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This paper presents a two-stage approach for solving the medication distribution problem.  
The problem addresses a critical issue in emergency preparedness.  Public health officials 
must plan the logistics for distributing medication to points of dispensing (PODs), which 
will give medication to the public in case of a bioterrorist attack such as anthrax.  We 
consider the problem at the state and local levels.  Our approach separates the problem 
into two subproblems: (1) the “routing problem” assigns PODs to vehicles and creates 
routes for each vehicle, and (2) the “scheduling problem” determines when the vehicles 
should start these routes and how much material should be delivered on each trip.  This 
paper presents the results of using this approach to construct solutions for a realistic 
three-county scenario.  The results show that the routing and scheduling decisions greatly 
affect the quality of the solution.  
 

1. Introduction 

Improving emergency preparedness requires planning responses to bioterrorist attacks.  In the 

case of a large scale bioterrorist event, such as the release of anthrax, public health officials may 

decide that mass dispensing of medication is needed.  According to the Centers for Disease 

Control and Prevention, large cities and metropolitan areas need to dispense antibiotics to their 

entire identified population within 48 hours of the decision to do so (CDC, 2008).  Federal 

funding is supporting efforts by cities in every state to create effective plans.  These plans call for 

opening points of dispensing (PODs) to give prophylactic medication to persons who are 

currently healthy but may have been exposed to a pathogen.  PODs may be setup in schools, 

recreation centers, churches, and other non-medical facilities.  Other modes of dispensing 

medication are being considered, but PODs are the primary focus of planning activities. 

The proposed research is motivated by work with county public health departments in the 

state of Maryland who must plan the logistics for distributing medication to the PODs from a 

central location.  We consider the problem at the state and local levels (not the national level).  

After the decision for mass dispensing is made, county public health departments will begin 

preparing for opening multiple PODs simultaneously at a designated time.  The state will request 

medication from the federal government, who will deliver an initial but limited supply of 

medication to a state receipt, storage, and stage (RSS) facility (which we call the “depot”).  
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Contractors will deliver more medication to the depot, but the state will begin shipping 

medication from the depot to the PODs before everything arrives from the contractors. 

Some counties in a state may choose to operate a local distribution center (LDC), which 

receives medication from the depot and operates as a cross-docking facility.  Personnel at the 

LDC load trucks that deliver the medication to the PODs in that county.  LDCs are viewed as 

desirable because a county can employ drivers and transportation managers who are familiar 

with the county and can adjust the distribution of medication based on local needs and 

preferences. 

Poor medication distribution plans will delay the time that some PODs receive 

medication.  This can delay the opening of these PODs, and some residents may not get their 

medication in a timely manner, which increases their risk of death or illness.  Clearly, there are 

many uncertainties in medication distribution, including the timing of shipments to the depot, the 

time needed to load and unload trucks, travel times, and the demand for medication at each POD.  

For this reason, planners need a robust plan.  In particular, it is better if the plan calls for 

delivering medication to PODs much earlier than it is needed.  This improves the likelihood that 

the PODs will open on-time, will not run out of medication during operations, and will dispense 

medication to the largest number of people in a timely manner.  

The operations of firefighters, emergency medical services, and police departments have 

motivated research into location models (e.g. Daskin and Stern 1981, Ball and Lin 1993, Ceyhun 

et al. 2007) and dynamic vehicle routing models (Sivanandan et al. 1988, Weintraub et al. 1999, 

Haghani et al. 2004).  However, these models are not relevant to the medication distribution 

problem. 

The problem of routing a variety of vehicles to deliver medication to the PODs within a 

short period of time, when not all medication is available initially, is more closely related to the 

inventory routing problem (IRP) and the production-distribution scheduling problem (PDSP).  

Still, these models are also not directly relevant.  In a deterministic IRP, the demand at each site 

is known (see survey papers by Dror et al. 1985, Campbell et al. 1998, Baita et al. 1998, and 

Moin and Salhi 2007). In a stochastic IRP, the demand at each site is a random variable (see, e.g. 

