
Hashing Moving ObjectsZhexuan Song Nick RoussopoulosDepartment of Computer Science Department of Computer Science &University of Maryland Institute For Advanced Computer StudiesCollege Park, Maryland 20742 University of Marylandzsong@cs.umd.edu College Park, Maryland 20742nick@cs.umd.eduMay 19, 2000AbstractIn real-life applications, the objects are both spatial and temporal referenced. The objectswhich continuously change their location are called moving objects. With the development ofwireless communication and positioning technology, it becomes necessary to store and indexthose objects in database. Due to the complexity of the problem, many pure spatial indexstructures are unable to index large volume of moving objects in database.In this paper, we propose a whole new idea based on hashing technique. Since it is impossibleto re-index all the objects after each time period, we store the objects in buckets. When anobject moves within a bucket, the database does not make any change. By using this technique,the number of database update is greatly reduced which makes the index procedure feasible.Then, we extend the previous system structure by introducing a �lter layer between the positioninformation collectors and the database. Also four di�erent methods based on the new systemstructure are presented. Performance experiments were performed to evaluate di�erent aspectsof our indexing techniques, and the conclusions are included in the paper.
1

1 IntroductionTraditionally, database management systems adopt a \static" model which assumes that data storedin the database remain stable until explicitly changed through an update operation. This modelserves well if the properties of the objects never or discretely change. However in real life, manyobjects change their properties continuously. One such application is to maintain a database inair-tra�c control. In this application, the objects are ying airplanes. The location of the objectschanges continuously. One possible solution in \static" model which we called \naive solution" isto update the location information of the objects in database after each time period. Consideringto large update overhead, the solution seems to be very ine�cient.With the rapid development of positioning system, e.g. GPS, wireless communication tech-nologies, and electronics, it is technically feasible and necessary to track and record the positionsof large amount of mobile objects. According to [SJL+99], the mobile phone market expect morethan 500 million mobile phone users by year 2002 and 1 billion by year 2004, and mobile phones areevolving into wireless Internet terminals. Keeping track of these terminal location may substan-tially improve the quality of the services. The requirement for more sophisticated database systembecomes urgent.The new database which deals with geometries changing over time is called spatiotemporaldatabase. The problems in this new �eld recently attracted interest of both the academic and theindustrial community. [WCD+98] presents the Moving Object Spatio-Temporal (MOST) modeland a language (FTL) for querying the current and future location of moving objects; [TJ98]proposes a component-based conceptual model for spatiotemporal application design; Nascimentoet al. [NST99] present the GSTD algorithm (\Generate Spatio-Temporal Data"), which generatessets of moving point or rectangular data that follow an extended set of distributions. The syntheticdata sets generated by GSTD have been used to evaluate di�erent index designs. ArcView GISsystem [ArcV98] has already supported tracking and querying mobile objects.Our main focus in this paper is how to index large number of moving objects without generatinghigh volume of database updates. We mostly discuss how to quickly respond to range queries overthe objects' current location because range queries serve as a basic operation for other queries such2

as nearest neighbor queries [CG99, SK98]. Since the answer is based on the current knowledgestored in the database, we want that knowledge to be as precise as possible. The main challengehere is how to avoid the prohibitively large update overhead.The \naive solution" fails when the number of moving objects goes large. Suppose a databasemanagement system can �nish up to Nt transactions per second, (in most cases, Nt is less than1000.) The number of objects is No. After each time period, in \naive solution", the locationinformation of all the objects need to be updated. Thus, there are No update operations perupdate cycle. It costs at least No=Nt seconds to �nish. When No is small, for example severalthousand in the air-tra�c control application, the \naive solution" is still �ne. However, when Nois big, for example several million in tra�c monitoring, or even more in mobile communication,each update cycle costs tens of minutes or even longer. That means, the location information of anobject stored in database may be the location of that objects ten minutes or even longer ago! Thequery result which based on these data seems unacceptable.An alternate approach [KGT99, SJL+99] is to model the positions of moving objects as afunction of time f(t), and only update the database when the parameters of f changes. In mostcases, linear functions are used because of its simplicity. At any given time t0, we can �nd thelocation of each object by calculation f(t0). This approach can also predict the future positionof objects. It may work well on some scienti�c database when the trace of each object is knownbeforehand. However, in real life, it is very hard to �nd a function to describe the objects' activity,or the parameters of f changes too often. For example, if we want to use a linear function todescribe mobile phone user's activity. Whenever he changes the direction or speed, a databaseupdate request is generated. These changes could happen all the time. Thus, there are still toomany database update here. Another drawback is after many parameter updates, we need a verycomplicate calculation to �nd the current location of each object. This will greatly damage thee�ciency of the query procedure.Our contributions in this paper include:� We propose a new idea based on hashing technique. Each object is placed in a bucket. Onlywhen an object goes to a new bucket, does the database make an update. This technique3

