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Conventional turbulence models calibrated for fully turbulent boundary layers

often over-predict drag and heat transfer on aerodynamic surfaces with partially

laminar boundary layers. A robust correlation-based model is developed for use in

Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent tran-

sition onset of boundary layers on external aerodynamic surfaces. The new model

is derived from an existing transition model for the two-equation k-ω Shear Stress

Transport (SST) turbulence model, and is coupled with the one-equation Spalart-

Allmaras (SA) turbulence model. The transition model solves two transport equa-

tions for intermittency and transition momentum thickness Reynolds number. Ex-

perimental correlations and local mean flow quantities are used in the model to ac-

count for effects of freestream turbulence level and pressure gradients on transition

onset location. Transition onset is triggered by activating intermittency production

using a vorticity Reynolds number criterion.

In the new model, production and destruction terms of the intermittency equa-

tion are modified to improve consistency in the fully turbulent boundary layer post-



transition onset, as well as ensure insensitivity to freestream eddy viscosity value

specified in the SA model. In the original model, intermittency was used to control

production and destruction of turbulent kinetic energy. Whereas, in the new model,

only the production of eddy viscosity in SA model is controlled, and the destruc-

tion term is not altered. Unlike the original model, the new model does not use an

additional correction to intermittency for separation-induced transition. Accuracy

of drag predictions are improved significantly with the use of the transition model

for several two-dimensional single- and multi-element airfoil cases over a wide range

of Reynolds numbers. The new model is able to predict the formation of stable

and long laminar separation bubbles on low-Reynolds number airfoils that is not

captured with conventional turbulence models.

The validated transition model is successfully applied to rotating blade con-

figurations in axial flow conditions to study the effects of transitional boundary

layers on rotor thrust and torque. In helicopter rotors, inclusion of transition ef-

fects increased thrust prediction by 2% and decreased torque by as much as 8% at

lower collective angles, due to reduced airfoil profile drag. In wind turbine rotors,

transition model predicted a 7%–70% increase in generated shaft torque at lower

wind speeds, due to lower viscous drag. This has important implications for CFD

analysis of small wind turbines operating at low values of rated power. Transition

onset locations along upper and lower surfaces of rotor blades are analyzed in detail.

A new crossflow transition onset criterion is developed to account for cross-

flow instability effects in three-dimensional boundary layers. Preliminary results for

swept wing and rotating blade flows demonstrate the need to account for crossflow



transition in three-dimensional simulations of wings, rotating blades, and airframes.

Inclusion of crossflow effects resulted in accelerated transition in the presence of

favorable pressure gradients and yawed flow. Finally, a new correction to the wall

damping function in the Spalart-Allmaras turbulence model is proposed to improve

sensitivity of the model to strong adverse pressure gradients (APG). The correction

reduces turbulence production in the boundary layer when the ratio of magnitudes

of local turbulent stress to the wall shear stress exceeds a threshold value, therefore

enabling earlier separation of boundary layer. Improved prediction of static and

dynamic stall on two-dimensional airfoils is demonstrated with the APG correction.
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1 Introduction

1.1 Motivation

Laminar-turbulent transition of boundary layers affects viscous drag, heat

transfer, and onset of separation in aerodynamic flows. Therefore, transition to

turbulence plays an important role in the design and performance of many internal

and external flow applications. For example, turbine blades in a gas turbine en-

gine operate in the unsteady, turbulent wake of upstream blade rows at very high

temperatures (around 2500◦ F) and experience increased heat transfer to the blade

surface if the boundary layer becomes turbulent. In combination with the high

centrifugal forces, this additional heat transfer can make the blades more suscepti-

ble to structural failure. In subsonic and transonic fixed wing aircraft, significant

fuel savings can be obtained if the overall drag can be reduced by maintaining a

laminar boundary layer on the wings and the airframe. Transition also plays an

important role in determining the power requirements of rotorcraft as well as the

generated power of wind turbines. Due to the spanwise variation of local Reynolds

number in rotating blades, large regions of laminar are likely to be present in the

inboard regions. In the design of hypersonic vehicles and their heat shields, high-
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speed transition plays a critical role in determining surface heating during certain

phases of the flight such as re-entry. In low-Reynolds number applications such

as Unmanned Aerial Vehicles (UAVs), small wind turbines, and under-water vehi-

cles, large regions of laminar flow are often present on the aerodynamic surface and

therefore transition prediction is essential for accurate estimation of drag and stall

onset. Numerical simulations at low Reynolds numbers (under 1 million) show that

drag can be significantly over-predicted (as high as twice its actual value) if the

boundary layer is treated as fully turbulent. One of the primary goals of transition

research is to develop flow control techniques that will delay or accelerate transition,

depending on the specific application. This provides a strong incentive to further

our understanding of transition and relaminarization physics, as well as to develop

capabilities to predict their occurrence in boundary layers.

Conventional turbulence models are not equipped to handle transitional bound-

ary layers since they were developed and calibrated for fully turbulent flows at high

Reynolds numbers. It is easy to verify that most of the turbulence models predict

transition almost immediately downstream of the stagnation point and generate

excessive turbulence resulting in over-prediction of viscous drag and heat trans-

fer. Accurate numerical prediction of transitional boundary layers through Direct

Numerical Simulations (DNS) for high-Reynolds number flows and complex configu-

rations is beyond the reach of current computational resources. In addition, a quick

and reasonable estimate of quantities such as drag and heat transfer is invaluable

to the design process in several applications. This provides a strong motivation to

develop low-fidelity transition prediction methods that can be a good substitute for
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expensive and time-consuming experiments or DNS computations. The scope of the

present work is limited to developing and validating an empirical correlation-based

transition prediction methodology for subsonic, external flow applications.

1.2 Physical Problem

Figure 1.1: Boundary layer transition on a flat plate

Fluid flow past a solid surface can be divided into two distinct regions: (1)

a thin region adjacent to the wall, where viscous flow effects are dominant, and

(2) a largely inviscid outer flow region above the viscous layer in the wall normal

direction. The presence of such a viscous region, commonly known as the boundary

layer, was first discovered by Ludwig Prandtl in 1904. Figure 1.1 shows a schematic

of a boundary layer developing on a flat plate. The boundary layer begins at the

stagnation point formed at the leading-edge of the flat plate. Initially, it is in a

laminar state, where the adjacent fluid layers tend to flow parallel to each other

without significant mixing. Due to various external factors such as freestream tur-

bulence, adverse pressure gradients, surface curvature, roughness, and vibrations,
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instabilities often develop in a laminar boundary layer, causing it to transition to

a turbulent state. This process is known as laminar-to-turbulent transition, and

the opposite is called relaminarization or reverse transition. The mixing nature of

turbulence enhances momentum and energy transport from the outer flow towards

the near-wall region of the boundary layer. This manifests as increased skin fric-

tion / viscous drag on and heat transfer to the surface. In addition, the near-wall

momentum deficit governs the point of flow reversal and boundary layer separation.

Figure 1.2: Boundary layer profiles showing laminar-to-turbulent transition on a

flat plate at zero pressure gradient (reproduced from [1])
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Figure 1.2 shows the streamwise profiles of shape factor (H), skin friction

coefficient (Cf ), and momentum thickness Reynolds number (Reθ) of a transitional

boundary layer on a flat plate at zero pressure gradient. The point of minimum

skin friction is typically considered the start of transition. The transition process is

considered complete when skin friction reaches its fully turbulent value. The region

between the start and the end of transition is known as the transition extent. Across

the transition zone, the shape factor decreases from its laminar value of 2.59 to a

turbulent value of 1.3. Correspondingly, the momentum thickness Reynolds number

and the skin friction coefficient increase.

1.3 Brief History of Transition Studies

The process of boundary layer transition from a stable laminar state to a fully

turbulent state is one of the most widely studied phenomena in fundamental fluid

mechanics. Over the years, comprehensive review articles were published in the

open literature, summarizing the current understanding and outstanding issues of

transition research [2–6]. Reshotko [7] provides an excellent historical survey of the

progress, accomplishments, and issues in transition theory, experiments, prediction

and control methods. Historically, boundary layer stability and transition have been

studied under the area of Hydrodynamic Stability, whose focus was to explain why

a laminar boundary layer cannot continue to stay laminar indefinitely. Osborne

Reynolds (circa 1883) conducted one of the earliest controlled scientific experiments

and identified a critical non-dimensional parameter, called the Reynolds number
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(Eq.1.1), at which stable laminar flow in a pipe becomes turbulent.

Re =
ρUL

µ
(1.1)

Theoretical studies began with Lord Rayleigh’s inviscid inflection point criterion

(1887) that relates the existence of an unstable mode to the presence of an inflec-

tion point in the mean velocity profile. William Orr (1907) and Arnold Sommerfeld

(1908) used linear stability theory to develop a hydrodynamic stability criterion

for the Navier-Stokes equations governing a parallel, laminar flow. After Prandtl’s

observation that viscosity can destabilize a boundary layer (1921), rigorous theo-

retical work by Walter Tollmien (1929) and Hermann Schlichting (1935) identified

the presence of the Tollmien-Schlichting steamwise instability waves that can trigger

the onset of turbulence in a laminar boundary layer. On the experimental side, the

work of Schubauer and Skramstad (1947) is one of the earliest to demonstrate the

presence of Tollmien-Schlichting waves in a laminar boundary layer on a flat plate

at very low freestream turbulence levels. The experiments of Schubauer and Kle-

banoff (1955) revealed the presence of turbulent spots and the intermittent nature

of turbulence during the transitional phase of a boundary layer. In the 1940s and

1950s, several NACA wartime reports document wind tunnel experiments and flight

tests performed to study the effects of transition on aircraft performance, motivated

by the need to develop low-drag airfoils. Starting in the late 1950s, theoretical

studies were devoted to obtaining the exact numerical solutions to the linearized

disturbance equations of Orr and Sommerfeld, which resulted in reliable transition

prediction methods such as the eN method. In addition, the wealth of high qual-
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ity experimental data generated for transitional boundary layers has enabled the

development of several correlation-based transition prediction models. With the ad-

vent of computers, many of these analytical and correlation-based models continue

to be verified and validated through multi-fidelity numerical simulations of bound-

ary layer flows in industrial applications. Increased availability of high performance

computing resources has made Direct Numerical Simulations (DNS) and Large Eddy

Simulations (LES) of canonical flow problems feasible, to investigate and uncover

the rich features of transitional boundary layers.

1.4 Physics of Boundary Layer Transition

Current understanding of boundary layer transition comes from a rich history

of experimental, theoretical, and high-fidelity computational studies. Notable re-

searchers such as Morkoivn, Reshotko, and Saric have contributed significantly to

the advancement of the field of transition and helped uncover the various complex

mechanisms involved [8–12]. Transition of a stable laminar boundary layer to a tur-

bulent state can be viewed as the non-linear response of a very complicated oscillator

to a random forcing function, of infinitesimal amplitude relative to the appropriate

laminar-flow quantities [3]. The schematic in Fig.1.3 outlines five different paths to

breakdown of laminar flow and onset of turbulence in the boundary layer, in response

to external forcing [13]. In this schematic, the forcing amplitude increases from left

to right. Instabilities can be triggered due to the exposure of the boundary layer to

a multitude of external disturbances such as freestream turbulence, surface rough-
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ness, and vibrations. The concept of Receptivity was introduced by Morkovin [8] to

describe the manner in which a particular external disturbance enters the boundary

layer and the nature of its signature in the perturbed flow. Receptivity concerns the

generation of instability waves, rather than their evolution. It determines the initial

conditions of the transition process including the amplitude, frequency, and phase

of the forcing function. Saric et al. [13] review the current understanding of bound-

ary layer receptivity to external acoustic and vortical disturbances. Depending on

Figure 1.3: Paths to Boundary Layer Turbulence (reproduced from [13])

a number of factors such as Reynolds number, pressure gradients, wall curvature,

and surface roughness, various primary instability mechanisms can develop inde-

pendently or together. As the response amplitude grows, nonlinear interactions can

occur in the form of secondary instabilities before reaching the breakdown phase.

The breakdown phase is a 3-D phenomenon in an otherwise 2-D flow, and is char-

8



acterized by the formation of intermittent turbulent spots that grow at a constant

rate and independently of each other [14]. Experiments [15] confirmed the existence

of such turbulent spots and suggested that a turbulent spot is initiated when the

maximum velocity fluctuation in the streamwise direction exceeds about one-fifth

of the freestream velocity, almost independently of the Reynolds number [16]. The

intermittency factor was introduced [17] to quantify the rate of turbulent spot pro-

duction, and a relation between the transition Reynolds number and the intermit-

tency factor was deduced. Once initiated, these intermittent turbulent spots grow

in size as they travel downstream, until they merge into a fully turbulent boundary

layer, thus completing the transition process.

1.4.1 Natural Transition

Path A is traditionally known as natural transition, and is the most common

onset mechanism on transport aircraft in flight. Natural transition is well described

by linear stability theory and the Orr-Sommerfeld equations [18–20]. Transition on-

set follows this path in weak disturbance environments, where the transient growth

is insignificant and breakdown is reached through linear processes such as Tollmien-

Schlichting, Gortler, or crossflow instabilities. The existence of two-dimensional

Tollmien-Schlichting waves was first confirmed in the flat plate experiments of

Schubauer and Skramstad [21] conducted at very low freestream turbulence lev-

els (0.03%). In three-dimensional boundary layers, Gortler instability occurs due to

concave surface curvature, and crossflow instability is caused due to a combination
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of pressure gradients and sweep.

1.4.2 Bypass Transition

In scenarios where the initial disturbance amplitude is sufficiently high (caused

by surface roughness or high freestream turbulence levels), the growth of linear dis-

turbances is bypassed [8] and turbulent spots could form very quickly, as depicted

in path E of the schematic. Although bypass transition has been observed in ex-

periments with high freestream turbulence levels and surface roughness [10, 22], it

has not been very well understood or described theoretically. Due to the highly

non-linear nature of the disturbance growth, linear stability theory is not applicable

in this mechanism. Bypass transition is the primary mechanism in turbomachinery

due to the high freestream turbulence levels of the wake from upstream blade rows

and the blade surface roughness.

1.4.3 Intermediate Mechanisms

Although natural and bypass transition have been considered the two pri-

mary paths to turbulence, recent work in the area of transient growth has revealed

additional intermediate mechanisms [13]. Transient growth occurs when two, non-

orthogonal, stable models interact, undergo algebraic growth, and then decay expo-

nentially. Streamwise and wall-normal vorticity are considered important in tran-

sient growth. Depending on the amplitude, transient growth can lead to spanwise

modulations of two-dimensional waves (path B), direct distortion of the basic state
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that leads to secondary or subcritical instabilities (path C), or direct bypass (path

D). Paths B and C are seen in external flows, whereas path D is more common in

internal flows.

1.4.4 Modern Perspective on Transition Mechanisms

Recent theoretical and numerical studies by Durbin et al. [23, 24] introduce

a new perspective on transition mechanisms that questions the conventional clas-

sification into natural and bypass transition. Since bypass transition is defined by

what does not occur – Tollmien-Schlichting waves are bypassed – it allows for much

ambiguity in describing the exact processes involved. Instead, they propose discrete

modes (T-S waves) and continuous modes as the two possible transition mecha-

nisms. In discrete mode transition, the imaginary part of the eigenvalue (frequency)

determines the disturbance growth rate. In continuous mode transition, the starting

point is the mode shape. They conducted Direct Numerical Simulations simulations

to look at the evolution of continuous modes by prescribing one, two, or a few

modes at the inlet. Simulations with single mode at the inlet produced an evolution

that agreed with linear stability theory. Single mode perturbation was found to

decay by viscous action. When two high-frequency (non-penetrating) modes were

introduced, they decayed with little effect on the boundary layer. Introduction of

two low-frequency modes was found to generate boundary layer disturbances that

decayed by the end of the domain.

However, when one penetrating (low-frequency), and one non-penetrating (high-
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Figure 1.4: Instantaneous and time-averaged skin friction profiles showing transition

onset due to introduction of one penetrating and one non-penetrating modes in the

freestream (reproduced from [24])

frequency) mode were introduced, only the lower frequency mode was seen inside

the boundary layer. This was caused due to the filtering of the high frequency mode

by the shear layer, termed as, shear filtering. The penetrating mode generated per-

turbation jets, which seemed to begin decaying, but a patch of turbulence suddenly

appeared in the middle of the domain resembling a turbulent spot (but unlike the

classic Emmons spot). This resulted in a sudden turbulent burst in skin friction as

shown in Fig. 1.4, which is a characteristic of bypass transition. Figure 1.5 visual-

izes the boundary layer evolution when one mode and two modes are introduced in

the freestream.
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Figure 1.5: Visualization of boundary layer evolution with introduction of penetrat-

ing and non-penetrating modes in the freestream (reproduced from [24])
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1.4.5 Factors Affecting Transition

Transition onset mechanisms are strongly influenced by factors such as freestream

turbulence, pressure gradients, surface curvature, surface roughness, sweep, and

compressibility. Each of these factors can accelerate or delay transition onset de-

pending on whether they stabilize of destabilize a particular mode. Therefore, un-

derstanding their role is essential to developing numerical prediction methods and

feasible flow control techniques. This section summarizes the effect of some of the

parameters on transition onset.

Freestream Turbulence

Increase in freestream turbulence intensity (Tu), causes earlier transition onset

and shrinks the size of transition zone. This trend is documented in several exper-

imental studies of flow past a flat plate at zero pressure gradient, for turbulence

intensity values ranging from 0.03% to 10%. Natural transition occurs at Tu values

below 1.0%, and bypass transition is triggered at larger Tu values. Figure 1.6 shows

the variation of momentum thickness Reynolds number at the start and the end of

transition zone, with freestream turbulence intensity, obtained from multiple experi-

mental sources. All the data sets show that the transition onset location is relatively

insensitive to freestream turbulence intensity greater than 4%. Abu-Ghannam and

Shaw [1], and a few others developed correlations between transition momentum

thickness Reynolds number (Reθt), and freestream turbulence intensity (Tu). The

popular correlations of Abu-Ghannam and Shaw (AGS) [1], and Mayle [25] are given
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in Eq. 1.2 and Eq. 1.3 respectively.

Reθt,AGS = 163.0 + exp(6.91− Tu) (1.2)

Reθt,Mayle = 400.0 Tu−5/8 (1.3)

Figure 1.6: Variation of momentum thickness Reynolds number with freestream

turbulence intensity, at start and end of transition on a flat plate at zero pressure

gradient (reproduced from [1])
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Streamwise Pressure Gradient

An adverse pressure gradient (dP/dx > 0) in the streamwise direction creates

an inflection point in boundary layer profiles. Based on linear stability theory, this

is a destabilizing effect and therefore, causes the transition onset location to move

upstream. Conversely, a favorable pressure gradient (dP/dx < 0) has a stabilizing

effect and delays transition onset. This trend is shown in Fig. 1.7, through the

dependence of Reθt on a pressure gradient parameter, λθ, defined by Eq. 1.4

Figure 1.7: Effect of pressure gradient on transition onset on a flat plate (reproduced

from [1])

λθ =
θ2

ν

dU∞
dx

(1.4)
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A negative value of λθ is indicative of a boundary layer experiencing an adverse

pressure gradient, and vice versa. The Abu-Ghannam and Shaw correlation [1] for

Reθt at the start of transition, as a combined function of local pressure gradient

parameter and freestream turbulence intensity, is given by Eq. 3.30–1.7.

Reθt = 163.0 + exp

{
F (λθ)−

F (λθ)

6.91
Tu

}
(1.5)

F (λθ) = 6.91 + 12.75λθ + 63.64(λθ)
2) for λθ < 0 (1.6)

F (λθ) = 6.91 + 2.48λθ − 12.27(λθ)
2) for λθ > 0 (1.7)

Experimental data in Fig. 1.7 indicate that the effect of adverse pressure gradient

on accelerating transition process is stronger than the effect of favorable pressure

gradient on delaying it. In addition, the effect of pressure gradient decreases with

increasing freestream turbulence intensity, as transition is dominated by bypass

mechanisms at higher turbulence levels. The data in Fig. 1.7 corresponds to a

constant pressure gradient value along the flat plate. However, in practical scenarios

such as flow past an airfoil, pressure gradient is often varying along the streamwise

direction and the pressure gradient history becomes an important factor. Flat plate

experiments with decreasing streamwise adverse and favorable pressure gradients [1]

showed that the transition onset location is significantly altered compared to a

constant pressure gradient value. Therefore, it is important to account for history

effects of pressure gradient in numerical transition onset prediction.
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Separation-induced Transition

When a laminar boundary layer experiences a strong adverse pressure gradient,

it often separates and may reattach as a turbulent boundary layer due to enhanced

mixing in the separation bubble (Fig. 1.8). This process is called separation-induced

transition, and is often seen downstream of the suction peak on airfoils. Pressure and

streamwise velocity remain constant over the length of the bubble. At low Reynolds

numbers on airfoils, laminar-separation bubbles can form over a large portion of the

chord (up to 50%), and result in significantly increased viscous drag. If the adverse

pressure gradient is too strong, the bubble may not reattach, and this phenomenon

is called bubble-bursting.

Figure 1.8: Laminar separation bubble formation due to strong adverse pressure

gradient (reproduced from [6])
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Streamwise Surface Curvature

A boundary layer on a surface with streamwise concave curvature experiences

an instability due to centrifugal pressure gradient, producing a three-dimensional

system of alternating streamwise vortices. This instability was studied by Gortler

[26] and is defined by a critical value of a non-dimensional parameter known as the

Gortler number, given by Eq. 1.8

G =
Ueθ

ν

(
θ

R

)1/2

(1.8)

where, Ue is the boundary layer edge velocity, R is the radius of curvature of the wall,

ν is the dynamic viscosity, and θ is the momentum thickness. Gortler vortices appear

when the value of G exceeds 1.2, and are amplified with increasing downstream

distance [2].

Leading-edge Sweep

On swept surfaces or rotating discs, a three-dimensional crossflow instability

occurs in regions of non-zero pressure gradient and results in transition to turbu-

lence [27]. Crossflow transition can occur rapidly on swept wings even before the

streamwise Tollmien-Schlichting waves are amplified and cause breakdown. Figure

1.9 shows a schematic of streamlines and velocity profiles in a typical 3-D bound-

ary layer on a swept wing. Inside the boundary layer, the streamwise velocity is

reduced, but the pressure gradient is unchanged. Thus, the balance between cen-

tripetal acceleration and pressure gradient does not exist. This imbalance results
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in a secondary flow in the boundary layer, called crossflow, that is perpendicular to

the direction of the inviscid streamline. Because the crossflow velocity must vanish

at the wall and at the edge of the boundary layer, an inflection point exists and

provides a source of an inviscid instability. The instability appears as co-rotating

vortices whose axes are aligned to within a few degrees of the local inviscid stream-

lines. At low freestream turbulence levels, the dominant crossflow wave is stationary

while moderate to high turbulence levels initiate dominant traveling waves [28].

(a) Curved inviscid streamlines on a swept wing (b) Crossflow velocity profile

Figure 1.9: Crossflow transition on swept wings (reproduced from [27])

Surface Roughness

The presence of two-dimensional roughness, such as a trip wire placed normal

to the freestream, accelerates transition onset due to the disturbances in the sepa-

rated flow behind the roughness element. Upstream movement of transition onset

location due to 2-D roughness is gradual. However, the effect of three-dimensional
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roughness elements such as a sphere, on transition onset, is quite complex [4]. Tran-

sition location movement is more abrupt in the presence of 3-D roughness. Exper-

imental studies [29, 30] have also shown that discrete 3-D roughness elements can

be used to delay crossflow transition. In this approach, a stationary crossflow dis-

turbance is forced with subcritical roughness spacing, that is, the spacing between

roughness elements is less than the wavelength of the unstable mode [28]. Under

these conditions, the rapid growth of the forced mode completely suppresses the

linearly most unstable mode, thereby delaying transition beyond its natural loca-

tion (i.e. where transition occurs in the absence of artificial roughness). These data

demonstrate that surface roughness can be used to control the stationary crossflow

disturbance wavenumber spectrum in order to delay transition on swept wings.

Compressibility and High Speed Transition

Increased aerodynamic heating and drag due to high-speed transition are crit-

ically important to design and operation of supersonic and hypersonic vehicle. The

transition process is further complicated at supersonic and hypersonic Mach num-

bers due to the presence of shock waves, surface irregularities, and chemical non-

equilibrium effects [31]. Attempts have been made to study stability and transition

of compressible boundary layers through linear stability analysis [32].
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1.5 Challenges in Laminar-Turbulent Transition Modeling

The primary goal of transition modeling research is to predict transition on-

set and relaminarization in boundary layers using inexpensive numerical models

based on theory, experiments, and empiricism. Despite the tremendous progress

made in theory and experiments, the richness and complexity of transition-related

phenomena present several challenges to translating that knowledge into prediction

capability. Progress of transition modeling also suffers from the lack of high quality

DNS and experimental studies that are carefully planned to provide modelers with

flow field information required to come up with new correlations. Consequently,

much of the success in transition modeling has come through a combination of the-

ory and empiricism. Since it may not be feasible to develop a universal transition

model that predicts all possible transition mechanisms, the traditional approach to

transition modeling has been to develop models that can predict individual transi-

tion mechanisms as a function of the various influencing factors such as freestream

turbulence, pressure gradients, sweep angle, surface curvature, and roughness.

Reliable methods such as the eN model based on linear stability theory, and

the correlation-based transport equation approach have been developed to predict

certain types of transition, and are being successfully used in industrial CFD simu-

lations. However, many of the existing transition models are unsuitable for use in

industrial applications with complex geometries due to their dependence on bound-

ary layer quantities such as edge velocity, momentum thickness, streamline distance

from stagnation point, etc. Evaluation of these parameters involves non-local opera-

22



tions such as integration or searching along streamlines and wall-normal directions.

These operations may not be suitable for unstructured or mixed-element grids that

are commonplace in industrial CFD simulations. There are two primary reasons for

the dependence of early transition prediction methods on boundary layer quantities:

(1) lack of sophisticated experimental methods to measure flow quantities inside the

boundary layer, and (2) use of boundary layer codes that solve parabolized Navier-

Stokes equations. Parameters such as displacement thickness or shape factor are

readily available in boundary layer codes. Langtry [6] summarizes the requirements

of transition modeling tools to handle the complex geometries and unsteady flow

scenarios often encountered in industrial applications. Some of the requirements for

a good transition model include: 1) ability to predict multiple modes of 2-D and 3-D

transition, 2) computational affordability and 3) compatibility with both structured

and unstructured Navier-Stokes CFD codes by avoiding search and integration op-

erations. Langtry and Menter [33] developed a correlation-based transport model

for the two-equation k-ω Shear Stress Transport (SST) turbulence model [34], called

the γ−Reθ transition model, with the aim of addressing many of the current issues.

With modern experimental and numerical methods, extraction of high-resolution

flow field data is being made possible and transitional boundary layers are being

characterized more accurately. It is expected that these technological advances will

lead to improved transition modeling methods that satisfy the requirements of in-

dustrial CFD simulations.
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1.6 Objectives

The discussion in this chapter highlights the need for transition onset predic-

tion and outlines the challenges of developing a prediction tool with the desired

capabilities. In particular, methods applicable to structured and unstructured grid

topologies that are readily compatible with current Navier-Stokes solvers are few

in number. The γ − Reθ transition model of Langtry and Menter [33] is currently

the most successful approach due to its careful and elegant formulation that avoids

non-local operations and predicts multiple modes of transition through simple corre-

lations. Due to the robustness and reliability of the one-equation Spalart-Allmaras

(SA) turbulence model for external flow applications [35], its lower computational

cost compared to the k-ω SST model, and its Delayed-Detached Eddy Simulation

(DDES) extension for massively separated flow simulations, it is highly desirable to

have a similarly capable transition model that is compatible with the SA model. The

primary objective of this thesis is to reformulate the γ−Reθ model and integrate it

with the SA model to investigate the effect of transition modeling on performance

of rotorcraft and wind turbine applications. To achieve this, the original transition

model equations are reformulated with modified source terms to improve robustness

and accuracy. The modified model is validated against experimental data for several

two-dimensional airfoil flows. The validated model is then used to study the effect

of transition on rotating blade flows in axial flow conditions. The new transition

model coupled with the SA model is named the γ −Reθ − SA model.
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1.7 Contributions of Thesis

Key contributions of this research are listed below:

1. Demonstrated inability of the one-equation Spalart-Allmaras turbulence model

to accurately predict drag in partially laminar boundary layers

2. Developed a robust correlation-based laminar-turbulent transition prediction

model for the Spalart-Allmaras turbulence model. The transition model is

also formulated to be independent of the choice of the turbulence model.

