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Multi-dimensional Wavelet Frames

T. Kugarajah and Q. Zhang

Abstract— Pati & Krishnaprasad [1] first studied the
connection between neural networks and wavelet trans-
forms. Zhang & Benveniste [2] gave a different treatment
of this connection. However, the problem of construct-
ing multi-dimensional wavelet frames for use in neural net-
works has not been satisfactorily studied. In this paper,
one-dimensional wavelet frame is generalized to the multi-
dimensional case by using single-scaling and multi-scaling
parameters. The construction of multi-dimensional wavelet
frames is also discussed. These results provide more insight
on the use of wavelets in neural networks.

Keywords— multi-dimensional wavelet, frame, neural net-
work.

I. INTRODUCTION

Wavelet theory is emerging as an important tool in many
applications in signal processing and numerical analysis
(see e.g. [3], [4]). However, studies on wavelets have of-
ten concentrated on one or two dimensional wavelets. The
reason is that the implementation of wavelet transform of
higher dimensions is of prohibitive cost [5]. Developing
neural networks within the frame work provided by wavelet
theory [1], [6], [2], [7], [8], represents one among many pos-
sible situations where use of higher dimensional wavelets
is required. General multi-dimensional wavelets need to be
studied for such purposes. In particular, multi-dimensional
wavelet frames need more attention. In the Appendix of
[2] a construction of multi-dimensional wavelet frame using
tensor product wavelets was proposed, by claiming that the
tensor product of one dimensional wavelet frames is also a
frame. Unfortunately, an error has occurred in the proof of
this proposition'. Among other things, this paper corrects
this error and leads to a better understanding of wavelets
as used in neural networks. The wavelet frame theorem
given by Daubechies is generalized for this purpose, in both
single-scaling and multi-scaling forms. The construction of
multi-dimensional wavelet frames is also discussed.

In the single-scaling case, a single dilation parameter is
used in all the dimensions of each wavelet, whereas in multi-
scaling, an independent dilation parameter is used in each
dimension. Apart from considerations of the complexities
of these two scaling methods, the former results in families
of wavelets whose scales are equal in all the dimensions,
whereas the latter leads to mixed-scale wavelets. Therefore,
the choice of scaling method should be in principle dictated
by physical considerations.
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It was the first author of this paper who first pointed out this
error.

When only the complexity for implementation is con-
cerned, let us first consider the case of orthonormal wavelet
bases in Lo(R™). When single-scaling wavelets are used in
separable form, it is known that 2" — 1 mother wavelets
are required, where n is the dimension of the wavelets [10].
It would be difficult to implement such wavelet bases for
n > 3. On the other hand, with multi-scaling wavelets, one
mother wavelet suffices for generating an orthonormal basis
of Ly(R™). However, its implementation is in general not
less complex, since all the wavelets of mixed-scales would
be involved.

In the following we deal with wavelet frames, for which
the situation is slightly different. In particular, we will
make some extensions to Daubechies’ theorem on suffi-
cient conditions of wavelet frame (see [9] and the sec-
tion 3.3.2. of [10]). As we will see in section II, it is
possible to build single-scaling multi-dimensional wavelet
frames by using a single mother wavelet. However, with
single-scaling, we cannot generally ensure that the tensor
product of one dimensional wavelet frames is a frame. In
contrast, when multi-scaling is used, it is easy to construct
multi-dimensional wavelet frames from the tensor product
of one dimensional wavelet frames, as shown in sections III
and IV-B. The drawback of multi-scaling frame is, as for
orthonormal wavelet bases, its enormous complexity in im-
plementation with respect to network size.

The following notations will be used :

z = (£1,...,2,)" € R™: the space domain vari-
able,

w = (wi,... ,wn)T € R™: the frequency domain
variable,

For integrations, the domains are R"™; for sum-
mations, the ranges are Z or Z™ according to the
dimension of the index. They are omitted in the
formulae for the sake of brevity.
f is the complex conjugate of f.
For any square integrable functions f and g, their

inner product (f,g) = [dzf(z)g(z).

For f € Ly(R™), f is the n-dimensional Fourier
transform of f.

For f € Ly(R™), IIfll = v/(£, f) -

This paper is organized as follows. In sections II and
IIT Daubechies’ frame theorem is generalized to multi-
dimensional case, using single-scaling and multi-scaling re-
spectively. In section IV, we discuss some constructions
of wavelet frames. Finally, some concluding remarks are
given in section V.