Trudeau and Dror 1992, Bard et al. 1998, Kleywegt et al. 2002).   

In a PDSP, there exists a set of jobs that need to be processed by a resource and then 

delivered to the customers who requested them.  Chen (2008) provides a recent survey.  Some 
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PDSPs have a single customer (e.g. Herrmann and Lee 1993, Chen 1996, Lee and Chen 2001, 

Chang and Lee 2004, Chen and Pundoor 2006), while others have multiple customer sites (e.g. 

Van Buer et al. 1999, Hall and Potts 2003, Chen and Vairaktarakis 2005, Wang et al. 2005, 

Stecke and Zhao 2007, Geismar et al. 2008).  In some versions of the problem, a job can be split 

into multiple subjobs that are delivered separately, in which case multiple deliveries to the same 

customer are required (Dror and Trudeau 1989, Chen and Pundoor 2005). 

This paper addresses the single-product, deterministic problem.  Inventory is treated as a 

continuous variable, but the number of pallets must be an integer.  We measure the medication 

with the number of regimens.  In mass dispensing, each person will get one predetermined 

regimen, which is a bottle with a specific number of pills.  All PODs have the same hours of 

operation, and loading and unloading times are independent of the quantity.  We are ignoring 

other resources such as the loading docks at the depot, the available drivers, and the number of 

available pallets. 

The paper formulates two versions of the problem (with and without LDCs), presents a 

two-stage approach for constructing solutions, and discusses the results of applying this approach 

to a realistic three-county scenario. 

2. Problem Formulation: Depot-to-PODs 

Without loss of generality we let time t = 0 correspond to the first instant that the depot 

has medication.  PODs will begin operating at time 1t T=  and continue to operate until time 

2t T= .  In practice, these times may be on the order of 12 to 36 hours. 

There are n PODs (sites).  Each site (k = 1, …, n) has a dispensing rate of iL  regimens 

per time unit.  This is the rate at which the site consumes medication.  The site needs a total of 

( )2 1 iT T L−  regimens.   

There is a depot (k = 0) that has a supply of medications.  Let I(t) be the cumulative 

amount of medication delivered to the depot at time t.  I(t) is a discontinuous, non-decreasing 

function due to the batch deliveries that are made there. 

For example, suppose that the depot will receive 100,000 regimens at t = 0, 125,000 

regimens at t = 4 hours, and 135,000 regimens at t = 8 hours.  Then, Figure 1 shows the graph of 

I(t) over time. 
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Figure 1.  Cumulative deliveries I(t) over time for example. 

The time spent at site i (to load or unload a vehicle) is ip  for i = 0, …, n.  The time to go 

from site i to site j is ijc .  There are V vehicles.  Vehicle v has a capacity of vC  pallets of 

material.  At each site, a vehicle will deliver one or more pallets.  A pallet can hold at most P 

regimens.   

A feasible solution specifies one or more routes for each vehicle.  Let vr  be the number 

of routes that vehicle v makes.  Let the sequence { }1 ( ),...,vj m vji iσ =  be the j-th route for vehicle v, 

where m(vj) is the number of sites on the route.  Let vjt  be the start time at which the vehicle 

begins loading at the depot.  Let vjkw  be the duration between the start of the route and the time 

that the delivery at site k is complete.  Let vjy  be the total duration of the route.  When the 

vehicle returns to the depot, it may be used for another route.  Let vjkq  be the quantity delivered 

to each site vjk σ∈ .  The quantity vjkq  uses vjkp  pallets (recall that vjkp  must be an integer).   

Certain constraints must be satisfied for the solution to be feasible. 

The quantity shipped from the depot cannot exceed the amount delivered to the depot.   

 
( )

( )
, :

  1, , ; 1, ,
ab vj ab

abk vj v
a b t t k

q I t v V j r
σ≤ ∈

≤ = =∑ ∑ … …  

A vehicle cannot begin a new route until it returns to the depot. 