3. Improved prediction of skin friction drag on external flows past lifting surfaces

using the γ −Reθ − SA transition model

4. Improved the understanding of transition onset phenomenon on rotating blades

in axial flow conditions, and quantified the effects of transition on rotorcraft

and wind turbine performance

5. Developed preliminary crossflow transition onset criterion for swept wings

6. Improved stall onset prediction by improving sensitivity of the Spalart-Allmaras

turbulence model to strong adverse pressure gradients

1.8 Scope and Organization of Thesis

The present work is concerned with the prediction of laminar-turbulent tran-

sition of boundary layers on external aerodynamic surfaces. The newly developed

transition model is capable of predicting two-dimensional transition due to non-zero
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pressure gradients in low freestream turbulence environments. This thesis details

the motivation for this research, previous efforts, overall approach, and application

of the new model to various two-dimensional and three-dimensional flows. The rest

of the thesis is organized as follows:

1. Chapter 2 presents a selective literature review of various transition prediction

methods. Benefits and drawbacks of each transition model are highlighted.

2. Chapter 3 presents the formulation, calibration, and verification of the γ −

Reθ − SA transition model. Integration of the transition model with the un-

derlying turbulence model is also discussed.

3. Chapter 4 provides details of the RANS-based computational methodology

used in this work. Details of the various aspects of the methodology are

presented, including governing equations, spatial and temporal discretization

methods, grid topologies, boundary conditions, and overset mesh algorithms.

4. Chapter 5 presents results of several two-dimensional airfoil simulations with

and without the transition model. This chapter demonstrates the accuracy of

the new model as well as highlights the need to include transition effects in

partially laminar boundary layers.

5. In Chapter 6, the γ − Reθ − SA model is applied to three-dimensional rotor-

craft and wind turbine configurations. Results and analysis include predicted

transition onset locations on rotor blades under various flow conditions, and
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comparison of rotor thrust and torque obtained with and without the transi-

tion model.

6. Chapter 7 summarizes key results and conclusions from this work, and provides

recommendations for future work.

7. Appendix A presents the details of a new crossflow transition onset criterion

with some preliminary results for a swept wing and a helicopter rotor in hover.

8. Appendix B presents the details of an empirical correction to the Spalart-

Allmaras turbulence model for strong adverse pressure gradient flows to im-

prove stall prediction on airfoils.
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2 Progress in Transition Modeling

A complete transition model needs to predict the following two parameters

in a boundary layer: (1) onset location of transition and relaminarization, and (2)

extent of transition zone. Transition prediction methods can be categorized into

groups based on various attributes: (1) models based on hydrodynamic stability

theory versus models based on empirical correlations, (2) models that can predict

onset versus models that can prediction extent versus models that can do both, (3)

algebraic models versus linear-combination models versus transport-equation based

models. Many transition models have one or more of these attributes. Recent

articles by Pasquale [36] and Sveningsson [37] provide a comprehensive review of

various transition modeling methods for practical applications.

2.1 Transition Prediction in Modern CFD Solvers

There are many ways in which various transition models can be integrated

into a full Navier-Stokes (N-S) solver. Some of them are summarized below [38]:

1. Direct coupling of a N-S solver with a stability code – laminar mean flow

profiles are obtained from a highly resolved flow field from a N-S solver. The
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stability code computes exact growth rates using mean flow profiles. Mean

flow resolution and exact stability computations can be quite expensive.

2. Coupling of a N-S solver with a boundary layer code and a database for

growth rates – the boundary layer code computes the mean flow profiles on

a high-resolution grid. Disturbance growth rates are obtained from a look-up

database or analytical relationships based on exact stability computations for

self-similar mean velocity profiles in non-zero pressure gradients (Falkner-Skan

profiles in 2-D incompressible flows).

3. Direct implementation of simple algebraic transition onset criteria into baseline

turbulence models.

4. Multiplying eddy viscosity obtained from baseline turbulence models with an

intermittency function obtained using empirical correlations with or without

solving additional transport equations.

5. Multiplying source terms of baseline turbulence models with an intermittency

function that is obtained from solving additional transport equations.

Besides the use of database look-up in methods such as eN , many transition

models rely upon quantities such as boundary layer edge velocity, boundary layer

thickness, displacement thickness, momentum thickness, and inviscid streamline ra-

dius of curvature. These quantities involve non-local operations such as integration

and searching along streamlines or wall-normal direction. Most of these methods

are suitable for implementation into boundary layer codes, since these quantities are
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readily available when solving the boundary layer equations. However, automatic

transition prediction using modern RANS/LES-based flow solvers is extremely desir-

able in the aerospace industry. Non-local operations and database look-up methods

are not suitable and efficient, and sometimes impossible to use in massively parallel

unstructured CFD codes and complex geometries such as turbomachinery. Require-

ments for a transition model that is fully compatible with modern CFD codes are

summarized by Langtry [6]:

1. Allow calibrated prediction of transition onset and length

2. Predict various 2-D and 3-D transition mechanisms

3. Transition criteria based only on local flow field variables (without integration

or searching), and applicable to structured and unstructured grid topologies

4. Retain behavior of baseline turbulence model in fully turbulent regions

5. Robust numerical convergence properties similar to underlying turbulence

model, and allowing integration down to the wall boundary.

2.2 Direct Numerical Simulation (DNS) and Large Eddy Simulation

(LES)

Although DNS and LES methods are currently impractical for routine use in

industrial applications due to large computational times, they play a crucial role in

uncovering transition mechanisms that can be used to develop lower-fidelity transi-

tion prediction methods. Besides the computational expense, these simulations also
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need to address the issue of inflow turbulence content specification. DNS simulations

are performed by solving the full unsteady Navier-Stokes equations without any fil-

tering or Reynolds-averaging operations with the objective of resolving the full range

of length and time scales using an extremely fine computational grid. DNS simula-

tions of bypass transition by Jacobs and Durbin [39] obtained new perspectives from

numerical flow fields. It was the first approach to construct turbulent inflow from

Orr-Sommerfeld continuous modes. Approximately 70 million grids points were used

in this DNS study. Simulations showed that transition precursors consist of long

backward jets contained in the fluctuating u-velocity field, i.e. they flow backwards

relative to the local mean velocity. These jets extend into the outer portion of

the boundary layer and interact with freestream eddies, resulting in turbulent spot

formation. The turbulent spots spread longitudinally and laterally and ultimately

merge into the downstream turbulent boundary layer. Formation of streaks, spots,

and transition to turbulence phenomenon is visualized by u- and v-component fluc-

tuations in Fig. 2.1. Wu and Moin [40] performed DNS on a zero pressure gradient

flat plate for a momentum thickness Reynolds number (Reθ) range of 80 to 940.

Grid sizes of 100 million and 200 million points were used in this study. Transition

was completed at approximately Reθ = 750 due to intermittent localized distur-

bances arising from patches of isotropic turbulence introduced periodically from the

freestream at Reθ = 80. This study showed the first direct evidence of the domi-

nance of hairpin vortices in a spatially developing flat plate boundary layer shown

in Fig. 2.3 (in the form of a solution to the Navier-Stokes equations, obeying the

statistical measurements, as opposed to synthetic superposition of the structures).
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DNS predictions of instantaneous and mean skin friction profiles on a transitional

flat plate boundary layer shown in Fig. 2.2 indicate elevated levels of skin friction

in the turbulent spot region [39, 40]. Wissink [41] performed DNS of separation-

induced transition on a flat plate with adverse pressure gradient at Re = 60,000.

These simulations used grids ranging from 30 million to 500 million points. Numer-

ical round-off errors were found to be responsible for triggering Kelvin-Helmholtz

instability leading to the roll-up of the separated boundary layer, followed by rapid

transition to turbulence. Addition of uniform external disturbances was found to

reduce the size of the separation bubble. When the uniform external disturbances

were replaced by fluctuations of a periodically passing wake, the location of transi-

tion was found to move upstream and downstream alternately. Figure 2.4 shows a

snapshot of boundary layer separation due to impinging wakes in this DNS study.

The Large Eddy Simulation (LES) approach solves filtered Navier-Stokes equa-

tions to resolve large scale eddies and uses a sub-grid scale eddy viscosity model to

account for energy in smaller scales [45]. Applicability of LES models for transition

prediction was recently studied by Schlatter [46]. Their simulations investigated how

well sub-grid scale (SGS) models on coarse grids are able to predict the various phys-

ical mechanisms of transition such as Λ-vortices, roll-up of shear layers, and hairpin

vortices using coarse grids. It was found that the dynamic Smagorisnky model [47]

when used on coarse grids, does not capture the initial stages of breakdown such

as the formation of hairpin vortices. Flow visualization of natural transition in a

plane channel flow obtained from LES simulations of Schlatter [42] is shown in Fig.
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2.5. The various stages of natural transition are clearly seen in this figure: 2-D

T-S waves, spanwise vorticity, 3-D breakdown, turbulent spots, and fully turbu-

lent flow. In early LES simulations of transitional boundary layers, transition onset

location is sensitive to the choice of Smagorinsky constant of the SGS model [6].

Michelassi [43] performed LES simulations of a low-pressure turbine blade with pe-

riodically impinging wakes. Although good qualitative agreement of skin friction

profile was seen between LES and DNS predictions, the LES transition onset loca-

tion was predicted about 10% of chord length downstream of the DNS prediction,

as seen in Fig. 2.6.

More recently, Bodart and Larsson [44] developed a robust sensor-based transi-

tion prediction technique using wall-modeled LES (WMSLES). The sensor is defined

for arbitrary geometries and is based on spatially local turbulent kinetic energy. It

is used to activate the wall-model only when the boundary layer is detected to be

turbulent. This approach was successfully used to predict transition in boundary

layers on a flat plate as well as a multi-element MD 30P/30N airfoil. The multi-

element airfoil case was simulated at a Reynolds number of 9 million and used a grid

with 74 million control volumes. Figure 2.7 shows skin friction prediction obtained

using WMSLES from this study. The difference between the predicted and the ex-

perimental data does not exceed 2% and remains within experimental uncertainty.

This approach brings high-fidelity methods such as WMLES closer to transition

prediction in practical applications.
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Figure 2.1: (a) u-component and (b) v-component of fluctuations showing streaks,

spots, and transition of boundary layer beneath freestream turbulence(reproduced

from DNS study [39])
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(a) DNS study of Jacobs and Durbin [39]

(b) DNS study of Wu and Moin (light solid line - instantaneous, Dark

solid line - mean) [40]

Figure 2.2: Instantaneous and mean skin friction predictions from DNS studies

showing elevated levels inside a turbulent spot (reproduced from [39,40])
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Figure 2.3: Iso-surfaces of second invariant of velocity gradient tensor colored by

local values of u showing hairpin structures; (a) to (f) are different streamwise zones

(reproduced from DNS study of [40])
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Figure 2.4: Snapshot of iso-surface of spanwise vorticity (= -150) identifying im-

pinging wake and boundary layer separation (reproduced from DNS study of [41])

Figure 2.5: Stages of natural transition in plane channel flow (reproduced from LES

study of [42])
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Figure 2.6: Time-averaged skin friction on the suction side of a low-pressure turbine

blade subject to periodic impinging wakes (reproduced from LES study of [43])

Figure 2.7: Skin friction predictions on MD 30P/30N multi-element airfoil; dashed

lines indicate beginning and end of transition region from experimental data (repro-

duced from WMSLES study of [44])
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2.3 Models based on Hydrodynamic Stability Theory

Reed and Saric [48] review linear stability theory applied to boundary layer

transition prediction. The basic idea behind linear stability theory is to super-

pose small disturbances onto the local, undisturbed boundary-layer state (termed

as the “basic state”) and determine whether these perturbations grow or decay.

The boundary layer is considered stable if all perturbations decay. Linear stabil-

ity analysis is performed by locally linearizing the complete unsteady Navier-Stokes

equations about the basic flow state which is assumed to be locally parallel to the

wall surface. The Orr-Sommerfeld stability equations are obtained by substituting

stream function representation of a two-dimensional, single frequency disturbance

as given below:

ψ(x, y, t) = φ(y)ei(αx−ωt) (2.1)

where, φ(y) is an amplitude function, y is normal to the wall, α is a complex

wavenumber in the x-direction, and ω is real and represents the wave frequency.

If the disturbance amplitude grows spatially, then the boundary layer is unstable

and transition to turbulence occurs. This happens when the sign of the imaginary

part of α is negative.

The eN method based on linear stability theory is one of the most widely

used methods to predict natural transition in boundary layers at relatively low

freestream turbulence levels. It was independently and simultaneously proposed by

Smith and Gamberoni, and Van Ingen [49, 50]. A recent article by Van Ingen [51]

presents a historical review of the eN method and its variations during the past 50
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years. It is applicable to both 2-D and 3-D boundary layers with non-zero pressure

gradients and laminar separation bubbles. This makes it suitable for transition

prediction on isolated airfoils. Variations of the method are also capable of predicting

crossflow transition onset in 3-D boundary layers. Design and analysis codes such as

XFOIL [52], MISES [53], and XFLR5 [54] use the eN method for transition prediction

on airfoils and model aircraft wings. The eN method is based on an eigenvalue

analysis of the Orr-Sommerfeld equations for viscous parallel flow, which is not the

case in realistic boundary layers. The linear Parabolized Stability Equations (PSE)

method [55] was developed to address the non-parallel effects neglected in linear

stability theory. Since the baseline eN method is based on a small disturbance

assumption, it cannot be used to predict non-linear mechanisms such as bypass

transition and roughness-induced transition. The non-linear PSE method further

extends the linear PSE method by including non-linear growth effects.

Implementation of stability theory based methods involves three steps: (1)

compute laminar velocity and temperature profiles at different streamwise stations,

(2) compute local amplification rates of the most unstable waves for each profile by

solving local linear stability equations or the Parabolized Stability Equations (PSE),

and (3) integrate local amplification rates along each streamline to obtain the N fac-

tor. Transition is considered to occur when the value of N crosses a threshold, which

is a function of freestream turbulence intensity. Typical values of N vary between

7 and 9. In its original form, the eN method needs integration of flow quantities

along streamlines, making it unsuitable for complex three-dimensional flow con-

figurations often encountered in industrial applications. However, recent work of
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Krumbein [56, 57] developed a hybrid framework that couples a RANS solver, a

boundary-layer code, and a fully automated local, linear stability code that is ca-

pable of predicting transition due to Tollmien-Schlichting and crossflow instabilities

on complex aircraft configurations. Two separate N-factors are computed, one for

Tollmien-Schlichting disturbances (NTS) and one for crossflow disturbances (NCF ).

It uses a database look-up approach to estimate growth rates for different velocity

profiles computed in advance using exact solutions to the linearized equations.

2.4 Correlation-based Models

Correlation-based models discussed below are divided into three groups based

on whether they can predict transition onset or transition extent or both.

2.4.1 Transition Onset Prediction Models

Since transition onset can be triggered due to a multitude of factors and mech-

anisms, the most practical means of transition prediction is to employ separate

empirical correlations (based on theory and experiment) for each mode of transi-

tion. Transition onset location is typically specified in terms of the local momentum

thickness Reynolds number (Reθt) as a function various flow parameters such as

freestream turbulence level, pressure gradient or acceleration parameter, surface

curvature, displacement thickness, etc. Some of the popular correlations for 2-D

and 3-D transition onset are listed below.

Abu Ghannam and Shaw Correlation [1]: Streamwise transition onset as
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a function of freestream turbulence intensity (Tu) and pressure gradient parameter

(λθ, also known as the Pohlhausen parameter).

Reθt = 163.0 + exp

{
F (λθ)−

F (λθ)

6.91
Tu

}
(2.2)

F (λθ) =


6.91 + 12.75λθ + 63.64(λθ)

2, λθ ≤ 0

6.91 + 2.48λθ − 12.27(λθ)
2, λθ > 0

(2.3)

λθ =
ρθ2

µ

dUe
ds

(2.4)

Mayle’s Correlation [25]: Streamwise transition onset as a function of

freestream turbulence intensity (Tu)

Reθt,Mayle = 400.0 Tu−5/8 (2.5)

AHD Criterion [58]: Streamwise transition onset for freestream turbulence

intensity (Tu) < 0.1%.

ReθCR = exp

[
E

Hi

− F
]

(2.6)

where, Hi is the incompressible shape factor. The distance from stagnation point to

the first point where Reθ = ReθCR is sCR.

λθ =
1

s− sCR

∫ s

sCR

λθds (2.7)

ReθTR = ReθCR + A.exp(Bλθ)
[
ln(C.Tu)−D.λθ

]
(2.8)

The coefficients A–F are functions of freestream Mach number given below [58]:

A = 98.64 M3
e - 356.44 M2

e + 117.13Me - 236.69

B = -13.04 M4
e + 38.5 M3

e - 30.07 M2
e + 10.89 Me + 22.7

C = 0.21 M3
e + 4.79 M2

e - 1.76 Me + 22.56
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D = -3.84 M4
e + 6.26 M3

e - 3.45 M2
e + 0.23 Me + 12.0

E = 0.6711 M3
e - 0.7379 M2

e + 0.167 Me + 51.904

F = 0.3016 M5
e - 0.7061 M4

e + 0.3232 M3
e + 0.0083 M2

e - 0.1745 Me + 14.6

C1 Criterion [59]: Crossflow transition onset in terms of critical crossflow

displacement thickness Reynolds number (Reδ2t).

Reδ2t = 150.0, if Hi < 2.3 and (2.9)

Reδ2t =
300

π
arctan

[
0.106

(Hi − 2.3)2 .05

]
, if 2.3 ≤ Hi ≤ 2.7 (2.10)

where, δ2 is the boundary layer displacement thickness.

Reδ2 =
Ueδ2

ν (1 + 0.2M2
e )

; δ2 = −
∫ δ

0

w

Ue
dy (2.11)

Kohama Parameter [60]: Crossflow transition onset as a function of mo-

mentum thickness (θ), and inviscid streamline radius of curvature parallel to wall

(R).

Ck =
Ueθ

ν

√
θ

R
(2.12)

Critical value of Ck for a rotating disk is 5.0 and a yawed cylinder is 2.8.

2.4.2 Transition Extent Prediction Models

Most of the transition length prediction models use the concept of intermit-

tency (γ) to control the value of eddy viscosity (µt) in the flow field. In such

models, total viscosity is defined as the sum of the molecular viscosity (µ) and the

intermittency-weighted eddy viscosity as given below:

µtotal = µ+ γµt (2.13)
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Dhawan and Narasimha [17]: Dhawan and Narasimha observed that the

scalar intermittency function (γ) provides a measure of progression towards a fully

turbulent boundary layer. Based on measured streamwise intermittency distri-

butions on flat plate boundary layers, they proposed the following expression for

streamwise intermittency profile:

γ =


0, x < xt

1.0− exp

[
−(x− xt)2nσ

U

]
= 1.0− exp(−0.41ξ2), xt ≥ x

(2.14)

where, xt is the transition onset location, n is the spot formation rate (per unit time,

per unit distance in the spanwise direction), σ is a spot propagation parameter (=

0.25), U is the freestream velocity, and

ξ =
x− xt
λ

(2.15)

is a non-dimensional variable using the distance λ between the stations where γ =

0.25 and 0.75 to characterize the extent of the transition zone.

Dey and Narasimha Model [61]: This model was developed based on the

concept that a transitional boundary layer is a linear combination of laminar and tur-

bulent flow fields weighted by the intermittency function of Dhawan and Narasimha

(Eq. 2.14). In this approach, a complete laminar flow solution is obtained first,

followed by a turbulent solution. In the fully turbulent simulation, the turbulence

model is activated at the transition specified transition onset location. The two

solutions are then linearly combined in the ratio of (1-γ) to γ. The mean velocity

(U) and skin friction (Cf ) profiles are computed as shown below:

U = (1− γ)UL + γUT (2.16)
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Cf = (1− γ)CfL + γCfT (2.17)

The subscripts L and T represent laminar and turbulent solutions respectively.

Using this approach, the transition extent was typically under-predicted and heat

transfer at the end of transition region was over-predicted.

Cho and Chung Model [62]: Cho and Chung developed a k–ε–γ turbulence

model for free shear flows. Intermittency was computed using a transport equation

and eddy viscosity was represented as a function of k, ε, and γ. The model was

tested for a plane jet, a round jet, a plane far wake, and a mixing layer.

Steelant and Dick Model [63]: Steelant and Dick proposed a transport

equation for intermittency in which the source term of the equation is designed to

reproduce the γ distribution of Dhawan and Narasimha [17]. The intermittency

transport equation was derived by differentiating the intermittency distribution of

Dhawan and Narasimha along the streamline direction s, and was solved in con-

junction with conditioned Navier-Stokes equations. The production term of the in-

termittency equation used a variation of the spot formation rate term from Dhawan

and Narasimha’s correlation (Eq. 2.14).

2.4.3 Transition Onset and Extent Prediction Models

Low Reynolds Number Models: Most of the low Reynolds number models

[64,65] rely on the ability of wall damping functions to capture transition effects. In

order to predict transition onset, they depend on the diffusion of turbulence from

freestream into the boundary layer and its interaction with the turbulence model
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source terms [6]. Therefore, they are more suited for bypass transition prediction

[66]. However, their performance has been unreliable and unsatisfactory, and their

limited success is coincidental due to the similarity between a developing laminar

boundary layer and a viscous sublayer. They do not have proper sensitivity to strong

adverse pressure gradients and separated shear layers. In addition, they suffer from

convergence issues for separation-induced transition cases [6].

Warren and Hassan Model [67]: Warren and Hassan developed one of

the first unified models to determine both transition onset and extent in a single

formulation. It is capable of predicting both streamwise and crossflow transition

mechanisms in 2-D and 3-D boundary layers. The model is based on the concept

of non-turbulent fluctuations in a manner similar to that used in describing tur-

bulence. The effective eddy viscosity (µe) is an intermittency-weighted sum of two

contributions as shown below:

µe = (1− γ)µnt + γµt (2.18)

where, γ is the intermittency function of Dhawan and Narasimha, µnt is the eddy

viscosity due to non-turbulent fluctuations and µt is the eddy viscosity due to tur-

bulent fluctuations. Non-turbulent fluctuation contribution can be computed using:

µnt = 0.09ρkτnt (2.19)

where, τnt is a non-turbulent time scale that is a function of the frequency of the

first mode disturbance with the maximum amplification rate. To predict crossflow

transition, a crossflow viscosity time scale that is a function of the wavelength of

crossflow disturbances is used. This model was coupled to the two-equation k-ζ
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turbulence model [68] and the one-equation Spalart-Allmaras turbulence model [35].

It was validated against experimental data for flat plates, airfoils, and infinite swept

wings. It is not a fully local formulation due to its dependence on integral boundary

layer quantities such as the boundary layer thickness and the displacement thickness.

Suzen and Huang Model [69]: Suzen and Huang developed an intermit-

tency transport equation by blending the production terms of two previous transition

models [62, 63]. Intermittency production was triggered at the point of transition

onset which was determined using experimental correlations. The model successfully

reproduces experimentally observed streamwise intermittency profiles and realistic

cross-stream intermittency profiles in the transition zone. The intermittency factor

thus obtained was used to scale the eddy viscosity field computed from the SST

k-ω turbulence model. This model was successfully validated against several low-

pressure turbine experiments. However, this model is not a fully local formulation

since it uses freestream turbulence intensity, and therefore requires the boundary

layer edge velocity.

Walters and Leylek Model [70, 71]: This model predicts natural and by-

pass transition by solving a transport equation for “laminar kinetic energy”. It

is based on the understanding that high-amplitude streamwise fluctuations in the

pre-transitional boundary layer are caused due to freestream turbulence and these

fluctuations are very different from traditional turbulence fluctuations [25]. They

are identified as “laminar kinetic energy” (kL). Growth of kL correlates with low-

frequency wall-normal fluctuations of the freestream turbulence. The total kinetic

energy is assumed to be the sum of the small-scale kinetic energy that contributes to
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traditional turbulence production, and large-scale energy that contributes to lam-

inar kinetic energy production. The transport equation for laminar kinetic energy

(kL) is solved in conjunction with equations for turbulent kinetic energy (kT ) and

specific dissipation rate (ω = ε/kT ). This model uses a fully local formulation with-

out needing integration or searching operations. It has been successfully validated

for flat plates, airfoils, and turbine cascade flows. This approach is more promising

compared to the other methods discussed above, and should be validated on a wider

range of flow problems by more researchers.

Langtry and Menter Model [33]: The correlation-based γ −Reθ model of

Langtry and Menter is currently one of the most widely used transition models in

industrial CFD applications. It was developed with the objective of satisfying all the

criteria for a Navier-Stokes solver compatible model, listed at the beginning of this

chapter. The model solves two additional transport equations for intermittency (γ)

and transition momentum thickness Reynolds number (Reθt), coupled with the SST

k-ω turbulence model [34]. The primary reasons for the success of this model are

its fully local formulation and its ability to predict natural, bypass, and separation-

induced transition mechanisms using experimental correlations. It is applicable to

both unstructured and structured grid topologies. It has been successfully applied

to several internal and external flow applications including 2-D airfoils, 3-D fixed

wings, airframes, rotor blades, and turbomachinery. Recently, Coder [72] replaced

the equation for Reθ with an equation for the amplification factor N from the eN

model using additional correlations.

In this model, transition onset and extent are predicted using a combination of
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experimental and numerical correlations. Transition onset is triggered based on the

Vorticity Reynolds Number criterion of Van Driest and Blumer [73] as given below:

Reθt =
max(Rev)

2.193
(2.20)

This equation states that transition onset occurs when the local momentum thick-

ness Reynolds number (Reθ) in a laminar boundary layer exceeds the maximum

value of scaled vorticity Reynolds number (Rev) profile at a given streamwise sta-

tion. Vorticity Reynolds number is given by:

Rev =
ρd2Ω

µ
(2.21)

where, ρ is the density, d is the nearest wall distance, Ω is the vorticity magnitude,

Figure 2.8: Schematic of scaled vorticity Reynolds number profile in a laminar

boundary layer (reproduced from [6])

and µ is the laminar viscosity. All these quantities are readily available at every
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grid point in most structured and unstructured CFD codes. The vorticity Reynolds

number profile in a laminar boundary layer attains its maximum value at around

60% of the boundary layer thickness, as shown in Fig. 2.8. The critical value of Reθ

is obtained by solving a transport equation that uses experimental correlations for

Reθt as a function of freestream turbulence intensity and a local pressure gradient

parameter. Solving a transport equation and using experimental correlations to

obtain critical Reθt avoids the need for the exact computation of local momentum

thickness Reynolds number through numerical integration along the wall-normal

direction. A second transport equation is solved for intermittency, whose production

is controlled by the vorticity Reynolds number criterion. The intermittency field thus

obtained is multiplied with the production and dissipation terms of the two-equation

k-ω SST turbulence model [34].

Although complete details of the γ−Reθ model are now available in the open

literature [33], certain numerical correlations were not published in the original

version of the model [6]. Therefore several follow-up efforts were focused on model

calibration and validation [74–78]. Since the γ −Reθ model is also the focus of the

present work, a more detailed discussion of this model will be presented in Chapter

3 of this thesis.

2.5 Summary

This chapter summarized the history and state-of-the-art of laminar-turbulent

transition modeling methods. The role of high-fidelity DNS and LES simulations to
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further the understanding of transition mechanisms and aiding development of new

low-fidelity models was discussed. The discussion included encouraging recent work

in wall-modeled LES for transition modeling on multi-element airfoils. Difficulties

in developing a comprehensive transition model that is compatible with modern

CFD codes have been discussed. The correlation-based γ − Reθ transition model

of Langtry and Menter has been introduced and its benefits over the other models

have been highlighted. The next chapter presents development of a modified version

of the γ − Reθ model that is compatible with the one-equation Spalart-Allmaras

turbulence model.
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3 Transition Model Development

This chapter details the formulation and calibration of a modified version of

the γ − Reθ transition model, and its integration with the one-equation Spalart-

Allmaras turbulence model. The original γ − Reθ transition model was developed

for the two-equation k-ω SST turbulence model. It is currently the most widely

used transition model in industrial applications due to its compatibility with both

structured and unstructured RANS flow solvers. Due to the robustness and re-

liability of S-A model for external flow applications, its lower computational cost

compared to the k-ω model, and its Delayed-Detached Eddy Simulation (DDES)

extension for massively separated flow simulations, it is highly desirable to have a

similarly capable transition model based on correlation-based transport equations.

