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For electronic systems it is not uncommon for 60% or more of the recurring cost to be 

associated with testing. Performing tradeoffs associated with where in a process to test 

and what level of test, diagnosis and rework to perform are key to optimizing the cost and 

yield of an electronic system’s assembly. In this dissertation, a methodology that uses a 

real-coded genetic algorithm has been developed to minimize the yielded cost of 

electronic products by optimizing the locations of test, diagnosis and rework operations 

and their characteristics. 

This dissertation presents a test, diagnosis, and rework analysis model for use in 

electronic systems assembly. The approach includes a model of functional test operations 

characterized by fault coverage, false positives, and defects introduced in test; in 

addition, rework and diagnosis operations (diagnostic test) have variable success rates 

and their own defect introduction mechanisms. The model accommodates multiple 

rework attempts on a product instance.  For use in practical assembly processes, the 



model has been extended by defining a general form of the relationship between test cost 

and fault coverage. 

The model is applied within a framework for optimizing the location(s) and 

characteristics (fault coverage/test cost and rework attempts) of Test/Diagnosis/Rework 

(TDR) operations in a general assembly process. A new search algorithm called Waiting 

Sequence Search (WSS) is applied to traverse a general process flow to perform the 

cumulative calculation of a yielded cost objective function. Real-Coded Genetic 

Algorithms (RCGAs) are used to perform a multi-variable optimization that minimizes 

yielded cost. Several simple cases are analyzed for validation and general complex 

process flows are used to demonstrate the applicability of the algorithm. A real multichip 

module (MCM) manufacturing and assembly process is used to demonstrate that the 

optimization methodology developed in this dissertation can find test and rework 

solutions that have lower yielded cost than solutions calculated by manually choosing the 

test strategies and characteristics. The optimization methodology with Monte Carlo 

methods included for the process flow under uncertain inputs is also addressed in this 

dissertation. 

It is anticipated that this research will improve the ability of manufacturing engineers 

to place TDR operations in a process flow. The ability to optimize the TDR operations 

can also be used as a feedback to a Design for Test (DFT) analysis of the electronic 

systems showing which portion of the system should be redesigned to accommodate 

testing for a higher level of fault coverage, and where there is less need for test.
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Chapter 1 
 
 
Introduction 
 
 
 
At a fundamental level, system design is a tradeoff analysis activity. This tradeoff 

includes factors such as size and performance, but often the most important factor in the 

tradeoff is cost. The various recurring costs that affect the manufacture of a system are 

the fabrication/assembly cost, test/inspection1 cost, rework cost, and waste disposition 

cost.    

For many types of systems, functional test is an important driver that significantly 

affects the total cost of manufacturing. In electronic systems, for example, it is not 

uncommon that greater than 60% of a product’s recurring cost can be attributed to testing 

[1], for integrated circuits, recurring testing costs are approaching 50% of the total 

product cost [2]. The International Technology Roadmap for Semiconductors has 

predicted that it will cost nearly as much to test a transistor than it costs to manufacture 

the transistor by 2015, Figure 1.1.  

                                                 
1 In this dissertation we are concerned with recurring functional (pass/fail) and diagnostic testing only, not 
environmental testing (i.e., qualification testing). 
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When the products that result from a manufacturing process are imperfect, four costs 

are potentially involved, first the cost of determining whether a given instance of the 

product is good or bad (recurring functional testing), second the cost of determining what 

defect caused product to be faulty and where the defect is located (diagnosis), third fixing 

the defect (rework), and fourth eliminating the causes of the defect (continuous 

improvement). Depending on the maturity of the product, its placement in the market, 

and the profit associated with selling it, all, some or none of the four activities listed 

above may be involved. Understanding the test/diagnosis/rework costs may determine the 

extent to which the system designer can control and optimize the manufacturing cost, and 

the extent to which it makes sense to do so.   

The ultimate goal of any functional test strategy is the determination of: 1) When 

should a system be tested?  At what point(s) in the manufacturing process? 2) How much 
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Figure 1.1: Comparison of manufacturing and testing cost of per transistor, [3]. 
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testing should be done, i.e., how thorough should the test be?  A test that detects 10% of 

the defects in a product may cost a small fraction of a test that identifies 95% of the 

defects, so, if I have multiple tests in a process, what is the optimum fault coverage to 

buy for each one? and 3) How much time and money should be spent to make the product 

more testable?  These goals would be easy to realize if we had unlimited time, resources, 

and money.  We could stop after every step in the manufacturing process and perform a 

full function test, and add structures to our system such that every critical element could 

be accessed and tested.  These measures are unfortunately far from practical and we are 

usually faced with determining how to obtain the best possible coverage from our tests 

for the least cost. 

So, how does the test influence the cost, yield and how can the parameters that 

characterize testing be optimized to minimize the cost and maximize the yield of the 

product simultaneously? These tradeoffs are the key questions that will be discussed in 

this dissertation. Section 1.1 provides reviews on the basic process of testing an 

electronic system.  

1.1  Background 

The specific goal of testing is to minimize the cost of discarding good product and the 

cost of shipping bad product. Test is a step in the manufacturing process that ensures that 

the physical device has no manufacturing defects, which means that the product functions 

and exhibits the properties and capabilities it was designed for. Testing is an important 

activity in the lifecycle of an electronic product shown in Figure 1.2.  
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Following the lifecycle flow, tests have been integrated in the manufacturing process 

of the electronic products. Production (manufacturing) test refers to the test for the 

individual products to check whether faults are introduced during manufacturing. 

Alternatively, system test is used to test a product in its operating environment to ensure 

that it works correctly when interconnected with other components. Tests are not only 

applied after the products have been produced but also considered in the design phase to 

check whether there are possible defects existing in the products or corresponding 
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Figure 1.2: The lifecycle of an electronic system, [4].  
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manufacturing processes via the functional verifications and simulations. This type of test 

results in the correction or improvement of design. 

Tests can be categorized as the following: 

    (1) In-Circuit tests, measuring the performance of individual components by 

electrically isolating them from the surrounding circuitry [5], which is best described as 

testing the functionality of each component in the product, with the inference that the 

overall circuit functionality can be verified by the fact that each component functions 

correctly and that all the components are wired together properly. 

    (2) Functional tests, verifying the overall board operation by applying stimuli to 

existing onboard connectors, measuring the response parameters and comparing these 

with design rules [6]. Functional testing concentrates on the question of the functionality 

requirements of the product: “Does the product do what it is supposed to do?” this 

usually entails testing the product at the critical ends of its specifications [7]. 

    (3) Diagnostic tests, focusing on the fault location and identification, failure 

analysis design and/or process debugging and improvement. 

    (4) Parametric tests, measuring electrical properties of the system ― delay, 

voltages, currents, etc., which puts emphasis on issues such as the frequency of operation, 

acceptable tolerances on power supply, temperature ranges, and power dissipation.  
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    (5) Environmental tests, evaluating the validity of designs and reliability of 

materials, components and interconnections under various environmental stresses, e.g., 

shock, vibration and temperature. 

Testing plays a very important role in increasing the yield and ensuring the quality of 

an electronic system. However, tests cost money, so one can’t practically place a test step 

between every process activity. On the other hand, lack of tests means that the process 

steps may be wasting money processing modules that already contain defects that can’t 

be repaired. Therefore, some balance of spending money on testing and risking spending 

money on processing modules that will be scrapped later is necessary. It is an imperative 

task to determine where in a manufacturing process to perform test and what are the 

optimum test characteristics. Figure 1.3 shows a possible placement of a 

test/diagnosis/rework operation in an example process for electronic systems assembly. 

Every arrow in the general manufacturing process in the top half of Figure 1.3 is a 

possible placement of a test/diagnosis/rework operation. The objective of the research in 

this dissertation is to develop a methodology that enables intelligent optimization of the 

location(s) of test/diagnosis/rework in general process flows. 

Before the aspects of the test/diagnosis/rework operation are analyzed, a procedural 

model that can determine the process steps and represent the associated sequence 

necessary to fabricate a product is needed. The following subsections provide the 

background necessary to describe process flows, and test, diagnosis, and rework process 

steps. 
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1.1.1 Process-Flow Modeling 

Real life is a sequence of process step, things happen in a specific order. The steps and 

their order comprise a “process flow”. Process-flow analysis attempts to emulate real life. 

The manufacturing cost and yield can be determined by modeling the fabrication process 

as a sequence of process steps. Process identification is the determination of the process 

steps and their associated sequence necessary to fabricate a product. For each process 

step, the cost and yield associated with the step is determined. Process identification is 

the key enabling activity for the evaluation of manufacturability, process compatibility, 

cost and yield. 

Test

DiagnosisRework

Figure 1.3: Location(s) of test/diagnosis/rework operation. 
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Process-flow modeling is performed by providing a set of process step objects that 

may be combined to describe a process flow. Figure 1.4 shows a generic process flow 

and step. The form of the inputs to a process step should match the form of the outputs so 

that the process steps can be easily sequenced. However, the inputs may be modified by 

the process step. The fundamental quantities that are carried from step to step are the 

cost, quality, and time. Optionally, some processes may inventory materials (used and 

wasted) and/or energy requirements. 

Process steps can be defined at a high level (cost, yield), or a detailed level (time, 

labor rates, material costs, equipment costs, tooling costs, etc.). Cost (recurring and non-

recurring), quality (defect density or yield), and time are accumulated through the process 

flow. When executed, each step in the process flow uses its local data to modify the 

cumulative cost, quality, and time associated with the object being manufactured.  

Process 1 Process 2 Process n-1Process i Process n

 

Figure 1.4: Generic process flow and step. 
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There are different kinds of process steps: Fabrication or assembly (generic), 

Test/inspection, Rework, Waste Disposition, and Insertion. Some steps (test and 

inspection) remove instances of the product from the process. In addition to the 

inputs/outputs described above, the test steps may be characterized by fault coverage, and 

false positives. The objects “scrapped” by a step may re-enter later after rework 

(characterized by a rework success rate).  

To illustrate the cumulative calculations of the output yield and cost of products, 

consider the simple non-test process flow is shown in Figure 1.5. Every component 

coming to the assembly step has some cost and yield associated with it. The assembly 

process has its own cost (Cassembly) and yield (Yassembly). In the simplist case the output 

cost and yield of the assembly process are given by (1.1) and (1.2) respectively:  

                                  assemblyinout CCC +=                                               (1.1) 

                                       assemblyinout YYY =                                                   (1.2) 

Cassembly and Yassembly could be computed quantities that depend on application-specific 

propertities.  

Assembly
(Cassembly, Yassembly)

Cin, Yin Cout, Yout

 
Figure 1.5: A simple non-test process flow. 
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The next sections define some of the terminology associated with a process flow that 

contains test, diagnosis and rework steps. 

1.1.2 Test/Diagnosis/Rework Operations 

When a test or inspection activity is performed, the product that does not pass the test can 

be either scrapped (disposed of), salvaged (all or part of the product is recovered for reuse 

in the same or another product), recycled (broken down to its constituent materials), or 

the non-passing product can be reworked. The first activity that takes place after a 

product is failed by a test activity is to determine why it failed, this activity is called 

diagnosis. Once diagnosis is completed, a decision can be made as to whether a particular 

product should be reworked, i.e., repaired and sent back into the test, or scrapped. A 

simple view of test, diagnosis and rework is shown in Figure 1.6. 

Test
(Functional Test)

Diagnosis
(Diagnostic Test)Rework

Downstream
Processing

Upstream
Processing

Multiple Attempts

 

Figure 1.6: A simple test/diagnosis/rework process. 
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In the example test/diagnosis/rework process shown in Figure 1.6, all of the product 

coming from production is tested; a more detailed diagnostic test (diagnosis) is applied to 

all the product that is identified as defective during the test; and all reworkable the 

product is retested.  Note, diagnosis and rework are not perfect (they introduce defects, 

make mis-diagnoses, and fail to correctly rework defective products), therefore, a product 

may go through test, diagnosis and rework multiple times (multiple “attempts”). 

The goal of analyzing the diagnosis and rework process (coupled with test) is to 

determine which products should be reworked (as opposed to scrapped), and to determine 

the optimum number of times to attempt to rework a product before giving up and 

scrapping it.  At a broader level, the challenge in a manufacturing process is to determine 

where in the process to test and when to diagnose and rework test rejects.  In some cases 

it may be more economical to simply scrap product that does not pass tests then to pay to 

diagnose them. Chapter 2 will discuss a detailed test/diagnosis/rework model developed 

by [8, 9], which includes a model of test operations characterized by fault coverage, false 

positive, and defects introduced in test, in addition to rework and diagnosis operations 

that have varaiable success rates and their own defect introduction mechanisms. The 

model can also accmodate an arbitrary number of rework attempts on any given assembly 

and can be used to obtain a cost-effective fault coverage and rework investment during 

system tradeoff analyses.  

Diagnosis 

Diagnosis, also known as fault isolation, refers to determining the type of defect that 

caused a specific fault and the location of that defect within the faulty product.  Before 
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any decisions are made regarding the disposition of product that the test step deems 

faulty, a diagnosis must be performed.  The outcome of the diagnosis will be one of the 

following: 

• No fault found, i.e., a false positive from the test activity ― In the case of no fault 

found, the product is sent back for retesting without any rework.  Note, even if no 

fault is found, the product still incurs the cost of the diagnosis and is subject to 

any defects that may be inserted into the product by the test and diagnosis 

processes.   

• Product is faulty but the cause of the fault cannot be pinpointed ― In this case a 

decision must be made to either expend additional resources to diagnose the 

problem or scrap the product. 

• Defect type and location successfully identified ― In this case a decision is made 

as to whether the defect is repairable or not, and whether it is worth repairing or 

not.  If the defect is not worth repairing, then the product will be scrapped. 

Several cost impacts are associated with diagnosis. First, the creation of, and 

correlation to fault dictionaries or trees is a non-trivial and very resource consuming 

activity. Existing fault dictionaries and trees are rarely directly applicable to a specific 

application and require considerable resources to become useful in the diagnosis process. 

Simply performing the diagnosis process itself consumes resources (labor, tooling, and 

capital). Second, the diagnosis impacts the throughput of the entire test/diagnosis/rework 

process. 
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Rework 

Rework is the process of correcting defects in a product during the production process.  

Rework is differentiated from repair, which is the process of correcting defects in a 

product that has failed at some point in time after manufacturing was completed. In the 

case of repair, the defect could be due to undetected manufacturing defects or damage 

accumulated during field use. Rework generally plays a more important role when large 

costs have been invested into products prior to testing.  While rework is common for 

board assembly, it is also performed during some types of integrated circuit fabrication. 

Rework is one of the most unpredictable and variable parts of the electronic systems 

assembly process.  In fact, no other single activity in the assembly process negatively 

affects profitability more than rework [10].  Unfortunately, most electronic assemblers 

treat rework as an afterthought, clinging to the notion that they can perfect their process 

to eliminate rework, which is often not the case. 

The economic viability of the product lines is usually forced into one of two 

conditions: either we build modules so inexpensively that they are throwaways (given a 

high-yielding process with a large-commodity market) or we must be able to rework 

defective assemblies, which is effectively a way to improve the yield of system. Petek 

[11] did research on the impact of rework on multichip module (MCM) cost. For 

example, a 25-chip MCM with an individual chip yield of 90% has a rework potential of 

)9.01( 25− =0.928, that means approximately 92.8% of the modules have the potential to 

fail the test or require rework. Thus the ability to repair or rework MCMs is extremely 
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important, especially as the number of chips or the complexity of systems increases (see 

Figure 1.7). 

So far we have reviewed the concepts of design, manufacturing, test, diagnosis and 

rework—a series of processes in the lifecycle of products. Of the manufacturing costs 

involved, the test, diagnosis and rework costs significantly affect the total cost of 

manufacturing of electronic systems. Consequently, it becomes very important to 

accurately model the characteristics of the process flow which determines the 

test/diagnosis/rework costs in order to control and reduce the manufacturing cost. The 

next section will focus on the parameters that drive the tradeoff analyses of 

test/diagnosis/rework operations in process flow. 

                                                 
2 Figure 1.7 is a description of the Known Good Die (KGD) problem, i.e., MCMs have an extremely low 
first pass yield if KGD are not used. 

Individual chip yield = 0.99

 

Figure 1.7: MCM fractional yield as a function of                                  
number of chips in the MCM, [11].2 
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1.1.3 Characteristics of Process Steps 

There are several characteristic variables associated with the various types of process 

steps ― fault coverage, rework yield, false positive, rework attempts and so on, which 

determine the cost and yield of products that pass through then, hereafter there will be 

called the feature parameters of process flow. As the main objective of the dissertation, 

these parameters are varied to obtain the optimum of a multi-variable function that 

represents the yielded cost of products that result from the process flow.  

Fault Coverage  

Fault Coverage ( cf ) refers to the fraction of faults detected by a test activity.3 Fault 

coverage is also referred to as Fault Cover, Test Coverage, or Test Efficiency [12].  

              
faults) (possible#
faults) (detected#existance)fault detection/(fault  Pfc ==                             (1.3) 

Fault coverage is a measure of the ability of a set of tests (a collection of test vectors) to 

detect a given class of faults that may occur in a device under test. The fault coverage 

attained with a test is dependent on the number of test vectors exercised, which 

determines the test time and thereby the test cost.   

                                                 
3 This definition is sometimes referred as “raw coverage.”  Related metrics that could also be defined 
include: 

            
faults untestableofNumber faultstotalofNumber 

faults detected ofNumber Coverage Testable
−

=         (1.4)   

          
faultstotalofNumber 

faults untestable ofNumber -faults detected ofNumber EfficiencyFault =       (1.5) 
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The yield of electronic products can be affected by the testing. (1.6) is the 

fundamental result from Williams and Brown [13] that relates the yield of product passed 

by a test to the fault coverage of the test. This relation forms the basis for much of test 

economics and the modeling of test process steps. 

                                          cf-1
inout YY =                                                       (1.6) 

 
where Yin is the yield of parts entering the test activity, Yout is the yield of parts that have 

been passed by the test activity and fc is the fault coverage associated with the test 

activity.  

Figure 1.8 shows outgoing yield versus fault coverage for various values of incoming 

yield. In Figure 1.8 as fault coverage approaches 100%, outgoing yield is 100% 

independent of the incoming yield.  This makes sense because at 100% fault coverage the 

 

Figure 1.8: Outgoing yield versus fault coverage. 
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test step successfully scraps every defective part (irregardless of the fraction of parts are 

defective coming into the test) only letting good parts pass. When fault coverage drops to 

0, the outgoing yield should equal the incoming yield (the test is not doing anything).  

When the incoming yield is 100%, every incoming part is good and therefore every 

outgoing part is also good regardless of fault coverage. As the incoming yield becomes 

small, the output yield is also small for all but fault coverages that approach 100%. 

Rework Yield and Rework Attempts 

Rework yield ( rewY ) is defined as the fraction of faults repaired by a rework operation 

[14]. The factor is used to remove the assumption that the rework would be performed 

correctly and completely for all defects on each visit to the rework step. This rarely 

happens in practice. Rework attempts ( ar ) is the number of times an instance of a product 

is reworked before giving up and scrapping it. With the increasing of rework attempts, 

the yield of products would also rise, but the cost increases too. For a given module size, 

the first rework makes the most significant improvement, with each succeeding rework 

diminishing in importance, which is illustrated by Figure 1.9.  

Yielded Cost 

Yielded cost (CY) refers to the cost per good product instance passed by the test step, 

which is a ratio of the final cost and yield. If the Cout is the cost of a single part after some 

process and Yout is the yield of the part, then the yielded cost is given by 
out

out
Y Y

CC =  [15]. 

In this dissertation, the yielded cost of a process flow is the final objective  
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that needs to be minimized by choosing the optimal values of variables in the 

optimization function. As demonstrated in [8, 16], some of the feature parameters would 

definitely affect the cost and yield of the process flow and consequently affect the yielded 

cost. For example, Figure 1.8 shows that high fault coverage leads to high yield but the 

cost of obtaining the high fault coverage may be substantial (the detailed analysis of fault 

coverage versus cost of test will be discussed in Chapter 2).  

1.1.4 Other Relevant Topics 

Test cost per unit and test equipment capital cost considerations dominate manufacturing 

test methodology decisions for electronic systems. Most of the test problems causing 

major yield losses and cost increases are related to the fact that automatic test equipment 

(ATE) speeds have not been able to keep up with improving device speed, i.e., the 

 

Figure 1.9: The percentage of module fractional yield improvements as a function  
of the number of repairs for MCMs containing 9, 25, 49 and 81chips, 

 where each chip has a yield of 0.95, [11]. 
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situation shown in Figure 1.1. Thus, low-cost solutions such as Design-for-Test (DFT) 

enabled designs have recently generated significant industry momentum. The concepts of 

ATE and DFT are presented in the next two sections. 