 , 1 , 1   1, , ; 2, ,vj v j v j vt t y v V j r− −≥ + = =… …  
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All quantities are non-negative, and pallets have a fixed capacity, so 0 vjk vjkq Pp≤ ≤  for 

all 1, ,v V= … ; 1, , vj r= … ; and vjk σ∈ .  Note that 0vjkq =  if and only if vjk σ∉ . 

Each vehicle has a fixed capacity for pallets: so 
vj

vjk v
k

p C
σ∈

≤∑  for all 1, ,v V= … ; and 

1, , vj r= … . 

All route start times are non-negative, so 0vjt ≥  for all 1, ,v V= … ; and 1, , vj r= … . 

Each site must receive all needed medication. 

 ( )2 1
1 1

  1, ,
vrV

vjk k
v j

q T T L k n
= =

= − =∑∑ …  

The problem is to find a feasible solution with the largest amount of minimum slack.  

Given a solution, evaluating its minimum slack requires measuring the slack of each route.  For 

each site vjk σ∈ , let kQ  be the total quantity already delivered to that site on previous routes.  

Then, the expected time at which that site runs out of medication is 1 /k kT Q L+ .  This depends 

upon the set vjkE  of routes (a, b) such that abk σ∈  and ab abk vj vjkt w t w+ ≤ + .  Note that vjkE  does 

not include the route (v, j). 

 
1 1 1 20 0vjk i i i i kw p c p c p= + + + + +"  

 
1 1 1 2 ( ) ( )0 0 0m vj m vjvj i i i i i iy p c p c p c= + + + + + +"  

 
( ), vjk

k abk
a b E

Q q
∈

= ∑  

Let vjs  be the slack of route (v, j).  That is, if the start of the route were delayed more than 

vjs  time units and no more medication were delivered to the sites vjk σ∈ , at least one of these 

sites would run out of medication.  The minimum slack S of a solution is the minimum slack 

over all vehicles and routes. 

 ( ){ }1min /
vj

vj k k vj vjkk
s T Q L t w

σ∈
= + − +  

 { }
1, , ; 1, ,

min
v

vjv V j r
S s

= =
=

… …
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3. Example 

Consider a two-site, one-vehicle problem instance.  1T  = 24 hours, 2T  = 48 hours.  1L  = 10,000 

regimens per hour, and 2L  = 5,000 regimens per hour.  P = 10,000 regimens per pallet.  1C  = 10 

pallets.  0 1 2 15p p p= = =  minutes.  The travel times (in minutes) are given in Table 1.  The 

depot will receive 100,000 regimens at t = 0, 125,000 regimens at t = 4 hours, and 135,000 

regimens at t = 8 hours. 

Table 1.  Travel times (in minutes) for example. 

From \ To Depot Site 1 Site 2 

Depot - 10 30 

Site 1 10 - 25 

Site 2 30 25 - 

 

Table 2 describes a feasible solution in which the vehicle travels the same sequence for 

five routes: 1 jσ  = {1, 2} for j = 1, …, 5.  Then, 1 1jw  = 15 + 10 + 15 = 40 minutes, and 1 2jw  = 40 

+ 25 + 15 = 80 minutes.  The total route duration is 1 jy  = 80 + 30 = 110 minutes.  Table 3 shows 

the slack calculations.  In this simple example, the minimum slack is 1360 minutes (22.67 

hours), which is quite large.  Figure 2 shows the deliveries and dispensing at site 1.  The dashed 

red lines show the slack (at site 1) for each delivery. 

Table 2.  Feasible solution for example.  All times in minutes. 

Route 1 jt  1 1jq  1 1jp  1 2jq  1 2jp  

1 0 70,000 7 30,000 3 

2 240 70,000 7 30,000 3 

3 345 10,000 1 15,000 2 

4 480 70,000 7 30,000 3 

5 585 20,000 2 15,000 2 
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Table 3.  Slack calculations for example.  All times in minutes. 