Therefore, in this work, the γ−Reθ transition model is modified, re-calibrated, and

integrated with the S-A model. Since the original γ−Reθ model depends entirely on

mean flow quantities in a laminar boundary layer that are readily available in any

CFD simulations, it can be readily coupled with any choice of turbulence model.

Summary of the original γ − Reθ model is presented first, followed by a detailed

development of the γ −Reθ − SA model.
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3.1 Summary of γ −Reθ Transition Model

The γ−Reθ transition model uses the concept of intermittency (γ), in order to

trigger transition locally, by controlling the production of turbulent kinetic energy.

In this context, intermittency is a scalar transport variable that varies between 0

(always laminar) and 1 (always turbulent). The local intermittency value is used to

turn on production of turbulent kinetic energy (TKE) in the k-equation of the SST

k − ω turbulence model as follows:

D(ρk)

Dt
= P̃k − D̃k +

∂

∂xj
[(µ+ σkµt)

∂k

∂xj
] (3.1)

where, the production and destruction terms of the original k-equation from SST

k−ω turbulence model (Pk and Dk), are modified using the local intermittency value

as shown in Eq. 3.2. The governing equation for the specific turbulence dissipation

rate, ω, is not modified in this formulation.

P̃k = γeffPk; D̃k = min(max(γeff , 0.1), 1.0)Dk (3.2)

A transport equation based only on the local flow field variables and gradients,

along with the nearest wall distance, is solved to obtain the intermittency field. The

intermittency transport equation as proposed by Langtry [6] is given below:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+

µt
σf

)
∂γ

∂xj

]
(3.3)

Intermittency production and destruction terms are given by Eqs. 3.4–3.11.

Pγ = Flengthca1ρS[γFonset]
0.5 (1.0− ce1γ) (3.4)
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Dγ = ca2ρΩγFturb(ce2γ − 1.0) (3.5)

Fonset = max (Fonset2 − Fonset3, 0) (3.6)

Fonset1 =
Rev

2.193.Reθc
(3.7)

Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
(3.8)

Fonset3 = max

(
1−

(
RT

2.5

)3

, 0

)
(3.9)

Fturb = e

(
−RT

4

)4

(3.10)

Rev =
ρd2S

µ
, RT =

ρk

µω
(3.11)

Transition onset occurs when the ratio of the local vorticity Reynolds number and

the critical Reynolds number exceeds a value of 2.193, as shown in Eq. 3.7. The

intermittency production term depends on two parameters: (1) Critical Reynolds

number Reθc, and (2) Transition length function Flength. The critical Reynolds

number determines the transition onset location, and is defined as the point at which

intermittency first starts to grow in a laminar boundary layer. This occurs slightly

upstream of the transition momentum thickness Reynolds number, Reθt. The Fonset

function uses Reθc and is designed to rapidly switch from 0 in a laminar boundary

layer to 1 in a turbulent boundary layer. The Flength function determines the length

of the transition regime, during which the boundary layer becomes fully turbulent.

These two parameters are calculated based on correlations that are functions of the

local transition momentum thickness Reynolds number Reθt. These correlations can

be developed based on a few benchmark cases of transitional flow past a flat plate
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and are given in [33]. Intermittency is set to 1.0 in the freestream and a zero-gradient

condition is specified at a solid wall boundary.

A second equation governs the transport of Reθt as follows:

D(ρReθt)

Dt
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂Reθt
∂xj

]
(3.12)

The source term for Reθt is defined as:

Pθt = cθt
ρ

t
(Reθt −Reθt)(1.0− Fθt), (3.13)

Fθt = min

(
max

(
Fwake.e

−( dδ )
4

, 1.0−
(
γ − 1/ce2

1.0− 1/ce2

)2
)
, 1.0

)
(3.14)

θBL =
Reθtµ

ρU
; δBL = 7.5θBL; δ =

50Ωd

U
.δBL (3.15)

Fwake = e(
Reω
1E+5)

2

; Reω =
ρωd2

µ
(3.16)

where t is a timescale present for dimensional reasons, and Fθt is a blending function

that turns off the source terms inside a boundary layer. The source term (Pθt) is

designed to maintain the freestream value of Reθt outside the boundary layer (Reθt =

Reθt∞), and is turned off inside the boundary layer allowing for the convection and

diffusion of the conserved quantity.

The motivation behind solving a transport equation for Reθt rather than directly

using algebraic experimental correlations is that, since the turbulence intensity can

strongly vary in internal flow applications such as turbomachinery, it is not appro-

priate to use the freestream value of Reθt to determine transition onset and extent.

Instead, the freestream turbulence effects need to be transported into the bound-

ary layer. Additionally, it was shown by Langtry [6] that this governing equation
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accounts for history effects of pressure gradient on the onset of transition, since

transition onset is influenced not just by the local value of the pressure gradient,

but also by its variation upstream of the point of transition.

The local value of Reθt that is needed to compute the production term is obtained

from the experimental correlations formulated as a function of freestream turbulence

and local pressure gradient as follows:

Reθt = [1173.51− 589.428Tu+
0.2196

Tu2
]F (λθ), (3.17)

Reθt =


(1173.51− 589.428Tu+ 0.2196

Tu2
)F (λθ), Tu ≤ 1.3

331.50[Tu− 0.5658]−0.671F (λθ), Tu > 1.3

(3.18)

F (λθ) =


1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ]e
−[Tu

1.5
]1.5 , λθ ≤ 0

1 + 0.275[1− e[−35.0λθ]]e−[Tu
0.5

], λθ > 0

(3.19)

The pressure gradient parameter, λθ, is given by:

λθ =
ρθ2

µ

dU

ds
(3.20)

where
dU

ds
represents the streamwise acceleration given by:

dU

ds
=
u

U

dU

dx
+
v

U

dU

dy
+
w

U

dU

dz
(3.21)

dU

dx
=

1

2
√
U

[
2u
du

dx
+ 2v

dv

dx
+ 2w

dw

dx

]
(3.22)

dU

dy
=

1

2
√
U

[
2u
du

dy
+ 2v

dv

dy
+ 2w

dw

dy

]
(3.23)

dU

dz
=

1

2
√
U

[
2u
du

dz
+ 2v

dv

dz
+ 2w

dw

dz

]
(3.24)

U =
√
u2 + v2 + w2 (3.25)
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The value of F(λθ) is evaluated using an iterative procedure by assuming λθ = 0.0

for the first iteration. The freestream value of Reθt is set to Reθt∞, which can be

computed from the above experimental correlations under a zero pressure gradient

condition by setting λθ to zero. At a wall boundary, a zero gradient condition is

applied to Reθt. The model constants are:

ce1 = 1.0; ca1 = 2.0; ce2 = 50.0; ca2 = 0.06; σf = 1.0 (3.26)

cθt = 1.0; σθt = 2.0 (3.27)

A correction to the intermittency flowfield was proposed to improve the prediction

of transition induced by a laminar separation bubble and is given by:

γsep = min

(
s1max

[
0,

(
Rev

3.235Reθc

)
− 1

]
Freattach, 2.0

)
Fθt (3.28)

γeff = max(γ, γsep) (3.29)

where, Freattach = e
−
(
RT
20

)4

, and s1 = 2.0.

3.2 Formulation of the γ −Reθ − SA Transition Model

The γ − Reθ − SA model retains the primary features of the original model

by solving two scalar transport equations, and using the local vorticity Reynolds

number criterion and experimental correlations for transition momentum thickness,

to predict transition onset. However, the following changes have been made to the

original model:
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1. New correlations for Reθt based on a combination of vorticity Reynolds number

criterion, experimental data, and laminar flow simulations

2. Constant freestream turbulence intensity in the flowfield

3. Modified production and destruction terms in the intermittency equation

4. Omission of the separation-induced transition modification

5. Destruction term in the baseline S-A turbulence model not scaled by intermit-

tency

Reasons for these modifications are presented in the following discussion. All zero-

pressure gradient flat plate simulations in this work used a Cartesian computational

domain with boundary conditions as shown in Fig. 3.1. The Cartesian mesh has

545 points in the streamwise direction and 245 points in the wall-normal direction,

with 449 points from the leading-edge of the flat plate to the outflow boundary. The

leading-edge of the flat plate is located at X = 0 in Fig. 3.1.

3.2.1 Modified Experimental Correlations for Reθt

The γ − Reθ model uses experimental correlations for Reθt, combined with

the vorticity Reynolds number criterion, to predict transition onset via the Fonset1

function (Eq. 3.7). The original transition model uses correlations similar to those of

Abu-Ghannam and Shaw (Eq. 3.30), but with improved sensitivity to low freestream

turbulence levels for natural transition prediction.
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Figure 3.1: Cartesian mesh and boundary conditions used for zero-pressure gradient

flat plate simulations

Abu-Ghannam and Shaw correlations (AGS) [1]

Reθt = 163.0 + exp

{
F (λθ)−

F (λθ)

6.91
Tu

}
(3.30)

F (λθ) =


6.91 + 12.75λθ + 63.64(λθ)

2, λθ ≤ 0

6.91 + 2.48λθ − 12.27(λθ)
2, λθ > 0

(3.31)

Original γ −Reθ model correlations (Langtry) [6]

Reθt =


(
1173.51− 589.428 Tu+ 0.2196

Tu2

)
F (λθ), Tu ≤ 1.3

331.50 [Tu− 0.5658]−0.671 F (λθ), Tu > 1.3

(3.32)

F (λθ) =


1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ] e
−[Tu1.5 ]

1.5

, λθ ≤ 0

1 + 0.275
[
1− e[−35.0λθ]

]
e−[Tu0.5 ], λθ > 0

(3.33)
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Figure 3.2: Evaluation of new correlations between Reθt and Tu based on T3-series

flat plate data and Vorticity Reynolds number criterion

In this work, a new set of correlations between Reθt and Tu is developed

to ensure consistency between the T3-series zero-pressure gradient flat plate ex-

perimental data and the vorticity Reynolds number criterion. The T3-series data

provides transition Reynolds number based on plate length (Rext) at four discrete

values of Tu. The objective is to numerically evaluate Reθt values that satisfy the

vorticity Reynolds number criterion at each of the four Tu levels. For this purpose,

a laminar flow simulation of a flat plate boundary layer at zero-pressure gradient

was carried out, and the maximum vorticity Reynolds number was recorded at the

four streamwise stations corresponding to the four Rext values of the T3-series data.

Numerical values of Reθt are then computed for each freestream turbulence level

using the vorticity Reynolds number criterion as show in Eq. 3.34. This process is
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T3 Case Tu% Reθt, new

– 0.01 1800.0

S-K 0.03 1135.0

T3AM 0.51 894.0

– 1.33 392.0

T3A 2.00 252.0

T3B 5.25 165.0

– 6.5 100.0

Table 3.1: Piecewise linear correlations between Reθt and Tu

demonstrated in Fig. 3.2.

Reθt, new =
max [Rev,CFD−Laminar]

2.193
(3.34)

The resulting correlations are implemented in a piecewise linear form of the values

listed in Table 3.1 and compared against the correlations of Abu Ghannam and Shaw

(Eq. 3.30), and Langtry and Menter(Eq. ??) in Fig. 3.3. Intermediate Tu values

are added in order to achieve correlations similar to those of AGS and Langtry. The

effect of pressure gradient on Reθt is provided by multiplying the piecewise linear

correlations with the F(λθ) equations that are unchanged from the original model

(Eq. 3.33).
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Figure 3.3: Comparison of present transition onset correlations with previous cor-

relations

3.2.2 Intermittency Production and Destruction

The main advantage of the original γ−Reθ model is its fully-local formulation

using the vorticity Reynolds number criterion (Eq. 3.7). However, the shape of the

Rev profile at a given streamwise location is such that it goes to zero at the wall and

at the edge of the boundary layer. Therefore, the transition onset criterion is not

satisfied in these two regions downstream of the transition onset location. In the

original model, the intermittency production term is activated locally at grid points

where the onset criterion is satisfied, whereas the destruction term is not deactivated

based on the same criterion. Rather, the destruction term is designed to gradually

decay as the local Eddy viscosity value increases post-transition onset. Therefore, in
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(a) Original source terms (b) Modified source terms

Figure 3.4: Flat plate intermittency contours – improved intermittency recovery in

turbulent boundary layer

the two regions where the transition onset criterion fails, the production term is never

activated, and intermittency may not fully recover, despite some amount of diffusion

from the middle portion of the boundary layer and the freestream. This phenomenon

is demonstrated in Fig. 3.4(a), where the intermittency adjacent to the wall on a

flat plate stays close to zero even after transition onset. In addition, intermittency

recovery at the edge of the boundary layer is not complete. This behavior is inherent

to any fully-local formulation based on mean flow quantities since instabilities do

not develop uniformly along the height of a transitional boundary layer. To remedy

this, the intermittency production and destruction terms are modified so that they

are turned on and off using the same criterion. Figure 3.4(b) shows a fully recovered

intermittency flowfield downstream of the transition onset location obtained using

the modified source terms. The redefined source terms are given in Eqs. 3.36–3.37.
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Pγ = ρ Fonset Gonset max

[
Ω

Flength

,
1.0

Flength, min

]
(3.35)

If γ > 1.0, Pγ = (γ − 1.0)Pγ (3.36)

Dγ = γρΩ (1.0−Gonset) (3.37)

Fonset = max (Fonset2 − Fonset3, 0) (3.38)

Fonset1 =
Rev

2.193.Reθc
(3.39)

Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 4.0

)
(3.40)

Fonset3 = max
(
2− (0.25RT )3 , 0

)
(3.41)

Rev =
ρd2S

µ
, RT =

µt
µ

(3.42)

Numerical correlations for critical Reynolds number and intermittency production

strength are given below:

Reθc = α Reθt, α = 0.62 (3.43)

Flength = 40.0, Flength, min = 2.5 (3.44)

Gonset is set to one if max(Fonset1) > 1.0 at a given streamwise station, else Gonset is

zero. The purpose of Gonset is to turn on the intermittency production term when the

Rev criterion is satisfied anywhere along the height of the boundary layer at a given

streamwise station, and simultaneously disable the destruction term completely. In

addition, dependency of the destruction term on Eddy viscosity is avoided to prevent

sensitivity of transition onset to the freestream Eddy viscosity value specified in the

S-A model. The modified destruction term displays good relaminarization properties

due to its direct dependence on transition onset criterion. Gonset can be evaluated
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by a summation of Fonset along a grid line in the wall-normal direction. This aspect

of the modified destruction term makes the new model non-local in the wall normal

direction. The evaluation of this term does not pose any difficulty in structured

meshes, but may not be suitable for unstructured meshes, unless the boundary

layer region is resolved using a patched structured mesh. The new formulation

of the intermittency transport equation make the γ − Reθ − SA transition model

independent of the choice of the turbulence model.

3.3 Model Calibration and Verification

The transport equation for Reθt was not altered from its original form in the

new model. The calibration process primarily involved tuning the source terms

of the intermittency transport equation to match transition onset locations from

the T3-series zero-pressure gradient flat plate experiments. The sequence of model

calibration and verification steps are listed below:

1. The Reθt equation is solved for flow past a flat plate and an airfoil to verify

that the resulting streamwise Reθt profile at the boundary layer edge remains

constant for a zero-pressure gradient flat plate, increases in the presence of a

favorable pressure gradient and decreases in the presence of an adverse pres-

sure gradient on the airfoil. Implementation of the boundary layer detection

function, Fθt, is also verified by ensuring that its value remains one inside

the boundary layer and zero outside. Lagged convection and diffusion of the

freestream Reθt into the boundary layer in the presence of varying pressure
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gradients is confirmed.

2. The intermittency transport equation is solved without source terms to verify

that the convection and the diffusion terms, along with the boundary con-

ditions are implemented correctly. In this case, the resulting intermittency

distribution should be uniformly 1.0 across the flowfield.

(a) Variation of α in Reθc correlation (b) Variation of Flength

Figure 3.5: Transition model sensitivity to critical Reynolds number and intermit-

tency production term strength

3. Intermittency transport equation is solved with convection, diffusion, and de-

struction terms to ensure that the strength of the destruction term is sufficient

to maintain a laminar boundary layer up to infinite Reynolds number in the

absence of a production term. This is the calibration process for the destruc-

tion term, which is expected to reduce the freestream intermittency value of

one to zero in the presence of shear, when the transition onset criterion is not

satisfied.
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Figure 3.6: Transition model sensitivity to variation in freestream Eddy viscosity

4. Next, the complete form of the two-equation γ − Reθ − SA model is solved

for the zero-pressure gradient T3-series flat plate cases [80,81] to calibrate the

following two parameters – (1) Critical Reynolds number correlation control-

ling transition onset location (Reθc in Eq. 3.43) and (2) Strength of inter-

mittency production term controlling transition extent (Flength in Eq. 3.44)

– by matching computed skin friction profiles with those obtained from ex-

periments. Figure 3.5 shows the model sensitivity to changes in these two

parameters. Decreasing Reθc advances the transition onset location, whereas

increasing Flength lengthens the transition zone. Flength has a secondary effect

on transition onset location. Since the Spalart-Allmaras turbulence model is

designed to remain insensitive to moderate values of freestream Eddy viscosity,

it is desirable to have similar insensitivity in the modified transition model.

This is ensured by avoiding the use of Eddy viscosity in the intermittency de-
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(a) S-K, Tu = 0.03% [79] (b) T3AM, Tu = 0.51% [80]

(c) T3A, Tu = 2.00% [80] (d) T3B, Tu = 5.25% [80]

Figure 3.7: Skin friction prediction on a flat plate at zero pressure gradient using

γ −Reθ − SA transition model

struction term that is present in the original model. Figure 3.6 demonstrates

that the predicted transition onset location and extent are largely unaffected

by variations in the freestream Eddy viscosity value.

Figure 3.7 compares the computed values of skin friction with experimental

data for flow past a zero-pressure gradient flat plate at four discrete values of

68



(a) Transition momentum thickness Reynolds

number, Reθt

(b) Chordwise Reθt profiles on upper and

lower surfaces

Figure 3.8: Solution of Reθt transport equation for flow past an S809 airfoil section

at 0o AoA

Tu. Transition onset is indicated by a sharp increase in the skin friction value.

The skin friction profile follows the laminar path until the point of transition

onset and reaches the fully turbulent profile downstream of the transition zone.

Agreement between the computed and the experimental profiles is good for all

four cases. While the transition prediction is slightly delayed for the higher Tu

cases (T3A and T3B), such Tu values are not expected to occur in external

aerodynamic applications. The modified transition model is intended for use

at relatively low freestream turbulence levels (< 1 %) encountered in external

flow applications.

5. Next, the behavior of the calibrated γ−Reθ−SA transition model is analyzed

through simulations of flow past an S809 airfoil at a Reynolds number of two
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(a) Boundary layer detection function, Fθt (b) Convection and diffusion of Reθt into

boundary layer

Figure 3.9: Near-wall solution of Reθt for flow past an S809 airfoil section at 0o AoA

(not to scale)

million, a Mach number of 0.1, and at 0◦ angle of attack. The freestream

turbulence intensity is set to 0.03%. The S809 airfoil is designed to delay the

adverse pressure gradient and the boundary layer experiences a separation-

induced transition on both the upper and the lower surfaces around 50% of

chord at low angles of attack.

Figure 3.8(a) shows contours of Reθt obtained from the converged solution of

the Reθt transport equation in the flowfield around the airfoil. Surface values of

Reθt and pressure coefficient are plotted in Fig. 3.8(b). The variation in Reθt

is consistent with regions of favorable and adverse pressure gradients along

the fore and aft portions of the airfoil. Reθt increases from its farfield value

in the presence of adverse pressure gradients and vice versa. An interesting

observation is that the sensitivity of Reθt to adverse pressure gradients is
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(a) Intermittency (0 = laminar, 1 = turbulent) (b) Eddy viscosity

Figure 3.10: Production of Eddy viscosity downstream of transition onset location

for flow past an S809 airfoil section at 0o AoA (not to scale)

(a) Surface pressure and skin friction coeffi-

cients

(b) Surface intermittency distribution

Figure 3.11: Surface pressure, skin friction, and intermittency profiles for flow past

an S809 airfoil section at 0o AoA

greater than its sensitivity to favorable pressure gradients. This is consistent

with the experimental correlations for Reθt under non-zero pressure gradients.
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(a) Surface pressure coefficient (b) Skin friction coefficient

Figure 3.12: Grid convergence study for flow past an S809 airfoil section at 0o AoA

Figure 3.9(a) shows a contour plot of the boundary layer detection function,

Fθt, that is designed to have a value of one inside the boundary layer and

zero outside. Figure 3.9(b) shows convection and diffusion of Reθt into the

boundary layer due to turning off the production term using the Fθ function.

This figure also demonstrates the desired lag in propagation of freestream

value of Reθt into the boundary layer to account for history effects of pressure

gradients on transition onset.

Intermittency and Eddy viscosity contours in Fig. 3.10 confirm that the pro-

duction of Eddy viscosity occurs only after intermittency starts to grow to-

wards one in the boundary layer. Surface pressure and skin friction coefficient

profiles are plotted in Fig. 3.11(a). Separation-induced transition onset is

observed where the skin friction profiles on both the upper and the lower sur-

faces change their sign. Complete recovery of intermittency after transition
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(a) Viscous drag coefficient (b) Total drag coefficient

(c) Skin friction at 0o AoA (d) Skin friction at 8o AoA

Figure 3.13: Demonstration of hysteresis-free and relaminarization properties of

γ − Reθ − SA transition model by simulating a sinusoidally pitching S809 airfoil

section

onset is seen in Fig. 3.11(b), demonstrating the effectiveness of the modified

intermittency production and destruction terms.

A grid sensitivity study is performed at three wrap-around grid resolutions

of 200, 400, and 600 points on the airfoil surface to assess model sensitivity
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to streamwise grid spacing. The resulting pressure and skin friction profiles

are compared in Fig. 3.12. With 200 points on the surface, transition onset

location is delayed and transition extent is longer. Profiles obtained with 400

and 600 grid points show only minor differences, thereby demonstrating the

good grid sensitivity behavior of the transition model. Lift coefficient values

for 200, 400, and 600 grid points are 0.168, 0.166, and 0.165 respectively, and

the corresponding drag coefficient values are 0.00591, 0.00601, and 0.00605.

Based on this study, transition model simulations may require 400 grid points

in the wrap-around direction of the airfoil when using a third-order accurate

spatial derivative scheme.

Finally, the model is tested for hysteresis effects to check for dependence of

transition prediction on the initial solution, and to demonstrate relaminar-

ization capability. In the ideal case, for a given set of freestream conditions,

the predicted transition onset location should be independent of whether the

flowfield is initialized with a laminar or turbulent solution, or with freestream

conditions. To demonstrate the new model’s lack of any hysteresis effects and

ability to predict relaminarization, simulation of a sinusoidally pitching S809

airfoil is carried out for multiple cycles. The sinusoidal motion is defined by

a mean angle of attack of 0o, amplitude of 5o, and a reduced frequency of

0.1. Time histories of skin friction profiles, viscous drag, and total drag are

monitored for three full cycles. Viscous and total drag coefficients plotted in

Fig. 3.13(a),(b) show repeatability for three cycles. This is further verified by
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the skin friction profiles at 0o and 8o angles of attack during upstroke, plotted

for the three successive cycles in Fig. 3.13(c),(d). Movement of the transition

onset location in both the upstream and the downstream directions indicates

that the boundary layer is able to relaminarize with negligible hysteresis ef-

fects.

3.4 Final Form of γ −Reθ − SA Transition Model

The final form of the γ−Reθ− SA transition model and its coupling with the

one-equation Spalart-Allmaras turbulence model is presented in this section. The

transport equation for the intermittency factor, γ, is given by:

D(ργ)

Dt
= Pγ −Dγ +

∂

∂xj

[
(µ+ µt)

∂γ

∂xj

]
(3.45)

Pγ = ρ Fonset Gonset max

[
Ω

Flength

,
1.0

Flength, min

]
(3.46)

If γ > 1.0, Pγ = (γ − 1.0)Pγ (3.47)

Dγ = ρ Ω γ (1.0−Gonset) (3.48)

Fonset = max (Fonset2 − Fonset3, 0) (3.49)

Fonset1 =
Rev

2.193.Reθc
(3.50)

Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 4.0

)
(3.51)

Fonset3 = max
(
2− (0.25RT )3 , 0

)
(3.52)

Rev =
ρd2S

µ
, RT =

µt
µ

(3.53)
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The numerical correlations for critical Reynolds number and intermittency produc-

tion strength are given below:

Reθc = α Reθt, α = 0.62 (3.54)

Flength = 40.0, Flength, min = 2.5 (3.55)

The transport equation for transition momentum thickness Reynolds number, Reθt,

isgiven below:

D(ρReθt)

Dt
= Pθt +

∂

∂xj

[
2.0(µ+ µt)

∂Reθt
∂xj

]
(3.56)

The source term for Reθt is defined as:

Pθt = 0.03
ρ

t
(Reθt −Reθt)(1.0− Fθt), (3.57)

Fθt = min
(
e−( dδ )

4

, 1.0
)

(3.58)

θBL =
Reθtµ

ρU
; δBL = 7.5θBL; δ =

50Ωd

U
.δBL (3.59)

Reθt values outside the boundary layer are evaluated using the piecewise linear cor-

relations from Table 3.1 multiplied by the F(λθ) equations to account for freestream

turbulence and streamwise pressure gradient effects:

F (λθ) =


1− [−12.986λθ − 123.66λ2

θ − 405.689λ3
θ]e
−[Tu

1.5
]1.5 , λθ ≤ 0

1 + 0.275[1− e[−35.0λθ]]e−[Tu
0.5

], λθ > 0

(3.60)

The pressure gradient parameter, λθ, is given by:

λθ =
ρθ2

µ

dU

ds
(3.61)

where
dU

ds
represents the streamwise acceleration given by:

dU

ds
=
u

U

dU

dx
+
v

U

dU

dy
+
w

U

dU

dz
(3.62)
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dU

dx
=

1

2
√
U

[
2u
du

dx
+ 2v

dv

dx
+ 2w

dw

dx

]
(3.63)

dU

dy
=

1

2
√
U

[
2u
du

dy
+ 2v

dv

dy
+ 2w

dw

dy

]
(3.64)

dU

dz
=

1

2
√
U

[
2u
du

dz
+ 2v

dv

dz
+ 2w

dw

dz

]
(3.65)

U =
√
u2 + v2 + w2 (3.66)

The value of F(λθ) is evaluated using an iterative procedure by assuming λθ = 0.0

for the first iteration. The freestream value of Reθt is set to Reθt∞, which can be

computed from the above experimental correlations under a zero pressure gradient

condition by setting λθ to zero.

For both the transport equations, a zero gradient boundary condition is applied

at a solid wall boundary. The freestream value of intermittency is set to one. At

a farfield boundary, depending on the flow direction, either the freestream value or

an extrapolated value from the interior is specified for the transport equations.

The solution of the intermittency transport equation is used to control the

production term of eddy viscosity in S-A model as follows:

Dν̃

Dt
= γPν −Dν +

1

σ

[
∇.((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(3.67)

Pν = cb1Ω̃ν̃ and Dν = cw1fw[
ν̃

d
]2 (3.68)

Ω̃ is a function of the vorticity magnitude, Ω, and is defined as:

Ω̃ = max

(
Ω +

ν̃

κ2d2
fv2, 0.3Ω

)
, fv2 = 1− χ

1 + χfv1

(3.69)

77



The wall damping function, fw, is defined as:

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

Ω̃κ2d2
(3.70)

The S-A model constants are given by: cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ =

0.41, cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2.0, cv1 = 7.1.

