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Polar transport of the phytohormone auxin regulates multiple of aspects of plant 

growth and development. A subset of plant ATP-binding cassette subfamily B 

(ABCB) transporters mediate cellular auxin export. Loss of these transporters results 

in reduced polar auxin movement and altered plant architecture but no significant 

defects in embryogenesis or organ formation. Several of lines of evidence suggest 

that isotropically-localized ABCB transporters mediate auxin exclusion from the 

plasma membrane and prevention of reuptake after directional PIN-mediated efflux. 

Examination of the Arabidopsis auxin transporters ABCB1 and ABCB19 indicates a 

primary role in exclusion from small auxin producing cells in apical regions and 

prevention of leakage from polar auxin transport streams. Analysis of abcb mutants 

identifies a contribution from ABCB21 in restricting auxin to within the root 

vasculature in seedlings. In mature tissues, ABCB6, ABCB21, and ABCB11 make 



  

additional contributions to polar auxin transport in inflorescence stems, leaves, and 

flowers, respectively. The results presented herein reflect an evolutionarily conserved 

function for ABCB transporters in maintaining polar transport streams and prevention 

of cellular reuptake via exclusion. 
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Preface 

I would first like to start by thanking Dr. Murphy and Dr. Peer for giving me 

the opportunity to participate in their summer internship program at Purdue while I 

was an undergraduate at California State University, Monterey Bay. During that 

internship I assisted a Master’s student, Deepti Sanjai, in her characterization of the 

Arabidopsis AMINOPEPTIDASE P1 (APP1) that is involved in auxin signaling. My 

time spent in the Murphy and Peer labs during that internship opened my eyes to 

plant research and is what I consider to be the start of my scientific career. Without 

this experience and the support of Dr. Murphy and Dr. Peer I’m not sure I would have 

had the opportunity to pursue my Ph.D. 

When I was applying for graduate school Dr. Murphy said if I chose to join 

his lab at Purdue University he had a project that would be great for me. The project 

was doing a structural and functional analysis of plant ABCB transporters. In 

mammals these transporters have broad specificity and contribute to 

chemotherapeutic drug resistance. However, in plants they appeared to have very 

narrow specificities, transporting the phytohormone auxin and a few other small 

organic anions. If these two sets of transporters utilize ATP hydrolysis to power 

substrate translocation across membranes in the same manner and share a highly 

conserved overall protein structures, then how do they perform such different 

functions? The project was to identify putative substrate binding sites in the 

Arabidopsis auxin transporters, create site-directed mutants within these sites, then 

test transport activity when expressed in the fission yeast Schizosaccharomyces 

pombe. Things were generally going according to plan when two years into my 
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project our lab relocated to University of Maryland. While moving was difficult, the 

failure of the yeast system I relied upon could not have been anticipated. Despite the 

efforts of several lab members to troubleshoot the issues, the system remains non-

functional. 

Around that time a paper was published showing that Arabidopsis ABCB21 

transports auxin in leaf protoplasts and when expressed in yeast, however the authors 

were unable to report any phenotypic differences in plants. Previously at Purdue, I 

had taken over analysis of ABCB21 from a past Ph.D. student and a post-doc in the 

lab. I decided to repeat some of the past experiments and found a new allele of 

abcb21 that showed phenotypic differences in root growth. This ultimately led to the 

analysis of a conserved exclusionary function shared by ABCB auxin transporters 

presented in this dissertation. 

In Chapter 3, I analyzed ABCB transporters for roles in auxin transport in 

Arabidopsis seedlings. Considering the levels of ABCB19 expression and activity 

compared to the others, it became apparent that ABCB19 is the primary ABCB auxin 

transporter in seedlings and any contribution from others would be supplementary. In 

this analysis I establish a primary function for ABCB21 in the root. ABCB19 and 

ABCB21 maintain the rootward auxin transport stream by excluding auxin from 

entering bounding tissues. Analysis of several other ABCB transporters indicate they 

are more likely to contribute to transport in mature tissues. 

In Chapter 4, I investigated the contributions of ABCB transporters to auxin 

transport in mature tissues. In this chapter I establish that ABCB transporters function 

primarily by excluding auxin from small auxin producing cell in shoot and leaf 
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apices. A detailed phenotypic analysis of light-dependent phenotypes again point to 

the exclusionary function of ABCB19 being primary. Further, I identify contributions 

other ABCB transporters, including ABCB21, make to auxin transport in 

inflorescence stems, leaves, and flowers. Like with what is observed in seedlings, 

their contributions to auxin transport are supplementary to that of ABCB19. 

In the previous chapters I established ABCBs contribute to auxin transport 

primarily by an exclusionary mechanism. One question that remains a challenge to 

answer is how ABCB transporters recognize auxin as a substrate. In Chapter 5, I 

collaborated with Dr. Ken-Ichiro Hayashi to investigate the use of fluorescently-

tagged auxins as a tool for auxin transport studies. I tested it see if the fluorescent 

auxins were indeed substrates for long-distance transport, however, my conclusion 

was that they are not substrates of the primary ABCB and PIN long-distance auxin 

transporters. 

In Chapter 6, I use homology modelling and heterologous expression systems 

to identify structural features that contribute to ABCB transporter specificity and 

activity. These analyses identified putative substrate binding sites that support a 

primary function of ABCB transporters in exclusion of auxin from the membrane. 

Analysis of the contribution of these binding sites to specificity and activity are 

ongoing as attempts to adapt systems established for other organisms to plant 

transporters remains a challenge. 

At this time, I would like to thank my advisor, Dr. Angus Murphy. I am 

thankful for your guidance and support. You taught me not only how to become an 

independent researcher and critical thinker, but also gave me professional 
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development and leadership skills that will be indispensable in my future endeavors. 

Thank you to Dr. Wendy Peer for your continual expertise, encouragement, and 

always delicious baked snacks. To all my committee members, I truly appreciate your 

advice, time, criticisms, and patience. To all the current and past members of the 

Murphy and Peer labs, thank you for all of your company, support, assistance and 

contributions. Thank you to my family and friends for your continued love and 

support, and understanding of me being away for so long. Finally, I would like to 

thank my mom. We have encountered many difficult times but together we’ve always 

pulled through. You have always pushed me to do my best and encouraged me to 

pursue my dreams. Your strength and support have allowed me to get to where I am 

today. 

 

Mark Jenness 

April 2018 



 

 

vi 
 

Dedication 

In memory of my dad, Guy William Jenness, and step-dad, Thomas Ray Murphy. 

  



 

 

vii 
 

Contributions to this dissertation 
 

Chapter 3: ABCB19-GFP was imaged with help from Candace Pritchard. ABCB21 

and ABCB11 promoters were cloned by Nicola Carraro. Auxin quantifications were 

performed by Dr. Angus Murphy, Dr. Bruce Cooper and Dr. Reuben Tayengwa with 

consultations and discussions from Dr. Joshua Blakeslee and Jinshan Lin. Seedling 

transport assays were done by Dr. Angus Murphy and Yan Cheng. abcb21 

phototropic bending was conducted by Candace Pritchard. RNAi lines were generated 

and analyzed by Dr. Haibing Yang. qRT-PCR was done in collaboration with Dr. 

Wiebke Tapken. 

 

Chapter 4: Inflorescence and leaf transport assays by Dr. Angus Murphy. Auxin 

quantifications were performed by Dr. Angus Murphy, Dr. Bruce Cooper and Dr. 

Reuben Tayengwa with consultations and discussions from Dr. Joshua Blakeslee and 

Jinshan Lin. ABCB21 and ABCB11 promoters were cloned by Dr. Nicola Carraro. 

Leaf transport data were analyzed by Dr. Wiebke Tapken. Triple mutant phenotypic 

analysis was performed with equal contribution from Dr. Wiebke Tapken. Triple 

mutant cell sizes were measured by Changxu Pang. 

 

Chapter 5: The majority of experiments in this chapter were performed by Dr. Ken-

Ichiro Hayashi and colleagues. My contributions to this chapter are analysis of the 

fluorescent auxins distribution in wild type and abcb/pin mutants, the decapitated 

seedling transport assays, and writing and review of the manuscript.



 

 

viii 
 

Table of Contents 

Preface........................................................................................................................... ii 
Dedication .................................................................................................................... vi 
Contributions to this dissertation ................................................................................ vii 
List of Tables ................................................................................................................ x 
List of Figures .............................................................................................................. xi 
List of Abbreviations ................................................................................................. xiii 
Nomenclature ............................................................................................................. xiv 
Chapter 1. General Introduction ................................................................................... 1 

Discovery of Auxin ................................................................................................... 1 
Auxin Metabolism .................................................................................................... 2 
Auxin signaling ......................................................................................................... 3 
Auxin induces cell division and cell expansion ........................................................ 3 
Auxin transport ......................................................................................................... 4 
AUXIN1/LIKE-AUXIN1 uptake permeases ............................................................ 7 
PIN-FORMED (PIN) efflux carriers ........................................................................ 8 
ATP-binding cassette subfamily B (ABCB) efflux transporters ............................ 10 

Conserved ABC Transporter structure ............................................................... 11 
Plant ABCB transporters .................................................................................... 14 
Function of ABCBs in polar auxin transport ...................................................... 15 
Interaction with FKBP42/TWD1 ........................................................................ 17 
Substrate specificity and specific activity ........................................................... 18 

Research Objectives ................................................................................................ 20 
Chapter 2. Evolution of transport directionality in ABCBs ........................................ 21 

Summary ................................................................................................................. 21 
Introduction ............................................................................................................. 22 
Discovery of plant ABCB uptake transporters ....................................................... 25 
Phylogeny of putative uptake transporters and functional divergence ................... 30 
Structural features unique to putative uptake transporters ...................................... 32 
Mechanism of uptake and conditional “reversibility” ............................................ 34 
Re-Evaluation of the Data: Truly Reversible or Simply Control of Efflux? .......... 36 
Conclusion .............................................................................................................. 40 

Chapter 3. Arabidopsis ABCB21 contributes to rootward auxin streams by regulating 
auxin levels in the seedling pericycle ......................................................................... 42 

Summary ................................................................................................................. 42 
Introduction ............................................................................................................. 42 
Results ..................................................................................................................... 46 

Exclusion of auxin mediated by ABCBs at the plasma membrane ..................... 46 
ABCB21 maintains auxin transport streams by restricting auxin to within the 
vasculature .......................................................................................................... 49 
ABCB transporter expression ............................................................................. 59 
Auxin transport in cluster specific ABCB-RNAi lines......................................... 61 
Phenotypes and transport in ABCB single mutant lines ..................................... 64 
Characterization of ABCB11 .............................................................................. 67 

Discussion ............................................................................................................... 71 



 

 

ix 
 

Materials and Methods ............................................................................................ 76 
Chapter 4.  ABCB regulation of auxin transport in Arabidopsis stems, leaves and 
flowers......................................................................................................................... 81 

Summary ................................................................................................................. 81 
Introduction ............................................................................................................. 81 
Results ..................................................................................................................... 85 

ABCB1 and ABCB19 function by excluding auxin from the shoot apex in 
inflorescences ...................................................................................................... 85 
Light dependent phenotypes in abcb1 and abcb19 mutants ............................... 87 
ABCB6 mediates auxin transport in inflorescence stems ................................... 91 
Analysis of ABCB11 and ABCB21 in aerial tissues............................................ 96 
Analysis of abcb11 and abcb21 triple mutants ................................................. 101 

Discussion ............................................................................................................. 108 
Materials and Methods .......................................................................................... 111 

Chapter 5. Auxin transport sites are visualized in planta using fluorescent auxin 
analogs ...................................................................................................................... 113 

Summary ............................................................................................................... 114 
Introduction ........................................................................................................... 115 
Results ................................................................................................................... 118 

Design and Synthesis of Fluorescently Labeled Auxin Analogs ....................... 118 
Fluorescent Auxin Functions as an Auxin Analog Specific for Auxin Transport
........................................................................................................................... 120 
Auxin Transport System Regulates the Distribution of Fluorescent Auxin ...... 123 
Distribution of Fluorescent Auxin at the Root Apex ......................................... 126 
Fluorescent Auxin Distribution Mimics Native Auxin Accumulation in Vivo .. 128 
Subcellular Distribution of Fluorescent Auxins ............................................... 129 

Discussion ............................................................................................................. 131 
Materials and Methods .......................................................................................... 133 
Acknowledgements ............................................................................................... 134 

Chapter 6.  Computational modelling and heterologous expression ........................ 136 
Summary ............................................................................................................... 136 
Introduction ........................................................................................................... 136 
Results ................................................................................................................... 137 

Sequence analysis of Arabidopsis ABCB transporter NBDs ............................ 137 
Computational modelling predicts auxin binding sites .................................... 139 
Mutational analysis of ABCB19 in Schizosaccharomyces pombe .................... 142 
Analysis of ABCB19 in Lactococcus lactis ....................................................... 144 

Discussion ............................................................................................................. 147 
Materials and Methods .......................................................................................... 149 

Conclusions ............................................................................................................... 152 
Appendices ................................................................................................................ 155 

Appendix A. Supplementary information for Chapter 5 ...................................... 155 
Appendix B. Lines used in this dissertation.......................................................... 181 
Appendix C. Primers used in this dissertation. ..................................................... 181 

Bibliography ............................................................................................................. 184 
 



 

 

x 
 

List of Tables 
 
Table 3.1. Single mutant phenotypes 

  



 

 

xi 
 

List of Figures 
 
Figure 1.1. Chemiosmotic model of auxin transport 
Figure 1.2. Wildtype and pin1 Arabidopsis inflorescence stems 
Figure 1.3. Structural features of ABC transporters 
Figure 2.1. ABCB4 regulates root hair elongation in Arabidopsis 
Figure 2.2. Phylogenetic tree of plant ABCB transporters 
Figure 2.3. Proposed model for ABCB4 mediated accumulation and activation of 
efflux 
Figure 3.1. Cellular exclusion is a primary function of ABCB19 
Figure 3.2. Activity and expression of ABCB21 
Figure 3.3. Loss of ABCB21 reduces the supply of auxin to emerging lateral roots 
Figure 3.4. Cotyledon-hypocotyl auxin transport and phototropic bending in abcb21 
Figure 3.5. Root twisting in b1b19b21 and expression of ABCB transporters in 
seedlings 
Figure 3.6. Expression and transport in ABCB-RNAi lines 
Figure 3.7. Auxin transport assays in abcb mutants seedlings 
Figure 3.8. Expression and activity of ABCB11 
Figure 3.9. Model for ABCB21 function in the root 
Figure S3.1. Isolation of abcb21-2 
Figure S3.2. Lateral root number in 10-day seedlings 
Figure S3.3. Primary root growth in abcb triple mutants is twd1-like 
Figure S3.4. ABCB transporter expression in seedlings from the TraVA RNA-seq 
database 
Figure S3.5. Compensatory expression of ABCB19 in abcb1 but not abcb11 or 
abcb21 
Figure S3.6. ABCB12 does not compensate for loss of ABCB11 
Figure 4.1. ABCB1 and ABCB19 exclude auxin out of the shoot apex in 
inflorescences 
Figure 4.2. Leaf angles and areas in abcb1 and abcb19 mutants with varying light 
Figure 4.3. Inflorescences of abcb1 and abcb19 mutants with varying light 
Figure 4.4. ABCB transporter expression in inflorescence stems 
Figure 4.5. Auxin transport in inflorescence segments 
Figure 4.6. Expression of ABCB11 and ABCB21 
Figure 4.7. ABCB21 activity in leaves 
Figure 4.8. ABCB triple mutant leaf phenotypes 
Figure 4.9. Triple mutant inflorescence phenotypes 
Figure S4.1. Comparison of abcb1abcb19 and twd1 
Figure S4.2. ABCB transporter expression in inflorescence stems from the TraVA 
RNA-seq database 
Figure S4.3. ABCB transporter expression in leaves and flowers from the TraVA 
RNA-seq database 
Figure S4.4. proABCB21:GUS is expressed after wounding 
Figure S4.5. Intact triple mutant flowers 
Figure 5.1. Distribution of fluorescent auxin analogs in Arabidopsis root 
Figure 5.2. Effects of NBD-auxins on SCFTIR1 auxin signaling 



 

 

xii 
 

Figure 5.3. Auxin transport system affects the distribution of fluorescent auxin in 
roots 
Figure 5.4. Auxin maxima in the root apex 
Figure 5.5. Distribution of fluorescent auxin mimics the native auxin gradient 
Figure 5.6. Subcellular localization of NBD-NAA 
Figure 6.1. Comparison of ABCB6 and Sav1866 nucleotide binding domain (NBD) 
dimer organization 
Figure 6.2 Docking of IAA to the inner leaflet associated binding sites 
Figure 6.3. Amino acid residues associated auxin binding in ABCB19 
Figure 6.4 Mutations in ABCB19 binding pockets reduce transport activity 
Figure 6.5. Schematic of assays in L. Lactis membrane vesicles 
Figure 6.6. ABCB19 exhibits auxin efflux activity that is sensitive to transport 
inhibitors in L. Lactis whole cells 
Figure 6.7. ABCB19 exhibits auxin efflux activity that is sensitive to transport 
inhibitors in L. Lactis whole cells 
Figure 6.8. ABCB19 exhibits auxin transport activity in L. Lactis inverted membrane 
vesicles 
 



 

 

xiii 
 

List of Abbreviations 
 
ABC   ATP-binding cassette 
ADP  adenosine-diphosphate 
ATP  adenosine-triphosphate 
BA  benzoic acid 
BP  base pair 
cDNA  complementary deoxyribonucleic acid 
CDS  coding sequence 
DPM  disintegrations per minute 
ER  endoplasmic reticulum 
GUS  β-glucuronidase 
GFP  green fluorescent protein 
IAA  indole-3-acetic acid 
MDR  multidrug resistance 
MRP  multidrug resistance relate protein 
NBD  nucleotide-binding domain 
PCR  polymerase chain reaction 
PDR  pleiotropic drug resistance 
PGP  P-glycoprotein 
PM  plasma membrane 
RPM  revolutions per minute 
qRT-PCR  quantitative real-time polymerase chain reaction 
TMD  transmembrane domain 
TMH  transmembrane helices 
  



 

 

xiv 
 

Nomenclature 
 

The nomenclature used in this dissertation follows the Community standards 

for Arabidopsis genetics (Meinke and Koornneef, 1997). 

 

UPPERCASE ITALICS wild-type gene 

lowercase italics  mutant gene 

UPPERCASE   wild-type protein 

lowercase   mutant protein



 

 

1 
 

Chapter 1. General Introduction 

Unlike animals, plants lack a central nervous system that allows for long 

distance signaling between tissues and organs. Instead, plants have developed 

mechanisms for cell-to-cell hormone movement and communication. One of the 

primary plant growth regulators, or phytohormones, that is transported in this manner 

is auxin. 

Discovery of Auxin 

Studies of chemical messengers in plants have been conducted for over 250 

years. In 1758, experiments by Henri-Louis Duhamel du Monceau suggested 

movement of sap from leaves controlled root growth (Duhamel du Monceau, 1758). 

In 1868, German botanist Julius von Sachs, who many consider the father of plant 

physiology, suggested that “organ-forming substances” were made by the plant and 

transported to different parts where they controlled growth and development (von 

Sachs, 1868). In The Power of Movement in Plants, Charles Darwin described a 

diffusible element that caused asymmetric growth of grass coleoptiles in response to 

light (Darwin, 1880). Later, in 1927, Fritz Went isolated this “growth regulator” by 

collecting the substance in agar blocks and showing that it could re-initiate growth 

when placed on decapitated oat coleoptiles (Went, 1926), The substance was later 

identified as indole-3-acetic acid (IAA) and termed “auxin” from the Greek word 

“auxien” meaning “to grow/to increase” (Kögl and Haagen-Smit, 1931). Since then 

the establishment of localized and global gradients of auxin have been shown to be 

important for a variety of aspects of growth and development including 
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embryogenesis, organogenesis, cell/tissue/organismal polarity, phyllotaxis, and tropic 

responses (reviewed in Zazímalová et al., 2010). 

Auxin Metabolism 

The primary auxin in plants is indole-3-acetic acid (IAA). Several other 

naturally occurring auxins have been identified including indole-3-butyric acid (IBA) 

(Cooper, 1935), 2-phenylacetic acid (PAA) (Koepfli et al., 1938), and 4-chloroindole-

3-acetic acid (4-Cl-IAA) (Porter and Thimann, 1965), however their roles plants are 

not well understood. IAA is primarily synthesized from tryptophan in a two-step 

reaction (Mashiguchi et al., 2011; Stepanova et al., 2011). First TRYPTOPHAN 

AMINO TRANSFERASE of ARABIDOPSIS (TAA) and TAA-Related (TAR) 

proteins convert tryptophan into indole-3-pyruvic acid (IPyA). Then one of the eleven 

YUCCA members catalyze the rate-limiting step of converting IPyA into IAA. IAA 

can also be synthesized in a tryptophan-independent pathway, however, the enzymes 

involved have yet to be identified (reviewed in Zhao, 2018). In addition to 

biosynthesis, the levels of free IAA, or IAA available for auxin signaling, within a 

cell are controlled by auxin conjugation and oxidation. Several enzymes catalyze the 

conjugation (addition) and hydrolysis (removal) of methyl groups (methyl-IAA), 

glucose (IAA-Glc), or one of several amino acids (IAA-ala, IAA-Asp, etc.) to 

reversibly inactivate and reactivate auxin (reviewed in Zhang & Peer, 2017). IAA can 

also be inactivated irreversibly through oxidation by DIOXYGENASE FOR AUXIN 

OXIDATION (DAO) (Mellor et al., 2016; Porco et al., 2016; Zhang et al., 2016). 

Additionally, while auxin biosynthesis occurs on the cytosolic surface of the 

endoplasmic reticulum (ER), the majority of auxin hydrolases are localized within the 
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ER lumen (Campanella et al., 2003), pointing to compartmentalization as being an 

important mechanism for auxin homeostasis. 

Auxin signaling 

Cells respond to auxin transcriptionally via the SUPRESSOR OF 

KINETOCHORE PROTEIN1 (SKP1)-CULLIN1-F-box (SCF) E3 ubiquitin ligase 

complex in the nucleus (reviewed in Ma et al., 2018). When cellular auxin is below 

threshold levels, AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins bind to 

transcription factors called auxin response factors (ARFs). This represses 

transcription by preventing ARFs from binding to auxin response elements (AuxREs) 

in promoters of auxin responsive genes. Aux/IAAs associated with DNA-bound 

ARFs also trigger recruitment of the histone de-acylases TOPLESS (TPL) and 

(TOPLESS RELATED (TPR), which cause DNA condensation and further 

prevention of transcription (Korasick et al.; Han et al., 2014). When cellular auxin 

reaches threshold concentrations, IAA binds to the auxin receptor TRANSPORT 

INHIBITOR RESPONSE 1 (TIR1) F-box protein and acts like a “molecular glue” to 

promote association of Aux/IAAs with the SCFTIR1 complex (Tan et al., 2007; 

Calderón Villalobos et al., 2012). This triggers poly-ubiquitination and degradation of 

Aux/IAAs and release of the ARFs to allow for transcriptional activation (reviewed in 

Weijers & Wagner, 2016). In some cases, free ARFs act as transcriptional repressors 

but the mechanisms are not well understood. 

Auxin induces cell division and cell expansion 
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Auxin promotes two primary cellular responses: cell division and cell 

expansion. Transcriptional regulation caused by localized auxin gradients in 

meristematic tissues maintain stem cell niches and induce organ formation and 

patterning (reviewed in Wang & Jiao, 2018). In these cells, complex cross-talk 

between auxin and cytokinin, a phytohormone that regulates cell division and 

differentiation, dictates cell fate specifications during embryo- and organogenesis 

(Chandler and Werr, 2015). 

During cell expansion, auxin induces expression of SMALL AUXIN 

UPREGULATED RNAs (SAURs) (reviewed in Ren & Gray, 2015). The SAURs 

interact with several PP2C-D protein phosphatases to inhibit their activity (Spartz et 

al., 2014). This results in activation of the H+-ATPases that acidify the apoplast, 

ultimately leading to cell wall loosening and cell expansion (reviewed in Arsuffi & 

Braybrook, 2018). One example of this mechanism in action is phototropism, the 

classical physiological response that lead to the discovery of auxin by Charles and 

Francis Darwin. During phototropism auxin is differentially transported to the shaded 

side of coleoptiles, hypocotyls, or stems. This causes activation of H+-ATPases and 

cell expansion, resulting in elongation of the shaded side of the stem and growth 

toward the light source. Achievement of these responses requires the ability to move 

of auxin from cell to cell. 

Auxin transport 

As the early discoverers of auxin all noted, the sites of IAA biosynthesis and 

the sites of response and signaling are typically separated by space and time. IAA is 

primarily synthesized in young tissues in shoot and root meristems and in the tips of 
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young leaves. According to the chemiosmotic model of auxin transport IAA is 

transported from sites of synthesis to sites of action by a combination of diffusion and 

the activities of several auxin uptake and efflux proteins (Fig. 1.1) (Rubery and 

Sheldrake, 1974; Raven, 1975; Goldsmith, 1977). At apoplastic pH (pH 5.5) about 

15% of IAA (pKa 4.75) is protonated (IAAH) and can cross the plasma membrane 

(PM) through lipophilic diffusion. The remaining 85% remains anionic (IAA-) and 

requires uptake mediated by an AUXIN1/LIKE-AUXIN1 (AUX1/LAX) auxin-proton 

symporter to cross the PM (reviewed in Swarup & Péret, 2012). Once inside the cell 

(pH 7.0) greater than 99% of IAA is anionic and requires the activities PIN-

FORMED (PIN) efflux carriers and ATP-binding cassette subfamily B (ABCB) 

transporters to mediate movement back out of the cell (reviewed in Geisler et al., 

2017). 
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Figure 1.1. Chemiosmotic model of auxin transport auxin. (IAA) can enter cells 

through lipophilic diffusion or proton-coupled uptake mediated by AUX1/LAX 

permeases. At cytosolic pH auxin is anionic and trapped must be exported by PIN 

efflux carriers or ATP-binding cassette subfamily B (ABCB) transporters. Figure by 

the author of this dissertation. 
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In addition to AUX1/LAXs, PINs, and ABCBs a few other proteins have been 

implicated in auxin transport. On the PM, NITRATE TRANSPORTER 1.1 (NRT1.1) 

has been suggested to act as a dual function nitrate/auxin uptake transporter (Ho et al., 

2009; Krouk et al., 2010). Two members of the ATP-binding cassette subfamily G 

(ABCG) transporters, ABCG36 and ABCG37, have been suggested to transport the 

IAA precursor IBA across the PM (Růžička et al., 2010). While these proteins do 

exhibit some characteristics of auxin transport, direct evidence of auxin as a substrate 

and their physiological roles in auxin transport in planta remain unclear. Several 

other proteins have also been shown to regulate cellular auxin homeostasis by 

compartmentalization.  The PIN-LIKES (PILS) transport auxin into and out of the ER 

(Barbez et al., 2012). WALLS ARE THIN1 (WAT1) and the multidrug and toxic 

compound extrusion (MATE) transporter ADP1 have been suggested to regulate 

intracellular auxin homeostasis by mediating auxin transport out of the vacuole and in 

post-golgi endomembrane compartments, respectively (Ranocha et al., 2013; Li et al., 

2014b). Little is known about the function of the short PINs and other endomembrane 

auxin transporters, however, their localization to internal membranes points to 

compartmentalization of auxin being an important aspect during growth and 

development. 

AUXIN1/LIKE-AUXIN1 uptake permeases 

In Arabidopsis, the AUX1/LAX family is comprised of four highly conserved 

proteins: AUXIN1 (AUX1) and LIKE-AUXIN1 (LAX) LAX1, LAX2 and LAX3 

(reviewed in Swarup & Péret, 2012). Although AUX1/LAX proteins share 

considerable similarity to amino acid permeases, uptake of tryptophan or other amino 
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acids has not been demonstrated (Zazímalová et al., 2010). AUX1 is localized 

apically on the PM in auxin conducting cells, supporting a coordination of uptake 

with basally localized efflux transporters in auxin transport streams (Swarup et al., 

2001). AUX1/LAX proteins have been shown to be important for a variety of 

developmental processes and responses including embryogenesis, apical hook 

formation, root gravitropism, lateral root development, root hair development, and 

leaf phyllotaxis (reviewed in Swarup & Péret, 2012). However, even the 

aux1lax1lax2lax3 quadruple mutant develops only minor phenotypic defects 

(Bainbridge et al., 2008). 

PIN-FORMED (PIN) efflux carriers 

The PIN-FORMED (PIN) efflux carriers are unique to plants. The name PIN-

FORMED originates from the first mutant isolated (pin1), which has an inflorescence 

stem that lacks floral organs resulting in a structure that resembles that of a pin (Fig. 

1.2) (Okada et al., 1991). This pin-like structure is phenocopied by treatment with the 

polar auxin transport inhibitors 9-hydroxyfluorene-9-carboxylic acid (HFCA) or N-1-

naphthylphthalamic acid (NPA), strongly suggesting a role for PIN1 in regulating 

polar auxin transport (Okada et al., 1991). The Arabidopsis genome encodes eight 

PIN family members that are divided into ‘long’ PINs and ‘short’ PINs, based on the 

length of a hydrophilic loop that connects two transmembrane domains (Křeček et al., 

2009). 
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Figure 1.2. Wildtype and pin1 Arabidopsis inflorescence stems. Bars = 2.5 mm. 

Figure by the author of this dissertation. pin1 image kindly provided by Candace 

Pritchard. 

 

The ‘long’ PINS (PIN1-4 and PIN7) are polarly localized on the PM where 

they mediate directional auxin transport necessary for embryogenesis, organogenesis, 

phototropism, and gravitropism (reviewed in Adamowski & Friml, 2015). Although 

PINs are best known for their polarity, non-polar localizations are also common, 

particularly in non-auxin conducting tissues. Additionally, PINs are not static on the 

PM and apolar localization can rapidly become polar with various environmental 

cues. For example, within minutes of gravistimulation of roots, PIN3 changes 

localization from apolar to the basal side of cells to allow for differential auxin 

transport and growth with the new gravity vector (Friml et al., 2002). These rapid 
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trafficking events are dependent on the vesicular trafficking regulator GNOM, and 

PIN phosphorylation status regulated by PID, WAG, and D6PK (Weller et al., 2017). 