Automatic Test Equipment (ATE) 

Automatic test equipment provides tremendous flexibility, allowing many different types 

of devices to be tested without changes to the test hardware. In addition to the versatility 

that this equipment provides, it enables electronic testing of very complex systems.  

For most ATE the main costs can be grouped into the following areas: 

1. The purchase price (the investment). 

2. Site preparation, training and other initial set-up costs. 

3. Test programming and test fixture preparation costs. 

4. Testing, diagnosis and rework costs. 

5. Maintenance costs (hardware and software). 

6. The field-service associated with escaping defects. 

These will be the main cost areas that make up the total cost of ownership, or more 

accurately the lifecycle cost, of the test strategies and the testers that are being 

considered.  

As technology evolves, functional test equipment costs have decreased over time for 

a constant performance window. Test will continue to leverage the functional test 

methodology as one opportunity to obtain the coverage required to guarantee outgoing 

product quality. However, it is expected that Design for Testability (DFT) will be used 
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when needed to limit the functional test performance envelope in production by reducing 

input/output (I/O) data rate requirements, enabling low pin count testing, and reducing 

the dependence on expensive instruments. DFT will enable manufacturers to step off the 

test equipment technology treadmill associated with functional test. 

Design for Testability (DFT) 

Design-for-testability techniques increase fault coverage and reduce test application and 

development time. DFT is an approach in which the electronic system is designed from 

the start in such a way that testing problems are minimized, which refers to hardware or 

software design styles or added hardware that reduces test generation complexity. The 

key to DFT is the ability to control and observe directly the internal states of the system 

under test. 

DFT techniques like scan and Built-in Self Test (BIST) either enable test content to 

be generated automatically or reduce the test content generation effort, thus drastically 

reducing the manual test writing task. For highly integrated devices, DFT is required to 

provide re-use of test collateral and avoid a geometric or exponential growth of the test 

development and validation effort. Testability can be represented as: 

Testability = Observability + Controllability 

Observability is the ability to observe a gate output directly at external pins and 

controllability refers to apply any and all desired inputs to a gate via external pins. 

DFT has been a much-discussed topic for several decades. “To DFT or not to DFT?” 

The answer depends on who is asking and who is answering. Designers might view DFT 
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as preventing them from achieving the best design with high performance and minimum 

hardware complexity [17]. Test engineers also still talk about “the wall” that is from the 

traditional separation of design and test development activities [18]. A significant body of 

literature has been devoted to address the tradeoffs of doing DFT or not. Many economic 

test models exist that justify DFT for specific companies, products and markets by 

examining DFT’s impact on cost [19-22]. Dislis et al. [23] have proposed a test planning 

system that compares different test strategies for a given design based on circuit 

properties, intended market and company resources. Similar work has been done for full 

partial scan designs in [24]. A key example is DFT’s improvement in yield learning 

through the enhancement of diagnosis — a DFT benefit that translates to an improved 

time-to-market and time-to-volume [25-27]. Nag [17, 28] proposed the analysis of DFT 

aimed at an end product that maximizes the cost-to-benefit ratio, with the decision to use 

DFT ultimately based on its impact on profit. They developed the Test Cost Model to 

studied DFT’s impact on the various IC cases. The debate about the economics of extra 

silicon for DFT will taper off or end altogether as predicted by Turino [18] ― simply 

because without DFT, future devices will be impossible to test to required quality levels.  

Optimization of the test location(s) and characteristics of test/diagnosis/rework 

operations can be used as the feedback to DFT and provide suggestions from the view of 

the yielded cost to answer where we need to put the test and correspondingly, what 

portions of the system should be redesigned to accommodate the complex testing for a 

higher level of fault coverage (i.e., DFT) and where there is less need for test to decrease 

the cost of products.  
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1.2  Dissertation Scope and Problem Statement 

It is essential to perform the tradeoffs among the feature parameters of test/rework 

operations to minimize the cost of the process flow and reduce the defects in the systems. 

The tradeoff process is the core of the allocation of test/rework operations. The tradeoff 

process has the purpose of making the best choice between various versions of given tests 

and reworks to be allocated, and to suggest the values of variables of the test steps to 

minimize an objective function associated with the process flow. 

The Figure 1.10 helps to understand why we need to find the optimum of the feature 

parameters. Consider the four different scenarios shown: no test steps, all tests with 100% 

fault coverage, only one test at the end of the process and the optimum case (the data is 

from the example process flow in Figure 4.22 computed using the algorithms described in 

Chapter 4), the comparison of cost and yielded cost is given to demonstrate the best case. 

The optimum configuration of fault coverage in Figure 1.10 (case 4) has the smallest 

yielded cost but does not have the lowest cost or highest yield.  

The methodology development in this dissertation enables answering the following 

four questions on an application-specific basis: 

(1) How much fault coverage do I need to buy?  

(2) Where (in a process) should I put the test locations?  

(3) When do I need to do rework? 

(4) How many rework attempts should be made? 
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The key issues involved in this dissertation are how to obtain the solution to an 

optimum allocation of test and rework operations in various scenarios and how to 

determine the corresponding values of feature parameters in a general process flow. The 

main objective of this dissertation is to develop an optimization approach to minimize the 

yielded cost of systems by optimum placement of TDR operation and its characteristics. 

The optimization can be used during the manufacturing and assembly stages and even in 

the design of products providing the feedback to a Design for Test (DFT) analysis of the 

electronic systems to indicate which portion should be redesigned to accommodate the 

testing for a higher level of fault coverage and where there is less need for test to 

decrease the cost of products. 

To achieve these goals, the following five items will be investigated: 

No Test

All tests with 
fc=0.999

One test in last 
step

Optimum

0

200

400

600

800

1000

1200

1400

1 2 3 4

Test Location(s)

O
bj

ec
tiv

e 
C

os
t

cost
yield*1000
yielded cost

 
Figure 1.10: The comparison of yielded cost of process flow with  

four different test cases. 
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Goal 1: Computations of a single Test/Diagnosis/Rework operation. 

Goal 2: Development of a searching algorithm to traverse all process steps in a 

complex process flow. 

Goal 3: Performing multi-variable optimization using real-coded genetic algorithms 

(RCGAs) to solve the TDR location optimization problem.  

Goal 4: Validation of optimization algorithms using the real case with comparison to 

the calculation results from manually choosing test strategies (without optimization 

techniques involved).  

Goal 5: Exploration of extensions of the TDR optimization for uncertain input(s). 

1.3  Overview of the Solution Strategy 

This section provides and overview of the general algorithm used to solve the 

test/diagnosis/rework optimization problem. Chapters 2-4 develop the detailed models 

and methodologies needed to implement this algorithm, Chapter 5 provides a detailed 

example of the application of the algorithm in a real system, and Chapter 6 discusses 

extensions to the algorithm to accommodate uncertain data inputs. 

The assumed starting point for the optimization problem described in this dissertation 

is a manufacturing process for a product (described as a process flow comprised of a 

sequence of process steps). The goal of the algorithm is to determine where the TDR 

(test/diagnosis/rework) operations should be placed within the process and the 

characteristics of the diagnosis and rework operations. 
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The following algorithm has been developed: 

1. Insert a TDR “package” at every possible location in the process flow. 

The possible TDR operations are located between each pair of adjacent 

process steps, before initial steps and after the final step. The number of test 

locations that need to be optimized depends on how many separate process 

steps are included in a process flow. 

2. Vary the fault coverage of all test steps continuously from 0% to 100%. 

The recurring test costs are computed as a function of fault coverage using a 

variable test cost model. High fault coverage always leads to expensive 

testing.  

a) Fault coverage threshold is embedded in the optimization 

algorithm. The optimization methodology developed in this 

dissertation chooses the optimum values from the range of fault 

coverage for each possible test operation that is placed in the process 

flow to minimize a yielded cost objective function. If the value of fault 

coverage of a specific test operation falls below a predefined threshold 

― the minimum nonzero fault coverage that we can practically 

purchase the test operation will be removed from the process flow, i.e., 

there is no test present in this location. Instead of separately finding 

test locations and fault coverage, the optimization algorithm merges 

the two into a single problem by defining the fault coverage threshold.   

b) Inclusion of rework is considered concurrent with fault coverage. 

The rework operation is associated with the test operation when the 
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fault coverage of testing is above the threshold, i.e., the rework cannot 

be done without a test present at the location.  

3. Use overall yielded cost as the objective function to be minimized. The 

overall yielded cost is the accumulated cost divided by the final yield of the 

whole process. The characteristics of all possible TDR operations included in 

the process flow are treated as the variables that need to be optimized. 

4. A Waiting Sequential Search (WSS) algorithm is used to determine the 

order for evaluating process steps and controlling the objective function 

calculation. This graph-based search algorithm traverses all the steps nodes in 

the direct graph representation of process flow and does the accumulated 

computations of yields and cost of products. The search process performs the 

sequential calculations from the start to the end of the process flow and the 

single TDR model is used when it meets the step nodes of TDR operations. 

5. Real-coded Genetic Algorithms (RCGAs) are used to manage the 

optimization. Genetic algorithm (GA) ― a natural optimization method is 

used as the main optimization technique to solve the minimization problem in 

this dissertation, in which the variables needs to be optimized are represented 

as genes. RCGAs find the minimized value of the objective function by 

performing three kinds of genetic operations ― selection, crossover, and 

mutation.  

The entire solution strategy is described by the framework shown in Figure 1.11. 
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1.4  Organization of Dissertation 

There are seven chapters in this dissertation. The contents of each chapter are 

summarized below. 

Chapter 2 describes the representation of the test/diagnosis/rework operation using 

technical cost model. The first section reviews the development of a comprehensive TDR 

model that integrates the computations of cost and yield of systems into the process flow 

with the considerations of TDR characteristics ― fault coverage, false positives, etc. A 

variable test cost model is developed to define the functional relationship between fault 

Generation of 
Process Flow

 Placement of  Test/
Diagnosis/Rework Package 

Pre-Analysis of 
Process Flow

Searching in the Graph

Objective Function

Optimum       
TDR Locations

GA Optimization

 

Figure 1.11: The framework of optimization of TDRs in process flow. 



 28

coverage and test cost. The extension of the model to include the multiple fault types and 

rework loops and an alternative TDR cost model are also discussed.  

 Chapter 3 extends the single TDR model to the computation of the yielded cost of 

product for multiple TDRs in a process flow. A graph-based search method described in 

the fourth section, named “Waiting Sequential Search”, is developed to traverse all the 

step nodes in the graphical representation of the process flow with all possible TDR 

operations included. A multi-variable cumulative objective function to minimize the 

cumulated yielded cost of the process flow is derived.  

Chapter 4 discusses the implementation of Real-Coded Genetic Algorithms (RCGAs) 

to optimize the TDR locations and the characteristics associated with them in the process 

flow. Simple Test cases for four different scenarios are provided to verify the correctness 

and demonstrate the feasibility of the optimization algorithms.    

 Chapter 5 applies the optimization methodology to a real case ― the multichip 

module (MCM) assembly process. Results from the optimization methodology developed 

in this dissertation are compared to manually determined test locations.  

Chapter 6 extends the optimization algorithm to process flows with uncertain input(s). 

Monte Carlo methods are integrated inside the RCGAs to sample the values from the 

input probability distribution(s). Optimization results of the real MCM assembly process 

flow under uncertain input(s) are presented. 

Chapter 7 summarizes the main research accomplishments of this dissertation and 

describes the contributions made.  
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Chapter 2 
 
 
The Test/Diagnosis/Rework Model 
 
 
 
The objective of the test economics model is to accommodate the test/diagnosis/rework 

(TDR) effects relevant to the electronic system assembly processes. In these processes, 

defect insertion during test and rework operations is not un-common (e.g., from handling 

and/or probes making physical contact with the board), false positives4 can be a 

significant problem, multiple rework attempts are made when dealing with expensive 

systems such as multichip modules, and complex rework operations that may include 

reassembly of significant portions of the system are performed. 

This chapter describes a comprehensive test/diagnosis/rework model that includes a 

detailed formulation of the feature parameters for the single TDR operation. Based on 

this model, a multi-objective function for optimization can be constructed via the 

accumulation of cost and yield in a general process flow that is made up of 

manufacturing process steps and TDR operations. Performing the accumulation through 

                                                 
4 A false positive is a positive test result in subjects that do not possess the attribute for which the test is 
conducted.  Electronic systems test engineers define false positives as a Type I tester error [29].  In testing, 
this means that a test will identify good product as bad at some non-negligible rate.  In fact, data at the 
board and system level has shown that as many as 46% of all failures are not actually failures, but false 
positives, [30]. 
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all the process steps with multiple branches and TDR operations requires the 

development of a new search algorithm that is introduced in Chapter 3.  

2.1  Development of the Test/Diagnosis/Rework Model     

There are several existing TDR models that are applicable to technical cost modeling.5 

The basic architectures of TDR models are shown in Figure 2.1. 

In the example test/diagnosis/rework models shown in Figure 2.1 all parts coming 

from production are tested; the diagnosis and repair are applied to all the parts that are 

identified as defective during the test; and all reworkable parts are retested. Many 

versions of these models supporting some subset of the variables shown have been 

developed including single rework attempt models and multiple rework attempt models 

[32-38]. Athough the detail involved in these models varies, in general they do not 

account for new defects introduced during the test, diagnosis or rework steps; false 

                                                 
5 Technical cost modeling is defined as a process-based, “bottoms-up” approach to cost estimation, with 
total cost broken into a set of individual cost elements. Each of these elements is estimated separately, then 
summed to provide an estimate of the total cost [31]. 
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Figure 2.1: Example test/diagnosis/rework models currently in use                      
for technical cost modeling. 
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positives in testing, or uncertainties that may be present the input data. In order to 

accommodate the additional effects and obtain a model that is readily useable in a 

technical cost modeling optimization environment, Trichy et al. [9] developed a model 

that accommodates the test/diagnosis/rework effects relevant to printed circuit board 

fabrication and electronic system assembly processes. 

In this work, a modified (corrected, extended and generalized) form of the Trichy et 

al. [9] model was used to compute the feature parameters of test/rework operations. 

Figure 2.2 shows the content of the test/diagnosis/rework model. In the following 

description the term “module” was used to refer to the item being tested (e.g., a printed 

circuit board with chips assembled on it).  Inputs to this model are the accumulated cost 

and yield of upstream processes (Cin and Yin), the number of modules (Nin) is not a 
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Figure 2.2: Organization of the test/diagnosis/rework model                           
(Table 2.1 describes the notation appearing in this figure).  
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required input and is only included for convenience in the formulation of the model.6  

Yield is the ratio of non-defective (good) modules to all modules, non-defective and 

defective (bad).  The test portion of the model is the top most group of three steps in 

Figure 2.2. This model can be used to account for defects introduced by the test operation 

both prior to the actual test (e.g., loading the module into the tester or stationing the 

probes on the module)  and after the test result is recorded (e.g., unloading the module 

from the tester). The modules that are determined to be faulty go on to the diagnosis step.  

Three outcomes are possible from diagnosis: 1) no fault is found in which case the 

module goes back for retesting, 2) the module is determined to be reworkable and sent on 

to rework, or 3) the module is determined to be non-diagnosiable or non-reworkable and 

sent to scrap. The rework process operates on the reworkable modules and scraps 

modules that can not be successfully reworked. The reworked modules are re-tested and 

if the reworked modules are found to be faulty again, the modules are again sent for 

diagnosis. This rework process can be performed a specified number of times (attempts).   

There are several key assumptions made in the formulation of this model: defects 

introduced by the diagnosis step are not explicitly treated; and false positive (fp) and fault 

coverage (fc) act simultaneously and they are independent of each other, i.e., the fault 

coverage acts only on bad modules and the false positive acts either only on good 

modules or on all modules. 

 

                                                 
6 In general, yield and cost results from this model are independent of Nin, however, if equipment, tooling, 
or other non-recurring costs are included, the results become dependent on Nin and can be computed from 
accumulations of time that specific equipment is occupied or the quantity of tooling used to produce a 
specific quantity of modules, e.g., see Trichy et al. [9]. 
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Table 2.1: Nomenclature used in Figure 2.2 and throughout the discussion in this section. 

Cin Cost of a part entering the 
test/diagnosis/rework process 

Nin Number of parts entering the 
test/diagnosis/rework process 

Ctest Cost of test/part Nd Total number of parts to be 
diagnosed 

Cdiag Cost of diagnosis/part Ngout Number of no fault found 
parts 

Crew Cost of rework/part Nd1 Nd – Ngout 
Cout Effective cost of a part exiting 

the test/diagnosis/rework 
process 

Nr Number of parts to be 
reworked 

fc Fault coverage Nrout Number of parts actually 
reworked 

fp False positives fraction, or the 
probability of testing a good 
part as bad 

Ns1 Number of parts scrapped by 
diagnosis process 

fd Fraction of parts determined to 
be reworkable 

Ns2 Number of parts scrapped 
during rework 

fr Fraction of parts actually 
reworked 

Nout Number of a parts exiting the 
test/diagnosis/rework process 

Yin Yield of a part entering the 
test/diagnosis/rework process 

  

Ybeforetest Yield of processes that occur 
entering the test 

  

Yaftertest Yield of processes that occur 
exiting the test 

  

Yrew Yield of the rework process   
Yout Effective yield of a part exiting 

the test/diagnosis/rework 
process 

  

 

                                       

 

Versions of Cin, Yin and Nin appear both 
with and without subscripts in the 
proceeding discussion.  When the 
variables appear with out subscripts they 
refer to the values entering the process.  
When they have subscripts, they represent 
specific iterations in the rework process. 
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2.2  Trichy et al. [9] Model Formulation 

The cost incurred by all the parts that eventually pass the test step is given by, 

                                           ( )
ii out

n

0i
testin1 N CCC ∑

=

+=                                              (2.1) 

where n is the number of rework iterations allowed, i.e., the maximum number of 

attempts to rework an individual part and Nouti is number of parts passed by the test in the 

ith rework attempt.  When i=0, C1 is the total cost of the parts that pass the test without 

ever going through diagnosis or rework.  The cost incurred by all the parts scrapped by 

the diagnosis step is given by,7 

                             ( )∑
=

++=
1-n

1i
s1diagtestin2 ii

N CCCC                                       (2.2) 

and the cost incurred by all the parts scrapped by the rework step is given by,8 

                     

( )∑
=

+++=
1-n

1i
s2rewdiagtestin3 ii

N CCCCC                                 (2.3) 

where Ns1i and Ns2i are defined in (2.8) and (2.9).  After the final rework (nth rework 

attempt), the parts that do not pass the test are scrapped. The first term in (2.4) accounts 

                                                 
7 In [9], (2), the maximum of the summation should be n-1 instead of n. 
8 In [9], (3), the maximum of the summation should be n-1 instead of n. 
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for the parts scrapped by the test, and the second term accounts for any false positives 

that are encountered during the final test,9 

            ( ) ( ) pbeforetestinintestindtestin4 fYYN CCN CCC
nnnnn

+++=                            (2.4) 

where Nini is defined in (2.11).  The total cost of all these parts (including scrapped parts) 

is the sum of C1 through C4.  The total cost per output part associated with this model is 

the total cost divided by the total number of output parts (parts that are eventually passed 

by the test), 
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The number of parts moving through the process are shown in (2.6)-(2.11),10 
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                                               ( )
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9 In [9], (4a) can be used for either definition of fp with 

1ndN
+

changed to
nd1N . 

10 In [9], (13), the subscript of Nr should be i-1 instead of i when i>0. 



 36

                                         ( )
ii rr2s Nf-1  N =                                                    (2.9) 

                                            
ii d1dr Nf  N =                                                     (2.10) 

                             
⎪⎩

⎪
⎨
⎧

>+
=

=
−−−

0i when YYNfNf
0i when N

N
beforetestininprr

in
in

1i1i1i

i
                (2.11) 

where parameters without subscripts (Nin, Cin, and Yin) indicate values entering the 

process (Figure 2.2) and the form of (2.6) follows from [13].  The total number of parts 

that successfully pass the test process is given by, 

                                            ∑
=

=
n

0i
outout i

N  N                                                 (2.12) 

The part counting in (2.6)-(2.11) assumes that all false positives on good parts go 

through diagnosis and back into test without scrapping of parts in diagnosis or rework.  

The formulation is also only valid when fp < 1, Yin > 0 and Ybeforetest > 0.  The input cost 

(Cini) that appears in (2.1)-(2.4) is given by Cin when i = 0 and by (2.13) when i > 0. 
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The input yield (Yini) that appears in (2.4) and (2.6)-(2.13) is given by Yin when i = 0 

and by (2.14) when i > 0. 
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The final yield of parts that successfully pass the process is given by, 
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Note, Nin cancels out of (2.5) and (2.15) making the total cost per part and final yield 

independent of the number of parts that start the process, which is intuitively correct 

since no volume sensitive effects (such as material or equipment costs) are included in 

this recurring cost model. 