The primary transport variable, ν̃, is set to 0.1 at an inflow boundary, extrapolated

from the interior at an outflow boundary, and is set to zero at a smooth solid

wall boundary. The present implementation of the S-A model uses the rotational

correction [82], which reduces the production of turbulence in regions where vorticity

exceeds strain rate, such as in vortex core regions, where pure rotation should not

produce turbulence. In this version of the S-A model, the magnitude of vorticity, Ω,

used to calculate Ω̃ is replaced with Ω+2.min(0, S−Ω) in Eq. B.4, which is then used

to compute the production term of eddy viscosity. Numerical discretization of the

transition and turbulence model equations closely follows the procedure described

in the original SA model formulation [35].

3.5 Computational Cost

The γ−Reθ−SA model solves two additional scalar transport equations using a

similar discretization approach to that of the one-equation SA model. The additional

computational expense of including the transition model is therefore approximately

twice that of solving the SA model.
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3.6 Summary

This chapter detailed the formulation, calibration, and verification of the

correlation-based γ − Reθ − SA transition model. Two additional transport equa-

tions were solved to obtain an intermittency flow field in the computational domain.

New correlations for transition onset were developed based on a combination of ex-

perimental data and the vorticity Reynolds number criterion. While the new model

retained the primary features of the original model, modifications were made to the

source terms of the intermittency transport equation to improve near-wall consis-

tency of the model. The transition model was coupled with the Spalart-Allmaras

turbulence model by multiplying the intermittency factor with the eddy viscosity

production term of the SA model. This enabled turbulence production to be acti-

vated only when intermittency starts to increase towards unity. Relaminarization

and hysteresis behavior of the new model were studied using a 2-D pitching airfoil

simulation. The next chapter describes the numerical methodology used in this work

to simulate unsteady, compressible, turbulent flows using the Reynolds-Averaged

Navier-Stokes equations.
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4 Numerical Methodology

This chapter details the numerical methodology employed to verify and vali-

date the newly developed transition model. All simulations were performed using

the Overset Transonic Unsteady Rotor Navier-Stokes (OverTURNS) flow solver [83].

In OverTURNS, a system of partial differential equations governing unsteady, com-

pressible fluid flow is numerically solved in an Eulerian framework. The final form of

the governing equations is obtained through the following sequence of transforma-

tions applied to their three-dimensional Cartesian form: (1) Non-dimensionalization,

(2) Reynolds-averaging, and (3) Curvilinear co-ordinate transformation. These

transformed equations are numerically discretized on a computational domain in

both space and time to obtain a system of coupled algebraic equations, which are

then solved to obtain the flow field solution.

4.1 Governing Equations

The three-dimensional, unsteady, Navier-Stokes equations describe the behav-

ior of fluid flow under the continuum hypothesis. In this work, they are used to

represent compressible, non-reacting, idea gas flow across the boundary of a closed
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domain known as a control volume. They ensure universal laws of conservation

of mass, momentum, and energy in the control volume. The Cartesian system of

equations in their strong conservation form is given by Eq. 4.1

∂Q

∂t
+
∂Fi
∂x

+
∂Gi

∂y
+
∂Hi

∂z
=
∂Fv
∂x

+
∂Gv

∂y
+
∂Hv

∂z
+ S (4.1)

where Q is the vector of conserved variables, Fi, Gi, and Hi are the inviscid flux

vectors, and Fv, Gv, and Hv are the viscous flux vectors. S represents the vector of

body forces and/or accounts for a change in reference frame. The vector of conserved

variables, Q, is given by Eq. 4.2:

Q =



ρ

ρu

ρv

ρw

E



(4.2)

where, ρ is the fluid density, and (u, v, w) are components of the fluid velocity along

the Cartesian coordinate system (x, y, z). E is the total energy per unit volume

given by:

E = ρ

[
e+

1

2

(
u2 + v2 + w2

)]
(4.3)

where, e is the internal energy per unit mass. The vector of primitive variables is

given by (ρ, u, v, w, p).
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The inviscid and viscous flux vectors are given by Eqs. 4.4–4.9:

Fi =



ρu

ρuu+ p

ρuv

ρuw

(E + p)u



(4.4)

Gi =



ρv

ρvu

ρvv + p

ρvw

(E + p)v



(4.5)

Hi =



ρw

ρwu

ρwv

ρww + p

(E + p)w



(4.6)

Fv =



0

τxx

τyx

τzx

uτxx + vτyx + wτzx − qx



(4.7)
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Gv =



0

τxy

τyy

τzy

uτxy + vτyy + wτzy − qy



(4.8)

Hv =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz



(4.9)

where, qx, qy, and qz are heat conduction terms expressed as a function of temper-

ature (T ) and coefficient of thermal conductivity (k) as follows:

qj = k
∂T

∂xj
(j = x, y, z) (4.10)

The viscous stress tensor for Newtonian fluids, τij, formulated using Stokes’ hypoth-

esis [84] is given by:

τij = µ

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
, δij = 1 if i = j; δij = 0 if i 6= j (4.11)

The coefficient of molecular viscosity is given by Sutherland’s formula in Eq. 4.12:

µ = C1
T

3
2

T + C2

(4.12)

where, C1 = 1.4 × 10−6 kg/(ms
√
K) and C2 = 110.4 K for air at standard temper-

ature and pressure. To close the system of equations, the equation of state for ideal
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gases is used:

p = ρRT (4.13)

where, R is the gas constant. Since all the flows studied in this work involve air at

standard temperature and pressure, the calorically perfect gas assumption is valid.

A calorically perfect gas is an ideal gas with constant specific heats. Specific heat

at constant volume (cv) and specific heat at constant pressure (cp) are given by:

cv =
R

γ − 1
; cp =

γR

γ − 1
(4.14)

The following relations between thermodynamic quantities are applicable to calori-

cally perfect gases:

e = cvT (4.15)

p = (γ − 1) ρe (4.16)

e = cvT (4.17)

The total energy per unit volume, E, can now be re-written in terms of pressure, p,

and velocity components as follows:

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
(4.18)

In the above equations, the value of the ratio of specific heats (γ) is 1.4 for air at

standard temperature and pressure.

4.2 Rotating Reference Frame

When simulating problems with moving bodies, the computational grid is usu-

ally translated and rotated based on the path of the solid surface. In such cases,
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the governing equations are solved in an inertial frame of reference. This method

increases computational time since it requires the calculation of grid-related quan-

tities (such as metrics, surface normals, etc.), and to perform domain connectivity

related operations for overset meshes at each timestep. The additional compu-

tational expense cannot be avoided if the motion of the body is not well-defined

mathematically, or if there are multiple bodies which cannot be treated under the

same reference frame due to different rotation or translation rates. However, for

simulations of hovering single rotors or multiple rotors operating at a constant ro-

tation rate, it is possible to solve the governing equations in a reference frame that

is rotating with the rotor blades. This avoids the need to recalculate grid-related

quantities and to evaluate domain connectivity information at each timestep. To

solve the equations in a non-inertial reference frame, the three velocity components

(u, v, w) in the convective flux vectors of the governing equations (Eq. 4.4–4.6) are

replaced by (u − ug, v − vg, w − wg), where Ug = (ug, vg, wg) = Ω × r is the vec-

tor of grid velocities due to rotation, and Ω = (Ωx,Ωy,Ωz) is the angular velocity

vector. For a rotor system rotating about the z-axis, Ωx = Ωy = 0, and therefore

Ug = (−Ωzy,Ωzx, 0). In addition, Coriolis acceleration terms must be included as
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a source term vector, S, on the right-hand side of Eq. 4.1 as shown below:

S =



0

ρvΩz

−ρuΩz

0

0



(4.19)

4.3 Non-dimensional Form of Equations

The governing equations are often solved in their non-dimensional form. There

are two advantages of doing this: (1) parameters such as Mach number and Reynolds

number can be varied independently, (2) all flow variables are normalized to fall

in the vicinity of (0,1), thereby reducing numerical inaccuracies that may occur

due to mathematical operations between largely different values. All independent

and dependent variables are non-dimensionalized using a set of reference variables

indicated by the * superscript in the equations given below:

x∗ =
x

L
, x∗ =

x

L
, z∗ =

z

L
, t∗ =

t

L/a∞
(4.20)

u∗ =
u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
, µ∗ =

µ

a∞
, (4.21)

ρ∗ =
ρ

ρ∞
, p∗ =

p

ρ∞a2∞
, T ∗ =

T

T∞
(4.22)

For problems involving airfoil sections, the chord length of the airfoil is chosen as the

reference length, L. Substituting the above relations into the governing equations

in Eq. 4.1 gives a new set of equations in terms of the non-dimensional variables.

The non-dimensional equations are identical in form to the dimensional equations
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except for the viscous stress tensor and thermal conduction terms. Modified viscous

stress tensor and heat conduction terms are given below:

τij =
µM∞
Re∞

µ

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(4.23)

qj = − µM∞
Re∞Pr (γ − 1)

∂T

∂xj
(4.24)

All independent and dependent variables in the above two equations are non-dimensional,

and the superscript * representation is not used. The new non-dimensional param-

eters that are formed as a result of non-dimensionalization are given below:

Reynolds number : Re∞ =
ρ∞V∞L

µ∞
(4.25)

Mach number : M∞ =
V∞L

a∞
(4.26)

Prandtl number : Pr =
µcp
k

(4.27)

For air at standard temperature and pressure, the Prandtl number, Pr = 0.72. V∞

is the freestream velocity magnitude given by
√
u2
∞ + v2

∞ + w2
∞.

4.4 Reynolds-Averaged Navier-Stokes Equations

Since the current work attempts to simulate boundary layer transition from

a laminar to a turbulent state, the governing equations must be solved in a form

that is suitable for turbulent flows. Direct Numerical Simulation (DNS) is one ap-

proach to resolve all the spatial and temporal scales present in a turbulent flow

field. However, it is well established that DNS simulations are prohibitively ex-

pensive in terms of computational hardware and run times for flow problems at
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relatively high Reynolds numbers. The Reynolds-Averaged Navier-Stokes (RANS)

equations augmented with turbulence models present an affordable alternative to

DNS simulations. In the RANS approach, dependent variables in the baseline gov-

erning equations (4.1) are decomposed into their mean and fluctuating components

and the resulting equations are averaged over a period of time. The RANS approach

has made routine simulations of complex industrial CFD simulations possible, and

is used in this work.

In the Reynolds-averaging procedure, the mean or time-averaged quantity f

is defined as:

f =
1

∆t

∫ to+∆t

to

f dt (4.28)

The time-period ∆t must be large compared to the period of turbulent fluctuations,

but small compared to the time scales of mean flow variation in unsteady flows. By

definition, the time-average of a fluctuating quantity is zero:

f ′ =
1

∆t

∫ to+∆t

to

f ′ dt = 0 (4.29)

The following relations hold for sum and product of any two fluctuating quantities:

fg′ = 0 fg = fg f + g = f + g (4.30)

The most important identity is that the time-average of the product of two fluctu-

ating quantities is not zero:

f ′f ′ 6= 0 and f ′g′ 6= 0 (4.31)

In the Reynolds decomposition approach, dependent variables in the N-S equa-
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tions are written as a sum of their mean and fluctuating components as shown below:

u = u+u′ v = v+v′ w = w+w′ ρ = ρ+ρ′ p = p+p′ T = T +T ′

(4.32)

The turbulence field is said to be isotropic when u′ = v′ = w′. Turbulent kinetic

energy (k) is defined as follows:

k =
1

2

[
(u′1)2 + (v′1)2 + (w′1)2

]
(4.33)

Turbulence intensity or turbulence level (Tu) is defined as the ratio of the root-mean-

square of turbulent velocity fluctuations (U ′) and the mean velocity magnitude (U):

Tu =
U ′

U
(4.34)

U ′ =

√
1

3
[(u′)2 + (v′)2 + (w′)2] and U =

√
(u)2 + (v)2 + (w)2 (4.35)

The freestream turbulence intensity value is typically stated as a percentage value

by multiplying Tu with 100. It is a very useful quantity that is often measured in

experiments and specified in numerical simulations of turbulent flows. The typical

value of Tu% in cruise flight is less than 0.1% and in turbomachinery flows is between

2% and 6%.

Substitution of the Reynolds-decomposed dependent variables in Eq. 4.32 into

the instantaneous, unsteady N-S equations in Eq. 4.1, followed by time-averaging

of the equations gives rise to a new set of governing equations. These are known as

the Reynolds-Averaged Navier-Stokes equations. They are almost identical in form

to the unsteady N-S equations, with the addition of new terms that are functions of

the turbulent fluctuating quantities. These additional terms behave as an apparent
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stress tensor due to the transport of momentum by turbulent fluctuations. Hence

they are commonly known as the Reynolds Stress Tensor (τij), given by:

(τij)turb = −ρu′iu′j (4.36)

Closure to the RANS equations requires representation of the Reynolds stress tensor

(τij) in terms of the mean flow quantities. The area of research concerned with

finding closure to the RANS equations is known as Turbulence Modeling and the

specific methods of closure are called Turbulence Models. In this work, the one-

equation Spalart-Allmaras turbulence model [35] is used to provide closure to the

unsteady RANS equations. Details of turbulence modeling are be discussed later in

section 4.9.3 of this chapter.

4.5 Curvilinear Coordinate Transformation

Although the Cartesian form of the N-S equations are applicable to any com-

putational grid topology, it is sometimes necessary and convenient to rewrite them

in a generalized, body-conforming coordinate system when using structured grids.

Due to the definition of numerical spatial derivative stencils based on uniform grid

spacing, they are not suitable for grids with non-uniform spacing and rapid stretch-

ing. A Curvilinear coordinate transformation maps the governing equations from a

non-uniform spaced Cartesian domain (x,y,z ) onto a computational domain (ξ, η, ζ)

with equal grid spacing, as shown in Fig. 4.1. This is achieved by applying the

chain-rule of differentiation on the Cartesian set of equations:

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= S̃ (4.37)
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where,

Q̃ =
1

J
Q

Ẽ =
1

J
[ξtQ+ ξx(Fi − Fv) + ξy(Gi −Gv) + ξz(Hi −Hv)]

F̃ =
1

J
[ηtQ+ ηx(Fi − Fv) + ηy(Gi −Gv) + ηz(Hi −Hv)]

G̃ =
1

J
[ζtQ+ ζx(Fi − Fv) + ζy(Gi −Gv) + ζz(Hi −Hv)]

S̃ =
1

J
S

(4.38)

J is the Jacobian of the coordinate transformation, defined by the determinant of

the 3×3 matrix
∂(ξ, η, ζ)

∂(x, y, z)
.

Figure 4.1: Curvilinear mapping of physical space onto computational space (repro-

duced from [85])

4.6 Mesh Topology

In this thesis, RANS simulations are performed for external turbulent flows

past lifting surfaces such as 2-D airfoil sections, and 3-D fixed wings and rotating

blades. A hyperbolic technique is used to create structured, body-fitted C-topology
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(a) Farfield boundary at 40 chord lengths

from airfoil

(b) Close-up of C-mesh

Figure 4.2: Structured, C-topology, 2-D mesh around an airfoil section

meshes around 2-D airfoil sections as shown in Fig. 4.2. A typical C-topology mesh

contains one physical boundary (solid wall) and two numerical boundaries (wake-

cut and farfield). Numerical treatment of these boundaries is discussed in section

4.9.7 of this chapter. For 3-D rotor blades, several C-mesh sections are stacked in

the spanwise direction. Near the blade root and tip regions, the C-meshes sections

are rotated about the chordwise axis such that the upper and the lower surface

planes collapse into a single plane as shown in Fig. 4.3. This is known as a C-

O topology. The main benefit of using a C-O topology mesh for finite wings and

blades is that it can provide sufficient resolution to capture root and tip vortices in

a computationally efficient manner, while providing sufficient RANS grid resolution

to resolve the boundary layer of the root and tip caps. In 3-D rotor simulations, the

blade mesh is embedded into a cylindrical background mesh as shown in Fig. 4.4.

The purpose of using a background mesh is to capture the root and tip vortices of
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(a) Stacked C-mesh sections along blade span collapsing towards root and tip

(b) Mesh clustering near blade tip

Figure 4.3: Structured, C-O topology, 3-D mesh on a rotor blade
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(a) Isometric view

(b) Top view (c) Azimuthal view

Figure 4.4: Overset mesh system for rotor blades. Green – C-O topology blade

mesh, Red – Cylindrical background mesh for wake capture
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Figure 4.5: Schematic of Chimera hole-cutting technique. Red circles: Hole points,

Blue circles: Hole fringe points, Black circles: Chimera boundary points. (repro-

duced from [86])

the rotor wake system. Such overlapping mesh systems are knows as Chimera or

Overset meshes. Specific details of mesh sizes and placement will be provided when

discussing simulation details and results for each test case in Chapters 5 and 6.

4.7 Overset Mesh Methodology

Overset or Chimera meshes are a set of independent computational domains

on which the governing equations are solved. They are considered as an alterna-

tive to unstructured meshes for complex geometries and adaptive mesh refinement

techniques. Overset meshes are often used in scenarios where using a single mesh

is either not feasible or is computationally expensive. Some examples where overset

meshes are advantageous include multi-element airfoils and single and multi-rotor

flow environments that include a wake system. An Overset methodology typically
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(a) Hole-cutting for wind tunnel mesh

(b) Hole-cutting for multi-element airfoil

Figure 4.6: Hole-cutting for a multi-element airfoil in a background wind-tunnel

mesh. Red: Leading-edge slat mesh, Green: Main element, Blue: Wind tunnel

mesh

96



Figure 4.7: Schematic of a computational cell on a structured mesh. (reproduced

from [86])

involves three major steps: (1) hole cutting, (2) identification of hole fringe and

chimera boundary points, and (3) finding donor cells and interpolation weights.

The hole cutting step involves defining hole regions that lie inside solid walls

and identifying the grid points of all the meshes that lie inside these hole regions.

These hole points are excluded from being a part of the flow solution. Once the

hole points are identified on each mesh, a list of hole fringe points are marked

to receive information from other meshes. This step ensures that the grid points

adjacent to a hole region have a numerical boundary condition. It also serves as

a means to propagate information across the overlapping meshes. The final step

involves identifying donor cells for the hole fringe points on each mesh. These donor

cells are chosen from the other meshes using a search algorithm and ensure that

the donor cells have similar cell volumes to the hole fringe points that receive flow

information. For each hole fringe point, information from donor cells is transferred

as a weighted sum based on linear interpolation. Grids points on the body mesh that
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Figure 4.8: Spanwise domain decomposition of a C-O topology rotor blade mesh.

Each color represents a sub-domain that is solved on a separate processor.

require information from other meshes are called Chimera points. Figure 4.5 shows

a schematic of the procedure described for the Chimera hole-cutting technique. A

detailed discussion on the exact overset mesh algorithm, known as Implicit Hole

Cutting (IHC), and its numerical implementation in the OverTURNS flow solver is

available is [86, 87]. Figure 4.6 shows an application of the Implicit Hole Cutting

technique to a multi-element airfoil embedded in a background wind tunnel mesh.

4.8 Parallelization

The OverTURNS code is written using the FORTRAN 77/90 programming

language in a modular fashion. The code is parallelized using the Message Passing

Interface (MPI) library. It is capable of running on multiple processors simulta-
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neously to solve a problem using the domain decomposition approach. In this ap-

proach, the computational domain is divided into several similarly sized blocks and

solved as sub-problems. Each processor is assigned the job of solving the governing

equations on a unique mesh block. At the end of each time step, the exchange of

relevant data between blocks sharing a common interface is handled by the MPI

implementation. Figure 4.8 shows a C-O topology blade mesh split into multiple

blocks along the blade span. In wall-bounded flow domains such as rotor blade

meshes, domain decomposition is done only in the spanwise direction since splitting

in the wall-normal direction may affect solution convergence and accuracy, due to

the presence of strong gradients in the boundary layer.

4.9 Numerical Algorithms in OverTURNS

This section describes the various numerical algorithms for spatial and tem-

poral discretization of the governing equations, turbulence modeling, numerical

boundary conditions, and convergence acceleration techniques available in the Over-

TURNS flow solver. The Curvilinear form of the RANS equations are solved using

a cell-averaged finite-volume technique. The control volume is a computational cell

defined around each grid point on a structured mesh. This cell is created by joining

the mid-points of the edges of the mesh, as shown in Fig. 4.7. Inviscid and viscous

fluxes are evaluated at the interfaces of this computational cell, and integrated over

all faces of a cell to obtain the time rate of change of the conserved quantities at
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each timestep. The resulting semi-discrete form of Eq. 4.37 is given below:

∂Q̃

∂t
= −

F̃j+ 1
2
− F̃j− 1

2

∆ξ
−
G̃k+ 1

2
− G̃k− 1

2

∆η
−
F̃l+ 1

2
− H̃l− 1

2

∆ζ
+ S̃j,k,l (4.39)

where, (j,k,l) are the indices corresponding to the grid points in (ξ, η, ζ) directions

respectively and (j ± 1
2
,l ± 1

2
,l ± 1

2
) define the interfaces of the computational cell.

Spatial discretization techniques used to evaluate the invscid and viscous flux con-

tributions at each cell face are described in the following two sections.

4.9.1 Inviscid Fluxes

Evaluation of inviscid fluxes (Eq. 4.4–4.6) in OverTURNS involves two steps:

(1) reconstruction of the primitive variables at cell faces, and (2) evaluation of the

fluxes at cell faces using reconstructed primitive variables. Reconstruction schemes

for systems with hyperbolic properties are often based on some form of upwinding,

through inclusion of explicit or implicit dissipation terms. This ensures that the

numerical scheme respects the direction of wave propagation and uses information

only from the upstream direction. In this work, the third-order Monotone Upstream-

Centered Scheme for Conservation Laws (MUSCL) [88] is used for the reconstruction

of left and right states, (qL
i+ 1

2

, qR
i− 1

2

) at each cell face as a function of the cell-averaged

values (qi−1, qi, qi+1):

qL
i+ 1

2
= q + φi

[
1

3
(qi+1 − qi) +

1

6
(qi − qi−1)

]
(4.40)

qR
i− 1

2
= q − φi

[
1

3
(qi+1 − qi) +

1

6
(qi − qi−1)

]
(4.41)
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where, φ is Koren’s differentiable limiter [89] given by:

φi =
3∆qi∇qi + ε

2(∆qi −∇qi)2 + 3∆qi∇qi + ε
(4.42)

ε is a small number used to prevent division by zero, and ∆ and ∇ are forward and

backward difference operators defined by ∆qi = (qi+1−qi) and ∇qi = (qi−qi−1) The

reconstructed left and right states are used to compute inviscid fluxes at each cell

face using Roe’s flux difference splitting scheme with an entropy fix [90], as shown

below:

F (qL, qR) =
F (qL) + F (qR)

2
− |Ã(qL, qR)|q

R − qL

2
(4.43)

where, FL and FR are the left and right state fluxes, and Ã is the Roe-averaged

Jacobian matrix. The second term on the right-hand side of the above equation

represents numerical dissipation. Harten’s entropy correction to Eigenvalues of the

flux Jacobian is given by [91]:

|λ| =


|λ|, if |λ| > δ

λ2 + δ2

2δ
, if |λ| ≤ δ

(4.44)

where, δ = max
[
0, (λi+1/2 − λi), (λi+1 − λi+1/2)

]
. The overbar on λ indicates Roe-

averaged Eigenvalues.

4.9.2 Viscous Fluxes

Viscous fluxes (Eq. 4.7–4.9) in the Curvilinear form of governing equations

contain derviative terms of the form:

∂

∂ξ

(
α
∂β

∂η

)
(4.45)
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They are evaluated using a second order central differencing scheme as shown below:

1

∆ξ

([
αj+ 1

2
,k

βj+ 1
2
,k+1 − βj+ 1

2
,k

∆η

]
−

[
αj− 1

2
,k

βj− 1
2
,k − βj− 1

2
,k−1

∆η

])
(4.46)

where, δj+ 1
2
,k =

δj,k + δj+1,k

2
and δ = (α, β).

4.9.3 Turbulence Modeling

One approach to turbulence closure of the RANS equations is to solve six

additional transport equations, one for each of the stress tensor components, along

with an equation for the energy dissipation rate. These models are categorized as

Reynolds Stress Models (RSM) [92, 93]. Although Reynolds stress models adopt

the most physically realistic approach to turbulence modeling, they are expensive

and suffer from issues of robustness and convergence. A more common approach to

turbulence modeling is based on the use of the Boussinesq eddy viscosity hypothesis,

which relates the Reynolds stress tensor to the mean strain rate as follows:

(τij)turb = −ρu′iu′j =
2

3
ρkδij − µt

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(4.47)

where, k is the turbulent kinetic energy (Eq. 4.33), and µt is a scalar value known

as the turbulent or eddy viscosity. With this assumption, the final form of the total

viscous stress tensor in the RANS equations becomes:

(τij)total =
2

3
ρkδij − (µ+ µt)

[(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3

∂uk
∂xk

δij

]
(4.48)

The turbulent kinetic energy term on the right-hand side is typically absorbed into

the pressure term of the inviscid fluxes (Eq. 4.4–4.6). This approach assumes
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isotropic turbulence, which causes it to perform poorly for flows with significant

turbulence anisotropy, such as decelerating boundary layers. Turbulence modeling

research in the past few decades has produced hundreds of models to evaluate tur-

bulent kinetic energy and eddy viscosity in the flow field as a function of mean flow

quantities. These models range from zero-equation algebraic expressions such as the

Baldwin-Lomax model [94] to the four-equation ν2− f model [95]. Most of the tur-

bulence models are calibrated to match theoretical solutions and experimental data

for canonical flows such as boundary layers and free shear layers. Therefore, a signif-

icant level of empiricism is present in turbulence modeling. Two of the most widely

used models in aerospace applications are the one-equation Spalart-Allmaras (SA)

model [35] and the two-equation k-ω SST model [34], along with their variations.

They are based on solving additional transport equations to compute eddy viscos-

ity and turbulent kinetic energy, and are known for their accuracy and numerical

robustness for many internal and external flow problems. These two models along

with the algebraic Baldwin-Lomax model are available in the current RANS flow

solver. Details of the k-ω SST model and the SA model are presented in Chapter

3. In this work, all turbulence model equations are discretized using a first order

upwind scheme for the convection terms and a second order central scheme for the

diffusion terms. The Diagonally Dominant Alternating Direction Implicit (DDADI)

approximate factorization method [96] is then used to solve the algebraic system of

equations.
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4.9.4 Time Integration

After the inviscid and viscous fluxes on the right hand side of Eq. 4.39 are

evaluated, the semi-discrete equation is integrated using a second-order accurate

backwards in time method (also knowns as BDF2). Backwards-in-time methods

are known as implicit time marching methods. They are more suited for boundary

layer flows due to their superior stability and convergence characteristics compared

to explicit time integration methods. In implicit methods, fluxes and source terms

on the right-hand side of the semi-discrete equation are evaluated at the new time

level, n+ 1. The resulting non-linear equation obtained using the BDF2 method is

shown below:

∂Q̃n+1

∂t
= −

F̃ n+1
j+ 1

2

− F̃ n+1
j− 1

2

∆ξ
−
G̃n+1
k+ 1

2

− G̃n+1
k− 1

2

∆η
−
F̃ n+1
l+ 1

2

− H̃n+1
l− 1

2

∆ζ
+ S̃n+1

j,k,l (4.49)

where,

∂Q̃n+1

∂t
=

3Q̃n+1 − 4Q̃n + Q̃n−1

2∆t
(4.50)

The above non-linear equation is linearized in time using a Taylor series expansion

about Q̃n as follows:

F̃ n+1 = F̃ n + Ã∆Q̃+O(∆t2) (4.51)

G̃n+1 = G̃n + B̃∆Q̃+O(∆t2) (4.52)

H̃n+1 = G̃n + C̃∆Q̃+O(∆t2) (4.53)

where, ∆Q̃ = Q̃n+1 − Q̃n is the solution update, and A,B,C are the flux Jacobians

given by
∂F̃

∂Q̃
,
∂G̃

∂Q̃
, and

∂H̃

∂Q̃
respectively. The source term, S is also linearized in
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a similar manner. Since the linearization operator is second-order accurate, it will

not further degrade the time-accuracy of the BDF2 scheme. The linearized form of

Eq. 4.49 in terms of the solution update, ∆Q̃, is given by:

[I + ∆t(δξÃ
n + δηB̃

n + δζC̃
n)]∆Q̃ = −∆t[δξF̃

n + δηG̃
n + δζH̃

n] (4.54)

The right-hand side of the above equation represents the physics of the flow field, and

the left-hand side represents the numerics responsible for stability and convergence

of the solution.

