
 

1 

ABSTRACT 

Title of Document: Development of Encapsulation Systems from Zein and Metal-

Organic Frameworks (MOFs) for Improved Functional Properties 

of Essential Oils  

 

 

 

 Yunpeng WU (Roc), Master of Science, 2013 

 

 

 

Directed By: Assistant Professor, Dr. Qin Wang 

Department of Nutrition and Food Science 

 

 

 

Essential oils (EOs), which are derived from plants, have antifungal, insecticidal and 

antimicrobial activities, but they are slightly soluble in water and impart to the water their 

odor and taste, which limit their applications in food area. Zein, a prolamin from corn, is 

able to form nanoparticles by liquid-liquid dispersion process. These nanoparticles are 

well dispersed in water and stable, which can be further applied to encapsulate functional 

materials that are insoluble in water. We have developed zein nanoparticles to 

encapsulate thymol and carvacrol in order to improve their solubility. The DLS and SEM 

proved that zein nanoparticles encapsulated with EO were formed. The particles size was 
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between 200~300nm before lyophilizing. 65-75% EOs have been encapsulated in the 

nano-sized particles. DPPH assay results proved good antioxidant property of the product. 

For the Ferric-ion spectrophotometric assay, hydroxyl free radicals had been cleared by 

60~90% in overall. In the antimicrobial experiment, the nanoparticles encapsulating EOs 

reduced 0.8-1.8 log units of E. coli after 48h incubation. 

Furthermore, we have applied Metal-Organic Frameworks (MOFs) to encapsulate thymol. 

Metal-Organic Frameworks (MOFs) or porous coordination polymers (PCPs) is a new 

class of hybrid materials, which are formed by the self-assembly of metal-connecting 

points and polydentate bridging ligands. MOFs in this study was synthetized by Zinc 

nitrate hexahydrate and 2-aminoterephthalic acid in N, N-dimethylformamide (DMF). 

Thymol was then loaded inside the MOFs at the loading rate of 3.95%. The structure of 

porous crystal MOFs was confirmed by scanning electron microscopy (SEM) and X-ray 

diffraction (XRD). Inhibition to E. coli O157:H7 was measured both in TSB medium and 

on TSA agar. An E. coli O157:H7 reduction of 4.4 log CFU/mL have been achieved at a 

thymol to broth ratio of 0.04g/100g. An inhibition area of 223.73 mm
2
 was observed after 

12h incubation.  

With the two methods (zein nano-particles and MOFs), EOs can be encapsulated and well 

dispersed in water solution. The enhanced antioxidant activity and antimicrobial ability of 

the encapsulated EOs promise their further applications in food industries. 
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Chapter 1: Literature Review 

1.1 Introduction of Essential Oils 

It has been known that a large number of edible plants have abilities to inhibit the growth 

of bacteria, yeast and molds or kill them because they contain essential oils (EOs) (Zhu, 

Zeng et al. 2006; Bernardes, Lucarini et al. 2010). Many researches focus on these 

compounds and most of them are not available commercially yet. EOs have been widely 

used as food flavoring agents since ancient times, because most EOs possess strong and 

unique flavors (Young 2004; Shah, Davidson et al. 2012; Shah, Ikeda et al. 2012). They 

are generally found in plant’s fraction like leaves of thyme, sage, basil, rosemary, and 

marjoram, flowers or buds of clove, bulbs of garlic and onion, seeds of caraway, fennel, 

nutgem, and parsley, rhizomes of asafetida, fruits of pepper and cardamom, or other parts 

of plants (LisBalchin and Deans 1997; Ultee, Bennik et al. 2002; Oliveira, Leitao et al. 

2007; Hanif, Bhatti et al. 2010; Kuo, Cheng et al. 2011). As hydrophobic and volatile 

compounds derived from plants, EOs are considered as natural antifungal, insecticidal, 

antimicrobial, and antioxidant substances. Due to these admirable properties, EOs have 

gained much attention and have been studied for a long time. In general, the chemical 

structure and concentration of EOs affect the antimicrobial efficacy (Chorianopoulos, 

Giaouris et al. 2008; Gutierrez, Rodriguez et al. 2008). They may kill bacteria cells or 

inhibit the production of secondary metabolites, like mycotoxins. Phenolic compounds 

are the antimicrobial components most commonly found in EOs, including terpenes, 

aliphatic alcohols, aldehydes, ketones, acids, and isoflavonoids. Some EOs are inhibitory 

against both Gram-positive and Gram-negative bacteria, such as oregano, clove, 
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cinnamon, and citral. However, most of other EOs are more effective to inhibit Gram-

positive than Gram-negative bacteria (Hulin, Mathot et al. 1998; Ho and Su 2012). The 

chemical analysis of a series of EOs showed that the principal constituents of EOs were 

citral, eugenol, carvacrol, thymol and their precursors. Ward et al has reported allyl 

isothiocyanate (AIT) was more effective against Gram-negative bacteria and fungi (Ward, 

Delaquis et al. 1998) than Gram-positive bacteria. According to the results of Yin et al, 

garlic oil was also effective against Gram-negative bacteria (Yin and Cheng 2003). Both 

AIT and garlic oil are nonphenolic constituents of EOs, but still demonstrated promising 

antimicrobial abilities.   

Most of the EOs, as part of the plants’ pre- or post-infection defense mechanisms, are 

partially responsible for combat infectious or parasitic agents. Therefore, if plants 

demonstrate strong antimicrobial ability, it is probably because they contain EOs that 

inhibit the growth of microorganisms (Ibrahim, Salameh et al. 2006; Miguel, Cruz et al. 

2010).  

1.2 Antimicrobial Application of Essential Oils 

Plant EOs from nature are usually mixture of several components. With separation and 

purification, oils showing strong antimicrobial abilities contain high concentrations of 

eugenol (allspice, clove bud and leaf, bay, and cinnamon leaf), cinnamamic aldehyde 

(cinnamon bark and cassia oil), and citral (lemon myrtle, Litsea cubeba, and lime) (de 

Souza, Stamford et al. 2008; Piccirillo, Demiray et al. 2013). The antimicrobial abilities 

of oregano, thyme and savory are attributed to the volatile terpenes carvacrol, p-cymene, 

γ-terpinene, and thymol. Borneol and other phenolic compounds from the terpene 

fraction contribute to the antimicrobial abilities of sage and rosemary (Santurio, da Costa 
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et al. 2011; Schütze, Boeing et al. 2011). Cumin, caraway, and coriander are responsible 

for the antimicrobial abilities of Aeromonas hydrophila, Pseudomonas fluorescens, and 

Staphylococcus aureus. Marjoram and basil can inhibit the growth of B. cereus, 

Enterobacter aerogenes, Escherichia coli, and Salmonella. Lemon balm and sage EOs are 

able to inhibit the growth of L. monocytogenes and S. aureus. Sage has antimicrobial 

abilities because of the terpene thejone, while a group of terpenes (borneol, camphor, 1,8 

cineole, a-pinene, camphone, verbenonone, and bornyl acetate) are responsible for the 

antimicrobial abilities of rosemary(Suhr and Nielsen 2003; Hernandez-Ochoa, Gonzales-

Gonzales et al. 2011; Mathlouthi, Bouzaienne et al. 2012; El Bouzidi, Jamali et al. 2013; 

Hill, Gomes et al. 2013). 

