi and U. Schwingenschlögl, "Thermal conductivity of bulk and 

monolayer MoS2," EPL (Europhysics Letters), vol. 113, no. 3, p. 36002, 2016.  

[183]   Z.-Y. Ong and E. Pop, "Effect of substrate modes on thermal transport in 

supported graphene," Physical Review B, vol. 84, no. 7, p. 075471, 2011.  

[184]   X.-J. Ge, K.-L. Yao and J.-T. Lü, "Comparative study of phonon spectrum and 

thermal expansion of graphene, silicene, germanene, and blue phosphorene," 

Physical Review B, vol. 94, no. 16, p. 165433, 2016.  

[185]   L.-F. Huang, P.-L. Gong and Z. Zeng, "Phonon properties, thermal expansion, 

and thermomechanics of silicene and germanene," Physical Review B, vol. 91, 

no. 20, p. 205433, 2015.  



 

 

142 

 

[186]   L. F. Huang, P. L. Gong and Z. Zeng, "Correlation between structure, phonon 

spectra, thermal expansion, and thermomechanics of single-layer MoS2," 

Physical Review B, vol. 90, no. 4, p. 045409, 2014.  

[187]   P. G. Klemens and D. F. Pedraza, "Thermal conductivity of graphite in the basal 

plane," Carbon, vol. 32, no. 4, pp. 735-741, 1994.  

[188]   J. P. Freedman, J. H. Leach, E. A. Preble, Z. Sitar, R. F. Davis and J. A. Malen, 

"Universal phonon mean free path spectra in crystalline semiconductors at high 

temperature," Scientific reports, vol. 3, p. 2963, 2013.  

[189]   B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang and H. Zhu, "Towards intrinsic 

phonon transport in single‐layer MoS2," Annalen der Physik, vol. 528, no. 6, pp. 

504-511, 2016.  

[190]   S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. A. Magnuson, 

C.W., J. Kang, L. Shi and R. Ruoff, "Raman measurements of thermal transport 

in suspended monolayer graphene of variable sizes in vacuum and gaseous 

environments," ACS nano, vol. 5, no. 1, pp. 321-328, 2010.  

[191]   A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova, Theory of lattice 

dynamics in the harmonic approximation, vol. 3, New York: Academic press, 

1963, pp. 45-46. 

[192]   J. M. Karanikas, R. Sooryakumar, C. Carlone and M. Aubin, "Elastic properties 

of trigonal laminar systems: Brillouin scattering study of Hf1− xZrxS2," Physical 

Review B, vol. 41, no. 3, p. 1516, 1990.  



 

 

143 

 

[193]   Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai and X. Xu, "Elastic, electronic, and 

dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van 

der Waals density‐functional theory," physica status solidi (b), vol. 254, no. 9, 

p. 1700033, 2017.  

[194]   F. A. S. Al-Alamy, A. A. Balchin and M. White, "The expansivities and the 

thermal degradation of some layer compounds," Journal of Materials Science, 

vol. 12, no. 10, pp. 2037-2042, 1977.  

[195]   L. C. Towle, V. Oberbeck, B. E. Brown and R. E. Stajdohar, "Molybdenum 

diselenide: rhombohedral high pressure-high temperature polymorph," Science, 

vol. 157, no. 3751, pp. 895-896, 1966.  

[196]   R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský and M. Pumera, "3R phase of MoS2 

and WS2 outperforms the corresponding 2H phase for hydrogen evolution," 

Chemical Communications, vol. 53, no. 21, pp. 3054-3057, 2017.  

[197]   D. Yang, X. Hu, M. Zhuang, Y. Ding, S. Zhou, A. Li, Y. Yu, H. Li, Z. Luo, L. 

Gan and T. Zhai, "Inversion Symmetry Broken 2D 3R-MoTe2," Advanced 

Functional Materials, vol. 28, no. 26, p. 1800785, 2018.  

[198]   R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. 

Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita and Y. Iwasa, 

"Valley-dependent spin polarization in bulk MoS2 with broken inversion 

symmetry," Nature nanotechnology, vol. 9, no. 8, p. 611, 2014.  



 

 

144 

 

[199]   T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.-R. Shen, W.-T. Liu 

and S. Wu, "Valley and band structure engineering of folded MoS2 bilayers," 

Nature nanotechnology, vol. 9, no. 10, p. 825, 2014.  

[200]   Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean and T. F. Heinz, "Probing 

symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic 

generation," Nano letters, vol. 13, no. 7, pp. 3329-3333, 2013.  

[201]   D. Xiao, G.-B. Liu, W. Feng, X. Xu and W. Yao, "Coupled spin and valley 

physics in monolayers of MoS2 and other group-VI dichalcogenides," Physical 

review letters, vol. 108, no. 19, p. 196802, 2012.  

[202]   Y. Oba, T. Tadano, R. Akashi and S. Tsuneyuki, "First-principles study of 

phonon anharmonicity and negative thermal expansion in ScF3," Physical 

Review Materials, vol. 3, no. 3, p. 033601, 2019.  

[203]   C. W. Li, X. Tang, J. A. Munoz, J. B. Keith, S. J. Tracy, D. L. Abernathy and B. 

Fultz, "Structural relationship between negative thermal expansion and quartic 

anharmonicity of cubic ScF3," Physical review letters, vol. 107, no. 19, p. 

195504, 2011.  