The above system of equations produces a banded matrix of algebraic equa-

tions that is solved using an approximate factorization method. In this work, the

Lower-Upper Symmetric Gauss-Seidel (LUSGS) method [97] is used to invert the

system of equations. In the LUSGS algorithm, the left-hand side of the equations is

factorized by grouping terms into a lower diagonal (L), an upper diagonal (U), and

a main diagonal (D) as follows:

[L+D + U ]∆Q̃n ≈ [D + L]D−1[D + U ]∆Q̃n = −∆t[RHS]n (4.55)

where,

L = ∆t(−Ã+
j−1,k,l − B̃

+
j,k−1,l − C̃

+
j,k,l−1) (4.56)

U = ∆t(Ã−j+1,k,l + B̃−j,k+1,l + C̃−j,k,l+1) (4.57)

D = I + ∆t(Ã+
j,k,l − Ã

−
j,k,l + B̃+

j,k,l − B̃
−
j,k,l + C̃+

j,k,l − C̃
−
j,k,l) (4.58)

This two-factor system is solved to obtain the solution update (∆Q̃) using a two-step

procedure as shown below:

[D + L]∆Q = −∆t[RHS]n (4.59)
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[D + U ]∆Q̃ = D∆Q (4.60)

Since L,D, and U are block matrices of size 5×5 for the 3-D N-S equations and 4×4

for the 2-D N-S equations, inverting the above two equations is computationally

expensive. In OverTURNS, the main diagonal (D) is reduced to a scalar value

using the spectral radius approximation for the flux Jacobian matrices (A,B,C) as

follows:

Ã+ =
1

2
(Ã+ σξ), Ã− =

1

2
(Ã− σξ) (4.61)

σξ = |Uξ|+ c+
2µ(ξ2

x + ξ2
y + ξ2

z )

ρ
(4.62)

where, Uξ is the contravariant velocity in the ξ-direction (and similarly for B and

C).

To eliminate errors due to approximate factorization, a dual-time stepping

method with Newton-like sub-iterations is used in time-accurate simulations to

compute the transient solution [98]. The governing equations are discretized in

pseudo-time using a backwards Euler time marching method as follows:

Q̃p+1 − Q̃p

∆τ
+

3Q̃p+1 − 4Q̃n + Q̃n−1

2∆t
= −

F̃ p+1

j+ 1
2

− F̃ p+1

j− 1
2

∆ξ
−
G̃p+1

k+ 1
2

− G̃p+1

k− 1
2

∆η
−
F̃ p+1

l+ 1
2

− H̃p+1

l− 1
2

∆ζ
+S̃p+1

j,k,l

(4.63)

At each time level n, p number of sub-iterations are performed to advance the

solution to the new time level, n+ 1. Q̃p at the first sub-iteration (p = 1) is set to

Q̃n. Each sub-iteration involves the evaluation of the right-hand side fluxes and the

source terms, followed by the inversion of the algebraic system of equations using

the approximate factorization method. The dual time-stepping process is essentially

equivalent to solving a steady state problem at solution time t+∆t with the solution
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at time ∆t as the initial condition.

4.9.5 Convergence Acceleration for Low-Speed Flows

The methodology presented above is designed to numerically solve the com-

pressible N-S equations in subsonic and transonic flow regimes. However, when it

is applied to low-Mach number flows (essentially incompressible flows), convergence

significantly slows down due to the large ratio between the acoustic wave speed and

the convective wave speed of the Euler equations. In addition, at low Mach numbers,

dissipation terms in the Roe flux difference splitting scheme (Eq. 4.43) do not scale

down, causing excessive dissipation and increasing the solution error. To alleviate

convergence and accuracy issues when simulating incompressible flows, the current

approach uses Turkel’s preconditioning technique [99]. A very thorough verification

and validation study of the low-Mach preconditioning technique implementation in

OverTURNS is presented [86]. In this work, the low-Mach preconditioning algorithm

was used to simulate the wind turbine rotor flow discussed in Chapter 6.

4.9.6 Initial Conditions

The unsteady Navier-Stokes equations represent an Initial Boundary Value

Problem (IBVP), which means that the evolution of the solution in time is influ-

enced by the initial conditions and boundary conditions specified in the computa-

tional domain. This section describes the manner in which the initial conditions

are specified. To perform the time integration of the Navier-Stokes equations, an
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initial flow field consisting of the primitive variables (ρ, u, v, w, p) must be specified

at each grid point. In this work, two types of problems are solved: (1) steady-state,

and (2) transient (or time-accurate). For steady state simulations, initial conditions

do not affect the converged solution. However, a good choice of initial conditions

can improve the convergence behavior of a steady-state simulation. In simulations

of external aerodynamic flows, the entire flow field is typically initialized with the

freestream values. Since the non-dimensionalized N-S equations are used in this

work, initial values of (u, v, w) are deduced from freestream Mach number compo-

nents along the Cartesian coordinate directions. For the current choice of reference

quantities, it can be shown that freestream density (ρ∞) is unity and freestream

pressure (p∞) is
1

γ
, where γ = 1.4 is the ratio of specific heats for air at standard

temperature and pressure.

4.9.7 Boundary Conditions

This section presents the numerical treatment of the physical and artificial

boundaries that were part of the current simulations. Examples of physical bound-

ary conditions are the specification of primitive variables on a solid wall bound-

ary through a no-slip condition or an adiabatic/isothermal requirement. Artificial

boundaries such as an inlet or outlet are created due to the truncation of the compu-

tational domain to a finite size. Numerical boundary conditions such as a wake-cut

in a C-topology mesh or axisymmetry/periodicity are a consequence of either the

grid topology or the nature of the flow problem. In this section, the discussion of

108



Figure 4.9: Boundary conditions on a structured C-topology mesh (reproduced from

[86])

boundary conditions is limited to those arising in external flow problems simulated

on a structured mesh.

As mentioned in the mesh topology section (Sec. 4.6), a structured, 2-D, C-

topology mesh is for airfoil geometries. The three boundary conditions specified on

a C-mesh are shown in Fig. 4.9.

Wall Boundary

At a viscous solid wall, the no-slip and no-penetration conditions are enforced.

All velocity components are set to zero for grid points on a stationary wall boundary.

For moving walls, the velocity components are set to based on the surface motion.

Density is extrapolated from the interior of the domain. Pressure on wall boundary is

obtained either by extrapolation or by solving the normal momentum equation [91].
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Figure 4.10: Schematic of point-sink boundary condition for downstream boundary

of rotor wake mesh (reproduced from [86])

Wake-cut Boundary

A key component of a C-topology mesh is its wake-cut adjacent to the solid

wall boundary. It consists of two identical grid lines overlapping in the same physical

space. Since the wake-cut is an artifact of the topology, continuity of flow must be

ensured across this “boundary”. In OverTURNS, this is achieved by an explicit

averaging of the solution on grid points from either side of the wake-cut and setting

the two overlapping grid lines to the averaged solution. A wake-cut boundary also

appears in a C-O topology blade mesh, on the collapsed planes at root and tip.
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Far-field Boundary

In external flow simulations, the computational domain is truncated to a finite

size, thus creating an artificial boundary. Specification of such a boundary condi-

tion must ensure that no spurious information propagates across the boundary: (1)

waves that are going out of the domain must be allowed to pass through without any

spurious reflections back into the domain, (2) only physical disturbances must be

propagated into the domain from the exterior. In this work, non-reflecting bound-

ary conditions based on one-dimensional Riemann invariants are used at far-field

boundaries [91]. These boundary conditions are strictly designed to allow small

disturbances to pass through the far-field boundary in the absence of strong mean

flow gradients approaching the boundary. Therefore, meshes for external flow prob-

lems are typically generated with the far-field boundary located at large distances

from regions of flow activity, such as flow past a solid body. Mesh stretching is

also employed towards the far-field boundary to numerically dissipate strong flow

gradients.

In the case of rotor simulations carried out in this thesis, a background mesh

is used to capture the rotor blade root and tip vortices. To reduce computational

cost, the far-field boundaries of the background mesh are placed at a distance of

5 times the rotor radius from the blades. This distance may not be sufficient to

apply boundary conditions based on Riemann invariants. Instead, a point-sink

boundary condition [83] is used in OverTURNS to allow the rotor wake to pass

through the downstream boundary without reflections. A schematic of this approach
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is shown in Fig. 4.10. Momentum theory analysis of rotor flow shows that the

rotor wake contracts asymptotically in the far-field to an area that is equal to half

of the rotor disk area. The corresponding downwash velocity at this location is

approximately equal to 2
√
CT/2, where CT is the rotor thrust coefficient. The

key idea of this approach is to assume that the rotor is a point sink that induces

flow into the computational domain from all boundaries except the downstream

far-field boundary, labeled as “Outflow” in the schematic. To satisfy global mass

conservation, an exit velocity is specified at the outflow boundary, whose magnitude

is given by:

Vinduced =
1

4

√
CT
2

[
R2

x2 + y2 + z2

]
(4.64)

Riemann invariants are then used to compute all the primitive variables at this

boundary.

Periodic Boundary

In all rotor simulations under axial flow conditions, flow is assumed to be

periodic in the azimuthal direction. The size of the period in azimuthal space is

dependent on the number of blades in the rotor. For example, the flow is periodic

every 90◦ for a 4-bladed rotor. More generally, for an N-bladed rotor, the azimuthal

period is
2π

N
degrees. Therefore, in this work, only one period of a rotor flow field

is simulated for a given rotor configuration. This is done by simulating only one

rotor blade, enclosed in a background mesh that spans one period in the azimuthal

direction. Periodic boundary conditions are applied at the ends of the background
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mesh in this direction.

4.10 Summary

Details of the governing equations and their numerical solution methodology in

the OverTURNS flow solver were summarized in this chapter. Techniques specific

to three-dimensional rotor simulations were presented. Discussion also included

advanced algorithms such as Implicit Hole Cutting and low-Mach preconditioning

that were used in this work. In the next chapter, results will be presented for several

two-dimensional airfoil simulations using the new transition model implemented in

the OVERTURNS flow solver.
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5 Two-dimensional Airfoil Simulations

This chapter demonstrates the ability of the γ − Reθ − SA model to pre-

dict streamwise transition due to freestream turbulence and pressure gradient ef-

fects over a wide range of flow conditions and geometries taken from a diverse set

of experimental sources. Reynolds number of these test cases varies from 105 to

50×106. Two-dimensional simulations of steady, subsonic flow past several single

and multi-element airfoil sections are performed using the baseline S-A model and

the γ−Reθ−SA model. CFD predictions are compared with available experimental

data for quantities such as lift, drag, skin friction coefficient, and transition onset lo-

cations. Table 5.1 gives the freestream Mach Number, Reynolds number, turbulence

intensity, and angles of attack for each test case.

5.1 Computational Grids

Structured, body-fitted, C-topology grids are used for airfoils in all the test

cases presented in this chapter. In the wrap-around direction of the C-mesh, 400

grid points are used on the airfoil surface. This grid resolution was determined to

be sufficient to capture small regions of laminar-separation bubbles seen in transi-
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Airfoil Mach Number Reynolds Number Tu (%) Angle of Attack

(×106)

Aerospatiale–A 0.15 2.1 0.05 13.3◦

VA-2 0.2 2.0 0.5 -0.5◦, 3.5◦,

7.5◦, 11.5◦

S809 0.1 2.0 0.05 0◦ to stall

Epper 387 0.1 0.2, 0.35, 0.5 0.03 0◦ to stall

NACA 642(A)015 0.27 5.0 – 50.0 0.03 0.0◦, 1.0◦

MD 30P–30N 0.2 9.0 0.05 8.1◦

SC2110 w/ Slat 0.28 4.1 0.5 0◦ to stall

Table 5.1: Two-dimensional airfoil test cases
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(a) Aerospatiale-A (b) VA-2

(c) S809 (d) E387

(e) NACA 642A015

Figure 5.1: Computational meshes for single-element airfoil simulations
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(a) MD 30P–30N – Block-structured mesh

system

(b) SC2110 w/ LE slat – Overset mesh sys-

tem

Figure 5.2: Computational meshes used for multi-element airfoil simulations

tional boundary layers, while ensuring a grid-converged solution. In the wall normal

direction, the wall grid spacing is chosen such that a y+ value of less than 1 is main-

tained based on the Reynolds number for each test case. For airfoil simulations in

freestream, the outer boundary of the C-mesh is placed 40 chords away from the

airfoil surface to avoid any spurious wave reflections. Computational grids for all

the test cases simulated in this chapter are shown in Figs. 5.1 and 5.2. In the case

of the SC2110 airfoil with a leading-edge slat, experimental data was not corrected

for wind tunnel wall effects. Therefore, for this case, an overset mesh system con-

sisting of a C-mesh around the airfoil and a rectangular background mesh for the

wind tunnel is used as shown in Fig. 5.2(b). Data transfer between the airfoil mesh

and the wind tunnel mesh is handled using the improved Implicit Hole Cutting

(IHC) methodology described in the numerical methodology chapter. A Cartesian

mesh is used to model the wind tunnel walls in the background of the airfoil mesh,
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(a) Skin Friction Coefficient (b) Surface Pressure Coefficient

Figure 5.3: Pressure and skin friction profiles for Aerospatiale-A airfoil (Experiment

[100])

with sufficient clustering around the airfoil in both the streamwise and the normal

directions. The height of the wind tunnel mesh is determined from experimental

sources. Upstream and downstream boundaries of the wind tunnel mesh are placed

at approximately 20 chords away from the airfoil.

5.2 Aerospatiale–A Airfoil

The Aerospatiale–A airfoil experiment [100] conducted in the low-turbulence

ONERA F1 wind tunnel has been used as a benchmark case for transition models

in several CFD studies [6, 77, 101]. Experiments [100] reveal that at 13.1◦ angle of

attack, the suction side boundary layer undergoes free transition at 12% of chord

through the formation of a laminar separation bubble with turbulent reattachment.

Skin friction profiles plotted in Fig. 5.3(a) show that the γ − Reθ − SA transition
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(a) Intermittency (b) Eddy viscosity – S-A Transition

(c) Eddy viscosity – S-A Turbulent

Figure 5.4: Intermittency and Eddy viscosity production for Aerospatiale-A airfoil

(not to scale)
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(a) S-A Turbulent (b) S-A Transition

Figure 5.5: Eddy viscosity contours for flow past Aerospatiale-A airfoil

model is able to capture this separation-induced transition, indicated by the nega-

tive value of skin friction followed by a sharp increase. The baseline S-A model is

unable to capture this phenomenon, indicated by the fully turbulent skin friction

profile with no sudden jump on both sides of the airfoil. The transition model also

predicts a completely laminar boundary layer on the pressure side of the airfoil.

The predicted surface pressure coefficient distribution plotted in Fig. 5.3(b) shows

the presence of a laminar separation bubble around 12% of the chord, indicated by

a small region of constant pressure. Figure 5.4(a) intermittency production in the

boundary layer starting near 12% of the chord. The corresponding Eddy viscosity

contours in Fig. 5.4(b) verify that the production of turbulence begins only after the

intermittency starts to increase beyond a certain value, unlike in the case without

the transition model, where turbulence production starts immediately downstream

of the stagnation point (Fig. 5.4(c)). Compared to the fully turbulent S-A model,

the γ − Reθ − SA model significantly reduces the overall turbulence production on
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the entire airfoil, as seen in Fig. 5.5. Furthermore, although the skin friction values

downstream of transition are slightly less than that predicted by the fully turbu-

lent S-A model (Fig. 5.3(a)), the thickness of the boundary layer downstream of

the transition onset location is much smaller than that for the fully turbulent flow

(Figs. 5.4, 5.5). Experimentally measured values of lift and drag coefficients are

1.56 and 0.0208 respectively. As expected, the fully turbulent S-A model predicted

these values to be 1.52 and 0.0287 with a 38% over-prediction of drag. The lift

and the drag coefficient values predicted by including the transition model are 1.60

and 0.0186. The 10% under-prediction of drag with the transition model can be

attributed partially to the under-prediction of skin-friction value between 20% and

40% of the airfoil chord on the upper surface. However, these predictions agree well

with previous CFD simulations of this test case [6, 77].

5.3 VA-2 Supercritical Airfoil

Flow past the VA-2 supercritical airfoil section [102] provides for an interesting

test case, since its upper surface has very little curvature and almost simulates a

zero-pressure gradient flat plate at an angle of attack of -0.5◦. Therefore, at -0.5◦

AoA, upper surface transition onset location is determined primarily by freestream

turbulence intensity and Reynolds number effects, with negligible influence of pres-

sure gradients. Simulations are carried out at Re = 2×106 and four angles of attack:

-0.5, 3.5, 7.5 and 11.5 degrees. Computed skin friction profiles for AoA variations

with and without the transition model are compared with experimental data in Fig.
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(a) AoA = -0.5◦ (b) AoA = 3.5◦

(c) AoA = 7.5◦ (d) AoA = 11.5◦

Figure 5.6: Skin friction profiles for VA-2 supercritical airfoil (Experiment [102])

5.6. The transition model is able to consistently capture the onset location and

extent of transition with reasonable accuracy, whereas the baseline S-A model pre-

dicts a fully turbulent boundary layer on both the upper and the lower surfaces.

As the angle of attack increases, transition onset location moves upstream on the

upper surface and downstream on the lower surface. At -0.5◦ AoA, the delay in

the computed transition onset location compared to experiment is attributed to the
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Figure 5.7: Presurre coefficient profiles for VA-2 supercritical airfoil

model calibration as a function of freestream turbulence intensity. Surface pressure

distribution profiles plotted in Fig. 5.7 do not show visible differences between fully

turbulent and transitional simulations. The lift and the drag coefficient values tab-

ulated in Table 5.2 show that the lift predicted by the transition model is lower by

5% as compared to the fully turbulent prediction at 0◦ AoA, and less than 0.5%

lower at higher AoA. More importantly, drag coefficients predicted by the transition

model are lower than the fully turbulent predictions by 31%, 18%, 10.5%, and 8.0%

in increasing order of AoA. This trend is consistent with the movement of the tran-

sition location further upstream and the increasing contribution of pressure drag as

the angle of attack increases. Experimental lift and drag values are not available for

this case.
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AoA Cl SA-Turb Cl SA-Trans Cd SA-Turb Cd SA-Trans

-0.5◦ 0.173 0.184 0.00997 0.00689

3.5◦ 0.609 0.612 0.0114 0.00937

7.5◦ 1.031 1.038 0.0151 0.0135

11.5◦ 1.419 1.433 0.0225 0.0207

Table 5.2: Lift and drag coefficient predictions for VA-2 supercritical airfoil

5.4 S809 Airfoil

The S809 airfoil section is a 21% thick, laminar-flow profile designed specifically

for horizontal-axis wind turbine applications. It is the primary section used on the

NREL Phase VI model wind turbine rotor blade [103]. Experimental data for the

lift, drag, and transition onset locations are available for this airfoil section [104].

This test case is widely used for assessing performance of transition models since the

boundary layer remains laminar up to 50% of the chord on both the upper and the

lower surfaces at lower angles of attack. Computationally predicted static lift and

drag coefficients from 0◦ to 20◦ angles of attack are compared to the experimental

data in Fig. 5.8. A closer look at the data from lower AoA values in Fig.5.8(c) reveals

that the baseline S-A model significantly over-predicts the drag due to the fully

turbulent treatment of the boundary layer. The transition model predictions of drag

at lower AoA values are in good agreement with experimental data. At higher AoA,

both the baseline S-A model and the γ −Reθ − SA model over-predict lift and stall
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(a) Lift coefficient (b) Drag coefficient

(c) Drag at lower AoA (d) Transition onset locations

Figure 5.8: Transition Model predictions for S809 airfoil section (Experiment [104])

onset compared to experimental data. The corresponding drag values are under-

predicted. This is attributed to the inability of 2-D RANS simulations to predict the

unsteady, three-dimensional nature of the trailing-edge flow separation zone on the

suction side of the airfoil beginning around 9◦ AoA. Figure 5.9 shows separated flow

streamlines colored by velocity magnitude at 14◦ and 20◦ AoA. Three-dimensional,

well-resolved, hybrid RANS-LES methods are likely to improve lift and drag at

these angles. Computed transition onset locations shown in Fig. 5.8(d) compare
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(a) AoA = 14◦ (b) AoA = 20◦

Figure 5.9: Streamlines colored by velocity magnitude showing separation at high

AoA on S809 airfoil section

very well with experimental values. Due to an increasing adverse pressure gradient

with increasing angle of attack, the transition onset location on the upper surface

moves from 56% of chord to the stagnation point. This process is very gradual until

5◦ AoA, followed by a sharp upstream movement of the transition point towards

the leading-edge until 9◦ AoA, beyond which it remains close to the stagnation

point. On the lower surface, due to an increasing favorable pressure gradient with

increasing angle of attack, the transition point moves slowly downstream from 50%

to 60% of the chord. The shape of the lower surface of the S809 airfoil causes an

abrupt adverse pressure gradient at 50% chord. Therefore, the favorable pressure

gradients at high angles of attack are unable to stabilize the boundary layer or delay

transition onset. Surface pressure distributions are plotted at 1◦, 9◦, 14◦, and 20◦

AoA in Fig. 5.10. At 1◦ AoA, the transition model shows a visible improvement

in the pressure distribution compared to the fully turbulent profile. Skin friction
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(a) AoA = 1◦ (b) AoA = 9◦

(c) AoA = 14◦ (d) AoA = 20◦

Figure 5.10: Comparison of pressure profiles for S809 airfoil section (Experiment

[104])

profiles at these four angles of attack are plotted in Fig. 5.11. Transition occurs

through a laminar separation bubble at 1◦ AoA on the upper surface, verified by the

change in the sign of the skin friction value around 50% of chord. For this airfoil,

separation-induced transition occurs on the lower surface at all angles of attack.
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(a) AoA = 1◦ (b) AoA = 9◦

(c) AoA = 14◦ (d) AoA = 20◦

Figure 5.11: Comparison of skin friction profiles for S809 airfoil section

5.5 Eppler 387 Airfoil

Boundary layers on low Reynolds number airfoils are distinguished by tran-

sition to turbulence via formation of a separation bubble that begins with laminar

separation and ends with turbulent reattachment at a downstream location. Lami-

nar separation bubbles contribute to the increased pressure drag on airfoils. Under a

U.S. Department of Energy initiative at the National Renewable Energy Laboratory
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(a) Lift, Re = 200,000 (b) Drag, Re = 200,000

(c) Lift, Re = 350,000 (d) Drag, Re = 350,000

(e) Lift, Re = 500,000 (f) Drag, Re = 500,000

Figure 5.12: Lift and drag variation for E387 airfoil section (Experiment [105])
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(a) Re = 200,000

Figure 5.13: Laminar separation and turbulent reattachment predictions for E387

airfoil section (Experiment [105])

(NREL), wind tunnel tests were conducted to characterize six airfoils at Reynolds

numbers under 500,000 for use on small wind turbines [105]. One of the six air-

foils, the Eppler 387, is simulated in this work to validate the experimental data at

three discrete Reynolds numbers: 200k, 350k, and 500k. These cases pose a strong

test for the reliability and robustness of the γ − Reθ − SA model for low Reynolds

numbers flows. The variation of lift and drag coefficients with angle of attack are

plotted against experimental data at all three Reynolds numbers in Fig. 5.12. The

baseline S-A model slightly under-predicts lift at lower angles for Re = 350k and

500k. The transition model lift predictions agree well with experiments in the linear

range of AoA at all Reynolds numbers 5.12(a, c, e). The primary merit of transition
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(a) Upper surface Cp, Re = 200,000 (b) Upper surface Cf , Re = 200,000

Figure 5.14: Pressure and skin friction profiles on S809 airfoil section showing pres-

ence of laminar separation bubbles

modeling is demonstrated via drag coefficient data in Figs. 5.12(b, d, f). At each

of the Reynolds numbers, the baseline S-A model consistently over-predicts drag,

whereas the transition model predictions agree very well with experimental data

prior to separation and stall onset.

Computed laminar separation and turbulent reattachment locations for Re =

200k are plotted in Fig. 5.13. This figure verifies the model capability to predict

transition onset and extent with sufficient accuracy at low Reynolds numbers. Two

trends are observed in the plot for transition onset locations: (1) The laminar sep-

aration and turbulent reattachment points move upstream with increasing angle

of attack, (2) The length of the separation bubble decreases with increasing angle

of attack. This plot also shows that laminar separation bubbles can span close to

40% of the airfoil chord at low Reynolds numbers and low angles of attack, thereby

significantly contributing to the pressure drag. Figure 5.14 shows the upper
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(a) Streamlines and Eddy viscosity contour lines

(b) Velocity vectors colored by Eddy viscosity magnitude

Figure 5.15: Visualization of laminar separation bubble for E387 airfoil at AoA =

0◦ and Re = 200,000
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(a) Intermittency (b) Eddy viscosity

Figure 5.16: Transition onset and Eddy viscosity production for E387 airfoil at AoA

= 0◦ and Re = 200,000

surface pressure coefficent and skin friction profiles at Re = 200k and AoA = 0, 2,

4, and 6 degrees. All pressure coefficient profiles in Fig. 5.14 exhibit a region of

near-constant value over the extent of the laminar separation bubble. The upper

surface skin friction profiles in Fig. 5.14 confirm the presence of a laminar separa-

tion bubble that is shortening and moving upstream with increasing angle of attack.

Recall that the skin friction profile switches its sign inside the bubble due to flow

reversal. Streamlines and velocity vectors plotted in Fig. 5.15 visualize the extent

of the laminar separation bubble at Re = 200k and AoA = 0 degrees. Figure 5.16

shows intermittency and Eddy viscosity contours at the same flow condition.

5.6 NACA 642(A)015 Airfoil

This test case assesses transition model performance for very high Reynolds

number flows between 10 and 50 million. Experiments were conducted on a NACA
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Figure 5.17: High Reynolds number transition onset location predictions for NACA

642(A)015 airfoil section (Experiment [106])

642(A)015 airfoil section in the NASA Langley Low-Turbulence Pressure Tunnel

and the NASA Ames 12-foot pressure tunnel at low speeds for Reynolds numbers

ranging from 10 to 40 million [106]. The primary goal of these experiments was to

study boundary layer instability via the crossflow mechanism on an untapered wing

at various sweep angles and angles of attack. Prior CFD studies [107] validated

these experiments using the eN method. For the present work, simulations were

performed on a 2-D cross-section of the wing to compare with experimental data for

the unswept wing case. The transition onset locations on the suction side plotted

for 0 and 1 degree angle of attack 5.17 show good agreement with experimental

measurements for the entire range of Reynolds numbers.
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(a) Non-orthogonal grid lines on main ele-

ment lower surface

(b) Leading-edge slat

(c) Main element (d) Trailing-ege flap

Figure 5.18: Pressure coefficient prediction on MD 30P–30N airfoil configuration -

Effect of wall distance function evaluation (Experiment [108])

5.7 MD 30P–30N Multi-element Airfoil

Multi-element airfoil (MEA) configurations with a leading-edge slat and/or a

trailing edge flap are commonly used in fixed-wing aircraft in order to increase maxi-

mum lift and delay the onset of stall in low speed flights during take-off and landing.
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The McDonnell Douglas 30P-30N multi-element configuration, with a leading-edge

slat and a trailing-edge flap, is a classic test case to assess CFD code performance

in high-lift conditions [108]. Experiments were conducted in the Langley Low Tur-

bulence Pressure Tunnel and the transition onset locations were recorded on upper

and lower surfaces of all three elements [109]. From a transition model perspective,

this test case presents a strong challenge due to the influence of the upstream ele-

ment’s wake on the downstream element’s transition onset location. A structured

multi-block grid, provided by Rumsey [108] is used to simulate this test case. In this

particular mesh, wall-normal grid lines are non-orthogonal to the wall tangential di-

rection, as seen on the lower surface of the main airfoil element in Fig. 5.18(a). Since

the S-A model uses nearest wall distance in its source terms, evaluating the distance

function along the computational non-orthogonal grid lines, such as in the present

case, will lead to an inaccurate solution. Therefore, exact nearest wall distance from

each grid point was computed and used in this simulation.