greatly reduce the number of database update which allow the system to store and indexlarge number of moving objects.� We present a new system structure. Between position collector and the database, we add anew layer called \Location pre-processing part". This layer can �lter most of the databaseupdate request based on the rules we de�ned at the beginning.� We give out four di�erent methods. The �rst one partition the space into small buckets. Thesecond allows some overlap between buckets which decrease the database update generated byzigzag movement of objects. The third method allows dynamic bucket update which increasesthe storage e�ciency when the object distribution is skewed. And the last one combines thebene�t of the second and the third methods. In experiment section, we also give some methodselection suggestion.In part 2, we discuss the related work in spatiotemporal database area. Then in part 3, wepropose the basic idea of our methods and a new system structure to implement it. In the nextpart, we present four speci�c methods. The experiments results are given in part 5 and the lastpart includes the conclusions and research directions.2 Related WorkRecently, many works has been done on the indexing of the location of moving objects. Theymostly concentrate on point data. Related work can be conducted in two categories depends onthe information stored in database.The �rst approach stores the location information of moving objects which is obtained byperiodically sampling. The movement of objects between two sample positions is described by usinginterpolate. The interpolate can be either linear which is the simplest one or polynomial splines[BBB87]. Then the movement of one object in d-dimensional space is described as a trajectory in a(d+1)-dimensional space which combined time into the same space [TUW98]. The methods whichadopt this approach mainly focus on how to index the trajectories.4

In [PTJ99], the authors de�ne an R-tree based method called STR-tree. They use linear in-terpolate method, so the trajectory of an object is a set of line segments. In STR-tree, when doan insertion operation, the line segments within the same trajectory are more likely to be storedtogether. Later, in [PTJ00], they propose another structure called TB-tree which totally preservesthe trajectories. They claimed that these two novel tree structure works better than traditionalR-tree family when indexing moving objects.Since this approach use interpolate to describe the object movement between two sampling po-sition, some uncertainty factors may happened. Wolfson, et. al. [WCD+98] discuss the imprecisionproblem and how the DBMS can provide a bound for queries. Pfoser and Jensen pointed out in[PJ99] that given a speed limit, the possible location of an object between two sampling positionshould be an eclipse instead of a simple line segment. And the queries should consider this factor.The drawback of this approach is that for large amount of object, too many database operationsmay occur after each sampling. For example, in STR-tree, each sampling will generate n linesegment insertions in database where n is the object number. Due to the database limit, thesampling can not happen too often for a large n. This will greatly increase the uncertainty factorand cause the query imprecise.The second approach uses a function to describe the movement of an object and store thatfunction in database. For example, in one dimensional space, at time t0, the position of an objectis x0, and it moves in a constant speed v. Then, at any time t, the position of the object can bedescribed as f(t) = x0 + v(t � t0). If we simply store f in database, there is no need to do anydatabase update unless the object changes its speed.In [KGT99], the authors use linear functions to describe the trajectories of objects. Since it isvery hard to index an unlimit line in most spatial database, the authors map a line into a pointdata in the dual plane. The duality transformation allows to formulate the problem in a moreintuitive manner. However, it worth mentioning that the normal range query becomes a polygonin dual space. This makes the query a little harder.Sistla. et.al. propose a data model called MOST in [SWC+97]. In that model, each object has aspecial attribute called function. This attribute is a function of time. Without explicit update, the5

position of each object can be found by combining this attribute with other traditional attributes(such as position and time). The model allows the DBMS to execute instantaneous, continuousand persistent queries.TPR-tree, an R*-tree bases structure [SJL+99], uses a very similar idea. In TPR-tree, theposition of a moving object is represented by a reference position and a corresponding velocityvector. This velocity vector can be viewed as the function attribute in MOST. The TPR-treesupports the e�cient querying of the current and projected future position of moving objects.As we discussed in section 1, this approach can partly solve the overwhelming database updateproblem if the objects' movement follow some rules (such as particles in a scienti�c experiment).In real life, it is impossible to �nd a simple function to describe a human's movement. Even for acar in highway, its speed may change very frequently. By de�nition, each speed change generatesa database update. So the number of total database update is still too high.3 Hashing TechniquesThis section presents the basic idea of hashing techniques and the structure of the system. Themain consideration of our method is to decrease the number of database update so that the systemhas the ability to store and index large amount of moving objects.The main di�erence between moving objects and static objects is that the location of movingobjects varies frequently. In the database, if we want to keep track of the exact location informationof objects, it is unavoidable to generate a large volume of database update. Therefore, we introducethe \fuzzy" idea: we do not update the location of objects in database unless it leaves its originalposition very far away. For example, suppose we are tracking the movement of a traveler inWashington DC. At t0, he is in the Washington Memorial which is stored in our database. he maymove around all the time, however we do not save that in database until he is quite far away fromits original position, say at t1, he is in the Capital Hill. Any actions between t0 and t1 is simplynot reected in our database.Now there is some uncertainty in the queries. For example, if we want to �nd the location of6

object o now, the result from the database may look like \object o is currently in an area closeto p0, where p0 is the position information stored in the database". Also in range queries, givena range R, the result includes two parts: some objects are certainly in the query range and someneed further check
DB

......

Mobile Objects

Queries

Object Status

Query Results

Figure 1: The structure of other methodsIn order to solve the problem we design a whole new structure. Before we present our design, we�rst review what the structure of the other methods looks like. Figure 1 shows a common design.In the traditional structure, moving objects send their latest status directly to the database (suchas location, function, velocity etc.). After receiving such information, the database executes thecorresponding updates. The database always stores the latest status of each object and answerqueries based on that information. The database may use di�erent index structures (STR-tree,TPR-tree) to accelerate the update and query procedures.The structure (Figure 2) for our method which is called Hashing Technique, works in a di�erentway. We �rst introduce a hash function which uses object's current status as input. From thisfunction, the system is able to �nd which bucket each object belongs to. The database only storethe bucket information: how many objects in each bucket, which bucket each object is currentlyin. Between database and moving objects, we add a set of �lters called \Location Pre-processingparts (LPs)". Each LP monitors a small subset of objects and uses an array to store the lateststatus of those objects. 7

Transformed
Query

Object
Candidates

Query
Result

Location
Pre-processing

Location
Pre-processing

DB

Query
Transformation

Range Query

Bucket Information

Bucket Information

......