The ‘short’ PINs (PIN5 and PIN8) have significantly reduced central loops 

(~50 amino acids) compared to the ‘long’ PINs (~300 amino acids). Short PINS 

localize to the ER membrane and are proposed to function in concert with the PILS to 

regulate auxin homeostasis (Mravec et al., 2009; Ding et al., 2012). PIN6, which has 

an intermediate length central loop (~250 amino acids), was recently shown to cycle 

between the ER and PM (Simon et al., 2016). This suggests PIN6 may have a role 

distinct from typical short and long PINs and supports evidence that loop 

modifications (phosphorylation) regulate trafficking and activity (reviewed in 

Adamowski & Friml, 2015). 

Despite having critical roles during growth and development the mechanism 

for how PINs mediate auxin transport remains elusive. Activity of PIN1 is believed to 

be driven by the electrochemical gradient across the PM but direct evidence for the 

mechanism of action has not been fully demonstrated. Determination of a PIN protein 

structure by X-ray crystallography or cryo-electron microscopy would be a 

tremendous asset in understanding how they work. 

ATP-binding cassette subfamily B (ABCB) efflux transporters 

In plants, ABCB transporters are believed to play a primary role in 

maintaining PIN-mediated auxin transport streams. The best studied ABCB 

transporter is mammalian P-glycoprotein (PGP/ABCB1). The activity of PGP, a 

polyspecific, lipophilic-drug exporter, is best known for contributing to multidrug 

resistance in tumor cells (Ambudkar et al., 2006). PGP is constitutively expressed 



 

 

11 
 

throughout most tissues but expression is increased in cells surrounding transport 

streams (pulmonary, respiratory, and digestive) and vital organs (reviewed in 

Schinkel, 1997). For example, PGP functions in keeping toxic compounds from 

entering the brain by bounding capillaries at the blood-brain barrier and excluding 

them surrounding endothelial cells (Jodoin et al., 2003). This exclusionary 

mechanism is also hypothesized to be the primary mode of action for plant ABCBs 

during auxin transport. 

While ABC transporters can mediate export or import of substrates, the 

majority of ABC transporters are exporters. Uptake transporters are only found in 

prokaryotes, in which a periplasmic substrate binding protein sequesters the substrate, 

then binds to the transporter for uptake (Higgins, 1992). Since prokaryotic importers 

have structures distinct from exporter type transporters, focus from here on will 

remain on canonical ABC exporter type transporters. The only transporters that have 

been shown to exhibit bidirectional transport activity are the Arabidopsis auxin 

transporters ABCB4 and ABCB21. A detailed analysis of these transporters and the 

mechanism of conditional transport directionality is provided in Chapter 2. 

Conserved ABC Transporter structure 

The overarching ABC superfamily of transporters share a common protein 

structure, despite having a diverse array of functions and substrates. Fully functional 

transporters all contain two transmembrane domains (TMDs) consisting of two sets of 

six transmembrane helices (twelve total), and two nucleotide-binding domains 

(NBDs) (Fig. 1.3 A) (Xiong et al., 2015). Transporters can be synthesized either as 

half-length transporters or full-length transporters. Half-length transporters, which are 
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arranged as (TMD-NBD) or (NBD-TMD) must homo- or hetero-dimerize to form a 

functional (TMD-NBD)-(TMD-NBD) or (NBD-TMD)-(NBD-TMD) transporter. 

Full-length transporters, which encode fused pseudo-symmetric halves connected 

with a linker, can be organized (TMD-NBD-TMD-NBD) or (NBD-TMD-NBD-

TMD). All members of the PM localized ABCB transporters known to date are 

arranged (TMD-NBD-TMD-NBD) (Kang et al., 2011). 

 

 

Figure 1.3. Structural features of ABC transporters. (A) Inward-facing 

conformation of Arabidopsis ABCB19 threaded on mammalian ABCB1 (PDB 

4M1M). (B) Nucleotide-binding domain “sandwich dimer.” Figure by the author of 

this dissertation. Protein model visualized using PyMol.  

 

The energy to drive substrate translocation is harvested from ATP within the 

nucleotide binding cassettes for which the protein family was named (Fig. 1.3 B). The 

core of the catalytic center consists of several highly conserved motifs that facilitate 



 

 

13 
 

ATP binding and hydrolysis (Rees et al., 2009; Wilkens, 2015). ATP is positioned 

within one NBD by a Walker motif (GXXGXGKS/T) which interacts with the α- and 

β-phosphates of ATP, a conserved tyrosine residue (A-loop, Y) that positions ATP 

through base stacking with the adenine ring, and a Walker B motif (ΦΦΦΦDE, where 

Φ is hydrophobic) that provides a glutamine needed for catalysis of ATP. The ATP is 

positioned between the Walker A, A-loop, and Walker B from the NBD on one half 

of the transporter and a signature sequence motif (LSGGQ) from the opposing NBD 

in what is known as a “sandwich dimer.” The H-loop (H), or “switch” motif, 

stabilizes the geometry of the catalytic site during the transition-state. Q-loop (Q) and 

D-loops (SALD) provide contact point between the NBDs and TMDs to couple 

hydrolysis to transport. 

In canonical ABC exporters, each TMD has 6 transmembrane α-helices for a 

total of 12 in a full transporter (Fig. 1.3A) (Rees et al., 2009; Wilkens, 2015). The 

organization of the α-helices results in a transmembrane pore that allows entry of 

substrates from the cytoplasm or from within the membrane bilayer. Unlike what is 

observed with the NBDs, highly-conserved sequence motifs have not been associated 

with the TMDs. This is likely what contributes to the diversity of substrates ABC 

transporters are able to move. 

Substrate translocation is achieved by coupling ATP hydrolysis in the NBDs 

with conformational changes in the TMDs (reviewed in Locher, 2016). An alternating 

access model is the most widely accepted hypothesis for how substrates bind on one 

side of a membrane and are subsequently released on the other. In this model, 

substrate binds to the transporter in a binding pocket within the TMDs that is exposed 
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to only one side of the membrane. Subsequent ATP binding and hydrolysis causes a 

conformational change in the TMDs that alternates exposure of the binding pocket to 

the opposite side of the membrane. A change in affinity between the substrate and the 

transporter allows for substrate release. After substrate translocation, hydrolysis of 

ATP and release of ADP + Pi resets the system. Several varying hypotheses of this 

general scheme exist and a number of questions remain unanswered including 

whether ATP molecules in each NBD are required and if each ATP hydrolysis occurs 

concurrently or successively. 

Plant ABCB transporters 

Plant ABCB transporters were first studied to determine if they have a similar 

function to mammalian PGP that could be exploited to enhance herbicide resistance 

(Dudler and Hertig, 1992). However, it was shown that plant homologs of PGP are 

not polyspecific detoxifiers and are of little use for this purpose (Sidler et al., 1998). 

Analyses of other plant ABCB transporters indicate that these proteins are not 

primarily xenobiotic exporters, instead cellular detoxification is associated with 

plasma membrane-localized members of the pleiotropic drug resistance (PDR/ABCG) 

and tonoplast-localized multidrug resistance associated protein (MRP/ABCC) 

families (Remy and Duque, 2014). 

The best characterized Arabidopsis ABCB transporters are the auxin 

transporters ABCB1, ABCB4, and ABCB19. ABCBs were first implicated in auxin 

transport when ABCB1 was shown to localize to the PM and that antisense and 

overexpression lines exhibited reduced and enhanced hypocotyl elongation, 

respectively (Sidler et al., 1998). Soon after, the ABCB1 homolog, ABCB19 was 
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identified in a screen for genes induced by the anion channel inhibitor 5-nitro-2-(3-

phenylpropyl animo)-benzoic acid (NPPB) (Noh et al., 2001). abcb19 mutants also 

exhibited phenotypes consistent with defects in auxin transport including epinastic 

cotyledons, decreased inflorescence height, loss of apical dominance, increased 

lateral branching, reduced lateral root formation, and reduced stamen filaments (Noh 

et al., 2001; Noh et al., 2003; Geisler et al., 2005; Lewis et al., 2007). These 

phenotypes are even more severe in abcb1abcb19 double mutants (Noh et al., 2001; 

Blakeslee et al., 2007). Further studies have shown ABCB1 and ABCB19 exhibit 

strong and specific binding of the polar auxin transport inhibitor NPA (Noh et al., 

2001; Murphy et al., 2002). A direct role for ABCB1 and ABCB19 in mediating 

auxin efflux was demonstrated when reduced auxin export was observed in abcb1 and 

abcb19 protoplasts, and when they were shown to mediate auxin efflux when 

heterologously expressed in yeast and HeLa cells (Geisler et al., 2005; Bouchard et 

al., 2006). 

Function of ABCBs in polar auxin transport 

ABCB1 and ABCB19 are primarily expressed in meristematic tissues where 

auxin concentrations are high. abcb1 and abcb19 single mutants show ~25% and 

>50% reductions in rootward auxin transport, which is further reduced to ~70% in the 

abcb1abcb19 double mutant (Noh et al., 2001; Blakeslee et al., 2007). ABCB19 

expression is also enhanced in the pericycle and endodermal cells that surround the 

central vasculature, and mutants exhibit increased leakage from the rootward stream 

(Bandyopadhyay et al., 2007; Blakeslee et al., 2007). This suggests ABCB19 

maintains the rootward auxin movement by bounding the rootward auxin transport 
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stream. ABCB1 expression is significantly lower than ABCB19 and in more discrete 

regions, pointing to more tissue specific activities. Notably, loss of function mutations 

in ABCB1 in maize and sorghum is the underlying basis for the agriculturally 

important dwarf cultivars brachytic2 (br2) and dwarf3 (dw3) (Multani et al., 2003). 

Another characterized ABCB transporter, ABCB4, is primarily expressed in 

the root epidermis from the root cap through the differentiation zone (Cho et al., 

2007; Kubeš et al., 2012). abcb4 mutants exhibit reduced rates of shootward auxin 

transport from the root tip (Lewis et al., 2007; Kubeš et al., 2012). abcb4 mutants do 

not exhibit any difference in rootward auxin transport from the shoot apex indicating 

a primary function in regulation of auxin transport in the root (Terasaka et al., 2005). 

Unlike ABCB1 and ABCB19, which have only been reported to exhibit export 

activity, ABCB4 exhibits concentration-dependent auxin transport (Terasaka et al., 

2005; Yang and Murphy, 2009; Kubeš et al., 2012). ABCB4 mediates apparent auxin 

accumulation at low intracellular auxin levels that reverts to efflux when threshold 

levels are reached. An in depth review of this mechanism is detailed in Chapter 2. 

In addition to ABCB1, ABCB4, and ABCB19, other ABCB transporters have 

been implicated in auxin transport. ABCB21, the paralog of ABCB4, was shown to 

have concentration-dependent auxin uptake/efflux transport activity in Arabidopsis 

protoplasts and when expressed in yeast (Kamimoto et al., 2012). ABCB21 was 

shown to be expressed in leaves, lateral organ junctions in shoots, and in the root 

pericycle (Kamimoto et al., 2012). However, a clear role for ABCB21 in regulating 

auxin transport in planta has not been identified. Recently, abcb14 and abcb15 

mutants were reported to have reduced auxin transport in inflorescence stems 
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(Kaneda et al., 2011). However, ABCB14 was originally identified as a malate/citrate 

transporter involved in stomata aperture regulation (Lee et al., 2008). Further, loss of 

ABCB14 and ABCB15 appears to disrupt proper vascular tissue formation (Kaneda 

et al., 2011), indicating the effects on auxin transport may be indirect. 

Interaction with FKBP42/TWD1 

Proper folding and trafficking of ABCB1, ABCB4, and ABCB19 require the 

activity of the immunophilin FK506-BINDING PROTEIN 42/TWISTED DWARF1 

(FKBP42/TWD1) (Wu et al., 2010; Wang et al., 2013). Yeast-2-hybrid and BRET 

(bioluminescence resonance energy transfer) assays have shown direct interaction 

between FKBP42 and the C-terminus of these transporters (Geisler et al., 2003; Wang 

et al., 2013). Members of the FKBP superfamily all share sequence motifs indicative 

of peptidyl-prolyl-cis-trans isomerase (PPIase) folding activity (Romano et al., 2005). 

It was thought that FKBP42 PPIase activity mediated proper folding of the ABCBs, 

however, this has not been clearly demonstrated (Kamphausen et al., 2002). Instead, 

FKBP42, along with its co-chaperone HEAT SHOCK PROTEIN 90 (HSP90), is 

proposed to maintain interacting ABCBs in their correct conformation through a 

proposed holdase activity (Kamphausen et al., 2002). 

In twd1 mutants, ABCB1, ABCB4, and ABCB19 are mis-localized to the 

endoplasmic reticulum (ER) and are unable to properly traffic to and function on the 

PM (Wu et al., 2010; Wang et al., 2013). This is reflected in the significant overlap in 

severe dwarf phenotypes observed in twd1 and abcb1abcb19 double mutants (Noh et 

al., 2001; Geisler et al., 2003; Blakeslee et al., 2007). Additionally, twd1 mutants 

exhibit a further reduction in rootward auxin transport (~85% reduction compared to 
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wild type) and more severe helical twisting of roots, inflorescences, and siliques 

(Geisler et al., 2003). One hypothesis is that this increase in phenotypic severity is 

due to contributions of other ABCB auxin transporters that interact with FKBP42. 

FKBP42 has also been show to interact with proteins associated with the cytoskeleton 

(ACTIN7), brassinosteriod signaling (BRI1), and cell detoxification (ABCCs) 

(Geisler et al., 2004; Chaiwanon et al., 2016; Mao et al., 2016), suggesting the full 

twd1 phenotype may not be accounted for in additional loss of ABCB transporter 

function. Additionally, the blue light photoreceptor, phot1, which has been shown to 

inhibit ABCB19 directly by phosphorylation during phototropism is proposed to 

disrupt the interaction between ABCB19 and FKBP42 (Christie et al., 2011). 

Substrate specificity and specific activity 

In contrast to the mammalian ABCBs, plant ABCB transporters exhibit a high 

degree of substrate specificity for small amphipathic and aliphatic organic acids. 

Assays across a variety of transport assay systems have shown ABCB1 and ABCB19 

exhibit a high degree of specificity for IAA, with ABCB1 having a slightly broadened 

specificity which includes NAA and a few other auxin-like substrates (Geisler et al., 

2005; Titapiwatanakun et al., 2009; Yang and Murphy, 2009). ABCB4 specificity is 

similar to that of ABCB1 (Santelia et al., 2005; Terasaka et al., 2005; Yang and 

Murphy, 2009; Kubeš et al., 2012). When expressed in E.coli, ABCB14 exhibits 

malate and citrate uptake (Lee et al., 2008), however, whether or not these are true 

transport substrates remains to be determined. 

When expressed in yeast, ABCB1 and ABCB19 exhibit greater substrate 

specificity when FKBP42 is present (Bailly et al., 2013). Recently, ABCB19 was 
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shown to exhibit NPPB sensitive channel activity when expressed in human 

embryonic kidney cells (Cho et al., 2014). However, in the presence of FKBP42, 

channel activity was not observed. These results suggest NPPB may function as a 

general inhibitor of ABCB19 and that ABCB19 channel-like activity and decreased 

specificity only occurs when ABCB19 is not properly folded. 

Several pieces of evidence suggests the plasma membrane environment 

contributes to the activity and specificity observed with plant ABCBs. Homology 

modelling and IAA docking analyses have identified two distinct sets of putative 

auxin binding sites in plant ABCB transporters (Yang and Murphy, 2009; Bailly et 

al., 2011). These studies predict ABCB1 and ABCB19 have a general binding pocket 

that is positioned within the membrane bilayer that corresponds to sites associated 

with poly-specific substrate exclusion in mammalian PGP. Another set of plant 

kingdom specific binding sites associated with the inner-leaflet-cytosol interface that 

are believed to be the sites for specific auxin binding. In either case, auxin binding 

sites appear to reside within the PM bilayer. 

The primary auxin efflux proteins ABCB1, ABCB19, and PIN1, reside in 

sterol and sphingolipid-enriched plasma membrane nanodomains, while AUX1/LAX 

auxin uptake premeases do not. (reviewed in Tapken and Murphy, 2015). This 

provides a separation between areas of auxin uptake and areas of auxin efflux. When 

ABCB19 and PIN1 are co-expressed in heterologous systems or in cells where their 

expression overlaps, synergistic increases in auxin efflux activity and specificty have 

been reported (Blakeslee et al., 2007; Titapiwatanakun et al., 2009; Yang and 

Murphy, 2009). This specificity and activity is further increased with addition of 
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cholesterol, sitosterol, or ergosterol (Titapiwatanakun et al., 2009; Bailly et al., 2011). 

Taken together, these findings suggest ABCBs and PINs function in cellular auxin 

transport in specific membranes designated for auxin efflux. Since PIN proteins 

appear to mediate the direction of auxin efflux, a primary function for ABCB 

transporters in excluding auxin from small cells where auxin biosynthesis occurs and 

preventing reuptake following PIN-mediated transport would be predicted. 

Research Objectives 

Of the 21 full-length 21 ABCB transporters encoded within the Arabidopsis 

genome only ABCB1, ABCB4, and ABCB19 have sufficient evidence to support 

their roles in mediating auxin transport. Several others, including ABCB14, ABCB15, 

and ABCB21 have been implicated (Kaneda et al., 2011; Kamimoto et al., 2012), but 

their specific contributions to auxin transport in planta remain unknown. 

The main objective of this dissertation was to better establish the role ABCB 

transporters plan in mediating polar auxin transport during plant growth and 

development. The specific objectives were 1.) to analyze how ABCB transporters 

mediate auxin transport through an exclusionary mechanism, 2.) to further understand 

the roles ABCB1 and ABCB19 play during growth and development, 3.) to identify 

functional roles for uncharacterized or partially-characterized ABCB transporters that 

contribute to auxin transport, 4.) to develop systems and tools used to study the 

structure and function of ABCB transporters and auxin transport in plants, and 5.) to 

determine how ABCB transporters function at the molecular level. 
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Summary 

Plant ATP-binding cassette subfamily B/P-glycoprotein/multidrug resistance 

(ABCB/PGP/MDR) proteins mediate the transport of a variety aliphatic and 

amphipathic substrates across the plasma membrane. An unexpected characteristic of 

some plant ABCBs that is not seen in animal homologs is uptake transport activity. 

However, in the best studied example of this phenomenon, the ABCB4 auxin 

transporter is associated with uptake only when intracellular auxin concentrations are 

low, and exhibits canonical efflux activity when internal auxin concentrations 

increase. Physiological and biochemical characterizations of ABCB4 indicate that the 

protein serves as a homeostatic regulator and suggest evolutionary origins of the 

phenomenon. In this chapter we will review early transport studies and the discovery 

of putative uptake transporters in plants, the functional and structural evolution of 

these transporters, and what is known about the mechanisms of uptake and 
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conditional uptake/efflux. Further, we will explore issues with homologous or 

heterologous unicellular systems and how these studies may have led to a 

mischaracterization of uptake transporters. A re-evaluation of current transport data 

and new ABCB mediated transport model will also be discussed. 

Introduction 

ATP binding cassette (ABC) transporters form a ubiquitous super-family of 

proteins that utilize the energy from ATP hydrolysis to drive the transport of a variety 

of substrates across membrane bilayers. Found throughout the bacterial, animal and 

plant kingdoms, ABC transporters function in cellular detoxification (Martinoia et al., 

2002), nutrient uptake (Singh and Röhm, 2008), secretion of extracellular coating 

components (Qin et al., 2013), and transport of lipids and hormones (reviewed in 

Kang et al., 2011). The B-subclass of ABCs has been extensively characterized due to 

the association of P-glycoprotein (ABCB1/MDR1) and related ABCBs with poly-

specific export of hydrophobic drug/xenobiotic efflux in animals. ABCB transporters 

can function either as full-length transporters or as homo- or hetero-dimers of 

transporters associated with antigen processing (TAPs) type half transporters.  All 

full-length ABCB transporters described to date are plasma membrane (PM) localized 

and are oriented with their twelve transmembrane helices (TMHs) spanning the PM 

and two nucleotide binding domains (NBDs) extending into the cytosol. Solutions of 

crystal structures and functional analyses have shown that ABCB transporters can 

exist in either an inward/cytoplasmic facing or an outward/extracellular/apoplast 

facing state (Dawson and Locher, 2006; Aller et al., 2009). An alternating access 

model of ABCB transport states that ATP hydrolysis causes conformation changes 
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that shift transporters between these orientations, allowing for substrate binding and 

release across the PM (Zou and Mchaourab, 2009). 

In plants, ABC transporters have been shown to function in the accumulation 

of secondary metabolites (Shitan et al., 2003; Stukkens et al., 2005; Shitan et al., 

2013), xenobiotic detoxification (Martinoia et al., 2002; Lee et al., 2005; Frelet-

Barrand et al., 2008), transport of lipids to the cuticle (Pighin et al., 2004; Luo et al., 

2007; Panikashvili et al., 2007), stomata aperture regulation (Lee et al., 2008), and 

transport of the phytohormones auxin (reviewed in Peer et al., 2011), abscisic acid 

(Kuromori et al., 2010), and cytokinin (Zhang et al., 2014). ABCB transporters were 

initially discovered in deduced amino acid sequence comparisons of mammalian 

ABCB1, under the premise that plant ABCBs would exhibit functions similar to 

mammalian ABCB1 in cellular detoxification (Dudler and Hertig, 1992). However, 

subsequent biochemical studies have shown that plant ABCBs exhibit a much 

narrower substrate specificity compared to their mammalian homologs, and their 

roles in detoxification are minimal (Conte and Lloyd, 2011). Instead, detoxification 

involving ABCs primarily involves ABCC/MRPs located at the tonoplast and a 

subset of ABCG/PDRs. 

The best characterized plant ABCBs are the Arabidopsis auxin efflux 

transporters ABCB1 and ABCB19, which mobilize the primary auxin indole-3-acetic 

acid (IAA) and contribute to the long distance polar transport of auxin from the shoot 

apex to the roots. ABCB1 is primarily localized apolarly in the shoot and root 

meristems (Sidler et al., 1998; Geisler et al., 2005; Mravec et al., 2009) and basally 

(top) in the cortex and endodermis in the boundary between the elongation and 
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maturation zones of the root (Geisler et al., 2005). ABCB19 is primarily localized 

apolarly in the shoot apex, bundle sheath cells in shoots, cortical and stellar cells in 

the root, epidermal cells near the root apex, and also in cotyledons and anther 

filaments (Blakeslee et al., 2007; Lewis et al., 2007; Lewis et al., 2009; 

Titapiwatanakun et al., 2009). abcb1 and abcb19 single mutants show ~25% and 

>50% reductions in rootward auxin transport (Noh et al., 2001; Blakeslee et al., 

2007), and double mutants are reduced by ~70% (Blakeslee et al., 2007). Phenotypes 

consistent with this reduction in long distance rootward auxin transport include 

epinastic cotyledons, decreased inflorescence height, loss of apical dominance, 

increased lateral branching, reduced lateral root formation, and reduced stamen 

filaments (Noh et al., 2001; Noh et al., 2003; Geisler and Murphy, 2006; Lewis et al., 

2007). 

Another well-characterized Arabidopsis ABCB auxin transporter is ABCB4, 

which exhibits efflux activity similar to ABCB1 and 19 at higher intracellular auxin 

concentrations, but mediates auxin uptake activity when internal auxin levels are very 

low (Terasaka et al., 2005; Yang and Murphy, 2009; Kubeš et al., 2012). A highly 

similar paralog, ABCB21, appears to exhibit similar activities (Kamimoto et al., 

2012).  Plant ABCB uptake activity is not limited to auxin transporters, as alkaloid 

uptake has been associated with Coptis japonica ABCB1/MDR1 (Shitan et al., 2003), 

and Arabidopsis ABCB14 has been shown to function in malate/citrate uptake (Lee et 

al., 2008).  This chapter will review the discoveries of plant ABCB transporters with 

uptake activity, their apparent functional divergence from exporters, structural 

features that are unique in putative uptake transporters, and the currently accepted 
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mechanism of uptake and conditional transport directionality.  Additionally, uptake 

transporter data will be re-evaluated and a new model of controlled ABCB mediated 

efflux will be discussed. 

Discovery of plant ABCB uptake transporters 

Coptis japonica ABCB1. The first reported putative ABCB uptake transporter 

was ABCB1/MDR1 from Coptis japonica (Shitan et al., 2003). Berberine, an alkaloid 

with strong antimicrobial properties and medicinal uses, is synthesized in the C. 

japonica root and accumulates in the rhizomes. In cultured C. japonica cells and 

xenopus oocytes expressing CjABCB1, endogenous and exogenous berberine were 

shown to be actively taken up by cells via a mechanism that is ATP-dependent and 

sensitive to inhibitors of mammalian ABCB1. Further, oocytes and Saccharomyces 

cerevisiae expressing CjABCB1 accumulated the berberine precursor reticuline and 

showed increased sensitivity to the mutagen 4-nitroquinoline N-oxide respectively. 

These results suggest that CjABCB1 mediates berberine uptake from the root into the 

rhizome and appears to exhibit a preference for berberine-like alkaloids. A study by 

the same group has recently shown that another ABCB isoform from Coptis japonica 

(CjABCB2) has nearly identical characteristics (Shitan et al., 2013). 

Arabidopsis thaliana ABCB4. A second plant ABCB transporter with 

apparent uptake activity was subsequently described by several groups (Santelia et 

al., 2005; Terasaka et al., 2005). ABCB4 was reported to function primarily in the 

lateral root cap, root epidermis, and mature root cortical cells (Santelia et al., 2005; 

Terasaka et al., 2005). ABCB4 was reported to be apolarly localized in the root cap 

and basally (top) localized in the epidermis (Terasaka et al., 2005). Analysis of abcb4 
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mutants showed light and sucrose-dependent root phenotypes. On 0.5-1% sucrose and 

under moderate light (100-120 uE), abcb4 mutants exhibited reductions in primary 

root length and lateral root number (Terasaka et al., 2005). When grown under high 

light or on >1.5% sucrose abcb4 mutants showed an increase in primary root length, 

lateral root number and root hair length (Santelia et al., 2005; Terasaka et al., 2005). 

Auxin transport assays and free IAA quantitations revealed that abcb4 mutants had 

reduced basipetal auxin movement from the root tip (Santelia et al., 2005; Terasaka et 

al., 2005). Rootward auxin transport from the shoot apex in abcb4 mutants was not 

different from wild-type however overexpression increased auxin transport (Terasaka 

et al., 2005). Expression of ABCB4 in Saccharomyces cerevisiae resulted in 

hypersensitivity to IAA and the toxic auxin analog 5-fluoroindole, suggesting a role 

in auxin uptake (Santelia et al., 2005).  Consistent with this result, expression in 

mammalian HeLa cells resulted in a net increase in auxin accumulation and, 

surprisingly, treatment with NPA reverted apparent uptake to efflux (Terasaka et al., 

2005).  This reversion correlated to an increase in intracellular IAA and was the first 

report of substrate concentration-dependent regulation of ABCB activity. 

A subsequent study of ABCB4 (Lewis et al., 2007) confirmed previous 

reports that abcb4 mutant roots exhibit reduced shootward auxin transport, but no 

changes in rootward auxin transport activity. It was expected that this reduction in 

shootward auxin transport from the root tip would result in a reduction in gravitropic 

bending, as is the case in mutants of the auxin efflux carrier PIN2 (Chen et al., 1998). 

However, consistent with the earlier report from Terasaka et al. (2005), no reduction 

in gravitropic bending was observed and, instead, a small enhancement of gravitropic 
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bending was reported.  Visualization of DR5:GFP revealed auxin distributions in the  

abcb4  root apex and elongation zone were less discrete than wild-type. 

The elongated root hair phenotype of abcb4 mutants was further examined in 

Cho et al. (2007). This study showed that overexpression of ABCB4 under the 

control of a root hair-specific promoter (PE7) caused a decrease in root hair 

elongation similar to what was observed with overexpression of PIN efflux carriers in 

root hairs. Further, overexpression of the AUX1 auxin uptake transporter enhanced 

root hair length. Although subsequent work has shown that PE7 is not exclusive to 

root hairs (Kubeš et al., 2012), these results indicated that the primary function of 

ABCB4 in roots hairs is auxin efflux.  The same study corroborated ABCB4-

mediated efflux of the artificial auxin 1-naphtalene acetic acid (NAA) when ABCB4 

was overexpressed in tobacco BY-2 cells (Cho et al., 2007). 

Yang & Murphy (2009) provided a detailed characterization of the transport 

activity of ABCB4 expressed in Schizosaccharomyces pombe.  S. pombe cells 

expressing ABCB4 showed initial IAA accumulation followed by IAA export, 

confirming the substrate-dependent switch to efflux observed in Terasaka et al. 

(2005). Doubling the amount of exogenous IAA doubled the initial amount of IAA 

accumulation and decreased the time for reversion to export. This result was 

consistent with reports of variability in abcb4 phenotypes under conditions that alter 

auxin homeostasis and auxin transport (Gray et al., 1998; Geisler et al., 2005; Santelia 

et al., 2005; Terasaka et al., 2005; Cho et al., 2007; Lewis et al., 2007). This same 

study also showed that 2,4-dichlorophenoxyacetic acid (2,4-D) inhibits ABCB4-

mediated uptake activity. This observation raised questions about assays of ABCB4 
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conducted in BY-2, as BY-2 cells are regularly grown in media containing the 

synthetic auxin 2,4-D. The presence of 2,4-D in the assays reported by Cho et al. 

(2007) may have obscured uptake activity by elevating the intracellular auxin to 

levels where reversion to export would have already occurred. 

In the most recent report of ABCB4, Kubeš et al. (2012) reported that auxin 

uptake into the root tip and that basipetal auxin transport in abcb4 mutants is reduced, 

which is consistent with previous findings (Santelia et al., 2005; Terasaka et al., 2005; 

Lewis et al., 2007). Additionally, roots of abcb4 mutants accumulate less auxin than 

wild-type initially and switch to net accumulation after incubation with IAA. 