  Site 1   Site 2   

Route j 
1Q  Run out 

time  

Slack for 

site 
2Q  Run out 

time  

Slack for 

site 

Route 

slack 

1 0 1440 1400 0 1440 1360 1360 

2 70,000 1860 1580 30,000 1800 1480 1480 

3 140,000 2280 1895 60,000 2160 1735 1735 

4 150,000 2340 1820 75,000 2340 1780 1780 

5 220,000 2760 2135 105,000 2700 2035 2035 
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Figure 2.  Cumulative deliveries and dispensing at site 1 for example. 

The red dashed lines show the slack at this site for each route. 
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4. Problem Formulation: Depot-to-LDCs-to-PODs 

We formulate the problem with local distribution centers (LDCs) as follows.  We assume 

that the locations of all LDCs and the division of sites into jurisdictions are given. 

There are 1M ≥  jurisdictions that will operate LDCs.  Let mD  be the set of sites in 

jurisdiction m that will be served by LDC m.  0D  is the set of sites that will continue to be served 

by the state depot.  Let L be the set of M LDCs. 

Let ( )0I t  be the cumulative deliveries to the depot, which is given.  Let ( )mI t  be the 

cumulative deliveries to LDC m, which is determined by the routes. 

There are M + 1 sets of vehicles.  0V  is the set of vehicles that operate from the depot, 

and mV  is the set of vehicles that operate from LDC m.  Let 
0

M

m
m

V V
=

=∪  be the entire set of 

vehicles.  A vehicle operating from LDC m serves only sites in mD .  Vehicles operating from the 

depot serve the LDCs in set L and the sites in 0D .  

As before, a feasible solution specifies one or more routes for each vehicle, and each 

route has a start time vjt , a sequence vjσ  of stops, and a quantity vjkq  to deliver at each stop.  

In addition to the constraints mentioned before, some additional constraints must be 

satisfied for the solution to be feasible. 

The cumulative quantity delivered to an LDC depends upon the routes that have stopped 

at the LDC.  For an LDC m, Let the set ( )mF t  include the routes (a, b) such that 0a V∈ , abm σ∈ , 

and ab abmt w t+ ≤ .   

 ( )
( ) ( ), m

m abm
a b F t

I t q
∈

= ∑  

The quantity shipped from an LDC cannot exceed the amount delivered to the LDC. 

 ( )
:

  1, , ; ; 1, ,
m ab vj ab

abk m vj m v
a V b t t k

q I t m M v V j r
σ∈ ≤ ∈

≤ = ∈ =∑ ∑ ∑ … …  

Each site must receive all needed medication from the corresponding location. 

 ( )2 1
1

   0, , ;
v

m

r

vjk k m
v V j

q T T L m M k D
∈ =

= − = ∈∑∑ …  
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Given a solution, we evaluate its minimum slack as follows.  To do this, we must 

measure the slack of any route that includes one or more sites in 0D , 1D , …, or MD .  For 

vehicles in 0V  (those operating from the depot), none, some, or all of the stops may be LDCs; 

stops that are not LDCs are sites in 0D .  For vehicles operating from LDC m, all of the stops are 

sites in mD .  If stop vjk σ∈  is a dispensing site (not an LDC), then we can calculate kQ  as 

described above.   

 ( ){ }1\
min /

vj
vj k k vj vjkk L

s T Q L t w
σ∈

= + − +  

If all of the stops in the route are LDCs (i.e., \vj Lσ =∅ ), then the slack is undefined.   

Depot

LDC

Site

D_1

D_2

D_0

 
Figure 3.  Depots serve the LDCs and the sites in 0D . 

Each LDC serves the sites in its jurisdiction. 

5. Solution Approach 

Our two-stage solution approach separates the Depot-to-POD problem into two 

subproblems: (1) the “routing problem” assigns PODs (sites) to vehicles and creates routes for 

each vehicle, and (2) the “scheduling problem” determines when the vehicles should start these 

routes and how much material should be delivered to each site on each trip.   