2.3  Variable Test and Rework Cost Model     

The Trichy et al. model provides the accurate computation of the feature parameters: Cout 

and Yout, etc. for a single TDR operation in a process flow in which several variables 

where Ctest and Crew are defined as the constants. For real processes Ctest is not a constant 

and instead is related to the fault coverage of the test. The rework yield (rework success 

rate) is also not a constant. It depends on the specific rework actions taken. In practice the 

rework operation may cause additional defects to be inserted in the product [14]. For use 

in this work, the model in [9] is extended by defining general forms of the relationships 
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among the feature parameters, e.g., the costs of test and rework in terms of fault coverage 

and rework yield respectively.      

Functional Relationship between Fault Coverage and Test Cost 

Empirical data shows that the test process can be divided in two phases. A relatively 

small subset of TI (number of tests in Phase I see Figure 2.3) of the total set of tests 

provides a fault coverage ranging from 65% to 85% for most combinational logic circuits 

[39]. For Phase II of the test generation, the number of additional tests required is 

approximately a linear function of the number of untested faults remaining at the end of 

Phase I. Unlike Phase I, in Phase II each generated test tends to detect fewer faults than 

the one before it and the average cost per detected fault increases.  

For the purpose of simplifying the relationship, an exponential function can be used 

to approximately simulate Phase I and a linear function in Phase П on the assumption that 

Phase II could not reach a full coverage (100% of fault coverage) in practical testing. 

A relationship between the cost of test (proportional to test time or number of tests) 

and fault coverage has been suggested by Goel [39]. The quantitive expression of 

untested faults with tests for combinational logic circuits is given in (2.16) 

                                                  
⎟
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GBeTT a

I0                                                     (2.16) 

where: 

T0 = the number of tests required to achieve a maximum possible test coverage; 
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TI = the number of tests at the end of Phase I (see Figure 2.3) and is relatively small 

when compared with T0; 

G = the number of gates in the combinational circuit; 

B = the average number of non-equivalent single stuck faults per gate in the circuit; 

-k = the slope of Phase II of the curve in Figure 2.3 where k is the number of faults 

detected per test in Phase II; 

a
0eF −  defines the number of untested faults at the end of Phase I, and a ranges from 1 

to 2 for most circuits. 

Assuming that the test cost is proportional to the number of tests, a relationship 

between test cost and fault coverage can be derived,  
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Figure 2.3: Typical curve of untested faults versus the number of tests.                   
“a” is a constant whose value is in the range 1-2 for a given logic structure. 
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(0,1)f,C]r)fln(1[bpC cfttctttest ∈+−−=                                (2.17) 

where pt is the cost coefficient; bt is the coefficient of test characteristic, rt is the fault 

ratio, fc is the fault coverage of the test, Cft is the fixed cost of test.11  Figure 2.4 shows a 

plot of (2.17) using the values in Table 2.2.  

There is similar relationship between rework yield (yr) and rework cost (Crew), 

                   1) (0,y,C]r)yln(1[bpC rfrrrrrrew r ∈+−−=                              (2.18) 

 

                                                 
11 Cft accounts for fixed costs associated with testing, i.e., there is a minimum fixed cost for having even a 
very small fault coverage. 

Table 2.2: Example values of factors in (2.17) and (2.18). 
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Figure 2.4: Example relationship between the test cost and fault coverage. 
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Fault Coverage Threshold 

In (2.17) a small cost of test will be predicted for a small fault coverage. Actually, 

depending on the type of the test operation there is a minimum test cost that is 

independent of fault coverage at very small fault coverage, i.e., the capital expense of the 

test equipment. A threshold is defined as the minimum nonzero fault coverage that we 

can practically purchase to remove the non-effective test. For any fault coverages below 

this threshold, there is no test considered (zero fault coverage and zero test cost). An 
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Figure 2.5: Example relationship between the test cost                                   

and fault coverage with 10% threshold. 
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example functional relationship between test cost and fault coverage with 10% threshold 

is shown in Figure 2.5.   

The concept of having a choice of the fault coverage to purchase is straightforward – 

fault coverage is a measure of the ability of a set of tests (a collection of test vectors) to 

detect a given class of faults that may occur in a device under test, the fault coverage 

attained with a test is dependent on the number of test vectors exercised, which 

determines the test time and thereby the test cost.  In the case of rework, the rework yield 

(really the rework success rate) depends on types of faults that are selected for repair and 

potentially the thoroughness of that repair.         

Functional relationships between fault coverage and test cost, and rework yield and 

rework cost obviously depend on the type of system being considered. The relationships 

in (2.17) and (2.18) were used for the remaining work in this dissertation as examples 

only.  The methodology that is the subject of this dissertation, will work successfully with 

alternative models. 

2.4  Application of the TDR Model When Multiple 
Faults are Present     

It is common to have multiple independent faults in an electronic systems assembly, 

which require effectively independent TDRs.12 The TDRs for the multiple faults can be 

modeled as parallel test/rework operations that may occur at each process steps. Figure 

2.6 shows an example of a pair of parallel test operations that treat different fault types. 

                                                 
12 Note, a single type of test could have different fault coverages for different fault types. 



 43

 

In Figure 2.6, there are two types of test operations responsible for addressing two 

kinds of faults. The TDR can be divided into two parallel test operations, no rework is 

considered here for simplicity. According to the functional relationship in Figure 2.6, we 

have, 

                                                    in2in1in YYY =                                                    (2.19) 

where Yin1 and Yin2 could represent the product yield with respect to different 

independent defect mechanisms. If this is the case then,  
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Figure 2.6: Parallel test operations.
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if we denote the probability that faults of type 1 will happen as P1 and the probability of 

faults of type 2 is P2 (P1+P2=1),  then the following relationships can be derived, 

                                          1in11inin1 PYP1)PY(11Y +−=−−=                                      (2.22) 

 

                                          2in22inin2 PYP1)PY(11Y +−=−−=                                    (2.23) 

 

So given the probability of defects and the characteristics of the TDR, the yielded 

cost for multiple faults can be derived from the computation of single TDR operation. 

2.5  Relationship of the TDR Model to Loop Number    

Loop number is as common metric used to describing systems subject to rework. It is 

useful to relate the loop number to the TDR model formulation in this chapter. A tester 

can theoretically detect all faults with one test operation. In practice, for example, if there 

two kinds of possible faults—Fault A and Fault B, it is normal to set up the system so 

that it stops testing at the end of the  Fault A test portion of the test program, if any Faults 

A have been detected. The reason for this is that the presence of Fault A will make it 

difficult or even impossible to measure or test accurately some of Faults B. This can 

result in inaccurate diagnosis messages and possibly cause the system to indicate the 

presence of faults where none exist (false positives). So any parts in which both Faults A 

and Faults B are present will pass through the entire diagnosis/rework loop a minimum of 

two times. Therefore, the average number of diagnosis/rework loops or attempts, even if 

all diagnosis and rework is 100 percent correct, will be something greater than 1.0.  
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If the diagnosis and rework operations are 100 percent correct and additional faults 

are added during the rework process, then the loop number13 — average number of times 

each faulty part passes around the diagnosis/rework loop [14]  can be defined by,  

PFB
PFB PFB

 Number  Loop b+
=                                        (2.24) 

where PFB is the probability of a part being faulty—or the proportion of boards that 

contain one or more faults and PFBb is the probability of a failing part having both Faults 

A and B. For the single type of fault case, PFBb is zero and then the loop number will be 

1, which means that faulty parts with just one type of fault can be repaired completely 

after the first visit to the rework operation. 

 In practice, the rework operation is never performed correctly and completely for all 

defects on each visit to rework operation for the following reasons: 

1. The diagnosis from the tester may be incorrect or ambiguous. 

2. The diagnostic message may be interpreted incorrectly. 

3. The rework operation may cause another defect (characterized using rework 

yield). 

4. The tester may have ‘detected’ a non-existent defect (false positive). 

Whatever the reason, there will usually be more rework operations than the number of 

faults originally present in the parts. To allow for this in modeling rework operations, a 

correction factor to the calculations involving diagnosis or rework is often applied. This 

                                                 
13 The loop number corresponds to the rework attempts ― the number of rework iterations allowed in the 
Trich et al. model. 
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correction factor is usually referred to as the loop-number multiplier. There are several 

ways that this factor can be determined, but the simplest thing to do is to estimate a 

percentage of incorrect or unnecessary rework operations. This can be based upon past 

experience, if the data exists, or a best guess at what the figure might be. The loop-

number multiplier has the following relationship relative to the rework yield in Trichy et 

al.  TDR model, 

Loop Number Multiplier = rewrew Y -2  )Y -(1 1 =+                            (2.25) 

where Yrew is the rework yield. For example, if rework yield of the rework operation is 

0.8, the loop-number multiplier will be set at 1.2, which implies that 20 percent more 

rework operations than are theoretically required will take place. In this dissertation, the 

rework operation is characterized by rework attempts and rework yield instead of using 

loop number and loop number multiplier. 

2.6  An Alternative Model of TDR Operation Cost   

An alternative model for calculating the rework cost has been proposed in [40], which 

has been used to predict the cost of test, diagnosis, and rework activities in the 

manufacture of printed wiring assemblies (PWAs).  

The model in [40] calculate the cost of rework as, 

    ⎟⎟
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where  
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Mrew = total cost of rework equipment (reflow device, controller, fittings, inspection 

equipment, etc.),  

Wrew = wage paid to rework technician(s),  

trew = average time to rework a faulty PWA,  

CR.Prog = cost of initial reflow controller programming,  

S = number of shifts worked,  

N = number of years in the payback period (Note that 50 weeks per year times 40 

hours per week times 3600 sec/hour yields 7,200,000 seconds per shift-year). 

(2.26) relates the rework cost to the cost of rework equipment, and the wages and cost of 

software. Crew can be referred as the fixed cost of rework in (2.18) ― Cfr. But there is no 

relationship between the cost of rework and rework yield in (2.26) as in (2.18).  

The model in [40] also considers the rework attempts in the calculating the cost of 

TDR operations through the following formulations. Since each reworked PWA must be 

tested again, the diagnostic and rework cost per PWA for ith rework loop is written by, 

                              
1i

ctestrewdiagi FPY)x)(1CC(CCDR −−++=                               (2.27) 

where CDR is the cost of diagnosis and rework operations, Ctest, Crew, and Cdiag are the 

cost of test, rework and diagnosis operations respectively, xc is defined to be the 

proportion of reworked PWA’s, which contain a fault, FPY is the first pass yield (i.e., the 

fraction of PWA’s which pass the first circuit test). If the number of rework loops is n, 
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the cost of the TDR can be calculated by accumulating all the diagnosis and rework costs 

of the PWA for each rework loop and the cost of test. The final cost of the PWA is given 

by, 

        

1x
1)FPY)(x-)(1CC(C

C           

)FPY)(x-)(1CC(CCCTDR

C

n
Crewtestdiag

test

n

1i

1i
Crewtestdiagtest

−

−++
+=

+++= ∑
=

−

                       (2.28) 

(2.28) gives the calculation of cost of TDR operations for multiple rework attempts on 

the assumption that virtually all reworked PWA’s pass the second circuit test However, 

(2.28) does not consider the impacts of false positive and feature parameters of TDR to 

the cost of the PWA compared with Trichy et al. model. The model also does not discuss 

the functional relationship between the cost of test and fault coverage.  

2.7  Single TDR Process Flow Calculation 

For the purposes to demonstrate, Figure 2.7 shows a single TDR process model with the 

following assumptions imposed: 

• Whatever rework claims is repaired is in fact repaired, i.e., single pass rework 

• Rework, diagnosis and test do not introduce any new defects 

• The test step does not have any false positives. 
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Given the inputs Cin, Yin, and Nin, and the characteristics of each step in the process 

(shown inside the boxes), the number of parts, their cost, and yield can be computed on 

each branch (arrow) subject to the three assumptions above.  Using the relations 

developed in Section 2.2, the values of the costs, yields and quantities traced through the 

process are given by, 

                           651550CCC testin01 =+=+=  
                           ( ) ( ) 915.08.0YY 6.01f1

in01
c === −−  

                           87.51000.8NYPNN 0.6f
inin01

c ====  
 
                           651550CCC testin1 =+=+=  
                           12.587.5100NNN 01in1 =−=−=  
                           0.1250.81Y1P1S 0.6f

in1
c =−=−=−=  

 
                            902565CCC diag12 =+=+=  
                            ( ) ( ) 3.7512.50.71Nf1N 1d2 =−=−=  
 
                            902565CCC diag13 =+=+=  
                            ( ) 75.812.57.0NfN 1d3 ===  
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Figure 2.7: Single pass rework numerical example.   
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                           0112090CCC rew44 =+=+=  
                           ( ) ( ) 0.8758.750.91Nf1N 3r4 =−=−=  
 
                           0112090CCC rew45 =+=+=  
                           ( ) 7.888.750.9NfN 3r5 ===    
 
                           52115110CCC test502 =+=+=  
                           0.1Y02 =  
                           7.88NN 502 ==  
 
So, the total quantity of product continuing through the process (ultimately passed by 

the test) is given by (2.29),  

                                  95.387.885.87NNN 0201out =+=+=                                  (2.29) 

The yield of the product passed by the test step is derived from (2.30), 

             0.9214
95.38
87.88

N
NNY

 testby the passedproduct  all
 testby the passedproduct  goodY

out

50101
out ==

+
==             (2.30) 

The total money spent on all the product in this process is calculated in (2.31), 

                     $7106NCNCNCNCNC 02024422110101 =++++                         (2.31) 

So, the effective cost per passed part and the effective cost per good passed part (yielded 

cost) are given by (2.32) and (2.33),  

 

                                           50.74$
7.8887.5

7106Cout =
+

=                                           (2.32) 

                                             86.80$
9214.0

74.50CY ==                                                 (2.33) 

 
and the total fraction of the original product that is scrapped by the process is given by 

(2.34), 

                                            0.046
N

NN
S

in

42
total =

+
=                                          (2.34) 

Product scrapped by 
the rework 

Repaired product 
passed by the test 

Product successfully 
repaired by the rework 
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If we considered the process shown in Figure 2.7 without any rework (just scrapping 

the product that the test step considers bad on the first pass), the output could be 

calculated by (2.35) to (2.39), 

                                               5.87NN 01out ==                                                    (2.35) 

                                               0.915YY 01out ==                                                   (2.36) 

                                        $74.31
N

NCNC
C

out

110101
out =

+
=                                         (2.37) 

                                             22.81$
915.0

74.31CY ==                                                (2.38) 

                                             125.0
N
N

S
in

1
total ==                                                 (2.39) 

Comparing these results to the results with the diagnosis and rework process, we see 

that although the cost per passed product increased when rework was used (this should be 

intuitive), the yielded cost per passed product decreased.  In fact, if the yielded cost per 

passed product does not decrease when rework is used, then very possibly products 

should be scrapped rather than reworked. 

2.8  Calculation of the Yielded Cost 

After the calculation of accumulated cost and final yield for process flows has been 

performed, it is necessary to formulate the yielded cost. Yielded cost will be used as the 

objective function in the optimization process (see Section 3.5).  

Yielded cost (CY) has been defined as the effective cost per good product instance 

passed by the process flow, which is a ratio of the final cumulative cost and final yield, 

[15]: 
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out

out
Y Y

CC =                                                        (2.40) 

   The calculations of output yield and output cost have been categorized as the 

following: 

Case 1: Single-step process. There is just one process step and no TDR operation 

involved in the process. For example, consider the single assembly process in Figure 2.8, 

the assembly step has its own cost (Cassembly) and yield (Yassembly). Cin and Yin represent 

the incoming cost and yield respectively (determined by whatever activities take place 

prior to this process step). The calculation of the outgoing cost and yield of the process is 

given by (2.41) and (2.42) respectively. 

 
Assembly

(Cassembly, Yassembly)

Cin, Yin Cout, Yout

 
Figure 2.8: A simple non-test process flow. 
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Figure 2.9: A single-TDR process flow.  
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                                  assemblyinout CCC +=                                               (2.41) 

                                       assemblyinout YYY =                                                   (2.42) 

Case 2: Single-TDR process. If one TDR package is associated with the product (see 

Figure 2.9), the calculation of output cost and output yield are given by the Trichy et al. 

model in Section 2.2. The outgoing cost is: 

out

4321
out N

CCCC
C

+++
=                                          (2.43) 

C1, C2, C3, C4 and Nout can be calculated using Trichy et al. model based on the input cost 

and yield and given values of characteristics of the TDR operation, e.g., fault coverage 

(fc), rework fraction (fr), and diagnosis fraction (fd) etc. The outgoing yield after the TDR 

package is: 
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n

0i
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beforetestiinioutaftertest
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n

0i
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beforetestiinp

beforetestiinp
ioutaftertest

out  (2.44) 

Case 3: Complex process flows that include multiple assembly process steps and 

TDR packages and multiple branches. The final cost and yield of the process must be 

accumulatively calculated using a search algorithm to traverse each process step 

(including all possible TDR packages) according to the sequence defined by the process. 
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 During the search process, the algorithm will check the property of the next step 

(general assembly or TDR operation); if the step is a general assembly step then (2.41) 

and (2.42) in Case 1 are used to calculate the outgoing cost and yield after the step. If the 

step is a TDR package then (2.43) and (2.44) in Case 2 are applied to derive the output 

cost and yield of product after the package.  

For example, in the process flow shown in Figure 2.10, there are two assembly steps 

and one TDR inserted between them. In order to derive the final cumulative cost and final 

yield of the process, the search algorithm will start from step of “Assembly 1” and 

calculate the cost and yield after the “Assembly 1” step using equations from Case 1 

because it is a general assembly step. The Cafterassem1 and Yafterassem1 can be given by (2.45) 

and (2.46): 

assembly1in1afterassem CCC +=                                     (2.45) 

assembly1in1afterassem YYY =                                       (2.46) 

Next, Cafterassem1 and Yafterassem1 become the input cost and input yield to the TDR 

operation respectively. The outgoing cost (CafterTDR) and yield (YafterTDR) can be calculated 
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Diag.Rework
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fd
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Cafterassem 1

Yafterassem1

CafterTDR

YafterTDR

Figure 2.10: An example process flow with two assembly steps and a TDR package. 
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using the equations from Case 2. The last process step “Assembly 2” in the process flow 

in Figure 2.10 is another assembly step so the final cumulative cost and final yield of the 

product after the entire process can be derived by (2.47) and (2.48) respectively:  

assembly2afterTDRout CCC +=                                        (2.47) 

                                       assembly2afterTDRout YYY =                                         (2.48) 

Another example process flow with two incoming branches is shown in Figure 2.11. 

To calculate output yield and cost after the branched process, first the outgoing cost and 

yield for each branch is calculated then the branches are merged together by adding the 

costs and multiplying the yields. The cost (Caftermerge) and yield (Caftermerge) after two 

branches are merged in the process flow in Figure 2.11 are given by (2.49) and (2.50) 

respectively: 

)C(C)C(CC
2211 assemblyinassemblyinaftermerge +++=                   (2.49) 

 )Y)(YY(YY
2211 assemblyinassemblyinaftermerge =                            (2.50) 
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Figure 2.11: An example process flow with two incoming branches. 
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The final output cost and yield after “Assembly 3” step are calculated by (2.51) and 

(2.52): 

3assemblyaftermergeout CCC +=                                   (2.51) 

3assemblyaftermergeout YYY =                                      (2.52) 

The cumulative calculation of output cost and yield for simple processes can be easily 

performed using hand calculations or spreadsheets. For general analysis of complex 

process flows with multiple branches, a search algorithm is required to traverse each 

process step in the process flow and control the accumulation of final cost and yield of 

product. The details of searching algorithm for the complex process flow will be 

addressed in Chapter 3. 

2.9  Summary 

This chapter reviewed the development of a comprehensive TDR model which integrates 

the computations of cost and yield of systems into the process flow with the 

considerations of TDR characteristics ― fault coverage, false positives, etc., in which 

several corrections of the formulations  are made to Trichy et al. model. The variable test 

cost model was developed to define the functional relationship between fault coverage 

and test cost instead of using a fixed constant. The extension of the model to include 

multiple fault types and rework loops and an alternative TDR cost model were also 

discussed in this chapter. To demonstrate the application of Trichy et al. model, a 

simplified scenario is given to illustrate the calculation of process flow.  
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After the single TDR operation is resolved, the next issue is to cumulatively compute 

the objective function of feature parameters of a general process flow that includes 

multiple TDR operations. For the purpose of derivation of the objective function, search 

algorithms are needed to traverse the process flow with the computation performed 

according to the sequence of process steps. The Chapter 3 presents a graph-based search 

algorithm to fit to the typical structure of a general process flow.  
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Chapter 3                                                                               
 
 
Search Algorithm for Use in the 
Process Flow 
 
 
 
Using Test/Diagnosis/Rework model in Chapter 2, the feature parameters of a single test 

step can be computed. A general process flow may, however, have many different TDR 

activities located within it. The next issue to be addressed is how to obtain the objective 

function (yielded cost, i.e., cost divided by yield) of an entire general process flow. For 

the general analysis, a portion of a complex process flow is given in Figure 3.1. The 

corresponding simplified parameters describing the process steps are also defined within 

the boxes representing each of the process steps. 