Oregano and thyme EOs have been studied to evaluate their antimicrobial abilities 

against enterobacteria, lactic acid, B. cereus, and Pseudomonas spp. In the past, 

Pseudomonas species were thought to be highly resistant to botanic antimicrobials. 

However, Gutierrez et al reported minimum inhibitory concentration (MIC) of oregano 

and thyme was 425 ppm and 745 ppm, respectively. Caffeine was reported to be an 

antimicrobial with 0.5% concentration in liquid media (Gutierrez, Rodriguez et al. 2008). 

Garlic and green tea have been reported to be broad-spectrum bactericidal. Kim et al 

reported arrowroot tea was effective to kill against E. coli O157:H7 (Kim and Fung 2004). 

1.3 Mechanism of Antimicrobial Action of EOs 

Although a lot of studies have been done on the possible modes of antimicrobial activities 

of EOs, the mechanism is still not clear (Dufour, Simmonds et al. 2003; Lee 2009). Di 

Pasqua et al has reported one possible mechanism to disrupt the bacterial membrane and 

then kill the bacteria and the concentration can effectively change the antimicrobial 
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ability of phenolic compounds to denature the membrane protein (Bagci and Digrak 1996; 

Asili, Emami et al. 2010). The cell permeability was also altered by phenolic compounds 

to make macromolecules leak from the interior parts. The phenolic compounds could 

further interfere with cell membrane and cause malfunction of electron transport, nuclein 

acid synthesis and nutrient uptake. The formation of phenoxyl radicals is thought to be 

responsible to the antimicrobial ability of EOs. The lack of EOs from fennel, nutmeg and 

parsley made these EOs less efficient to kill bacteria because alky substituents cannot 

react with more stable molecules like anethole or ethers myristicin in those plants to form 

phenoxyl radicals (Chorianopoulos, Giaouris et al. 2008; Paparella, Taccogna et al. 2008; 

Sarac and Ugur 2008; Zenasni, Bouidida et al. 2008; Bernardes, Lucarini et al. 2010; van 

Vuuren, du Toit et al. 2010; Tadtong, Suppawat et al. 2012).  

Derivative of isothiocynates from onion and garlic was reported to cleave disulfide bonds 

oxidatively and form the reactive thiocyanate radical, which resulted in inactivating 

extracellular enzymes (Holley and Patel 2005; Goni, Lopez et al. 2009). Thymol, 

carvacrol and trans-cinnamaldehyde were reported to cause the disruptive action on 

plasma membrane and extracellular ATP could be increased by decreasing the 

intracellular ATP content in E. coli O157:H7. Disturbance of energy production and 

structural component synthesis could inactivate yeasts. However, biofilms could be 

formed from the production of exopolysaccharide layers and delay penetration of EOs 

(Kalemba and Kunicka 2003; Dusan, Marian et al. 2006; Juneja, Dwivedi et al. 2012). 

1.4 Application of zein for encapsulation 

As one of most important food and industrial crops in the US, corn or maize is a warm-

season crop with requirement of warmer temperature to grow than other grains. US alone 
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consume one-half of world annual production of corn. Endosperm and germ are the major 

parts of corn kernel as the storage of starch and oil (Kim, Woo et al. 2002; Luo, Zhang et 

al. 2011). 

There are four main ways to process corn: dry milling, wet milling alkaline processing, 

and the dry grind process to produced ethanol. The latter two are for human consumption. 

Starch and oil are the main products from wet milling, while dry grind is used mainly for 

ethanol production. As the major storage protein of corn, zein exists mainly in endosperm 

and has been used to prepare biodegradable films (Wang, Lin et al. 2005; Quispe-

Condori, Saldana et al. 2011; Regier, Taylor et al. 2012). With interesting characteristics 

of being gouch, hydrophobic, glossy and greaseproof, films made from zein have shown 

excellent flexibility and compressibility. The physical and mechanical characteristics of 

zein films have been improved by cross-linking ever since 1960s (Hinchliffe and Kemp 

2002; Podaralla and Perumal 2010; Podaralla and Perumal 2012). Zein has been used 

widely, such as adhesive, biodegradable plastics, chewing gum, coating for food products, 

fiber, cosmetic powder, microencapsulated pesticides and inks because of its film 

forming ability and superior biodegradability and biocompatibility. After cast drying, 

zein tends to form film under acidic treatment and particles under neutral and basic 

treatment. Zein has been reported to be prepared as microspheres to deliver insulin. Zein 

can be soluble in aqueous ethanol solution with the ethanol content of 60-85%. By using 

the different solubility in aqueous ethanol solution, the liquid-liquid dispersion method 

has been introduced to form the zein nanoparticles, which has been used to encapsulate 

EOs (Del Nobile, Conte et al. 2008; Ghasemi, Javadi et al. 2012). 

1.5 Metal-Organic Frameworks (MOFs) 
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Metal-Organic Frameworks (MOFs) or porous coordination polymers (PCPs) have 

gained greater attention recently as a new class of hybrid materials, which are formed by 

the self-assembly of metal-connecting points and polydentate bridging ligands (Hong, 

Hwang et al. 2009; Jia, Yuan et al. 2009; Gaudin, Cunha et al. 2012). Many researchers 

have studied the applications of MOFs in gas storage, atalysis, gas separation and drug 

delivery. There are crystalline and amorphous MOFs, and the former ones have been 

studied more because of their crystalline structure and high loading capacity. With recent 

research about the edible MOFs synthesized by γ-cyclodextrin and potassium ion, it is 

possible to apply MOFs in food industry (Li, Zhang et al. 2012; Sha, Sun et al. 2012; Sun, 

Qin et al. 2013). Using different organic linkers, the particle size, morphology and 

surface area are possible to be tuned for optimization. In general, divalent (Zn2+, Cu2+) 

or trivalent (Al3+, Cr3+) metal cations are interconnected with the organic linker 

molecules to form the polyhedral MOFs, resulting in the nanoscale porous cavities. In the 

past few decades, researchers have focused on developing many porous materials. Zeolite 

is among them and has the similar structure of MOFs. However, the preparation of 

zeolites usually requires high temperature (as 400℃ or higher) to remove the template 

(Juan-Alcaniz, Gascon et al. 2012; Wang, Sun et al. 2012). This limits the application of 

zeolites embedding materials with bioactivity and low decomposition temperature. In 

contrast, the nucleation and growth of MOFs can be achieved under relatively mild 

conditions. 

1.6 Objectives of this thesis 

Thymol (5-methyl-2-iso-propylphenol) and carvacrol (5-isopropyl-2-methylphenol) are 

predominant in oregano and thymol oil, respectively. With the similar structure, both 
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thymol and carvacrol have promising antimicrobial and antioxidant properties because 

they can disrupt the bacterial membrane and then kill the bacteria. However, thymol and 

carvacrol have poor solubility in water, which has limited their applications in food area. 