II. SINGLE-SCALING WAVELET FRAME

In this section we show that single-scaling multi-
dimensional wavelet frames can be built by using a sin-
gle mother wavelet. For this purpose we generalize



Daubechies’ theorem on sufficient conditions of wavelet
frame [10] to the single-scaling multi-dimensional case.
Theorem 1: Let 1 € Lo(R™). Consider a family of di-
lated and translated functions of the form
bow

\I'(a,b)={ Yp(@) = a drlg(ate bk :

l €Z,keZ
where z € R™, a,b € R and a > 1. If the following three
conditions (2), (3) and (4) are satisfied

m(i,a) £ ess inf };l«b(a‘w)iz >0 )
M(p,0) = lfj;;;lg%‘@(a'w)l? <o &)
sup [(1+nT)"0+928m)| =Cc <00 (4)
neR®
for some € > 0, where
e sup S I [Plaw+n) ()

loll€t.al fez

then there exists by > 0 such that Vb € (0,bp), the family
¥(a,b) in (1) constitutes a frame of LZ(R™), in other words,
there exist two constants A > 0 and B < +o0, such that
Vf € L2(R™), the following inequalities hold

AlFIP <D 1w, NI < BISIP

Lk

where the sum ranges are I € Z and k € Z", (-,-) denotes
the inner product in Lo(R"). O

Note that in the family ¥{a,b) defined by (1), the dila-
tion index I is a scalar, and the scalar dilation parameter
a! is shared by all the dimensions of a wavelet. The proof
of this theorem is given in Appendix L

III. MULTI-SCALING WAVELET FRAME

We introduce the dilation and translation matrices D;
and T as

D; = diag (ajl,---,aj") (6)
where T

j=01, " dn) €27 (M
and

T = diag (b1, ,bn) . (8)

With D; and T thus defined, separate dilation and trans-
lation parameters can be used in wavelet functions. The
following theorem is an analog of Theorem 1 in the multi-
scaling case.

Theorem 2: Let v € Ly(R"). Fora € R, a > 1, b =
(b1,--+,by) € R®, and b; > 0, ¢ = 1,---,n, consider the
family of translated and dilated functions of the form
{¥).x(@)

U(a,b) = = det DIg(D;z — Tk) : j, k € Z"}.
7 2

If

A
2 f
m(2,a) et 1lri X:n |%(D_jw)[?> > 0,
je€z
A €ss su 0 o) [2
M(i,[), a) |w,~|€[1,a],z‘=I;,...,n Z |¢(D_‘7w)| <00
A
and

sup [(1+ 0T~ +9/28(n)] = C. < o0
neR®

for some € > 0, where

me  swp > (D w)[G(D_jw + ),

|wif€[l,a],i=1, ’n]EZ"

then there exists? by > 0 such that Vb € (0, bp), the family
defined above constitutes a frame for Lo(R™); i.e. , 3 two
constants A > 0 and B < 0o, such that Vf € Ly(R"™), the
following inequalities hold

ANFIP < 2 1Wsk, DI < BIFI

j!k

The proof of this theorem is given in Appendix II.

IV. CONSTRUCTION OF WAVELET FRAMES

We are interested in a methodology that allows us to
construct the multi-dimensional wavelet function leading
to frames; i.e., the problem is to find a wavelet function
that satisfies, together with its dilation and translation pa-
rameters, the sufficiency conditions outlined in the above
theorems. In this section we first consider the single-scaling
case and the tensor product construction of multi-scaling
wavelet frames; then we discuss some non tensor product
constructions.

Daubechies [10] shows that in 1-D, a single sufficient con-
dition on the decay of ¢ as given by

[P(w)| < Clw|*(1 + |w[?)~#

where w € R with constants C > 0, @ >0 and v> a+1,
guarantees the second and third conditions of the theorems
as applied to 1-D.

Since in practice this decay condition is rather mild, for
construction in the following we can assume that it is sat-
isfied by the 1-D wavelet chosen.