[204]   D. Bansal, J. Hong, C. W. Li, A. F. May, W. Porter, M. Y. Hu, D. L. Abernathy 

and O. Delaire, "Phonon anharmonicity and negative thermal expansion in 

SnSe," Physical Review B, vol. 94, no. 5, p. 054307, 2016.  

[205]   M. Keshavarz, M. Ottesen, S. Wiedmann, M. Wharmby, R. Küchler, H. Yuan, 

E. Debroye, J. A. Steele, J. Martens, N. E. Hussey, M. Bremholm, M. B. J. 



 

 

145 

 

Roeffaers and J. Hofkens, "Tracking Structural Phase Transitions in Lead‐Halide 

Perovskites by Means of Thermal Expansion," Advanced Materials, vol. 31, no. 

24, p. 1900521, 2019.  

[206]   K. Takenaka, "Progress of research in negative thermal expansion materials: 

paradigm shift in the control of thermal expansion," Frontiers in chemistry, vol. 

6, p. 267, 2018.  

[207]   D. a. J. H. Marx, Ab initio molecular dynamics: basic theory and advanced 

methods, Cambridge University Press, 2009.  

[208]   C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus and T. F. Heinz, "Imaging 

stacking order in few-layer graphene," Nano letters, vol. 11, no. 1, pp. 164-169, 

2010.  

[209]   C. Cong, T. Yu, R. Saito, G. F. Dresselhaus and M. S. Dresselhaus, "Second-

order overtone and combination Raman modes of graphene layers in the range 

of 1690− 2150 cm− 1," Acs Nano, vol. 5, no. 3, pp. 1600-1605, 2011.  

[210]   X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong and S. Y. Quek, "Stacking sequence 

determines Raman intensities of observed interlayer shear modes in 2D layered 

materials–A general bond polarizability model," Scientific reports, vol. 5, p. 

14565, 2015.  

[211]   Y. Hong, J. Zhang and X. C. Zeng, "Thermal Conductivity of Monolayer MoSe2 

and MoS2," The Journal of Physical Chemistry C, vol. 120, no. 45, pp. 26067-

26075, 2016.  



 

 

146 

 

[212]   A. T. Costa, M. S. Ferreira, T. Hallam, G. S. Duesberg and A. C. Neto, "Origami-

based spintronics in graphene," EPL (Europhysics Letters), vol. 104, no. 4, p. 

47001, 2013.  

[213]   J. Cho, M. D. Keung, N. Verellen, L. Lagae, V. V. Moshchalkov, P. V. Dorpe 

and D. H. Gracias, "Nanoscale origami for 3D optics," Small, vol. 7, no. 14, pp. 

1943-1948, 2011.  

 

 

 


	Jie Peng, Doctor of Philosophy, 2020
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Literature review
	1.2 Challenges in thermal transport modeling
	1.3 Objectives and outline

	Chapter 2 Theory of phonons and computational approach
	2.1 Theory of phonon
	2.1.1 Harmonic phonon
	2.1.2 Quasi-harmonic phonons
	2.1.3 Anharmonic phonons

	2.2 Computational approaches
	2.2.1 Molecular dynamics
	2.2.2 Density functional theory
	2.2.2.1 Background
	2.2.2.2 Kohn-Sham equations and DFT
	2.2.2.3 Exchange-correlation functional

	2.2.3 Car-Parrinello Molecular Dynamics


	1
	2
	2.2.3.1 Generalized extended Lagrangian’s method
	2.2.3.2 CPMD
	2.3 Thermal transport calculations
	2.3.1 Phonon dispersion relation
	2.3.2 Phonon relaxation time
	2.3.2.1 Klemens’ theory
	2.3.2.2 Boltzmann transport equation
	2.3.2.3 Phonon spectral energy density



	Chapter 3 Phonon and electronic properties of folded single-layer molybdenum disulfide
	3.1 Introduction
	3.2 Computational details
	3.3 Results and discussion
	3.3.1 Folded structure
	3.3.2 Electronic band structure.
	3.3.3 Thermal conductivity and Phonons.

	3.4 Summary

	Chapter 4 Temperature-dependent phonons in 1T-HfS2: a first-principle study under quasi-harmonic approximation
	4.1 Introduction
	4.2 Computational Methods
	4.2.1 DFT calculations
	4.2.2 The Grüneisen parameters
	4.2.3 Thermal expansion coefficients
	4.2.4 Phonon mean free paths, relaxation times, and thermal conductivities

	4.3 Results and discussion
	4.3.1 Lattice structure of bulk HfS2
	4.3.2 Phonons, phonon normal modes, and LO-TO splitting

	4.4 Phonon properties of HfS2 at 300K
	4.4.1 Group velocity and specific heat
	4.4.2 Grüneisen parameters
	4.4.3 Phonon relaxation time, mean free path, and thermal conductivity
	4.4.4 Temperature effect

	4.5 Summary

	Chapter 5 Structural phase change and phonon stiffening in HfS2
	5.1 Introduction
	5.2 Experiments
	5.3 Theoretical calculations
	5.3.1 QHA
	5.3.2 CPMD

	5.4 Results and discussion
	5.4.1 Structural phase transition
	5.4.2 Lattice anharmonicity
	5.4.3 Phonon stiffening and bonding length

	5.5 Summary

	Chapter 6 Conclusions and outlook
	6.1 Summary and contributions
	6.2 Future works
	6.2.1 Temperature dependence and anharmonicity of phonons
	6.2.2 Thermal transport in HfS2
	6.2.3 Folded MoS2 and origami nanostructures


	Bibliography