Therefore, the first objective is to use zein as an encapsulant to form nanoparticles and 

encapsulate thymol and carvacrol in it, which was found to be very effective and 

maintain the EOs' antimicrobial and antioxidant properties. 

The second objective is to demonstrate a simple surfactant-free postsynthesis loading 

process of MOFs with thymol. We have synthesized MOF (defined as Zn@MOF) from 

zinc nitrate hexahydrate and 2-aminoterephthalic acid. Thymol has been loaded into the 

Zn@MOF pores in N, N-dimethylformamide (DMF) solution. This method produced 

crystalline Zn@MOF with nanoscale porous cavities loaded with thymol, which were 

characterized by scanning electron microscopy and porosimeter. The encapsulated 

thymol has showed promising antimicrobial ability at low concentration. 

Both zein nanoparticles loading EOs and the MOFs encapsulating EOs demonstrated 

promising antimicrobial abilities against food born pathogen at low concentrations. 
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Chaper 2. Antioxidant and Antimicrobial Properties of Essential Oils 

Encapsulated in Zein Nanoparticles Prepared by Liquid-Liquid 

Dispersion Method (Research Paper Published in 2012) 

2.1 Materials and methods 

Zein sample with a minimum protein content of 97% was obtained from Showa Sangyo 

(Tokyo, Japan). All chemicals used, including ethanol, ethyl acetate, hydrochloride acid, 

sodium hydroxide, hydrogen peroxide, phosphate buffered saline (PBS), 2,2-diphenyl-1-

picrylhydrazyl radical (DPPH·) and 1,10-phenanthroline-iron (II) were purchased from 

Sigma - Aldrich (St. Louis, MO, USA). E. coli was purchased from ATCC (Manassas, 

VA), and lysogeny broth (LB) medium was bought from Difco (Franklin Lakes, NJ). 

2.1.1 Sample Preparation 

Zein and either of the EOs (thymol/carvacral) were dissolved in 70% aqueous ethanol 

solutions separately to obtain final concentrations of 50 mg/ml and 20 mg/ml, 

respectively. The stock solutions of zein and EOs were sheared into bulk deionized water 

using a homogenizer at 17,500 rpm for 2 min. Nitrogen was pumped into solution for 1h 

to remove the ethanol from the system using a nitrogen evaporator (N-EVAP
TM

, 

Organomation Associates, Inc, MA, USA) and then the dispersion was lyophilized (RVT 

4104-115, Refrigerated Vapor Trap, Thermo Savant, Waltham, MA, USA) to yield dry 

powder. Samples treated under different pH conditions were prepared, including acidic 

pH (4) adjusted with hydrochloride acid, neutral pH (6.5), and basic pH (10) adjusted 

with sodium hydroxide. Samples encapsulating thymol under different pH conditions (pH 
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4, 6.5 and 10) were named T4, T6.5 and T10. Similarly, C4, C6.5 and C10 were used for 

samples encapsulating carvacrol under different pH conditions (pH 4, 6.5 and 10). 

2.1.2 Encapsulation Efficiency (EE) 

Ethyl acetate was used to extract thymol/carvacrol from dry samples of zein nanoparticles 

encapsulating thymol/carvacrol, because thymol/carvacrol is soluble in ethyl acetate 

while zein is not. The standard curve was obtained by dissolving pure thymol/carvacrol in 

ethyl acetate at a series of mass to volume ratios and reading the absorbance of these 

solutions at 263nm (for thymol) or 275nm (for carvacrol) using the UV-visible 

spectrophotometer (Beckman Coulter, DU-730, Fullerton, CA, USA). The standard curve 

for thymol/carvacrol in ethyl acetate was obtained using ethyl acetate as the blank. 

Dry 5 mg samples of zein nanoparticles encapsulating thymol or carvacrol were dissolved 

in 10 ml ethyl acetate in an ultrasonic bath for 1h and then filtered with a 1µm syringe 

filter before spectrophotometric assay.  The encapsulation efficiency (EE) of essential 

oils was determined by the following equation (Xiao, Gommel et al. 2011). 

EE (% w/w) = Mass of EOs in nanoparticles/Mass of EOs added  

2.1.3 Particle Size and Morphology 

The particle sizes of samples were obtained by a dynamic light scattering instrument 

(DLS, BI-200SM, Brookhaven Instruments Corporation, Holtsville, NY, USA). Samples 

were measured at several stages, including immediately after preparation, after ethanol 

was removed, and upon re-dispersion after lyophilizing. Samples with different EOs 

encapsulated under different pH conditions were compared. All measurements were 
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taken at 20℃ and refractive indices for various aqueous ethanol solutions were applied 

for autocorrelation to calculate the effective diameter.  

Scanning electron microscopy (SEM, SU-70 SEM, Hitachi, Pleasanton, CA, USA) was 

used to show sample morphology and compare the differences among samples treated at 

the three pHs and between the two EOs (thymol/carvacrol). After lyophilizing, dry 

samples were adhered to conductive carbon tapes (Electron Microscopy Sciences, Ft. 

Washington, PA, USA), and mounted onto specimen stubs coated with a thin (<20 nm) 

conductive gold and platinum layer using a sputter-coater (Hummer XP, Anatech, CA, 

USA). Digital images of the samples were obtained and representative images are 

presented (Figure 2.2). 

2.1.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR was used to document the changes in chemical structure of zein, EOs and 

nanoparticle samples. The spectra was acquired at 400 - 4000 cm
-1

 wavenumbers with 1 

cm
-1 

 resolution utilizing a Jasco 4200 series FTIR spectrophotometer (Jasco Inc., Easton, 

MD, USA) equipped with a diamond ATR cell.  

2.1.5 Solubility test 

Solubility of EOs (thymol/carvacrol) was performed as follows (Kim, Jeong et al. 2006; 

Trapani, Sitterberg et al. 2009): 200 mg EOs was dissolved in 20 ml 70% aqueous 

ethanol and then dispersed into 40 ml DI water using a homogenizer at 17,500 rpm at 

different pH values (4, 6.5 and 10). The ethanol was removed using a nitrogen evaporator 

(N-EVAP
TM

, Organomation Associates, Inc, MA, USA) for 1h. The insoluble EOs were 

removed from the aqueous solution by gravity filtration using filter paper (Whatman No. 
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1) and then the soluble EOs were extracted with ethyl acetate. The ethyl acetate 

containing EOs was diluted 60 times before measuring absorbance with a UV-visible 

spectrophotometer (Beckman Coulter, DU-730, Fullerton, CA, USA). The standard curve 

obtained in part 2.2 was used to determine the maximum concentration of EOs in the 

water under different pH values. The solubility enhancement was obtained by comparing 

EO water solubility before and after encapsulation in nanoparticles.  

2.1.6 Antioxidant Activity 

2,2-diphenyl-1-picrylhydrazyl (DPPH) and 1,10-phenantroline - iron (II) complex free 

radical-scavenging assays were used for the measurement of antioxidant activity of 

different samples.  

For the DPPH· assay, 0.1 mmol/L DPPH· solution was prepared with 4 mg/ml (effective 

concentrations of EOs in samples) sample solution prepared in 70% aqueous ethanol. 