A. Single-scaling wavelet frame

Let ¢ be a symmetric function (¢(—t) = ¢(t), t € R)
satisfying condition (2) as a 1-D wavelet function, with a
suitably chosen value of a. Assume also that ¢ satisfies the
decay condition

lpw)| < Clw|*(1 + lw>)"%, weR Q)

2abusing notation, we consider element-wise bounds when we refer
to vector bounds in this paper.



with constants C > 0, a >0 and v > a+n. When n > 1,
this is a stronger condition than that given by Daubechies,
but is nevertheless satisfied by many wavelet functions. In
particular, any wavelet function that includes exponential
decay will satisfy condition (9). Now take

Pw) = ¢(lwll), weR"

where || - || denotes the Euclidean norm. Then, the corre-
sponding radial wavelet function ¥(z), z € R", will satisfy
Theorem 1, with a suitably chosen value of a. We give the
proof in Appendix III.

As an example, consider the 1 D Mexican Hat: ¢(z) =

(1-z2)e”
condition in (9). Then in n-D, let P(w) = |lw||%e "2

2112
which leads to the n-D wavelet ¥(z) = (n — ||z||?) e~

Applying single-scaling dilations and translations to this
mother wavelet gives single scaling wavelet frames.

w?

'23, and a(w) = w?e™ 7", which satisfies the decay

ey
9

B. Multi-scaling wavelet frame
B.1 Tensor product frames

Let 9(z) be a tensor product of 1-dimensional wavelet
functions, i.e.,

Then, R R R
Y(w) = Yr(w1) + Pnlwn) -
¥i(z,),7 = 1,---,n, must satisfy the admissibility condi-
tion:

/ [hi(wi)Pdwi dwi _

|w|

Under mild conditions of decay, this is satisfied if we
choose v¥;(x;) such that

/zpi(mi)dxi =0.

If these 1-dimensional functions can constitute frames,
they must satisfy the first two conditions outlined in The-
orem 2, as applied to the one dimensional case. These
conditions are known to be necessary conditions as well in
1-D [10] .

The assumption made on mild decay conditions ensures
that the second and third conditions are satisfied, and
hence all conditions of Theorem 2 when reduced to 1-D
are satisfied.

In the multidimensional case, by using the inequalities in

1-D above, and the fact that the infimum and supremum
can now be taken over the sum in each dimension,we have

{Z (e wn)]?
Ji
> 1B wn) }
jn

ess inf
|wi|€[1,a],i=1,---,n

m(y,a)

€8S sup
|“" Ie[lsa])i=1)

M(y,a) = ’n{zlﬁl(a_jlwl)lz---
J1

Z |'Zn (a_j" Wn) |2}
< o In

For the third condition, we have the following inequality,

Y [serT k(-2 0)] 2
k10

< T (L4 2rb k)
. (1+ (215 kn)2)~ S5
< X [27b; thy |~ (e L Yok, 1207 ke, |,

Since each sum over k; converges, i = 1,...,n, we have
that the sum involving § converges. Moreover, as b; —
0, i=1,---,n, this sum tends to 0. Hence all conditions
of Theorem 2 are satisfied.

Therefore the tensor product construction leads to valid
frames of wavelets.

B.2 Necessary conditions

To make the results complete, we are interested in ob-
taining necessary conditions as in the 1-D case. In partic-
ular, it would be appropriate to check whether the admis-
sibility condition for discrete wavelet frames has the same
structure as continuous wavelets in the multidimensional
case. In the tensor product set up, this follows trivially
since the 1-D admissibility conditions lead to

P(z)dz =
Rn

From recent extensions on the bounds for 1-D case [11],
[10], the following holds for any frame ¢;;, , (i=1,---,n
is the dimension index, j;, k; are dilation and translation
indexes respectively):

A; < —Zl«/zz (™% w)|* < B;.

Considering multiplication of the above inequalities over
i=1,--+,n, we have

A

A A < @M det T~ |(D_jw)?
J

< B;---B,=B.

In [11], this bound is obtained for the case of Riesz bases.
However, the proof relies only on the frame condition, and
therefore the above inequality is general in that it holds
for arbitrary frames (not necessarily of the tensor prod-
uct type). Another problem is to construct such arbitrary
frames.