In this approach, each available vehicle will have exactly one route.  A vehicle may 

perform that route more than once with different delivery quantities each time. 
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5.1. The Routing Problem 

The routing problem is a capacitated vehicle routing problem (CVRP), which has been 

studied extensively (see, for example, Toth and Vigo, 1998).  Each site has a quantity that needs 

to be delivered, and each vehicle has a capacity that limits how much it can take from the depot 

on its route.   

The objective of our CVRP is to find a minimum cost solution so that the duration of 

every route is not greater than a given route duration bound.  The cost of a solution depends upon 

the total travel time plus penalties for routes that exceed the route duration bound. 

As discussed below, we will change the delivery quantities and the route duration bound 

in order to generate different sets of routes. 

5.2. The Scheduling Problem 

Given a set of routes, the scheduling problem determines how many times each vehicle 

should perform its route, when it should leave the depot, and how much should be delivered to 

each site on its route.  The objective is to maximize the minimum slack of a solution. 

To solve this problem, we developed a variety of heuristic techniques to construct a 

feasible solution.  Note, however, that these scheduling heuristics are much different from 

dispatching, which maintains a queue of vehicle waiting to start their routes, uses simple policies 

to prioritize the vehicles in the queue, and starts the highest priority vehicle as soon as sufficient 

material is available at the depot.  Previous studies have shown that such dispatching is highly 

myopic and cannot generate high-quality solutions because it ignores the pattern of deliveries to 

the depot.   

Determining route start times depends upon the duration of its route and the time between 

deliveries to the depot (the “waves”).  Typically, each wave should be followed by vehicles 

leaving the depot to take the newly-arrived material from the depot to the sites.  However, if the 

route duration is long, the vehicle may not be finished with its route when the next wave arrives 

at the depot.   

The general outline of the scheduling heuristic is to partition the vehicles into distinct 

subsets and then to determine the waves after which each subset of vehicles should perform their 

routes.  (For example, some vehicles will perform their routes after every wave.)  Also, in 

general, the delivery quantities to the sites are proportional to the demand at the sites.  That is, if 

one site has a demand that is two times another site’s demand, the quantity delivered to the first 
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site will be two times the quantity delivered to the second site.  Typically, the total quantity 

available in the wave will delivered by vehicles immediately following that wave. 

5.3. Delivery Volume Improvement 

After some experimentation with these heuristics, we discovered that carefully 

manipulating the delivery quantities can increase minimum slack significantly. 

For example, let us revise the example considered earlier as follows.  Now, there are five 

waves, each three hours apart.  The first wave delivers only 30,000 regimens to the depot.  The 

other four waves each deliver 82,500 regimens to the depot.  Table 4 shows the delivery 

quantities and slack of a simple schedule in which the vehicle performs its route after every 

wave, and the delivery quantities are proportional to the site demands.  Note that the minimum 

slack occurs on route 2 at site 2. 

Adjusting the delivery quantities in the first route modifies the slack at each site in route 

2.  By delivering more to site 2 (and less to site 1), we increase the slack at site 2 (and decrease 

the slack at site 1).  The best we can do is to make them equal.  Table 5 shows the modified 

delivery quantities and slack.   

The delivery volume improvement algorithm uses the following variables:  

• Let T1 be the start of dispensing.  

• Let K be the target slack for wave N. 

• Let Cj be the time that POD j will receive a delivery in wave N. 

• Let Q1, …, QN-1 be the amount delivered in waves 1 to N-1.  Note that Q1, …, QN-2 are 

known 

Finding QN-1 is the goal.  Let Lj be the dispensing rate for POD j.  We determine QN-1 as follows: 

1 2 1
1

... N N
j

j

Q Q QT C K
L

− −+ + +
+ − =  

Then 1 1 1 2( ) ( ... )N j j NQ K C T L Q Q− −= + − − + +  for POD j. 

The best solution will occur by picking K as large as possible so that inventory and vehicle 

capacity constraints are satisfied.   
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Table 4.  Delivery quantities and slack before delivery volume improvement. 