After continuous incubation in the dark at 4℃ for varying lengths of time (0.5h, 1h, 12h 

and 24h), the DPPH radical scavenging activity of  the sample was assessed by 

measuring absorbance at 517nm against 70% aqueous ethanol as a blank. The control was 

prepared by replacing the 4mg/ml sample solution with same amount of 70% aqueous 

ethanol. Also zein without EOs was included as a comparison.  

For the 1, 10-phenantroline - iron (II) assay, samples were evaluated for their ability to 

prevent 1,10-phenanthroline-  iron(II) complex ([Fe(o-phen)3]
2+

) from oxidation by 

hydrogen peroxide. Since oxidation of Fe (II) was pH sensitive, 10 mM phosphate 

buffered saline (PBS) was also used. For each test, 1 ml of 1,10-phenanthroline solution 

in deionized water, 1 ml of FeSO4 solution in deionized water and 1 ml of 0.025% H2O2 

were mixed with 1ml of 4 mg/ml (effective concentrations of EOs in samples) sample 
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solution in deionized water and 2 ml of PBS. In the negative control group, 1 ml of PBS 

was used to replace the sample solution. Also 1 ml PBS was used to replace the 1 ml 

H2O2 in the positive control group. The optical density of each group was measured using 

the spectrophotometer at 509 nm against a 10 mM PBS blank.  

The hydroxyl free radical clearance (percentage) is defined in the Equation below, where 

A is the Absorbance at 509 nm.  

 Hydroxyl Free Radical Clearance (%) = (AP-control – ASample) / (AP-control – AN-control) × 100%  

                     Equation 2.1 

After the 12 h calculation, the hydroxyl free radical clearance (percentage) was obtained 

for each sample. 

2.1.7 Antimicrobial Ability 

Ability of different treatments to inhibit growth of non-pathogenic E. coli (ATCC# 53323) 

was evaluated. The E. coli used in this experiment is non-pathogenic, it was selected 

because of its similarity to well known pathogenic bacteria responsible for many food 

borne illness outbreaks and clinical infections. E. coli were inoculated on lysogeny broth 

(LB) and samples of the 6 treatments were dispersed in LB medium at an EO to broth 

w/w ratio of 0.02% . LB inoculated with same amount of E. coli without addition of 

antimicrobial agents was treated as the control. The optical density of each inoculated 

broth was measured at 550nm using a spectrophotometer. The optical density result can 

be converted into log CFU/ml, after 12, 24, 36 and 48 hours at 35 ℃ to obtain the 

inhibition to growth of E. coli in comparison to the control, which represents no 

inhibition.  

2.1.8 Statistical analysis 
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The data reported as mean ± standard error are from experiments conducted in triplicate. 

Experimental statistics were performed using a SAS software (Version 9.2, SAS Institute 

Inc., Cary, NC, USA). Analysis of variance (ANOVA) was used to check the 

assumptions of variance homogeneity and normality and compare the treatment means. 

Antioxidant activity was analyzed according to a two factor model with 2 levels of EO 

(thymol/carvacrol) and 3 levels of pH (4, 6.5 and 10) using Tukey’s multiple comparison 

test. The free radical scavenging test was analyzed according to a 3 factor model, with 

EO, pH and reaction time as the 3 factors using Tukey’s Studentized Range (HSD) test to 

make selected pairwise means comparisons. Differences were considered to be 

statistically significant for p-values less than or equal to α=0.05. 

2.2. Results and Discussion 

2.2.1 Encapsulation Efficiency (EE) 

EOs were extracted from samples by ethyl acetate which can dissolve EOs 

(thymol/carvacrol) but not zein (El Babili, Bouajila et al. 2011). The following equations 

for the standard curves for thymol and carvacrol were obtained. (x stands for the 

concentration of EOs (mg/ml) and y stands for the absorbance). 

Standard curve for thymol:    y = 7.5357x – 0.019 (R
2
=0.9985) 

Standard curve for carvacrol:  y = 14.66x – 0.0156 (R² =0.9991) 

 Figure 2.1 shows results of the EE: More than 50% of EOs was encapsulated in zein for 

all treatments using this method. There is no significant difference between the EE for 

thymol and carvacrol. Although carvacrol has slightly higher solubility than thymol in 

water, which may result in more release of carvacrol into water, the results show that the 
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solubility differences do not affect the EE. Since thymol and carvacrol are both volatile 

essential oils, they were expected to be partially evaporated under low pressure during 

lyophylizing. Therefore, the real EE should be a little higher than the obtained 

experimental data. Similar studies about the effect of volatility on encapsulation have 

shown that more than 90% of non-volatile fish oil could be encapsulated by zein, while 

only 65-75% of volatile essential oils could be encapsulated (Parris, Cooke et al. 2005; 

Zhong, Tian et al. 2009). 

 

Figure 2.1 Loading efficiency by extracting EOs from samples by ethyl acetate. 

 

2.2.2 Particle Size 

DLS was used to determine the particle size before lyophilisation, and after lyophilisation 

and re-dispersion in water (Table 2.1). The particle sizes of all treatments were kept 

below 330 nm before lyophilisation and rose a minimum of 160 nm to the range between 

430 nm and 740 nm after re-dispersion. The exception was the treatment C10, which had 
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particle sizes of 52 and 205 nm before and after lyophilisation, respectively. The 

polydispersity index was relatively low (below 0.3), which ensured the reliability of data 

from DLS (Dobrynin and Leibler 1997). Particle sizes of all treatments increased after 

lyophilisation and re-dispersion, indicating that some of the nanoparticles formed by 

dispersion aggregate during lyophilisation. The samples still remained nano-sized which 

ensured the good solubility and application in water solution.  

Table 2.1 

Effective diameter and polydispersity of different samples 

 Effective Diameter Poly Dispersity 

Samples 

Before lyophilizing 

(nm) 

Re-dispersion 

(nm) 

Before lyophilizing Re-dispersion 

T4 328.1 ± 21.5 732.2 ± 25.3 0.259 ± 0.023 0.145 ± 0.011 

T6.5 269.4 ± 32.9 432.1 ± 43.3 0.136 ± 0.029 0.234 ± 0.021 

T10 259.4 ± 59.6 654.2 ± 13.2 0.199 ± 0.032 0.298 ± 0.034 

C4 293.6 ± 25.4 490.2 ± 18.2 0.184 ± 0.025 0.321 ± 0.033 

C6.5 223.2 ± 42.3 543.8 ± 34.2 0.270 ±0.008 0.117 ±0.020 

C10 51.9 ± 15.2 205.0 ± 43.3 0.183 ± 0.012 0.229 ± 0.032 

 

2.2.3 SEM Image 

SEM images can directly provide information on the particle size and morphology of 

samples. Figure 2.2 shows the SEM images of zein encapsulating EOs under different pH 

conditions. It can be seen that the sample morphology was dependent only on the pH no 



 

 

16 

matter which EOs are encapsulated. The lyophilized samples from acidic solutions 

formed films (T4 and C4), while nano-scale particles were formed after lyophilizing from 

neutral and basic solutions with the diameters’ ranging from 100nm to 500nm (T6.5, 

C6.5, T10 and C10). Zhang, Luo et al. (2011) also found that after lyophilizing, zein from 

acidic solution formed continuous phase of film and zein from near neutral and basic 

solutions formed dispersed particles.  