Mobile Objects

Location Information Location InformationFigure 2: The structure of hashing technique
8

When an object changes its location and generates an update request, the request �rst goes tothe corresponding LP. The LP updates object's status locally, then it applies the hash function tothe object's latest status to see whether the object is still in the same bucket. If so, the request issimply ignored. For those objects which move into a new bucket, their requests are translated intobucket update requests and sent to the database.In our structure, much database work is done in LPs. There are many bene�ts in doing so.First, each LP only monitor a small set of objects and LPs are working parallelly. When objectsupdate their status, the system can �nish the corresponding change quickly. Therefore, it is possibleto do the sampling more frequently. Secondly, the scalability of the system is very good. Whenthe object number increases, we only need to add more LPs and do not need to do big change indatabase. This design makes it possible to handle large number of objects.Each bucket in the database contains all the objects which, by using hash function, have thesame return value. Sometimes, the bucket can be viewed as a region in working space. The regionis the union of all possible locations which, by applying the function, return the same result.
���
���
���
���
���
���

���
���
���
���
���
���

0 1

1

x

y

AFigure 3: Hash function splits the working space into 16 regionsExample 3.1 Assume the 2 dimensional working space is [0; 1]2. The hash function we choose isf(px;y) = (int(y � 4)) � 4+ int(x � 4) where (x; y) is p's current location. By using this function, theworking space is actually split into 16 regions (See Figure 3). In this case, bucket 0 can be viewedas region A because when an object is in region A, by applying this hash function, the object should9

be in bucket 0.As we discussed before, there is some uncertainty here if we simply use the database to answerqueries. In our structure, the following parts are designed to minimize or eliminate the uncertainty.When a range query arrives, it is �rst sent to \query transformation part (QT)". QT translates therange query into the bucket query. For example, suppose a query is \Find all the objects in rangeR". After translation, the query becomes: \Find all the buckets that intersect with R". Eachbucket in the database has one of three following statuses:1. The bucket does not intersect with the query range. In this case, the objects in the bucketcan not be in the query range.2. The query range covers the bucket. Then, the objects in the bucket must be in the queryrange.3. The bucket intersects with the query range. This case is somewhat more complicated. Thedatabase now has no ability to distinguish which objects in the bucket are in the rangeand which are not. There are two possible methods. Either, by using statistics, gives anapproximated result. Many works have been done in this �eld [PIH+96, APR99]. Or retrievesall the objects in bucket and sends their id to LPs. Then, LPs check the objects' latest positionto see whether or not they are really in the query range and report the result. We adopt thelater approach.In Figure 2, the italic words show the indexing procedure and the bold words show the queryprocedure.Example 3.2 (Traditional structure) Our structure is able to use one LP to simulate the tra-ditional design. De�ne a hash function f(p) = 0 for each object p. Then, the database only haveone bucket and this bucket intersects with any query range. According to our design, The LP laterrechecks each object and reports the result. In this simulation, our database becomes a dummy andthe LP does all the work. 10

The structure we designed is very exible, by choosing di�erent hash functions, we have di�erentmethods. In the next section, we present four di�erent methods based on this structure.4 Hash functionsThis section presents four di�erent hash functions and gives detail description of correspondingmethods. The �rst function is based on space split method. After checking its performance, we�nd two main drawbacks. The next two methods are our solutions to solve them. The last methodput these ideas together.4.1 Overlap-free Space Partition MethodOne of the main objectives of using hashing technique is to decrease the number of databaseupdates. The basic idea of the �rst method is that we partition the space into several parts. Eachpart maps to a bucket in the database. Only when an object leaves one part and goes to a newone, does the database do the update operation. The details are described below.
I

IIFigure 4: Example of object movingThe �rst step of this method is to partition the space into many small parts. In Figure 4, thesquare is working space. The dashed lines divide the space into 12 parts. The region covered byeach part can be viewed as a bucket in the database. A perfect partition makes each bucket containsalmost the same number of objects all the time. However, the partition work is done beforehandand we have no clues about how the objects move, it is very hard to �nd such a partition. In11

some special case, for example, objects are uniformly distributed and move randomly, an equi-sizepartition is almost perfect. Or if we know objects are moving close to some prede�ned locations,we could use Vorronoi diagram.After partitioning the space, we give each part an unique id number. The hash function nowis: f(p) = i where p is an object and i is the id of the bucket p is in.When at time t, an object leaves one part to another one, like path I in Figure 4, the LP whichmonitors this object sends an update request to database. The request is likeupdate(part id; old bucketid; new bucketid; t). Sometimes, after an object changes its location, itstill stays in the same part, like path II in Figure 4, by our design, the database does not knowthat kind of changes.The query part is very intuitive after f is de�ned. For ad hoc query, the database passes thequery to the LP which monitors the object. The LP fetches the object's current location and submitthe result. For range query, the procedure is just like what we discussed in the last section. Oneimportant thing we want to mention is that the buckets information are static in this case, whichmeans the information (size, location, etc.) of the buckets never changes once the hash function fis given. This allows us using some existing spatial index structure (R*-tree, Quad-tree) to managethe buckets in the database. This will greatly accelerate the database query procedures.An important issue needed to be considered is the size of the parts. In one hand, if we partitionthe space into very big parts, objects are more likely to move within a part. That means less updaterequests reaching database. However, at the same time, when executing a range query, the bucketshave more possibility to be hit which causes more objects check and more communication betweenthe database and the LPs. On the other hand, if the bucket size is too small, although the querymay be faster (the database is able to �nish most of the processing and less objects need to befurther checked by the LPs), the cost of managing the buckets in database becomes very expensive.The database will be overow by enormous update requests which can not be �ltered by LPs. Sothere is a tradeo� here. In later section, we will give a cost mode and discuss more about sizeselection. 12