In order to analyze general process flows, which can be viewed as a directed graph ― 

digraph14 [41, 42], Graph Theory is introduced to transform the process flow into a 

directed graph, and Waiting Sequential Search (WSS) algorithms are applied to traverse 

all the process steps of the process flow to obtain the objective function for the purpose of 

optimization.   

                                                 
14 A directed graph is one in which the edges have direction. Directed edges are called arcs. 
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3.1  Graphical Representation of a Process Flow 

First, we review basic graph notations that are used in this dissertation. A graph G  

consists of a set of nodes V and a set of edges E, >=< EV,G . Here G denotes the whole 

process flow, where V denotes the set of process steps and an edge EYX, >∈<  denotes 

the directed flow between the two process steps. The degree of a node is the number of 

the neighbors adjacent to it. We write YX →  when EYX, >∈< is in a directed graph 

[43]. We define PRED(X)  as the set of all predecessors of node X, and SUCC (X) as the 

set of successors of X. if YX → , then PRED(Y)X∈  and SUCC(X)Y∈ . The  

indegree id(X)  of a node X is the cardinality of PRED (X) and the outdegree od(X)  of a 

node X is the cardinality of SUCC (X). The )indegree(X  is the number of edges of the 

from XW → , which means that there are branches merge to X at the amount of 
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Figure 3.1: A portion of a complex process flow. 
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)indegree(X , and the X)outdegree(  is the number of edges YX → . If XW → , then 

id(X)W∈ and od(W)X∈ . So the od(W)  is a subset of SUCC (X) and the id(X)  is a 

sub set of PRED (X). The graph representation of the process flow in Figure 3.1 is shown 

in Figure 3.2. 

3.2 Definitions of Basic Types of Vertices (Process 
Steps)  

From the analysis of a generic process flow like the one in Figure 3.2, four types of basic 

steps have been identified. The process steps can be defined in the following ways (v 

denotes the process step):    

• Start Step, 0id(v) and 1od(v) ==   

There are no inputs to the Start Step and just one output from it.  There may be 

multiple Start Steps in a complex process flow. 
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Figure 3.2: Graphical representation of process flow given in Figure 3.1. 
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• Sequence Step, 1id(v) and 1od(v) ==   

There is one input and one output for a sequence step.  Sequence Steps are the most 

common type of step in process flows for electronic systems. 

• Cross Step, 1id(v) and 1od(v) ≥=  

There are multiple inputs and just one output associated with this kind of step. The 

complexity of the problem is significantly increased by each Cross Step in the process 

flow.    

• End Step, 1id(v) and 0od(v) ≥=   

An End Step represents the end of the process flow, which merges all the branches to 

one. The objective function of the process flow is derived from an End Step. There may 

only be one End Step in a process flow. 

The graph representation of process flow is called an in-branching tree15 in which 

there is always the path in the graph from every Start, Sequence and Cross step to the End 

step.     

3.3  Representations of Graphs ─Adjacency Matrix 

There are various matrix representations of graphs, each of which take a different view of 

the graph that is used for a different purpose [42]. An adjacency matrix [41,42] is the 

                                                 
15 In-branching tree is defined as a rooted spanning tree in a directed graph, such that there is a path from 
each vertex to the root, as opposed to an out-branching tree (a rooted spanning tree in a directed graph, such 
that there is a path from the root to each vertex). 
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most suitable to represent the problem discussed in this dissertation because the edges 

from all the vertices that belong to od(X) to process step X need to be checked to 

determine whether they have been visited before continuing the computation of the 

characteristics of X. It is very convenient to obtain the adjacency information among the 

vertices using adjacency matrix.  

An adjacency matrix representation of a graph describes the graph in terms of the 

adjacency of every pair of vertices in G. A matrix S is called the vertex adjacency matrix 

of a graph. The matrix S is always a square matrix. Elements on the diagonal of S 

represent loops. The number of nonzero elements in S is less than or equal to the total 

number of arcs and loops in a directed graph. The Table 3.1 gives the adjacency matrix 

representation of Figure 3.2. 

Table 3.1: Adjacency matrix of complex process flow given in Figure 3.1. 

 V2 V4 V6 V7 V8 V9 V10 V14 V15 V21 V22 V25 V27 V29 V33 V42 V44 V45 V47 V53 V66 V70
v2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
V8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
V22 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V25 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V27 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
V29 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
V44 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
V47 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V70 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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3.4  Waiting Sequential Search (WSS)  

Various search algorithms for graphs have been described in the literature, [42-46].  

These search algorithms are applicable to problems that need to find shortest path from 

one vertex to another, to check whether the graph is connected or to find a spanning tree. 

The problem in this dissertation requires traversing the whole graph of the process flow 

according to the sequence among the process steps from Start to End. Existing algorithms 

that have been applied to resolve similar search problems include [47-54]. Most of these 

algorithms consider the stochastic process in the graph of the fault diagnosis and repair 

but there is no projection on the practical process flow. For the process flow problem 

addressed in this dissertation, there are several specific features different from the 

classical ones, which make it attractive to propose a new search algorithm to perform an 

efficient search.  

From the Figure 3.2, the following features of the general complex process flow can 

be observed:  

• The  1od(v) ≤ is always true for all the vertices (process steps) in the process flow; 

• There are sequential search requests for the graph, i.e., only when all the 

predecessors PRED(Y)of v(Y)have been visited, then v(Y)could be visited. 

According to this structure of the process flow, a waiting sequential search algorithm 

has been developed to search all the steps of the process flow. WSS begins from the 

lowest-numbered vertex that belongs to a Start Step then proceeds to search the next step. 

By checking the type of the successor, the algorithm decides to continue to search to the 
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next Sequence Step or wait at the Cross or End steps. After moving to the next step, the 

corresponding computation of feature parameters of the previous step is performed and 

the outcome is stored in a data table in which all the property information associated with 

process steps are recorded. If Cross or End types of steps are encountered, the visitation 

status of all predecessors will be checked. If all the predecessors have been checked, the 

searching continues, if not, the search begins from another Start Step type of vertex until 

the last Start Step vertex is visited. The algorithm requires that the searching of the next 

step continue only after all the branches of the present step have been visited. There are 

waiting actions for the sequential search based on the characteristics of the process flow. 

A detailed flowchart of the algorithm is shown in Figure 3.3. 
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Figure 3.3: Waiting Sequential Search (WSS) algorithm flowchart. 
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The WSS algorithms have been applied to analyze the process flow in Figure 3.1. 

From the Figure 3.4, it can be clearly seen that the WSS is efficient for solving the 

problem of searching in large-scale process flow — an especially complicated low-

outdegree digraph. WSS is efficient because every step is visited only once in the entire 

search and there is no recurring traverse repeated in WSS, which means that all step 

nodes in the graph can be traversed using WSS with time complexity of O (l) ( l is the 

number of process steps in the process flow). 

The searching process of the process flow in Figure 3.1 is described below: 

1. First, begin from the lowest number of Start steps (2), (2) → (6), check whether 

all   the other branches have been searched, compute then wait; 

2. (10) → (8), check the other branches and wait; 

3. (25) → (14), wait; 

4. (27) → (22), wait; 

5. (29) → (7), wait; 

6. (33) → (6), wait; 

7. (42) → (45)→ (47) → (9), wait; 

8. (44) → (4) → (7) → (15) → (6) → (14), wait 

9. (53) → (70), wait; 

10. (66) → (70) → (21) → (22) → (14) → (9) → (8), all the branches have met and 

the process ends.  

 



 67

 44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

(a) (b)

(c) (d)

(e) (f)  

 44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

44 4

29 7 15

2

6

33

14

25

53

66

70 21

22

27

42
45

47

9 8

10

(g) (h)

(i) (j)

Figure 3.4: Applying a Waiting Sequential Search (WSS)                             
to the process flow in Figure 3.1. 
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The search index (SI) that represents the searching sequences is shown in Table 3.2. 

During the search of the process flow, the extended adjacency metrics (EAM) would be 

used to decide which is the successor of the vertex being visited.  To form the EAM, the 

adjacency matrix is extended using information describing the flow between the two 

steps. For instance, the property of Met16 of the flow will be recorded in the matrix after 

the successors have been reached. The adjacency matrix also needs to exchange data with 

the properties array of the process steps, in which the type, name, description, etc. are 

recorded for the program use. It becomes complicated to represent all the information of 

a more than ten-vertex graph making the use of data table17 necessary. Data tables are 

also an effective way to transfer the data to the extended adjacency metrics when graphs 

become large. The process of data exchange is described in the Figure 3.5.   

                                                 
16 The property Met is a Boolean bit used to record whether all the branches that merge into process step X 
have been traversed. If so, Met = True; if not Met = False. 
17 Data table describes two-dimension relationship among the data objects [55].  

Table 3.2: Search index (SI) of the vertices in the process of WSS to the process flow. 

v v2 v4 v6 v7 v8 v9 v10 v14 v15 v21 v22 

SI(v) 1 11 14 12 22 21 2 20 13 18 19 

 V v25 v27 v29 v33 v42 v44 v45 v47 v53 v66 v70 

SI(v) 3 4 5 6 7 10 8 9 15 16 17 
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3.5  The Multi-Variable Optimization Function 

The objective of optimizing TDR location(s) and characteristics is to minimize the 

yielded cost [15] of the entire process flow. The yielded cost we are interested in is the 

final cost per product instance (after the final processing step and/or TDR operation) 

divided by the final product yield.  This yielded cost gives a measure of the effective cost 

per good product instance after all the manufacturing and TDR operations are completed.  

The final cost per product instance and yield are determined by accumulating (sum or 

product) the individual process step costs and yields and the TDR operation costs and 

yields ((2.5) and (2.15)) in the appropriate sequence through the process.   

The objective function in which feature parameters of all possible TDR operations are 

considered can be derived from sequential cumulative computation from the Start Steps 
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Figure 3.5: Data exchange in the implementation of WSS to the process flow. 
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to the End Step. When the WSS algorithm (discussed in Chapter 3) traverses the entire 

process flow, a cumulative function is computed for use as the objective function that 

will be minimized in the optimization.  The optimization problem becomes: 

                                       )xx(xCmin m,2,1Xx Y L
∈

                                               (3.1) 

Equation (3.1) also can be written as (3.2) 

)xx(xY
)xx(xCmin

m,2,1

m,2,1

Xx
out

out

L

L

∈
                                               (3.2) 

where,  

 m = number of feature parameters to be optimized; 

 CY = yielded cost of the process flow, cumulative cost (Cout) divided by final yield 

(Yout). 

In the optimization, first the TDR operations would be placed in all possible locations 

or be chosen according to expert suggestions. The fault coverage (
icf ), rework yield (

irY ) 

and rework attempts for the ith TDR operation need to be optimized in order to minimize 

the total yielded cost of the process flow. For example, for the complex process flow in 

Figure 3.1, there are 22 (including the location after the End Step-8) possible TDR 

operation locations following each of the process steps if there were no specific location 

constraints as to where a TDR operation could or could not be placed provided by the 

user. If just fault coverage and rework attempts ( ar ) of the TDR operations are to be 

optimized, the objective function can be written as (3.3),  
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[0,10])X [0,1],(X ),r(fCmin 21a,cYXr,Xf 2a1c

∈∈
∈∈               (3.3) 

Equation (3.1) is one possible objective function. The objective function could be 

changed to satisfy the specific manufacturing process requirements. For example, (3.1) 

can be divided into two separate objective functions if the manufacturer focuses more on 

the cost or the yield of products individually.  In this case (3.4) is performed to minimize 

the cumulative cost of process and/or (3.5) is used to maximize the final yield of 

products. 

)xx(xCmin m,2,1outXx
L

∈
                                         (3.4) 

)xx(xYmax m,2,1Xx out L
∈

                                         (3.5) 

Other objective functions that represent some weighted combination of cost and/or 

yield are also possible. One could also formulate objective functions that include 

minimization of Nin or maximization of Nout (Nin and Nout are given by (2.11), (2.6) and 

(2.12)). 

In the Chapter 4, Real-Coded Genetic Algorithms (RCGAs) are applied to minimize 

the objective function with feature parameters constrained to practical ranges. Because of 

the objective-independent property of Genetic Algorithms, the objective function can be 

modified without changing the optimization algorithm necessarily. Section 3.6 provides 

the data structures and pseudo code of WSS algorithms for reference. 
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3.6. Data Structures and Pseudo-Code for WSS                                   
Implementation 

The following Pseudo Code defines the class ‘process step’ representing the type of 

vertex and ‘flow between two steps’ as the edge. The method ‘SeachInNextStep’ 

implements the searching all through the process flow according to Figure 3.3. 

Digraph Vertex ― process step 
 
{ 
  Double Array Properties [ v ] 
  Integer SearchIndex [ v ]  
  Integer Array NumberOfSteps [ v ] 
} 
 
Digraph Edge ― flow between two steps 
 
{ 
  Integer Array ExtendedAdjaencyMetrics [E ] 
} 
 
Function SearchInNextStep () 
 
{ 
   Initialization  
 
  { 
     Inputs: 
     ExtendedAdjacencyMetrics [n, n] By Reference     
     Properties [n] By Reference     
     Integer n NumbersofStartSteps      
     Integer Array Start [n] 
  } 
  Integer i =0 
  For i =0 to n 
   
  { 
    Integer j=0 
    For j=0 to n  
     {      
   
      If  AdjacencyMetrics [Start[i], j] =1 then 
       { 
         Select case properties [j]. Position 
                Case “Sequence” 
                { 
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       Compute  
        
       { 
        Select Case Properties [j].Type 
        Case “General Fab.” 
         
       {                                  

          

stepinout

stepinout

YYY

CCC

⋅=

+=
LLLLLL  

        } 
        Case “Test”    
        
        {   

          

test
c

inout

c
in

test)in
out

Y)f(1YY

fY

C(CC

⋅−=

+
=

LLLLLL                                                      

        } 
        }   
        Case “Cross” or “End”    
        

   {                     
         Integer k =0 
         For k=0 to n 
         {         
          Boolean AllMet = True 
          If ExtendedAdjacencyMetrics [k, j] .met =0 then  
          AllMet=False 
          End if 
         }                     
         Next k 
         If AllMet then  
          
         {                                                       
          Compute {Merge the branches} 
          If Properties [j]. Position =”End” then 
          Exit  
          End if 
         } 
         End if 
         } 
         Next j 
   } 
   Next i 
 
Outputs: 
 ExtendedAdjacencyMetrics[n,n] 
} 
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3.7  Summary 

This chapter starts from a single TDR calculation model discussed in Chapter 2 and 

extends it to the computation of the yielded cost for the multiple TDRs process flow, in 

which the directed graph is used to represent it with the definitions of all types of vertices 

and a waiting sequential search algorithm is developed to traverse each step of the 

process flow with all possible TDR operations included. A multi-variable objective 

function to minimize the cumulated yielded cost of the process flow is proposed to be 

optimized using the optimization algorithm discussed in the next chapter. 
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Chapter 4           
                         
                                              
TDR Optimization with Real-Coded 
Genetic Algorithms (RCGAs) 
 
 
 
In Chapter 3, the multi-variable objective function that needs to be optimized was 

obtained by applying Waiting Sequential Search (WSS) algorithms to search a process 

flow. The next issue is optimizing the feature parameters of the candidate TDR 

operations to reach the global minimum of the yielded cost of the process flow. Complex 

process flows with hundreds of process steps are not uncommon, [56]. A general 

optimization of such a process flow requires an equally large stream of TDR operations 

resulting in several hundred variables to be optimized for the tradeoff analysis. To 

optimize feature parameters of possible TDR operations in order to find the global 

optimum of yielded cost in the process flow, RCGAs are used. This chapter discusses the 

use of Real-Coded Genetic Algorithms (RCGAs) to perform the concurrent optimization 

of TDR locations and feature parameters.  

A comprehensive comparison of optimization methods has been presented in [57]. 

There are many traditional deterministic algorithms available to solve optimization 
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problems for a local minimum. Among optimization algorithms, Gradient-based Methods 

(GMs) are well-known optimization methods, which probe the optimum by calculating 

the local gradient information [58]. There are many other algorithms available in addition 

to these. The above methods all require the evaluation of gradient information in order to 

solve problems and can only optimized a few continuous parameters [57]. Gradient 

evaluations can become difficult and time-consuming when complex objective functions 

are present. Probabilistic Global Optimization (GO) methods like simulated annealing 

[59] and Genetic Algorithms [60], do not require gradient information and taking cost 

function derivatives and have a capability of finding a global optimum, thus avoid many 

of the drawbacks of traditional optimization methods.  

Recent work compares GO methods in terms of effectiveness (accuracy), efficiency 

(number of needed function evaluations) and reliability [61]. Genetic algorithms (GAs) 

are stochastic, directed search algorithms that have proved useful in finding global 

optima in both static and dynamic environments [62, 63]. GAs deal efficiently with a 

large number of parameters and simultaneously searches from a wide sampling of the 

solution range [63-65], which fits well to the characteristics of optimization problem 

introduced in the dissertation.18  

4.1  Introduction to Real-Coded Genetic Algorithms 

Finding a global optimum in a continuous domain is challenging for Genetic Algorithms 

(GAs). Traditional GAs use binary representation that evenly discretizes a real variable 

                                                 
18 It is outside of the scope of the present work to determine the “best” optimization approach to use to 
solve the TDR location problem. Rather, demonstrating that the optimization can be done and produce a 
useful result is sufficient for the present effort. 
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space. Although Binary-Coded GAs (BCGAs) have been successfully applied to a wide 

range of optimization problems, they suffer from disadvantages when applied to the real-

world problems involving a large number of real variables [65]. Since binary substrings 

representing each parameter with the desired precision are concatenated to represent an 

individual, the resulting string encoding a large number of design variables could have an 

impractical string length. For example, the string length associated with a process flow of 

100 process steps is approximately 1000 (assuming a precision of three digits), see (4.1): 

                                           Stringlength= 1000
log2

3100 =×                                          (4.1) 

GAs would perform poorly for such problems. Previous applications have avoided this 

problem by sacrificing precision or narrowing the search regions prior to the 

optimization. However, for the problem addressed in this dissertation, such approaches 

might exclude the region that actually has the global optimum.  

Another drawback of the BCGAs applied to parameter optimization problems in 

continuous domains comes from discrepancy between the binary representation space and 

the actual problem space. For example, two points close to each other in the 

representation space might be far apart in the binary represented problem space. It is still 

an open question to construct an efficient crossover operator that is suited to such a 

modified problem space. A simple solution to these problems is the use of the floating-

point representation of parameters [66-69]. In these real-coded GAs, an individual is 

coded as a vector of real numbers corresponding to the design variables. The real-coded 

GAs are robust, accurate, and efficient because the floating point representation is 

conceptually closest to the real variable space, and moreover, the string length reduces to 
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the number of variables, Figure 4.1 gives an example of representation in BCGAs and 

RCGAs.  

In Figure 4.1, there are 3 design parameters that range from 0.0 to 0.7 in the objective 

function. If using binary encoding method, 9 bits (three bit for each one) in memory need 

to implement it. However, switching to the floating-point encoding, just 3 bits are 

needed. A real-coded representation can save more memory space and reduce the 

computing time dramatically when the objective function becomes more complex.  

The objective of this chapter is to identify and apply robust and efficient GAs 

applicable to optimization of location(s) and characteristics of TDR operations in the 

process flow of electronic systems assembly. To achieve this goal, the idea of the 

dynamic coding is incorporated with the use of the floating-point representation. The 

real-coded GAs are expected to possess both advantages of the binary-coded GAs and the 

 

Figure 4.1: An example of binary and floating-point representations [70].  
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floating-point representation to overcome the problems of having a large search space 

that requires continuous sampling.  

4.2  The Application of RCGAs to the Process Flow 

The following subsections focuses on the application of RCGAs to the optimization of 

TDR operations (see Figure 4.2). The comparisons of the binary and float-point 

representations of GAs are also provided to make their similarities and differences clear. 