 Site 1 Site 2 

Route j 
1 1jq  Slack for 

site 
1 2jq  Slack for 

site 

1 20,000 1400 10,000 1360 

2 55,000 1340 27,500 1300 

3 55,000 1490 27,500 1450 

4 55,000 1640 27,500 1600 

5 55,000 1790 27,500 1750 

 

Table 5.  Delivery quantities and slack after delivery volume improvement. 

 Site 1 Site 2 

Route j 
1 1jq  Slack for 

site 
1 2jq  Slack for 

site 

1 17,778 1400 12,222 1360 

2 55,555 1326.7 26,945 1326.7 

3 55,555 1480.0 26,945 1470.0 

4 55,556 1633.3 26,944 1613.3 

5 55,556 1786.7 26,944 1756.7 

 

6. Results 

We considered a realistic scenario with three counties in the state of Maryland (here we 

will call these counties A, B, and C).  Medication arrives at the state RSS (depot) in seven 

shipments, two hours apart, which we call “waves,” with roughly the same amount of medication 

in each wave.  County B plans to use an LDC, and the other two do not.  A total of 189 PODs 

require medication.  In the first scenario, the state vehicles distribute medication to the PODs in 

all three counties.  In the second scenario, the state vehicles distribute medication to the PODs in 

Counties A and C and to the LDC in County B.  County B uses its own vehicles to distribute 

medication from its LDC to its PODs. 

To solve the routing problem, we used the TourSolver route optimization software 

(C2Logix, 2008).  TourSolver solves capacitated vehicle routing problems.  We created three 

sets of routes by varying the quantity delivered to each POD.  In the first set, the route duration 
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limit was 2 hours, and the delivery quantity to each POD was a fraction of the largest wave 

(these we called the “single-wave routes”).  (The fraction used equals the ratio of that POD’s Li 

to the sum of all Li.) In the second set, the route duration limit was 4 hours, and the delivery 

quantity to each POD was twice this amount (these we called the “double-wave routes”).  In the 

third set, the route duration limit was 6 hours, and the delivery quantity to each POD was Li(T2 - 

T1), the entire amount that the POD requires (these we called the “all-at-once routes”). 

 
Figure 1. Routing and Scheduling Solutions. 

We then solved the scheduling problem using the three sets of routes to generate six 

solutions (as shown in Figure 1).  We used one vehicle for each route.  (1) The single pure 

solution: Using the single-wave routes, each vehicle left the depot as soon as it could after each 

wave.  The delivery quantity to each POD was a fraction of that wave. (2) The double pure 

solution: Using the double-wave routes, each vehicle left the depot after the first, third, fifth, and 

seventh waves. The first delivery quantity to each POD was a fraction of the first wave. Each 

remaining delivery quantity to a POD was a fraction of the last two waves. (3) The double 

modified solution: Using the double-wave routes, each vehicle left the depot after the first wave.  

Vehicles with shorter duration routes left the depot after the second, fourth, and sixth waves.  

Vehicles with longer duration routes left the depot after the first, third, fifth, and seventh waves.  

In all cases, the delivery quantities were the same as in Solution 2.  (4) The double hybrid 

solution: The double-wave routes were split into two subsets: one with shorter duration routes 

(completed in less than 2 hours), and one with longer duration routes.  Vehicles following longer 

routes left the depot after the first, third, fifth, and seventh waves.  The first delivery quantity to 
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each POD was a fraction of the first wave.  Each remaining delivery quantity to these PODs was 

one-third of the remaining amount needed.  Vehicles following shorter routes left the depot after 

every wave after the first.  The delivery quantity to each POD each time was one-sixth of the 

entire amount that the POD requires.  (5) The all-at-once solution: Using the all-at-once routes, 

each vehicle left the depot after the seventh wave.  The delivery quantity to each POD was the 

entire amount that the POD requires.  (6) The all-at-once modified solution: The all-at-once 

routes were sorted into seven subsets so that the longest duration routes were in the first subset, 

and the shortest duration routes were in the seventh subset.  One subset of vehicles left the depot 

after each wave (the longest duration routes left after the first wave, and the shortest duration 

routes left after the last wave).  The number of vehicles in each subset was limited by the number 

of regimens in each wave (plus any regimens remaining from the previous wave but not 

distributed by the previous vehicles) so that each vehicle left with all of the regimens it needed to 

deliver.  The delivery quantity to each POD was the entire amount that the POD requires.   