4.2 Augmented Space Partition MethodComparing to other methods, overlap-free space partition method generates less database update.However there are two drawbacks in this design. This subsection and the next one will discussthem separately.In overlap-free space partition method, objects zigzag along the bucket border could generatebig trouble. Since an area in working space uniquely maps to a bucket in the database, in the restof paper, without confusion, these two have equal meaning.
I III II

(a) (b)

1

2Figure 5: An object moves along the borderLook at Figure 5(a), I and II are two buckets. An object moves along the border. Anytimewhen it cross the border (from bucket I to bucket II or vice versa), an update request is generatedby a LP. The object is �rst in bucket I. When �nishes this path, there are totally eight databaseupdate requests.In order to solve the problem, we increase the size of each bucket a little bit so that there is someoverlap area between two buckets. An update request is generated only when an object leaves theaugmented area. Look at Figure 5(b). The dashed square and dotted square are two augmentedbuckets. The object is �rst in bucket I (the dashed square). At point 1, it leaves bucket I andgoes into bucket II (the dotted square), Then it moves in bucket II and at point 2, it goes back tobucket I. Now, following the same path, there are only two database updates.The augmented space partition method works as following. First we generate a overlap-freespace partition. Then we hash each object into buckets according to its original position. Afterthat, each bucket does a �-expansion. A �-expansion means the center of the bucket does not13

change, but the cover area increases a small length �. For example, if a bucket covers a rectangle[x0; y0][x1; y1], after �-expansion, the bucket now covers [x0 � �; y0 � �][x1 + �; y1 + �].In the next step, we need to �nd a hash function and store it to LPs. If we merely use thecurrent location information of objects as input, there is a problem: when an object moves to anarea covered by two buckets, the function can hardly decide which bucket it should be in. So inthis method, we introduce an attribute called previous bucketid. This attribute remembers whichbucket an object is previously in. It is also sent to the hash function for decision. After eachtime period, if an object current stays in an area covered by only one bucket, everything is �ne.Otherwise, if an area is covered by more than one bucket, the LPs �rst check if the object previouslystayed in any of these buckets. If so, the LPs send no update request to the database. Otherwise,randomly pick one of these bucket for the object.The rest part of indexing and the procedure of query is the same as those in overlap-free spacepartition method. We do not list the details here.4.3 Quad-tree Hashing MethodThe other draw back of overlap-free space partition method is that its buckets have no ability tomodify its size or location after the original decision. The following example shows that sometimethis may cause some trouble.Figure 6 shows a skewed case. This time, we use an equi-size partition function and there are16 buckets in the database. At time t0, all the objects are in the upper-left corner. Then they startto move following the arrow. At time t1, they all reach the lower-right corner. During t0 and t1,only few buckets may contain objects. (Only one in t0 and t1.) The others are empty. In this case,our index structure brings very little bene�t for range query.In order to �nd a solution for that, we then introduce some dynamic structures. The basic ideais dynamically change the cover area of each bucket. When a bucket contains too many objects,we split it into several smaller ones and reallocation the objects in the old bucket. On the otherhand, if several buckets do not have enough objects, we merge them into one big bucket and putthe objects together. 14

0 1

1

x

y

0 1

1

x

y

(a) Objects at t0 (b) Objects at t1Figure 6: Skewed distribution of objectsHere is some design details:� In the database, we create a new part called \Bucket Management Part (BM)". BM use aspatial index structure to manage the buckets. Any changes in buckets (such as add or removean object in a bucket) will trigger an action in BM. BM checks the changing buckets anddecide whether or not a split (merge) operation is needed.� The spatial index structure we used is Quad-tree [Sam90] because it has simple structure andeasy split and merge algorithm. Does not like R-tree, each inner node in Quad-tree has exactfour children and no overlap is allowed between each node.� The following information is stored in each node: the covered area, number of objects currentinside the area, whether or not it is a leaf node, pointers to children if not leaf not, pointerto parent if not root node, etc. Each leaf node corresponds to a bucket in the database.� When the number of objects in one leaf node is over an upper bound M , the node is split.We de�ne M to be the maximum number of objects which can be stored in one disk page.The split algorithm �rst creates four children, each covers a quarter of the original cover area.Then it inform the database to generate four buckets. The objects in old buckets are thenchecked and reinserted into the new generated buckets. After that, the old buckets are deleted15