GAs have three operators: selection, crossover, and mutation. Selection is devised to 

inherit good-working individuals from generation to generation. If an individual has a 

relatively high fitness value, the chances are greater that its offspring will be present in 

the next generation based on a fitness-based selection rule. This operator of selection is 

 Initialization

Evaluation

Selection

Crossover

Mutation

Temination

 

Figure 4.2: GA optimization process. 
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an artificial version of natural selection. In the crossover phase, two individuals in a 

population are randomly selected. And they exchange their bits from the crossing site 

determined by another random number. During the mutating process, every bit has an 

equal probability of being replaced by its complement number. This is an imitation of a 

natural crossover. Each item in Figure 4.2 will be discussed in the following sections.  

4.2.1 Chromosomal Representation 

The use of the floating-point representation originates in Evolutionary Programming (EP) 

and Evolutionary Strategies (ESs). In the floating-point representation, an individual is 

characterized by a vector of real numbers. It is more natural to use the floating-point 

representation for real parameter optimization problems because it is conceptually closest 

to the real space, and moreover, the string length is reduced to the number of design 

variables. It has been reported that real-coded Evolutionary Algorithms (EAs) 

outperformed binary-coded EAs in many design problems [66, 67]. Therefore, the GAs 

used in this dissertation adapt the floating-point representation.  

An example of binary and floating-point representations is illustrated in (4.2). BCGA 

has chromosomes made of binary bits 0 and 1 (sb), and RCGA has chromosomes made up 

of real numbers (sr), 
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where sb and sr represent concatenated strings of BCGA and RCGA, respectively.  For 

the process flow in Figure 3.1, the total number of parameters is 44. 

4.2.2 Initial Population 

Once a suitable representation has been decided upon for the chromosomes, it is 

necessary to create an initial population to serve as the starting point for the genetic 

algorithm. This initial population is usually created randomly. From empirical studies 

performed over a wide range of function optimization problems, a population size of 

between 30 and 100 is usually recommended, [65]. 

4.2.3 Selection of Mating Pairs 

This phase selects pairs of individuals from the mating pool that will produce offspring 

for the next generation. The commonly used approach is to assign each individual a 

probability of selection on the basis of its fitness. Goldberg and Richardson also suggest 

selection according to fitness modified by sharing function for the maintenance of 

diversity in the population [71]. A widely used method is the fitness-proportional 

selection [64]. In this method, the selection probability of each individual is calculated by 

dividing its fitness by the sum of the fitness of all individuals. Then, the parents are 

selected by either roulette-wheel selection [64] or Stochastic Universal Sampling (SUS) 

[72]. Figure 4.3 shows the operation of the roulette-wheel selection that assigns a portion 

of the wheel proportional to the selection probability and starts spinning the roulette 

wheel: each time, a single individual is selected.  



 82

4.2.4 Crossover 

Crossover is a process in which new individuals are generated by exchanging features of 

the selected parents with the intent of improving the fitness of the next generation. These 

new individuals are then subjected to mutation. There are a number of different ways in 

which the recombination operation can be implemented. The conventional crossover 

operators include one-point, two-point, multi-point, and uniform crossovers. In the one-

point crossover for the bit-string representation, the bits are swapped between the two 

parents in segments at a random point of a chromosome in between the bits, [64]. In the 

floating-point representation, the vector components of two parents are swapped in 

groups at a random space of a vector between the vector components. For example, given 

a five dimensional space, Parent1 has a vector (x1, x2, x3, x4, x5) and Parent2 has a 

vector (y1, y2, y3, y4, y5) and the crossover point was selected to be 3, then the offspring 

will carry vectors (x1, x2, x3 y4, y5,) and (y1, y2, y3, x4, x5). An example of one-point 

crossover is illustrated in Figure 4.4. Two-point, multi-point, and uniform crossovers for 

the floating-point implementation can be defined in the same manner. 

 

Figure 4.3: Roulette-wheel selection. 
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4.2.5 Mutation 

The function of mutation is to keep diversity of a population and promote the searching 

in the solution space that cannot be represented by the strings of the present population. 

One of the most common mutation methods in real-coded GAs is uniform mutation by 

which a selected real-valued gene is transformed randomly between its upper and lower 

bounds. The principle of uniform mutation is shown in (4.3), 
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Figure 4.4: One-point crossover for floating-point representation. 



 84

4.2.6 Elitist Strategy 

Since evolution in GAs depends on stochastic operators, GAs do not guarantee a 

monotonic improvement in objective function value of the design unless deterministic 

overlapping systems are used. To ensure a monotonic improvement, De Jong [73] 

proposed so-called elitist strategy, in which some of the best individuals are copied into 

the next generation without applying any evolutionary operators. GAs incorporating non-

overlapping system usually adopt this strategy.  

With RCGAs integrated, the framework shown in Figure 4.5 has been developed 

aimed at providing intelligent solutions to the placement of TDR operations in process 

 Generation of
Process Flow

 Placement of  Test/
Diagnosis/Rework Package

Pre-Analysis of Process
Flow

Searching in the Graph

Evaluation of
Objective Function

GA Optimization

Optimum
TDR Locations                                                     

Figure 4.5: The framework of process flow cost optimization modeling system. 
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flow. The system gives suggestions on where the TDR operations should be placed or 

removed and the optimal values of feature parameters of TDR operations based on the 

optimization of a yielded cost objective function. The following sections provide a 

verification of the optimization methodology by comparison with functional computation 

in simple cases and general linear and nonlinear (multi-branch) process flow 

demonstrations.  

     
4.3   Verification of the Optimization Model 

To provide testing and demonstration of the approach, the following test cases are used:  

• Test Case 1: Single test case, fault coverage varies and no rework is included;   

• Test Case 2: One-TDR operation case in which fault coverage and rework yield 

are allowed to vary (a maximum of one rework attempt assumed); 

• Test Case 3: A general linear process flow case (no branches), fault coverage and 

rework yield are allowed to vary (a maximum of one rework attempt assumed); 

• Test Case 4:  A general process flow case with multiple branches and variable 

fault coverages and rework yields (a maximum of one rework attempt assumed). 

Test Cases 1 and 2 are trivial and used to validate the optimization model by 

comparison with closed-form calculations of the yielded cost associated with the process 

flow. The cases are categorized into high-yield and low-yield inputs in order to reflect the 

impacts of input yield on the optimum solution. Test Case 3 provides demonstrations of 



 86

the optimization of TDR characteristics in general linear process flow. Test Case 4 is a 

general process flow with multiple branches and demonstrates the value of the 

optimization methodology on a case where the optimum placement and characteristics of 

the TDR operations is not obvious. 

4.3.1 Validation from the Simple Cases 

For the simple process flow in Figure 4.6, the objective function can be formed by step 

computation. The corresponding optimization is presented for each case: 

If there is no test operation in the process flow shown in Figure 4.6, the Cout and Yout 

are computed separately using (4.4) and (4.5) respectively, 

                                              21inout CCCC ++=                                                    (4.4) 

                                               21out YYYY in=                                                      (4.5) 
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Yin
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Figure 4.6: Simple case with just one test step. 

Table 4.1: Values of input parameters 

 Cin Yin C1 Y1 C2 Y2 
High-Yield 21 0.97 10 0.98 7 0.93 
Low-Yield 21 0.48 10 0.32 7 0.93 
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the yielded cost is derived in (4.6)         
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To evaluate the expression, the input parameters in Table 4.1 are used. Substituting the 

inputs of Table 4.1 into (4.6), the yielded cost is given as (4.7),19 

                                          
⎩
⎨
⎧

=
yield)-(high    41.64
yield)-(low    266.02

CY                                             (4.7) 

 
4.3.1.1 One-Test Case (Test Case 1):  

     If one test step is inserted between Step 1 and Step 2 in Figure 4.5, the cost and yield 

of the process flow gives by (4.8) and (4.9): 
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which results in a yielded cost of , 
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substituting (2.17) into (4.10), the yielded cost of the process flow becomes, 

                                                 
19 Equation (4.7) is used to compare with the optimum obtained by the RCGAs applied in Test Case 1 and 
Test Case 2. 
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Equation (4.11) can be written as: 
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Figure 4.7 plots (4.12) for the high-yield and low-yield cases define in Table 4.1. The 

following conclusions can be drawn from Figure 4.7: 
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1. For high-yield inputs, the yielded cost of the one-test case primarily depends on the 

change of )fln(1 c−  instead of the power of the fault coverage (i.e., D in (4.12) is very 

small). The minimum of yielded cost should be at the point when the fault coverage is 

zero. This is to say that the minimum yielded cost is for no test inserted into the process 

flow, which makes intuitive sense because the input to the process flow is high yield. 

2. For low-yield inputs, we can see that (4.12) clearly differs from the characteristic 

of curve of yielded cost at high-yield inputs due to increasing importance of the power of 

the fault coverage in determining the yielded cost of the product resulting from the 

process flow. The minimum of yielded cost should be between $260 and $280 while the 

optimal fault coverage falls into the range from 0.2 to 0.3.  

Verification for High-Yield Inputs      

The results of the simple calculation above have been used to check the optimization 

methodology developed in this proposed research. RCGAs are applied to cases of high-

yield and low-yield inputs respectively. The specification of RCGAs is summarized in 

the following: 

• Maximum generation= 20, 

• Population size= 50, 

• Mutation probability= 0.1, 

• Crossover probability= 0.95, 

• fT = 10% (fault coverage threshold),  

• Termination criteria = maximum generations. 
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The threshold of fault coverage (fT) has been defined in Chapter 2 as the minimum 

nonzero fault coverage that we can practically purchase. For any fault coverage below 

this threshold, there is considered to be no test present (zero fault coverage and zero test 

cost).20 In the optimization model, the algorithm decides whether the value of fault 

coverage associated with the best fitness for a particular TDR is below the threshold in 

each generation.  If it is, the test step is discarded, which means there is no need for a test 

at the particular location and also the corresponding diagnosis/rework operation will 

obviously not be present. The threshold of fault coverage is set to 10% in the analyses 

performed in this dissertation.  

The results from the optimization of yielded cost in the single-test case at high-yield 

inputs are shown in Figure 4.8. In the first generation, the RCGAs have found the 

optimized solution and show the best fitness (the best value of objective function in one 

population) of 41.64 when the corresponding fault coverage is set at a very small value. 

After the evolution of 20 generations (termination criteria), the algorithm converges to 

the same value of yielded cost, which agrees with (4.7). In the last generation, the fault 

coverage optimization terminates at a small amount of fault coverage (0.015), lower than 

the fault coverage threshold for testing to be present. The test is thus removed from the 

process flow based on the optimization analysis from the RCGAs, which coincides with 

the characteristics of Figure 4.7 (high-yield relation) and (4.7) for high-yield input, where 

no test step is considered. In addition to validating the optimal yielded cost of the process 

flow, RCGAs are continuously convergent in searching for the optimum, see Figure 4.8, 

                                                 
20 Effectively, the model for test cost versus fault coverage has a “step” in it at the threshold fault coverage, 
i.e., there is a minimum investment in the test operation to obtain any fault coverage. 
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and the mean (mean value of objective function in one population) of yielded cost levels 

out as well. 

Verification for Low-Yield Inputs      

The specification of RCGAs used in the low-yield input scenario is identical to that 

applied in the high-yield case except the maximum number of generations has been 

increased to 50. The optimal solution of $265.1 and a fault coverage of 0.27 that agrees 

with the observation from Figure 4.7 (low-yield relation) and it is smaller than $266.02 

― the result computed in (4.7) for low-yield input with no testing, which shows the 

yielded cost in no-test case is not the minimum. 

 

41

42

43

44

45

46

47

48

49

1 3 5 7 9 11 13 15 17 19 21

Number of generations

Y
ie

ld
ed

 c
os

t (
$)

Mean value of 
yielded cost

Best fitness

 
Figure 4.8: Optimization of yielded cost in the single-test case                            

(Test Case 1) at the high-yield level. 
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4.3.1.2 One-TDR case (Test Case 2) 

In this test case, a complete TDR operation (including rework) is placed between the two 

process steps in Figure 4.9 in order to trace the effect of rework yield and fault coverage 

on yielded cost. Optimizations of one-TDR case with feature parameters at high-yield 

and low-yield inputs in Table 4.1 are given in Figure 4.10 and 4.11. The optimal values 

of fault coverage and rework yield validate the same conclusion as Test Case 1 that there 

is no need for a TDR operation for high-yield inputs. In Table 4.2, the optimum of 

yielded cost reaches $41.64 (same with the optimal value in single-test case and no-test 

case) in 50 generations when the fault coverage converges to a very small amount 

(smaller than fT), Figure 4.10, and the rework yield levels out without convergence in 

Figure 4.11, i.e., the rework is useless and should be also removed with the test operation 

for the high-yield inputs.   
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Figure 4.9: Process flow with one Test/Diagnosis/Rework operation (Test Case 2). 
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For the low-yield inputs, the rework operation plays an important role on improving 

the yield of process flow. Table 4.3 shows an optimal yielded cost of $99.29, which is 

much lower than the value we have computed in Section 4.3.1 when the no rework 

operation was considered.  

Simple cases (Test Cases 1 and 2) validate the optimization model addressed in this 

dissertation with results that agree with the close-form computation. The remaining 

sections in this chapter exercise the optimization algorithms for more general sequential 

and branched process flows. 
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Figure 4.10: Optimization histories of fault coverage in one-TDR case (Test Case 2). 
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Figure 4.11: Optimization histories of rework yield in one-TDR case (Test Case 2). 
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Table 4.2: Results of RCGAs applied in the one-TDR case                             
at high-yield inputs (Test Case 2). 

Gen. Best Fitness 
(Yielded Cost $) 

Mean (Yielded 
Cost $) 

Fault Coverage Rework Yield

1 44.26 51.64 0.06 0.86 
2 44.26 46.59 0.06 0.86 
3 44.26 45.59 0.06 0.86 
4 44.26 45.23 0.06 0.86 
5 44.16 44.46 0.04 0.82 
6 44.12 45.33 0.03 0.73 
7 44.12 44.57 0.03 0.73 
8 44.12 44.91 0.03 0.73 
9 44.12 45.08 0.03 0.73 
10 44.12 45.40 0.03 0.73 
11 44.12 45.03 0.03 0.73 
12 44.12 44.98 0.03 0.73 
13 44.09 44.79 0.03 0.77 
14 44.09 44.80 0.03 0.77 
15 42.98 44.33 0.00 0.68 
16 42.98 44.37 0.00 0.68 
17 42.98 44.59 0.01 0.69 
18 42.98 43.84 0.01 0.69 
19 42.98 44.51 0.02 0.49 
20 42.98 43.53 0.01 0.74 
21 42.98 43.19 0.01 0.86 
22 42.98 43.37 0.02 0.41 
23 42.98 43.98 0.02 0.68 
24 42.98 43.67 0.02 0.56 
25 42.98 43.25 0.02 0.69 
26 42.98 44.04 0.02 0.64 
M  M  M  M  M  
45 42.98 43.58 0.02 0.35 
46 42.98 43.51 0.02 0.38 
47 42.98 43.77 0.02 0.52 
48 42.98 43.80 0.02 0.51 
49 42.98 43.78 0.01 0.42 
50 42.98 43.87 0.02 0.41 
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Table 4.3: Results of RCGAs applied in the one-TDR case                          
at low-yield inputs (Test Case 2). 

 
Gen. Best Fitness 

(Yielded Cost $) 
Mean (Yielded 

Cost $) 
Fault Coverage Rework Yield

1 103.04 184.14 0.51 0.97 
2 100.66 129.32 0.75 0.94 
3 100.51 111.23 0.74 0.94 
4 99.39 108.15 0.67 0.93 
5 99.39 112.03 0.67 0.93 
6 99.37 101.50 0.62 0.92 
7 99.29 107.25 0.65 0.93 
8 99.29 101.83 0.65 0.93 
9 99.29 103.28 0.65 0.93 
10 99.29 103.32 0.65 0.93 
11 99.29 103.71 0.64 0.93 
12 99.29 111.08 0.64 0.93 
13 99.29 106.81 0.64 0.93 
14 99.29 109.36 0.64 0.93 
15 99.29 101.26 0.64 0.93 
16 99.29 102.08 0.64 0.93 
17 99.29 105.05 0.64 0.93 
18 99.29 110.84 0.64 0.93 
19 99.29 104.28 0.64 0.93 
20 99.29 114.62 0.64 0.93 
21 99.29 104.04 0.64 0.93 
22 99.29 105.79 0.64 0.93 
23 99.29 105.68 0.64 0.93 
24 99.29 103.67 0.64 0.93 
25 99.29 112.96 0.64 0.93 
26 99.29 105.75 0.64 0.93 
M  M  M  M  M  
45 99.29 104.58 0.64 0.93 
46 99.29 102.31 0.64 0.93 
47 99.29 110.46 0.64 0.93 
48 99.29 110.29 0.64 0.93 
49 99.29 110.94 0.64 0.93 
50 99.29 111.38 0.64 0.93 
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4.3.2 Optimization in a General Process Flow 

Section 4.3.1 presented validation of the optimization analysis for trivial cases. Next we 

will apply the optimization analysis to complex process flows with multiple TDR 

operations to assess the feasibility of the algorithms. 

4.3.2.1 Optimization in a Sequential Process Flow (Test Case 3) 

An example of linear process flow (no branches) in which the input yield determines the 

final yield and yielded cost of process flow is shown in Figure 4.12 and Table 4.4 gives 

the corresponding process step properties (cost and yield); the characteristics of the TDR 

operations 1-5 are solved for in the optimization process.  

 1
(C1,Y1)

TDR(1)
(f c1)

2
(C2,Y2)

TDR(2)
(f c2)

3
(C3,Y3)

TDR(4)
(f c4)

5
(C5,Y5)

TDR(5)
(f c5)

TDR(3)
(f c3)

4
(C4,Y4)

Yin
Cin

Yout
Cout  

 

Figure 4.12: linear process flow (all possible TDR locations are shown). 

Table 4.4: Characteristics of the process steps in Figure 4.12. 

Process 
Step 

Cost ($) Yield 
(fraction) 

Input to 1 42 0.95 
1 12 0.95 
2 31 0.92 
3 25 0.945 
4 47 0.932 
5 28 0.93 
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Figure 4.13 gives the computed optimum yielded cost (with the corresponding 

individual cost in Figure 4.14 and yield of the process flow in Figure 4.15) for the linear 

process flow in Figure 4.12 generated using the optimization algorithm. Figure 4.16-4.21 

(series fc1 to fc5 in these figures represent the optimum fault coverages of five possible 

TDR operations in Figure 4.12) present the computed optimum fault coverages for the 

test cost coefficient set to various values. When the cost of test is very inexpensive (at a 

small value of pt in (2.17)) in Figure 4.16 and 4.17, the optimum prefers higher fault 

coverages, otherwise all the tests are assigned the lower fault coverages and would be 

removed from the process flow if they are below the threshold. In Figure 4.20 and 4.21 

most of the TDR operations stay at the very low fault coverages for the expensive test 
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 Figure 4.13: Computed optimum yielded cost of process flow in Figure 4.12. 
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cost but the tests are still needed to ensure that the optimum yielded cost of the process 

flow when the incoming yield is very low.  
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Figure 4.14: Computed cost of process flow in Figure 4.12. 
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 Figure 4.15: Computed yield of process flow in Figure 4.12. 
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Figure 4.16: Computed optimum fault coverage for TDR Operations when test cost 
coefficient (pt) is 0.02 in the process flow shown in Figure 4.12. 
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Figure 4.17: Computed optimum fault coverage for TDR Operations when test cost 

coefficient (pt) is 0.04 in the process flow shown in Figure 4.12. 
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Figure 4.18: Computed optimum fault coverage for TDR Operations when test cost 
coefficient (pt) is 0.08 in the process flow shown in Figure 4.12. 
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Figure 4.19: Computed optimum fault coverage for TDR Operations when test cost 
coefficient (pt) is 0.16 in the process flow shown in Figure 4.12. 
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Figure 4.20: Computed optimum fault coverage for TDR Operations when test cost 
coefficient (pt) is 0.32 in the process flow shown in Figure 4.12. 
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Figure 4.21: Computed optimum fault coverage for TDR Operations when test cost 
coefficient (pt) is 0.64 in the process flow shown in Figure 4.12. 
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4.3.2.2 Optimization in a Branched Process Flow (Test Case 4)  

Figure 4.22 shows a complex process flow with all possible TDR locations marked in it. 

Table 4.5 shows the corresponding process step properties (cost and yield); the 

characteristics of the TDR operations 14-25 are solved for in the optimization process. 

The cost and yield associated with the individual process steps is example data that is 

representative of high-end electronic system assembly. As an example comparison 

analysis, the optimum fault coverage of all possible TDR operations for various fixed 

cost values of test and rework21 are shown from Figure 4.23 to 4.26.  The test and rework 

step properties are given in Table 4.5 except for the values  Cft and Cfr, which are varied 

as indicated in corresponding Figures. 