Solutions using the all-at-once routes (Solutions 5 and 6) were very poor; some PODs did 

not receive medication before the designated start time because the last wave arrived so late 

(thus, the minimum slack was negative).  The results showed that both Solution 2 and Solution 3 

had the largest minimum slack (509 minutes), while Solutions 1 and 4 had a minimum slack 

between 350 and 400 minutes.   

To improve the slack of these solutions, we adjusted the delivery quantities so that PODs 

that were visited later in a route received more material in the first delivery.  This increased the 

time at which the POD would run out.  The delivery volume improvement technique described in 

Section 5.3 set the delivery quantities of one “wave” so that the slacks at every POD during the 

next wave were the same.  Using this technique dramatically increased the minimum slack of 

Solution 1 to 552 minutes.  The minimum slack of Solutions 2, 3, and 4 increased to 540 

minutes.  This showed that the relative quality of the solutions changed after delivery volume 

improvement.  However, the potential improvement of delivery volume improvement was 

limited because the minimum slack often occurred on the first delivery to a POD with the latest 

delivery time, which was determined by the routes generated by TourSolver. 

We then repeated the above analysis on the Depot-to-LDC-to-POD problem, using the 

same types of routes and schedules.  To do this, we had to create two different sets of routes (one 

for each “level”): one set that routes vehicles from the depot to the County B LDC and the PODs 
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in Counties A and C, and a second set that routes vehicles from the County B LDC to the PODs 

in County B.  A solution to the complete problem combines solutions to both “levels” of the 

problem.  

When using the LDC, the best solution delivered materials from the depot using a single 

pure schedule and then delivered materials from the LDC to County B’s PODs using the double 

hybrid schedule.  Overall, this solution had a minimum slack of 438 minutes.  After delivery 

volume improvement, the best solution delivered materials from the depot using a single pure 

schedule and then delivered materials from the LDC to County B’s PODs using a single pure 

schedule.  Overall, this solution had a minimum slack of 469 minutes.  Note that this 

combination had a minimum slack of 315 minutes before delivery volume improvement.   

As discussed above, without the LDC, the best solutions used the double pure and double 

modified schedules, which had a minimum slack of 509 minutes.  After delivery volume 

improvement, the minimum slack of both schedules increased to 540 minutes.  However, the 

minimum slack of the single pure schedule increased from 360 to 552 minutes. 

7. Summary and Conclusions 

This paper introduced the medication distribution problem, an important part of planning 

the response to a bioterrorism attack, and presented a two-stage routing and scheduling approach 

for constructing solutions.  Because a robust plan is desirable, our objective was to maximize the 

minimum slack of the solution.  We also developed a delivery volume improvement technique 

for improving the slack of a solution.  To demonstrate the approach, we applied it to a realistic 

scenario that included sites from three counties in the state of Maryland.  In addition, we 

considered how using an LDC would affect the slack of the medication distribution plan. 

The results show that, even if the routes are given, determining when vehicles should 

deliver and how much they deliver significantly affects the slack.  Delivery volume improvement 

increased slack, dramatically in some cases.  The extra hours of slack could be critical in an 

emergency.  They show that a careful analysis of the scenario, considering solutions both with 

LDCs and without LDCs, is necessary to construct an effective medication distribution plan. 

Future work is needed to automate the routing and scheduling approach to enable a 

decision support tool for public health emergency preparedness planners, to develop optimization 

techniques for finding even better solutions, and to test the approach on other scenarios.  
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