Surface pressure coefficient profiles computed using the transition model are

compared with experimental data in Figs. 5.18(b), (c) and (d). The pressure distri-

bution obtained using the grid line distance function shows large discrepancies from

the experimental data, whereas the exact wall distance computation shows excellent

agreement for all three airfoil elements.

Figure 5.19 shows the intermittency flow field obtained using the transition

model for each of the three elements. In these contour plots, turbulence production

is active in regions of red (intermittency = 1), and is inactive in regions of blue

(intermittency = 0). Transition onset locations from both the experiments and the
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(a) Main - Upper surface (b) Main - Lower surface

(c) Slat - Upper surface (d) Flap - Upper surface

Figure 5.19: Intermittency contours showing transition onset on MD 30P-30N multi-

element airfoil configuration: Blue - Laminar, Red - Turbulent (Experiment [108])

present simulations, along with the discrepancy between experiment and computa-

tions, are summarized in Table 5.3. The discrepancy between the computed and

experimental transition onset locations is greater when the nearest wall distance

value is computed along grid lines than when the exact wall distance is used. The

reason for this is that the vorticity Reynolds number definition (Rev = ρd2S
µ

) used
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Airfoil Experiment [109] CFD grid-line distance CFD exact distance

(% error) (% error)

Main upper 0.068 0.060 0.074

(3.4%) (1.9%)

Main lower 0.526 0.22 0.62

(34.8%) (11%)

Slat upper -0.057 -0.068 -0.062

(1.2%) (0.6%)

Flap upper 0.931 0.89 0.92

(4.6%) (1.2%)

Table 5.3: Transition onset locations (x/cmain) for MD–30P–30N multi-element air-

foil configuration (error reported as a % of main element chord length, cmain)

to evaluate the transition onset criterion is a function of the nearest wall distance

value (d) at each grid point. Therefore, the error is especially large on the lower

surface of the main element where the wall-normal grid lines are the most skewed

as seen in Fig. 5.18(a). Overall, the γ −Reθ − SA model performance in predicting

transition onset locations is satisfactory for this multi-element airfoil configuration.

5.8 SC2110 w/ Leading-edge Slat

Recently, multi-element airfoil configurations have been investigated by Lorber

[110], to alleviate the onset of dynamic stall in rotorcraft applications. Due to
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lower chord Reynolds numbers on lift-enhancement devices such as slats and flaps,

a significant portion of their boundary layer can remain laminar, resulting in lower

turbulence levels in their wake flow. The amount of turbulence in the wake of a

leading-edge slat strongly influences transition to turbulence of the boundary layer

on the main element. Therefore, it is important to accurately model the transitional

nature of the boundary layer on the upstream elements for good overall force and

moment predictions. Steady flow simulation results for flow past a high-lift

(a) Lift Coefficient (b) Drag Coefficient

Figure 5.20: Lift and drag predictions for SC2110 w/ Slat multi-element airfoil

(Experiment [110])

leading-edge slat configuration (referred to as S-6 in [110]) are presented here. Since

experimental measurements were not corrected for wind tunnel blockage effects,

tunnel walls are modeled in this test case using a rectangular, Cartesian background

mesh. Height of the wind tunnel is four times the main element chord length. In

the wrap-around direction, the main element and the slat have 400 and 200 grid

points respectively. Variation of the lift and the drag coefficients with angle of
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Figure 5.21: Lift-to-Drag ratio for SC2110 w/ Slat multi-element airfoil (Experiment

[110])

attack, obtained with and without using the transition model, are plotted against

experimental data in Fig. 5.20. While the lift predictions at lower angles of attack

are acceptable even without the transition model, the baseline S-A model fails to

predict the drag within acceptable error, due to the presence of significant lengths

of laminar flow on both the main element and the slat. As seen earlier in the S809

airfoil case, 2-D RANS simulations at higher angles of attack over-predict maximum

lift and predict a delayed stall onset for this airfoil configuration. The benefit of

using a transition model is readily seen by plotting the lift-to-drag ratio (L/D)

variation with angle of attack in Fig. 5.21. L/D values obtained with the transition

model are in excellent agreement with experimental data up to 10◦ AoA, which is

the point of maximum L/D. Surface pressure and skin friction coefficient profiles at
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(a) Leading-edge slat (b) Main element

(c) Leading-edge slat (d) Main element

Figure 5.22: Comparison of surface pressure and skin friction profiles for SC2110

w/ Slat multi-element airfoil

[L/D ]max are plotted in Fig. 5.22. Pressure profiles are not significantly different

between the transitional and turbulent solutions, which is reflected in their similar

lift coefficient values. However, the skin friction distribution of the transitional case

confirms the presence of laminar regions on both the main element and the slat,

thereby predicting lower drag. The boundary layer on the slat remains laminar up
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(a) S-A Turbulent (b) S-A Transition

Figure 5.23: Comparison of Eddy viscosity contours for SC2110 w/ Slat multi-

element airfoil

to half of its chord length on the upper surface and all along the lower surface. The

main element boundary layer also remains laminar up to 75% of the chord on its

lower surface. The eddy viscosity contours in Fig. 5.23 show reduced production of

turbulence in the wake of the slat and on the main element due to the transition

prediction.

5.9 Summary

In this chapter, several two-dimensional airfoils were simulated with the γ −

Reθ−SA transition model and predictions were compared with multiple experimen-

tal data sets over a wide range of Reynolds numbers (105 to 5×106). The baseline SA

model consistently over-predicted the drag at lower angles of attack where laminar

boundary layers extend over larger portions of the airfoil. Encouraging results were
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obtained with the transition model, for prediction of transition onset locations, lift,

and drag coefficients. At low Reynolds numbers (<500,000), the transition model

was able to capture the location and extent of the relatively long laminar separation

bubbles with good accuracy. The capability of the model to predict transition on

multi-element airfoils was also demonstrated. The next chapter will present results

from three-dimensional rotor simulations.
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6 Three-dimensional Rotor Simulations

The γ −Reθ − SA model is calibrated for the effects of freestream turbulence

and non-zero pressure gradients on transition onset location, which are applicable to

both two-dimensional and three-dimensional boundary layers. However, it does not

account for crossflow instability effects that are dominant in the presence of yawed

flow past aerodynamic surfaces. Applications with prominent crossflow transition

onset include swept wings, airframes, and rotating blades in yawed flow. Therefore,

in order to assess the performance of the model for practical applications within

its validity regime, rotating blade simulations are performed under purely axial flow

conditions. This ensures predominantly two-dimensional flow on the airfoil sections,

except in the vicinity of blade root and tip, where three-dimensional effects are

present due to vortices and rotor wake contraction. In this chapter, simulation

results for the following three rotating blade configurations are presented: (1) BO

105 helicopter rotor in hover, (2) UH60-A helicopter rotor in hover, and (3) NREL

Phase VI model wind turbine rotor at zero yaw wind angle (similar to rotorcraft

in axial descent flight). These simulations were carried out with the following two

objectives: (1) to quantify the effects of including the transition model on rotor

thrust and torque predictions in hover, and (2) to capture the extent of laminar flow
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regions on the rotor blades under various conditions. Definitions of rotor solidity

(σ), thrust coefficient (CT ), torque coefficient (CQ), and Figure of Merit (FM) for

rotating blades in axial flight are given in Eqs. 6.2–6.4.

σ =
NbcR

πR2
(6.1)

CT =
T

ρπR2V 2
tip

(6.2)

CQ =
T

ρπR3V 2
tip

(6.3)

FM =

CT
3/2

√
2

CQ
(6.4)

where, Nb is the number of blades, c is the blade chord, R is the blade radius, Vtip is

the blade tip speed. In this work, rotor blades are treated as structurally rigid, and

aeroelastic effects are neglected. Since the objective is to compare predictions from

two different numerical models for the same structural shape of the blade, rigid

rotor simulations are not entirely inappropriate, especially in hover and descent

flight conditions.

6.1 Computational Grids

A prominent feature of rotating blades in axial flow is the presence of a wake

system, consisting of root and tip vortices, above or beneath the rotor plane. Vortices

closer to the rotor plane have a strong effect on the effective angle of attack seen by

airfoil sections, by inducing flow in the axial direction. Failing to capture rotor wake

in such scenarios can lead to incorrect flowfield predictions. In CFD simulations,

rotor wake effects are typically included either through a low-fidelity prescribed wake
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model or by solving the Navier-Stokes equations on a large enough computational

domain that envelopes the near-field vortices. In this work, the rotor blade uses a

structured, C-O topology mesh and is embedded in a cylindrical background mesh to

capture the rotor wake. Information transfer among the components of this overset

mesh system is handled using the Implicit Hole Cutting method (IHC) described

in Chapter 4. Since both the BO 105 and UH-60A rotors are 4-bladed, only one

quarter of the domain in the azimuthal direction (90o) is simulated in hover, using

axisymmetric boundary conditions. For the 3-bladed NREL Phase VI wind turbine

rotor, a 120o cylindrical background mesh was used. Extents of the background

cylindrical meshes for all cases are as follows: 0.03R to 4.0R in the radial direction,

3.0R above the rotor plane and 5.0R below the rotor plane. Grid clustering with a

uniform grid spacing of 0.05 times the blade chord is used in all background meshes

in order to capture the root and the tip vortices with reasonable resolution. Grid

dimensions for the blade and background meshes for each case are provided in their

respective sections.

6.2 Rotorcraft Flows

RANS simulations of the flow past helicopter rotor blades is challenging due to

the rapidly varying aerodynamic environment, ranging from low-speed transitional

and reverse flow regions, to high-speed shock-induced stall regions. Although sig-

nificant progress has been made in time-accurate RANS computations of the rotor

flow environment, there is much scope for improvement in the underlying numerical
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models that govern the various viscous flow phenomena. The present work focuses

on simulating the laminar-to-turbulent transition phenomenon on rotor blades in

hover to improve power prediction. Unlike on fixed wings, the local Reynolds num-

ber on rotating blades increases linearly in the radially outward direction, resulting

in fairly low Reynolds numbers on the inboard airfoil sections. Experimental stud-

ies have shown that the boundary layer on a rotor blade can have large regions of

laminar flow in both hover and forward flight conditions. Tanner and Yaggy [111]

conducted wind tunnel tests on the UH-1B tail rotor and main rotor to determine

laminar-turbulent transition locations, flow direction inside the boundary layer, and

the formation and effects of the blade tip vortex. It was found that the bound-

ary layer remains laminar on the lower surface of the blades – up to 50% of chord

on the tail rotor and 25% of chord on the main rotor. Experiments conducted by

Velkoff [112] on a model rotor blade with the NACA 0015 airfoil section indicated

the presence of a laminar separation bubble that induced transition. Location of

the standing bubble was near the pressure peak on the suction side of the airfoil

section and moved closer to the leading edge with an increase in the angle of attack.

Transition onset location trends were comparable to that of [111]. McCroskey [113]

measured laminar separation and transition onset locations, as well as the surface

streamline directions on rotor blades under non-rotating and rotating configurations.

Fixed-wing tests with varying yaw angles were also conducted. Results indicated

that the transition onset location moved closer to the leading edge with increasing

yaw angle. For the rotating configurations, centrifugal effects did not significantly

impact the boundary layer development. An interesting test case in this study is a
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Figure 6.1: Visualization of transitional boundary layer on BO 105 rotor blades

using Acenaphthene coating: Light regions – Laminar, Dark regions – Turbulent

(figure reprocued from [114], Experiment [115])

2-bladed rotor configuration with the blades set at an offset. This facilitates yawed

flow and three-dimensional boundary layer effects on rotating blades in hover with-

out the complications of the unsteady aerodynamics such as BVI that are present in

forward flight. Beaumier and Houdeville [116] predicted laminar-turbulent transi-

tion on the 7A rotor in forward flight conditions (advance ratio - µ = 0.3, 0.45) using

a boundary layer code that is capable of predicting various modes of transition. It

was reported that the computed results agreed well with experiments conducted on

the 7A rotors in the ONERA/S1MA wind tunnel. At µ = 0.3 (CT/σ = 0.0625),

close to 25% of the upper surface of the blade was found to be laminar between 30

to 240 degrees azimuth. At µ = 0.45 (CT/σ = 0.075), the upper surface laminar

zone increased on the advancing side and almost completely disappeared on the re-

148



treating side. Their calculations also indicated that the contribution to total power

from skin friction alone is 29% at µ = 0.3 and 13% at µ = 0.45. At the higher

advance ratio, most of the total power comes from wave drag due to transonic con-

ditions on the advancing rotor blade. Recent work of Heister [114] used an integral

boundary layer method combined with various empirical transition onset criteria

to predict transition on the BO105 rotor in hover and the 7AD rotor in forward

flight at µ = 0.33. Computed transition onset locations agreed well with the exper-

imental measurements of Rohardt [115]. In addition, rotor power predictions from

the fully turbulent simulations were compared to those from the laminar-turbulent

transitional simulations. Rotor power from transitional boundary layer simulations

is reported to be 2%− 5% less than that from the fully turbulent simulations.

6.2.1 BO 105 Rigid Rotor

A full-scale, 4-bladed BO 105 rotor is simulated in hover with and without the

transition model. The rotor blade has a rectangular planform, a linear twist rate of

-8◦, an aspect ratio of 16.58, and uses the NACA23012-mod airfoil section. In hover,

the tip Mach number is 0.64 and the tip Reynolds number is 4.03×106. The blade is

set to a collective pitch angle of 6.7◦ and a precone angle of 2.5◦. In the corresponding

flight test [115] that is simulated in this case, the laminar and the turbulent regions

were visualized on one of the rotor blades using Acenaphthene coating, as seen in Fig.

6.1. Lighter regions represent laminar boundary layer and darker regions represent

turbulent boundary layer. Flow visualization indicates that transition on the upper
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(a) C-O topology blade mesh (b) Cylindrical wake mesh

(c) Top-view of overset mesh system (d) Side-view of overset mesh system

Figure 6.2: Overset mesh system used for BO 105 rotor blade simulations: Green –

blade mesh, Red – background mesh for wake capture

surface occurs around 22% of the chord. On the lower surface, the transition onset

location gradually moves upstream in the radially outward direction. For comparison

with the current simulations, the experimental data was digitized from [114], which

appears to have been extracted from the dotted white line on the blades in Fig.

6.1. However, it is evident that the extracted lower surface transition line is slightly

downstream of the actual transition location as indicated by the darker regions on
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the blade.

The Overset mesh system used for the BO 105 rotor blade simulations is

shown in Fig. 6.2. The cylindrical background mesh used for wake capture has

140×208×220 points in the azimuthal, radial, and axial directions respectively.

Three levels of wrap-around grid resolution were used on the blade surface: 200,

300, and 400 points. In the spanwise and the normal directions of the blade mesh,

151 and 75 grid points were used respectively. The computed transition onset lo-

cations along the blade span for the three grid sizes are compared with those from

the experiment in Fig. 6.3. A grid resolution beyond 200 points in the wrap-around

direction on the blade surface had negligible effect on the transition onset locations.

Excellent agreement is seen between the experimental and the computed onset lo-

cations on the upper surface. On the lower surface, the transition model predicts an

earlier onset as compared to the extracted transition line from the flow visualization.

Transition on the upper surface occurs primarily due to adverse pressure gradient

effects. On the lower surface, the transition onset location moves upstream radially

outward in an almost linear fashion indicating that it is driven by the increasing

local Reynolds number.

Intermittency contours on the upper and the lower surfaces of the rotor blade

are shown in Figure 6.4. An intermittency value is zero in blue regions and one

in red regions, representing laminar and turbulent boundary layers respectively.

Spanwise-vorticity contours, which represent skin friction on the blade upper and

lower surfaces, are shown in Fig. 6.5. Lines of abrupt increase in spanwise-vorticity

are identified to mark the beginning of the turbulent boundary layer. Figure 6.6
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Parameter S-A γ −Reθ − SA Change (%)

CT 0.00490 0.00495 0.82%

CQ 0.000370 0.000355 -4.05%

Table 6.1: Effect of transition model on performance predictions for BO 105 rotor

shows the chordwise distribution of the spanwise-vorticity profiles on the upper and

lower surfaces at six spanwise stations. An abrupt increase in the vorticity is clearly

seen in this plot, further verifying the trend of transition onset variation along the

blade span. On the upper surface, the vorticity profiles in the inboard sections are

nearly zero at the transition onset location, which is representative of separation-

induced transition.

Rotor thrust and power predictions are tabulated in Table 6.1. Compared

to fully turbulent computations, the transition model prediction of rotor thrust is

1% higher, and the rotor power is 4.5% lower. These values are similar to the

predictions of Heister [114]. Figure 6.7(a) visualizes blade tip vortices using iso-

surfaces of vorticity magnitude, and Fig. 6.7(b) shows rotor the wake contraction

in one azimuthal plane as well as the first six blade passages of the tip vortex.
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(a) Upper surface

(b) Lower surface

Figure 6.3: Transition onset prediction on BO 105 rigid rotor with three wrap-around

grid resolutions. Nwall – number of grid points on blade surface in wrap-around

direction (Experiment [115])

153



Figure 6.4: Intermittency contours on BO 105 rotor blade surface: Blue – laminar,

Red – turbulent.

Figure 6.5: Spanwise vorticity contours on BO 105 rotor blade surface
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(a) Upper surface

(b) Lower surface

Figure 6.6: Chordwise distribution of spanwise-vorticity profiles at six spanwise

stations on the BO 105 rotor blade – sudden jump in vorticity indicates transition

to turbulence
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(a) Iso-surface of vorticity magnitude colored by non-

dimensional pressure

(b) Vorticity magnitude in the blade azimuthal plane

Figure 6.7: Tip-vortex and wake visualization for BO 105 rotor blade
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6.2.2 UH60-A Rigid Rotor

The 4-bladed UH60-A rigid rotor is simulated with and without the transition

model for collective pitch angles ranging from 0◦ to 15◦. The rotor blade has a

rectangular planform with a swept tip. It has a unique non-linear twist distribution,

with a maximum twist of -13.3◦ at 92% of blade span, and has an aspect ratio of

15.3. The blade consists of two airfoil sections: SC1094R8 between 50% and 90%

of span, and SC1095 outside of this region. In hover, the tip Mach number is 0.65

and the tip Reynolds number is 7.4×106. The blade planform shape and the overset

mesh system used for this case are shown in Fig. 6.8. The rotor blade mesh has 200

grid points on its surface in the wraparound direction, 151 points in the spanwise

direction, and 75 points in the wall-normal direction. The cylindrical background

mesh used for wake capture has 140×188×220 points in the azimuthal, radial, and

axial directions respectively.

Figure 6.9 shows intermittency contours on the upper and the lower surfaces

of the rotor blade at various collective pitch angles. Blue regions indicate a laminar

boundary layer and red regions indicate a turbulent boundary layer. Variation of the

predicted transition onset locations with collective pitch angles is plotted for both

the upper and the lower surfaces of the rotor blade in Fig. 6.10. Spanwise variation

of the transition onset locations at every collective angle is very similar to that the

BO 105 rotor case. The upper surface boundary layer transitions between 10% to

20% of chord, and the lower surface boundary layer transitions in a linear fashion in

the radially outward direction. With increasing collective pitch angle, the transition
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point gradually moves upstream on the upper surface, and downstream on the lower

surface. This is consistent with the effects of pressure gradient on transition onset

location, as observed in the 2-D simulations. Downstream movement of transition

onset near the blade root and tip can be attributed to the induced downwash caused

by the root and tip vortices, thereby reducing the effective angle of attack. Since

the boundary layer is more three-dimensional in these regions, including crossflow

effects is likely to provide more realistic transition predictions.

Variation of the rotor thrust and torque with the collective pitch angle, ob-

tained with and without the transition model, are plotted in Fig. 6.11. Both the

thrust and the torque increase with increasing collective angle. Variation of rotor

thrust with torque is plotted in Fig. 6.12(a). The percentage change in thrust and

torque coefficients due to the inclusion of the transition model are plotted in Fig.

6.12(b). The SA-transition model predicts higher thrust values than those from the

SA-turbulent model by less than 2%. Whereas, torque values obtained with SA-

transition model are consistently lower than those obtained with the SA-turbulent

model for all collective angles. The discrepancy is around 8% at 0◦ collective, and

decreases to approximately 2% at 15◦ collective. Figure 6.13 shows the increased

figure of merit due to the lower torque and higher thrust predicted by the transition

model. Rotor wake visualization at 10◦ collective pitch angle is shown in Fig. 6.14

by plotting the iso-surfaces of vorticity magnitude. The tip vortex roll-up process

is visualized in Fig. 6.15. A secondary vortex is also observed in this figure.
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(a) Blade planform (b) Cylindrical wake mesh

(c) Top-view of overset mesh system (d) Side-view of overset mesh system

Figure 6.8: Overset mesh system used for UH60-A rotor blade simulations: Green

– blade mesh, Red – background mesh for wake capture
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(a) Upper surface

(b) Lower surface

Figure 6.9: Blade surface intermittency contours on UH60A rotor at collective pitch

angles (in degrees): 0, 4, 8, 12, 15. Blue: Laminar, Red: Turbulent
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(a) Upper surface

(b) Lower surface

Figure 6.10: Variation of transition onset location with collective pitch angle on

UH60-A rigid rotor
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(a) Thrust Vs Collective

(b) Torque Vs Collective

Figure 6.11: Effect of transition model on rotor thrust and torque for UH60-A rigid

rotor
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(a) Thrust Vs Power

(b) % change in thrust and torque

Figure 6.12: Effect of transition model on rotor thrust and torque for UH60-A rigid

rotor (positive % change represents increase from fully turbulent value, and vice

versa)
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(a) FM Vs Disk loading

(b) Increase in FM with Transition Model

Figure 6.13: Effect of transition model on rotor figure of merit for UH60-A rigid

rotor
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(a) Iso-surface of vorticity magnitude colored by non-

dimensional pressure

(b) Vorticity magnitude in the blade azimuthal plane

Figure 6.14: Tip-vortex and wake visualization on UH60-A rotor blade at 10◦ col-

lective pitch angle
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Figure 6.15: Tip-vortex roll-up for UH60-A rotor blade at 10◦ collective pitch angle
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6.3 Wind Turbine Flows

Sustainable wind energy technology has the potential to offset the ever-increasing

demand for fossil fuel-based energy resources and alleviate the associated adverse

impact on the environment. Many ongoing research efforts are focused on maximiz-

ing the efficiency of wind power generation through innovative rotor blade designs.

The ongoing work at Sandia National Laboratories [117] towards the development

of a 100-meter all-glass rotor blade for offshore wind farms is one such example.

With the introduction of new composite materials and large rotor diameters in such

designs, accurate aeroelastic analysis [117] becomes particularly important in pre-

dicting the aerodynamic and structural loads. This can provide valuable data to

optimize rotor blade design for increased performance and fatigue life.

Wind turbine blades extract energy from wind to generate torque. Thus the

aerodynamic environment of isolated wind turbine blades is very similar to that of

rotorcraft blades when the helicopter is in descent flight beyond a certain descent

rate. Although compressibility effects are not a major concern in wind turbines, both

pitch regulated and stall regulated turbine blades experience dynamic stall due to

their operation at very high effective angles of attack. In smaller wind turbines

with rated power of less than 100kW, the boundary layer can remain laminar on

large portions of the blades. In addition, due to the lower rotational speeds of

wind turbines compared to rotorcraft, most of the blade span operates at essentially

incompressible flow conditions. Transition, dynamic stall, and low-speed flow form

a challenging aerodynamic environment for traditional CFD codes that solve the
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compressible RANS equations using conventional turbulence models. The purpose

of the present simulations is to assess the performance of the transition model and

the OverTURNS solver for the NREL Phase VI model rotor configuration at various

wind speeds.

6.3.1 Previous CFD Studies of NREL Phase VI Rotor

The Phase VI rotor experiments were conducted by the US National Renew-

able Energy Laboratory (NREL) as part of the Unsteady Aerodynamics Experiment

(UAE). These experiments were carried out in NASA-Ames wind tunnels [103]. The

Phase VI rotor is a 2-bladed configuration with a rotational speed of 72 RPM and a

blade radius of 5.03 meters. The 21% thick S809 airfoil section is used on the rotor

blades. Experiments were conducted for a range of wind speeds, pitch angles, and

yaw angles.

The NREL Phase VI rotor is one of the most widely investigated configura-

tions in CFD simulations due to the availability of detailed experimental data for

validation. Most of the CFD studies simulated wind speeds between 7 m/s and 20

m/s. At zero pitch and yaw angles, flow separation occurs on the upper surface of

the blade at wind speeds of 10 m/s and higher. Several CFD studies have reported

unsatisfactory predictions for the 10 m/s test case due to the difficulty in captur-

ing incipient separation on the blades. RANS simulations of Duque [118] using

a coupled aerodynamics-structural dynamics methodology (OVERFLOW-D2 and

CAMRAD II) demonstrated good agreement with experimental data for power and
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spanwise loading in both axial and yawed flow conditions. The boundary layer was

treated as fully turbulent and used the Baldwin-Barth turbulence model. This work

also included comprehensive analysis using the aeroelastic code CAMRAD II [119],

with various stall delay models and dynamic stall models. The comprehensive anal-

ysis produced satisfactory predictions for attached flow conditions, but at higher

wind speeds, the method failed to capture stalled rotor flow properly, which was at-

tributed to the airfoil characteristics database and the stall models used. Sorensen

and Michelsen [120] used the incompressible ELLIPSYS3D solver along with the

two-equation k-ω SST turbulence model. Their study showed sensitivity of predic-

tions to the choice of turbulence model when incipient separation is present at a

wind speed of 10 m/s.

Le Pape and Lecanu [121,122] used the compressible ELSA flow solver and the

k-ω SST turbulence model. Their studies showed improved predictions for the 10

m/s wind speed case with the use of a low-Mach number preconditioning technique.

Xu and Sankar [123] used a hybrid inviscid-viscous methodology along with the S-A

turbulence model, the Baldwin-Lomax turbulence model, and the Eppler transition

model. Although the predictions at 7 m/s and 20 m/s were close to the experimen-

tal data, the 10 m/s solution again showed discrepancy similar to the other CFD

studies. More recently, Gomez and Steijl [124] simulated the Phase VI rotor using

an unsteady RANS solver and the k-ω SST turbulence model. They studied the

effect of wind tunnels walls and the tower. Inclusion of the tower showed a reduc-

tion of rotor thrust and generated torque due to blade/tower interaction. Recent

γ − Reθ transition model simulations of the Phase VI rotor by Langtry [125] and
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Aranake [126] showed some benefit of predicting the laminar-separation bubble at

higher wind speeds to trigger earlier separation than a fully turbulent simulation.

6.3.2 NREL Phase VI Rotor Simulations

In this work, the NREL Phase VI rotor blades were simulated at 0◦ pitch and

yaw angles. The following seven wind speed values were simulated with and without

the transition model: 3.5, 7, 10, 15, 20 and 25 m/s. The rotor overset mesh system

used for these simulations is shown in Fig. 6.16. Since this is a 2-bladed rotor,

the wake mesh extends from 0◦ to 180◦ with periodicity in the azimuthal direction.

Dimensions of the C-O mesh for the rotor blade used are 257 x 51 x 51 points in

the wraparound, spanwise, and normal directions respectively. Dimensions of the

cylindrical background mesh are 201 x 133 x 164 points in the azimuthal, radial,

and axial directions respectively. Since the tip Mach number for these simulations is

approximately 0.11, a low-speed incompressible flow environment is present in the

computational domain. Therefore, the low-Mach preconditioner algorithm in the

OverTURNS flow solver was used in these computations to improve convergence

and accuracy of the solution.