B.3 Non-separable frames

The observation that all conditions of the theorem on
sufficient conditions hinge on the boundedness and decay of
terms involving [¢(-)| suggests the possibility of multiplying
the tensor product wavelet in the frequency domain by a
function of the form

pw) =Y ae ™, ¢ €R,
iezn

which can be the Fourier series of a periodic function.
Let the new wavelet be

hp(w) = p(w)d(w)

where 1(-) corresponds to the wavelet constructed as a ten-
sor product. If
0< Z la] < o0,
!

then the fact that
0 < [hp(w)] < O lal)ldw)]
]

implies that all conditions of Theorem 2 are satisfied.

Therefore, one can construct non-tensor product wavelet
frames from the tensor product frames. In the case of Riesz
bases, similar results are obtained in [11].

The 1-D wavelet functions could be any of the following:
the Laplacian of the Gaussian, a combination of a few sig-
moids (e.g.[6]). The choice of the wavelet used in networks
for learning is dictated by considerations of smoothness,
implementability in analog hardware, separability, etc.

V. CONCLUDING REMARKS

In this paper we studied two different generalizations
of one-dimensional wavelet frames and some construction
procedures for frames. Theorem 1 suggests a radial con-
struction since the condition ||w|| € [1,a] considers a hyper-
sphere in the frequency (w) space, whereas Theorem 2 triv-
ially suggests a tensor product construction since we con-
sider |w;|,% = 1,.--,n. It should be noted that considering
separate values of b in Theorem 1 or considering separate
values of a in each dimension in Theorem 2 does not alter
the results.

It is difficult to implement very high dimensional wavelet
bases or frames by following conventional mathemati-
cal methods. However, using general multi-dimensional
wavelets in neural networks is practically feasible, since
only incomplete sets of wavelet frames need to be imple-
mented for the purpose of learning (function approxima-
tion) [8]. Although the multi-scaling wavelet frames are
more difficult to implement than the single-scaling ones,
there are situations where one deals with vastly disparate
input variables, and having a shared scaling variable does
not give much flexibility. In recent years, researchers have

investigated methods that combine good heuristics with
rigorous mathematics (e.g., MARS[12]) to combat the ex-
ponential increase in complexity. One such method [13]
exploits separability of the ‘basis’ function with the well-
known LMS algorithm under certain assumptions. Other
methods are being investigated by the authors. More-
over parallel implementation may benefit from separability.
These techniques should be developed further so that the
flexibility afforded by multi-scaling (and separability) can
effectively offset the increase in network complexity. Rigor-
ous results considering these trade-offs, i.e., when exactly
one construction leads to better results than the other, need
to be obtained.
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APPENDIX
I. PROOF OF THEOREM 1

As our proof closely follows Daubechies’ scheme for 1-
D (see [9] and the section 3.3.2. of [10]), we just present
mathematical results that show the validity of the condi-
tions given to many dimensions.

First, we need the following generalization of the Poisson
formula:

.~ T
ZezCk z _

kezZr

B i3

j=1k;€Z

where ¢ is the imaginary unity and C is any real non zero
constant. It can be verified by simple computations.

By applying this generalized Poisson formula and the
Parseval’s theorem, straight forward computations give

> Wk, I
LK

271' " o~ o~
-(F du [(aw)? - [F@) + A
(b) gl;/ W) - | Flw
where

A = (%)HZZ/dwﬁz(a’w)

1 k#0
3 (ot - 20) T F (- 228).

where k # 0 means at least one component of k is not zero.
By applying the Cauchy-Schwarz inequality, we get

(5 Eb ) ()

k#£0

Al <



where () is as defined in (5). This inequality together The third condition of the theorem implies the decay of

with the three conditions of the theorem gives B as
1
2r\" 2w 2m 2 T, \—2lite)
(?) {m@.a) -3 [ﬂ (Tk) B (—Tk)] Yisie B < L+nTy)~"7 - C.
k0
or\ " Hence .
- -1 -1 2
Ek Wk, HI? < ( 7 ) {M (¥, a) + 3 [ﬁ(27rT k)B(—2nT k)]
1 k170 (1+¢) 2 n _l#
2 2 2 det T\™™° detT
> |8 (—”k) 8 (——”k)] Hsie. c (= 3 ) Tk :
b b 27 27
k#£0 k|0
The only thing left is to verify that condition (4) ensures The multi-indexed series converges as in theorem 1.
the convergence of the multi-indexed series Moreover, it is easily seen that when b;,i = 1,---,n = 0,

1 the sum — 0; and the limit on b is given by
2r 2r 2 b =

2 |o(Tr) o\ -TE o=

k#0

and implies that the sum tends to zero when b — 0, so that inf { blm(v,a) < z [5(27@—1 k)B(—27T~! k)] 3
the coefficients of || f||? in the above inequalities are strictly k|0

positive for small enough b.