in the database, and the number of objects in new buckets are reported to Quad-tree andsaved in new leaf nodes. Recursively do the split algorithm if one child still contains morenodes than upper bound.� The trigger condition for a merge operation is a little more complicated. If a leaf nodecontains less than m objects, we still need to check how many objects in its sibling nodes.It is very possible that one of its sibling node are still dense. Also, since the merge node isvery expensive, we do not want the newly generated node to be split very soon. So, in ouralgorithm, we de�ne the condition as \a leaf node has less than m objects and the number ofobjects in its parent node is less than 3M=4". When a node meets the condition, its parentnode now becomes a new leaf node. The database generates a new bucket. The objects inold buckets are moved to the new one and the old buckets are simply deleted.� Since the bucket structure now is dynamic, the LPs have to know the current structurein order to properly �lter the update request. There are two alternations here. The �rstmethod is let the BM broadcast the index structure to the LPs after each structure change.This method is feasible only if the bucket structure does not change frequently or we do nothave many LPs in the system.Another method is to cut the working space into even smaller units. The units can not befurther split. Each bucket is a set of units. For example, we cut the two dimensional unitspace into 210 � 210 equal-sized units. By quad-tree de�nition, nodes which has a level lessthan 10 are squares which cover some units, and no unit is in two di�erent Quad-tree nodes.The LPs know the size of a unit beforehand.When an object stays in the same unit, thatmeans it is impossible to leaf a bucket. The LPs �lter this kind of movement. If an objectleaves an unit. It may still be in the same bucket or it goes to a new bucket. For this kind ofmovement, the LPs can not decide whether it should be �ltered. So the LPs report them toBM, BM recheck the requests and do a second-time �ltering.The split algorithm in BM need to be further changed while we adopt the later approach.When split a node, we need to do one more check to see if the node has the same size as anunit. If so, not more split. 16

The codes of split and merge algorithms are listed in Appendix A.
0 1

1

x

y

0 1

1

x

y

(a) Objects at t0 (b) Objects at t1Figure 7: Dynamic buckets structuresFigure 7 shows what the buckets look like after we use the dynamics bucket structure.When executing a query, the query range goes to the BM �rst. the BM uses the index structureto decide which buckets need to be further checked. The rest part is almost the same.4.4 Extended Quad-tree Hashing MethodThe last method combines the idea of quad-tree hashing method and augmented space-partitionmethod. This time, we augmented each quad-tree node a little bit.First we construct a Quad-tree based on the initial distribution of objects. Then like in aug-mented space-partition method, we execute a �-expansion on each node (both inner nodes andleaf nodes). Due to the simple structure of quad-tree, after this step, the tree structure is stillmaintained, i.e. the area of each inner node still covers all its children.As in augmented space-partition method, the EQ-tree uses expanded nodes in indexing. Theindexing, insertion and deletion algorithms are almost the same as those in quad-tree hashingmethod. Therefore, we do not discuss too much about it.In the last four subsection, we discussed four methods based on our new system structure. In17

the next experiment part, we will show more details about how to select an appropriate bucket sizeand compare the performance of these four methods in range query.5 Experimental resultTo access the merit, we wrote a simulation program and performed some experimental evaluationof di�erent methods.5.1 Experimental Setup and Data GenerationSince there are very few real data available in this �eld, we write our own data simulator basedon a widely used benchmarking environment called \Generate Spatio-Temporal Data (GSTD)"[NST99]. Like in GSTD, our data simulator supports three initial object distribution: uniform,zipf and Gaussian. In our study, we only index and query the current status of moving objects.Therefore, we make the following changes:� In our system, we use equal-length time interval for all objects, and each object reports itslatest location after each interval. The global clock runs forever. In GSTD, the interval ofeach object are within a domain. And there is an upper bound for global clock. After thetime passes the upper bound, all the objects are inactive.� In our system, the objects move out of the working space are still considered active. Laterthey are still possible to move back into the working space. In GSTD, the out-of-boundobjects are marked as inactive.� The GSTD system are providing simulated data for trajectory indexing. So they have avery large log to record every movement of objects. In our system, we only need the currentlocation information of each object, so we do not provide this log �le. This allows us to runexperiment with large number of objects over a very long period of time.� Objects in our system can have di�erent initial distribution and movement. For example,in our system, we allow half of the objects in skewed distribution and the other half are18

uniformed distributed. In GSTD, all the objects must have the same initial distribution.We use Java language in our experiment due to its strong thread support. After each timeperiod, each MovingObject calculate its new location. There are two LPs in the system. Eachmonitors half of the objects. After each time period, the LPs check the latest status of the Movin-gObjects and send the �ltered information to the BM. The BM collects the information and reportsthe experiment result.The machine we used is a Pentium II 300MHz machine with 128M memory. We use 20 bytes torepresent each two dimensional object (2 doubles for location and 1 integer for id). The page sizeare 4K which allows upper to 204 2-d objects in one page. In both quad-tree methods, we chooseM to be 200 and m to be 50.Most other methods also index the history information for each object. Their setting makes itimpossible to index large number of objects. So it is unfair to compare our method with theirs.Besides our four methods, we also use R-tree method. The R-tree method uses traditional staticmethod in moving object problem. It maintains an R-tree in the database. After each time period,the R-tree is updated according to the latest location of objects.5.2 NotationThe notation used in this section is summarized for easy reference in Table 1. Meanwhile, abbre-viations of algorithms used in this part are in Table 2.5.3 Cost for Index and QueryBefore we run the experiments, we �rst study the factors which have important impact on totalperformance.The total cost of index Cindex mainly includes three parts: database update, bucket structurechange, and the communication between LPs and the database. Other factors such as latest positioncollection, or LP updating do not cost much due to the parallel system structure. Therefore:Cindex = DU# � Cu + Cb + Cc. 19

v Speed of an object�v Average speed of all objects�(v) Standard deviation of speedS Bucket sizeDU# Number of database update�(D) Standard deviation of initial distributionCu Cost for one database update, which includesa delete and an insertion operationCb Cost for bucket structure changeCc Cost for communication between LPs and the databaseCq Cost for database queryTable 1: Notation used in our experiment
RT R-tree methodSP Overlap-free space partition methodASP Augmented space partition methodQH Quad-tree hashing methodEQH Extended Quad-tree hashing methodTable 2: Algorithm abbreviations20