Consistent with Santelia et al. (2005) and Cho et al. (2007), root hairs in abcb4 

mutants are longer and addition of increasing exogenous auxin increases root hair 

length (Fig. 2.1). Further investigation of root hair phenotypes was not perused as 

expression of ABCB4 under the root hair specific promoter PE7 and auxin 

quantitation in root hairs were not successful. Expression in BY-2 suggests ABCB4 

exhibits weak uptake activity. However, this result could not be investigated further, 

as lipophilic and AUX1/LAX-mediated 2,4-D uptake could not be inhibited, even 

after inhibition of AUX1 by 2-naphthoxyacetic acid (2-NOA). Expression of ABCB4 

in S. pombe and HeLa cells produced similar concentration-dependent kinetics to 

those reported previously (Terasaka et al., 2005; Yang and Murphy, 2009) and 

verified 2,4-D as a substrate for ABCB4 mediated uptake and inhibition of efflux 

activity. 
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Figure 2.1. ABCB4 regulates root hair elongation in Arabidopsis (5-day-

old Arabidopsis seedlings). (a) Treatment with increasing indole-3-acetic-acid (IAA) 

concentrations inhibits root hair elongation. Mean lengths and SD from the first 10 

root hairs measured starting 1.5 mm from the root apex (10 seedling pools, n = 3). *p 

< 0.05. (b) Root hairs in a region 1.5 mm above the abcb4 root apex are consistently 

longer than in the wild type. Bar = 100 μm. (c) Visualisation of ABCB4pro:ABCB4-

GFP shows a signal at the plasma membrane in atrichoblast (a) and trichoblast (t) 

cells in light-grown seedlings acclimated to dim light. Bar = 10 μm. Figure taken 

from Kubeš et al. (2012). 

 

From these combined results, it is evident that ABCB4 regulates cellular auxin 

levels primarily in the root epidermis by mediating auxin uptake when intracellular 

auxin levels are low and reverts to efflux when auxin concentration is increased. 
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Arabidopsis thaliana ABCB14 and ABCB21. Only two other ABCB 

transporters have been described to exhibit uptake activity. ABCB14 is expressed 

primarily in guard cells, where it regulates stomata closing in response to increased 

levels of CO2 and exogenously applied malate (Lee et al., 2008).  ABCB14 expressed 

in S. cerevisiae and HeLa cells suggest that malate is taken up into the cells and that 

uptake activity is sensitive to the ABCB transporter inhibitors vanadate, verapamil, 

and cyclosporine A.  Malate uptake was competed for by fumarate, and to a lesser 

extent succinate and citrate, suggesting a decrease in specificity compared to 

ABCB19.  ABCB21, the closest homolog to ABCB4, is expressed on the abaxial side 

of leaves, in lateral organ junctions in shoots, and in root pericycle cells (Kamimoto 

et al., 2012). Expression in Arabidopsis protoplasts shows IAA and NAA export, 

though IAA appears to be the preferred substrate. ABCB21, like ABCB4, shows 

increased 5-FI sensitivity when expressed in S. cerevisiae. Assays in yeast expressing 

ABCB21 showed apparent IAA uptake when external IAA levels are high, and pre-

loading with IAA returned IAA accumulation back down to control levels. Further, 

assays conducted with pre-loaded yeast cells and low external IAA showed net efflux 

activity. These results suggest that ABCB21 functions like ABCB4 in an intracellular 

auxin concentration dependent manner. 

Phylogeny of putative uptake transporters and functional divergence 

The Arabidopsis genome contains 21 full-length ABCB transporters. 

Phylogenetic analysis of these transporters reveals that they cluster into five clades 

(Fig. 2.2; Knöller et al., 2010). The auxin exporters ABCB1 and ABCB19 are found 

within clade II and are the only Arabidopsis transporters within this group. Clade I 
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contains the malate/citrate uptake transporter ABCB14 along with ABCB13, ABCB2, 

and ABCB10. The function of the latter three transporters remains unknown, 

however, expression of ABCB2 in S. pombe suggests it is not a primary auxin 

transporter (Yang and Murphy, 2009). Although grouped within the same clade, 

ABCB14 is clearly distinct from ABCB1 and ABCB19. No data for clade III or clade 

IV, which contain ABCB6, ABCB20, and ABCB15-18, have been published to date. 

Preliminary studies of RNAi knockdowns of ABCB15-18 reveal that they may play 

roles in auxin transport and/or transport regulation (unpublished), but high sequence 

similarity of these genes due to duplication has made isolation and analysis of 

mutants difficult. The concentration dependent uptake/efflux auxin transporters 

ABCB4 and ABCB21 group together within clade V. The paralogous sets of 

ABCB3/5, ABCB11/12 and ABCB7/9 also group within clade V. ABCB11 has been 

shown to function in rootward auxin transport (Kaneda et al., 2011), however, the 

kinetics of ABCB11-mediated transport remain unknown. This data, along with 

biochemical and structure/function analyses, suggest a functional divergence of some 

ABCB transporters that cannot be predicted by sequence comparison alone (Yang and 

Murphy, 2009; Knöller et al., 2010; Bailly et al., 2011). 
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Figure 2.2. Phylogenetic tree of plant ABCB transporters, including sequences 

from Arabidopsis, Vitis, Populus, Carica, Sorghum, Zea, Oryza, Brachypodium, and 

Physcomitrella. The phylogenetic tree can be divided into five clades (I–V). Branch 

numbers represent bootstrap values. Species names are colour coded for monocots 

(green) and dicots (red). Subclade Ib and IIa lie outside the Physcomitrella root 

(yellow shaded subclades). Figure taken from Knöller et al. (2010). 

Structural features unique to putative uptake transporters 

Crystal structures of a number of ABCB transporters have been elucidated, 

including Staphylococcus aureus Sav1866 and murine ABCB1 (Dawson and Locher, 

2006; Aller et al., 2009).  These multidrug efflux transporters represent what are 
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generally accepted as the resting states of efflux transporters (MmABCB1) and 

putative uptake transporters, or the substrate release state of exporters (Sav1866).  No 

crystal structures have been determined for any plant ABCB transporter, however, 

homology modeling has provided valuable insight into unique structural features 

found in putative uptake transporters that are missing in the efflux specific 

transporters ABCB1 and ABCB19. 

Structural models threaded on Sav1866 and MmABCB1 reveal that plant 

ABCB transporters share a common architecture (Yang and Murphy, 2009; Bailly et 

al., 2011).  Further, putative uptake ABCB transporters share better sequence 

alignments with crystal structures of exporters than prokaryotic importers, which 

suggest an exporter-like overall architecture. A predicted N-terminal coiled-coil 

domain is found in the structures of ABCB4, ABCB14, ABCB21 and CjABCB1, but 

not seen in the exporters ABCB1 or ABCB19. More detailed analysis of ABCB4 

reveals that the hydrophobic region of transmembrane helix 4 (TMH4) is shifted 

inward, likely imbedding the apoplastic end of TM3 and TM4 within the PM.  

Additionally, this shift could change the distance between intracellular loop 2 (ILC2) 

and NBD2, which may rearrange the TMDs enough to alter transport directionality. 

Another coiled-coil domain is found in ABCB4 within the linker region connecting 

NBD1 and TMD2.  This feature is not seen in the putative importers CjABCB1, 

ABCB14, and ABCB21 nor in the exporters ABCB1 or ABCB19. This suggests a 

specific role in regulating ABCB4 activity and not a general transport directionality 

mechanism. The function of these domains is unknown, but may play a role in protein 

interactions and/or regulating transport properties. Obviously, the function of these 
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features needs to be biochemically analyzed and is of utmost importance for 

understanding ABCB transporter function and regulation. 

In addition to these structural features, analysis of substrate docking reveals 

kingdom-specific putative substrate binding sites within the TMDs.  Docking of IAA 

to ABCB19, ABCB1, and ABCB4 in their outward facing states identified two 

putative substrate binding sites within the TMDs and associated with the inner leaflet 

of the PM (Yang and Murphy, 2009; Bailly et al., 2011). ABCB4, however, had an 

additional binding site formed by TMH5 and 8 at the PM inner leaflet-cytosol 

interface not present in ABCB19. The proposed role of this additional site, which 

would explain the apparent “transport direction reversibility” seen with ABCB4 and 

ABCB21 will be discussed below. 

Mechanism of uptake and conditional “reversibility” 

To date, no ABCB transporters with uptake activity have been reported in 

animals. Bacterial ABC transporters mediate the uptake of a number of primary 

metabolites, including maltose, vitamin B12, and histidine (reviewed in Linton & 

Higgins, 2007). However, prokaryotic ABC uptake transporters are structurally and 

mechanistically dissimilar to eukaryotic transporters. In general, prokaryotic 

importers, such as the maltose importer MalFGK2, have an associated periplasmic or 

cell-surface-associated substrate binding protein required for uptake activity (George 

and Jones, 2014).  These binding proteins have high affinity and allow for substrate-

specific and unidirectional transport. 

Plant ABCB transporters probably do not have associated binding proteins 

and their specificities lie within the binding sites found within the TMDs. Substrate 
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docking simulations of IAA with ABCB1, ABCB19 and ABCB4 reveal binding sites 

associated with the outer and inner leaflets of the PM. Detailed analyses of 

mammalian ABCB1 propose that a general hydrophobic binding pocket associated 

primarily with the outer leaflet of the PM is responsible for the polyspecific exclusion 

of hydrophobic chemotherapy drugs. Similar binding positions are found in the 

exporters ABCB1 and ABCB19, however, surface electrostatic potentials at these 

positions differ (Bailly et al., 2011). This may explain the increased specificity in 

plant transporters compared to mammalian homologs. Docking simulations with 

outward facing models of ABCB4 and 14 also predict binding sites at these positions 

that may play roles in substrate binding and uptake. However, these sites have yet to 

be tested biochemically. Simulations have also identified two substrate binding sites 

associated with the inner leaflet of the PM for exporters and putative uptake 

transporters. These sites are not present in mammalian ABCB1 and likely also 

contribute to substrate specificity. 

In addition to these sites the putative uptake transporter ABCB4 also contains 

a third inner-leaflet-associated binding site not found in exporters (Yang and Murphy, 

2009).  This site is predicted to function as a regulatory site that can control the 

switch between apparent uptake and efflux activity.  In this model, at low intracellular 

auxin concentrations, the regulatory binding site is unoccupied and ABCB4 is open to 

the apoplast. In this state ABCB4 has been predicted to mediate auxin uptake.  Upon 

increased intracellular auxin levels, via putative transporter-mediated or endogenous 

uptake, and/or passive diffusion, the site is predicted to become occupied by auxin, 

inducing a conformation change in ABCB4 to inward/cytosol facing and allowing for 
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export activity to occur. This concentration-dependent regulation or efflux activation 

appears to be unique to ABCB4, as ABCB1 and ABCB19 actually show increased 

efflux activity when auxin levels decrease (Geisler et al., 2005; Bouchard et al., 

2006). 

Re-Evaluation of the Data: Truly Reversible or Simply Control of Efflux? 

While only a handful of ABCB transporters have been characterized to date, 

enough data has been produced to force us to ask a critical question: do ABCB 

transporters actually function in substrate uptake? While it is impossible to know for 

certain at this time a number of key concepts from ABCB4 suggest that this is not the 

case. 

Increased free IAA levels in the root apex of abcb4 mutants and apolar 

localization of ABCB4 in the root tip is consistent with a role in auxin export out of 

the root tip to the epidermis (Santelia et al., 2005; Terasaka et al., 2005). In 

gravitropism assays abcb4 mutants show enhanced gravitropic bending and more 

diffuse auxin accumulations in the epidermis (Lewis et al., 2007), while pin2 exhibits 

reduced bending and auxin accumulation at the root tip (Chen et al., 1998). This, 

along with the basal localization of ABCB4 in the elongation zone of the epidermis 

(Terasaka et al., 2005), is consistent with a role in restricting auxin to the elongation 

zone until it is no longer needed for cell elongation. Basipetal auxin transport from 

the root tip is reduced in abcb4 mutants (Terasaka et al., 2005; Lewis et al., 2007; 

Kubeš et al., 2012), also supporting a role in efflux. In trichoblast-forming epidermal 

cells, ABCB4 on the PM increases as the root hair elongates and decreases after 

elongation stops, and abcb4 mutants exhibit longer root hairs than wild-type (Kubeš 
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et al., 2012).  This suggests that ABCB4 is involved in efflux and removal of auxin 

from root hairs when root hair elongation is complete. 

Studies in Arabidopsis roots reveal that uptake into the root tip is reduced in 

abcb4 mutants (Santelia et al., 2005; Kubeš et al., 2012) and that overexpression is 

not different than wild-type (Kubeš et al., 2012). Further, auxin uptake into the 

epidermis distal to the root tip, where auxin levels are decreased and ABCB4 would 

be expected to function as an uptake transporter, is not different in abcb4 mutants 

(Santelia et al., 2005).  These results suggest that the difference in apparent ABCB4-

mediated uptake into the root apex is a consequence of an altered auxin gradient 

between the root tip and elongation zone. 

Measuring transport directionality at the cellular level (i.e. uptake or efflux) in 

planta is not yet possible with modern techniques.  Instead, transport assays using 

homologous or heterologous unicellular systems are performed. The issue here lies 

with what is actually measured in these systems: when apparent uptake is observed in 

assays, what is actually being measured is total cellular accumulation; a combination 

of endogenous and putative transporter mediated uptake, substrate embedded within 

the PM, and substrate bound to the transporter.  In no case can we specifically 

separate uptake transport activity. If ABCB4 is initially open toward the apoplast, as 

current models suggest, then binding of substrates to the transporter and/or collection 

of extracellular substrate and partitioning into the PM without actual active substrate 

uptake may occur. This would support findings that putative uptake is less specific 

than export activity, and that uptake activity is low (Yang and Murphy, 2009; Kubeš 

et al., 2012). 
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This suggests that, rather than ABCB4 being a conditionally reversible 

transporter, ABCB4 export activity is regulated by intracellular auxin concentrations 

(Fig. 2.3). In this model ABCB4 would remain in its outward facing “resting state” at 

low intracellular auxin concentrations. ABCB4 would not actively uptake auxin, 

however, auxin could accumulate within the cell via lipophilic diffusion and 

endogenous auxin transport.  Collection of auxin from the apoplast by binding to 

ABCB4 exposed to the apoplast and partitioning into the PM may increase diffusion 

rates and cellular accumulation, hence the apparent uptake activity observed. When 

threshold levels of intracellular auxin are reached, the third inner leaflet binding site 

becomes occupied and conformational changes in ABCB4 allow for export activity to 

begin.  This controlled efflux would allow for the formation of auxin maxima and 

downstream auxin signaling events to occur and hold off export until auxin is no 

longer needed for physiological responses.  Additionally, this regulation would also 

conserve energy, as ATP utilization would only occur when needed. This model 

likely applies to ABCB21 as well. Homologous and heterologous expression data 

show that ABCB4 and ABCB21 behave in a very similar manner.  The lack of 

characterization in plants, however, makes the interpretation and physiological 

relevance of this data difficult to interpret. 
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Figure 2.3. Proposed model for ABCB4 mediated accumulation and activation of 

efflux. (1) ABCB4 is in its outward facing conformation when intracellular auxin 

concentrations are low. Protonated IAA can enter the cell by lipophilic diffusion or by 

binding to ABCB4, which collects IAA from the apoplast and accelerates diffusional 

uptake. (2) Once threshold intracellular auxin levels are reached, IAA binds to the 

regulatory binding site in ABCB4, (3) which causes a conformation change from 

outward/apoplast facing to inward/cytoplasm facing and allows export to occur. The 

export cycle continues until (4) intracellular auxin drops below the threshold level. 

When this occurs the regulatory site becomes unoccupied and ABCB4 returns to its 

outward facing “resting state” conformation. 
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While studies have only shown apparent uptake activity, it is suspected that 

CjABCB1 functions in a similar concentration dependent manner as ABCB4. Studies 

characterizing berberine uptake activity in CjABCB1 has been conducted in C. 

japonica cell cultures, xenopus oocytes and yeast (Shitan et al., 2003). Berberine, 

however, is toxic to S. cerevisiae and, like what is seen with ABCB4, this toxicity 

may obscure efflux activity. Assays of xenopus oocytes incubated in the presence of 

berberine or preloaded with berberine showed cells expressing CjABCB1 

accumulated and retained more berberine than controls. In both of these cases levels 

of intracellular berberine may not have reached the threshold needed to activate 

export activity. 

The model proposed for accumulation and controlled export of amphipathic 

substrates by Arabidopsis ABCB4 and ABCB21 may not be applicable to simple 

organic acids such as malate and citrate that are associated with Arabidopsis ABCB14 

(Lee et al., 2008). Malate and citrate are highly soluble and not expected to interact 

with binding sites associated with the models of substrate accumulation proposed 

herein. Ongoing structural and mutational analyses are required to develop testable 

models of ABCB14 activity. 

Conclusion 

ABCB transporters with apparent uptake activity are, thus far, unique to the 

plant kingdom and serve vital roles in regulating plant growth and development. High 

sequence similarity and shared overall architecture throughout the ABCB protein 

family suggest a functional divergence from export specific transporters. Several 

structural features are unique to these transporters and may function in regulating 
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protein-protein interactions, substrate specificity, and transport activity. In particular, 

models identify a putative regulatory substrate binding site that may alter transporter 

conformation and control the concentration dependent shift from apparent uptake to 

efflux. 

Data suggests that some ABCB transporters have apparent uptake activity, 

however, experimental limitations of plant and non-plant based systems make this 

observation less than conclusive. The example provided by ABCB4 suggests that the 

uptake activity seen in homologous and heterologous unicellular systems may be an 

increase in accumulation by transporter-assisted diffusion or simply substrate bound 

to the outward facing and overexpressed transporter. This suggests that, rather than 

having “reversible” uptake and efflux activity, ABCB4 export is regulated by 

intracellular auxin concentrations and may contribute to ATP-independent auxin 

accumulation. Characterization of additional transporters with differing substrates, as 

well as in depth structural modelling and mutational analyses are needed to provide a 

better understanding of the mechanisms and regulation of substrate transport in 

ABCB transporters.   
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Chapter 3. Arabidopsis ABCB21 contributes to rootward auxin streams by 

regulating auxin levels in the seedling pericycle 

Jenness et al., manuscript in preparation 

 

Summary 

 Rootward transport of the phytohormone auxin is essential for polar growth in 

seedlings. The ATP-binding cassette transporters ABCB1 and ABCB19 function 

coordinately mediate loading of auxin in excluding auxin from the shoot apex where 

auxin is synthesized and maintaining the rootward transport stream by restriction to 

the central vasculature. High levels of ABCB19 and compensatory expression in 

abcb1 suggests ABCB19 is the primary ABCB auxin transporter. Several lines of 

evidence suggests one or more ABCB transporter supplements the roles of ABCB19 

and ABCB1 in seedlings. In this study, ABCB-RNAi knockdown and abcb mutants 

were screened for auxin related phenotypes and defects in auxin transport. From these 

analyses, a role for ABCB21 in retaining auxin to within the rootward auxin transport 

stream by preventing leakage into the pericycle was identified. 

Introduction 

The generation and maintenance of local and global gradients of the 

phytohormone auxin (indole-3-acetic acid; IAA) play fundamental roles in 

embryogenesis, germination, and seedling establishment (Zazímalová et al., 2010). In 

early seedling growth, a central rootward auxin stream is necessary for processes 

including hypocotyl and root elongation, cotyledon expansion, lateral root 



 

 

43 
 

development and outgrowth, and tropic responses to light and gravity (Reviewed in 

Peer et al., 2011). In more mature stages of plant growth, phloem transport makes a 

contribution to auxin movement (Swarup et al., 2001; Marchant et al., 2002). 

However, in young Arabidopsis seedlings, the rootward polar auxin transport stream 

can be primarily attributed to a fundamental cell to cell process. With apoplastic pH 

(~5.5), ~15% of IAA (pKa 4.75) is protonated and can enter cells through lipophilic 

diffusion (Parry et al., 2001). The remaining anionic IAA (~85%) enters cells via 

AUXIN RESISTANT1/LIKE AUX1 (AUX1/LAX) uptake permeases (Bennett et al., 

1996). Anionic IAA then exits cells via PIN-FORMED (PIN) efflux carriers and 

ATP-Binding Cassette subfamily B (ABCB) efflux transporters (Reviewed in 

Zazímalová et al., 2010). Polarized localization of some PIN proteins, particularly 

PIN1, provides a cellular vector for efflux and, thus, the direction of the overall polar 

stream. 

In 5-7 day Arabidopsis seedlings, a new pulse of auxin production at the shoot 

apex is  transported directionally to the root tip (Peer et al., 2014). This occurs after 

the seedling has undergone vascular differentiation (Busse and Evert, 1999) but 

before the root system gains the competence to synthesize auxin at 9-10 days 

(Bhalerao et al., 2002). Excision experiments have shown this pulse of auxin drives 

lateral root emergence and outgrowth during early seedling establishment (Bhalerao 

et al., 2002). 

Analysis of expression and transport in wild type and mutant Arabidopsis 

seedlings indicates that isotropically-localized ABCB1 and ABCB19 function in 

loading of auxin into the rootward auxin transport stream by exclusion from the shoot 
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apex and restriction of auxin to the vasculature in distal regions.  Loss of ABCB1 and 

ABCB19 results in ~25% and >50% reductions in rootward transport, respectively, 

compared to a reduction of ~30% in pin1 (Blakeslee et al., 2007). Rootward auxin 

transport is reduced ~60-75% in the severely dwarfed abcb1abcb19 double mutant 

(Blakeslee et al., 2007). Despite these severe reductions, abcb mutants do not show 

the defects in embryo- or organogenesis that are observed in many pin mutants 

(Benková et al., 2003; Friml et al., 2003). Instead, abcb mutants exhibit morphogenic 

phenotypes that can be attributed to mis-regulation of cell elongation and expansion 

(Noh et al., 2001). 

FK506-BINDING PROTEIN 42/TWISTED-DWARF1 (FKBP42/TWD1) is 

required for trafficking of ABCB1 and ABCB19 from the endoplasmic reticulum and 

subsequent functionality at the plasma membrane (Geisler et al., 2003; Wu et al., 

2010). Auxin transport in twd1 is reduced an additional ~10-15% compared to 

abcb1abcb19, which is reflected in its more severely stunted growth (Geisler et al., 

2003; Pérez-Pérez et al., 2004). FKBP42 is also required for proper trafficking and 

functionality of ABCB4 (Wu et al., 2010), a conditional auxin transporter that 

exhibits auxin uptake activity at low intracellular auxin levels and efflux at increased 

internal auxin concentrations (Santelia et al., 2005; Terasaka et al., 2005; Cho et al., 

2007; Lewis et al., 2007; Yang and Murphy, 2009; Kubeš et al., 2012). ABCB4, 

however, is primarily localized to the root epidermis and abcb4 mutants exhibit only 

slight reductions in rootward auxin transport in hypocotyls or roots (Terasaka et al., 

2005). 
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As no interaction between FKBP42 and PIN or AUX1/LAX transporters has 

been observed (Bouchard et al., 2006; Wu et al., 2010) and the partial reversibility of 

the twd1 ‘super-twisting’ phenotype by the auxin transport inhibitor 1-

naphthylphthalamic acid (NPA) (Wu et al., 2010; Wang et al., 2013), it has been 

hypothesized that the observed difference between abcb1abcb19 and twd1 is the 

result of at least one additional unidentified ABCB transporter that functions in 

rootward auxin transport. The Arabidopsis genome encodes 22 full-length ABCB 

transporters, including one pseudogene ABCB8 (Verrier et al., 2008). Structural 

modelling and sequence analyses (Knoeller et al 2010; Bailly et al., 2011) identify 

ABCB2, 6, 10, 20, and 21 as possible candidates for this function. However, ABCB2 

does not appear to transport auxin (Yang and Murphy, 2009) and both ABCB2 and 10 

showed no interaction with TWD1/FKBP42 in yeast two- hybrid assays (Geisler et al, 

2003).  

ABCB21, the closest homolog of ABCB4, has been shown to function as a 

conditional auxin transporter in protoplasts and budding yeast and is expressed in the 

root vasculature, cotyledons, leaves and organ junctions and (Kamimoto et al., 2012). 

However, in that study, no obvious phenotypes were observed in RNAi or T-DNA 

insertion lines and auxin transport in planta was not investigated. Expression and 

direct auxin transport analyses have also been implicated  ABCB11, ABCB14 and 

ABCB15 in rootward auxin transport in mature inflorescences (Kaneda et al., 2011). 

However, disorganization of the vascular bundles in mutants lacking the guard cell 

malate/citrate importer ABCB14 suggests an uderlying structural defect not directly 

relatd to tranport processes as been described in other mutants with disrupted 
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vasculature (Surpin et al., 2003). Rootward auxin transport in abcb11 was not 

significantly reduced, however, and an examination of the abcb11 allele 

(Salk_094249) described in that study indicates that the T-DNA insertion is actually 

located in the highly similar ABCB11 paralog ABCB12. 

Here, the 21 ABCB Arabidopis transporters were analyzed to determine if 

they contribute to seedling rootward auxin transport. Previous reports and analyses of 

expression datasets were used for initial categorization. ABCB-RNAi knockdown and 

abcb mutants were then analyzed for reduced auxin transport in seedlings. From these 

analyses ABCB21 could be clearly identified as an auxin transporter involved in 

maintaining the rootward auxin transport stream in seedling roots during seedling 

establishment. 

Results 

Exclusion of auxin mediated by ABCBs at the plasma membrane 

ABCB1 and ABCB19 function coordinately in loading of IAA into the 

rootward stream at the shoot apex and restriction of IAA to the vasculature in distal 

regions (Blakeslee et al., 2007; Mravec et al., 2008). Structural modelling identifies 

two distinct sets of auxin binding sites in these transporters: plant kingdom specific 

binding sites associated with the inner-leaflet-cytosol interface that are believed to 

mediate specific auxin efflux; and sites situated within the membrane bilayer that 

correspond to sites associated with polyspecific substrate exclusion in mammalian 

ABCB1/MDR1/PGP (Bailly et al., 2011). The closest mammalian homolog of 

Arabidopsis ABCB1 and ABCB19, P-glycoprotein (PGP1/MDR1/ABCB1), is 
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proposed to function as a “hydrophobic vacuum cleaner”, continuously pumping 

substrates from within the membrane bilayer to prevent uptake into cells (Higgins and 

Gottesman, 1992; Gottesman and Pastan, 1993). It has been hypothesized that 

ABCB1 and ABCB19 also function in this manner to prevent reuptake into source 

cells where auxin biosynthesis is high and to restrict IAA to within transport streams 

by preventing entry into neighboring cell files. This function is consistent with high 

levels of expression in shoot apex and leaf primordia (Fig. 3.1 A and B), and cells 

bounding the central cylinder in the hypocotyl and root (Fig. 3.1 A and C). 

When expressed in S. pombe, ABCB19 exhibits greater efflux activity than 

PIN1 if 3H-IAA is kept in the cell suspension during transport assays (Yang and 

Murphy, 2009). However, if 3H-IAA is preloaded into cells and the radioactive 

substrate washed out of the external media, ABCB19 activity is less than that of PIN1 

(Fig. 3.1D). This suggests that when external auxin is high, ABCB19 exhibits a 

combination of efflux and exclusion activity, but when external auxin levels low 

(cells preloaded and washed) ABCB19 exclusion activity is reduced. This 

exclusionary role becomes more apparent with the synthetic auxin 2,4-

dichlorophenoxyacetic acid (2,4-D), which is poorly transported in planta (Jacobs et 

al., 1966; Brown and Phillips, 1982; Ito, 2006) or by ABCB19 heterologously 

expressed in HeLa cells (Titapiwatanakun et al., 2009). When 3H-2,4-D is added to 

cold S. pombe cells, no ABCB19 mediated efflux is observed (Fig. 1E). However, 

when 3H-2,4-D is added to cells kept at room temperature, ABCB19 reduces 3H-2,4-

D accumulation ~30%, indicating ABCB19 exclusion of 2,4-D is predominant under 

these conditions. These results support preventative reuptake in auxin producing cells 
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in the shoot apex and retention of auxin from the rootward transport stream by 

ABCB19 bounding the seedling central cylinder (Blakeslee et al., 2007; Mravec et al., 

2008). 

 

 

Figure 3.1. Cellular exclusion is a primary function of ABCB19. (A) In shoots, 

ABCB19-GFP is expressed primarily in leaf primordia and tissue layers bounding the 

central cylinder. (B) Hand sections through the apical region show ABCB19-GFP 

associated with the vasculature in regions below the shoot apical meristem. (C) In 

roots, ABCB10-GFP is observed in cells bounding the rootward auxin transport. (D) 



 

 

49 
 

3H-IAA transport assay of ABCB19 and PIN1 in S. pombe. Data shown are means ± 

SD (n = 4-5). * indicate statistical difference by Student’s t test (p < 0.05). (E) 3H-

2,4-D transport assay of ABCB19 in S. pombe. Data shown are means ± SD (n = 6). * 

indicate statistical difference by Student’s t test (p < 0.05). 

 

ABCB21 maintains auxin transport streams by restricting auxin to within the 

vasculature 

ABCB21, the paralog to ABCB4, was previously shown to function as a 

conditional uptake/efflux auxin transporter and to be expressed primarily in the root 

pericycle in seedlings (Kamimoto et al., 2012). Analysis of RNAi and T-DNA 

insertion lines, however, did not lead to a conclusive function in planta. Since 

ABCB21 bounds the central cylinder it was hypothesized to function similarly to 

ABCB19 in keeping auxin within the rootward transport stream. ABCB21 was 

therefore investigated for a role in auxin transport during seedling growth. 

ABCB21 was shown to exhibit conditional uptake/efflux activity in 

Arabidopsis mesophyll protoplasts and when expressed in S. cerevisiae (Kamimoto et 

al., 2012). This activity was validated by expressing ABCB21 in S. pombe (Fig. 3.2 

A). Cells expressing ABCB21 accumulated ~25% more 3H-IAA after 6 minutes than 

control lines. However, after 10 minutes cells expressing ABCB21 accumulated 

~23% less 3H-IAA than controls. These results suggest that, like ABCB4, ABCB21 

exhibits initial IAA uptake activity and efflux is activated by reaching a threshold 

intracellular IAA concentration. The timing of the switch between uptake and efflux 
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is very similar between ABCB21 and ABCB4 (Yang and Murphy, 2009), suggesting 

they may share similar transport and/or regulatory mechanisms. 