  

  

a b 

c d 
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Figure 2.2 SEM image for samples after lyophilizing: (a) T4; (b) T6.5; (c) T10; (d) C4; (e) 

C6.5; (f) C10 

 

The phase separation (liquid-liquid dispersion) method used in this study was quicker, 

did not require temperature control, and reagents used to produce nanoparticles were 

more economical than for  other preparation methods, such as chemical conjugation 

method (Suzuki, Sato et al. 1989) and solid-in-oil-in-water (S/O/W) emulsion process 

(Morita, Sakamura et al. 2000). Fish oil has been encapsulated by this method with little 

change in particle size (350 - 450 nm) before lyophilising and after re-dispersing in acetic 

acid/acetate buffer (Zhong, Tian et al. 2009). EOs (thymol and cinnamaldehyde) have 

also been encapsulated by phase separation with 0.01% silicone fluid, which resulted in 

samples between 100 and 250nm after lyophilizing (Parris, Cooke et al. 2005). 

Phase separation is an efficient and effective way to form nanoparticles when zein is 

dissolved in 60~90% (v/v) aqueous ethanol solution to form emulsified droplets. After 

the stock solution of zein is sheared into bulk water, the concentration of ethanol in the 

emulsified droplets decreases below the level which can solubilize zein and nano-size 

particles of zein precipitate (Alargova, Bhatt et al. 2004; Alargova, Paunov et al. 2006).  

f e 



 

 

18 

Encapsulation of EOs in zein nanoparticles allows EOs to be used for many applications 

that would be otherwise impossible because of their poor solubility in water. 

2.2.4 FTIR Spectrum 

FTIR provides information of secondary structures of proteins (Bonnier, Rubin et al. 

2008) and also is used for EOs analysis (Vera and Chane-Ming 1999). Only the 

treatments under neutral pH are presented because different pH conditions had no effect 

on FTIR results.  

As shown in Figure 2.3, the peak of zein hydroxyl group (3287.07cm
-1

) merges with that 

of thymol and carvacrol phenolichydroxyl groups , specifically 3296.71cm
-1

 for T6.5 and 

3300.57cm
-1

 for C6.5. The sharp peaks at 2955.38cm
-1

 and 2928.38cm
-1

 representing C-H 

stretching from CH3 and CH2 functional groups (Zhang, Luo et al. 2010) merged with 

peaks at 2962.13cm
-1

 and 2957.3cm
-1

 for thymol and carvacrol, respectively. In this case, 

the functional groups responsible for the C-H stretching are the methyl and isopropyl 

groups on the phenolic rings of EOs (thymol/carvacrol). The four peaks specific to the 

phenolic ring at wavenumbers ranging from 1622cm
-1

 to 1458cm
-1

 for thymol/ carvacrol 

disappeared with the effect of the similar positions of Amide I and Amide II of zein 

(1642cm
-1

 and 1524.45cm
-1

, respectively) (Gillgren, Barker et al. 2009; Kumar, Tripathi 

et al. 2009).  
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Figure 2.3 FTIR spectrum: (a) zein (b) thymol (c) carvacrol  

(d) zein nanoparticles loaded with thymol under pH=6.5  (e) zein nanoparticles loaded 

with carvacrol under pH=6.5 

 

All information reflects that no new peaks appeared and that zein and EOs were mixed 

together physically without any chemical reaction. The structure and function of EOs 

were not changed in this process, suggesting retention of antioxidant and antimicrobial 

properties.  

2.2.5 Solubility enhancement  

The solubility of EOs (thymol/carvacrol) was enhanced by zein encapsulation. All 

encapsulation treatments regardless of pH conditions showed increased solubility of the 

EOs ranging from 4-15 folds. Different pH conditions affected the degree of solubility 
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enhancement. The data suggest that solubility of EOs was enhanced least at pH 10. This 

result can be explained by the deprotonation of the phenolichydroxyl group of EOs under 

high pH. Some studies also focused on improving the solubility of EOs. Complexation 

with cyclodextrin has been used to increase the solubility of EOs up to 10 fold (Samperio, 

Boyer et al. 2010). Water-soluble chitosan (WSC), a polymeric amphiphile favored 

formation of self-aggregates to carry thymol (Hu, Du et al. 2009). However, EOs in our 

study were made water soluble neither by forming a complexation, nor by using an 

amphiphile, but rather by encapsulated in zein nanoparticles.  

 

Figure 2.4  Enhancement of solubility of EOs after encapsulation in each treatment. T4, 

T6.5 and T10 are samples loaded with thymol under pH=4, 6.5 and 10 respectively. C4, 

C6.5 and C10 are samples loaded with carvacrol under pH=4, 6.5 and 10 respectively. 

 

2.2.6 Antioxidant Capacity 

a 

b 
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2.2.6.1 DPPH· Assay 

All samples showed antioxidant capacity against the 70% aqueous ethanol blank (Figure 

2.5). The longer the incubation period, the lower the absorbance of all the samples, as a 

result of having more time to quench free radicals and bring about a more complete color 

change. All the samples encapsulating thymol could scavenge free radicals more quickly 

than those with carvacrol, except C6.5. The mechanism of this assay was based on the 

reduction of DPPH· by the antioxidant into a colorless substance. After 24h inoculation, 

37.5% ~ 75% of DPPH· had been reduced. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 DPPH• radical scavenging results of different samples over time by 

absorbance at 517nm against 70% aqueous ethanol as blank. T4, T6.5 and T10 are 

samples loaded with thymol under pH=4, 6.5 and 10 respectively. C4, C6.5 and C10 are 

samples loaded with carvacrol under pH=4, 6.5 and 10 respectively. Means marked with 
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different letters indicated a significant difference between each other upon the ANOVA 

Tukey’s Studentized Range Test (P < 0.05) 

 

The antioxidant activity of EOs including thymol and carvacrol has been studied 

quantitatively by other researchers. Amiri, Yazdi et al. (2011) reported that about 

0.1mg/ml of thymol and 0.3mg/ml of carvacrol could provide 50% inhibition of DPPH·.   

In our study 0.67mg/ml zein encapsulated carvacrol at pH 4 and 10 inhibited 50% of 

DPPH· and carvacrol at pH 6.5 and thymol at all pH achieved more than 50% inhibition 

of DPPH·. Zein alone was able to inhibit the free radicals in a related study by Zhang, 

Luo et al. (2011). The results indicated that zein had slight antioxidant capacity (less than 

25% DPPH· reduced after 24h). The zein was also measured in this study at the same 

concentration. After deducting zein’s contribution to the antioxidant capacity, 

DPPH· was reduced by an additional 24.8% ~ 66.8% among different treatments. 