In SP and ASP method, because of no bucket structure change, Cb = 0. For the other methods,since the bucket structures are maintained in memory, Cb mainly is the cost for moving objectsfrom old buckets to new buckets.The total cost of query Cquery includes two parts. The �rst part is the total cost used indatabase query and the second part is the communication cost from the database to LPs. SoCquery = Cq + Cc.5.4 DatasetsThe dataset consists of 100,000 objects in working space. We studies the performance of variousmethods on two initial object distributions and two movement types, which are described below:5.4.1 Two initial distribution typesAlthough like in GSTD, we implement three initial distributions, we found only two of themare useful in real-life applications. The �rst one is uniform distribution. In this case, objects areuniformly distributed in working space. the second one is Gaussian distribution. This time, objectsare clustered around one or several central points. This distribution can be viewed as skewed one.Also, in our simulation, we allow combinations of these two methods. (For example, half of theobjects are uniformly distributed and the other half are in Gaussian distribution.)When we use Gaussian distribution, we set the �(D) to be 0.1 in the unit space.5.4.2 Two movement typesGSTD method are very powerful in describing the objects' movement. In our program, we borrowedtheir ideas. We totally de�ned two movement types for our experiment. The �rst one is randommovement. The settings are in Table 5.4.2. The detail meaning of each parameter can be found in[NST99].The second movement type which we called directed movement is used to simulate the objectsmoving the lower-left corner to the upper-right corner. The settings are in Table 5.4.2. This21

�v �(v) maxx(speed) maxy(speed) minx(speed) miny(speed)0 0.005 0.005 0.005 -0.005 -0.005Table 3: Settings for randomly moving objectsmovement type is useful when we study the car's movement in tra�c hour.�v �(v) maxx(speed) maxy(speed) minx(speed) miny(speed)0.005 0.005 0.01 0.01 0 0Table 4: Settings for directed moving objects5.5 Query SetsThe query sets consists of 1000 rectangles lying within the working space. We choose the centersof the rectangles randomly. The size of the query rectangle was 1% of the total area. At the endof each time period, one query is randomly selected form the query set and applied in the currentobject distribution.5.6 Experimental ResultsIn the �rst experiment, we compare the performance of various techniques for both indexing andquerying.5.6.1 Experiment 1: Impact of Bucket SizeIn this section, we want to study the index performance under di�erent S and �v in SP method.We de�ne the hash function to be f(x; y) = i � int(y � i)+ int(x � i). By changing the value of i,we will have i� i equal-size square buckets. Then we �x �v to be 0.005 and record the performanceunder di�erent i value. The result in Figure 8. shows that the performance is proportional to i. InFigure 9, we �xed S and �nd that the performance also is proportional to �v. So the main conclusion22

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97Figure 8: Performance vs. S, �v = 0:005 0

5000

10000

15000

20000

25000

30000

35000

0.005 0.01 0.015 0.02 0.025

0.05 X 0.05

0.1 X 0.1

0.2 X 0.2Figure 9: Performance vs. �vin this experiment is: DU# / �vpS.5.6.2 Experiment 2: Impact of Overlap SizeIn this experiment, we look at the impact of overlap size in ASP method. The bucket size is �xedas 0:1 � 0:1. Figure 10 shows the average number of database update for di�erent overlap size.The x value is the size of expansion on each side, and y value is the total database update number.Two curves show the results under di�erent �v.At a high level, it is clear that allowing overlap between buckets help considerably. This could�lter many database update requests generated by objects near the bucket border. Note that thecurves decrease very fast at the beginning, then they slow down in both cases. And the phenomenonis more obvious when �v is slow. Our suggestion is to set the overlap size to be �v. For example, if �vis 0.005 in one case, in ASP, we should make a 0.005-expansion on each bucket.5.6.3 Experiment 3: Study of index performanceIn this experiment, we want to �nd out the index performance of di�erent methods in variousinitial distribution and movement types. We count the number of database update and the diskpages used to store all the data. Here, the number of database update includes two parts: database23

0

1000

2000

3000

4000

5000

6000

7000

8000

0.
00

00

0.
00

13

0.
00

25

0.
00

38

0.
00

50

0.
00

63

0.
00

75

0.
00

88

0.
01

00

0.
01

13

0.
01

25

0.
01

38

0.
01

50

0.
01

63

0.
01

75

0.
01

88

0.
02

00

0.
02

13

0.
02

25

0.
02

38

0.
02

50

Speed = 0.005 Speed = 0.01

Figure 10: Impact of Overlap Size
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Uniform Distribution, Uniform Movement Gaussain Distribution, Uniform
Movement