 

 

Figure 3.2. Activity and expression of ABCB21. (A) ABCB21 exhibits conditional 

auxin uptake/efflux in S. pombe similar to ABCB4. Data shown are means ± SD (n = 

4). * indicate statistical difference by Student’s t test (p < 0.05). In shoots, 

proABCB21:GUS expression is observed in the (B) cotyledonary node, petioles and 

cotyledons. In roots, proABCB21:GUS is observed in the (C) central cylinder. (D) 

Cross sections and (E) longitudinal sections confirm expression is primarily 

associated with the root pericycle. (F) proABCB21:GUS expression is observed in the 

upper two-thirds of the root. 
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ABCB21 expression was previously analyzed using a promoter sequence 0.75 

kb upstream of the ABCB21 start codon fused to the β-glucuronidase (GUS) reporter 

(Kamimoto et al., 2012). This promoter, however, included 122 nucleotides of the 3’ 

UTR of the upstream gene (At3g62160). To see if this fragment had any effect on 

expression a shorter 0.625 kb promoter was fused to GUS and transformed into Col-

0. Overall, no observable expression differences were seen between the two 

promoters. Consistent with the previous report, ABCB21 is expressed on the abaxial 

side of cotyledons, the petioles, the cotyledonary node and the vasculature of 5-10 

day seedlings (Fig. 3.2 B and C). Cross and longitudinal sections show that 

expression is primarily within the pericycle (Fig. 3.2 D and E). Expression in the 

pericycle is continuous throughout the top two-thirds of the root, but absent in lateral 

root primordia and emerging lateral roots (Fig. 3.2C and F). Prior to 5 days and after 

10 days expression in the pericycle is mostly absent and the GUS signal that is 

present is highly variable and discontinuous. 

The previously described allele of ABCB21, abcb21-1 (WiscDsLox1C2), 

forms a partial transcript and, potentially, a partially functional transporter (Fig. S3.1 

A and B) (Kamimoto et al., 2012). Therefore, a new allele, abcb21-2 (Gabi_954H06) 

was obtained. abcb21-2 also forms a partial transcript, however, the T-DNA insertion 

is further upstream and would be expected to further reduce any potential 

ATPase/transport activity (Fig. S3.1 A and B). 
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Figure S3.1. Isolation of abcb21-2. (A) ABCB21 gene model indicating T-DNA 

insertion positions. (B) ABCB21 expression in abcb21-1 and abcb21-2. Data shown 

are means ± SD (n = 3). 

 

To identify a functional role for ABCB21, abcb21-1 and abcb21-2 were 

analyzed for root phenotypes. abcb21-2 5-day primary roots are shorter than Col-0 

but slightly longer at 10 and 14 days (Fig. 3.3 A). abcb21-1 showed an intermediate 

phenotype consistent with the hypothesis that it may for a partially functional 

transporter. In 7-day seedlings the number of lateral root primordia (stage I-IV) in 

both abcb21 mutants is not different from Col-0, but the number of unemerged and 

emerged (stage V-VIII) lateral roots is reduced in abcb21-2 (Fig. 3.3 B). Neither 

abcb21 allele show differences in lateral root primordia formation or lateral root 

emergence in 10-day seedlings (Fig. S3.2), which is consistent with the previous 

report (Kamimoto et al., 2012). 
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Figure 3.3. Loss of ABCB21 reduces the supply of auxin to emerging lateral 

roots. (A) abcb21 seedlings have shorter primary roots are shorter after 5 days and 

longer after 14 days. Data shown are means ± SD (n = 40-50), * Student’s t test 

p<0.05 vs Col-0. (B) abcb21 seedlings have fewer Stage V-VIII lateral root. Data 

shown are means ± SD (n = 10). * indicate statistical difference by Student’s t test (p 

< 0.05). (C) Auxin transport from the RSTZ to the root apex is reduced in abcb21. 

Data shown are means ± SD (n = 3 pools of 10). * indicate statistical difference by 

Student’s t test vs Col-0 (p<0.05). (D) Quantification of free IAA levels in 5.5 day 

light grown abcb21 mutants. Data shown are means ± SD (n = 3 pools of 10). * 

indicate statistical difference vs Col-0 by Student’s t test (p < 0.05). (E) DR5:GUS is 

reduced in abcb21 lateral root tips. 
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Figure S3.2. Lateral root number in 10-day seedlings. Data shown are means ± SD 

(n = 10). 

 

The timing of expression in the pericycle, and defects in primary root 

elongation and lateral root development are indicative of an ABCB21 role in 

regulating rootward auxin transport in seedlings. To test this, transport of 3H-IAA was 

measured in 5.5-day abcb21 seedlings. Rootward transport of 3H-IAA from the RSTZ 

to the root tip is reduced by ~14% and ~24% in abcb21-1 and abcb21-2, respectively 

(Fig. 3.3 C). No difference in transport of 3H-IAA from the shoot apex to the RSTZ 

was detected (data not shown). Quantification of free IAA levels in abcb21 indicate 

auxin is increased in the hypocotyl and upper root, and reduced in the root apex (Fig. 

3.3 D). This suggests the reduction in rootward auxin transport in abcb21 causes 

auxin to back up and pool in the upper root and hypocotyl. This pooling was not 

enough to activate the DR5:GUS auxin reporter in either abcb21 background. 

However, DR5:GUS signals are reduced in emerging and newly emerged indicating 

defect in lateral root outgrowth is due to lower auxin levels (Fig. 3.3 E). 
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In addition to expression in the root, ABCB21 expression is highest at the base 

of the cotyledons, the petioles and the cotyledonary node (Fig. 3.2 B). Due to this 

expression abcb21 mutants were tested to see if ABCB21 mediates transport of auxin 

from the cotyledons into the rootward transport stream. 3H-IAA was placed in the 

center of one cotyledon and the hypocotyl and root were collected after 2 hours (Fig 

3.4 A). 3H-IAA transport in abcb21-2 is reduced by > 50%. Transport in abcb21-1 is 

reduced by ~25% but is not statistically different due to a high amount of variability. 

Removal of the cotyledons alone, or cotyledons and petioles in light grown seedlings 

reduces phototropic bending ~20% and ~40%, respectively (data not shown). No 

difference in phototropic bending was observed in post-photomorphogenic abcb21 

seedlings (Fig. 3.4 B). Although the cotyledons have been shown to have only a 

minor role in supplying auxin to the rootward auxin transport stream, these results 

suggest ABCB21 contributes to this process to some extent. 
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Figure 3.4. Cotyledon-hypocotyl auxin transport and phototropic bending in 

abcb21. (A) Cotyledon-to-hypocotyl auxin transport is reduced in abcb21. Data 

shown are means ± SD (n = 3 pools of 12). * indicate statistical difference by 

Student’s t test (p<0.05). (B) Phototropic bending is not different from Col-0 in 

abcb21. Data are means ± SD for 2 independent replicates (n > 20 for 2 replicates). 

 

One of the hallmark phenotypes of twd1 is the ‘super-twisting’ of the root 

(Wang et al., 2013). Reports of epidermal root twisting in abcb1abcb19 double 

mutants are variable (Wu et al., 2010; Wang et al., 2013). In an abcb1-1abcb19-101 

(Col-0) background, primary roots exhibit increased waving and twisting compared to 

Col-0 but evidence of twd1-like ‘super-twisting’ is not observed (Fig. 3.5 A). To see 
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if additional loss of abcb21 would increase root twisting, abcb1abcb19abcb21-2 

triple mutants were generated. Additionally, since ABCB4 has also been shown to 

interact with FKBP42, triple abcb1abcb19abcb4-1 mutants were also made. No twd1-

like ‘super-twisting’ was observed in either triple mutant (Fig. 3.5 A). Triple abcb21 

and abcb4 mutants had a partial reversion of the enhanced primary root elongation 

observed with abcb1abcb19 but the reduction was not as great as in twd1 (Fig. S3.3). 

This supported the idea that ABCB4, and possibly ABCB21, contributes to the twd1 

phenotypes but also suggested that there were other ABCB transporters involved in 

rootward auxin transport in seedlings. 
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Figure 3.5. Root twisting in b1b19b21 and expression of ABCB transporters in 

seedlings. (A) Bright field images showing root twisting in Col-0, abcb1abcb19, 

b1b19b21-2, b1b19b4-2, and twd1-3 seedlings. Contrast and brightness were adjusted 

using Photoshop. (B) qRT-PCR of ABCB transporters in 7-day Col-0 seedlings. Data 

shown are means ± SD (n = 3). 
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Figure S3.3. Primary root growth in abcb triple mutants is twd1-like. 7-day 

primary root lengths. Data shown are means ± SD (n = 12-14). Letters represent 

statistical difference by ANOVA p < 0.001, Tukey’s post-hoc p < 0.05. 

 

ABCB transporter expression 

Phylogenetic analysis reveals ABCB transporters cluster into homologous 

pairs and sets (Geisler and Murphy, 2006; Knöller et al., 2010). Expression by qRT-

PCR and analysis of the TraVA RNA-seq database reveal that within these sets one 

transporter is generally expressed to higher levels than the others (Fig. 3.5 B; Fig. 

S3.3 A and B). This difference in expression explains the reduction in phenotypic 

severity observed in abcb1 compared to abcb19 (Noh et al., 2001; Blakeslee et al., 

2007). The relative expression levels of both ABCB1 and ABCB19 compared to all 

others validate their roles in auxin transport and help to explain why the functions of 

the other ABCB transporters remain elusive. 

From the expression data, ABCB2, ABCB14, ABCB6, ABCB15 and ABCB11 

are expressed to levels that merit further investigation (Fig. 3.5 B; Fig S3.4 A and B). 

Although ABCB3 and ABCB5 showed moderate expression by qRT-PCR, melting 
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curve analysis and visualization of the PCR products suggest non-specific 

amplification. RNA-seq and microarray data both support that ABCB3 and ABCB5 

are not expressed in seedlings. A previous study reported reduced auxin transport in 

abcb12 (SALK_094249 annotated as abcb11) inflorescence stems (Kaneda et al., 

2011). While ABCB12 does not appear to be expressed to any appreciable level, 

single mutants of ABCB12 was included in a subsequent analysis. ABCB2 does not 

transport auxin in S. pombe (Yang and Murphy, 2009) and expression of ABCB2 and 

ABCB10 are relatively low. However, since ABCB2 and ABCB10 are closely related 

to ABCB1 and ABCB19 (Knöller et al., 2010) both were analyzed. abcb14 and abcb15 

were also reported to have reduced auxin transport in inflorescences but function in 

seedlings was not examined (Kaneda et al., 2011). 
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Figure S3.4. ABCB transporter expression in seedlings from the TraVA RNA-

seq database. Expression data from the TraVA RNA-seq database for (A) 1-day and 

(B) 7-day seedlings. 

 

Auxin transport in cluster specific ABCB-RNAi lines 

Due to possible functional redundancy and compensatory expression, RNAi 

lines were generated to target the sets of ABCB transporter paralogs. Two 

independent homozygous lines were analyzed for each ABCB2/10RNAi, 

ABCB3/5/11/12RNAi, ABCB13/14RNAi, and ABCB15/16/17/18RNAi construct. qRT-

PCR was performed to verify knockdown of each target gene. Since ABCB19 plays a 

significant role in mediating rootward auxin transport, its expression was also 

monitored. ABCB6/20RNAi lines showed effects on several off target genes and was 
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not included. Reduced expression of the target genes was confirmed without a major 

effect on ABCB19 for ABCB2/10-, ABCB3/5/11/12-, and ABCB13/14RNAi (Fig. 3.6 

A-C). Expression of the target genes in ABCB15/16/17/18RNAi was variably reduced 

and ABCB19 expression was also negatively regulated (Fig. 3.6 D). The greatest 

reduction in 3H-IAA transport was observed in ABCB3/5/11/12RNAi from the shoot 

apex to the root-shoot transition zone (RSTZ) (Fig. 3.6 F). Transport was reduced to a 

lesser extent in ABCB2/10RNAi (Fig. 3.6 E), but was not different from vector 

controls in ABCB13/14RNAi (Fig. 3.6 G). Transport to the RSTZ and root apex in 

ABCB15/16/17/18RNAi was also variably reduced (Fig. 3.6 H), however, these may 

be an effect of reduced ABCB19 expression. Further efforts to reduce 

ABCB15/16/17/18 expression via 21-mer RNAi yielded similar results. 
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Figure 3.6. Expression and transport in ABCB-RNAi lines. (A-D) qRT-PCR of 

ABCB-RNAi lines. Data shown are means ± SD (n = 3). (E-H) Auxin transport in 

ABCB-RNAi lines. Data shown are means ± SD (n = 3 pools of 10). * indicate 

statistical difference from vector controls by Student’s t test (p < 0.05). 
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Since transport was reduced in ABCB2/10- and ABCB3/5/11/12RNAi lines and 

ABCB2, ABCB10 and ABCB11 are expressed in seedlings, single mutants of these 

transporters were further analyzed. Of the ABCB15/16/17/18 cluster only ABCB15 is 

expressed in seedlings, therefore, abcb15 was included. abcb12, abcb14 were also 

analyzed due to previous report of reduced transport in abcb12 and abcb14 

inflorescence stems (Kaneda et al., 2011). 

Phenotypes and transport in ABCB single mutant lines 

abcb single mutants were then screened for differences in auxin related 

phenotypes including hypocotyl elongation under low light (50-60 uE), primary root 

elongation, and lateral root density (Table 1). Overall phenotypic differences from 

Col-0 were minor. abcb2 mutants exhibit slightly longer 5-day primary root length 

but are not different from Col-0 at 7 or 10 days. abcb10 mutants exhibit increased 

hypocotyl elongation and decreased 5-day primary root length compared to Col-0. 

The most dramatic phenotype was observed was reduced primary root elongation in 

abcb11. abcb6, abcb12, abcb14, and abcb15 mutants were not different from Col-0 in 

any of the phenotypes. 
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Table 1. Single mutant phenotypes. 

 Light grown 
hypocotyl 

length 

5 day root 
length 

7 day root 
length 

10 day root 
length 

10 day LR 
density 

abcb2 n.d. 111.8 ± 14.5% n.d. n.d. n.d. 
abcb6 n.d. n.d. n.d. n.d. n.d. 
abcb10 111.8 ± 3.6% 89.8 ± 3.5% n.d. n.d. n.d. 
abcb11 n.d. 87.6 ± 12.1% 86.1 ± 16.5% 88.4 ± 9.7% n.d. 
abcb12 n.d. n.d. n.d. n.d. n.d. 
abcb14 n.d. n.d. n.d. n.d. n.d. 
abcb15 n.d. n.d. n.d. n.d. n.d. 

% of Col-0 ± SD, only % significantly different from Col-0 (<0.05) by Student’s t test 

are shown. n.d. = not different 

 

To assess if the candidate ABCB transporters contribute to rootward auxin 

movement, transport of 3H-IAA in 5.5-day seedlings was measured. 3H-IAA transport 

from the shoot apex to the RSTZ was significantly reduced in abcb11 and abcb14 

compared to Col-0, but to a much lesser extent than in abcb19 (Fig. 3.7A). No 

reduction was observed in abcb1, abcb2, abcb6, abcb10, or abcb12. The lack of 

reduction in abcb1 can be attributed to compensation by ABCB19, as expression is 

increased ~4.5 times in the abcb1 background (Fig. S3.5). ABCB14, however, was 

originally identified as a malate/citrate transporter in guard cells (Lee et al., 2008). 

Competition with malate (5:1 molar ratio) reduced rootward 3H-IAA transport in Col-

0, abcb1, abcb6, abcb10, abcb11, abcb12, and abcb19 to a similar extent (Fig. 3.7 

A). No reduction was observed in abcb14, suggesting that transport of malate, and not 

auxin, is its primary function of ABCB14. Malate competition is also observed in 

abcb2, suggesting ABCB2 may be able to transport malate as well. 3H-IAA transport 

from the RSTZ to the root tip was not different from Col-0 for any mutants except 
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abcb19 (Fig. 3.7 B). abcb19 showed a very slight decrease in 3H-IAA in the root tip 

and increased levels in above sections. 

 

 

Figure 3.7. Auxin transport assays in abcb mutants seedlings. (A) 3H-IAA 

transport from the shoot apex to the root-shoot transition zone (RSTZ). Means ± SD 

(n = 3 pools of 10). * indicate statistical difference from Col-0 by ANOVA p < 0.001, 

Dunnett’s post-hoc p < 0.05. (B) 3H-IAA transport from the RSTZ to the root tip. 

Means ± SD (n = 3 pools of 10). * indicate statistical difference by ANOVA p < 

0.001, Dunnett’s post-hoc p < 0.05. 
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Figure S3.5. Compensatory expression of ABCB19 in abcb1 but not abcb11 or 

abcb21. Data shown are means ± SD (n = 3 biological replicates, 2 technical 

replicates). 

 

From analysis of expression, FKBP42 interaction, and transport in RNAi lines 

and single mutants, only ABCB11 showed consistent characteristics of an auxin 

transporter. 

Characterization of ABCB11 

Previously, ABCB11 was reported to be expressed in the root vasculature in 

seedlings, however, the promoter used in the study did not include the two 

nucleotides (AT) directly upstream of the ATG start codon (Kaneda et al., 2011). To 

confirm this expression, the 2.104 kb fragment of ABCB11 upstream of the ATG, 

including the AT, was fused to GUS and transformed into Col-0. Contrary to the 

previous report, GUS activity was not observed within the vasculature (Fig. 3.8 A and 

B). Strong GUS staining is observed in the meristematic, transition and elongation 
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zones of the root (Fig. 3.8 A) and diffuse GUS signal is observed in the upper 

portions of the root (Fig. 3.8 B). This result agrees with the microarray data that 

shows expression in the maturation zone, elongation zone and root tip are each ~5X 

greater than the level of expression in the stele (Genevestigator). No staining could be 

detected in the cotyledons, shoot apex, or hypocotyl (Fig. 3.8 C and D). 

 

 

Figure 3.8. Expression and activity of ABCB11. (A) Strong proABCB11:GUS 

expression is observed in the root tip. (B) Diffuse expression is observed throughout 

the rest of the root but not associated with the vasculature. No proABCB11:GUS 
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expression is observed in the (C) hypocotyl or (D) cotyledons. (E) No difference in 

shootward auxin transport from the root tip is observed in abcb11 seedlings). Assays 

were conducted as in Kubes et al. (2012). Data shown are means ± SD (n = 3 pools of 

10). (F) Bright field images showing root twisting an abcb1abcb19abcb11 triple 

mutant. Contrast and brightness was adjusted using Photoshop. (G) ABCB11 

mediates export of 3H-IAA when expressed in S. pombe. Data shown are means ± SD 

(n = 4). * indicate statistical difference by Student’s t test (p < 0.05). (H) ABCB11 

mediates export of 3H-benzoic acid when expressed in S. pombe. Data shown are 

means ± SD (n = 4). * indicate statistical difference by Student’s t test (p < 0.05). (I) 

Competition of 3H-IAA with cold benzoic acid (1:1 molar ratio) reduces auxin 

transport to control levels. Means ± SD (n = 4). 

 

Since ABCB11 expression is highest in the root it was hypothesized that the 

reduction in transport in the hypocotyl may be due to disruption of the auxin sink at 

the root tip. Shootward auxin transport from the root tip was therefore measured in 

abcb11-1 (Fig. 3.8 E). Assays were conducted as in Kubes et al. (2012). No 

difference in shootward auxin transport could be detected in abcb11 with auxin 

placed overlaying the columella or the quiescent center. abcb19 was previously 

shown to have a greater decrease in shootward auxin transport compared to Col-0 

when ethylene was added to the system. Ethylene reduced shootward auxin transport 

to a similar extent in Col-0 and abcb11. Like with abcb21 and abcb4, generation of 

an abcb1abcb19abcb11-1 triple mutant slightly reduced primary root elongation 

compared to abcb1abcb19 but no twd1-like root twisting was observed (Fig. 3.8 F). 
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Mutant phenotypes can be masked by upregulation of genetically or 

functionally redundant paralogs (Rensing, 2014). For example, ABCB19 is 

upregulated 4-5 times in abcb1 (Fig. S3.5; Blakeslee et al., 2007). ABCB12 is only 

1,090 bp downstream of the ABCB11 stop codon. While little ABCB12 expression 

could be detected in Col-0 seedlings (Fig 3.5 B; Fig. S3.4), ABCB12 was measured 

for elevated expression in abcb11. ABCB11 transcript levels were below the detection 

limit in abcb11 roots (Fig. S6 A). ABCB12 does not appear to compensate for loss of 

ABCB11 function, as ABCB12 expression is slightly reduced in abcb11 mutants (Fig. 

S3.6 B). Additionally, no compensation by ABCB19 could be detected (Fig. S3.5). 

This suggests that ABCB12 and ABCB19 do not compensate for loss of ABCB11 and 

that ABCB11 may even promote expression of ABCB12. 

 

 

Figure S3.6. ABCB12 does not compensate for loss of ABCB11. Data shown are 

means ± SD (n = 3 biological replicates, 2 technical replicates). 
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To verify that ABCB11 has the capacity to transport auxin 3H-IAA transport 

assays with ABCB11 expressed in S. pombe were performed. Cells expressing 

ABCB11 accumulated ~18% less 3H-IAA after 4 minutes and ~27% less after 6 

minutes, which is comparable to the efflux activity of ABCB19 (Fig. 8G). Transport 

of 3H-benzoic acid was analyzed as a control for specificity. Cells expressing 

ABCB11 accumulated less 3H-benzoic acid, suggesting decreased specificity for IAA 

compared to ABCB19 (Fig. 8H). Competition with benzoic acid (1:1 molar ratio) 

reduced 3H-IAA transport to control levels indicating ABCB11 preferentially 

transports benzoic acid over IAA (Fig. 8I). These results suggest that, like ABCB14, 

ABCB11 has the capacity to transport auxin but may transport alternate substrates in 

vivo. 

Discussion 

The best characterized ABCB transporters, ABCB1, ABCB19 and ABCB4, 

have been shown to function in auxin transport with a possible additional function in 

auxin-activated small anion movement (Noh et al., 2001; Geisler et al., 2005; Kubeš 

et al., 2012). In seedlings, ABCB1 and ABCB19 function coordinately in loading of 

auxin into the rootward transport stream in the shoot apex and restricting auxin to 

within the central cylinder in the hypocotyl and root (Noh et al., 2001; Blakeslee et 

al., 2007; Mravec et al., 2008). ABCB4 is expressed primarily in the root epidermis 

where it regulates shootward auxin transport from the root tip (Terasaka et al., 2005; 

Santelia et al., 2005; Lewis et al., 2007; Kubeš et al., 2012). 

Quantification of expression by qRT-PCR (Fig. 3.5 B) and RNA-seq (Fig. 

S3.4 A and B) reveals ABCB19 is the most abundant transporter in seedlings, 
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followed by ABCB4 and ABCB1. ABCB19 is expressed throughout all tissue layers 

but is highest in the small auxin producing cells in the shoot apical meristem and in 

young leaf primordia, and in cell layers bounding the central cylinder in the hypocotyl 

and root (Fig. 3.1 A-C). In the shoot apex and leaf primordia, where auxin 

biosynthesis is high, PIN proteins mediate the direction of auxin flux (Benková et al., 

2003) while ABCB19 maintains the auxin flow by preventing reuptake. In the 

hypocotyl and root, ABCB19 bounds the central cylinder (Blakeslee et al., 2007; 

Titapiwatanakun et al., 2009), preventing leakage of auxin from the rootward 

transport stream by continuously pumping it back into the stele. This exclusionary 

activity is not trivial as loss of ABCB19 reduces auxin transport by > 50% while loss 

of directional transport by PIN1 is reduced by ~30% (Blakeslee et al., 2007). 

FKBP42/TWD1 interacts directly with ABCB1 and ABCB19 and is required 

for their proper trafficking to and activity on the plasma membrane, and auxin 

transport is reduced ~10-15% more in twd1 than abcb1abcb19. One hypotheses to 

reconcile this difference is that at least one other unidentified ABCB transporter 

mediates rootward auxin transport and interacts with FKBP42. However, interaction 

does not necessarily indicate a function in auxin transport as FKBP42 has also been 

shown to interact with the arsenic and glutathione S-conjugate transporters ABCC1 

and ABCC2 (Geisler et al., 2004). 

 

Function of ABCB21. Lateral root primordia initiation in young seedlings is 

dependent on auxin synthesized in the root tip, however, lateral root emergence is 

dependent on auxin produced in the shoot apical meristem and first true leaves, and to 
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a lesser extent cotyledons, up to 10 days after germination (Bhalerao et al., 2002). At 

this point auxin biosynthesis in the root increases 10-fold and root derived auxin 

regulates both lateral root primordia initiation and lateral emergence (Bhalerao et al., 

2002). ABCB21 is expressed in the root pericycle of 5 to 10 day seedlings, coinciding 

with the pulse of shoot derived auxin transported to the root. Loss of ABCB21 leads 

to a reduction in rootward transport from the RSTZ to the root tip and causes an 

increase in auxin levels in the upper root and hypocotyl. These results are consistent 

with a role for ABCB21 in preventing leakage from the rootward transport stream by 

excluding auxin from entering the pericycle (Fig. 3.9 A). This role is further 

supported by the observation that ABCB21 expression is absent in lateral roots where 

an auxin accumulation is necessary for lateral root primordia formation and lateral 

root outgrowth (Fig. 3.9 B). ABCB21 exhibits conditional auxin uptake and efflux 

when expressed in S. pombe. This suggests ABCB21 may help to initiate a localized 

auxin accumulation for early lateral root development, but is then down-regulated to 

prevent reloading of auxin into the rootward stream. abcb21 mutants show only 

differences in the timing of lateral root emergence, possibly due to an overlap in 

function with ABCB19. ABCB21 also regulates movement of auxin from the 

cotyledons to the hypocotyl (Fig. 3.4 B). Expression of ABCB21 at organ junctions in 

inflorescence stems, leaves, and flowers (Kamimoto et al., 2012) suggests ABCB21 

may have a similar role in mature tissues.  It remains unknown whether ABCB21 is 

exclusively an auxin transporter or if specificity extends to other substrates. 
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Figure 3.9. Model for ABCB21 function in the root. (A) ABCB21 appears to 

function primarily in restricting auxin to within the rootward auxin transport stream. 

Loss of ABCB21 leads to leaking of auxin from the central cylinder, resulting in 

reduced rootward auxin transport. E, epidermis; C, cortex; En, endodermis; P, 

pericycle; V, vasculature. (B) The reduction in auxin transport in the root causes 

pooling of auxin in the upper root and lower hypocotyl, reducing the supply of 

needed for lateral root outgrowth. 

 

Screening of other ABCB transporters. Characterization of single ABCB transporter 

mutants can be complicated due to compensation by paralogous genes. The high level 

of sequence homology between transporters allowed for the use of RNAi to knock-

down multiple transporters with a single construct. Using this method RNAi lines to 

target the pairs/sets of transporters ABCB2/10, ABCB3/5/11/12, ABCB13/14 and 

ABCB15/16/17/18 were generated. ABCB2/10 and ABCB3/5/11/12RNAi lines 

exhibited reductions in rootward auxin transport suggesting at least one transport in 

each group could function as an auxin transporter (Fig. 3.6 E and F). 
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Phenotypic analysis of abcb single mutants showed only minor effects on 

growth and development (Table 3.1). Rootward transport in abcb2, abcb6, abcb10, 

and abcb12 is not different from Col-0 (Fig. 3.7 A and B), suggesting they are not 

auxin transports and/or don’t mediate rootward transport in seedlings. While isolating 

abcb6 lines a modest decrease in inflorescence height was noted. This, along with 

increased expression of ABCB6 and ABCB20 in mature plants, points to a more 

predominant role for these transporters in mature tissues than in seedlings. Rootward 

auxin transport was only reduced in abcb11 and abcb14 single mutants. Competition 

with malate, however, showed that ABCB14 has higher specificity for malate than 

auxin (Fig. 3.7 A). This result is consistent with a previous study that reported 

ABCB14 as a malate and citrate transporter (Lee et al., 2008). Since cellular 

concentrations of malate are over 1,000-fold greater than IAA, ABCB14 mediated 

auxin transport is expected to be minimal in vivo. A more detailed analysis revealed 

ABCB11 is primarily expressed in the root tip and in cell layers outside of the central 

cylinder of the root (Fig. 3.8 A and B). It was hypothesized that the reduction in 

rootward transport in abcb11 hypocotyls was due to defects in the auxin sink in the 

root tip. This does not appear to be the case, as shootward transport is not altered 

(Fig. 3.8 E). ABCB11 is able to transport auxin in S. pombe but benzoic acid is able 

to outcompete auxin (Fig. 3.8 G-I). This suggests ABCB11 may have specificity for 

other substrates in planta. 

 

Conclusions and Outlook. The lack of obvious phenotypes and defects in auxin 

transport are not unexpected as all ABCB transporters are expressed to levels several 
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fold lower than that of ABCB19. This points to the majority of these transporters 

having little to no role in growth and development in the seedling stage. Since 

seedlings lack the complex organs and transport systems that appear to have driven 

the diversification and expansion of the ABCB subfamily, analysis of abcb 

transporter mutants in mature tissues may provide more answers. 

Biochemical characterization of ABCB transporters remains a challenging 

task. While several ABCB transporters have the ability to transport auxin, the 

mechanisms of substrate specificity and the range of substrates for each transporter 

remain largely unknown. Analysis of the mechanisms of specificity and ATPase 

activity will require development of isolated proteoliposome or membrane vesicle 

systems. 

 

Materials and Methods 

Plant material and growth conditions. Seeds were surface sterilized and sown on ¼ 

MS medium (RPI Corp.) containing 0.5% sucrose and 0.8% agar, pH 5.5. Seeds were 

stratified at 4 °C for 2 days then grown under continuous 100 µmol m-2 s-1 light at 

22°C for the times indicated. Lines used are listed in Appendix B. 

 

Confocal Microscopy. Confocal microscopy was performed using an LSM 710 

Laser Spectral Scanning Confocal Microscope (Zeiss) with either a 20x or 40x lens. 

The master gain was always set to less than 800, with a digital gain of 1.9. For 

ABCB19-GFP, 488-nm (5% laser for hypocotyl, 20% for root) was used for 

excitation and emission collected from 493- to 598-nm. For DII-VENUS, 514-nm 
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(20% laser) was used for excitation and emission was collected from 515- to 562-nm. 

All images were processed with ZEN (Zeiss) and Illustrator (Adobe). 