By (4) we have Again, the bounds and inequalities are considered
a(lte element-wise.
Bn) <Ce(L+nTn) = . This completes the proof of the theorem. 0
This leads to III. PROOF OF SINGLE-SCALING CONSTRUCTION
27 % 27 k 3 < We note that the first two conditions of Theorem 1 are
Z p 3 p Y = trivially satisfied by the construction ¥(w) = ¢(||w||). For

k0 the third condition, we examine

C (%y(m) ,#O[((%)z B2 sup 3 B@w)- [Baw ) (10)

||w||€[1 a]
i . lez
P+ )T
Considering the inequality

(C+ kP + -+ k)" > (C+|kaf?)

Using the above construction for ¢ and condition (9) we
derive the following. For comparisons with the one dimen-
sional case, the reader can refer to [10, page 102-103].

- (C + [knl?) B(m) = sup ZI¢>(IIa wil - 1§(lla‘w + 7l
llwll€[1,a} 1€Z

where C is any positive constant, we can see that the 1
series in k converges. Moreover, as b — 0, this sum tends < C? sup { a® Z alo(1 +
to zero. The proof of the theorem is thus established. O lw]|€[1,a] oo

II. PROOF OF THEOREM 2 llatw + pj|2)=(r=)/?
oo
As in the proof of theorem 1, we use the n-dimensional I 2
. + 1+ |e'w

Poisson formula, and the Parseval’s Theorem in relation to Z[( lo’wll®)

. =0
Fourier Transforms. The steps involved are similar to the

proof of Theorem 1 as shown below. (1 + o' + 77“2)]‘(7%!)/2} .
We arrive at
For the first term notice that for —oo <1 < —1 and |jw|| €
2 _ -1 <i<
Z|<‘/’j,k,f)| = (2r detT )"Z [1,a], |la'w]|| € [0,1]. Hence if ||n|| > 2, then |jn + a'w|| >
ik . . -1 -1
’ R R Yinll, implying (1 + fla‘w +7l2) " < 4(1+|n)?) " ¥
/‘1‘*’|7»1’(17—J'W)|2 Ifw)? + A Inll < 2, we have 5 (1 + [la'w +7[|*) > 5 2 1+ |j7||>. There-
fore the first term can be bounded by
where

-1
A = 27T detT1! Z z /dwz/)(D_Jw C (1+”,’7“2)—(’7—04)/2 Z ale

J |k|#0 l=—00

J(D_jw - QﬂT—lk)f(w)f(w —2xD_;T"'k) with some constant C; > 0.



For the second term, let us consider the fact that for all
z,y € R™, the following inequality always holds (to check
this, just develop the left side):

1+ llz +ylI?) (@ +llz ~ ylI*) 2 1+ [lyl*.

Let z = a'w+ 2 and y = 2. Then, for all a'w and 7, the
following holds:

[(1+ lla'wl?) (1 + llahw + D] < 41+ ()2

Then, Vé € (0,1), for the second term we have

UL+ ll ) + llakeo + )]~ =72
=0
o0
= > {a+ e+
=0
llatw + q||2)] @D r=e)/2
. [(1 + ”a,lw”?)(l + ||alw + "7”2)]—6(7_0‘)/2}
< o1+ |l -0/
o0
S + el (1 + fla' + )] 202
=0
< Co(l+|n)?)~ GO0/
571 + w2y /2
=0

where Cy > 0 is a constant. Notice that {|w| € [1,a], the
second term

(o0}
311+ llawl) (A + lla'w + gl|%)] 092 <
=0

o1 + [lf?)~ A=D1/ 3 (gh) =2
=0

Since v > a + n, there exist 4 > 0 and € > 0, both small
enough so that (1 — 6)(y — @) > n(1 + €). Therefore the
second term can be bounded by

X l
C, (1 + “n”2)*"(1+f)/2 Z (a—ﬁ(’Y—a)/Z) i
=0

Thus the third condition of Theorem 1 is satisfied by 8(n).
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