2.2.6.2 Ferric Ion Spectrophotometric Assay 

The antioxidant capacity of samples was further demonstrated, by the ferric ion 

spectrophotometric assay. Results from Figure. 2.6 showed that the [Fe (o-phen)3]
2+

 

complex was protected by samples from being oxidized by hydrogen peroxide. All 

samples showed greater antioxidant capacity than the PBS control. PBS was used to 

prevent ferric or ferrous precipitates, because the ferric ion assay is pH sensitive. 

The Hydroxyl Free Radicals Clearance Percentage data were obtained from Equation 2.1, 

and listed in Table 2.2. There was little difference in HFRC measurement among EOs 

encapsulated under different pH conditions. In all treatment groups, hydroxyl free 

radicals were cleared by 60~90%.  
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Table 2.2 

Hydroxyl free radicals clearance (percentage) 

EOs 
pH Hydroxyl free radicals clearance 

% 

Thymol 

4 64.7 ± 3.9   (a) 

6.5 86.6 ± 8.1   (b) 

10 76.7 ± 8.3   (ab) 

Carvacrol 

4 65.0 ± 0.3   (b) 

6.5 68.2 ± 6.8   (b) 

10 67.8 ± 6.9   (b) 

* Means marked with different letters indicate a significant difference between each other 

upon the ANOVA Tukey’s test (P < 0.05). 

 

Figure 2.6 Antioxidant activity of different samples against hydrogen peroxide and the 

formation of hydroxyl radicals by absorbance at 509 nm against 10 mM PBS as blank. T4, 

T6.5 and T10 are samples loaded with thymol under pH=4, 6.5 and 10 respectively. C4, 

C6.5 and C10 are samples loaded with carvacrol under pH=4, 6.5 and 10 respectively. 
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The antioxidant activity analysis required at least two methods, because of the 

complexity of the phytochemical reactions (Schlesier, Harwat et al. 2002). Both 

DPPH· and Ferric ion assays showed that encapsulation did not have much effect on the 

EOs’ antioxidant activity. Thymol antioxidant activity was consistently superior to that of 

carvacrol, possibly due to greater steric hindrance of the thymol phenolic group  

(Yanishlieva, Marinova et al. 1999; Viuda-Martos, El Gendy et al. 2010).  

2.2.7 Antimicrobial Activity 

The in vitro antimicrobial activity of thymol/carvacrol against E. coli, a representative 

Gram-negative bacterium, was evaluated by determining the growth curve in LB medium. 

Both thymol and carvacrol exhibited interesting antimicrobial activity against E. coli after 

the 48h’s  incubation in LB medium at 35 °C (Du, Olsen et al. 2008). Thymol and 

carvacrol both significantly decreased the concentration of E. coli by 0.8~1.8 log CFU/ml 

compared to the control. Although some studies suggest  that the release of EOs from 

zein films can be affected by loaded spelt bran and film’s thickness (Mastromatteo, 

Barbuzzi et al. 2009), zein nanoparticles in this study were found to quickly release all 

the encapsulated EOs into LB medium. This rapid release is probably the result of the 

digestion of  the zein nanoparticles by E. coli. 
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Incubation time (hours) 

Figure   2.7 Growth curve of E.coli in LB medium with different samples under 35℃. T4, 

T6.5 and T10 are samples loaded with thymol under pH=4, 6.5 and 10 respectively. C4, 

C6.5 and C10 are samples loaded with carvacrol under pH=4, 6.5 and 10 respectively. 

 

Thymol and carvacrol have a similar chemical structure, which is responsible for their 

antimicrobial activity; both contain delocalized electrons and hydroxyl groups on 

benzene rings. Lambert, Skandamis et al. (2001) proposed that these EOs can break the 

equilibrium of inorganic ions and pH homeostasis inside the cytoplasm of bacteria. Ultee, 

Bennik et al. (2002) further demonstrated that carvacrol can act as a transmembrane 

cation carrier by diffusing through the cytoplasmic membrane, releasing its hydroxyl 

proton into the cytoplasm, and transporting a potassium ion (or other cation) back across 

the membrane into the external environment.  

Thymol and carvacrol showed different temporal patterns of antimicrobial ability: thymol 

was consistently more efficient in limiting the growth of E. coli than carvacrol under 
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same pH conditions in the short term (less than 12h), but in the long term, carvacrol 

achieved better inhibition than thymol except T4 and C4 (as indicated by data at 48h 

inoculation). Although Ultee, Bennik et al. (2002) reported that the position of hydroxyl 

group on the phenolic ring has no effect on the antimicrobial ability, our results showed a 

significant difference (P<0.05). We hypothesize that the position of hydroxyl group may 

cause differences in polarity and steric hindrance between the thymol and carvacrol 

molecules, resulting in different ability to interact with E. coli cells. 

2.3 Conclusions 

Essential oils have been studied extensively and there is much literature regarding their 

desirable antioxidant and antimicrobial properties, however, poor water solubility limits 

their application. Encapsulation of EOs in zein nanoparticles allows their dispersion in 

water, which greatly enhances their potential for use in food preservation and control of 

human pathogenic bacteria. Our study has demonstrated that encapsulating EOs in zein 

nanoparticles can enhance their solubility up to 14 fold without hindering their ability to 

scavenge free radicals or to control E. coli growth. Results from this study support the 

use of nanoencapsulation to facilitate the application of EOs in food preservation.
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Chapter 3 Synthesis and Efficacy of Nanoporous Metal-Organic 

Frameworks (MOFs) Loaded with Thymol as a Bactericide 

3.1 MATERIALS & METHODS 

Zinc nitrate hexahydrate (98%, reagent grade), 2-aminoterephthalic acid (99%), 

chloroform (ACS, 99.8%) and N,N-dimethylformamide (DMF, 99%) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). E. coli was purchased from ATCC 

(Manassas, VA), while the lysogeny broth (LB) medium was bought from Difco 

(Franklin Lakes, NJ). 

3.1.1 Synthesis of Zn@MOF 

Zinc nitrate hexahydrate and 2-aminoterephthalic acid were dissolved in N,N-

dimethylformamide (DMF) to obtain final concentrations of 0.018 M (solution A) and 

0.006 M (solution B), respectively. After vigorous magnetic stirring of the solutions for 1 

h, 10 g A and 10 g B were mixed together in a glass beaker (Yoo, Varela-Guerrero et al. 

2011), followed by ultrasonic treatment for 5 min. The precursor solution was then 

processed solvothermally in a convective oven at 105 ℃  for 24 h. Afterwards, the 

solution in the glass beaker was cooled to ambient temperature. The solution was then 

centrifuged at 5000 rpm for 15 minutes to collect the newly formed Zn@MOF crystals. 

The crystals were then rinsed three times with fresh DMF. In order to remove the DMF 

inside the Zn@MOF pores, the freshly produced Zn@MOF was soaked in chloroform for 

3 days with chloroform replenished every day. After thorough washing with chloroform, 

the dry Zn@MOF was obtained by evaporating chloroform in the fume hood. The MOFs 

were stored in a desiccator for further analysis. 
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3.1.2 Porosity and Surface Area 

The porosity and surface area of Zn@MOF were determined by an ASAP 2020 

Physisorption Analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA). 