 

Yeast transport assays. Yeast assays were conducted as described in Yang and 

Murphy, 2009. The ABCB21 expression construct was created by amplifying 

ABCB21 with Gateway BP primers (Table S2) and recombining the product into 

pDONRzeo by BP reaction (Thermo Fisher). ABCB21 CDS was then transferred into 

pREP41GW by LR reaction (Thermo Fisher). The ABCB11 expression construct was 

created by amplifying ABCB11 using primers containing NcoI and XmaI restriction 

sites (Table S2). The digested ABCB11 product was ligated into the pREP41 vector 

digested with NcoI and XmaI. Expression vectors were transformed into S. pombe by 

electroporation. 

 

Histochemical staining. The 0.625 kb fragment of ABCB21 and the 1.650 kb 

fragment of ABCB11 upstream of the start codon was cloned into pENTR-D-TOPO 

(Thermo Fisher) then transferred into the Gateway compatible vector pGWB3 

(Nakagawa et al., 2007) by LR reaction (Thermo Fisher). Constructs were 

transformed into Col-0 by floral dip. For GUS staining, tissues were incubated in 

90% acetone for 20 mins on ice, then immersed in staining solution (50 mM sodium 

phosphate buffer, pH 7.0, 0.1% triton X-100, 0.5 mM potassium ferrocyanide, 0.5 

mM potassium ferricyanide, and 1 mM X-gluc) and incubated in the dark at 37°C for 

5-6 hours. Stained samples were cleared with 70% ethanol before imaging. For 

sectioning tissue was dehydrated in a series of tert-butanol (TBA) and embedded in 
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Paraplast Plus. 20 µm sections were prepared using a Leica Reichert-Jung 2030 rotary 

microtome. 

 

Seedling transport assays. Rootward seedling transport assays were conducted as 

described in Blakeslee et al., 2007. Shootward transport assays from the root tip were 

conducted as described in Kubeš et al., 2012. 

 

IAA quantification. Free IAA quantification for abcb21 was conducted as described 

in Novák et al., 2012. Free IAA quantifications for abcb1, abcb19, and abcb1abcb19 

were conducted as described in Zhang et al., 2016. 

 

Cotyledon-hypocotyl transport assays. 5-day seedlings were placed on filter paper 

(Whatman 3MM) saturated with ¼ MS with the hypocotyl and cotyledons not 

touching any surface. Seedlings were allowed to equilibrate vertically in light for 1 

hour. A 6% agarose bead (Collodial Science Solutions, AMB-0601-0010) incubated 

in solution containing 2 µM IAA (1:1 3H-IAA (25 Ci/mmol, ARC) : cold IAA) was 

placed in the middle of one cotyledon per seedling. After 2 hours both cotyledons 

were removed by cutting just below the cotyledonary node using a surgical blade. 3H-

IAA transported from the cotyledons to the hypocotyl and root was measured by 

liquid scintillation counting. 

 

Phototropism assays. Seeds were surface sterilized, sown on ¼ MS medium (RPI 

Corp.) containing 0.5% sucrose and 1% phytagel (Sigma, P8169), then stratified at 
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4°C for 2 days. Plates were placed under 65 μmol m-2 s-1 white light for 24 hours, 

then moved to dark. After seedlings reached 0.3 cm tall they were light treated for 

12h to undergo photomorphogenesis. Seedlings were then returned to dark to undergo 

dark acclimation until they reached approximately 0.7 cm (at least 12h to allow for 

the reset of phot1). For bending assays seedlings were placed in unilateral 0.6-0.9 

μmol m-2 s-1 blue light (Manufacturer) for 8h. Bending angles were measured made 

using ImageJ. 

 

RNA isolation and quantitative real-time PCR (qRT-PCR). For qRT-PCR total 

RNA was extracted using ZR Plant RNA Mini Prep kit (Zymo Research) followed by 

treatment with DNaseI (New England Biolabs). Total RNA (1.5 µg) was used for 

first-strand synthesis using SuperScript III reverse transcriptase (ThermoFisher). 

Real-time PCR was performed on a CFX Connect (Bio-Rad Laboratories) using 

EvaGreen qPCR master mix (Biotium). Primers used are listed in Appendix C. 

Transcript levels normalized against PP2A or ACT2 produced similar results. 

 

Construction of RNAi lines. In order to knock down multiple ABCB genes with one 

RNAi construct, a fragment of 350-470 bp in length was designed to target a unique 

region within the transmembrane domains of all target genes within a given cluster. 

RNAi fragments were obtained through reverse transcription PCR using the primers 

in Table S1 and then cloned into pENTR-D-TOPO (Thermo Fisher). RNAi fragments 

were then transferred into the inducible pOpOff Gateway-compatible system 

(Wielopolska et al., 2005) by LR reaction (Thermo Fisher). All four ABCB-RNAi 
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constructs were transformed into Col-0. For RNAi induction plants were grown on 

media containing 10 µM dexamethasone. 

 

Statistical analysis. All statistical analyses were performed using SigmaStat or JMP 

PRO 13.  
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Chapter 4.  ABCB regulation of auxin transport in Arabidopsis stems, leaves and 

flowers 

Jenness et al., manuscript in preparation 

 

Summary 

Local and global gradients of the phytohormone auxin control plant growth 

and development from seed through maturity. These gradients are generated primarily 

through cellular auxin efflux mediated by PIN efflux carriers and ABCB transporters. 

However, much of what we understand about auxin transport in mature tissues is 

extrapolated from transport studies in seedlings. Analysis of abcb mutants suggests 

like in seedlings, ABCB1 and ABCB19 primarily function in the shoot apex where 

auxin biosynthesis occurs. Investigation of the remaining ABCB transporters 

identified ABCB6 as a contributor to rootward auxin transport in inflorescence stems, 

ABCB21 in leaves, and ABCB11 in flowers. 

Introduction 

Plant height, leaf area, and leaf angle are important agronomic traits that are 

controlled by the phytohormone auxin (indole-3-acetic acid, IAA). Reduced polar 

auxin transport caused by loss of the ATP-BINDING CASSETTE TRANSPORTER 

B1 (ABCB1) in maize brachytic2 (br2) and sorghum dwarf3 (dw3) lead to decreases 

in internode length, and increases in leaf inclination angle (Multani et al., 2003; Pilu 

et al., 2007; Truong et al., 2015). While mutations in brassinosteroid (BR) and 

gibberellic acid (GA) synthesis / perception can also reduce plant height, these 
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mutants are often associated with other developmental defects such as pollen 

infertility that impact overall production (Hartwig et al., 2011; Vriet et al., 2013; 

West and Golenberg, 2018). 

Polar auxin streams are maintained by coordinated cellular transport activities. 

The polarity of these flows is directed by anisotropic distribution of  PINFORMED 

(PIN) anion efflux carrier proteins (Benková et al., 2003; Friml et al., 2003). 

Lipophilic diffusive uptake of protonated auxin (IAAH) is amplified in some cells by 

AUXIN /LIKE AUXIN 1 (AUX1/LAX)  H+ / IAA- symporters. ATP Binding 

Cassette subclass B (ABCB) transporters are isotropically – distributed PM proteins 

that are concentrated in small cells and appear to prevent cellular reuptake and bound 

primary auxin flows (Blakeslee et al., 2007; Titapiwatanakun et al., 2009).  

Structural, biochemical, and mutational analyses suggest that ABCBs 

mobilize auxin associated with the inner leaflet of the plasma membrane, with 

additional exclusion of auxin from within the membrane bilayer (Bailly et al., 2010). 

ABCB1, 4, and 19, and  PIN1 and 2 all reside in ordered sterol and sphingolipid-

enriched plasma membrane nanodomains (reviewed in Tapken and Murphy, 2015) 

and synergistic increases in the amount and specificity of auxin efflux have been 

reportes when ABCB19 and PIN1 co-coccur (Blakeslee et al., 2007; Titapiwatanakun 

et al., 2009; Yang and Murphy, 2009). This specificity and activity is further 

enhanced by addition of sterols like cholesterol, sitosterol, or ergosterol 

(Titapiwatanakun et al., 2009; Bailly et al., 2011). In silico docking of sitosterol with 

ABCB19 suggests sterols preferentially interact with the transmembrane domain 

regions associated with IAA binding (Yang and Murphy, 2009; Bailly et al., 2011; 
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Yang et al., 2013). Evidence of how membrane interactions control PIN1-auxin 

binding and specificity remain unknown as no PIN structure has been determined. In 

contrast, AUX1 resides in less ordered domains, providing a spacial separation of 

auxin uptake and efflux mechanisms. Additional modulation of ABCB1 and ABCB19 

activity is controled by phosphorylation (Christie et al., 2011; Henrichs et al., 2012) 

and is though to be cooordianted with regulation of other auxin transporters 

(Titapiwatanakun and Murphy, 2009). 

The best characterized ABCB transporters in Arabidopsis are ABCB1 and 19 

(Noh et al., 2001; Geisler et al., 2005; Blakeslee et al., 2007). ABCB1 and 19 

function coordinately in loading of auxin into the basipetal stream in apical regions 

and maintain long-distance transport streams by preventing entry into bounding 

tissues (Blakeslee et al., 2007; Mravec et al., 2008). Polar auxin transport is reduced 

by ~25% and >50% in single abcb1 or abcb19 mutants, and is reduced by ~75% in 

the severely dwarfed abcb1abcb19 double mutant (Blakeslee et al., 2007). 

Other members of the Arabidopsis ABCB subfamily have been implicated in 

long distance auxin transport in vegetative tissues and may contribute to the primary 

auxin transport activities of ABCB1 and 19. ABCB2. 6, 10, and 20 exhibit structural 

similarities with ABCB1/19  that suggest possible auxin transport function (Knöller et 

al., 2010; Bailly et al., 2011).  ABCB11 is reportedly expressed in inflorescence 

stems, and abcb14 exhibits defects in inflorescence auxin conductance (Kaneda et al., 

2011). ABCB21 has recently been shown to function loading of auxin from 

cotyledons and hypocotyls into the rootward transport stream as well as auxin 

retention within the vascular cylinder (Jenness et al., in preparation). 
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Loss of directional auxin transport in pin mutants leads to severe defects in 

embryogenesis and organogenesis (reviewed in Zazímalová et al., 2010). However, 

mutations in PIN1, the primary PIN involved in long distance auxin transport, reduces 

polar auxin transport in hypocotyls only about 30% (Blakeslee et al., 2007), 

suggesting that the long distance auxin transport stream is less important to overall 

development than localized auxin vectors. On the other hand, abcb mutants exhibit 

reduced long-distance auxin transport and defects in cell/plant size and shape, but 

have only minor defects in embryogenesis and organogenesis (Noh et al., 2001; 

Geisler et al., 2003; Blakeslee et al., 2007). Mutations in AUX1/LAX permeases do 

not contribute to any significant reductions in plant size or morphology (Bainbridge et 

al., 2008). 

To better understand the contribution of ABCB1 and ABCB19 to long 

distance auxin transport,  aux1/lax, pin and abcb mutants were analyzed for defects in 

auxin transport in inflorescence stems using an assay similar to those conducted in 

pea stems (Beveridge, 2000; Morris et al., 2005). Phenotypic variations in abcb1 and 

abcb19 mutants related to light levels and ecotypic background have been reported in 

the literature (Noh et al., 2001; Geisler et al., 2003; Blakeslee et al., 2007; Yang et al., 

2013; Zhao et al., 2013). Here, these have been evaluated in terms of  proposed 

ABCB function in auxin transport. Finally, the contributions of additional candidate 

ABCB transporters is assessed with physiological and phenotypic analyses in stems, 

leaves and flowers from single and higher order mutants. 
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Results 

ABCB1 and ABCB19 function by excluding auxin from the shoot apex in 

inflorescences 

To further investigate the roles of the primary auxin transporters in 

inflorescence stems, aux1lax1lax2lax3 (Bainbridge et al., 2008), pin1 (pin1-7), pin3 

(pin3-4), and abcb1abcb19 (abcb1-1abcb19-1 in Col-0) for altered rootward transport 

(Fig. 4.1). A 0.2 µl droplet of 10 µM 3H-IAA was applied to the shoot apex of intact 

inflorescence stems. After the time points indicated, stems were cut into 2.5 mm 

segments starting 5 mm from the apex, then segments were measured for 

radioactivity. In Col-0 inflorescences rootward auxin transport occurs in a pulse (Fig. 

4.1 A), similar to what is observed in seedlings (Peer et al., 2014).  In 

aux1lax1lax2lax3 and pin1 the initial amount of 3H-IAA loaded into the system was 

reduced by ~36% and ~22% (Fig. 4.1 B and C), respectively, while no difference in 

loading was observed in pin3 or abcb1abcb19 (Fig. 4.1 D and E). After 4 hours, 

however, the total amount of 3H-IAA within aux1lax1lax2lax3 inflorescences was 

25% more than the wild type. In aux1lax1lax2lax3 the majority of the IAA remained 

in the very upper portion of the inflorescence and the rate of rootward auxin transport 

that was able to enter the long-distance stream was slightly reduced (Fig. 4.1 B). No 

difference in the rate of transport was observed in pin1 or pin3 (Fig. 4.1 C and D). 

Loss of PIN3 resulted spreading of the 3H-IAA peak presumably due to leakage of 

from the rootward stream (Fig. 4.1 D). This supports a role for PIN3 in restricting 

auxin to within the vasculature in mature tissues as well as in seedlings (Friml et al., 

2002). In abcb1abcb19 the majority of 3H-IAA pooled in the upper inflorescence and 
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very little was loaded into the rootward stream. As a result the rootward pulse of 

auxin could not be detected. Treatment with the auxin transport inhibitor N-1-

naphthylphthalamic acid (NPA) resulted in auxin distribution similar to that observed 

in abcb1abcb19 after 4 hours (Fig. 4.1 F). This indicates NPA acts on ABCB1 and 

ABCB19 upstream of PIN1 or PIN3. These results suggest ABCB1 and ABCB19 are 

the primary drivers of auxin out of the shoot apex by excluding auxin from small 

auxin producing cells in the inflorescence apex, which is consistent with their role in 

seedlings (Jenness, et. al., in review). 

 

 

Figure 4.1. ABCB1 and ABCB19 exclude auxin out of the shoot apex in 

inflorescences. Rootward transport of 3H-IAA placed at the shoot apex with intact 

inflorescence stems of four week old plants. Data shown are means (n = 3 pools of 5). 
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Light dependent phenotypes in abcb1 and abcb19 mutants 

Several reports have analyzed phenotypes of abcb1 and abcb19 (Noh et al., 

2001; Yang et al., 2013; Zhao et al., 2013), however, differences in ecotypic 

background and growth conditions make phenotypic comparisons and assessments 

difficult. To investigate how light intensity affects the phenotypes of abcb1 (abcb1-

100), abcb19 (mdr1-101) and abcb1abcb19 (abcb1-100mdr1-101) double mutant, 

plants were grown under varying fluence (60, 100, and 120 µmol m-2 s-1). In the late 

seedling stage, first true leaf petiole angles decrease with increasing light (Fig. 4.2 A 

and B). Under all light conditions abcb19 petiole angles are greater than Col-0 and 

abcb1. Due to the leaf and petiole curling abcb1abcb19 was not able to be measured, 

however, angles appeared to greater than Col-0 and abcb1, but less than abcb19. In 

the mid- rosette-growth stage, total rosette area increased with increased light (Fig. 

4.2 C and D). Under low (60 µmol m-2 s-1) to moderate (100 µmol m-2 s-1) light, 

abcb19 rosettes are smaller than Col-0 and abcb1. However, under the high light 

condition (120 µmol m-2 s-1) no difference is observed between Col-0 and either 

single mutant. While abcb1abcb19 rosette areas appear much smaller, total rosette 

area from overhead does not reflect leaf area due to the curled nature of the double 

mutant rosette leaves. 
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Figure 4.2. Leaf angles and areas in abcb1 and abcb19 mutants with varying 

light. (A) Images of 10 day seedlings removed from soil. Some cotyledons were 

removed to so true leaves could be viewed. (B) Measurement of true leaf petiole 

angles in 10 day plants. Data shown are means ± SD (n = 17-20).  Letters indicate 

statistical differences by ANOVA p < 0.001, Tukey’s post-hoc p < 0.05. (C) Images 

of 21 day rosettes. (D) Measurement of rosette leaf area in 21 day plants. Data shown 

are means ± SD (n = 10-14). Letters indicate statistical differences by ANOVA p < 

0.001, Tukey’s post-hoc p < 0.05. 

 

In mature plants, inflorescence length increases with increasing light fluence 

in Col-0, abcb1, and abcb19 (Fig. 4.3 A and B). Internode length is not different 
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between Col-0 and single mutants under low fluence condition (Fig. 4.3 C). Under 

high light abcb1 internodes are significantly shorter than Col-0 suggesting 

compensation by ABCB19 does not rescue this phenotype. Single mutants show 

slightly reduced secondary inflorescence number under 100 μmol m−2 s−1 light but are 

not different from Col-0 under low or high fluence (Fig. 4.3 D). Previously abcb19 

has been shown to have more secondary inflorescences compared to Col-0 (Yang et 

al., 2013). However, the plants grown in this analysis were either under natural 

Midwestern (USA) summer sunlight or HID lights (150 μmol m−2 s−1). 

abcb1abcb19 is not different from Col-0 or the single mutants under low light but has 

less secondary inflorescences under mid to high light conditions. Changes in 

branching from the primary inflorescence are nominal and difficult to interpret (Fig. 

4.3 E). Like what is observed in true leaf petiole angles, silique angles become more 

upright decrease with decreasing light, and is most pronounced in abcb19 (Fig. 4.3 F). 

abcb1abcb19 mutants remained unchanged for all phenotypes and light conditions 

analyzed. Any changes in statistical difference are due shifts in Col-0 and the single 

mutants. 
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Figure 4.3. Inflorescences of abcb1 and abcb19 mutants with varying light. (A) 

Mature Col-0, abcb1, abcb19, and abcb1abcb19 mature plants. (B) Measurement of 

inflorescence length. (C) Measurement of internode length. (D) Measurement of 

secondary (2°) inflorescence number. (E) Branching from the primary inflorescence. 
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(F) Inflorescences showing silique angles. Data shown are means ± SD (n = 5-10). 

Letters indicate statistical differences by ANOVA p < 0.001, Tukey’s post-hoc p < 

0.05. 

 

Generally the phenotypic plasticity is consistent with higher auxin 

biosynthesis levels with increasing light fluence. These results phenotypically reflect 

a primary role for ABCB19, with additional contribution from ABCB1, in regulating 

morphology but not organogenesis. The maize and sorghum abcb1 mutants 

brachytic2 (br2) and dwarf3 (dw3) also exhibit upright leaf angles and dwarf statures 

(Multani et al., 2003), indicating monocots and dicots share conserved mechanisms of 

ABCB-mediated auxin transport. 

 

ABCB6 mediates auxin transport in inflorescence stems 

Based on phenotype, expression, and activity, ABCB19 appears to be the 

primary ABCB involved in bulk movement of auxin. Proper folding and trafficking 

of ABCB1 and ABCB19 depend on interaction with TWD1/FKBP42. Since twd1 

mutants exhibit more severe organ twisting than abcb1abcb19 double mutants (Fig. 

S4.1) it is believed other FKBP42-interacting ABCB transporters supplement the 

activities of ABCB1 and ABCB19. To identify other ABCB transport that could 

supplement their activities in inflorescence stems expression by quantitative real-time 

PCR (qRT-PCR) was performed and in the TRAva RNAseq database was analyzed. 

qRT-PCR was performed using the apical 0-2 cm of ~15 cm Col-0 inflorescences. 

Expression by qRT-PCR are comparable to RNA-seq data. Expression of ABCB19 is 
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10-fold higher than ABCB1 (Fig. 4.4 A). ABCB12 expression levels are near that of 

ABCB1. This explains the reduction in rootward transport in abcb12 stems observed 

in Kaneda et al., (2011). Recent evidence that the C-terminus of ABCB11/12 interacts 

with FKBP42/TWD1 (Jenness et al., in preparation) suggests loss of ABCB12 may 

contribute to the twd1 phenotypes. The only other transporter expressed to detectable 

levels are ABCB6 and ABCB13. Since the ABCB13 paralog, ABCB14, exhibits 

specificity for malate over auxin it was assumed ABCB13 would act in a similar 

manner. 

Figure S4.1. Comparison of abcb1abcb19 and twd1. 
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Figure 4.4. ABCB transporter expression in inflorescence stems. qRT-PCR of 

ABCBs from the top 0-2 cm of ~15 cm Col-0 inflorescence stems (n = 3). 

 

Figure S4.2. ABCB transporter expression in inflorescence stems from the 

TraVA RNA-seq database. 
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Figure S4.3. ABCB transporter expression in leaves and flowers from the TraVA 

RNA-seq database. 

 

 

 

Rootward auxin transport is not altered in abcb6 seedlings (Jenness et al., in 

preparation). However, since is expressed in inflorescence stems (Fig. 4.4, Fig. S4.2 

A and B) abcb6 (Sail_7_C04.v1) mutants were tested for reduced auxin transport. 

Due to previous reports (Kaneda et al., 2011), abcb11 (abcb11-1) and abcb14 

(abcb14-1) were also included. Additionally abcb1 (abcb1-1 in Col-0), abcb19 

(abcb19-1 in Col-0), and pin1 (pin1-7) were included as controls. Assays were 

conducted as in Kaneda et al. (2011) with some modifications. Apical 2 cm 

inflorescence segments were placed inverted (or upright) in 3H-IAA solution for 1 
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hour, then washed and incubated in blank buffer for an additional 12 hours. The distal 

2 mm were then collected and measured for radioactivity. In the apical 2 cm segments 

of abcb6, abcb19 and pin1 auxin transport is reduced by ~16% ~52%, and ~28%, 

respectively (Fig. 4.5 A). In the 4-6 cm segments, transport is reduced in abcb19 and 

pin1 by ~15% and ~32% (Fig. 4.5 A). No differences are observed when stems were 

placed in upright in the 3H-IAA (Fig. 4.5 B). 

 

 

Figure 4.5. Auxin transport in inflorescence segments. (A) Inverted segment 

assays. (B) Upright segment assays. Data shown are means ± SD (n = 3 pools of 5 

segments). * indicate statistical difference by ANOVA p < 0.001, Dunnett’s post-hoc 

p < 0.05. 
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These results support a role for ABCB6 in mediating rootward auxin transport 

in inflorescence stems, but only in the apical region. Although abcb14 did exhibit 

reduced auxin transport, this has been shown to be due to distrusted vascular 

development (Kaneda et al., 2011). 

Analysis of ABCB11 and ABCB21 in aerial tissues 

abcb11 was previously reported to have reduced auxin transport in 

inflorescence stems (Kaneda et al., 2011), however, no difference in auxin transport 

was observed here (Fig. 4.5 A). Investigation of the mutant used in the previous study 

indicate the allele was actually an abcb12 (Salk_094249) insertion line. Differences 

in expression between proABCB11:GUS constructs used in Kaneda et al. (2011) and 

Jenness et al. (in preparation) in seedlings were also observed. Using the promoter 

construct from Jenness et al., no proABCB11:GUS expression was detected in the 

upper 3-4 cm of the inflorescence (Fig. 4.6 A). This is also different from the 

previous report, but is supported by qRT-PCR and RNA-seq data (Fig. 4.4 A, Fig. 

S4.2 A and B). proABCB11:GUS expression was no observed in mature rosette 

leaves or mature flowers (Fig. 4.6 B and C) but some expression could be detected in 

young, unopened flowers (Fig. 4.6 C inset). ABCB21 was recently identified as an 

auxin transporter that maintains the rootward auxin transport stream by regulating 

auxin levels in the root pericycle (Kamimoto et al., 2012, Jenness et al., in 

preparation). In mature plants, proABCB21:GUS is expressed in the abscission zone 

of rosette leaves, cauline leaves, and sepals (Fig. 4.5 D-F), and associated with the 

midvein of rosette leaves (Fig. 4.5 G). During GUS staining it was noted that 

proABCB21:GUS expression is observed where inflorescences were cut off. 
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Wounding of inflorescence stems with a razor blade induced expression in 

proABCB21:GUS that is not observed in Col-0 or DR5:GUS stems (Fig S4.4). 

 

Figure 4.6. Expression of ABCB11 and ABCB21. (A-C) proABCB11:GUS 

expression in (A) hand sections of the upper 3-4 cm of the inflorescence stem, (B) 

flowers, and (C) mature rosette leaves. (B, inset) proABCB11:GUS expression in 

young unopened flowers. (D-G) proABCB21:GUS expression in (D) rosette leaf-stem 

junctions, (E) cauline leaf-stem junctions, (F) sepal-receptacle junctions, and (G) 

rosette leaves. 
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Figure S4.4. proABCB21:GUS is expressed after wounding. 

 

Single abcb11 and abcb21 mutants have no obvious phenotypic differences in 

mature plants. This is not surprising as expression of ABCB11 and ABCB21 are quite 

low in nearly all tissues (Fig. 4.4 A, Fig. S4.2 A and B, Fig. S4.3 A) with the 

exception of ABCB21 in leaves and leaf junctions (Fig. 4.6 D-G, Fig. S4.3 A). 

Therefore, abcb21 (abcb21-2) mutants were analyzed for defects in auxin transport in 

rosette leaves. abcb1 (abcb1-1 in Col-0), abcb19 (abcb19-101) and abcb4 (abcb4-1) 

were also included. For transport along the tip-petiole axis, 3H-IAA soaked agarose 

beads were placed on the leaf tips. After 3 hours, petioles or 0.5 mm mid-leaf punches 

was collected and measured for radioactivity. For centro-lateral transport, 3H-IAA 

soaked agarose beads were placed on the leaf midvein. After 3 hours, 0.5 mm 

punches were collected from the leaf margin and measured for radioactivity. 

Transport of 3H-IAA from the tip to the mid-leaf and petiole was significantly 
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reduced in abcb19 (Fig. 4.7 A and B). In contrast, abcb21 showed a significant 

decrease in transport of 3H-IAA from the midvein to the margin (Fig. 4.7 C). 

Consistent with these results, IAA levels are significantly reduced near the midvein of 

abcb19 (Fig. 4.7 E). IAA levels along the margin are reduced by ~30% in abcb19 and 

abcb21 but is not statistically different from Col-0. Quantification of IAA levels in 

whole abcb21 leaves reveals a slight increase in young leaves and a slight decrease in 

mature leaves (Fig. 4.7 F). 
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Figure 4.7. Expression of ABCB21 and activity in leaves. (A-C) Auxin transport 

assays in rosette leaves. (A) Transport of 3H-IAA from the leaf tip to the leaf 

midpoint. (B) Transport of 3H-IAA from the leaf tip to the petiole. (C) Transport of 

3H-IAA from the leaf midvein to the margin. Data shown are means ± SD (n = 3 

pools of 10). * indicates statistical difference by ANOVA p < 0.001, Dunnett’s post-

hoc p < 0.05. (D) Schematic showing areas of 3H-IAA placement and tissue 

collection in A-C. Black circles with “A” represent positions of auxin application. 

Dotted lines represent positions of tissue collection. (E) Free IAA levels in rosette 

leaves near the midvein and near the margin. (F) Free IAA levels in young leaves, 

mature leaves, and petioles. Data shown are means ± SD (n = 3 pools of 10). * 

indicates statistical difference by ANOVA p < 0.001, Dunnett’s post-hoc p < 0.05. 

 

Interestingly, IAA levels in petioles are also elevated (Fig. 4.7 F). abcb21 

mutants were recently shown to be defective in transport of auxin from the cotyledons 
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to the hypocotyl (Jenness et. al., in preparation). Backup of auxin in the petioles 

suggests abcb21 is also defective in transport auxin from the petiole into the stem. 

This supports a conserved role for ABCB21 in mediating auxin transport between 

organ junctions. 

Analysis of abcb11 and abcb21 triple mutants 

It was hypothesized that loss of abcb11 or abcb21 in addition to abcb1 and 

abcb19 would reveal phenotypes not observed in the single mutants and may produce 

the more severe phenotypes observed in twd1 mutants compared to abcb1abcb19. 

Crosses of abcb11 (abcb11-1) and abcb21 (abcb21-1) with abcb1abcb19 were 

analyzed. Adaxial and abaxial epidermal cells of twd1 leaves are significantly smaller 

than those of the wild type (Pérez-Pérez et al., 2002). The leaves of both twd1 and 

abcb1abcb19 develop small rosettes and more rounded, abaxially curling leaves than 

wild type (Fig. 4.8 A). Careful examination of leaf development revealed no defects 

in basic abaxial/adaxial definition, venation, or leaf margin development in twd1 or 

single, double, or triple abcb mutants. However, in twd1 and all higher order abcb 

mutants examined, the aberrant leaf phenotypes reflected irregular patterns of 

epidermal cell expansion that became more exaggerated over time, particularly on the 

abaxial surface. 
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Figure 4.8. ABCB triple mutant leaf phenotypes. (A) Representative images of 4 

week rosettes. (B) 5th rosette leaf removed from A. Leaves were soaked in ethanol to 

allow curled leaves to lay flat. (C-E) Measurement of (C) length, (D) width, and (E) 

length/width ratio in leaves from B. Data shown are means ± SD (n > 10). Letters 

indicate statistical difference by ANOVA p < 0.001, Tukey’s post-hoc p < 0.05. (F) 

Boxplot of showing 5th leaf cell size. Data shown are means ± SD (n > 219 from at 

least 3 leaves per line). Letters indicate statistical difference by ANOVA p < 0.001, 

Tukey’s post-hoc p < 0.05. 

 

The leaf phenotypes of twd1 cannot be unequivocally attributed to auxin 

action alone, as FKBP42 has been shown to interact with the BRI1 brassinosteroid 
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(BR) receptor (Wang et al., 2013; Chaiwanon et al., 2016; Zhao et al., 2016). BR 

treatment of twd1-3 had no effect on leaf cell size, but did very slightly increase the 

size of leaves in abcb1abcb19 and the triple mutants. However, these size differences 

disappeared before inflorescence bolting occurred, and BR treatment did not reduce 

the extent of leaf curling and differential epidermal cell sizing in the higher order 

abcb mutants. 