Thrust and torque predictions obtained from fully turbulent and transitional

flow simulations are compared to experimental data in Tables 6.2 and 6.3, as well

as plotted in Fig. 6.17. Since the effective angle of attack increases with increasing

wind speed, the rotor thrust also increases. Thrust predictions with and without

transition model are in reasonable agreement with experimental data at all wind
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(a) Blade planform (b) Cylindrical wake mesh

(c) Top-view of overset mesh system (d) Side-view of overset mesh system

Figure 6.16: Overset mesh system used for NREL Phase VI rotor blade simulations:

Green – blade mesh, Red – background mesh for wake capture

speeds. The transition model does not have a significant impact on thrust predic-

tions as thrust is dominated by the pressure distribution rather than skin friction

under these flow conditions. Maximum discrepancy in thrust values between the

SA-turbulent and the SA-transition simulations is 6% at the lowest wind speed (3.5

m/s). CFD predictions of shaft torque also agree well with experimental data at

wind speeds of 15 m/s and higher.
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Wind Speed (m/s) S-A γ −Reθ − SA Experiment [103]

3.5 282.0 299.0 –

5.0 648.0 672.0 –

7.0 1181.0 1223.0 1154.0

10.0 1784.0 1696.0 1675.0

15.0 2584.0 2528.0 2283.0

20.0 3705.0 3758.0 3005.0

25.0 4850.0 4654.0 3889.0

Table 6.2: Comparison of thrust predictions for NREL Phase VI rotor (thrust in

Newtons)

At wind speeds of 3.5 m/s, 5 m/s, and 7 m/s, torque values obtained with the

transition model are greater than their fully turbulent values by 70.0%, 12.5%, and

7.2% respectively. These three cases correspond to generated power of 0.3 kW, 2

kW, and 5.8 kW based on the fully turbulent simulation values for this rotor. It

is evident that for smaller wind turbines that operate at relatively low rated power

(< 5 kW), fully turbulent simulations are likely to under-predict power. Since the

transition model captures the laminar portions of the blade boundary layer, the

viscous drag is lower and consequently, the predicted torque is higher.

At a wind speed of 10 m/s, the torque is over-predicted by the baseline SA

model and under-predicted by the γ −Reθ − SA model as compared to the experi-
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Wind Speed (m/s) S-A γ −Reθ − SA Experiment [103]

3.5 40.0 68.0 –

5.0 270.0 304.0 –

7.0 778.0 834.0 805.0

10.0 1542.0 1100.0 1340.0

15.0 1108.0 756.0 1177.0

20.0 1039.0 1191.0 1110.0

25.0 1461.0 1493.0 1485.0

Table 6.3: Comparison of shaft torque predictions for NREL Phase VI rotor (torque

in Newton-meter)

mental value. At the higher wind speeds (15, 20, 25 m/s), the transition model has

less impact on both thrust and torque due to the massively separated flow present

over a large region of the blade. Unsteady RANS simulations with the SA model

in such flow regimes are not reliable, and may require the use of hybrid RANS-LES

methods to resolve the flow structures in the separated regions. Detailed analysis of

the flow field, including spanwise thrust/torque distributions, blade surface stream-

lines, eddy viscosity contours, surface pressure, and surface intermittency contours

provide further insight into the performance predictions discussed above.

Spanwise thrust and torque distribution profiles at wind speeds of 3.5, 5, 7, 10,

and 15 m/s are plotted in Figs. 6.18–6.20. The curves in these figures correspond to

173



(a) Thrust

(b) Torque

Figure 6.17: NREL Phase VI rotor thrust and torque predictions with γ−Reθ−SA

transition model (Experiment from [103])
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(a) Thrust, V = 3.5 m/s (b) Torque, V = 3.5 m/s

(c) Thrust, V = 5.0 m/s (d) Torque, V = 5.0 m/s

Figure 6.18: NREL Phase VI rotor spanwise thrust and torque distribution profiles

at wind speeds of 3.5 m/s and 5.0 m/s. Data is plotted for one rotor revolution.

Red: SA–Turbulent, Green: SA–Transition

the variation of the spanwise profiles over one complete rotor revolution. At 3.5, 5,

and 7 m/s, the SA-transition model predictions of thrust and torque distributions

outboard of 40% rotor radius are greater than those from the SA-turbulent model.

At 10 m/s, the decrease in thrust and torque profiles outboard of 50% of span
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(a) Thrust, V = 7 m/s (b) Torque, V = 7 m/s

(c) Thrust, V = 10 m/s (d) Torque, V = 10 m/s

Figure 6.19: NREL Phase VI rotor spanwise thrust and torque distribution profiles

at wind speeds of 7 m/s and 10 m/s. Data is plotted for one rotor revolution. Red:

SA–Turbulent, Green: SA–Transition

indicates flow separation. The SA-transition model predicts a larger separation

region compared to those from the SA-turbulent model at this wind speed. The

amount of unsteadiness in the spanwise profiles increases due to separation. At

15 m/s, the SA-transition model predicts separation on most of the blade surface,
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(a) Thrust, V = 15 m/s (b) Torque, V = 15 m/s

Figure 6.20: NREL Phase VI rotor spanwise thrust and torque distribution profiles

at a wind speed of 15 m/s. Data is plotted for one rotor revolution. Red: SA–

Turbulent, Green: SA–Transition

whereas the SA-turbulent model indicates an attached boundary layer closer to the

tip region.

Instantaneous chordwise surface pressure coefficient profiles obtained with and

without the transition model are compared with experimental data for wind speeds

of 7, 10, 15, 20, and 25 m/s at the following four radial stations (in term of % of

rotor radius): 30, 47, 80, and 95 (see Figs. 6.21–6.25). At 7 m/s, both versions of

CFD predictions are in good agreement with experimental data. Pressure profiles

obtained using the transition model show a small region of relatively constant value

around mid-chord, indicating the presence of a small laminar separation bubble. At

10 m/s, the SA-turbulent predictions appear to be in better agreement with mea-

surements. However, the plotted CFD profiles correspond to instantaneous data in a

highly unsteady environment. CFD predictions are within experimental uncertainty
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for all the cases presented (experimental uncertainty bars are not shown) [126]. Flow

separation for the 10 m/s case at 47% radial location is captured by both the tur-

bulent and the transitional flow simulations (Fig. 6.22(b)). For the 15 m/s case

at the 95% radial station shown in Fig. 6.23(d), the SA-turbulent pressure profile

prediction is much closer to the experimental measurement compared to the SA-

transition prediction. In this case, the transition model predicts a fully separated

boundary layer near the blade tip, manifested in the form of a loss of suction peak

on the upper surface. This observation is also supported by the spanwise thrust

and torque distribution plotted at 15 m/s in Fig. 6.20. However, such a loss in

lift near the blade tip is not in seen in experiments at 15 m/s. This shows that

the laminar separation bubble predicted by the transition model is unstable and

does not reattach, causing loss of lift and increased pressure drag. Robustness and

convergence properties of the transition model for low-speed, low-Reynolds number

separation-induced transition may need improvement. In addition, crossflow tran-

sition may occur near the tip due to the spanwise flow created by the tip vortex.

Spanwise flow in combination with pressure gradients may accelerate the transition

process and reduce separation separation in this region. Results from preliminary

work performed on the prediction of crossflow transition on swept wings and rotat-

ing blades are presented in Appendix A of this thesis. At wind speeds of 20 m/s

and 25 m/s, the pressure profiles obtained with both the SA-turbulent and the SA-

transition models show fully separated boundary layer, and are in good agreement

with experimental data.

178



(a) 30% Span (b) 47% Span

(c) 80% Span (d) 95% Span

Figure 6.21: Chordwise blade surface pressure distribution profiles at four spanwise

stations for wind speed of 7 m/s on the NREL Phase VI rotor blade (Experiment

from [103])
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(a) 30% Span (b) 47% Span

(c) 80% Span (d) 95% Span

Figure 6.22: Chordwise blade surface pressure distribution profiles at four spanwise

stations for wind speed of 10 m/s on the NREL Phase VI rotor blade (Experiment

from [103])
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(a) 30% Span (b) 47% Span

(c) 80% Span (d) 95% Span

Figure 6.23: Chordwise blade surface pressure distribution profiles at four spanwise

stations for wind speed of 15 m/s on the NREL Phase VI rotor blade (Experiment

from [103])
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(a) 30% Span (b) 47% Span

(c) 80% Span (d) 95% Span

Figure 6.24: Chordwise blade surface pressure distribution profiles at four spanwise

stations for wind speed of 20 m/s on the NREL Phase VI rotor blade (Experiment

from [103])
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(a) 30% Span (b) 47% Span

(c) 80% Span (d) 95% Span

Figure 6.25: Chordwise blade surface pressure distribution profiles at four spanwise

stations for wind speed of 25 m/s on the NREL Phase VI rotor blade (Experiment

from [103])
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Upper and lower surface streamlines on the rotor blade are plotted for all

wind speeds from 3.5 m/s to 20 m/s in Figs. 6.26–6.28. At lower wind speeds (up

to 7 m/s), the inclusion of the transition model results in streamlines that clearly

show the presence of a separation bubble on both the upper and the lower surfaces

around the mid-chord along the entire blade span. Recall that the NREL Phase

VI rotor blade is made of the S809 airfoil section. Transition onset predictions

for two-dimensional flow S809 airfoil presented in Chatper 5 also showed that the

onset location stays around the mid-chord on the upper surface until 6◦ AoA and

then moves upstream abruptly, whereas it remains close to mid-chord on the lower

surface between 0◦ and 20◦ AoA. The transition onset locations for the 3-D rotor

cases presented here are also verified by the surface intermittency contours shown

in Fig. 6.29. For wind speeds of 3.5, 5, and 7 m/s, intermittency contours confirm

transition onset around the mid-chord. the Transition onset locations on the lower

surface are irregular for wind speeds of 5 m/s and 7 m/s. Although the exact reason

for this has not been identified, it is likely due to the inability of the boundary layer to

reattach after the laminar separation point. This could be attributed to insufficient

intermittency production in the laminar separation bubble. At wind speeds of 10

m/s and higher, the lower surface is entirely laminar as seen in the intermittency

contour plot. Whereas, on the upper surface, transition onset location moves very

close to the leading-edge. The irregular intermittency contours on the upper surface

at higher wind speeds is due to flow separation, which is also visualized in the

surface streamline plots shown in Figs. 6.27–6.28. For wind speeds of 15 m/s and

higher, the streamlines for the SA-turbulent and SA-transition simulations indicate
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complete separation on the upper surface of the blade and a fully attached boundary

layer on the lower surface. Significant spanwise flow is observed in all cases with

flow separation.

Streamlines at a wind speed of 10 m/s obtained with the SA-transition model

show a larger separation region compared to that obtained with the SA-turbulent

model. This is consistent with the spanwise distribution profiles of rotor thrust

and torque for the 10 m/s case plotted in Fig. 6.19(b). Therefore, as reported

in other CFD studies, the 10 m/s case appears to be a critical condition for this

configuration, where incipient separation occurs. Use of transition model results in

earlier boundary layer separation due to failure of the laminar-separation bubble

to reattach (also known as the bursting phenomenon). Figure 6.30 shows the eddy

viscosity contours at various spanwise sections for the 10 m/s case. While both

the SA-turbulent and the SA-transition simulations show separation on the upper

surface, the fully turbulent flow case shows separation only aft of the maximum

thickness, whereas the transitional flow case indicates separation at the leading-edge

of the airfoil, suggesting the occurrence of laminar bubble bursting. For this case,

the SA-turbulent model over-predicts the shaft torque whereas, the SA-transition

model under-predicts the torque compared to the experimental value. Although the

transition model is able to trigger separation earlier than the fully turbulent SA

model, its advantage is not conclusive due to the limitation of an unsteady RANS

approach for separated flows.
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(a) V = 3.5 m/s

(b) V = 5 m/s

Figure 6.26: Blade surface streamlines on NREL Phase VI rotor at wind speeds of

3.5 m/s and 5 m/s. SA: SA–Turbulent, SAT: SA–Transition
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(a) V = 7 m/s

(b) V = 10 m/s

Figure 6.27: Blade surface streamlines on NREL Phase VI rotor at wind speeds of

7 m/s and 10 m/s. SA: SA–Turbulent, SAT: SA–Transition
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(a) V = 15 m/s

(b) V = 20 m/s

Figure 6.28: Blade surface streamlines on NREL Phase VI rotor at wind speeds of

15 m/s and 20 m/s. SA: SA–Turbulent, SAT: SA–Transition

188



(a) Upper surface

(b) Lower surface

Figure 6.29: Blade surface intermittency contours on NREL Phase VI rotor for wind

speed range 3.5–25 m/s. Blue: Laminar, Red: Turbulent
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(a) SA-Turbulent

(b) SA-Transition

Figure 6.30: Spanwise variation of Eddy viscosity contours at V = 10 m/s showing

increased unsteady separated flow with transition model (red indicates separated

flow regions)
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Figures 6.31 and 6.32 visualize the wake flow field behind the wind turbine

rotor at wind speeds of 3.5, 5, 7, and 10 m/s. In Fig. 6.31, the blade tip vortices

are shown using iso-surfaces of vorticity magnitude. In Fig. 6.32, tip vortex cross-

sections are shown using vorticity magnitude contours on an azimuthal cross-section

of the wake flow field. These two figures show that the distance between successive

blade tip vortices increases with increasing wind speed as expected. In addition,

the development of unsteadiness in the rotor wake is observed at a wind speed of 10

m/s.
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(a) V = 3.5 m/s (b) V = 5.0 m/s

(c) V = 7.0 m/s (d) V = 10.0 m/s

Figure 6.31: Iso-surfaces of vorticity magnitude showing tip vortices for the NREL

Phase VI rotor blade
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(a) V = 3.5 m/s (b) V = 5.0 m/s

(c) V = 7.0 m/s (d) V = 10.0 m/s

Figure 6.32: Vorticity magnitude contours in one azimuthal cross-section of rotor

wake flow field, showing root and tip vortices for the NREL Phase VI rotor blade
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6.4 Summary

This concludes the chapter on three-dimensional rotor simulations with the

γ−Reθ − SA transition model. Helicopter rotor simulations in hover demonstrated

that the inclusion of transition effects results in increased thrust and reduced torque.

Transition onset predictions for the BO 105 rotor were in reasonable agreement both

qualitatively and quantitatively with the experimental data. The UH60-A rotor re-

sults showed a greater impact of transition model on performance at lower collec-

tive pitch angles. The NREL Phase VI rotor simulations showed that predicting a

laminar separation bubble near the leading-edge may result in early separation at

critical flow conditions leading to incipient separation. In addition, the predicted

shaft torque was higher when a transitional boundary layer was predicted. Tran-

sition modeling may be necessary for accurate estimation of thrust and torque on

small wind turbine rotors with lower rated power (< 5 kW). Inclusion of cross-

flow effects may be necessary to obtain more realistic predictions in the blade root

and tip regions which may have considerable spanwise flow. Appendix A presents

preliminary work performed on crossflow transition prediction for swept wings and

rotating blades.
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7 Conclusions

This chapter summarizes the motivation for this thesis, the overall approach

adopted, key results and observations, and provides recommendations for future

work.

7.1 Summary

Laminar-turbulent transition and relaminarization prediction in boundary lay-

ers has been the subject of several recent research efforts, with a focus on model

development as well as their application to various aerospace problems. The main

motivation behind these efforts is the need to estimate drag and heat transfer on

aerodynamic surfaces, which can be used to design applications with improved fuel

economy or life-time. Since the use of DNS and LES for routine industrial CFD

simulations is beyond current capabilities and computational resources, robust low-

fidelity models are needed to predict transitional flows with reasonable accuracy.

Challenges to developing low-fidelity transition models include (1) insufficient in-

sights into complex transition mechanisms, and (2) compatibility of models with

conventional CFD codes. A recent encouraging development in the area of transi-
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tion modeling is the correlation-based γ−Reθ model of Langtry and Menter for use

with the two-equation k-ω turbulence model. The γ − Reθ model can predict the

onset of transition due to freestream turbulence and non-zero pressure gradients. It

has been highly successful for internal and external flows in complex geometries due

to its accuracy, robustness, applicability to wide range flow conditions, and compat-

ibility with modern structured and unstructured mesh CFD codes through a fully

local formulation.

The present work is a step towards extending the model to use with the one-

equation Spalart-Allmaras turbulence model for external aerodynamic flows. The

modified transition model, called the γ−Reθ−SA model, can predict transition onset

at low freestream turbulence levels (≤ 0.5%), which is the typical range for aircraft

in flight. The following approach was adopted to develop, verify, and validate the

modified transition model:

1. Implement the original transition model into the OverTURNS CFD solver: a

3-D, compressible, unsteady RANS methodology, that is well-established for

studying rotorcraft flows

2. Remove explicit dependence of transition model on k and ω and make the

transition model independent of the choice of the turbulence model

3. Reformulate production and destruction terms of the intermittency transport

equation to improve near-wall recovery of intermittency post-transition onset

4. Remove sensitivity of the transition model to the value of the freestream eddy

viscosity used in S-A turbulence model
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5. Recalibrate the transition model using experimental data for transition of

boundary layer on a zero-pressure gradient flat plate

6. Verify the model implementation through analysis of various flow parameters.

Relaminarization and model hysteresis behavior were studied through simula-

tion of a pitching airfoil

7. Validate the model against experimental data for several two-dimensional air-

foil flows over a wide range of Reynolds numbers

The γ − Reθ − SA model was then used to quantify the effect of transition

prediction on the performance of rotorcraft and wind turbine rotors under axial flow

conditions. The key observations from 2-D and 3-D simulations performed in this

work are summarized in the next section.

7.2 Key Observations

7.2.1 Two-Dimensional Airfoil Simulations

Two-dimensional airfoil flows were simulated with and without the transition

model to demonstrate capability of the model to predict transition onset and extent.

Several experimental cases were identified to cover flow Reynolds numbers ranging

from 105 to 5×106 and freestream turbulence levels under 0.5%. Validated data

included skin friction coefficient, transition onset locations, lift coefficient, and drag

coefficient. Test cases were chosen to demonstrate the effect of non-zero pressure

gradients on transition onset, which is a common occurrence on lifting surfaces.
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With increasing angle of attack, the transition model predicted movement of onset

location towards the leading-edge on the upper surface, due to a stronger adverse

pressure gradient.

1. For all cases with a non-negligible laminar extent in the boundary layer, the

baseline Spalart-Allmaras model consistently over-predicted drag due to a fully

turbulent treatment.

2. Excellent agreement with experimental data was obtained for transition onset

locations and force coefficients using the transition model.

3. Model performance was found to be sensitive to calibration for cases with

mild adverse pressure gradients, where transition onset is driven by freestream

turbulence effect.

4. Separation-induced transition under strong adverse pressure gradients was

well-captured in all cases. At low Reynolds numbers (< 500,000), the model

was able to predict laminar separation and turbulent reattachment points with

good accuracy.

5. Capability of the model to predict transition onset on multi-element airfoils

was demonstrated. The SC2110 w/ leading-edge slat case showed significant

improvement in lift-to-drag ratio with the inclusion of transition effects.
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7.2.2 Three-dimensional Rotor Simulations

Three-dimensional simulations of helicopter and wind turbine rotors were per-

formed with and without the transition model. The following three configurations

were studied: (1) BO 105 helicopter rotor, (2) UH60-A helicopter rotor, and (3)

NREL Phase VI wind turbine rotor. Since the transition model does not account

for effects of yawed flow, all rotor simulations were performed under axial flow con-

ditions, ensuring a predominantly two-dimensional flow on the rotor blades along

the chordwise direction, except near the root and the tip regions. The objective of

these simulations was to study the role of transition on the performance of rotors.

Rotor blades were treated as structurally rigid in these simulations.

BO 105 Rotor

Experimental data for transition onset locations were available on upper and

lower surfaces of a full-scale, 4-bladed BO 105 rotor in hover at a collective pitch

angle of 6.7◦ and precone angle of 2.5◦. On the upper surface, the transition onset

location was around 25% of chord from leading-edge along most of the blade span.

On the lower surface, the transition onset location varied along the span, with a

later transition on inboard sections, due to lower local Reynolds numbers. Three

simulations were performed with varying number of points (200, 300, 400) on the

blade surface in the chordwise direction. Transition model did not show strong

dependence of predicted onset locations on grid resolution.

1. On the upper surface, the transition onset locations predicted using the tran-
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sition model agreed very well with measurements. Near the tip, the predicted

transition location abruptly shifted downstream due to lower effective angle

of attack, which is caused by the induced velocity of the tip vortex. However,

this may not be the case if crossflow effects on transition are included.

2. On the lower surface, the transition onset location was predicted earlier com-

pared to experimental data. This can be attributed to the sensitivity of the

model for transition caused due to mild adverse pressure gradients and more

dominant freestream turbulence effects seen on the inboard regions of the

blade.

3. Compared to the fully turbulent predictions, the transition model prediction

of the rotor thrust value increased by 0.8%, whereas, the rotor torque value

decreased by 4%. The decrease in the rotor torque was primarily due to

capturing the laminar boundary layer regions on the blade. Predicted figure

of merit values with and without the transition model were 0.655 and 0.693

respectively. These differences in rotor performance were found to be similar

to other CFD studies with transition prediction.

UH60-A Rotor

Simulations of a full-scale, 4-bladed UH60-A rotor in hover were performed

for collective pitch angles between 0◦ and 15◦. The rotor thrust and torque predic-

tions were compared without and without the transition model, and the trends of

transition onset locations were studied.
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1. The transition onset location on the upper surface varied between 10% and

20% of chord over the entire range of collective pitch angles. This indicates

that transition on the upper surface is dominated primarily by adverse pressure

gradients.

2. On the lower surface, the transition onset location moved further downstream

with increasing collective angle. This trend is also seen in the two-dimensional

airfoil simulations. However, three-dimensional effects such as crossflow insta-

bility may need to be included to obtain a more realistic estimate. Spanwise

variation of transition onset was driven by the local Reynolds number, similar

to the BO 105 rotor case.

3. With the inclusion of transition effects, the rotor thrust increased by less than

2% at all collective angles.

4. The rotor torque was reduced with the inclusion of transition effects. The

amount of reduction varied with the collective pitch angle. Torque is lower by

8% at 0◦ and 1.5% at 15◦. This trend is consistent with the fact that the con-

tribution of viscous drag to the total torque is higher at lower collective pitch

angles. Therefore, the lower skin friction drag prediction with the inclusion of

the transition model has a greater impact on rotors operating at lower power.

NREL Phase VI Rotor

The 3-bladed NREL Phase VI model rotor was simulated in axial flow for wind

speeds between 3.5 m/s and 25 m/s. Due to the relatively low local Mach numbers
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along the blade span, a preconditioning algorithm was used in these simulations to

improve convergence and accuracy. Rotor thrust and torque distributions, as well as

pressure profiles, obtained with and without the transition model, were compared

with available experimental data.

1. At wind speeds of 3.5, 5, and 7 m/s, rotor thrust showed good agreement with

experimental data. The difference between fully turbulent and transitional

predictions of thrust were less than 5% at these wind speeds, with the tran-

sition model predicting higher thrust. The rotor shaft torque showed more

sensitivity to the inclusion of transition effects at these lower wind speeds.

The generated torque predicted with the transition model was lower than that

predicted with the baseline turbulence model by 70%, 12.5%, and 7.2% at

wind speeds of 3.5, 5, and 7 m/s respectively. This increase in torque was

primarily due to the reduced drag prediction with the inclusion of the tran-

sition model. This has important implications for the analysis of small wind

turbines operating at lower rated power values (< 5 kW).

2. At 10 m/s, the rotor thrust was over-predicted by the fully turbulent model,

whereas the transition model showed a better agreement with the experimen-

tal value. As reported in the current literature, torque predictions at 10 m/s

showed sensitivity to turbulence/transition modeling. A fully turbulent treat-

ment over-predicted the torque value at 10 m/s, whereas, the transition model

under-predicted it. Closer inspection showed that the baseline turbulence

model predicted separation on the upper surface at the point of maximum
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thickness, whereas, with a transition model, separation was predicted at the

leading-edge, likely due to bursting of the laminar separation bubble.

3. At higher wind speeds, both simulations predicted massively separated flow

on a large portion of the blade. Although both the thrust and the torque

with both models are within the experimental uncertainty, unsteady RANS

simulations with conventional turbulence models are operating out of their

validity regime for such flows. Use of hybrid RANS-LES methods may be

more appropriate in these cases.

4. Visualization of limiting streamlines on the blade upper and lower surfaces con-

firmed the presence of a laminar separation bubble. Streamlines also showed

significant spanwise flow in cases with flow separation.

7.3 Recommendations for Future Work

The methodology and results presented in this thesis demonstrate the poten-

tial of a correlation-based approach to transition prediction in external aerodynamic

flows. Successful validation of data from a varied set of experiments provides confi-

dence in the robustness and accuracy of the new transition model coupled with the

Spalart-Allmaras turbulence model. However, the current version of the model does

not account for effects of crossflow, surface roughness, curvature, and many others,

on the transition onset location. Since the model is based on independent empirical

correlations for each transition mechanism and influencing factor, several enhance-

ments are possible. At the same time, such an approach presents new challenges
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in the context of laminar flow control and high-fidelity CFD methods such as LES.

Some of the possible model requirements and enhancements are listed below.

1. Crossflow effects are dominant in yawed flow boundary layers that occur on

swept wings and truly three-dimensional geometries such as airframes. There-

fore, the first and the most important enhancement to the new model would

be the inclusion of a well-validated crossflow transition onset correlation. Po-

tential applications include fixed wings of transport aircraft, fuselages, and

rotor blades under yawed flow conditions. Preliminary work done on crossflow

transition prediction is presented in Appendix A of this thesis.

2. Surface roughness can influence the transition onset process, and is considered

an important element in laminar flow control on 3-D swept wings. In addi-

tion, the transition process is accelerated on roughened wind turbine blades.

Although some of the current turbulence models account for roughness, it is

desirable to include its effects into the present transition model as well.

3. Wind turbine rotor simulations indicated instability of the laminar separation

bubble on the lower surface of the blade, which was not seen in the hover-

ing helicopter rotor simulations. Since wind turbine rotors operate at much

lower speeds, model robustness and performance under such low-Mach number

scenarios needs further investigation.

4. Most of the two-dimensional simulations presented in this work demonstrate

the inability of the RANS turbulence models to predict stall onset accurately.
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Future work must focus on improving stall onset prediction in both 2-D and

3-D RANS simulations. Preliminary work performed on improving sensitivity

of the one-equation S-A turbulence model to strong adverse pressure gradi-

ents (APG) and therefore improving 2-D stall onset prediction is presented in

Appendix B of this thesis.

5. The effect of hybrid RANS-LES methods in combination with the γ−Reθ−SA

transition model and the APG-corrected S-A turbulence model could be inves-

tigated, especially for scenarios where laminar-separation bubbles are present.

6. Laminar flow control methods are actively being investigated to delay tran-

sition onset. Applicability of correlation-based models need to be assessed

for transition prediction in the presence of active or passive flow control tech-

niques.
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A Crossflow Transition Onset Correlation

A.1 Introduction

Current version of the γ−Reθ transition model can predict natural, bypass, and

separation-induced transition using empirical criteria deduced from experimental

data. Since crossflow instabilities can cause earlier transition onset in 3-D boundary

layers with yawed flow and favorable pressure gradients, it is essential for transition

models to account for this important mechanism. This is particularly important

for applications involving swept wings, rotating blades, and airframes that expe-

rience significant yawed flow due to the presence of strong pressure gradients and

unpredictable nature of incoming flow direction. Preliminary attempt was made in

this work to develop a new semi-local crossflow transition onset criterion for three-

dimensional boundary layers on swept-wing flows. The new criterion is integrated

into the γ−Reθ−SA model and its predictive capability is demonstrated on a swept

wing and a rotating blade configuration.
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(a) Curved streamlines over a swept wing (b) Swept wing boundary layer

profile

Figure A.1: Crossflow transition on swept wings [27]

A.2 Crossflow Transition Physics and Modeling

Saric and Reed [27] provide an excellent review of the stability and transition

of 3-D boundary layers. Figure A.1 shows a schematic of streamlines and velocity

profiles in a typical 3-D boundary layer on a swept wing [27]. The combination of

sweep and pressure gradient gives rise to inviscid streamline curvature, which in turn

causes a crossflow component of velocity inside the boundary layer. This crossflow

velocity component can develop inflectional instabilities and accelerate transition

onset in 3-D boundary layers on swept wings and rotating blades. Neglecting cross-

flow instability effects in 3-D simulations could lead to a delayed transition onset

prediction and under-prediction of viscous drag.