 

 

                                                 
21 There is no functional relationship between rework cost and rework yield applied in the optimization of 
process flow in Figure 4.22. But the rework operation is still assumed a fixed cost that will vary for each 
case. 
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Figure 4.22: A complex process flow with all possible TDR operations shown. 
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The algorithm begins by automatically placing TDR operations in all possible 

locations:  14-25 in Figure 4.22.   The algorithm then determines the fault coverage and 

rework characteristics of each TDR that minimize the final yielded cost.  Figure 4.23 ― 

4.26 shows that results from the optimization for different assumptions about the fixed 

costs associated with the test and rework.22 Figure 4.23 has low (inexpensive) test and 

rework ― Cft and Cfr are both small; as a result, 9 of the 12 possible locations for tests 

are present (i.e., have fault coverages above the threshold for testing, which is a fault 

coverage of 0.1).  Because rework is also inexpensive in this case, rework is being done 

at all the actual test locations.  The Figure 4.23 result is intuitive, if test and rework are 

inexpensive, then test and rework will be done after nearly every process step. Figure 

                                                 
22 Various fixed test cost used in (2.17) assumed, other parameters given in Table 2.2. 

Table 4.5: Characteristics of the process steps in Figure 4.22 (note, there is no step 5) 

Process Step Cost ($) Yield (fraction) 
Input to 1 41 0.91 
Input to 4 60 0.36 
Input to 9 37 0.42 
Input to 11 9 0.95 
Input to 13 75 0.96 

1 21.1 0.95 
2 12.3 0.88 
3 14 0.89 
4 23.8 0.94 
6 45 0.96 
7 11.3 0.86 
8 33.8 0.92 
9 13 0.9 
10 15 0.92 
11 60 0.95 
12 78 0.91 
13 54 0.94 
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4.24 has inexpensive testing (same as the case in Figure 4.23), but the rework is 

expensive.  As a result, significantly fewer rework opportunities are actually exercised.  

Notice also that the optimum test locations (and fault coverages) change due to the 

inclusion or exclusion of rework possibilities, even though the characteristics of the 

testing are the same.  Figure 4.25 shows the same test costs as 4.23 and 4.24, but no 

rework is allowed – the optimum test locations and fault coverages again differ from 

cases 4.23 and 4.24 and the average value of fault coverage increases to compensate for 

the loss of rework capabilities (the optimization algorithm is attempting to maximize the 

final yield in order to minimize cost divided by yield).  Figure 4.26 has expensive test and 

expensive rework.  As a result, only 4 of 12 possible test locations are used (Test 17, 23, 

24 and 25 only), however, rework is included with all three of these tests.  In this case, 

the majority of the testing is focused on test operations near the end of the process 

indicating that if test is expensive and defects introduced in the process are spread over 

the entire process (as opposed to being focused on a single process step), the optimum 

test location is near the end of the process, which is intuitive. 
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(b) Applicable rework operations 
Figure 4.23: Computed optimum fault coverage and applicable rework TDR              

operations in the process flow shown in Figure 4.22                                    
(Cft= $1 and Cfr= $1). 
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 (b) Applicable rework operations 
Figure 4.24: Computed optimum fault coverage and applicable rework 

operations in the process flow shown in Figure 4.22                                  
(Cft= $1 and Cfr= $100). 
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Figure 4.25: Computed fault coverage of test operations                                

in the process flow shown in Figure 4.22                                              
(Cft= $1 and no rework). 
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(b) Applicable rework operations 

Figure 4.26: Computed optimum fault coverage and applicable rework                  
operations in the process flow shown in Figure 4.22                                  

(Cft= $50 and Cfr= $100). 
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Figure 4.27 shows example convergence characteristics of the minimum yielded cost 

of the complex process flow with the number of generations of the RCGAs. Table 4.6 

compares the optimized TDR locations for various test and rework costs in the process 

flow in Figure 4.22.23 

4.4 Optimization of Rework Attempts 

The number of rework attempts is a characteristic of the rework operation that determines 

the tradeoff between cost and yield of products. With the increasing of rework attempts, 

the yield of products will increase correspondingly, but the cost increases too. According 

to the multi-variable objective function defined in Chapter 3, there could be a sequence of 

                                                 
23 The ‘Y’ in Table 4.6 indicates that the test or rework operation is kept after the optimization and the 
blank means there is no test or rework operation placed in the corresponding location. 
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Figure 4.27: Optimization of yielded cost for                                         

various levels of fixed cost of test and rework operations. 
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variables to be optimized simultaneously during the GAs optimization process, i.e., the 

optimization algorithms can be easily extended to accommodate another variable that 

needs to be optimized in order to minimize the yielded cost. The difference between 

placing the rework attempts into the optimization loop and optimizing the fault coverage 

of test is the range of variables that has been predefined. For the fault coverage, the GAs 

generate the gene within the range from 0 to 1. Otherwise, the gene to represent the 

rework attempts should be the integer number that is greater than 0.24 That means the 

GAs sample the values of genes for each variable from a different solution space. As one 

of advantages using real-coded genetic algorithms, it is convenient for RCGAs to 

represent real values within different ranges.  

Table 4.6: Optimized TDR locations in the process flow                                                  
shown in Figure 4.22 for various fixed test cost and rework cost. 

 

 

 

 

 

 

                                                 
24 For practical rework operations, the number of rework attempts usually is limited to below 10. The range 
of gene to represent the variable of rework attempts is defined between 1 and 10 in this dissertation. Zero 
rework attempts means there is no rework operation included. 

Cft= $1 and 
Cfr= $1 

Cft= $1 and 
Cfr= $100 

Cft= $1 and  
no rework 

Cft= $50 and 
Cfr= 100 

  

Test Rework Test Rework Test Rework Test Rework 
TDR 14 Y Y Y  Y    
TDR 15 Y Y Y Y     
TDR 16 Y Y Y  Y    
TDR 17   Y  Y  Y Y 
TDR 18   Y      
TDR 19 Y Y Y Y     
TDR 20 Y Y Y Y     
TDR 21     Y    
TDR 22 Y Y Y  Y    
TDR 23 Y Y Y Y Y  Y Y 
TDR 24 Y Y Y  Y  Y Y 
TDR 25 Y Y Y Y   Y Y 
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To optimize the number of rework attempts, the rework operation should be included 

with testing, i.e., the rework is not optional. Rework attempts for each TDR location is 

considered as the variable to be optimized along with fault coverage. The details of the 

application to optimize the rework attempts for a real manufacturing process will be 

addressed in next chapter. 

4.5  Summary 

An optimization modeling methodology with Real-Coded Genetic Algorithms (RCGAs) 

integrated has been developed to optimize critical parameters and possible TDR locations 

for general process flows. The methodology developed in this chapter guides the 

placement of TDR operations in practical manufacturing processes and has been applied 

to several manufacturing processes for the purposes of simple quantitative and qualitative 

verification.  

The next chapter will apply the optimization algorithms to a real case ― a multichip 

module assembly process flow, in which the minimized yielded cost with optimum 

feature parameters will be compared to the actual test location and characterization 

chosen for the module. 
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Chapter 5 
 
 
Optimization of TDR in Multichip 
Module (MCM) Assembly 
 
 
 
This chapter will explore a real case of multichip module (MCM) manufacturing. The test 

process flow that minimizes the yielded cost with optimum fault coverage and rework 

attempts using the optimization algorithms developed in this dissertation will be 

performed. The optimum results will be compared with the calculation from the test 

strategies proposed in [74, 75], in which specific fault coverage tests are applied without 

any optimization techniques.  

5.1 Introduction to Multichip Module 

The multichip module is a packaging approach in which multiple bare die are mounted 

and interconnected on a substrate [76, 77]. Since the substrate, or the chip carrier, usually 

has substantially finer conductor lines, smaller dielectric thickness, and a denser via grid 

than conventional printed circuit boards, MCMs are not subject to conventional printed 

circuit board design rules and assembly restrictions. Figure 5.1 show a picture of a typical 

multichip module.  
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The substrate is used for supporting the die as well as the media for the 

interconnections among the die. The bare die are attached to the substrate by using a 

method called die bonding. The interconnections among the die are made using metal 

traces plated on layers in the substrate. Typically, different layers are used for making 

horizontal and vertical connections. Additional layers are provided for power and ground 

connections.  The electrical connections between the die and the substrate are called chip 

I/Os and connections between the MCM and the outside world such as a PCB are module 

I/Os.  

MCMs are usually categorized by substrate type and have been defined by the 

Institute for Interconnecting and Packaging Electronic Circuits (IPC) [78, 79]: 

• MCM-L: Substrates based on laminated, multilayer PCB technology [80] 

• MCM-C: Substrates based on co-fired ceramic or glass-ceramic technology 

• MCM-D: Interconnection pattern formed by the deposition of dielectics and 

conductors, on a base substrate, typically by a thin film process.  

 
Figure 5.1: A typical multichip module. (Courtesy Maxtek Co.) 
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MCMs completely eliminate chip packages, which allows closer chip-to-chip spacing 

and improved reliability due to a dramatic reduction in the number of fatigue prone solder 

joints and hermetic seals [81-83]. The requirement for testing is even higher in MCMs 

than in PCB or VLSI IC, since they are usually more expensive and used in high 

performance applications [84-87]. The next section will discuss the testing process of 

MCMs.  

5.2  Testing of an MCM 

Testing MCMs is a difficult task because they contain multiple high I/O count chips 

connected together into one circuit with high density interconnections. MCMs differ from 

conventional electronic assemblies in that the ICs are “bare” or un-packaged.  Using bare 

die instead of die packaged into chips allows smaller systems to be built and eliminates 

electrical parasitics associated with the chip packaging. 

Die yield plays an important role in MCMs because the die cannot always be pre-

tested prior to assembly the way they would be if they were packaged. Die packaging 

provides protection for the die, a format that is easy to store and handle, and most 

importantly a format that enables die testing.  For example, for a 50-chip MCM, if the 

yield of the incoming die is 95%, then the yield of the assembled MCM before testing 

will be 7.7% (without considering any other source of yield loss, see Figure 1.7). This 

means that more than 90% of the assembled MCMs have to be diagnosed and repaired, a 

costly and time consuming task. 

Abadir et al. [74] have done extensive of work on the test strategies for MCMs. They 

analyzed the test/diagnosis/rework (TDR) process for an MCM using a simple MCM 



 117

manufacturing and test model, and calculated the cost of an MCM after TDR with 

various test fault coverages, which are applied to die of different incoming yield. The 

paper [74] compares the results from the various test cases (different fault coverage and 

test cost), but does not determine the optimum fault coverage of the test process to 

minimize the yielded cost of the MCM after TDR. The following will explore the 

optimization of a TDR process for the MCM described in [74] and show that the 

optimized test coverage leads to a lower yielded cost than the calculation from the 

conventional scenarios of specified test coverages considered in [74]. Before applying the 

optimization algorithms developed in Chapter 4 to the MCM assembly process flow, the 

model of the MCM manufacturing process and the tradeoff analysis for various test 

strategies from [74] will be introduced.          

5.3  The Test/Diagnosis/Rework (TDR) of an MCM 

A generic assembly, test and rework simulation model has been developed to analyze the 

relationship among all the parameters of the test process and how they impact the final 

cost and quality of the MCM. Figure 5.2 illustrates how the three basic process models 

are used to create a simple MCM manufacturing flow.  

Each one of the boxes in Figure 5.2 represents a certain type of process (assembly, 

test and rework). The assembly box takes one or more inputs that correspond to the 

various types of die to be assembled and the substrate. Each of inputs is characterized by 

a cost yield and a count indication of how many times it is used (e.g., ten SRAM chips). 

The assembly process itself has a cost and a yield factor, as does the pre-tested MCM 

substrate. The assembled module is tested with a process that has a cost and a certain 
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degree of fault coverage. The modules that pass the test are assumed good and are passed 

to the next level of assembly. However, since the testing process cannot detect all 

possible defects, some defective modules may escape and reduce the overall quality of 

the output modules. 

The modules that fail the test are diagnosed for possible rework ― some modules 

may not be repairable and are scrapped. The reworkable modules are reworked and are 

subjected again to the test process. The diagnosis and rework process has an average cost 

and also has a yield (i.e., not all repaired modules are good due to rework assembly 

defects, new components defects, or because of misdiagnosis). A module is scrapped if it 

fails to pass the test after being repaired a maximum allowable number of times 

(maximum number of rework attempts). 

 Die (TAB, FC, 
SCP, Bare)
($, Yield)

Substrate
($, Yield)

Assembly
($, Yield)

Test
($, fc)

Diagnosis & 
Rework

($, Yield, S%)

Max.
Reworks

To Next 
Stage

Scrap

Fail

Success

Pass

F
igure 5.2: A simple MCM manufacturing and test model [74] 
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The simple model of Figure 5.2 does not have an explicit MCM burn-in processing 

step.25 Such a step can be added at the end and be followed by another test and rework 

cycle, or it can be inserted after assembly and before test. 

In this chapter we use the example described in [74] as the tested MCM (to compare 

it with the optimization results generated by algorithms in this dissertation). The problem 

to be treated is the following: An MCM is to be built containing 50 identical die. These 

die can be procured (purchased or made internally) at the different cost and quality levels 

indicated in Table 5.1. For example, the table indicates that a die that costs $2 has an 80% 

yield (i.e., 20% of those die are defective), while a version of the same die can be bought 

for $9 with 99.9% yield. Note that this is the yield of die before assembly onto the MCM. 

This is not an unrealistic situation. Bare die may be purchasable as wafers from the 

semiconductor manufacturer, or in a tested (i.e., Known Good Die) form from an 

aftermarket supplier who has performed bare die test (and burn-in) to pre-sort the good 

(no-defective) die from the bad (defective) die. 

 

                                                 
25 Burn-in is used to eliminate early failures in components or systems, which is the application of elevated 
temperature to cause latent defects to fail in the manufacturing process rather than to have the unit fail 
during subsequent assembly or use process [84, 88]. 
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Table 5.1: Chip yield versus MCM yield, cost and yielded cost.26 

                                                 
26 The data shaded in GRAY in Table 5.1 is from [74], the other values were calculated in this dissertation.  

Case 1:  fc  = 95%, Test Cost= $100 
Die 
Cost 
($) 

Die 
Yield 

Yield of 
MCM 

(before test) 

Defect Level 
(after test, 

PPM) 

Yield of 
MCM (after 

test) 

Yield of 
MCM (after 

rework) 

Cost of MCM 
(after rework, 

$) 

Yielded 
Cost ($) 

2 0.8 1.43E-05 427652 0.572 0.989 1034 1045.61 
3 0.85 2.96E-04 333987 0.666 0.992 1038 1046.69 
4 0.9 5.15E-03 231681 0.768 0.993 1039 1046.32 
5 0.94 0.05 143446 0.857 0.989 1037 1048.85 
6 0.97 0.22 73460 0.927 0.980 1024 1045.43 
7 0.99 0.61 24959 0.975 0.983 959 975.49 
8 0.995 0.78 12601 0.987 0.990 961 971.2 
9 0.999 0.95 2647 0.997 0.998 963 965.41 

Case 1: fc= 99%, Test Cost= $150 

Die 
Cost 
($) 

Die 
Yield 

Yield of 
MCM 

(before test) 

Defect Level 
( after test, 

PPM) 

Yield of 
MCM (after 

test) 

Yield of 
MCM (after 

rework) 

Cost of MCM 
(after rework, 

$) 

Yielded 
Cost ($) 

2 0.8 1.43E-05 105599 0.894 0.998 1171 1173.59 
3 0.85 2.96E-04 78073 0.922 0.998 1165 1166.99 
4 0.9 5.15E-03 51345 0.949 0.999 1157 1158.62 
5 0.94 0.05 30493 0.970 0.998 1148 1150.53 
6 0.97 0.22 15143 0.985 0.996 1124 1128.51 
7 0.99 0.61 5042 0.995 0.997 1034 1037.53 
8 0.995 0.78 2533 0.997 0.998 1025 1027.16 
9 0.999 0.95 530 0.999 1.000 1016 1016.5 

Case 1: fc= 99.9%, Test Cost= $200 

Die 
Cost 
($) 

Die 
Yield 

Yield of 
MCM 

(before test) 

Defect Level 
( after test, 

PPM) 

Yield of 
MCM (after 

test) 

Yield of 
MCM (after 

rework) 

Cost of MCM 
(after rework, 

$) 

Yielded 
Cost ($) 

2 0.8 1.43E-05 11098 0.989 1.000 1302 1302.26 
3 0.85 2.96E-04 8095 0.992 1.000 1288 1288.26 
4 0.9 5.15E-03 5257 0.995 1.000 1272 1272.13 
5 0.94 0.05 3091 0.997 1.000 1255 1255.25 
6 0.97 0.22 1524 0.998 1.000 1220 1220.49 
7 0.99 0.61 505 0.999 1.000 1107 1107.33 
8 0.995 0.78 253 1.000 1.000 1088 1088.22 
9 0.999 0.95 53 1.000 1.000 1069 1069.11 
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The assumptions in Table 5.2 are used for the various parameters of the MCMs 

manufacturing and test flow in Figure 5.1:   

Table 5.2: Values of parameters used in the MCM                                         
manufacturing and test flow in Figure 5.1. 

 
Assembly cost of 50 die on substrate $200 

Substrate cost $200 

Testing cost of an 50-chip MCM  $150 

Fault coverage on testing MCMs 95% 

Repair cost of one MCM failed in test  $100 

Rework scrap yield 5% 

Maximum rework attempts 1 

Rework yield of repairing a single MCM Minimum (chip yield, 95%) 

 

Both the substrate and the assembly process to mount the 50 die onto the substrate 

were assumed to have a perfect yield (100%) in this exercise. Hence, the die were the 

only source of defects for this module. The rework scrap yield is the fraction of MCMs 

that cannot be reworked and are scraped. 

In [74], three different test strategies were proposed to compare the yielded cost of a 

MCM:  

• Case 1: Test coverage on MCMs testing =95%, Test Cost = $100;   

• Case 2: Test coverage on MCMs testing =99%, Test Cost = $150; 

• Case 3: Test coverage on MCMs testing 99.9%, Test Cost = $200. 
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Table 5.1 lists all the original data (from [74]) and calculation results according to 

each case for various incoming yield of die. For the purpose of explaining how the 

yielded cost of MCMs after the TDR operation is derived, the calculation of the MCM 

assembly process cost and yield is reviewed below. 

For example, in Case 1, if the input of die yield is 0.8, the yield of MCM module 

before test should be: 

-550die ofnumber 101.43(0.8)yield) (die  yield die ×===                          (5.1) 

The final cost of a MCM module is the accumulation of die cost, substrate cost and 

assembly cost: 

Cost of MCM = Die cost + Substrate cost +Assembly cost                  (5.2) 

                                          = 50($2) +$200+ $200 

                                           = $500 

The final yield of MCM module can be determined by multiplying the die yield, 

substrate yield and assembly yield: 

          Yield of MCM = (die yield) (substrate yield) (assembly yield)              (5.3) 

                                          = (0.8)50 (1) (1)  

                                          = 5101.43 −×   

which is a very small number. 
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After the test, the yield of MCM module can be calculated using (5.4): 

                   Yield of MCM = (Yin)(1- fault coverage)                                                  (5.4) 

                                                                                                  = ( 5101.43 −× ) (1-0.95) 

                                                                 = 0.5723 

The defect level of MCM module in parts per million (ppm) is derived from (5.5), 

             Defect level = (1-yield of MCM)106= 5104.3×  ppm                      (5.5) 

The yield, cost and yielded cost of MCM module after the rework for this case (one 

TDR) can be calculated following the example in Section 2.7. 

All the data (except values shaded in GRAY) in Table 5.1 are calculated using above 

calculation procedure. From Table 5.1, we can conclude: 

1) Using the die of highest yield for the MCMs assembly is not always the best choice 

for the MCM manufacturer, which means the very high quality of die may lead to more 

expensive systems, at least from a yielded cost standpoint. An alternative is to select the 

middle-level quality die and test MCMs with high fault coverage to lower the final 

yielded cost.    

2) The fault coverage of testing is related to the input yields. For the lower input die 

yield, the high fault coverage does make sense because the bad parts can be identified 

from test and be repaired during rework operation. The total yielded cost of MCMs still 

can be saved by test and rework operations instead of scraping the whole module. 
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However for the high-yield die, high fault coverage tests only increase the cost of 

systems without improving the final yield distinctly. 

3) For the given range of desired system yield, there are several combinations of 

incoming die yield and fault coverage that produce the same yielded cost. For example, 

we can use $6 die combined with 95% fault coverage, which results in the roughly the 

same yielded cost of MCMs with choosing $7 die under the testing of 99% fault 

coverage.  