Gaussian Distribution, Directed
Movement

RT

SP

ASP

QH

EQHFigure 11: Number of Database Update 0

500

1000

1500

2000

2500

3000

3500

Uniform Distribution, Uniform Movement Gaussain Distribution, Uniform
Movement

Gaussian Distribution, Directed
Movement

RT

SP

ASP

QH

EQHFigure 12: Number of Disk Page Usedupdate request generated by LPs and the update operation when merge and split buckets. Figure11 and 12 list the result.Some facts which can be observed from the �gures:� RT method updates the location of all the objects after each time period. Therefore, thenumber of database updates is the same as the number of objects. The other four methodsare much better than RT method.� When the initial distribution of objects is uniform. The performance and QH is the same asSP. This is normal because when the objects are uniformly distributed, the quad-tree is verybalanced and the leaf nodes have the same height. Therefore, the leaf nodes (buckets) haveequal size. The whole structure turns to be a equi-size space-partition in SP method. For thesame reason, the performance of ASP and EQH are equal.24

� In ASP method, we set the overlap area to be as big as �v, we found that the total databaseupdate is about 60% to 70% of that in SP. The improvement is huge.� When the objects are in Gaussian distribution, The number of database update of QH isbigger than that in SP because the following reason: In SP, each bucket has same size. Nomatter where the object is, it always has the same possibility to cross the buckets border andgenerate a database update. However in QH, quad-tree is used. Each leaf node in quad-tree,which is a bucket in the database, can not have more than M objects. Since the objects arenear the center of working space, the size of buckets near the center now is much smaller thanthat of buckets outside. So the objects in these buckets are more likely to cross the bucketborder and generate database updates. The other reason is that the bucket update in QH(merge and split operation) generates extra database update (although not too many in thisexperiment). For the same reason, EQH generates more database update than ASP.� The bene�t of QH and EQH is their storage e�ciency. In Figure 12, we can �nd that inuniform distribution, the disk page used in all four methods are almost the same. However,when the initial distribution is skewed, QH and EQH use about half of disk pages in SP andASP because in QH and EQH, there is a bucket management part which merges the bucketswith small number of objects.� When the movement type is set to be directed, the system triggers a lot of merge and splitoperation in QH and EQH. This generates extra database updates. Therefore, in QH andEQH, total number of database update is much bigger than the result in uniform movement.However, the storage e�ciency is still kept.5.6.4 Experiment 4: Comparison on Query PerformanceIn this part, we want to test the query performance of all our four methods. We collect two setsof data in experiments: disk pages accessed and objects checked in LPs. The �rst one is normallyused to show the performance of a method, and the second one for communication cost.In uniform distribution, as in index phase, the performance of SP and QH are almost the same.So are ASP and EQH. However, in Gaussian distribution, the QH and EQH methods check about25

0

50

100

150

200

250

300

Uniform Distribution Gaussian Distribution

SP

ASP

QH

EQHFigure 13: Number of disk pages checked 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Uniform Distribution Gaussian Distribution

SP

ASP

QH

EQHFigure 14: Number of objects checked by the LPs30% less disk pages, and the communication cost is less than half of that in SP and ASP. This isthe original design objective for these two methods. And EQH is a little worse than QH becauseafter expanding the index tree node, the possibility for each node to intersect with the query areaincreases a little bit. This increases the query cost. However the di�erent is very small.5.6.5 Discussion and Method SelectionThe �rst discussion is whether we need to expand the buckets, such as use ASP instead of SP oruse EQH instead of QH. Our answer is yes. The bene�t to doing this is huge: about 30% - 40%of the database update request is �ltered. And the cost is small: the query is a little slower afterthat. The best size of overlap area should be the same as �v, which, in most cases, is very small.Then, should we dynamically change the bucket structure? It depends. The static bucketstructure (in SP and ASP) is easy to implement. Each LP only need to remember a hash functionwhich is given at the beginning. Also, the structure works well in uniform cases. The dynamicstructure (in QH and EQH) is a little bit harder to implement. Extra cost of dynamic bucketstructures includes: a tree structure maintained in memory, extra communication cost betweenLPs and the database, etc. However, it answers query e�cient.Our suggestion is to use ASP method if the distribution is not very skewed and the query loadis not high. Otherwise choose EQH method. 26

6 Conclusion and Future WorksIn this paper, we studied the moving object problems. The main technique we used is called hashingtechnique which allows the database simply save the bucket information of each object instead ofmany details. Meanwhile, we gave four hashing methods built on the new system structure whichis designed for the technique. The experiment showed that methods based on hashing techniquegenerated far less database updates than static index method. This makes it possible to index andmanage huge number of moving objects later.The future researches include the following. Current, we can only index and query point object.In the next step, we want to �nd a way to index rectangle data and the object which changes shape(such as in monitoring forest �re, etc). Also, we plan to do some research on spatial join betweenmoving objects and static objects. Lo, et. al. propose hash-join in static spatial environment[LR96]. We will borrow some of the ideas and use them in dynamic environment. The third thingis that we want to �nd more hash functions based on our system structure.Acknowledgments: The authors would like to thank Samir Khuller for his helpful advice.References[APR99] S. Acharya, V. Poosala, S. Ramaswamy. Selectivity Estimation in Spatial Databases Proc.of SIGMOD 1999.[ArcV98] ArcView GIS ArcView Tracking Analyst, 1998.[BBB87] R. Bartels, J. Beatty, B. Barsky. An Introduction to Splines for Use in Computer Graphics& Geometric Modeling Morgan Kaufmann Publishers, Inc., 1987.[BBK98] Stefan Berchtold, Christian Bhon, Hans-Peter Kriegel. The Pyramid-Technique: TowardBreaking the Curse of Dimensionality Proc. of the ACM SIGMOD, 1998.[BKK96] Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel. The X-tree: An Index Structurefor High-Dimensional Data Proc. of VLDB, 1996.27