Further examination revealed abcb1abcb19 rosette leaf length is ~60% of Col-

0 (Fig. 4.8 B and C). b1b19b11, b1b19b21, and twd1 leaves are ~35%, ~38%, and 

~44% of Col-0, respectively. twd1-3 leaves are shorter than abcb1abcb19 but slightly 

longer than the triple mutants. Rosette leaves of abcb1abcb19 are significantly wider 

than Col-0, twd1, and triple mutants (Fig. 4.8 D).  The triple mutants and twd1 appear 

slightly wider than Col-0 but are not statistically different. Taken these measurements 

together, all mutants analyzed have a dramatically reduced length-to-width ratios 

compared to Col-0, with the triple mutants having a slightly greater effect than 

abcb1abcb19 and twd1 (Fig. 4.8 E). These differences can be attributed to differential 

cell expansion as loss of additional ABCB transporters results in progressively 

decreasing pavement cell size (Fig. 4.8F). Abaxial epidermal cells were measured at a 

midpoint from the leaf tip to the petiole and half way from the leaf margin to the 

center. All mutants showed a significant reduction in cell size compared to Col-0. 

Cell size in b1b19b11 and b1b19b21 are significantly smaller than Col-0 or 

abcb1abcb19 but are not different from twd1. This indicates loss of abcb11 and 

abcb21 in addition to abcb1 and abcb19 does cause a more twd1-like leaf 

morphology. 
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Overall, inflorescences of b1b19b11 and b1b19b21 phenotypically resembled 

abcb1abcbb19 (Fig. 4.9 A). Due to the severe delay in bolting and flowering twd1 

was not analyzed. Inflorescence height is reduced >40% in abcb1abcb19 and triple 

mutants (Fig. 4.9 B). Both triple mutants developed significantly more pedicels per 

centimeter compared to Col-0, but less than that observed in abcb1abcb19 (Fig. 4.9 

C). An apparent shift in pedicel phyllotaxis was observed in mature abcb1abcb19 and 

triple mutants from the golden angle 137.5° (Fig. 4.9 C). The mean divergence angle 

between consecutive pedicels was quantified using previously described methods 

(Peaucelle et al., 2007). The distribution of divergence angles in Col-0 centers on a 

mean of 146° (Fig. 4.9 D), which is consistent with previous reports (Peaucelle et al., 

2007). abcb1abcb19, b1b19b11 and b1b19b21 had mean angles of 129, 140, and 146 

degrees, respectively (Fig. 4.9 D). Although the mean angle of deflection in the triple 

mutants is similar to Col-0, the distribution is much more irregular and the frequency 

of large and small angles is greater. Closer examination revealed that pedicel 

positioning was not actually altered in the double and triple mutants. Instead, the 

apparent change in angle is due to altered cell expansion at the stem-pedicel 

junctions. The recently characterized abcb19 allele, abcb19-5, exhibits pedicel-

inflorescence separation defects that appear to be linked to the mis-regulation of the 

auxin-responsive gene CUP-SHAPED COTYLEDON2 (CUC2), resulting from 

alterations in auxin distribution at the pedicel-inflorescence boundary (Zhao et al., 

2013). However, since abcb19-5 was also shown to produce a partial transcript and 

organ-separation phenotypes have not been observed in any other abcb19 allele, these 

phenotypes may be the result of interference with other ABCB transporters. 
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abcb1abcb19, b1b19b11, and b1b19b21 all exhibit abnormal tissue growth at the 

pedicel-inflorescence junctions (Fig. 4.9 E). Hand sectioning and Toluidine Blue O 

(TBO) staining of the pedicel-inflorescence junctions reveal separation defects 

reminiscent of those observed in abcb19-5. Additionally, epidermal swelling was 

observed in all double and triple mutants below the pedicel-inflorescence junction. 

This tissue swelling can be attributed to leakage of auxin from the vasculature and 

pooling at the pedicel junctions. In some cases this was enough to generate ectopic 

vasculature tissue (Fig. 4.9 F), a PIN mediated auxin canalization response. 



 

 

106 
 

 

Figure 4.9. Triple mutant inflorescence phenotypes. (A) Representative images of 

5 week old plants. (B) Mature primary inflorescence height. Data shown are means ± 

SD (n = 5-8). Letters indicate statistical difference by ANOVA p < 0.001, Tukey’s 

post-hoc p < 0.05. (C) Pedicel density of mature primary inflorescences. Data shown 

are means ± SD (n = 5-8). Letters indicate statistical difference by ANOVA p < 

0.001, Tukey’s post-hoc p < 0.05. (D) Distribution of divergence angles between 
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consecutive pedicels. (E) Representative images of aberrant pedicel-stem junctions 

(red arrows). Lower panel shows hand-sectioned pedicel-stem junctions stained with 

toluidine blue O (TBO). (F) Ectopic vascular tissue formation at pedicel-stem 

junctions. (G) Post-anthesis flowers with petals removed to show pistil. 

 

Single mutants abcb1abcb19 mutants exhibit poor fertility because the anther 

filaments do not elongate enough to allow for self-fertilization (Fig. 4.8 B) (Noh et 

al., 2001; Cecchetti et al., 2015). Triple abcb1abcb19abcb11 mutant had a noticeable 

increase in the amount of filled siliques of non-hand-pollinated plants. Intact 

abcb1abcb19abcb11 flowers resemble flowers of abcb1abcb19, with petals that fail 

to open completely (Fig. S4.5). Removal of the flower petals revealed 

abcb1abcb19abcb11 have shorter pistils which lead to partial recovery of the self-

pollination defect (Fig. 4.9 G). Triple abcb11 mutants have ~5% filled siliques, while 

abcb1abcb19 mutants have ≤1%. The shortened pistils of abcb11 triple mutants 

resemble wild-type NPA-treated gynoecia (Nemhauser et al., 2000) and lacked the 

developmental defects observed in auxin biosynthesis (yuc1/yuc4), transport (pin/pid) 

or signaling (ett-3) mutants (Hawkins and Liu, 2014). Like abcb1abcb19 double 

mutants, all hand-pollinated triple mutants produced viable, normal looking seed. 

These results suggest ABCB11 is involved in pistil elongation, however transporters 

that are expressed to higher levels like ABCB6 and ABCB20 are predicted to play a 

greater role. 
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Figure S4.5. Intact triple mutant flowers. 

 

Discussion 

The results presented herein support a a primary function of ABCB auxin 

transporters in excluding this hydrophobic anion from small cells at points of efflux. 

In seedlings, ABCB1 and 19 exclude auxin from small cells in the shoot apex. This 

activity is conserved in mature tissues as loss of ABCB1 and 19 caused a pooling of 

auxin in the most apical region of the inflorescence (Fig. 4.1). Since no 

developmental defects are observed in abcb1abcb19 mutants (Fig. 4.2, Fig. 4.3) this 

supports a role for these ABCBs in exclusion of auxin from the apical region and bulk 

loading of auxin into the rootward stream. 
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Based on the phenotypic severity of abcb19 mutants (Fig. 4.2, Fig. 4.3), high 

levels of ABCB19 expression (Fig. 4.4, Fig. S4.2, Fig. S4.3), and lack of 

compensation by ABCB1 (Jenness et al., in preparation, Blakeslee et al., 2007), it 

must be concluded that ABCB19 is the predominant ABCB auxin transporter in 

Arabidopsis. Contributions from ABCB1 to auxin transport are reflected in the 

abcb1abcb19 double mutant, however, further reductions in auxin transport and the 

increase in phenotypic severity of fkbp42/twd1 suggests other ABCB transporters 

may provide supplementary roles to ABCB19. Association of FKBP42 with ACT7, 

BRI1, and MRP1/2 (Geisler et al., 2004; Chaiwanon et al., 2016; Mao et al., 2016) 

suggests some of these phenotypes may not be tied directly to auxin or ABCB 

transporters. 

In inflorescence stems, abcb6 and abcb12 mutants exhibit reduced auxin 

transport (Fig. 4.5 A) (Kaneda et al., 2011). This suggests that inflorescene twisting 

observed in twd1 is likely additive effects of loss of ABCB1, 19, 6 and 12. A 

preliminary screen of abcb1abcb19abcb6 triple mutants revealed an increased in 

silique twisting. No difference in auxin transport was observed in abcb11 stems and 

ABCB11 expression in inflorescence stems could not be detected by qRT-PCR, 

proABCB11:GUS, or RNA-seq (Fig. 4.4, Fig. 4.6 A-C, Fig. S4.2). ABCB21 

expression is strongest in leaves and at leaf-stem junctions (Fig. 4.6 D-G). Analysis of 

auxin transport in leaves shows that ABCB21 mediates auxin transport outward from 

the midvein to the margins (Fig. 4.7), although no differences in leaf size were 

noticed. ABCB21 expression at organ junctions or a sites of wounding is consistent 
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with a role in mediating auxin transport at programmed or induced 

attachment/breakage points. 

abcb11 and abcb21 showed no observable phenotypic differences in mature 

plants. However, abcb21 exhibits auxin transport defects in leaves, and ABCB11 has 

shown the capacity to transport auxin in yeast (Jenness et. al., in preparation). 

Therefore, triple mutants were generated to see if loss of abcb11 or abcb21 in 

addition to abcb1 and abcb19 could lead to a more twd1 like phenotype. Although, no 

difference in inflorescence height was observed, triple mutants did have leaves did 

become more twd1-like (Fig. 4.8). Additionally, abcb1abcb19abcb11 exhibited a 

short pistil phenotype that lead to partial recovery of the fertilization defects observed 

abcb1abcb19. From the RNA-seq data and proABCB11:GUS, the only tissue where 

ABCB11 shows any expression is in flowers (Fig. 4.6 B, Fig. S4.3). 

Overall these these resuslts further establish ABCB19 as the primary ABCB 

auxin transporter. While, ABCB1, 6, 11, and 21 do mediate auxin transport, their 

contributions to long distance transport are relatively minor. Instead, incresased tissue 

specific expression point to more descrete roles. Interestingly ABCB21, like ABCB1 

and 19, has also been reported to reside in ordered membrane nanodomainss (Demir 

et al., 2013). In silico docking of IAA with ABCB21 shows IAA binding positions 

and energies are equivalent to that of ABCB19. This further suggests direct links 

between auxin transporter activity and specificity and how transporters and auxin 

interact within the local membrane enviroment. 
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Materials and Methods 

Plant growth conditions. All plants were grown under long-day conditions (16h:8h 

light:dark cycles) with 100 µmol m-2 s-1 light (unless otherwise specified) at 22°C for 

times specified. 

Auxin transport assays. Intact inflorescences. A 0.2 nL agar droplet containing 10 

µM 3H-IAA was deposited at the shoot apex of inflorescence stems containing a 

single floral cluster. Plants were then incubated under 20 µmol m-2 s-1 yellow light 

and 55% relative humidity. After the times indicated, the top 5 cm starting 5 mm 

from the apex were collected. Stems were then dissected into 2.5 mm segments and 

individual segments were measured for radioactivity. Inflorescence segments. 

Assays were conducted as in Kaneda et al. (2011) with some modifications. Apical 2 

cm inflorescence segments were placed inverted or upright in 3H-IAA solution for 1 

hour, then washed and incubated in blank buffer for an additional 12 hours 

(pulse/chase). The distal 2 mm were then collected and measured for radioactivity. 

Leaves. Agarose beads coated in 3H-IAA were placed on equal size rosette leaves of 

~4 week old plants at the positions indicated (Fig. 3.7 D). After bead placement 

plants were incubated under 20 µmol m-2 s-1 yellow light and 55% relative humidity 

for 3 hours. 0.5 mm punches were collected at positons indicated (Fig. 3.7 D) and 

measured for radioactivity. 

Quantitative real-time PCR. For qRT-PCR total RNA was extracted using Trizol 

reagent (Invitrogen) followed by lithium chloride precipitation. Total RNA (1.5 µg) 

was used for first-strand synthesis using SuperScript III reverse transcriptase 

(Invitrogen). Real-time PCR was performed on a CFX Connect (Bio-Rad 
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Laboratories) using EvaGreen qPCR master mix (Biotium). Primers used are listed in 

Appendix C. 

Histochemical staining. promoter:GUS. proABCB11:GUS and proABCB21:GUS 

are from Chapter 3. For GUS staining, tissues were incubated in 90% acetone for 20 

mins on ice, then immersed in staining solution (50 mM sodium phosphate buffer, pH 

7.0, 0.1% triton X-100, 0.5 mM potassium ferrocyanide, 0.5 mM potassium 

ferricyanide, and 1 mM X-gluc) and incubated in the dark at 37°C for 5-6 hours. 

Stained samples were cleared with 70% ethanol before imaging. Toluidine blue O. 

Hand-sectioned mature inflorescence stems were incubated in 0.05% toluidine blue 0 

for ~7 minutes, rinsed briefly, then visualized. 

Auxin quantifications. Free IAA quantification were conducted as described in 

Novák et al., 2012. 

Statistical analysis. All statistical analyses were performed using SigmaStat or JMP 

PRO 13. 
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Summary 

The plant hormone auxin is a key morphogenetic signal that controls many 

aspects of plant growth and development. Cellular auxin levels are coordinately 

regulated by multiple processes, including auxin biosynthesis and the polar transport 

and metabolic pathways. The auxin concentration gradient determines plant organ 

positioning and growth responses to environmental cues. Auxin transport systems 

play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin 

gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin 

biosensors in synthetic auxin-responsive reporter lines. However, the contributions of 

auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. 

Additionally, the available information on subcellular auxin localization is still 

limited. 

Here we designed fluorescently labeled auxin analogs that remain active for 

auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin 

analogs enable the selective visualization of the distribution of auxin by the auxin 

transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, 

these analogs indicated a substantial contribution of local auxin biosynthesis to the 

formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs 

mainly localized to the endoplasmic reticulum in cultured cells and roots, implying 

the presence of a subcellular auxin gradient in the cells. Our work not only provides a 

useful tool for the plant chemical biology field but also demonstrates a new strategy 

for imaging the distribution of small-molecule hormones. 
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Introduction 

The plant hormone auxin plays a pivotal role in embryogenesis, vascular 

tissue differentiation, tropic responses to light and gravity, and the lateral branching 

of shoots and roots. Plants establish auxin gradients in response to light, gravity, and 

touch stimuli that direct tropic growth to allow plants to adapt to environmental 

inputs. The regulation of auxin distribution in plant tissue is coordinately determined 

via multiple processes involved in auxin biosynthesis, polar transport from sites of 

synthesis, storage as inactive precursors, and the degradation of auxin (Petrasek and 

Friml, 2009; Hayashi, 2012; Sauer et al., 2013). The major naturally occurring auxin, 

indole-3-acetic acid (IAA), is mainly biosynthesized from tryptophan by two 

sequential enzymatic steps involving TAA1, a tryptophan aminotransferase, and 

YUCCA, a flavin-monooxygenase in the indole-3-pyruvic acid (IPA) pathway 

(Mashiguchi et al., 2011; Won et al., 2011). Molecular genetic studies in Arabidopsis 

have demonstrated that a combination of auxin transport proteins, comprising 

AUX1/LAX uptake permeases, the PINFORMED (PIN) efflux carriers, and ATP-

binding cassette group B (ABCB) auxin transporters, coordinately regulates auxin 

transport (Peer et al., 2011). These transport proteins generate auxin gradients through 

the expression and subcellular relocalization of transport proteins in response to 

environmental and developmental cues (Petrasek and Friml, 2009). These multiple 

complicated processes coordinately regulate intra- and intercellular auxin distribution 

and ultimately determine the entire architecture of a plant. Thus, analysis and 

visualization of auxin distribution are essential to understand plant development. 
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SCF-type E3 ubiquitin-ligase complex (SCFTIR1)-based auxin-responsive 

reporters, such as DR5::GFP and DII-VENUS, are widely used to monitor auxin 

distribution in plants (Friml et al., 2003; Brunoud et al., 2012). However, the 

spatiotemporal resolution of these reporter systems is limited due to the general 

nature of reporter protein expression and degradation. Alternatively, endogenous IAA 

distribution has been visualized through the direct detection of IAA molecules by 

means of immunostaining (Benková et al., 2003) and mass spectrometry-based IAA 

quantification (Petersson et al., 2009). However, these direct-detection approaches 

require multiple and time-consuming procedures and present an insufficient spatial 

resolution of the IAA distribution at the cellular level. These direct and indirect 

approaches have illustrated an endogenous auxin distribution profile as the final 

output of the local biosynthesis, inactivation, and transport of auxin. 

Here we developed fluorescent auxin analogs [7-nitro-2,1,3- benzoxadiazole 

(NBD)-conjugated naphthalene-1-acetic acid (NAA), NBD-NAA and NBD-IAA] that 

can be used to generate images of auxin distribution (Fig. 5.1A). These analogs were 

designed to function as active auxin analogs for the auxin transport system but to be 

inactive for auxin signaling. The analogs would be recognized as substrates by auxin 

transporters and then show a distribution pattern similar to auxin. This strategy of 

using fluorescent auxin analogs enabled the imaging of the auxin transport site and 

revealed the crucial role of local auxin synthesis in the formation of auxin maxima. 

Furthermore, these fluorescent analogs indicated the presence of a subcellular auxin 

gradient in plant cells. 
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Figure 5.1. Distribution of fluorescent auxin analogs in Arabidopsis root. (A) 

Structures of the auxins NAA and IAA and their fluorescent analogs NBD-NAA and 

NBD-IAA. (B and C) Distribution of NBD-auxins in Arabidopsis roots. Six-day-old 

wild-type seedlings were treated with medium containing NBD-auxins for 15 min. 

Six-day-old DR5::GUS (B, a and b) and DR5::GFP seedlings (C) were incubated 

with auxins for 4 h or 6 h, respectively. Six-day-old DII-VENUS seedlings were 

treated with 10 μM auxinole for 6 h and then incubated with NAA for 10 min. The 

pictures in C are confocal images. The values presented in parentheses indicate the 

concentration of chemicals (μM). (Scale bar, 100 μm.) 
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Results 

Design and Synthesis of Fluorescently Labeled Auxin Analogs 

Fluorescently labeled forms of the plant hormones gibberellin, strigolactone, 

and brassinosteroid were recently generated for analysis of the distribution of 

hormones and receptors (Bhattacharya et al., 2009; Prandi et al., 2011; Irani et al., 

2012; Prandi et al., 2013; Rasmussen et al., 2013; Shani et al., 2013). These 

fluorescently labeled hormones were designed to retain the original hormonal activity 

and to activate signaling by binding to hormone receptors (Bhattacharya et al., 2009; 

Prandi et al., 2011; Irani et al., 2012; Prandi et al., 2013; Rasmussen et al., 2013; 

Shani et al., 2013). Under our strategy for design of fluorescent auxin analogs, the 

analogs undergo auxin transport in the same manner as native auxin molecules but are 

completely inactive for the signaling machinery. Auxins rapidly induce auxin-

inactivating enzymes, such as GH3, and influence their own transport by regulating 

the localization of PIN proteins at the plasma membrane (Petrasek and Friml, 2009; 

Löfke et al., 2013). Similarly, active auxin analogs will immediately affect the 

localization of PIN and GH3 enzymes, and the distribution of the labeled analogs will 

therefore no longer reflect the native auxin gradient. According to our strategy for 

developing fluorescent auxin analogs, the analogs should satisfy the following 

criteria: First, they should be selective for auxin transporters, but not for the TIR1–

Aux/IAA auxin receptor complex; and second, the overall polarity of the fluorescent 

auxin molecules should be as similar to that of native auxin molecules as possible. 

Lipophilic analogs would be free to travel across the plasma membrane and would 

therefore not establish a concentration gradient, thus showing a uniform distribution. 
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We recently reported that the alkoxy-auxin analogs Bz-IAA and Bz-NAA 

function as potent competitive inhibitors of the auxin transporters AUX1, PIN, and 

ABCBs (Fig. 5.1A) (Tsuda et al., 2011). These alkoxy-auxin analogs are inactive at 

auxin receptors but are recognized as auxin by auxin transporters. A structure– 

activity analysis revealed that auxin transporters ignore the alkoxy-chain substructure 

of auxin analogs (Tsuda et al., 2011). Based on our previous findings, we synthesized 

5-fluorescently labeled IAAs and 7-fluorescently labeled NAAs as analogs of IAA 

and NAA, respectively (Fig. 5.1A, Appendix A Fig. S5.1). The artificial auxins NAA 

and Bz-NAA were efficiently exported by efflux transporters but were not imported 

by the AUX1 influx symporter, suggesting that fluorescent NAA analogs can be used 

to visualize efflux transport via PINs and ABCBs (Tsuda et al., 2011). The BODIPY 

and NBD fluorescent dyes were introduced into 5-hydroxy-IAA and 7-hydroxy-NAA 

using various alkyl linkers (Appendix A Fig. S5.1). Additionally, fluorescently 

labeled indole (NBD-indole) and benzoic acid (NBD-benzoic acid) were synthesized 

as negative controls to confirm the specificity of the fluorescence images of the auxin 

analogs (Appendix A Fig. S5.2A). The fluorescent gradient mimicking the auxin 

distribution should disappear when using negative control analogs if the transporters 

specifically recognize the auxin substructure of the fluorescent analogs. The 

fluorescent analogs were initially evaluated according to the fluorescence images they 

generated in comparison with the expression pattern of the DR5 reporter in auxin-

treated roots (Fig. 5.1B). Two of the tested fluorescent auxin analogs, NBD-IAA and 

NBD-NAA, represented analogs of the natural auxin IAA and synthetic auxin NAA, 

respectively, and produced similar fluorescence images compared with DR5 reporter 
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expression. The exogenously applied NBD-NAA and IAA (NBD-auxins) were 

preferentially accumulated in the root cap and elongation zone but not in the 

meristematic zone. These fluorescence images of NBD-auxins were similar to the 

exogenous auxin response profile of DII-VENUS (Fig. 5.1C, Appendix A Fig. S5.3). 

In contrast to NBD-auxins, the negative controls NBD-benzoic acid and NBD-indole 

showed faint, uniform fluorescence in the root (Appendix A Fig. S2B), suggesting 

that the auxin substructure is required for the DR5 reporter-like distribution of NBD-

auxin analogs. 

Fluorescent Auxin Functions as an Auxin Analog Specific for Auxin Transport 

We next assessed the effects of the fluorescent auxin analogs on auxin 

signaling and metabolism. To examine whether the fluorescent auxins were inactive 

in the SCFTIR1 pathway, Arabidopsis auxin-responsive reporter lines, including the 

synthetic auxin-responsive BA3::GUS (Oono et al., 1998) and DR5::GUS lines and 

native pIAA3::GUS and pIAA12::GUS lines (Weijers et al., 2005), were incubated 

with NBD-auxins. Neither NBD-IAA nor NBD-NAA affected auxin-regulated 

reporter gene expression (Fig. 5.2, Appendix A Fig. S5.4A), indicating that the 

fluorescent analogs are inactive regarding the modulation of early auxin-responsive 

gene expression. To further confirm that the fluorescent auxins are inactive as ligands 

of TIR1/AFB–Aux/IAA receptor complexes, we examined the binding of NBD-

auxins to the TIR1–Aux/IAA receptor complex using a yeast two-hybrid system 

(Arase et al., 2012). In this system, IAA promotes the interaction between TIR1-DBD 

and Aux/IAA (IAA7)-AD to rescue LEU2-deficient yeast growth (Fig. 5.2C). NBD-

auxins did not affect yeast growth in the absence or presence of IAA, suggesting that 
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NBD-auxins do not bind to the TIR1 receptor. Calculations of molecular docking 

further indicated that NBD-auxins were inactive ligands for TIR1 receptor and auxin-

binding protein 1 (ABP1) due to the larger molecular size of the analogs with respect 

to the auxin-binding cavity (Appendix A Fig. S5.4). These findings demonstrate that 

the fluorescent auxin analogs, NBD-auxins, are inactive in SCFTIR1 auxin signaling. 

The Arabidopsis early auxin-responsive gene GH3 encodes an auxin-amino acid–

conjugating enzyme that plays a central role in the modulation of endogenous auxin 

levels (Ludwig-Müller, 2011). GH3.6 recognizes both IAA and NAA as substrates 

and converts them to amino acid conjugates. To investigate whether the GH3 enzyme 

metabolizes the fluorescent auxins in vivo, fluorescence images of NBD-auxins were 

obtained in GH3.6-overexpressing (GH3ox) plants (Appendix A Fig. S5.5A). The 

fluorescence images of NBD-auxin would be expected to be altered in the GH3ox 

line if the analogs were rapidly converted to non-transportable amino acid conjugates. 

However, in GH3ox roots, the fluorescence images of the analogs were not altered, 

suggesting that the fluorescent auxins were not suitable substrates for the GH3 

enzyme (Appendix A Fig. S5.5B). To further assess the stability of NBD-auxin, 

tobacco BY-2 cells were incubated with NBD-NAA and its cellular metabolites were 

analyzed via fluorescence HPLC. The cellular NBD-NAA level was maintained, and 

the resultant fluorescent chromatograms were not altered after 50 min of incubation 

(Appendix A Fig. S5.5C). 



 

 

122 
 

 

Figure 6.2. Effects of NBD-auxins on SCFTIR1 auxin signaling. (A and B) Effects 

of NBD-auxins on auxin-responsive reporter gene expression. Six-day-old BA3::GUS 

(A) and pIAA3::GUS (B) lines were incubated with or without IAA, together with 

NBD-auxins, for 5 h or 16 h, respectively. (C) Yeast two-hybrid assay in which 

TIR1-DBD and Aux/IAA(IAA7)-AD fusion proteins were expressed. IAA enhanced 

the interaction between TIR1 and Aux/IAA to rescue LEU2-deficient yeast growth. 

(D) Effect of NBD-labeled analogs on the root gravitropic response. Roots (6-d-old) 

were placed on GM agar plates containing chemicals and grown in the dark for 5 h 

after rotating the plates at a 90° angle against the vertical direction. The values in 

parentheses indicate the concentrations of chemicals (μM). 
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In a previous study, we found that Bz-IAA and Bz-NAA inhibited root 

gravitropism by competing with the transport of endogenous auxin (Tsuda et al., 

2011). IAA and NAA have been reported to reduce the root gravitropic response 

(Ottenschlager et al., 2003). We next studied the inhibitory activity of the fluorescent 

analogs against root gravitropism (Fig. 5.2D). NBD-auxins inhibited root 

gravitropism at a concentration of 40 μM, whereas NBD-benzoic acid did not. 

However, NBD-IAA and NBD-NAA were less active than the previously reported 

Bz-NAA and the auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA) (Fig. 

5.2D, Appendix A Fig. S5.6C). Although membrane-permeable analogs, such as Bz-

NAA, are exported outside the cell, the subcellular concentration of diffusible Bz-

NAA is maintained via simple diffusion. Thus, diffusible analogs would be expected 

to exhibit higher inhibitory activity than NBD-auxins. Accordingly, BOC-C2-NAA, a 

lipophilic analog of NBD-NAA, caused potent inhibition of gravitropism but was 

inactive to signaling, similar to Bz-NAA (Appendix A Fig. S5.6C,D). Additionally, 

another diffusible fluorescent auxin, NBD-C2-IAA, showed a uniform fluorescent 

signal in the roots and inhibited gravitropism to a greater extent than NBD-IAA, as 

expected (Appendix A Fig. S5.6). This evidence indicated that the fluorescent auxin 

analogs are recognized by the auxin transport system as active auxin analogs but are 

inactive regarding auxin signaling and the metabolic pathway. 

Auxin Transport System Regulates the Distribution of Fluorescent Auxin 

To examine whether the auxin transport system establishes an asymmetric 

distribution of NBD-auxin analogs, we observed the distribution profiles of the 

analogs in the auxin transport mutant pin2, PIN1-overexpression lines (35S::PIN1), 



 

 

124 
 

and wild-type plants treated with auxin transport inhibitors. Exogenous auxin strongly 

induced the expression of DR5 reporters in the root elongation zone (Fig. 5.3A). 

Cotreatment with auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) blocked 

IAA movement, and DR5 reporters were consequently expressed throughout the root 

tip, including in the meristematic zone (Fig. 5.3A). NBD-NAA was uniformly 

distributed in the pin2 mutant, 35S::PIN1, and wild-type plants treated with the auxin 

transport inhibitors brefeldin A, TIBA, NPA, and Bz-NAA (Fig. 3B, Appendix A 

Figs. S6.7, S6.8). Additionally, the asymmetric distribution of NBD-NAA 

disappeared in the presence of excess IAA and NAA, but benzoic acid and 2-

naphthoic acid did not affect the distribution of NBD-NAA. Similarly, the 

asymmetric distribution of NBD-IAA was abolished by excess amounts of NAA and 

auxin transport inhibitors. Furthermore, IAA and Bz-IAA decreased the fluorescent 

signal of NBD-IAA via competitive inhibition of auxin import. NBD-IAA signal was 

also reduced in the aux1-7 auxin influx transport mutant (Marchant et al., 1999), but 

NBD-NAA signal was not affected (Appendix A Fig. S5.9). NBD-NAA was able to 

bypass the AUX1 importer in the same manner as NAA (Marchant et al., 1999). 

Consistent with the transport profile of alkoxy-auxins, these results suggest that 

NBD-auxins show the same transport profile as the original IAA and NAA 

molecules. Other mutants, for the auxin efflux transporters abcb1, abcb19, pin3, and 

pin3 pin7 (Peer et al., 2011), did not show a dramatically altered distribution image of 

NBD-auxins in the roots (Appendix A Fig. S5.9). This altered distribution of NBD-

auxins was observed only in the agravitropic roots in pin2, 35S::PIN1, and aux1-7 

mutants. We further studied the accumulation of fluorescent auxin analogs using 
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Arabidopsis cultured cells. Both NBD-auxins were accumulated in the cultured cells, 

but NBD-benzoic acid did not (Appendix A Fig. S10). Treatment with the auxin 

transport inhibitor TIBA and excess NAA promoted the accumulation of NBD-auxins 

within the cells by repressing the export of NBD-auxins (Fig. 5.3D, Appendix A Fig. 

S5.10). This evidence indicates that fluorescent auxins are transported by the auxin 

transport system in roots. 

 

 

Figure 6.3. Auxin transport system affects the distribution of fluorescent auxin 

in roots. (A) Effects of auxin transport inhibitors on the auxin-responsive DR5 

expression profile. Six-day-old DR5::GUS (Left) and DR5::GFP (Right) lines were 

treated with or without 20 μM TIBA, together with 2 μM IAA, for 5 h or 8 h, 

respectively. (B and C) Wild type (Columbia-0) and pin2/eir1-1 mutants were treated 
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with 5 μM NBD-auxins for 15 min. Wild-type roots were pre-incubated with 20 μM 

TIBA or 50 μM NAA for 4 h and 30 min, respectively, and then treated with 5 μM 

NBD-auxins, together with TIBA and NAA, for 15 min. The values presented in 

parentheses indicate the concentration of chemicals (μM). (Scale bars, 100 μm.) (D) 

Arabidopsis MM1 cells were incubated with 2 μM NBD-auxins with or without 50 

μM TIBA for 30 min after pre-incubation with TIBA for 3 h. NBD-auxins were 

extracted from the harvested cells using methanol and quantified with a fluorometer. 