Sample tubes for analysis were cleaned ultrasonically and dried in a drying oven under 

110 ℃ . Some Zn@MOF was loaded into a sample tube to degas for 24 h. After 

degassing, the sample tube containing Zn@MOF was transferred from the degassing port 

to the analysis port. The analysis was run automatically with N2 as the adsorptive gas and 

liquefied N2 as the cold trap media. 

3.1.3 Morphology and X-ray Diffraction (XRD) 

Scanning electron microscopy (SEM, SU-70 SEM, Hitachi, Pleasanton, CA, USA) was 

used to examin the morphology of Zn@MOF. Dry Zn@MOF crystals were adhered to 

conductive carbon tapes (Electron Microscopy Sciences, Ft. Washington, PA, USA), and 

mounted onto specimen stubs. The stubs were coated with a thin (<20 nm) conductive 

gold and platinum layer using a sputter-coater (Hummer XP, Anatech, CA, USA). Digital 

images of the samples were obtained and representative images were  selected for 

presentation. 

X-ray powder Diffraction (XRD) patterns were obtained by XRD diffractometer (C2 

Discover Bruker Diffractometer) with CuKα radiation to evaluate the crystalline structure 

of Zn@MOF. 

3.1.4 Preparation of T-Zn@MOF 

Fresh Zn@MOF prepared as previously described was sealed in glass bottles with 100 

mg thymol /mlchloroform. The mixture was magnetically stirred overnight to insure the 
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uniform diffusion of thymol. Then the crystals were rinsed with fresh chloroform three 

times. The chloroform was evaporated in the fume hood to obtain the T-Zn@MOF. 

3.1.5 Thermogravimetric Analyses 

Thermogravimetric analyses were carried out using a NETZSCH TG 209 F3 instrument 

(Wittelsbacherstraße 42, 95100 Selb, Germany), with a 10 ℃/min heating rate starting at 

room temperature and going up to 250 ℃. Dual isotherms were programmed for 10 min 

at 100 ℃ and 30 min at 250 ℃. A nitrogen atmosphere was used with the 25 mg sample 

of. All analyses were performed in triplicate. 

3.1.6 Antimicrobial Activity 

Nonpathogenic E. coli O157:H7 strains CDC B6914/pGFP (ampicillin resistant), ATCC 

43888 were used to evaluate the antimicrobial ability of T-Zn@MOF. A spontaneous 

nalidixic acid resistant mutant of ATCC 43888 was selected by heavily streaking the 

parental strains on cefixime, (0.05 mg/L) and potassium tellurite, (2.5 mg/L. Invitrogen, 

Carlsbad, CA. USA) supplemented sorbital MacConkey (Neugen, Lansing, MIU.S.A) 

(CT-SMAC) plates. The growth on CT-SMAC plates with / without the antibiotics was 

quantitatively compared, followed by repeated subculturing without the antibiotics in 

TSB (Tryptic Soy Broth, Neugen, Lansing, MI, USA) in order to confirm the stability of 

the antibiotic markers. The nalidixic acid mutant was used instead of the parental strains 

in the antimicrobial experiment. 

3.1.6.1 Growth inhibition against E. Coli  O157:H7 in TSB medium 

The nalidixic acid mutant of E. coli O157:H7 was inoculated in TSB with nalidixic acid 

(50 mg/L). The T-Zn@MOF was dispersed in the inoculation broth at a thymol to broth 

ratio of 0.04g/100g.  Thymol was added to the inoculation broth at a thymol to broth ratio 
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of 0.04g/100g as the positive control. The TSB inoculation broth containing Zn@MOF 

without thymol was treated as the negative control. All the treatments were incubated in a 

shaking incubator at 35℃ for 24 h. The optical density of each inoculated broth was 

measured at 550 nm using a spectrophotometer. The optical density results were 

converted into log CFU/mL. 

3.1.6.2 Inhibition zone against E. Coli  O157:H7 on TSA plate 

The Anopore™ inorganic membrane (Anodisc™, diameter 13mm) was used to prepare 

the inhibition disk. Anodisc™ was placed in DMF before it was thermally treated in a 

convective oven. A layer of Zn@MOF crystals was grown on the Anodisc™ following 

the procedure described in Synthesis of MOFs. The Anodisc™ with Zn@MOF was 

washed with chloroform three times before soaking in 100 mg thymol /ml chloroform 

overnight. The resulting T-Zn@MOF was then washed with chloroform three times and 

dried in the fume hood to evaporate the chloroform. 

The nalidixic acid resistant mutant of E. coli O157:H7 in Tryptic Soy Broth (TSB) at a 

concentration of 10
5
 CFU/mL (0.1 ml ) was plated on Tryptic Soy Agar (TSA) containing 

50 mg/L of nalidixic acid . The bacterial inoculum was spread evenly over the plate and 

left to dry for 10 min in a biosafety hood.  

One Anodisc™ saturated with thymol, Zn@MOF or T-Zn@MOF was placed on the 

center of the inoculated TSA plate. The plates were incubated at 35℃. The inhibition 

radius around the Anodisc™ was measured using a digital caliper every 12 h. The area of 

inhibition was then calculated based on the radius.   

3.1.7 Statistical analysis 
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The data reported as mean ± standard error are from experiments conducted in triplicate. 

Experimental statistics were performed using a SAS software (Version 9.2, SAS Institute 

Inc., Cary, NC, USA). Analysis of variance (ANOVA) was used to check the 

assumptions of variance homogeneity and normality and compare the treatment means. 

Antimicrobial ability was analyzed according to a 4 factor model, with Zn@MOF, 

Thymol, T-Zn@MOF and control as the 4 factors using Tukey’s Studentized Range 

(HSD) test to make selected pairwise means comparisons. Differences were considered to 

be statistically significant for p-values less than or equal to α=0.05. 
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3.2 Results and Discussion 

3.2.1 Porosity and Surface Area 

The N2 adsorption-desorption isotherms of the Zn@MOF revealed the fine structure of an 

intraparticle porous topology. The Brunauer–Emmett–Teller (BET) surface area (SBET) of 

Zn@MOF was determined to be 617.53 m
2
/g and the pore opening diameter was 30.01Å. 

The specific surface areas of different types of MOFs vary depending on different metal 

ions and organic linkers, for example, Au/ZnO@MOF-5 has SBET of 584 m
2
/g (Muller, 

Turner et al. 2011) and TiO2@MOF-5 has SBET of 2412 m
2
/g(Muller, Zhang et al. 2009). 

The large surface area and pore diameter value provided further evidence of the porous 

structure of our MOFs (Yoo, Varela-Guerrero et al. 2011). The porous characterization of 

these MOFs indicated their potential to trap crystalline thymol molecules (Chang, 

Bristowe et al. 2013). 

3.2.2 SEM Images and XRD patterns 

SEM images of Zn@MOF presented in Figure 3.2, provide a more direct assessment of 

particle size and morphology (Zhao, Xia et al. 2011). The crystalline Zn@MOF structure 

has been formed and may be observed as cubes with sides of about 12 µm (Chen, Wang 

et al. 2010).  
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Figure 3.1 N2 sorption isotherms (77 K) for Zn@MOF. Filled and open symbols 

represent adsorption and desorption traces, respectively. The BET surface area is 617.53 

m
2
/g and pore size is 30.01Å. 