[BKS+90] Bechmann N., Kriegel H.P., Schneider R., Seeger B.. The R*-tree: An E�cient andRobust Access Method for Points and Rectangles Proc. of the ACM SIGMOD, 1990.[CG99] Surajit Chaudhuri, Luis Gravano. Evaluating Top-k Selection Queries Proc. of VLDB,1999.[Gut84] A. Guttman. R-Trees, A Dynamic Index Structure for Spatial Searching Proc. of the ACMSIGMOD, 1984.[KGT99] G. Kollios, D Gunopulos, V. J. Tsotras. On Indexing Mobile Objects In Proc. of PODS,1999.[LJF95] Lin K, Jagadish H. V., Faloutsos C. The TV-Tree: An Index Structure for High-Dimensional Data Proc. of VLDB, 1995[LR96] Ming-Ling Lo, Chinya V. Ravishankar. Spatial Hash-Joins Proc. of the ACM SIGMOD,1996.[NHS84] J. Nievergelt, H. Hinterberger, K.C. Sevik. The Grid File. An Adpatable, SymmetricMultikey File Structure ACM Transactions on Database Systems, Vol. 9, 1, 1984.[NST99] M. A. Nascimento, J. R. O. Silva, Y. Theodoridi. Evaluation of Access Structuresfor Discretely Moving Points Intl. Workshop on Spatio-Temporal Database Management(STDBM'99), Edinburgh, UK, September 1999.[PIH+96] V. Poosala, Y. E. Ioannidis, P. J. Haas, E. J. Shekita. Improved Histograms for SelectivityEstimation of Range Predicates Proc. of SIGMOD 1996.[PJ99] D. Pfoser, C. S. Jensen. Capturing the Uncertainty of Moving-Object Representations Ad-vances in Spatial Databases, 6th International Symposium, SSD'99, Hong Kong, China, July20-23, 1999.[PTJ99] D. Pfoser, Y. Theodoridis, C. S. Jensen. Indexing Trajectories of Moving Point ObjectsChorochronos Technical Report, CH-99-3, October, 1999.[PTJ00] D. Pfoser, Y. Theodoridis, C. S. Jensen. Novel Approaches in Query Processing for MovingObjects Chorochronos Technical Report, CH-00-3, February, 2000.28

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures Addison-Wesley, Reading,MA, 1990.[SK98] Thomas Seidl, Hans-Peter Kriegel. Optimal Multi-Step k-Nearest Neighbor Search Proc. ofSIGMOD 1998.[SR99] Zhexuan Song, Nick Roussopoulou. Hashing Technique: A Framework for Indexing HighDimensional Data Technical Report, CS-TR-4059, University of Maryland, 1999.[SJL+99] S. Saltenis, C. S. Jensen, S. T. Leutenegger, M. A. Lopez. Indexing the positions ofContinuously Moving Objects CHOROCHRONOS Technical Report CH-99-19, 1999.[SWC+97] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Modeling and Querying MovingObjects Proc. of ICDE 1997.[TJ98] Nectaria Tryfona, Christian S. Jensen. A component-Based Conceptual Model for Spatiotem-poral Applications Design CHOROCHRONOS project, technical report CH-98-10, 1998.[TUW98] J. Tayeb, O. Ulusoy, O. Wolfson. A Quadtree Based Dynamic Attribute Indexing MethodThe Computer Journal, 41(3), 1998.[WCD+98] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendex. Cost and Imprecision inModeling the Position of Moving Objects In Proc. of ICDE, 1998.A Algorithms in Quad-tree Hashing MethodIn this appendix, we list the code of our algorithms used in quad-tree hashing mehtod.
29

addObject (MovingObject mo) {if (! area.isIn (mo.getLocation ()))// if mo is not in the area of this nodereturn;numberOfObjects ++; // update the number of object in this nodeif (isLeaf) { // leaf nodeupdate the bucket in the database;if (numberOfObjects > M && level < MAXLEVEL)// level check gurantees that unit can not be split furthersplit ();}else { // inner nodefor (each child c)if (c.area.isIn (mo.getLocation ()))c.addObject (mo);}}split () {generate four nodes;isLeaf = false; // now becomes an inner nodecreate four new buckets in database;for (each objects mo in this bucket)addObject (mo); // the recursive call allows further splitclear current buckets;} Figure 15: Add an object in quad-tree hashing method30

remove (MovingObject mo) {if (! area.isIn (mo.getLocation ()))return;if (isLeaf) {remove the object in the bucketfor (QtreeNode node = this; node != null; node = node.parent)node.numberOfObjects --;// update the number attribute until to the rootif (numberOfObjects < m && parent != null) // not root, consider mergeparent.merge ();return;}else { // inner noderecusive call the remove for each child;stop when one child deletes the object;}}merge () {if (numberObObjects < 3 * M / 4) { // the second condition checks herecreate a bucket in the database;removeAllChildren (this);// put all the objects in this node into the new bucketisLeaf = true;if (numberObObjects < m && parent != null)parent.merge (); // recursive check the upper level}} Figure 16: Delete an object in quad-tree hashing method31