Error bars represent SEM; n = 6. 

 

Distribution of Fluorescent Auxin at the Root Apex 

Recent findings regarding auxin biosynthesis through the IPA pathway have 

indicated an important contribution of locally synthesized IAA to the formation of 

auxin maxima (Petersson et al., 2009; Chen et al., 2014). The DR5 reporter system 

allows for the visualization of auxin levels as the sum of transported and locally 

synthesized auxin, whereas our system using NBD-auxins selectively displays the 

flow of auxin. To estimate the contribution of auxin transport to the formation of 

auxin maxima at the quiescent center (QC), we monitored the distribution of 

exogenously applied auxins in auxin-depleted seedlings. DR5::GFP reporter 

seedlings were grown on medium containing the auxin biosynthesis inhibitors 

kynurenine and yucasin to deplete endogenous auxin (Fig. 5.4) (He et al., 2011; 

Nishimura et al., 2014). Combined treatment with the TAA1 and YUCCA inhibitors 

dramatically inhibited primary root growth (Appendix A Fig. S5.11B,C), similar to 

the auxin-deficient phenotype observed in the taa1 tar2 double mutant and the yuc 3 
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5 7 8 9 quintuple mutant (Stepanova et al., 2008; Won et al., 2011). The DR5::GFP 

maxima at the root apex disappeared in auxin-deficient seedlings (Fig. 5.4C, 

Appendix A Fig. S5.11A). This impaired root growth was completely restored by 

exogenous auxins supplied from the medium. However, exogenous NAA failed to 

recover DR5::GFP expression at the QC region in auxin-deficient roots (Fig. 5.4D, 

Appendix A Fig. S5.11), but NAA enhanced DR5 expression at the columella and 

lateral root cap of auxin-deficient roots, similar to the distribution profile of NBD-

NAA in wild-type roots. Additionally, exogenously applied 2,4-

dichlorophenoxyacetic acid (2,4-D) was unable to form auxin maxima at the 

columella and lateral root cap (Appendix A Fig. S5.11A). This result is consistent 

with evidence showing that auxin efflux transporters effectively transport IAA and 

NAA but not 2,4-D (29). These findings suggest that auxin transport and local 

biosynthesis coordinately determine the position of auxin maxima in the root apex. 
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Figure 6.4. Auxin maxima in the root apex. (A–D) DR5::GFP maxima in auxin-

deficient roots. The DR5::GFP line was grown for 5 d on medium containing auxin 

biosynthesis inhibitors [10 μM kynurenine (Kyn) and 20 μM yucasin] with or without 

10 nM NAA. (E and F) NBD-auxin distribution at the root apex in the 

DR5::tdTomato-NLS line. The values presented in parentheses indicate the 

concentration of chemicals (μM). The arrows indicate the QC region. 

 

Fluorescent Auxin Distribution Mimics Native Auxin Accumulation in Vivo 

Fluorescent NBD-auxin analogs are distributed to form an asymmetrical 

gradient in Arabidopsis roots. To examine whether the distribution of NBD-auxins 

mimics the endogenous auxin gradient in vivo, we analyzed fluorescence images of 

NBD-NAA in planta in different developmental stages and tissues and in response to 

environmental stimuli. At the very early seedling stage, seedlings treated with NBD-

NAA showed similar fluorescence images as the DR5::GFP line (Appendix A Fig. 

S5.12). Polar transport of auxin is essential for lateral root formation, and auxin 

accumulates at high levels in the primordia of lateral roots (Fig. 5.5A) (Benková et 

al., 2003). NBD-auxins were selectively accumulated in the primordia of lateral roots 

and showed a similar pattern to DR5::GFP expression (Fig. 5.5A–C). The 

development of the embryo is regulated by the asymmetric auxin distribution via PIN 

efflux carriers (Friml et al., 2003). NBD-NAA distribution showed a similar pattern 

to DR5::GFP expression in embryos (Fig. 5D and E). Gravity signals regulate the 

auxin transport system to generate an asymmetric auxin distribution. Consistent with 

previous reports on the gravitropic response of the DR5 reporter system (Friml et al., 
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2002), NBD-NAA was distributed on the elongated side of the hypocotyl, across 

gravi-stimulated hypocotyls (Fig. 5.5F and H). In contrast, symmetric fluorescent 

signals were detected in vertically grown straight hypocotyl (Fig. 5.5G). To examine 

the transport of NBD-auxins in shoots, NBD-auxins were placed on the shoot apex 

and then incubated vertically. The distribution rate of NBD-auxin in the etiolated 

hypocotyl of the pin3 pin7 mutant was slightly lower than the wild type (Fig. 5.5 I 

and J, Appendix A Fig. S5.13A). The fluorescent signal of NBD-auxins along the 

epidermal cells was clearly observed, and this transport of NBD-NAA was reduced 

by excess NAA and TIBA (Appendix A Fig. S5.13B,C). However, NBD-auxins were 

less accumulated in the deeper cell layers or in the central cylinder (Appendix A Fig. 

S5.13C,D), although the DR5 reporter signal was shown in both the epidermal cells 

and the central cylinder (Christie et al., 2011). To confirm that the NBD-auxin 

distribution mimics the auxin gradient in other plant species, the distribution of NBD-

NAA was observed in rice roots. In accordance with the distribution observed in 

Arabidopsis roots, NBD-NAA showed a similar pattern to the auxin-induced 

DR5::GUS response in rice roots (Fig. 5.5 K and L) (Inukai et al., 2005). 

Subcellular Distribution of Fluorescent Auxins 

DR5 and DII-VENUS auxin sensors allow for the clear visualization of 

intercellular auxin gradients in tissues. However, these SCFTIR1-based systems are 

unable to visualize subcellular auxin gradients. In comparison, fluorescent auxin 

analogs display a high spatial resolution due to being small molecules. To investigate 

the subcellular auxin distribution, we initially visualized the distribution of 

subcellular NBD-auxins in tobacco BY-2 cultured cells. The auxin transport 
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inhibitors NPA and TIBA induced the accumulation of cellular NBD-NAA, thus 

enhancing the fluorescent signal within a cell (Fig. 5.6 A–C, Appendix A Fig. S5.14). 

However, NBD-benzoic acid and NBD-indole did not exhibit clear signals in cultured 

cells (Appendix A Fig. S5.2C). Additionally, NBD-auxins were not co-localized with 

the tonoplast marker VHA-a3-mRFP (Brux et al., 2008) (Appendix A Fig. S5.15), 

suggesting that the localization of NBD-auxins was not due to the nonspecific binding 

of the NBD fluorophores to organelles or membranes. Several auxin transporters, 

such as PIN5, PIN8, and PILS, are subcellularly localized to the endoplasmic 

reticulum (ER) (Barbez et al., 2012; Barbez et al., 2013; Barbez and Kleine-Vehn, 

2013). NBD-auxin signals showed a similar localization pattern to the signals of 

PIN5-GFP and PIN8-GFP observed in BY-2 cells (Fig. 5.6, Appendix A Fig. S5.14) 

(Ganguly et al., 2010; Barbez et al., 2013), and NBD-auxin signals co-localized well 

with the fluorescent signals from ER-Tracker. In the wild-type root, NBD-NAA 

accumulated at the root hair and co-localized well with ER-Tracker (Fig. 5.6G–L). To 

further examine the subcellular distribution of NBD-auxins, the Arabidopsis root 

expressing the ER-retained CFP-HDEL protein (CFP-ER) was used. NBD-auxins 

were identically localized to CFP-HDEL (Fig. 5.6M–O, Appendix A Fig. S5.16), 

confirming that NBD-auxin is preferably localized to the ER. The treatment of roots 

with TIBA highly accumulated NBD-NAA to form a steep gradient of NBD-NAA in 

the roots (Appendix A Fig. S5.16C). On the contrary, CFP-ER was uniformly 

distributed even in TIBA-treated roots. These results implied that NBD-auxins highly 

accumulate in the cytosol when auxin efflux transport is blocked. 
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Discussion 

We herein demonstrate that fluorescently labeled auxin molecules are able to 

selectively monitor auxin transport sites. Our NBD-auxins displayed a similar auxin 

distribution image generated by SCFTIR1-based sensors. The pharmacological and 

genetic evidence convincingly shows that the asymmetric gradient of NBD-auxins is 

established by the auxin transport machinery. Sokołowska et al., (2014) recently 

reported fluorescently labeled IAA analogs to be active auxins. In these analogs, the 

fluorescent dyes fluorescein isothiocyanate (FITC) or rhodamine isothiocyanate 

(RITC) were directly conjugated to IAA at the indole NH group. These FITC/RITC-

conjugated IAAs were reported to retain auxin-like activity in oat coleoptiles and 

Arabidopsis root (Sokołowska et al., 2014), suggesting that these conjugated IAAs 

might be active toward TIR1/AFB–Aux/IAA receptor complexes. Our fluorescent 

auxin analogs are designed to be active in the auxin transport system but inactive for 

auxin signaling (Appendix A Fig. S5.2B), indicating that the concept of our auxin 

analogs is quite different from that of FITC/RITC-conjugated IAAs (Sokołowska et 

al., 2014). The ABP1 and SCFTIR1 signaling pathways both affect the polar auxin 

stream by modulating the localization and abundance of PIN proteins at the plasma 

membrane (Sauer and Kleine-Vehn, 2011; Baster et al., 2012). Therefore, active 

analogs for auxin signaling can also impact auxin transport and hence disrupt the 

native auxin gradient. Previous studies have demonstrated that auxin biosensors, such 

as DR5 reporters and the DII-VENUS system, display relative cellular IAA levels as 

the final output of IAA transport, biosynthesis, and metabolic pathways; however, 
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their sensitivity is primarily governed by the expression of TIR1/AFB receptor 

proteins and their posttranscriptional regulation (Parry et al., 2009). 

This study also demonstrated that local auxin biosynthesis plays a crucial role 

in the formation of auxin maxima in the QC region (Fig. 5.4). Petersson et al. 

demonstrated that de novo synthesized IAA accumulated at the root apex, thereby 

indicating that a source of IAA exists in the most apical region of Arabidopsis 

primary roots (Petersson et al., 2009). Recent studies have shown that the expression 

of IAA biosynthesis genes is mainly localized near the QC region (Stepanova et al., 

2008; Zhou et al., 2010; Chen et al., 2014). Our fluorescent NBD-auxins were not 

accumulated in the QC region in our experimental conditions. NBD-auxins were 

incorporated from the surface of whole tissue and then distributed by the auxin 

transport system. This distribution process does not represent the native condition 

because endogenous IAA was locally supplied from specific auxin biosynthetic cells. 

Similar to the NBD-auxins, the DR5 and DII-VENUS response images to exogenous 

auxin supported that auxin transport would not largely contribute to the formation of 

auxin maxima at the QC (Figs. 6.1C, 6.4D), confirming that NBD-auxins can mimic 

auxin transport sites at the root apex. 

Our findings demonstrate the power of fluorescently labeled hormones 

designed to be selective for transport systems with a high spatial resolution. However, 

in the present work, we cannot discuss the kinetics and affinity of these labeled 

analogs in relation to distinct auxin transporters, such as PINs, ABCBs, and 

AUX1/LAX, due to the nonspecific binding of the analogs in the yeast system used 

for the alkoxy-auxin analogs (Tsuda et al., 2011). In the shoot, it seems that NBD-
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auxins were not efficiently transported by auxin transporters localized in the central 

cylinder (Appendix A Fig. S5.13). These results imply that NBD-auxins might 

aggregate locally at application sites; therefore, NBD-auxins are not versatile for the 

visualization of auxin transport streams in the shoot. Several ER-localized auxin 

transporters, such as PIN5, PIN8, and PILS, play a role in subcellular auxin 

homeostasis (Barbez et al., 2012; Barbez et al., 2013; Barbez and Kleine-Vehn, 

2013). Because of the general nature of small-molecule compounds, a small fraction 

of NBD-auxins might be passively diffused and nonspecifically bound to organelle 

membranes. Nevertheless, NBD-auxin robustly accumulated in the ER of Arabidopsis 

and tobacco cells, and cytosolic NBD-auxin levels were highly enhanced by auxin 

transport inhibitors. This evidence indicates that NBD-auxins can facilitate the 

visualization of the subcellular auxin gradient in cells. 

Our fluorescent auxin analogs will provide insights into auxin biology in 

combination with multiple tools such as SCFTIR1-based sensors (Brunoud et al., 2012; 

Barbez et al., 2013), pharmacological auxin probes (He et al., 2011; Nishimura et al., 

2014), and mathematical modeling (Band et al., 2014). 

 

Materials and Methods 

Synthesis and Properties of Fluorescent Auxin Analogs. Full synthetic procedures 

and characterization of compounds are described in Appendix A, Materials and 

Methods. 
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Plant Materials and Growth Conditions. Arabidopsis thaliana ecotype Columbia-0 

was used as the wild-type control. Seeds were stratified for 2 d at 4 °C and cultured 

on germination medium (GM) (Oono et al., 1998) on soft gel plates (0.8 g/L gellan 

gum) or vertical agar plates (12 g/L agar) at 24 °C under continuous light for all 

assays. The mutant and transgenic A. thaliana lines used in this work are described in 

Appendix A, Materials and Methods. Arabidopsis MM1 and tobacco cultured BY-2 

cells were maintained on modified Murashige and Skoog (MS) medium on a rotary 

shaker (100 rpm) at 24 °C in the dark. 

 

Imaging and Image Analysis. Fluorescence images were recorded with a 

fluorescence microscope (Olympus; BX-50) and a laser scanning confocal 

microscope (Olympus; FV-1200). Typically, the seedlings were incubated with half-

strength MS medium containing NBD-analogs for 15−20 min at 24 °C in the dark, 

and fluorescence images were then immediately recorded. Complete methods are 

described in Appendix A, Materials and Methods. 

 

Acknowledgements 

We thank Drs. Hironori Kaminaka and Yoshiaki Inukai for providing 

materials, and Prof. Hyung-Taeg Cho and Dr. Hiroyuki Kasahara for critical reading 

of the manuscript. This work was funded by grants from the Japan Society for the 

Promotion of Science; Grant-in-Aid for Scientific Research (KAKENHI) 23510285 

and 25114518 (to K.H.); and US Department of Energy, Chemical Sciences, 



 

 

135 
 

Geosciences, and Biosciences Division, Basic Energy Sciences Grant DE-FG02-

06ER15804 (to M.K.J. and A.S.M.). 

 

 

 

 

 

 



 

 

136 
 

Chapter 6.  Computational modelling and heterologous expression 

Summary 

Computational modeling indicates plant ABCB transporters share a high 

degree of structural conservation with polyspecific multidrug ABCB transporters in 

mammals. Despite this similarity the best characterized ABCB transporters exhibit 

narrow specificities for the phytohormone auxin and similar auxin analogs. In this 

chapter, computational modelling was used to identify substrate binding sites 

associated with polyspecific substrate transport and primary sites for determining 

substrate specificity. To examine the contribution of specific amino acid residues to 

substrate binding and activity mutational analysis and expression in heterologous 

systems was investigated. 

Introduction 

The use of modelling and in silico substrate docking has been widely used in 

attempts to determine substrates of ABC transporters, particularly for mammalian 

ABCB1 (Chufan et al., 2013; Pan and Aller, 2015; Subhani et al., 2015). These 

efforts have been aided by the determination of several high resolution crystal 

structures and have identified substrate binding sites within the transmembrane 

helices (Aller et al., 2009; Li et al., 2014a; Szewczyk et al., 2015). The narrow 

substrate specificities of plant ABCB transporters compared to mammalian homologs 

suggests specific sequence differences within these sites contribute to substrate 

recognition. However, phylogenetic and amino acid comparison alone have not been 



 

 

137 
 

sufficient in determining substrate specificity and activity (Geisler and Murphy, 2006; 

Knöller et al., 2010; Kaneda et al., 2011). 

Previous structural modelling and docking analyses have identified two plant 

specific putative auxin binding sites associated with the inner-leaflet of the plasma 

membrane that are hypothesized to confer substrate specificity (Yang and Murphy, 

2009; Bailly et al., 2011). In this chapter, these analyzes were expanded to include 

several newly characterized plant ABCB transporters. To further analyze the 

contribution of specific amino acid residues to substrate recognition and activity, 

ABCB19 and site-directed ABCB19 mutants were analyzed in heterologous systems.   

 

Results 

Sequence analysis of Arabidopsis ABCB transporter NBDs 

The majority of the Arabidopsis ABCB transporters have conserved 

sequences in the canonical nucleotide-binding domain (NBD) motifs. Of the 21 full 

length ABCBs only ABCB6 and ABCB20 have significant alterations in NBD 

sequences. Modelling of ABCB6 reveals these substitutions do not cause any major 

conformational shifts within the NBDs (Fig. 6.1 A and B). These residues, however, 

are all within the NBD regions where highly coordinated interactions occur between 

several residues, ATP, Mg2+, and water (Fig. 6.1 C). Mutations at key positions have 

been shown to have a significant impact on activity. For instance, introduction of a 

polar threonine residue in place of the non-polar glycine in the NBD1 signature 

sequence (LSGGQ→LSTGQ) reduced ATPase activity ˃80% in the bacterial 
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heterodimeric exporter EfrCD (Hürlimann et al., 2017). In human ABCB1, signature 

sequence mutants G534V and G534D independently reduce ATPase activity ˃95% 

(Bakos et al., 1997). ABCB6 and ABCB20 have several alterations in their respective 

ATP-binding cassette motifs that would likely cause both steric and charge alterations 

and reduced ATPase activity. A number of ABC transporters, including CFTR, have 

been reported to maintain activity despite having one “degenerate” nucleotide-

binding site that is able to bind but not hydrolyze ATP. This does not appear to be the 

case with ABCB6 and ABCB20 as each have non-canonical sequences in both 

nucleotide-binding sites. The groups of ABCB15/16/17/18 and ABCB2/10 have 

L→M mutations in the signature sequence (LSGGQ) in the NBD1 and NBD2, 

respectively, but these changes are not predicted to have any impact on protein 

function. Development of a system to test for ATPase activity is needed to test the 

effects of these mutations.  
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Figure 6.1. Comparison of ABCB6 and Sav1866 nucleotide binding domain 

(NBD) dimer organization. (A-B) ATP binding pockets of ABCB6. Homology 

model of ABCB6 was threaded on Sav1866 (PDB 2HYD). Sticks are shown for the 

A-loop tyrosine (green), Walker A lysine (blue), Walker B glutamate (cyan), D-loop 

aspartate (orange), H-loop histidine (red), Q-loop glutamine (yellow), and the second 

glycine in the ABC signature sequence (pink). (C) Schematic of the NBD dimer 

coordination with ATP. Letters in black are the canonical motif sequences. Red letters 

are residues in ABCB6 that are not conserved. 

 

Computational modelling predicts auxin binding sites 

To identify ABCB transporters capable of transporting auxin, docking of IAA 

to inner-leaflet associated binding sites was compared between homology models of 
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Arabidopsis ABCB19, 2, 10, 11, 21, and 14, and rice (Oryza sativa) OsABCB14 

threaded on the murine ABCB1 (MmABCB1, PDB: 4M1M) (Fig. 6.2 A). ABCB19, 

which has been shown to have high specificity for IAA (Yang and Murphy, 2009), 

had docking affinities of -6.4 and -5.5 kcal/mol for each of the binding sites, 

respectively. ABCB21 and OsABCB14, which have also been characterized as auxin 

transporters (Chapter 3 and 4) (Kamimoto et al., 2012; Xu et al., 2014), show IAA 

docking energies comparable to that of ABCB19. ABCB14, which was originally 

characterized as a malate and citrate transporter (Lee et al., 2008) and later implicated 

in auxin transport (Kaneda et al., 2011), also exhibits comparable binding to 

ABCB19. In contrast, ABCB2, which does not transport IAA when heterologously 

expressed in S. pombe (Yang and Murphy, 2009), has lower affinities for IAA at both 

sites. ABCB10 binding is comparable to ABCB19 in site 1 and substantially higher in 

site 2. ABCB11 has a docking energy comparable to ABCB19 in site 1 and reduced 

affinity in site 2. 
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Figure 6.1 Docking of IAA to the inner leaflet associated binding sites. (A) 

Homology modelling and IAA docking simulation for ABCB19 in inward facing 

conformation. White and red spheres represent positions of IAA binding. (B) Mean 

docking energies for the top 5 IAA binding poses within each binding pocket. 
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These results support a role for the two inner-leaflet associated binding sites 

contributing differentially to substrate specificity, with site 1 functioning as the 

primary site for IAA recognition (Fig. 6.2 B) (Bailly et al., 2011). All transporters 

characterized as having some capacity for IAA transport (ABCB19, 14, 21, and 

OsABCB14) group together in site 1 binding. Site 1 binding affinities for ABCB11 

also group with these transporters, which supports the activity observed when 

expressed in S.pombe (Chapter 4). Modelling also predicts ABCB10 may function as 

an auxin transporter, however, abcb10 mutants do not show auxin related phenotypes 

and ABCB10 expression is very low in planta (Chapter 3 and 4). 

Mutational analysis of ABCB19 in Schizosaccharomyces pombe 

To further investigate the contribution putative inner- and outer-leaflet 

associated auxin binding sites make to auxin transport, site-directed mutants of 

ABCB19 were generated and assayed for transport activity in S.pombe. Amino acid 

residues within 5 Å of the predicted IAA binding pockets were considered candidates 

for contribution to substrate recognition (Fig. 6.2). 
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Figure 6.2. Amino acid residues associated auxin binding in ABCB19. Amino 

acid residues that were within 5 Å of the inner and outer leaflet auxin binding pockets 

are colored red and listed in boxes. Residues in bold are associated with substrate 

recognition in human ABCB1. Also listed in boxes are site-directed mutants used for 

analyzing substrate specificity. 

 

Several of these mutations lead to decreases in ABCB19 transport activity 

(Fig. 6.4). For example, mutation of valine 97 to arginine (V97R) or histidine 168 to 

glycine (H168G), which correspond to residues associated with the outer membrane 

leaflet, resulted in defects in IAA export activity. However, it quickly became 

apparent that without the ability to test transport activity and ATPase activity, 

changes in specificity or changes in activity could not be separated. 
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Figure 6.4 Mutations in ABCB19 binding pockets reduce transport activity. 

 

Analysis of ABCB19 in Lactococcus lactis 

A number of publications have used Lactococcus lactis for expression of 

membrane transporters, including human ABCG2/BCRP (Janvilisri et al., 2003) and 

the Arabidopsis HMA P-type ATPase transporters (Frelet-Barrand et al., 2010). 

L.lactis is a Gram-positive bacterium with a single outer membrane and low 

proteolytic activity (Kunji et al., 2003). Expression in L.lactis can be tightly 

controlled using the nisin-controlled gene expression (NICE) system (de Ruyter et al., 

1996). The greatest benefit to using L.lactis system is the ability to make inverted 

membrane vesicles (Fig. 6.6). With an inverted vesicle system the dependence on 

substrate uptake prior to measuring efflux is eliminated, allowing for the use of 

multiple substrates simultaneously and a more robust characterization of specificity. 

Additionally, ATPase activity can be measured in the isolated membranes. 
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Figure 6.6. ABCB19 exhibits auxin efflux activity that is sensitive to transport 

inhibitors in L.lactis whole cells. 

 

Expression of ABCB19 results in a decreased in net 3H-IAA uptake of about 

20% in whole L.lactis cells (Fig. 6.7 A). This activity was sensitive to competition 

with cold IAA (5:1 molar ratio) and the polar auxin transport inhibitor NPA (Fig. 6.7 

B). Recently, ABCB19 was reported to exhibit channel activity that is sensitive to the 

chloride channel inhibitor NPPB when expressed in human embryonic kidney cells, 

however, auxin transport could not be detected in this system (Cho et al., 2014). 

When expressed in L.lactis, treatment with NPPB reduced 3H-IAA accumulation (Fig 

6.8), providing a link between ABCB19 NPPB-sensitivity and auxin transport 

activity. When membranes were isolated from cells expressing ABCB19, net uptake 

into the membrane vesicles could be detected after 5 and 10 minutes (Fig 6.7 C). This 

is the first time a plant ABCB transporter has been assayed in isolated membrane 

vesicles. Attempts were made to optimize the timing of maximum protein expression, 

however, HIS-tagged ABCB19 was not detected by western blot. 
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Figure 6.7. Auxin transport activity of ABCB19 in expressed in Lactococcus 

lactis. (A) ABCB19 exhibits auxin efflux in L. Lactis whole cells. (B) ABCB19 

mediated auxin efflux is sensitive to competition with IAA and auxin transport 

inhibitors in L. Lactis whole cells. (C) ABCB19 exhibits auxin transport activity in L. 

Lactis inverted membrane vesicles. 
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Discussion 

Homology modelling and docking can be a powerful tool for protein structure 

determination and prediction of activities for proteins that cannot be determined from 

sequence alignments alone (Knöller et al., 2010). Previous analyses have identified 

two putative auxin binding sites associated with the inner-leaflet of the plasma 

membrane that are predicted to confer substrate specificity in ABCB auxin 

transporters (Yang and Murphy, 2009; Bailly et al., 2011). An additional binding 

pocket that resides between the membrane bilayers is associated with broad 

specificity substrate exclusion from the membrane. 

In this chapter, previous modelling efforts were repeated to include several 

newly characterized plant ABCB transporters. From these results site 1 appears to 

function as the primary site for IAA recognition (Fig. 6.1), which is consistent with a 

previous report (Bailly et al., 2011). In line with modelling, biochemical, and 

mutational analyses, ABCB19 is predicted to exhibit a high level of substrate 

specificity. Equivalent IAA binding affinities in site 1 are consistent throughout the 

known Arabidopsis auxin transporters ABCB19, 11, and 21 and the rice auxin 

transporter OsABCB14. These results also predict much weaker affinities for the non-

auxin transporter ABCB2. 

To further analyze the contribution of specific amino acid residues to substrate 

specificity, site-directed mutants in ABCB19 were generated. While reductions in 

transport were observed in ABCB19 mutants, it was not possible to determine if these 

alterations were due to reduced transport activity or reduced ATPase/overall activity. 
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A widely used heterologous system for examining ABC transporter function is 

expression in Lactococcus lactis. Expression in L. Lactis has the benefit of being able 

to analyze transport activity in whole cells, and transport and ATPase activity in 

inverted membrane vesicles. When expressed in L. Lactis ABCB19 exhibited auxin 

efflux activity that was sensitive to established auxin transport inhibitors. Further, 

ABCB19 also exhibited net uptake activity into inverted membrane vesicles. 

However, since the protein could not be detected by western blotting, these activities 

cannot be directly attributed to ABCB19. Analysis of the genome reveals L. Lactis 

lacks proteins with any significant homology to the FKBP42 or its chaperone HSP90. 

It is hypothesized that co-expression with FKBP42 and HSP90 would significantly 

increase ABCB19 stability and activity but those experiments were not made here. 

Analyzing transporter activity using heterologous systems remains a 

challenge. Systems that work for one protein may not work for another, even in cases 

of proteins with significant similarity. Differences between eukaryotic and 

prokaryotic transcriptional, translational, and post-translational processes could play 

into the difficulties in expressing Arabidopsis ABCB19 in L. Lactis. Other eukaryotic 

heterologous systems have been used to express Arabidopsis ABCB transporters and 

analyze specificity including HeLa, human embryonic kidney, and SF9 cells 

(Terasaka et al., 2005; Titapiwatanakun and Murphy, 2009; Cho et al., 2014). 

Previously, specificity was analyzed for ABCB4 using vanadate trapping in SF9 cells 

(Terasaka et al., 2005). Efforts to express ABCB19 in SF9 cells are underway. 
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Materials and Methods 

Homology modelling and docking. The amino acid sequences of Arabidopsis 

ABCB transporters were retrieved from TAIR (AtABCB1: AT2G36910.1, 

AtABCB2: AT4G25960.1, AtABCB3: AT4G01820.1, AtABCB4: At2G47000.1, 

AtABCB5: AT4G01830.1, AtABCB10: At1G10680.1, AtABCB11: AT1G02520.1, 

AtABCB12: AT1G02530.1, AtABCB13: AT1G27940.1, AtABCB14: At1G28010.1, 

AtABCB15: AT3G28360.1, AtABCB16: AT3G28380.1, AtABCB17: AT3G28390.1, 

AtABCB18: AT3G28415.1, AtABCB19: AT3G28860.1, AtABCB21:AT3G62150.1) 

and rice ABCB transporters from the SALK Institute Genomics Analysis Laboratory 

(OsABCB10: Os05g04610, OsABCB14: Os04g38570). Initially three homology 

models were build using the iTASSER (Roy et al., 2010) and Phyre2 (Kelley and 

Sternberg, 2009) servers, and the Modeller v9.14 (Eswar et al., 2006) program with 

the multidrug exporters MmABCB1 (PDB: 4M1M, open conformation) and Sav1866 

(PDB: 2HYD, closed conformation) as templates. These three models were then used 

as templates to build a final ABCB transporter model using Modeller v9.14. Regions 

not included within the MmABCB1 crystal structure, i.e. the N-terminus and linker 

domain were removed due to high variability in the structure prediction in these 

regions. All final models were subjected to energy minimization using the YASARA 

energy minimization server. The quality of the final models was assessed using the 

ERRAT2, RAMPAGE and QMEAN servers. For the docking 60 IAA poses 

generated using AutoDock Vina (Seeliger and de Groot, 2010). 
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Yeast transport assays. Yeast assays were conducted as described in Yang and 

Murphy, 2009. 

 

Site-directed mutagenesis and cloning. ABCB19 sequence was amplified with BP 

Gateway primers using Herculase II Fusion DNA polymerase (Agilent Technologies) 

then cloned into the pDONR/zeo Gateway donor vector (Life Technologies) by BP 

recombination and confirmed by sequencing. ABCB19 was then transferred to 

pPTPi-G17 (Douillard et al., 2011), a nicin-inducible L. lactis expression vector with 

an N-terminal His6 tag, by LR recombination (Life technologies). pPTPi-G17-

ABCB19 was then transformed into L. lactis strain NZ9000 by electroporation. 