Many fundamental experimental and numerical studies have been dedicated

to understanding the transition phenomenon through crossflow instabilities. How-
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ever, existing engineering modeling methods to predict crossflow transition suffer

from geometry-dependence, non-local procedures, and reliability for a wide range of

flow configurations. Typical empirical models for crossflow prediction methods use

quantities like the pressure gradient parameter, streamline curvature parallel to the

wall, geometric sweep angle, momentum thickness, and shape factor. The Kohama

parameter [60] and the C1-criterion of Arnal [59]are two such empirical prediction

methods.

Watanabe, et al. [127] integrated Kohama’s crossflow criterion with the γ−Reθ

model to predict crossflow transition onset. The Kohama parameter is based on the

analogy between the Gortler instability and the crossflow instability. In both cases,

the imbalance between the viscous and inertial forces inside the boundary layer due

to inviscid streamline curvature triggers transition. The Kohama parameter is given

by Eq. A.1 below.

CK =
Ueθ

ν

√
θ

r
(A.1)

The main drawback of the Kohama parameter is that its threshold value for tran-

sition onset is geometry dependent - for example, the critical value of CK is 5 for

a rotating disk, while it is 2.8 for a yawed cylinder. Kohama proposed that a fixed

value of CK could be used for a given family of airfoils. Besides, the Kohama crite-

rion also requires numerical integration to compute the boundary layer momentum

thickness, which can be inefficient and ill-defined in complex flow configurations.

A more recent work by Seyfert and Krumbein [128] extended the γ − Reθ
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transition model to predict crossflow transition using the C1-criterion of Arnal,

given by Eq. A.2.

Re∗δ2t =
300

π
arctan

[
0.106

(H − 2.3)2.05

]
, 2.3 ≤ H < 2.7; and Re∗δ2t = 150.0, H < 2.3

(A.2)

The C1-criterion is based on a correlation between the crossflow displacement thick-

ness based Reynolds number and the shape factor at the transition onset location.

The applicability of the C1-criterion is limited to accelerated flows in the vicinity

of the leading edge of swept wings. Seyfert et al. [128] used Falkner-Skan-Cooke

equations to evaluate the local shape factor as a function of the pressure gradient

parameter, λ, that is already computed in the γ − Reθ transition model. However,

this implementation involves knowledge of the geometric sweep angle that is more

suited for fixed-wings, but restricts its applicability to generic 3-D geometries.

A third empirical criterion for crossflow transition onset prediction proposed

by Owen et al. [129] is given by Eq. A.3.

Recrossflow =
Ucrossflowmaxδ10%

ν
(A.3)

Owen’s criterion is based on a critical value for a “Crossflow Reynolds number”

based on the maximum crossflow velocity and the boundary layer height where

the crossflow velocity is 10% of its maximum value. Evaluation of this parameter

requires searching for the maximum crossflow velocity and the specific boundary

layer height, which can be computationally inefficient.
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The above three methods suffer from drawbacks such as incompatibility with

RANS solvers, computational inefficiency, and unsuitability to generic 3-D geome-

tries. In the following section, we discuss the development and calibration of a new

crossflow transition onset criterion based on a Modified Crossflow Reynolds Number

that minimizes some of these limitations.

A.3 New Crossflow Transition Onset Criterion - Modified Crossflow

Reynolds Number

In this work, two variations of the Modified Crossflow Reynolds Number were

developed and analyzed - ReMCF1 and ReMCF2 given by Eqs. A.4 and A.5.

ReMCF1 =
UCF1R

ν
(A.4)

ReMCF2 =
UCF2R

ν
(A.5)

For the length scale, both Reynolds numbers use the inviscid streamline radius

of curvature parallel to the wall, R. Procedure for numerical evaluation of R is

described in detail by Watanabe et al. [127]. Although R is a non-local quantity

that is evaluated near the edge of the boundary layer, in this work, the effort to

compute its value is minimized by using the boundary layer detection parameter, Fθt,

from the γ−Reθ model framework. The value of Fθt is 1.0 inside the boundary layer

and 0.0 outside. This aspect of the new crossflow model makes it a partially non-

local, yet a highly feasible approach, since the modified crossflow Reynolds numbers

can be computed locally at each solution point in the computational domain. Since
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the crossflow transition onset criterion is based purely on mean flow quantities, it is

generic enough to be used with any existing turbulence model.

The two versions of the modified crossflow Reynolds numbers differ in their definition

of the velocity scale. ReMCF1 uses the absolute value of the traditional definition

of the crossflow velocity, UCF1, given by Eq. A.6 whereas ReMCF1 , uses a modified

definition of crossflow velocity, UCF2, given by Eq. A.7.

UCF1 = |u.r1 + v.r2 + w.r3| (A.6)

UCF2 = |u.r1|+ |v.r2|+ |w.r3| (A.7)

where, (u, v, w) are the local velocity vector components and (r1, r2, r3) are unit

vectors of R.

Crossflow transition onset is detected when the maximum value of the crossflow

Reynolds number profile within the boundary layer at a given station exceeds a

constant critical value, as shown in Eqs. A.8 and A.9.

Fθt •max [ReMCF1 ]BL > 0.7 (A.8)

Fθt •max [ReMCF2 ]BL > 2.0 (A.9)

Calibration of Crossflow Onset Criterion

The new crossflow model is calibrated using experimental data for transition

onset locations measured by Dagenhart [130] for a range of Reynolds numbers, on an

infinite swept-back wing with NLF(2)-0415 airfoil section. The experimental wing
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(a) ReMCF1 , monotonic peaks (b) ReMCF2 , monotonic peaks

Figure A.2: Modified Crossflow Reynolds Number Profiles for Laminar Boundary

Layer at Re = 3.73 × 106 on NLF(2)-0415 infinite swept-wing

sweep-back angle is 45◦ and the freestream angle of attack is -4◦. Laminar flow

simulations are performed at five different Reynolds numbers and a Mach number

of 0.1. The critical values of the two criteria in Eqs. A.8 and A.9 are obtained by

identifying the peak values of the computed ReMCF1 and ReMCF2 profiles at the ex-

perimental transition onset locations along the airfoil upper surface. The computed

and experimental onset locations are tabulated in Table A.1. Representative profiles

of ReMCF1 and ReMCF2 are plotted in Fig. A.2 along the upper surface of the airfoil

section at Re = 3.73 × 106. Note the monotonically increasing peak values of the

profiles with increasing chordwise location.

Stability of Crossflow Criterion Post-Transition Onset

The profiles of the first version of crossflow Reynolds number, ReMCF1 , shown

in Fig. A.2 are extracted from a laminar boundary layer solution. While the peak
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(a) ReMCF1 , non-monotonic peaks (b) ReMCF2 , monotonic peaks

Figure A.3: Modified Crossflow Reynolds Number Profiles for Boundary Layer

Tripped at 25% of chord, Re = 3.73 × 106 on NLF(2)-0415 infinite swept-wing

values of ReMCF1 profiles increase monotonically with chordwise location in a lam-

inar boundary layer, this is not the case in a transitional boundary layer. The

ReMCF1 profiles plotted in Fig. A.3(a) for a boundary layer tripped around 25% of

chord on the upper surface reveal this behavior. The peak value of the spanwise

velocity component, v.r2, decreases rapidly beyond transition onset location, caus-

ing the ReMCF1 to drop below the critical value required for transition onset. This

leads to a loss of turbulence production immediately after transition onset and re-

sults in relaminarization. Therefore, while ReMCF1 is a reliable crossflow transition

onset detection parameter and can be used for steady flow simulations, its practical

applicability for unsteady flows and problems with moving walls is limited.

The second version of the crossflow Reynolds number, ReMCF2 , is designed to

have a monotonically increasing peak value through a transitional boundary layer,

as seen in Fig. A.3(b). However, the profiles in the neighborhood of the transition

213



Reynolds No. CFD Experiment [130]

1.92 × 106 0.68 0.70 - 0.85

2.37 × 106 0.52 0.48 - 0.68

2.73 × 106 0.43 0.40 - 0.65

3.27 × 106 0.35 0.20 - 0.45

3.73 × 106 0.32 0.20 - 0.40

Table A.1: NLF(2)-0415 Infinite Swept Wing - Comparison of CFD (ReMCF2) and

Experimental [130] Transition Onset Locations

onset location still experience a slight drop below the critical value, causing an

oscillatory transition onset behavior within 5% of chord of the mean onset location.

Ongoing work involves improving the stability of ReMCF2 criterion.

Integration of Crossflow Onset Criterion into γ−Reθ Transition Model

The key idea of the γ − Reθ − SA transition model is to use the empirical

criterion for transition onset, which states that the ratio of the vorticity Reynolds

number to the momentum thickness Reynolds number reaches a threshold value in a

laminar boundary layer before transition is triggered. This is given by the function

Fonset1 in Eq. A.10:

Fonset1 =
Rev

2.193.Reθc
> 1.0, for transition onset (A.10)

In this work, the Fonset1 criterion is modified to include the new crossflow Reynolds
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number correlation as shown in Eq. A.11.

Fonset1 = max

[
Rev

2.193.Reθc
,
FθtReMCF2

2.0

]
(A.11)

A.4 Preliminary Results

ONERA M-6 Wing

The effectiveness of the newly developed crossflow transition criterion is demon-

strated on the ONERA M-6 swept wing test case. The flow conditions for the ON-

ERA M6 swept wing are obtained from the experiments by Schmitt, et al. [131]: M

= 0.262 and Re = 3.5×106, Tu∞ = 0.2%. Figure A.4 compares the intermittency

contours predicted by the γ−Reθ − SA streamwise and crossflow transition models

with experimental naphthalene distributions indicating laminar (blue) and turbulent

(red) regions. It is evident from these contours that accounting for streamwise tran-

sition alone severely delays transition onset compared to experimental observations

for all angles of attack. As expected, the transition onset locations are identical on

pressure and suction sides of the wing at 0◦ AoA. However, at 5◦ and 15◦ AoA, the

γ −Reθ − SA model predicts transition onset quite close to the stagnation point on

the suction side, but almost near the trailing edge on the pressure side. This trend

can be explained based on the fact that transition onset on the suction side of the

wing is primarily driven by the streamwise adverse pressure gradient, whereas on the

pressure side transition is delayed due to a streamwise favorable pressure gradient.

However, experiments indicate that the transition onset on the suction side is much
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closer to the leading edge at 10◦ and 15◦ AoA which provides evidence for strong

crossflow instabilities. It is evident that the inclusion of the new crossflow criterion

into the γ−Reθ−SA transition model significantly improves the agreement between

CFD and experimental observations.

Offset Rotor in Hover

Flow past the 4-bladed UH60-A rigid rotor is simulated in hover at a tip

Mach number of 0.65, a tip Reynolds number of 7.4×106 and a 10◦ collective. To

qualitatively study the effects of strong yawed flow on transition onset locations

without the complexities of the aerodynamic environment present in forward flight

(such as BVI), a special configuration of offset rotor blades is simulated in this work.

This concept is borrowed from the experiments of McCroskey [113]. The ratio of

the offset distance to the blade radius represents the advance ratio of the particular

configuration. Figure. A.5 shows the rotor blades offset in the direction of rotation,

representing a rotor blade in forward flight at an advance ratio of 0.3 and located at

0◦ azimuth location (similar to a swept-back wing). This “positive” offset creates

a yawed flow in the outboard direction from the blade root to the blade tip. The

corresponding configuration with a “negative” offset creates an inboard yawed flow

and represents a rotor blade in forward flight at 180◦ azimuth location (similar to a

swept-forward wing).

Figures A.6(a)–(c) show the intermittency contours obtained using the γ −

Reθ−SA model for the baseline, swept-back, and swept-forward configurations of the
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rotor blade respectively. For the baseline rotor with no offset, the difference between

the predictions with and without crossflow transition model are mostly confined to

the outboard regions on the blade lower surface. Large regions of laminar flow on

both upper and lower surfaces of the blade are predicted with the transition model.

For the offset rotor configurations, the transition model without crossflow ef-

fects predicts large portions of laminar flow on the lower surface, similar to the zero

offset rotor case. However, since the offset rotor experiences strong yawed flow, the

crossflow transition model predicts onset location very close to the leading edge on

both lower and upper surfaces of the blade. These results indicate that the nature

of the boundary layer in forward flight is significantly different from that in hover

depending on the azimuthal position of the rotor blade.

A.5 Summary

In this discussion, focus was drawn to the physics and modeling approaches

of crossflow transition. The drawbacks of current crossflow transition prediction

methods for use in the simulation of complex industrial applications were listed.

A new non-dimensional parameter termed Modified Crossflow Reynolds Number is

introduced and used to define two variations of a new empirical crossflow transition

onset criterion. The new onset criterion is semi-local and is easy to calculate in

traditional RANS flow solvers. It is also compatible with any turbulence model

since it depends only on mean flow quantities. The new criterion was calibrated

using experimental data on an infinite swept-back wing. Stability issues of the onset
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criterion downstream of the transition onset location were discussed. The calibrated

onset criterion was integrated into the γ − Reθ − SA transition model. Transition

onset predictions on the ONERA M-6 fixed wing test were significantly improved

with the inclusion of crossflow effects. This test case also demonstrated that the

transition onset can be significantly delayed on the pressure side of airfoil sections

on 3-D wings if only streamwise transition effects are included without accounting

for crossflow effects. The UH60-A offset rotor configuration case showed that yawed

flow can have a major influence on crossflow transition onset on rotating blades.

Ongoing work includes further refinement, testing, and validation of the cross-

flow transition onset criterion. In conclusion, the current work shows that it is

possible to extract meaningful parameters based on mean flow to predict complex

flow phenomena such as crossflow transition in industrial applications.
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Figure A.4: Improved transition onset prediction with new crossflow transition cri-

terion: ONERA M6 Wing
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Figure A.5: UH60-A rotor system with offset blades to create outboard yawed flow

(blades rotate counter-clockwise)
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(a) Baseline rotor with no offset

(b) Offset rotor without outboard flow

(c) Offset rotor with inboard flow

Figure A.6: Intermittency contours for UH60-A rotor in hover without offset (Blue

- Laminar, Red - Turbulent, L - Lower Surface, U - Upper Surface)
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B Strong Adverse Pressure Gradient Correc-

tion

B.1 Introduction

Accurate numerical prediction of static and dynamic stall onset in aerody-

namic applications continues to be a challenge in the CFD community. The ability

of turbulence models to accurately model the effects of strong adverse pressure gra-

dients (APG) is crucial to the prediction of boundary layer separation in RANS

simulations of wall-bounded flows. However, most one- and two-equation RANS

turbulence models fail to accurately predict stall onset on airfoil sections at high

angles of attack (AoA), where strong APG is encountered. Consequently, they tend

to over-predict the maximum lift and stall onset angle for a given set of flow con-

ditions. Two-dimensional airfoil simulations presented in this thesis support this

observation.

Celic, et al. [132] compared the performance of 11 Eddy-viscosity based turbu-

lence models for aerodynamic flows with adverse pressure gradients and concluded

that none of the models perform satisfactorily for flow past airfoils near maximum
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lift conditions. A related problem where traditional turbulence models perform

poorly is that of transonic flow past airfoils with shock-induced separation. This

unsatisfactory performance can be attributed to the underlying assumptions and

simplifications that are part of all eddy viscosity based turbulence models. One

such assumption is that equilibrium conditions exist in a boundary layer, which

implies a balance between the production and dissipation of turbulent kinetic en-

ergy. This assumption allows for scaling of velocity profiles in the defect layer,

and is instrumental in the formulation of many turbulence models. However, it is

well known that boundary layers under strong APG are not in equilibrium and are

characterized by Clauser’s [133] pressure gradient parameter, given by
δ∗

τw

dP

dx
. In

addition, the outer layer scaling is affected under APG, whereas the viscous sub-

layer and log-layer are relatively unchanged. This is demonstrated in Fig. B.1

through the non-dimensional U+ Vs y+ profiles on a NACA 0012 airfoil at different

angles of attack. With increasing angle of attack, the adverse pressure gradient in

higher on the upper surface and therefore the defect layer penetrates deeper into

the boundary layer. Therefore, many turbulence models that assume equilibrium

conditions fail to produce satisfactory behavior for strong APG flows. Nevertheless,

models with stress limiters, such as the SST version of the k-ω turbulence model [34],

and Wilcox’s modified k-ω [134] model, and the strain-adaptive formulation of the

Spalart-Allmaras turbulence model [35, 135] are known to perform better than the

other models. Although using higher fidelity turbulence modeling methods (Non-

linear Eddy Viscosity models, Reynolds-Stress models, LES, etc) might produce

better results, the robustness and computational cost associated with the usage of
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Figure B.1: Effect of adverse pressure gradient on the defect layer (NACA 0012

airfoil, Re = 6×106)

these methods is a major deterrent to their wider applicability for practical flows.

In this work, the effectiveness of a new empirical modification to the one-

equation Spalart-Allmaras turbulence model is investigated, to improve its sensitiv-

ity to strong adverse pressure gradients, and therefore improve prediction of flow

reversal and separation at high AoA and due to shocks.

B.2 Spalart-Allmaras Turbulence Model

The one-equation Spalart-Allmaras (S-A) turbulence model [35] solves for the

modified Eddy viscosity, ν̃, which relates to the kinematic Eddy viscosity νt as

follows:
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νt = ν̃fv1; fv1 =
χ3

χ3 + c3
v1

; χ =
ν̃

ν
(B.1)

The governing equation of the S-A model without the trip terms is given by:

Dν̃

Dt
= Pν −Dν +

1

σ

[
∇.((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(B.2)

where, Pν and Dν are the production and destruction terms of ν̃, given by:

Pν = cb1Ω̃ν̃ and Dν = cw1fw[
ν̃

d
]2 (B.3)

Ω̃ is a function of the vorticity magnitude, Ω, and is defined as:

Ω̃ = Ω +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

(B.4)

The function fw is defined as:

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, g = r + cw2(r6 − r), r =
ν̃

Ω̃κ2d2
(B.5)

The model constants are: cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cw1 =

cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.622, cw3 = 2.0, cv1 = 7.1. The current implementation

of the S-A turbulence model uses the rotational correction [82] which reduces the

production of turbulence in regions where vorticity exceeds strain rate, such as in

vortex core regions, where pure rotation should not produce turbulence. In this

version of the S-A model, the magnitude of vorticity, Ω, used to calculate Ω̃ is

replaced with Ω + 2.min(0, S − Ω) in Eq. B.4, which is then used to compute the

production term.
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Strain-Adaptive Formulation of S-A Model

The strain-adaptive formulation [135] extends the applicability of the S-A

model to non-equilibrium flow conditions by modifying the model coefficient cb1,

which is a constant in the original model. In the SALSA formulation, cb1 is replaced

by c′b1, which varies as a function of the local strain rate magnitude. This modifica-

tion affects the production term of the S-A model through c′b1 and destruction term

of the S-A model through cw1 as shown below:

c′b1 = 0.1355
√

Γ, Γ = min [1.25,max(γ, 0.75)] (B.6)

γ = max(α1, α2), α1 =

[
1.01ν̃t

κ2d2S

]0.65

, α2 = max
[
0, 1− tanh

( χ
68

)]0.65

(B.7)

cw1 =
c′b1

κ2
+

1 + cb2

σ
(B.8)

B.3 APG Modification to S-A Model

While the S-A model performs quite well for attached boundary layers under

moderate APG, it suffers from poor sensitivity to strong APG. Before proposing any

modification to a well-established turbulence model, it is important to understand its

construction and limitations. The S-A model was formulated based on dimensional

analysis and empiricism, and does not use explicit velocity and length scale equations

as in the case of the two-equation turbulence models. It was calibrated to produce an

accurate log layer in a zero pressure gradient boundary layer by assuming equilibrium

among the production, diffusion, and destruction terms. The near-wall and the
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defect layer profiles were calibrated using damping functions. The primary effects

of strong APG are felt in the defect layer of a turbulent boundary layer, whereas the

viscous sublayer and log layer are unaffected. The formulation of S-A model allows

for modification of the defect layer behavior through the damping function fw in

Eq. B.5. This function controls the rate at which the turbulence destruction term

decays away from the wall. It appears that the destruction term decay is faster than

desired for strong APG flows, resulting in a boundary layer that is more turbulent

and resilient to separation.

As a cost-efficient engineering solution to predict APG boundary layer flows, a

new modification is proposed to the damping function fw based on the experimental

observations of Perry and Schofield [136]. Their experiments on APG boundary

layers revealed that the ratio of the magnitudes of local turbulent shear stress to

wall shear stress is a good indicator of the validity of the traditional defect law. It

was observed that this ratio does not exceed 1.5 for equilibrium boundary layers.

The profiles of δ =
µt|Sij|
1.5|τw|

(Fig. B.2) on a zero pressure gradient flat plate up to a

Reynolds number of 15 million, verify that the peak values do not exceed 1.0.

Based on this inequality, the parameter r used in the defect layer damping

function fw is modified as follows:

r =
ν̃

Ω̃α2d2
(B.9)

where,

α = κ− 0.15β, β = min(max(δ − 1, 0.0), 1.0)tanh(δ), δ =
µt|Sij|
1.5|τw|

(B.10)

The proposed APG modification increases the magnitude of the turbulence destruc-
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Figure B.2: δ profiles on a zero pressure gradient flat plate

tion term when the value of δ increases beyond 1.0. This is achieved by decreasing

the value of the von Karman constant value κ from 0.41 to 0.15. Decreasing the

value of κ in this modification is only for numerical purposes and is not indicative

of the nature of the log law slope under strong APG.

The contour plot of the δ for a NACA 0012 airfoil at Re = 6×106 and AoA =

10◦ in Fig. B.3(a) shows that its value is below 1.0 in the favorable pressure gradient

region on the pressure side, and greater than 1.0 in the adverse pressure gradient

region on the suction side.

Preliminary results obtained with the proposed SA-APG model shows im-

proved predictions of 2-D static stall onset (NACA 0012 airfoil) and dynamic stall

onset and recovery (OA209, SC1095, NACA0012 airfoils) as will be shown in the

next section. An important requirement of this modification is that it should not

alter the baseline turbulence model behavior for moderate pressure gradient flows,
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Figure B.3: δ criterion indicating strong adverse pressure gradient region on the

upper surface of NACA 0012 airfoil at 10◦ AoA, Re = 6× 106

as will be demonstrated in the Results section. The APG modification also showed

improved prediction of shock-induced separation where strong pressure gradients

are present.

B.4 Preliminary Results

2-D Static Stall

Two-dimensional steady flow past a NACA 0012 airfoil section is simulated at

a Reynolds number of 6×106 and a Mach number of 0.15. The number of grid points

in the wrap-around and normal directions of the C-topology computational mesh

are 897 and 257 respectively, with 511 points on the airfoil surface. Lift and drag

predictions from the 2-D simulations are plotted in Fig. B.4(a) and (b). The APG-

modification and the SALSA formulation of the S-A model show improved agreement
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(a) Lift (b) Drag

(c) Skin Friction,15 deg AoA

Figure B.4: Improved static stall prediction with SA-APG model (Expt [137]:

NACA 0012 airfoil, Re = 6× 106, M = 0.15)
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(a) Lower Surface (b) Upper Surface

Figure B.5: δ criterion indicating strong adverse pressure gradient region on the

upper surface of NACA 0012 airfoil at 10◦ AoA, Re = 6× 106

with experimental data [137] at higher at AoA and do not over-predict the stall

onset angle like the baseline model does. As expected, the SA-APG modification

did not alter the results at lower AoA with moderate adverse pressure gradients.

Figure B.4 (c) shows the reduced skin friction on the upper surface at 15◦ AoA,

and the increased reverse flow region near the trailing edge obtained with the APG

modification.

At 10◦ AoA, the boundary layer profiles of δ plotted in Fig. B.5 show that the

peak value does not exceed 1.0 on the lower surface, which ensures that the base-

line turbulence model behavior is not altered in favorable pressure gradient regions.

The upper surface δ profiles exceed 1.0 beyond 15% of the chord. The corresponding

upper surface mean velocity profiles at 10◦ AoA plotted at six chordwise stations

(Figs. B.6–B.7) show increasing differences between the baseline and APG predic-
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tions towards the trailing edge where the APG is stronger. The SA-APG model

predicts a larger velocity defect compared to the baseline S-A model.

At 15◦ AoA, the δ profiles (Fig. B.8) on the upper surface exceed 1.0 almost

immediately after the stagnation point, indicating a strong APG throughout the

uppper surface. The lower surface profiles are consistently below 1.0 indicating a

uniformly favorable APG. The corresponding mean velocity profiles on the upper

surface show significant velocity defect due to the APG modification at all chordwise

stations (Figs. B.9–B.10). Figures B.11–B.12 shows the reduced Eddy viscosity

levels on the upper surface due to the APG modificaiton.

2-D Dynamic Stall

The next test case is flow past an sinusoidally pitching SC1095 airfoil in a wind

tunnel. The flow conditions for the corresponding experimental case [138] are given

in Table B.1. The C-mesh around the airfoil has 391 points in the wrap around

direction and 101 points in the normal direction. The lift coefficient hysteresis

plotted in Fig.B.13 shows that the baseline S-A model fails to predict the amount

of lift loss, and also reattaches much sooner compared to experimental data. The

APG modification shows significantly improved dynamic stall behavior thus proving

that the proposed empirical criterion is applicable to unsteady flows with moving

wall boundaries.
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(a) (b)

(c) (d)

Figure B.6: Upper surface mean velocity profiles at 10◦ AoA on NACA 0012 airfoil,

Re = 6× 106

Case Airfoil Re M k αo αs

(×106) (= ωc
2U∞

)

a SC1095 3.75 0.30 0.049 9.93◦ 4.91◦

Table B.1: Flow conditions for 2-D dynamic stall test case of SC1095 airfoil (sinu-

soidal pitching motion - α(t) = αo + αs sin(ωt))
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(a) (b)

Figure B.7: Upper surface mean velocity profiles at 10◦ AoA on NACA 0012 airfoil,

Re = 6× 106

(a) Lower Surface (b) Upper Surface

Figure B.8: δ criterion indicating strong adverse pressure gradient region on the

upper surface of NACA 0012 airfoil at 15◦ AoA, Re = 6× 106
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(a) (b)

(c) (d)

Figure B.9: Upper surface mean velocity profiles at 15◦ AoA on NACA 0012 airfoil,

Re = 6× 106
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(a) (b)

Figure B.10: Upper surface mean velocity profiles at 15◦ AoA on NACA 0012 airfoil,

Re = 6× 106

2-D Shock-induced Separation

Finally, transonic flow past a NACA 0012 airfoil is simulated at a Reynolds

number of 6×106, Mach number of 0.799, and an angle of attack of 2.26◦. The

number of grid points in the wrap-around and normal direction of the C-mesh are

897 and 257 respectively, with 511 points on the airfoil surface. Pressure coefficient

plotted in Fig. B.14(a) shows significant improvement in the prediction of shock

location using the APG modification and the SALSA formulation, indicated by the

sharp discontinuity in the pressure coefficient profile on the upper surface. The base-

line S-A model predicted shock further downstream compared to the experimental

data [139]. Comparison of the Mach number contours in Fig. B.14(b) and (c) shows

the upstream movement of shock and the increased shock-induced separation region

with the APG modification. The computed lower surface pressure is consistently
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(a) (b)

(c) (d)

Figure B.11: Upper surface Eddy viscosity profiles at 15◦ AoA on NACA 0012

airfoil, Re = 6× 106
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(a) (b)

Figure B.12: Upper surface Eddy viscosity profiles at 15◦ AoA on NACA 0012

airfoil, Re = 6× 106

Figure B.13: Improved dynamic stall predictions with SA-APG model (Expt [138]:

SC1095 airfoil)
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inaccurate for all three version of the S-A model.

B.5 Summary

A new criterion for improved sensitivity to strong adverse pressure gradients,

that is applicable to RANS turbulence models, is developed. The one-equation

Spalart-Allmaras model is modified using this criterion. Preliminary results for 2-D

static and dynamic stall, as well as shock-induced separation obtained using the

SA-APG model are encouraging. The performance of the SA-APG model is com-

parable to the SA-SALSA formulation. On-going work includes extending the APG

modification to two-equation turbulence models, and evaluating its performance for

3-D fixed wings (static and oscillating) and rotating blades.
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(a) Pressure Coefficient (b) Mach Number, S-A Baseline

(c) Mach Number, S-A APG

Figure B.14: Improved shock location prediction with SA-APG model (NACA 0012

airfoil, Expt [139]: Re = 9× 106, M = 0.799, AoA = 2.26◦)
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