The test case scenarios considered in [74] are representative of the conventional 

approach to determining test locations within a system in which a tradeoff analysis of test 

strategies is based on enumerating all the different cases. There is no optimization 

method included in [74], which makes it impossible to perform the analysis of test 

strategies for the manufacturing or assembly process of complicated electronic products 

or systems. Furthermore, a manufacturing manager doesn’t usually care about how many 

alternatives can be chosen, rather, the manager wants to know what the best assembly 

process flow is for achieving the goal of minimized yielded cost. 

The conventional wisdom on test placement does not always lead to an optimum 

solution as we will demonstrate in the next section. 

5.4  Optimization of Fault Coverage in the MCM 
Assembly Process Flow 

This section will apply the optimization method proposed in Chapter 4 to the MCM 

manufacturing and test process flow discussed in [74]. The optimum fault coverages to 
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minimize the yielded cost of the MCM for specific input die yield are generated by 

RCGAs without enumerating all the combinations of possible test strategies manually. 

Abadir, et. al. [74] only gives the testing cost of a 50-chip MCM for 3 different fault 

coverages assumptions, the functional relationship between test cost and fault coverage 

used in optimization algorithms should be determined first.    

In this real case of the MCM assembly process in [74], a functional relationship 

between test cost and the resulting fault coverage has been determined based on the cost 

data of Table 5.3 used by [74] and (2.17). 

Table 5.3: Fault coverage with its corresponding testing cost used in [74]. 

Fault coverage of test Testing cost of an 50-chip MCM 

95% $100 

99% $150 

99.9% $200 

 

Using a nonlinear regression analysis technique, Equation (5.6) gives the natural 

relationship between test cost and fault coverage that is used in the RCGAs optimization 

of the MCM assembly process, 27  

                  
⎩
⎨
⎧

≤≤
<<+−−

=
  0.1)f(0                                   0

1)f(0.1    25)f21.68ln(1
C

c

cc
test                         (5.6) 

                                                 
27 Equation (5.6) fits the relationship between fault coverage and test cost using the data of Table (5.3) with 
a function of the form given by (2.17).  
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Figure 5.3 plots (5.6) and shows the 10% threshold of fault coverage. The threshold is 

defined as the lowest nonzero fault coverage that test equipment can provide or we can 

purchase practically. For any fault coverage below this threshold, there is no test present 

(zero fault coverage and zero test cost). 

Abadir et al. [74] only consider three combinations of fault coverage and test cost to 

show which test strategy should be selected for the better yield and lower cost of the 

MCM after test/diagnosis/rework operations. There are no optimum solutions provided in 

[74] that minimize the yielded cost of the assembled module with the optimized fault 

coverage. In the remainder of this section, the optimization methodology developed in 

Chapters 3 and 4 will be applied to the real MCM case presented in [74] and it will be 

demonstrated that an optimal solution can be obtained that results in a lower yielded cost 

system than the scenarios considered in [74].   
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Tables 5.4 ― 5.1128 show the optimization results for yielded cost generated by the 

RCGAs compared with data of three specific cases discussed in [74] for different inputs 

of die yield. The GAs can find the optimum fault coverage to minimize the yielded cost 

of the MCM which is always lower any calculation resulting from the various test 

strategies in [74]. From these tables, it is clear that the highest fault coverage may not 

lead to the lowest yielded cost due to the corresponding higher test cost.  

 

                                                 
28 The data shaded in GRAY is from [74] and the GA optimum data is generated by the RCGAs. 
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Figure 5.3: Functional relationship between fault coverage                               
and test cost applied to the MCM example                                             

(The data points with triangle are from [74]). 
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 Table 5.4: Comparison of GA optimum yielded cost                              
with results from test strategies in [74] (die cost = $2). 

Die Cost = $2 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM              
Yielded Cost ($) 

Case 1 0.95 100 0.9889 1034 1045.61 
Case 2 0.99 150 0.9978 1171 1173.58 
Case 3 0.999 200 0.9998 1302 1302.26 

GA Optimum 0.385 37.75 0.858 769.1 896.03 

Table 5.5: Comparison of GA optimum yielded cost                                                      
with results from test strategies in [74] (die cost = $3). 

Die Cost = $3 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM             
Yielded Cost ($) 

Case 1 0.95 100 0.9917 1038 1046.69 
Case 2 0.99 150 0.9983 1165 1166.98 
Case 3 0.999 200 0.9998 1288 1288.26 

GA Optimum 0.48 42.23 0.9 828.26 921.46 

Table 5.6: Comparison of GA optimum yielded cost                                                      
with results from test strategies in [74] (die cost = $4). 

Chip Cost = $4 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM              
Yielded Cost ($) 

Case 1 0.95 100 0.993 1039 1046.32 
Case 2 0.99 150 0.9986 1157 1158.62 
Case 3 0.999 200 0.9999 1272 1272.13 

GA Optimum 0.62 50.53 0.926 887.17 957.68 

Table 5.7: Comparison of GA optimum yielded cost                                                      
with results from test strategies in [74] (die cost = $5). 

Chip Cost = $5 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM              
Yielded Cost ($) 

Case 1 0.95 100 0.9887 1037 1048.85 
Case 2 0.99 150 0.9978 1148 1150.53 
Case 3 0.999 200 0.9998 1255 1255.25 

GA Optimum 0.77 63.36 0.94 938.91 1003.63 
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Table 5.8: Comparison of GA optimum yielded cost                                                       
with results from test strategies in [74] (die cost = $6). 

Chip Cost = $6 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM              
Yielded Cost ($) 

Case 1 0.95 100 0.9795 1024 1045.43 
Case 2 0.99 150 0.996 1124 1128.51 
Case 3 0.999 200 0.9996 1220 1220.49 

GA Optimum 0.77 63.35 0.94 932.05 993.62 

Table 5.9: Comparison of GA optimum yielded cost                                                      
with results from test strategies in [74] (die cost = $7). 

Chip Cost = $7 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM              
Yielded Cost ($) 

Case 1 0.95 100 0.9831 959 975.49 
Case 2 0.99 150 0.9966 1034 1037.53 
Case 3 0.999 200 0.9997 1107 1107.33 

GA Optimum 0.85 74.3 0.95 912.09 962.28 

Table 5.10: Comparison of GA optimum yielded cost                                                   
with results from test strategies in [74] (die cost = $8). 

Chip Cost = $8 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM             
Yielded Cost ($) 

Case 1 0.95 100 0.9895 961 971.2 
Case 2 0.99 150 0.9979 1025 1027.16 
Case 3 0.999 200 0.9998 1088 1088.22 

GA Optimum 0.79 65.43 0.95 908.67 951.75 

Table 5.11: Comparison of GA optimum yielded cost                                                    
with results from test strategies in [74] (die cost = $9). 

Chip Cost = $9 
  Fault 

Coverage 
Test 

Cost($) 
MCM 
Yield  

MCM 
Cost ($)  

MCM               
Yielded Cost ($) 

Case 1 0.95 100 0.9975 963 965.41 
Case 2 0.99 150 0.9995 1016 1016.51 
Case 3 0.999 200 0.9999 1069 1069.11 

GA Optimum 0 0 0.95 850 893.6 



 130

Figure 5.4 shows how the cost of MCM after the test/diagnosis/rework operation 

varies with the yield of the MCM before testing. It is obvious that higher fault coverage 

tests always lead to higher cost. Comparing with the calculation results from the three test 

strategies discussed in [74], the cost of the MCM after TDR for each yield level of MCM 

before test is lower, which is derived from the optimum test coverage generated by GAs 

optimization. This means choosing or buying a specific fault coverage for the entire range 

of incoming die yield is not appropriate and a fixed fault coverage cannot ensure the 

lowest cost of product for different input yield. The optimum fault coverage generated by 

the GAs varies with the different die yield to the MCM assembly process flow. The next 

                                                 
29 Yield of the MCM (before TDR) refers to the yield of the MCM after all die have been assembled onto 
the substrate, i.e., the incoming yield to the test operation shown in Figure 5.2. 
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Figure 5.4: Cost of MCM after TDR versus incoming yield of MCM                       
for the three test scenarios in [74] plus the optimum solution. 29 
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chapter will improve the optimization algorithms developed in Chapter 4 in order to find 

the optimum fault coverages that are applicable to a range of input yields (e.g., a normal 

distribution) instead of being restricted to a single value. 

The final yield of the MCM after going through all the assembly and test process flow 

is shown in Figure 5.5 in terms of the yield of assembled the MCM before testing. The 

GAs optimization results in the lowest outgoing yield of the MCM by applying the 

optimum fault coverage to the test operation. It is always true that higher incoming yield 

leads to higher yield level of the output. A manufacturing manager may be willing to pay 

some additional cost to reduce the defect level of die. Not only might this reduce test and 

repair costs at higher levels of integration, but more importantly it reduces field returns 

and the potential loss of customer satisfaction and future sales.        
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Figure 5.5: Output yield of MCM after TDR versus incoming yield of MCM                 

for the three test scenarios in [74] plus the optimum solution. 
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Figure 5.6 implies that the optimization algorithm proposed in Chapter 4 does 

generate the optimum solution of yielded cost of MCM after final assembly and test. The 

optimization results stay at the lower yielded cost of the whole range of MCM module 

yields. Figure 5.7 shows the optimum fault coverage (determined by the GA 

optimization) for the various inputs of incoming yield of MCM module. For high 

incoming yield, the optimization algorithm chooses the lower fault coverage to decrease 

the cost of test. The optimization results prefer less than 100% fault coverage due to high 

cost associated with the test process as shown in Figure 5.7.  
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Figure 5.6: Yielded cost of MCM after TDR versus incoming of MCM                     
for the three test scenarios in [74] plus the optimum solution. 
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Figure 5.7: GA-based optimum fault coverage versus incoming yield of MCM. 
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An issue that needs to be addressed in the Figure 5.6 curve is why there is a drop in 

the optimum yielded cost when the incoming yield of assembled MCM is very low. 

Intuitively, the yielded cost should increase as input yield decreases. It will cost more to 

repair an MCM with a poor input yield level and the final yielded cost should be the 

highest compared with the MCM assembled by the high-yield die.  

But, Figure 5.6 shows that there is decreasing of yielded cost on the low input yield of 

MCM before TDR, which is incorrect. This problem occurs because an assumption has 

been made in the optimization process of the TDR that the rework yield of repairing an 

MCM is fixed and the TDR model proposed in Chapter 2 only treats the repair operation 

as a whole without consideration of rework details of specific products. As defined in 

Table 5.2, the rework yield is the minimum value of 95% or die yield, which means the 

bad die identified in the test are replaced by the die with the yield level that is same as the 

yield of ones assembled onto MCM if the yield is lower than 95%. The Trichy et. al. 

model calculates the cost of rework process assuming a fixed rework yield of die no 

matter how many die are assembled onto it and does not consider the possibility that 

more  than one die failed in the test.  

Therefore, the optimization model, as used here, is not valid for very small incoming 

yields where the rework operation dominates the outgoing yield of products. The model 

should be modified to have flexible rework cost calculation based on the specific 

manufacturing process to fix the modeling error for the very low input yield.   

 After all the optimum fault coverages are generated by the GAs optimization, the 

results can be verified using the Trichy et al. model discussed in Chapter 2 with a full 
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range of fault coverages for a specific incoming die yield. Then we compare the GAs 

optimum fault coverage value with these calculated values. 

Figure 5.8 describes the relationship between all possible fault coverages of testing 

MCM and the yielded cost of the MCM after the TDR is done for the cost of incoming 

die at $2 with its yield level of 80%. On Figure 5.8, the expected minimum yielded cost 

should be lower than $896.18 with the possible range of fault coverage between 0.3 and 

0.4, which validates the optimum result from Table 5.4 where the minimized yielded cost 

is $896.03 and the optimum of fault coverage is set at 0.39. Table 5.12 gives the 

optimization history for this case.  
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Figure 5.8: Yielded cost of the MCM (after TDR) versus fault coverage                     
(die cost = $2 and die yield = 80%). 
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Table 5.12: Optimization of fault coverage in the MCM assembly process flow 

with the cost of incoming die is $2. 
 

Number of 
generations 

Optimum  
yielded cost ($) 

Mean of  
yielded cost ($) 

Optimum fault 
coverage 

1 896.04 2102836.25 0.39 
2 896.04 905.27 0.38 
3 896.03 900.57 0.39 
4 896.03 905.07 0.39 
5 896.03 896.22 0.39 
6 896.03 898.98 0.39 
7 896.03 1402157.25 0.39 
8 896.03 901.51 0.39 
9 896.03 904.50 0.39 
10 896.03 701532.00 0.39 
11 896.03 905.99 0.39 
12 896.03 900.61 0.39 
13 896.03 701527.63 0.39 
14 896.03 896.24 0.39 
15 896.03 900.92 0.39 
16 896.03 904.34 0.39 
17 896.03 898.73 0.39 
18 896.03 900.37 0.39 
19 896.03 905.07 0.39 
20 896.03 701531.63 0.39 
21 896.03 900.65 0.39 
22 896.03 897.69 0.39 
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Similarly, Figures 5.9 and 5.10 verify the minimized yielded cost for incoming die 

costs of $7 and $8 with the corresponding optimization history given in Table 5.13 and 

5.14 respectively. The GAs optimization effectively finds the minimum yielded cost of 

MCM in less than 10 generations.  
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Figure 5.9: Yielded cost of MCM (after TDR) vs. fault coverage of test 

(die cost =$7 and die yield = 99%) 
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Table 5.13: Optimization of fault coverage in the MCM assembly process flow 

with the cost of incoming die is $7. 

Number of 
generations 

Optimum 
yielded cost ($) 

Mean of 
yielded cost ($) 

Optimum  
fault coverage 

1 962.40 1060.02 0.86 
2 962.40 988.55 0.86 
3 962.28 971.38 0.85 
4 962.28 963.76 0.85 
5 962.28 970.31 0.85 
6 962.28 969.32 0.85 
7 962.28 979.37 0.85 
8 962.28 962.32 0.85 
9 962.28 968.79 0.85 
10 962.28 962.88 0.85 
11 962.28 964.37 0.85 
12 962.28 974.23 0.85 
13 962.28 981.52 0.85 
14 962.28 965.27 0.85 
15 962.28 976.89 0.85 
16 962.28 970.93 0.85 
17 962.28 967.38 0.85 
18 962.28 967.01 0.85 
19 962.28 971.55 0.85 
20 962.28 975.65 0.85 
21 962.28 970.02 0.85 
22 962.28 969.02 0.85 

 

 

 

 

 

 

 



 139

 

 

 

 

 

 

 
 
 

(0.7, $954.22) (0.8, $951.83)

900

950

1000

1050

1100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fault coverage

Yi
el

de
d 

co
st

 o
f t

he
 M

CM
 ($

, a
fte

r T
DR

)

Minimum yielded cost of MCM 
(die cost =$8 and die yield =99.5%)

 

Figure 5.10: Yielded cost of MCM (after TDR) vs. fault coverage of test 
(die cost =$8 and die yield = 99.5%) 
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Table 5.14: Optimization of fault coverage in the MCM assembly process flow 

with the cost of incoming die is $8. 

Number of 
generations 

Optimum 
yielded cost ($) 

Mean of 
yielded cost ($) 

Optimum  
fault coverage 

1 951.89 987.27 0.77 
2 951.79 963.23 0.78 
3 951.75 957.50 0.79 
4 951.75 956.00 0.79 
5 951.75 954.59 0.79 
6 951.75 953.65 0.79 
7 951.75 957.03 0.79 
8 951.75 952.08 0.79 
9 951.75 955.93 0.79 
10 951.75 953.71 0.79 
11 951.75 953.29 0.79 
12 951.75 954.33 0.79 
13 951.75 953.66 0.79 
14 951.75 952.88 0.79 
15 951.75 954.92 0.79 
16 951.75 953.97 0.79 
17 951.75 954.43 0.79 
18 951.75 958.27 0.79 
19 951.75 954.41 0.79 
20 951.75 953.17 0.79 
21 951.75 954.54 0.79 
22 951.75 955.65 0.79 
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This section applied the GAs optimization to minimize the yielded cost of an MCM 

during its assembly process with fault coverage optimized. The optimization results have 

been verified as the minimum for various combinations of die cost and yield. Compared 

with the test strategies discussed in [74], in which there is no optimization performed, the 

GAs based optimization successfully generates the lowest value of objective function 

defined in Chapter 3 by selecting the optimum characteristics of the test. From Table 

5.15, the GAs-based optimum yielded cost is an average of 6.85% lower than that 

obtained when using test strategies based on selecting specific fault coverages as in [74]. 

Furthermore, in a complicated process flow, it would be impossible to enumerate all fault 

coverages manually without employing optimization techniques. The optimization 

algorithms developed in this dissertation will effectively find the optimized solution in 

less time than traditional approaches.  

Table 5.15: Cost reduction efficiency of minimum yielded cost                                             
with various input of die yield. 

Die cost ($) $2  $3  $4  $5  $6  $7  $8  $9  Average

Test 
strategies in 
[74] 

1046 1047 1046 1049 1045 975 971 965 1018.12

GAs-based 
Optimization 

896 921 958 1004 994 962 952 894 947.507

Minimum 
yielded 
cost ($) 

Cost 
reduction 
efficiency30  

0.14 0.12 0.08 0.04 0.05 0.01 0.02 0.1 0.0685 

 

                                                 
30 The cost reduction efficiency is defined as the ratio of cost reduction between the minimum yielded cost 
generated by GAs-based optimization and calculated using the test strategies in [74] divided by the later 
value. 
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5.5  Optimization of Rework Attempts for MCM 
Assembly Process Flow 

Rework attempts is fixed at one for the optimization of the MCM assembly case in all of 

the discussion so far in this chapter. This section will include rework attempts as a 

variable to be optimized for the lowest yielded cost of systems. 

The MCM assembly process flow (the die yield is 85% and die cost is $3) is also used 

for the example demonstration of application of the GAs optimization with the rework 

attempts to be optimized. The rework cost is assumed as a constant of $100 used for all 

attempts of the rework operation and the rework yield is also fixed at the minimum of 
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Figure 5.11: Comparison of minimum yielded cost generated by optimization                
of various rework attempts and fixed rework attempts. 
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95% or the die yield.31 Figure 5.11 compares the minimum yielded cost with a fixed 

number of rework attempts (one). The yielded cost has been decreased with the rework 

attempts optimized. The number of rework attempts at the minimum yielded cost is 

shown in Figure 5.12. Assuming a fixed rework cost, the GAs optimization prefers more 

rework operations to improve the outgoing yield of the MCM.  Figure 5.13 shows the 

change of fault coverage at the minimum yielded cost when the number of rework 

attempts is optimized. In Figure 5.13, the fault coverage at the minimum yielded cost 

after the number of rework attempts has been optimized increases compared to the 

optimum value with rework attempts fixed at one. Figure 5.13 indicates that the GAs 

optimization is willing to pay for higher fault coverage in order to have more defective 

MCM failed in the test when more rework attempts are available. Tables 5.16 and 5.17 

list the optimization history for both cases discussed above. 

 

 

 

 

 

                                                 
31 Trichy et al. model [9] treats the rework operation as a whole, and the variation of rework yield and 
rework cost depending on the structure of assembled modules or systems is not addressed. 
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Figure 5.13: Rework attempts at the minimum yielded                                   

cost for the single TDR MCM process flow. 
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 Table 5.16: Optimization of the MCM assembly process flow 
with the rework attempts fixed at one (die cost is $3). 

Number of 
generations 

Optimum 
yielded cost ($) 

Mean of 
yielded cost 

($) 

Optimum  
fault coverage 

Rework 
attempts 

1 921.49 224024.52 0.49 1 
2 921.49 38103.94 0.49 1 
3 921.47 927.25 0.48 1 
4 921.46 38103.07 0.48 1 
5 921.46 923.88 0.48 1 
6 921.46 923.66 0.48 1 
7 921.46 926.45 0.48 1 
8 921.46 926.41 0.48 1 
9 921.46 38100.50 0.48 1 
10 921.46 930.72 0.48 1 
11 921.46 928.46 0.48 1 
12 921.46 926.65 0.48 1 
13 921.46 38101.57 0.48 1 
14 921.46 925.24 0.48 1 
15 921.46 926.52 0.48 1 
16 921.46 925.79 0.48 1 
17 921.46 932.58 0.48 1 
18 921.46 925.07 0.48 1 
19 921.46 38096.52 0.48 1 
20 921.46 927.86 0.48 1 
21 921.46 925.46 0.48 1 
22 921.46 928.85 0.48 1 
23 921.46 38104.64 0.48 1 
24 921.46 926.22 0.48 1 
25 921.46 38099.30 0.48 1 
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Table 5.17: Optimization of the MCM assembly process flow 

with the rework attempts optimized (die cost is $3). 