 

.   

Figure 3.2 SEM images of Zn@MOF. 

 

Figure 3.3 showed that the experimental pattern and the pattern calculated for a cubic 

body centered lattice with a=18.36 Å matched very well. There was still some residual 
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difference shown at the bottom in grey. The difference may be due to: 1) distortion of the 

cubic lattice e.g. in tetragonal or rhombohedral etc fashion; 2) The presence of another 

minor phase, which for example could be one of the multiple Zn nitrate compounds. 

Unfortunately, due to the data quality (broad peaks and absence of high angle scattering), 

it is not feasible to determine the exact cause. Yet it is obvious that Metal-Organic 

Frameworks were present and could be described as a body-centered lattice with a=18.36 

Å (Zhou, Liang et al. 2010; Zhao, Che et al. 2012). 

38363432302826242220181614121086

320

310

300

290

280

270

260

250

240

230

220

210

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

-10

-20

hkl_Phase 0.00 %

 

Figure 3.3. XRD patterns of Zn@MOF 

 

SEM and XRD have both been widely used to characterize different MOFs. The porous 

crystalline structure of MOFs can be decisively confirmed by these two methods (Zhou, 

Liang et al. 2010; Ploegmakers, Japip et al. 2013). 

3.2.3 Thermogravimetric Analyses 
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TGA is widely used to analyze the materials entrapped inside MOFs, including 

surfactants (Yoo, Varela-Guerrero et al. 2011) and other solvents like Zn(OH)2 (Chen, 

Wang et al. 2010). The TGA results (Figure 3.4) indicate that the weight loss took place 

in the range of 20-100℃ and 100-250℃. The temperature was maintained at 100℃ for 

10 min to remove H2O from T-Zn@MOF. The TGA plot indicates that the 10.66% 

weight loss between 20 ℃ and 100 ℃ was caused by water desorption. Thymol trapped 

inside T-Zn@MOF is evaporated at 250 ℃, and corresponds to the 3.95% weight loss. 

According to the research of Yeonshick et al, the decomposition of organic linker would 

take place at about 400 ℃ (Yoo, Varela-Guerrero et al. 2011). So Zn@MOF was stable 

in the process of thermogravimetry. All the thymols have been removed under 250℃ 

because the boiling point of thymol is 233 ℃.  Therefore, the T-Zn@MOF prepared in 

our study contains 3.95% thymol. Due to itsvolatility, the thymol evaporated  at around 

150 ℃ (Shah, Ikeda et al. 2012). 
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Figure 3.4. Thermogravimetric analyses results,         TG, ---- Temp. 

 

3.2.4 Antimicrobial Activity 

3.2.4.1 Growth inhibition against E. Coli. O157:H7 in TSB medium 

The in vitro antimicrobial activity was evaluated by comparing the E. coli counts before 

and after incubation at 35 ℃ . From Figure 3.5, T-Zn@MOF (3.95% loading ratio) 

reduced E. coli counts by 4.4 log units (to 0.7 log CFU/mL). Zn@MOF (negative control) 

showed no significant antimicrobial ability and the antimicrobial ability of thymol alone 

(positive control; same amount as in T-Zn@MOF) was not as strong as that of  the T-

Zn@MOF. Thymol in the positive control had only bacteriostatic effect on E. coli, but 

not bactericidal effect (E. coli remained 10
5
 CFU/mL after 24 h of incubation). 

 

Figure 3.5 Growth inhibition against E. Coli. O157:H7 in TSB medium. Means marked 

with different letters indicated a significant difference between each other upon the 

ANOVA Tukey’s Studentized Range Test (P < 0.05) 

 

a a a a 

b b 

a 

c 
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Thymol’s delocalized electrons and hydroxyl group on the benzene rings disrupt the 

equilibrium of inorganic ions and pH homeostasis inside the bacterial cytoplasm. In 

addition, thymol can release a proton into the cytoplasm and exchange it for a potassium 

ion which it removes it from the cytoplasm (Ultee, Bennik et al. 2002; Beales 2004), thus 

causing death of the microorganism. Thymol has gained much attention for its promising 

antimicrobial ability. However, the poor solubility of thymol has limited its applications, 

especially in aqueous environments. Our previous study has developed an encapsulation 

method with zein to enhance the water solubility of thymol and the nanoparticles of zein 

encapsulating thymol have maintained the antimicrobial activity against E. coli (ATCC# 

53323). Other researchers have applied techniques like emulsion-evaporation, 

nanocapsular dispersion and water-soluble chitosan to make thymol soluble in water 

(Cristani, D'Arrigo et al. 2007; Hu, Du et al. 2009; Shah, Davidson et al. 2012; Shah, 

Ikeda et al. 2012).  

The porous structure of Zn@MOF in this study made it possible to trap thymol inside the 

crystal Zn@MOF by noncovalent interactions. Release studies have shown that 

noncovalent loading drugs can be released from MOFs. Thymol’s  low solubility in water 

(846±9 ppm) (Griffin, Wyllie et al. 1999; Wu, Luo et al. 2012) reduced the chance for 

thymol to contact bacteria. This explains why thymol can only inhibit the growth of E. 

coli, but T-Zn@MOF containing the same amount of thymol can kill E. coli. The 

negative control, Zn@MOF did not inhibit E. coli.  

3.2.4.2 Inhibition zone against E. Coli.  O157:H7 on TSA plate 

During 72 h incubation at 35℃, E. coli O157:H7 generally grew normally on TSA with 

no inhibition zone around the Anodisc™. However, no growth was observed around the 
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Anodisc™ with T-Zn@MOF. The inhibition zones decreased in area from 223.73 mm
2
 to 

166.01 mm
2
 (Figure 3.6). Abel et al has used bi-axially oriented polypropylene (BOPP) 

film (20 mm×20mm) coated with thymol to inhibit E. coli and detected an inhibition zone 

with radius of 9.0±0.8 mm (Guarda, Rubilar et al. 2011; Pirbalouti, Rahnama et al. 2011; 

Ho and Su 2012). Thymol trapped inside Zn@MOF requires media to diffuse into the 

environment and as a crystallisable phenol moves slower than other non-crystallisable 

ones, such as carvacrol, which has a similar structure (Sivropoulou, Papanikolaou et al. 

1996; Ho and Su 2012). Crystallites hamper the diffusion of molecules and thymol can be 

released from MOFs continuously, resulting in the slight decrease, by 57.72 mm
2
, of the 

inhibition zone. 

 

Figure 3.6 Inhibition zone against E. Coli. O157:H7 

 

3.3 Conclusions 

Nanoporous Zn@MOF has been successfully synthesized in our study and the 

morphology has been confirmed by XRD and SEM. Thymol, an effective natural 
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antimicrobial agent has been loaded into the porous structure of Zn@MOF. During the 

antimicrobial experiment, T-Zn@MOF was shown to be effective against E. coli 

O157:H7 at a relatively low thymol concentration. Successful research on edible MOFs 

and application of MOFs as food additives, suggest that their development has great 

potential to contribute to food safety in the future. 
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