Positive transformants were verified by PCR and restriction digestion. 

 

Growth and induction of L. Lactis. L. lactis expressing empty vector or ABCB19 

were grown overnight (static, 30°C) in GM17 media containing 5µg/ml tetracycline. 

1 ml culture was used to inoculate 50 ml fresh media and grown 90 RPM, 30°C. 

Protein production was induced by addition of 5ng/ml nisaplin (in 0.05 acetic acid) 

when cultures reached OD600 0.4-0.5. 

 

Preparation of inverted membrane vesicles. Cell pellets were be resuspended in 

100 mM K-HEPES (pH 7.0) with 1 mM PMSF, 20 mg/l leupeptin, 200 mg/l 

pepstatin, and 40 mg/l aprotinin. Lysozyme was be added to a final concentration of 2 

mg/ml, and the suspensions incubated 30°C for 30 min to digest the cell wall. Cells 

were then lysed by three passages through a French press cell disruptor at 20,000 psi. 
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10 µg/ml DNase, 2 µg/ml RNase, 10 mM MgSO4, and 15 mM K-EDTA (pH 7.0) will 

be added and the suspension incubated for 30 min at 30°C. Unbroken cells and cell 

debris were removed by centrifugation at 4°C, 13,000 x g for 15 min. Inside-out 

membrane vesicles were be collected by centrifugation at 4°C, 125,000 x g for 50 

min and resuspended in 100 mM K-HEPES (pH 7.0) containing 10% glycerol. 

 

Transport assays in L.lactis. For whole cell assays, 100µl cell culture was aliquoted 

into pre-chilled Eppendorf tubes and incubated 25 min on ice. 1µl 3H-IAA (40nM 

final conc.) was added, samples were vortexed briefly then incubated 30°C. Cells 

were collected by centrifugation 30 sec, 8,000 x g, 4ºC, washed once with cold GM17 

(pH 4.5) then resuspended in 250µl cold water. Cells were added to 5ml scintillation 

cocktail and analyzed for 3H-IAA accumulation. For inhibitors and competition 

assays 250nM cold IAA, 5µM NPA or 5µM NPPB was added at room temperature 

just prior to addition of 3H-IAA on ice. Cells were incubated 30°C for 8 min. For 

assays with isolated membranes,   
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Conclusions 

In this dissertation, I identify a primary function of ABCB auxin transporters 

in excluding auxin from the plasma membrane at points of efflux. This exclusionary 

function is not dynamic but is necessary to maintain auxin transport streams during 

plant growth and development. This is demonstrated in the severe dwarfism and 

reductions in auxin transport in abcb1abcb19 double mutants. 

In seedlings, ABCB1 and ABCB19 function primarily in excluding auxin 

from the shoot apex and keeping auxin within the rootward auxin transport stream in 

the hypocotyl and root. By expression, I establish that ABCB19 is the primary ABCB 

auxin transporter and contributions to auxin transport from other ABCBs are 

supplementary. One of these supplementary transporters is ABCB21. From my 

analysis I determined ABCB21 functions with ABCB19 in maintaining the rootward 

auxin transport stream by excluding auxin from entering the surrounding tissues. A 

phenotypic analysis of several other ABCB transporter mutants did not point to any 

obvious additional candidates. Analysis of expression and mutant phenotypes indicate 

most ABCB transporters are not expressed in seedlings but are more likely to 

contribute to auxin transport in mature tissues. 

In mature tissues, loss of ABCB1 and ABCB19 results in pooling of auxin in 

the inflorescence shoot apex, supporting a role in exclusion of auxin from the apical 

regions between seedlings and mature tissues. The lack of defects organ formation in 

abcb1 and abcb19 mutants but severely stunted growth in abcb1abcb19, again, points 

to a dull but necessary exclusionary function. Consistent with what is observed in 

seedlings, I determined ABCB19 is the primary ABCB auxin transporter. I further 
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determined that ABCB6 mediates rootward auxin transport in inflorescence stems, 

ABCB21 contributes to auxin distribution in leaves, and ABCB11 mediates auxin 

transport in young flowers. However, auxin related phenotypic differences are only 

observed in triple mutant backgrounds and single abcb11 and abcb21 mutants do not 

exhibit any obvious phenotypic differences from wild type plants. This further 

suggests their contributions to auxin transport are supplementary to that of ABCB19. 

The levels of ABCB6 supplementary activity to ABCB19, and ABCB1, remain to be 

determined. 

In order to better understand on the molecular level how ABCB transporters 

mediate exclusion of auxin from the membrane I analyzed transport of fluorescently-

tagged auxins synthesized by Dr. Ken-Ichiro Hayashi. The original hypothesis was 

that ABCB transporters were less specific than AUX1/LAX or PIN proteins, and 

would be able to actively transport the fluorescent auxins by excluding them from the 

membrane. My analysis of these tagged auxins determined they mirror the 

distribution of native auxin in vivo. Further, analysis indicated the fluorescent-auxin 

auxins partition into membranes at sites of auxin transport but it remains unclear 

whether these auxins primarily are labelling membranes or proteins. Most 

significantly, I determined that the fluorescent auxin were not actual substrates of the 

AUX1/LAX, PINs or ABCBs and were not useful for study of the primary auxin 

transporters. 

Despite the development of several tools to study auxin transport in planta, it 

appears the best way to determine how ABCB transporters confer substrate 

specificity is with the use of heterologous expression systems. Here, I used homology 
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modelling and expression in heterologous expression systems in an attempt to 

identify the molecular mechanisms of ABCB transporter specificity and activity. 

From my analysis, I identify putative substrate binding sites that support a primary 

function of ABCB transporters in exclusion of auxin from the membrane. Analysis of 

mutations within these binding sites reduced auxin transport in ABCB19 when 

expressed in S.pombe. It was not possible to determine if these reductions were due to 

changes in specificity or activity. Attempts to analyze the contribution of these 

binding sites to specificity and activity in other heterologous systems are ongoing. 

Since beginning this dissertation research, the field of auxin transport has 

advanced tremendously. However, the question of how ABCB transporters work 

remains largely unknown. In this dissertation I identified a primary role for ABCB 

transporters in excluding auxin from the membrane. What we still don’t know is how, 

on the molecular level, the interactions between ABCB transporters, the membrane 

environment, and their substrates determines specificity. 
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Appendices 

 

Appendix A. Supplementary information for Chapter 5 

Auxin transport sites are visualized in planta using fluorescent auxin analogs 

Ken-ichiro Hayashi, Shouichi Nakamura, Shiho Fukunaga, Takeshi Nishimura, Mark 

Jenness, Angus Murphy, Hiroyasu Motose, Hiroshi Nozaki, Masahiko Furutani, 

Takashi Aoyama 

 

In the interest of space, only supplemental figures have been included here. The full 

supporting information for this publication, including fluorescent auxin synthesis, can 

be found at: 

http://www.pnas.org/content/pnas/suppl/2014/07/19/1408960111.DCSupplemental/p

nas.1408960111.sapp.pdf 
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Fig. S5.1. Structures of fluorescently labeled auxins and fluorescence images of 

Arabidopsis roots. 6-d-old seedlings were treated with medium containing 2 μM 

fluorescent probes for 15 min. Fluorescent microscopy images were generated using 

FITC filter sets. Compounds 13: 2-(7-(2-((7-nitrobenzo[c][1,2,5]oxadiazol-4-

yl)amino)butoxy) naphthalen-1-yl) acetic acid, 33: 6-[2-(7-nitro-

benzo[1,2,5]oxadiazol-4-ylamino)-ethoxy]-naphthalen-1-yl}-acetic acid, 45: [7-(1-

{2-[1- (7-Nitro-benzo[1,2,5] oxadiazol-4-yl)-piperidin-4-yl] -ethyl}-1H-[1,2,3] 

triazol-4- ylmethoxy)- naphthalen-1-yl]-acetic acid, 46: [5-(1-{2-[1- (7-Nitro-benzo 

[1,2,5]oxadiazol- 4-yl)-piperidin-4-yl]- ethyl}-1H-[1,2,3] triazol-4-ylmethoxy)-1H-

indol3-yl]-acetic acid, 50: BODIPY-labeled IAA, 10-(4-(4-(((3-(carboxymethyl)- 1H-

indol-5-yl)oxy)methyl) -1H-1,2,3-triazol-1-yl) butyl)-5,5-difluoro- 1,3,7,9-

tetramethyl- 5H-dipyrrolo [1,2-c:2',1'-f] [1,3,2]diazaborinin-4-ium-5-uide, 53: FITC-

labeled IAA, 2-(5-(2-(3-(3',6'- dihydroxy-3-oxo-3H-spiro [isobenzofuran- 1,9'-

xanthen]-5-yl)thioureido)ethoxy)-1H-indol-3-yl)acetic acid. 
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Fig. S5.2. Distribution of NBD-benzoic acid and NBD-indole in Arabidopsis root 

and tobacco BY-2 cells. (A) Structures of NBD-benzoic acid and NBD-indole used 

for control. (B) Distribution of NBD-benzoic acid and NBD-indole in Arabidopsis 

roots. 6-d-old wild-type seedlings were treated with medium containing NBD-labeled 

chemicals for 15 min. The values presented in parentheses indicate the concentration 

of chemicals (μM). Scale bar represents 100 μm. (C) The tobacco BY-2 cells were 

treated with 5 μM NBD-benzoic acid and 5 μM NBD-indole for 15 min. The control 
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compounds NBD-benzoic acid and NBD-indole did not show a clear fluorescent 

signals. Fluorescence images of roots and cells were recorded under identical 

conditions by fluorescent microscopy (fluorescent image) and confocal laser scanning 

microscopy (confocal image). The values in parentheses indicate the concentrations 

of chemicals (μM). 
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Fig. S5.3. Visualization of exogenous NAA distribution by using DII-VENUS 

system. 6-d-old DII-VENUS seedlings were incubated for 6 h with/without 10 μM 

auxinole, specific antagonist for TIR1/AFB auxin receptor to block the degradation of 

DII-VENUS reporter protein regulated by endogenous auxin. The DII-VENUS roots 

were washed out with fresh medium and treated with exogenous NAA. Fluorescent 

confocal images of roots were recorded under the identical conditions at regular 

intervals. The values presented in parentheses indicate the concentration of chemicals 

(μM). Scale bar represents 200 μm. Auxinole uniformly accumulated the DII-VENUS 
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reporter protein by repressing the endogenous IAA activity. The distribution profile 

of NAA was estimated from the NAA-induced degradation pattern of DII-VENUS 

protein in root. 
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Fig. S5.4. Effects of NBD-analogs on auxin-responsive gene expression and 

molecular docking analysis of the auxin receptors TIR1 and ABP1. (A) 6-d-old 

DR5::GUS (left) and pIAA12::GUS (right) lines were incubated with/without 5 μM 

IAA, together with NBD-auxins, for 5 h or 16 h, respectively. NBD-IAA, -NAA, -

indole and -benzoic acid were inactive regarding IAA-induced gene expression. The 

values in parentheses indicate the concentrations of chemicals (μM). (B−D) 
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Molecular docking calculations for NBD-IAA and NBD-NAA at the auxin-binding 

pockets of Arabidopsis Auxin-Binding Protein 1 (ABP1) and TIR1. The NAA 

molecule within the crystal structures of ABP1 and TIR1 is shown in green. The 

crystal structure of the ABP1-NAA complex was obtained from a protein data bank 

[PDB ID, 1LRH]. (B) Blue- and orange-colored molecules represent the predicted 

binding conformation of NBD-IAA and NBD-NAA to ABP1. The NBD-auxins 

cannot fit into narrow cavity of the auxin-binding site of ABP1. (C) Structure of the 

TIR1-NAA complex [PDB ID, 2P1O]. (D) Left panel: The green NAA molecule was 

placed in a small cavity formed with TIR1 and Aux/IAA (auxin-binding pocket). 

Middle panel: the blue and orange molecules represent the predicted binding 

conformations of NBD-IAA and NBD-NAA at the TIR1 auxin-binding site. The 

NBD-auxins crush the Aux/IAA protein at the TIR1-binding site (red arrow); 

therefore, the NBD-auxins cannot function as active auxins in the TIR1-Aux/IAA 

receptor complex. 
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Fig. S5.5. Distribution of NBD-auxins in GH3-overexpressing roots and stability 

of NBD-NAA in suspension-cultured tobacco BY2 cells. (A) Arabidopsis estradiol-

inducible pER8::GH3.6 overexpression line (GH3ox) showed auxin-deficient root 

phenotype grown with 5 μM estradiol. Scale bar represents 5 mm. (B) 5-d-old GH3ox 

seedling was incubated with liquid GM medium containing 5 μM estradiol for 6 h to 

induce GH3 protein. After induction of the GH3 enzyme, the seedlings were treated 
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with medium containing NBD-auxins for 20 min (left panel) or 40 min (right panel), 

and fluorescence images of roots were subsequently recorded. The values in 

parentheses indicate the concentrations of chemicals (μM). The fluorescence images 

showed no effects of GH3 overexpression until 40 min, suggesting that NBD-auxins 

are a poor substrate for the GH3 enzyme. Scale bar represents 500 μm. (C) 

Fluorescent HPLC chromatogram of extracts from tobacco BY2 cells treated with 

NBD-NAA. BY-2 cells were incubated with 2 μM NBD-NAA at 24°C, and 0.5 ml 

aliquots of the cultures were collected at regular intervals. A methanol extract from 

the harvested cells was analyzed via fluorescent HPLC. As a control, NBD-NAA was 

added to methanol extracts from non-treated cells. The fluorescent HPLC 

chromatogram was not altered until 50 min of the incubation period had elapsed. (D) 

The peak levels of NBD-NAA (HPLC chromatogram) extracted from the cells were 

maintained during incubation. 
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Fig. S5.6. Effects of NBD-auxins and auxin analogs on Arabidopsis root 

gravitropism. (A) Structures of the diffusible fluorescent NBD-auxin NBD-C2-IAA, 

lipophilic analogs of NBD-NAA BOC-C2-NAA, and auxin transport inhibitors Bz-

NAA. (B) Distribution of the diffusible fluorescent NBD-auxin NBD-C2-IAA. 6-d-

old seedlings were treated with 10 μM NBD-C2-IAA for 20 min. In contrast to the 

asymmetric fluorescent signal of NBD-NAA, a uniform fluorescent signal of NBD-

C2-IAA was observed in the root tips. Scale bar represents 200 μm. (C) Roots (6-d-

old) were placed on GM agar plates containing chemicals. The seedlings were grown 

in the dark for 5 h after rotating the plates at 90° angle against vertical direction. The 
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values in parentheses indicate the concentrations of chemicals (μM). Bz-NAA, 

alkoxy-NAA showed potent inhibition of root gravitropism. BOC-C2-NAA, 

hydrophobic analogs of NBD-NAA, and diffusible NBD-C2-IAA exhibited potent 

inhibition. These alkoxy auxin analogs are expected to be recognized by auxin 

transporters and then perturb endogenous auxin movements via competitive inhibition 

of auxin transport. These data suggest that the membrane permeability of analogs 

strongly influences inhibitory activity against root gravitropism. (D) Effects of NBD-

C2-NAA and BOC-C2-NAA on DR5::GUS expression. NBD-C2-NAA and BOC-

C2-NAA did not affect DR5::GUS expression, indicating that both analogs did not 

act as auxin nor anti-auxin in SCFTIR1/AFB pathway. 
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Fig. S5.7. Effects of auxin and transport inhibitors on the NBD-NAA 

distribution in Arabidopsis roots. 6-d-old Arabidopsis seedlings were incubated 

with liquid GM medium containing auxin or aromatic acids for 30 min or with auxin 

transport inhibitors for 60 min. NBD-NAA was then added to the medium, followed 

by incubation for another 20 min. Fluorescence images of roots were recorded under 

identical conditions. The values in parentheses indicate the concentrations of 

chemicals (μM). IAA and NAA enhanced NBD-NAA accumulation in the 

meristematic zone, whereas aromatic acids did not. The auxin transport inhibitors 
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2,4,5-triiodobenzoic acid (TIBA), brefeldin A (BFA), 1-N-naphthylphthalamic acid 

(NPA), and 7-benzyloxy-NAA (Bz-NAA) increased NBD-NAA accumulation to the 

same extent as active auxins.  
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Fig. S5.8. Effects of auxin and transport inhibitors on NBD-IAA distribution in 

Arabidopsis roots. 6-d-old Arabidopsis seedlings were incubated with liquid GM 

medium containing auxin or auxin transport inhibitors for 60 min. NBD-IAA was 

then added to the medium, followed by incubation for another 20 min. Fluorescence 

images of roots were recorded under identical conditions. The values in parentheses 

indicate the concentrations of chemicals (μM). NAA and the auxin transport 

inhibitors TIBA and BFA enhanced NBD-IAA accumulation in the meristematic 

zone, whereas benzoic acids did not. IAA and 5-Benzyloxy-IAA (Bz-IAA) reduced 

the fluorescent signals via competitive inhibition of AUX1/LAX-mediated NBD-IAA 

import. Scale bar represents 200 μm. 
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Fig. S5.9. Distribution of NBD-auxins in Arabidopsis transport mutants 

35S::PIN1, aux 1-7, abcb1, abcb19, pin3 and pin3pin7. (A) 6-d-old Arabidopsis 

seedlings incubated with liquid GM medium containing 5 μM NBD-IAA and 5 μM 

NBD-NAA for 20 min. Fluorescent confocal images of roots were recorded under 

identical conditions. The accumulation of NBD-auxins in the elongation zone was 

disappeared in PIN1 overexpression (35S::PIN1) mutant. The fluorescent signal of 

NBD-IAA was reduced in aux1-7 roots due to a loss-of-function mutation in aux1 

importer. On the contrary, NBD-NAA is expected to bypass the AUX1 importer in 

the same manner as original NAA molecule. The abcb1, abcb19, pin3 and pin3 pin7 

mutants showed similar distribution profile of NBD-auxins to that in wild-type (Col). 
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Scale bar represents 100 μm. The values in parentheses indicate the concentrations of 

chemicals (μM). (B) Root phenotypes in 35S::PIN1, aux1-7, pin2/eir1-1, abcb1, 

abcb19, pin3 and pin3pin7. The 35S::PIN1, aux1-7 and pin2/eir1-1 mutants 

displayed highly agravitropic root phenotype. These agravitropic root phenotype 

would be correlated with abnormal distribution pattern of NBD-auxins. Scale bar 

represents 5 mm. 
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Fig. S5.10. The excess NAA accumulated NBD-auxins in Arabidopsis cultured 

cell. Arabidopsis MM1 cultured cell were incubated with 100µM NAA for 10 min 

and then treated with 2 μM NBD-analogs with/without 100 μM NAA for 30 min. The 

values in parentheses indicate the concentrations of chemicals (μM). 
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Fig. S5.11. Effects of exogenous auxins on the DR5::GFP expression profile in 

endogenous auxin-depleted roots. DR5::GFP line were grown for 5 days on 

medium containing auxin biosynthesis inhibitors (10 μM kynurenine, a TAA1 

inhibitor, and 20 μM yucasin, a YUC inhibitor) with/without auxins. (A) DR5::GFP 

maxima in endogenous auxin-deficient (upper) and control (lower) roots. The 

DR5::GFP expression profile in the root apex was not fully restored by the 

application of exogenous auxins. (B) Phenotype of endogenous auxin-deficient and 

control seedlings in the presence of exogenous auxins. The application of exogenous 

auxins restored the growth defects observed in auxin-deficient seedlings. The values 

in parentheses indicate the concentrations of chemicals (μM). (C) The phenotype of 
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auxin biosynthesis mutants wei8-1 tar2-2, yuc 3 5 7 8 9 and wild-type plant (Col-0) 

treated with kynunrenine and yucain. The values in parentheses indicate the 

concentrations of chemicals (μM). 
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Fig. S5.12. Distribution of NBD-NAA in Arabidopsis seedlings. The wild-type 

seedlings (just germinated and 2-days old) were incubated with liquid GM medium 

containing 1 μM NBD-NAA for 20 min. The fluorescent image of DR5::GFP 

seedlings was obtained at same growth period. Scale bar represents 500 μm. The 

values in parentheses indicate the concentrations of chemicals (μM). 
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Fig. S5.13. Transport of NBD-auxin in Arabidopsis hypocotyl. (A) Distribution of 

NBD-NAA in 4-d-old etiolated Arabidopsis hypocotyls of wild-type (Col-0) and pin3 

pin7 mutant. 0.2 µl droplette of 0.1 % agarose containing 80µM NBD-NAA was 

placed on apical cotyledon, and then incubated for 4 h in the dark. (B) Effects of 

NAA and auxin transport inhibitor on NBD-NAA transport in decapitated etiolated 

hypocotyls. The decapitated hypocotyls were inverted in 5µl of medium containing 

NAA or TIBA in 0.5 ml microcentrifuge tubes and incubated for 1 h in the dark. 
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0.1% agar solution (5µl) of NBD-NAA was added into the tube at 50 µM final 

concentration, and then incubated for additional 3h. (C, D) Distribution of NBD-

auxins in decapitated etiolated hypocotyls. The decapitated hypocotyls were inverted 

in 15µl of medium containing NBD-auxin in 1.5 ml microcentrifuge tubes and 

incubated for 2-3 h in the dark. Scale bar represents 50µm. Upper panels show 

decapitation site, lower panels areas 1-2mm below decapitation site. 
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Fig. S5.14. Subcellular distribution of NBD-IAA in tobacco suspension BY-2 

cells. (A) Subcellular distribution of NBD-IAA in tobacco BY2 cells. The cells were 

incubated with NBD-IAA and ER-tracker for 20 min. (B) Auxin transport inhibitors, 

NPA and TIBA accumulated subcellular NBD-IAA in tobacco BY2 cells. The cells 

were pre-incubated with auxin transport inhibitors, NPA or TIBA for 4 h and then 

NBD-IAA was added. The confocal images were recorded after 20 min incubation. 

The values in parentheses indicate the concentrations of chemicals (μM). Scale bar 

represents 50 μm.  
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Fig. S5.15. Subcellular distribution of NBD-IAA in root expressing tonoplast 

marker, VHA-a3-mRFP. Subcellular distribution of NBD-auxin in root expressing 

tonoplast marker, VHA-a3-mRFP. The root was treated with 5 μM NBD-auxin for 30 

min. The values in parentheses indicate the concentrations of chemicals (μM). Scale 

bar represents 50 μm. 
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Fig. S5.16. Subcellular distribution of NBD-IAA in root expressing ER marker, 

CFP-HDEL. (A) Subcellular distribution of NBD-IAA in root expressing ER marker, 

CFP-HDEL (CFP-ER: ABRC CS16250 line). The root was treated with 5μM NBD-

IAA for 20 min. (B) Subcellular distribution of NBD-NAA in root cell expressing ER 

marker, CFP-ER. The CFP-ER root was treated with 5 μM NBD-NAA for 20 min. 

(C) The CFP-ER seedling was incubated with 50 μM TIBA for 4h and the NBD-

NAA was added to final concentration of 5μM. The root was incubated for additional 

20 min. The values in parentheses indicate the concentrations of chemicals (μM). 

Scale bar represents 20 μm. 
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Appendix B. Lines used in this dissertation. 
 

Gene 
Locus 

Protein Mutant T-DNA 
Insertion 

Reference 

AT2G36910 ABCB1 abcb1-1 (pgp1-1)  Noh et al., 
2001* 

abcb1-100  Lin and Wang, 
2005 

AT4G25960 ABCB2 abcb2-1 Salk_025155  
abcb2-2 WiscDsLox340

G08 
 

AT2G47000 ABCB4 abcb4-1 Salk_063720 Terasaka et al., 
2005 

AT2G39480 ABCB6 abcb6-1 Sail_7_C04.v1  
AT1G02520 ABCB11 abcb11-1 Salk_057628  
AT1G02530 ABCB12 abcb12-1 Salk_094249 Kaneda et al., 

2011 
AT1G28010 ABCB14 abcb14-1 Salk_016005 Kaneda et al., 

2011 
AT3G28345 ABCB15 abcb15-3 Salk_034562  
AT3G28860 ABCB19 abcb19-1 (pgp19-1)  Noh et al., 

2001* 
mdr1-101  Lin and Wang, 

2005 
GFP-ABCB19  Mravec et al., 

2008 
AT3G62150 ABCB21 abcb21-1 WiscDsLox1C2 Kamimoto et 

al., 2012 
abcb21-2 Gabi_954H06  

DII-
VENUS 

   Brunoud et al., 
2012 

* Original Ws alleles from Noh et al. (2001) were backcrossed into Col-0 five times 
and were verified phyD+ by PCR. 
 

Appendix C. Primers used in this dissertation. 
 
RNAi Constructs 
Construct 5’-Sequence-3’ Sense 
B2/10-RNAi CACCCAGAGTCGCCAAGTACTCGT 

GTACGGTCCTCACATTCCCGA 
For. 
Rev. 

B3/5/11/12-RNAi CACCCGCGAGGATAAGAAGTACATATC 
GATGTTATGAACTTCTTGTAGCTGTTAATG 

For. 
Rev. 

B13/14-RNAi CACCCTCGCGTTTCACAGAATGCT 
CATGACTATAGCATACCCTCCTC 

For. 
Rev. 
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B15/16/17/18-
RNAi 

CACCCACTTCCTCTTCCAATAATAAA 
CTCCACATCAAGATGAAACTC 

For. 
Rev. 

Quantitative real-time PCR 
Gene 5’-Sequence-3’ Sense 
ABCB1 TCTCTTGCTTTGGTACGGTG 

CTCGGTGCTGATTGTCCC 
For. 
Rev. 

ABCB2 TTCGTCGCCATCGGACTTATTGCT 
TTGTACGGTCCTCACATTCCCGAT 

For. 
Rev. 

ABCB3 GCCTATCGAGCGAGTGTTAAGCAA 
AGACATCGAACTTGCGACCACAGT 

For. 
Rev. 

ABCB4 GAGACGCGAGTGAATCCGAA 
ATCATAACCCTGTTGCAGACCA 

For. 
Rev. 

ABCB5 GCTTTGGGTACATGGTTTGGTGGT 
ACAAGGTGATGCTTGCCCTAAAGC 

For. 
Rev. 

ABCB6 ACAACCGTTAACTCCTGTTTC 
CATTTCCTCCTCATCATCCG 

For. 
Rev. 

ABCB7 CCGTTGGTGAACGTGGAGTA 
CCTGATCAAGCGCATCTTGC 

For. 
Rev. 

ABCB9 CGTAGTTTTGATGACCGTCG 
TTACAGCAACCTTCCACACT 

For. 
Rev. 

ABCB10 ATCGCAGAAGAGGTGATCGGGAAT 
AATGCAACGAACCAAGCCCTAGTC 

For. 
Rev. 

ABCB11 CGCAGCTCATTCGATTACAAG 
ACGAAGTTCCCTCCATTGAC 

For. 
Rev. 

ABCB12 TGCTTCCCTTGTTCAGCTTCA 
GCTACATAAACTTGCATACAACAACATAA 

For. 
Rev. 

ABCB13 TCTCATTGCGGCTTCACTTACCGA 
GACAAAGGCATTCTTGGTGGGCTT 

For. 
Rev. 

ABCB14 CTGCTAAAGCAGCCAACGCAGATT 
TGCCCTCCTGAAAGTTGAGTTCCT 

For. 
Rev. 

ABCB15 TCGTTAGTGGGTGATCGAATGGCA 
ACCCGACGAGTGTAGAAGCAAACA 

For. 
Rev. 

ABCB16 TTGGACAGCCAATCAGAGCGTGTA 
TCGTGCTAAGCCTATGTGCGATCA 

For. 
Rev. 

ABCB17 AAGCGGATCGGGTAAATCGACAGT 
TGCGACCTCAACCAATTCACTTGC 

For. 
Rev. 

ABCB18 AAGCTTGGGTTGAGACAAGGGCTA 
ACCGAAGGTGACGCAAACAATGAC 

For. 
Rev. 

ABCB19 AGGATTGACCCGGATGATGCTGAT 
TCGGGTCTTGAAGGGTAAGCGAAA 

For. 
Rev. 

ABCB20 TCAGCAGAGATCTGAACACC 
GCAAGACACCTCAATCCAAC 

For. 
Rev. 

ABCB21 TCGCTCATACGTCTACAAGAAGATACTAAACA
G 
CGAAAGAGACTTTCTTTTCTTTGATCGG 

For. 
Rev. 
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ABCB22 TTCGTTGGGGAGAGACAAGC 
GACGTCTTGGATCACGAGGG 

For. 
Rev. 

PP2A TCGTGGTGCAGGCTACACTTTC 
TCAGAGAGAGTCCATTGGTGTGG 

For. 
Rev. 

ACT2 ACACTGTGCCAATCTACGAGGGTT 
ACAATTTCCCGCTCTGCTGTTGTG 

For. 
Rev. 

Promoter:GUS Constructs 
Construct 5’-Sequence-3’ Sense 
ABCB11 CACCTGGACCCTCATGTTTTTCCTT 

ATTTCGGCGCTGACAAAAATCAG 
For. 
Rev. 

ABCB21 CACCAATTGTAAAGAAAAAGTTATGAGTC 
TGTTCTTTGATCCTATCAAGA 

For. 
Rev. 

Expression in S.pombe 
ABCB11 ATCATATGATGAACGGTGACGGCGCCAGAGAA

G 
ATCCCGGGTCAATTAGAAGCAGTCATGTGAAG
CTG 

For. 
Rev. 

ABCB21 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCA
TGGATAGTGTAATAGAATCAGAG 
GGGGACCACTTTGTACAAGAAAGCTGGGTCCT
ATTATGTAGAAGCACTCAGATGAAGTTG 

For. 
 
Rev. 

Genotyping 
b11-1 
SALK_057628 

TGGCATCTTGAATAAGAACCG 
ATTTTACGGGCAAGCAAAAAG 

For. 
Rev. 

WiscDsLox1C2 AATCGACAGTGATTGCGTTG 
TTAACCATAACCCGGTCCAA 

For. 
Rev. 

Gabi_954H06 TTCTCCACGATGACTCCATTC 
TCATTGTCTCCTGATTCCAGC 

For. 
Rev. 

LBb1.3 ATTTTGCCGATTTCGGAAC  
p745 AACGTCCGCAATGTGTTATTAAGTTGTC  
o8409 ATATTGACCATCATACTCATTGC  
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