Number of 
generations 

Optimum 
yielded cost ($) 

Mean of 
yielded cost 

($) 

Optimum  
fault coverage 

Rework 
attempts 

1 862.68 149628.16 0.60 8 
2 862.68 882.78 0.60 8 
3 862.68 865.18 0.60 8 
4 862.68 867.06 0.59 8 
5 862.68 38041.73 0.59 8 
6 862.68 38038.13 0.59 8 
7 862.68 876.17 0.59 7 
8 862.68 38040.37 0.59 8 
9 862.68 862.75 0.59 9 
10 862.68 866.72 0.59 8 
11 862.68 75217.18 0.59 9 
12 862.68 878.75 0.59 9 
13 862.68 865.49 0.59 8 
14 862.68 38052.18 0.59 8 
15 862.68 868.01 0.59 8 
16 862.68 880.77 0.59 8 
17 862.68 880.66 0.59 8 
18 862.68 873.01 0.59 8 
19 862.68 864.95 0.59 8 
20 862.68 870.22 0.59 8 
21 862.68 38051.58 0.59 8 
22 862.68 869.76 0.59 8 
23 862.68 864.60 0.59 8 
24 862.68 75216.52 0.59 9 
25 862.68 801.07 0.59 8 

 

 

 

 



 148

5.6  Summary 

The objective of this chapter was to apply the RCGAs developed in Chapter 4 to a real 

case ― the MCM assembly process discussed in [74]. Abadir et al. [74] only enumerated 

three different test strategies with a combination of fault coverages for different input 

yields of die. The GAs optimization used in the MCM assembly process successfully 

generates a minimum yielded cost optimum that is an average of 6.85% lower  than the 

calculated values using the test strategies by selecting specific fault coverages as in [74] 

for various incoming die yield. It would be almost impossible to predict the yielded cost 

of systems after more than hundreds of manufacturing process steps only by manually 

selecting test coverages without optimization techniques included. Furthermore, the 

optimization of rework attempts is applied to the MCM example. 
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Chapter 6 
 
 
Optimization of TDR Under Uncertain 
Inputs 
 
 
 
Chapter 4 demonstrates the optimization algorithms to determine the location(s) and 

characteristics of TDR operations for specific values of the inputs describing the process. 

Chapter 5 applies the GA-based optimization to a real MCM assembly process under 

certain inputs of die yield and cost. In this chapter, the optimization algorithm to process 

uncertainties of inputs is discussed and Monte Carlo methods will be integrated inside the 

optimization loop to sample values from the input distributions.    

6.1  Uncertain Inputs 

A consideration for the evaluation of electronic systems cost is that many of the 

necessary inputs have large uncertainties, e.g., the yields of individual process steps or 

the costs of assembly. As an example, the simple process flow in Figure 5.1 has uncertain 

inputs of incoming cost and yield represented by corresponding probability distributions. 

After the parts go through the process flow, the outgoing cost and yield will also be 
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distributions, i.e., the final yielded cost of the process flow will not be a single value but a 

probability distribution.  

One way to optimize the yielded cost objective function under uncertain inputs is to 

use a statistical method to sample values from the input probability distributions. The 

yielded costs of the process flow are then calculated for each sampled input value. After 

the distribution of yielded costs is derived some statistical value (e.g., the mean of the 

distribution) can be chosen as the fitness function used in the GAs optimization. The 

Next section will introduce Monte Carlo methods into the optimization model. 

6.2  Monte Carlo Methods 

Numerical methods that are known as Monte Carlo methods can be loosely described as 

statistical simulation methods, where statistical simulation is defined in general terms to 

be any method that utilizes sequences of random numbers to perform the simulation. The 

essence of the methods is the game of the chance whose behavior and outcome can be 

used to study interesting phenomena [89, 90]. The Monte Carlo method consists of 

creating a statistical situation (probability space) in which a required answer is the 

expected value of some random variable; the answer is then estimated by sufficient 
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Figure 6.1: A simple process flow example with uncertain inputs. 
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sampling of this random variable to ensure adequate accuracy. This is typically done 

using a computer model with so-called "pseudo-random" or "quasi-random" number 

generators.  

The inputs to the process flow discussed in this chapter will have probability 

distributions from which the Monte Carlo methods are applied to sample the values. The 

yielded cost is calculated from each sampling value with the test characteristics generated 

by the GAs. The next section will explore the details of integration of Monte Carlo 

methods to the GAs optimization algorithms.  

6.3  Application of Monte Carlo Method in 
Optimization of TDR Operations for Uncertain 
Inputs 

A Monte Carlo method will be integrated into the optimization model proposed in 

Chapter 4 to obtain robust optimum solutions to the objective function. Figure 6.2 

presents the proposed process for applying Monte Carlo in the optimization of TDR 

operations while the inputs are uncertain. 

In Figure 6.2, the population of RCGAs that represent groups of initialized variables, 

i.e., sets of fault coverages or rework attempts, is created in the initialization process. 

According to the procedure of GAs described in Figure 4.2, the evaluation of the 

objective function should be done to determine the fitness of the variables — the value of 

the objective function.  
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In the optimization model of Chapter 4 the objective function is calculated with 

certain inputs. However, if there are uncertain inputs, a Monte Carlo method is applied to 

sample from the input distributions. The sampling size depends on the precision of the 

estimation of the mean or the other statistical characteristics [91, 92]. After the 

calculation of the objective function for the specified number of samples, the distribution 

of yielded cost of the process flow is determined for the specific set of fault coverages or 

the corresponding variables to be optimized. A value can be chosen from the distribution 

of yielded costs to represent the fitness of the objective function for the uncertain 
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Figure 6.2: Application of Monte Carlo methods                                    
in the optimization of TDR operations for uncertain inputs. 
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inputs.32 Then the RCGAs continue to evolve and calculate the value of the objective 

function by the GAs’ operations until the algorithm terminates. After the optimization is 

performed, the optimum solutions minimize the yielded cost given the uncertain inputs 

are obtained.      

 Figure 6.2 presents the optimization model in Chapter 4 with improvements to 

accommodate the Monte Carlo analysis in the calculation of objective function. The 

improved GAs optimization model integrates the Monte Carlo method inside its 

evolution process. This makes sense because the fitness of the objective function is the 

mean of distribution of yielded cost for a specified group of variables to be optimized. 

The optimum of yielded cost obtained from the GAs algorithms is the lowest value under 

the group of optimum characteristics given the uncertain inputs. 

The inclusion of the Monte Carlo analysis inside the optimization algorithm can be 

described by Figure 6.3. During the RCGAs optimization process, the population made 

up of chromosomes (e.g., array of fault coverages to be optimized) is generated by the 

algorithm then compare with each other by determining the value of the fitness function. 

The fitness function is derived from the multi-variable objective function to minimize the 

yielded cost of process flow. If there is no uncertain input to the process flow, the value 

of fitness function can be calculated by traversing the whole process flow using the 

searching algorithms developed in Chapter 3 under certain inputs. While the uncertain 

inputs are introduced into the process flow, the calculation process can’t be performed 

without handling the probability distributions of inputs correctly. The yielded cost of the  
                                                 
32 The particular value chosen from the distribution to serve as the fitness is not clear.  Candidates include 
the mean, the most likely value and the median. In this dissertation, the mean of distribution of yielded cost 
is chosen to represent the fitness of objective function.  
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process flow is no longer a certain value, but a probability distribution. Here the Monte 

Carlo analysis is applied inside the optimization process to account for the uncertain 

inputs. To derive the distribution of yielded cost for a chromosome or an array of fault 

coverages that need to be optimized, we pick the values from the distribution of uncertain 

inputs (yield of chip, yield of substrate, etc.) using Monte Carlo sampling and calculate 

the yielded cost of process flow for each combination of uncertain values.33 After running 

a sufficient number of samples, the values represent the distribution of objective function. 

The mean of the random values of objective function is then calculated as the fitness 

function for each chromosome in a population. By determining the value of the mean of 

yielded cost, the RCGAs choose the chromosomes with the best value of the fitness 

                                                 
33 The calculation for each set of sampling values from inputs distributions should use the same searching 
process for certain inputs. 
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Figure 6.3: Monte Carlo sampling inside the                                        
GAs optimization of TDR operations. 
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function and do the predefined genetic operations ― crossover, mutation to implement 

the optimization process as described in Chapter 4.  

Because the objective function used in this dissertation is the minimization of the 

yielded cost of the products, which is the effective cost of good parts or assemblies after 

passing through a process, a variance analysis doesn’t make sense for the cost evaluation 

even though there are uncertain inputs involved in the process. Actually, the total yielded 

cost or the average yielded cost (equal to the total yielded cost divided by the sample 

size) for a statistically significant number of instances of a product is used to determine 

the set of fault coverages that lead to the lowest cost for the product. Hence, although the 

variances of the yielded cost distributions are different for the various set of fault 

coverages but have the same average yielded cost, we still treat them as equivalent, which 

means whatever the set of fault coverages, the total yielded cost for the whole production 

run after the entire manufacturing process is the same (irrespective of the variance). 

Therefore, the mean of the yielded cost distribution is sufficient to determine the set of 

fault coverages that should be chosen to minimize yielded cost. 

Compared with the RCGAs for certain inputs in Chapter 4 (in Table 6.1), the major 

change in the optimization process for uncertain inputs lies in the calculation of fitness 

function. For each chromosome representing the variables to be optimized in the 

population, the GAs for certain inputs use the value calculated from the multi-variable 

objective function ― a single value as the fitness function, while the GAs for uncertain 

inputs calculate the mean of the objective function distribution derived by the Monte 

Carlo sampling and choose it as the value to select the best chromosome.  
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When the Monte Carlo analysis is incorporated inside the optimization process, the 

sample size should first be estimated to make sure that a statistically valid solution can be 

obtained. The next section will introduce the method used to determine the sampling size. 

6.3.1 Estimation of the Number of Samples 

Many different approaches to estimate the sample size exist and the method used depends 

on what you want from the analysis: 

• Precision of the estimate of the mean. 

• Precision of the estimate of the cumulative distribution. 

Approach 1: Estimate of the mean 

Suppose we have r Monte Carlo runs producing solutions z1, z2, z3, ……, zr, the mean 

of the solutions can be derived from,  

                                                       ∑
=

=
r

1i
iz

r
1µ                                                        (6.1) 

 

The standard deviation is given by, 

Table 6.1: Comparison between RCGAs for certain and uncertain inputs. 

 RCGAs for certain inputs RCGAs  for uncertain inputs 

Inputs Single value Distribution 
Fitness function Single value of  yielded cost 

― objective function 
Mean of yielded costs ― the 

distribution of objective 
function 

Monte Carlo 
sampling 

N/A Integrated 

Computing 
Time 

Short Longer 
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The sampling variance of the mean is calculated using Equation (6.3):   

                                                      
r
σµVar

2

=                                                     (6.3) 

From the central limit theory [92], the standard error on the mean is,  

                                                    
r
σµVar =                                                      (6.4) 

If the condition of 0.01µ
r
σ

≤  can be satisfied (the standard error on the mean is 

equal to or less than the 0.01% of the mean), the Monte Carlo sampling is stopped. 

 

 

 

     

Figure 6.4: Confidence level for Monte Carlo size estimation 



 158

Approach 2: Estimate of sample size based on a given confidence level 

If given a confidence level of α  is chosen for the mean of the generated solutions in 

Approach 1, the range )
r
σcµ,

r
σc(µ +− has an α  probability of containing µ which is 

described in Figure 6.4.  

If the desired confidence level is smaller thanω , then we have, 

                                                         ω
r
σ2c <                                                       (6.5) 

The sample size can be estimated by, 

                                                               2)
ω

2cσ(r >                                                       (6.6) 

For the given confidence level, the estimation process in Figure 6.5 can be followed.  

6.3.2  Monte Carlo Implementation 

After the sample size has been determined, the following procedure was used to 

implement the Monte Carlo analysis [89]:  

1. Inputs are obtained in the form of distributions 

2. A random number (r1) is generated between 0 and 1  

3. This random number (r1) is used to choose a value from the distribution 

describing the first input. 
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Figure 6.5: Estimation of sample size for a given confidence level. 
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4. Values are chosen from the distributions representing all the inputs by repeating 

steps 2 and 3. 

5. These random numbers (inputs) are then accumulated according to the equations 

specified in the algorithms to get the final result (one sample). 

6. Steps (2)-(5) are repeated u times (u is the number of samples to be used for the 

Monte Carlo analysis) 

7. The mean and variance of the result can then be calculated. 

The simulation of Monte Carlo sampling of the yielded cost of MCM assembly 

process flow (in Figure 6.6) is shown in Figure 6.7 given a normal distribution 

(mean=0.9, standard deviation=0.3, and sample size=600) of die yield. 

From Figure 6.7 and Table 6.2, the stopping criteria in Approach 1 can be satisfied 

for most cases. So (6.7) is added to determine the number of samples. 

                                                 0.001
Y

µµ

mC

1mm ≤
− −                                                    (6.7) 

which means that the difference between the two means from Monte Carlo sampling is 

less than 0.1 % of the yielded cost (usually less than $0.1). For most test cases considered 

in this dissertation, Monte Carlo sampling stops within of 400 samples by satisfying the 

criteria of (6.7).  
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Figure 6.6: MCM assembly process flow                                             
with uncertain incoming yield of single die. 
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Table 6.2: Monte Carlo sampling for a normal distribution of die yield. 

Sample 
size 

Yielded cost ($) Mean 
 ( µ , $) 

Standard 
deviation 

Standard error 
of the mean 

0.01µ  

1 1014.099 1014.099 2.97E-13 1.71E-08 10.14099 
2 1014.007 1014.053 0.00417 0.002028 10.14053 
3 1013.572 1013.893 0.153892 0.01232 10.13893 
4 1013.906 1013.896 0.000131 0.00036 10.13896 
5 1013.841 1013.885 0.002419 0.001545 10.13885 
6 1013.952 1013.896 0.003731 0.001918 10.13896 
7 1013.422 1013.828 0.192776 0.013789 10.13828 
8 1013.846 1013.831 0.000274 0.00052 10.13831 
9 1014.131 1013.864 0.080129 0.00889 10.13864 
10 1014.109 1013.889 0.054133 0.007307 10.13889 
M  M  M  M  M  M  

591 1011.308 1011.706 0.158693 0.012524 10.11706 
592 1013.444 1011.709 3.013262 0.054575 10.11709 
593 1013.917 1011.713 4.863829 0.069336 10.11713 
594 1013.624 1011.716 3.646496 0.060036 10.11716 
595 1014.138 1011.72 5.854553 0.076071 10.1172 
596 1013.93 1011.724 4.874214 0.06941 10.11724 
597 1014.072 1011.728 5.506309 0.073773 10.11728 
598 1014.059 1011.732 5.422624 0.07321 10.11732 
599 1013.806 1011.735 4.295354 0.065158 10.11735 
600 1014.102 1011.739 5.59118 0.074339 10.11739 
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Figure 6.8 shows another Monte Carlo sampling process for a triangular distribution of 

single chip yield (mean=0.9, low value=0.7 and high value=0.99). The stopping criterion 

of (6.7) is also applicable to the input of a triangular distribution.  
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Figure 6.8: Monte Carlo sampling size estimation                                      

for the triangular distribution of die yield. 
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Table 6.3: Monte Carlo sampling for a triangular distribution of die yield. 

Sample 
size 

Yielded 
cost 

Mean 
(µ , $) 

Standard 
deviation 

Standard 
error of the 

mean 

0.01µ  Step yield 

1 1014.021 1014.021 4.19E-11 2.03E-07 10.14021 0.003665 
2 1013.22 1013.621 0.320665 0.017786 10.13621 2.88E-06 
3 1013.243 1013.495 0.094905 0.009677 10.13495 2.46E-05 
4 1013.412 1013.474 0.005211 0.002268 10.13474 0.000324 
5 1013.217 1013.423 0.053064 0.007236 10.13423 4.96E-07 
6 1014.047 1013.527 0.324465 0.017892 10.13527 0.00401 
7 1013.267 1013.49 0.057999 0.007565 10.1349 5.32E-05 
8 960.1955 1006.828 2485.223 1.571105 10.06828 0.212711 
9 1013.507 1007.57 39.65842 0.198395 10.0757 0.000578 
10 1013.22 1008.135 28.73512 0.168829 10.08135 2.88E-06 
M  M  M  M  M  M  M  

590 1013.219 1010.261 8.765162 0.093146 10.10261 1.78E-06 
591 1013.391 1010.266 9.781729 0.098399 10.10266 0.000277 
592 1013.516 1010.271 10.54748 0.102178 10.10271 0.000606 
593 1013.411 1010.277 9.840645 0.098694 10.10277 0.000323 
594 1013.691 1010.283 11.63528 0.107317 10.10283 0.001255 
595 1013.958 1010.289 13.48348 0.115526 10.10289 0.012142 
596 1013.24 1010.294 8.69578 0.092775 10.10294 2.1E-05 
597 1013.594 1010.299 10.87452 0.103748 10.10299 0.000864 
598 1013.494 1010.305 10.18944 0.100427 10.10305 0.017548 
599 1013.813 1010.31 12.28674 0.110278 10.1031 0.001891 
600 1013.265 1010.315 8.715516 0.092879 10.10315 5.12E-05 
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6.4  Real Case Analysis 

The improved GAs as described in Figure 6.2 have been applied to the real cases of the 

MCM assembly process discussed in Chapter 5 to validate whether the algorithm can find 

the optimal solutions to minimize the yielded cost given uncertain inputs. The validation 

process is divided into two steps: the first one is to verify the single TDR of the MCM 

assembly case in Figure 6.6 and the second one is extended the optimization algorithm to 

a multiple-TDR case.  

6.4.1 MCM Assembly Process Flow with Single TDR and 
Uncertain Inputs 

In this section, the GAs with Monte Carlo integrated will be applied to the MCM 

assembly process flow in Figure 6.6 to optimize the objective function defined in Chapter 

3 with uncertain inputs. For the comparison purposes, the optimization results of process 

flow in Figure 6.6 without uncertain inputs are also given to demonstrate how the 

improved GAs handle the optimization process with the consideration of probability 

distribution of inputs. Figure 6.9 shows that the optimum yielded cost doesn’t vary with 

the evolution of GAs. For the simple process flow with only one TDR, the RCGAs find 

the optimum solution in the very first generation (see Table 6.4). 
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Figure 6.9: Comparison of the minimum yielded cost                                 

for single value and a normal distribution of incoming die yield. 
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Table 6.4: Optimization of fault coverage in single TDR MCM assembly                
process flow in Figure 6.6 with the cost of incoming die yield is 90%. 

Number  
of generations 

Optimum 
yielded cost ($)

Mean of 
yielded cost ($)

Optimum  
fault coverage 

1 957.67 3331.18 0.62 
2 957.67 969.22 0.62 
3 957.67 968.02 0.62 
4 957.67 983.50 0.62 
5 957.67 3269.59 0.62 
6 957.67 963.73 0.62 
7 957.67 5578.54 0.62 
8 957.67 3267.41 0.62 
9 957.67 3269.03 0.62 
10 957.67 3270.63 0.62 
11 957.67 3268.79 0.62 
12 957.67 966.12 0.62 
13 957.67 981.33 0.62 
14 957.67 3269.25 0.62 
15 957.67 5585.89 0.62 
16 957.67 971.17 0.62 
17 957.67 969.95 0.62 
18 957.67 3273.55 0.62 
19 957.67 962.82 0.62 
20 957.67 5580.44 0.62 
21 957.67 3275.61 0.62 
22 957.67 3267.28 0.62 
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Figure 6.9 also describes the optimization process of yielded cost of process flow in 

Figure 6.6 given the normal distribution of incoming die yield (shown in Figure 6.10). 

The improved GA’s search for the optimum value is not as convergent as it is under 

certain input shown in Figure 6.9. In the optimization process with Monte Carlo analysis 

included, each calculation of the fitness function depends on the sampling results from 

the input distribution(s). Because of random sampling from the probability distribution, 

the calculated mean of the objective function in the previous generation is varied from the 

one computed in the next generation although the test was at the same fault coverage. The 

optimum yielded cost for a set of fault coverages in one generation will change (lower or 

higher) when passed into the next generation. More samples can improve the accuracy of 

the optimums and lead to fast convergence [93-95] but also take more execution time. 
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Figure 6.10: Distributions of die yield. 
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Figure 6.11 compares the optimum fault coverage for the single value input to the normal 

distribution input of incoming die yield to process flow in Figure 6.6. The optimum fault 

coverage for the minimum yielded cost is not convergent to a straight line when the 

Monte Carlo method is included, which also results from the inaccuracy of sampling 

from input distribution(s). 
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Figure 6.11: Comparison of the optimum fault coverage for                               

single value input and a normal distribution of incoming die yield. 
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After the optimum fault coverage (0.65, in Figure 6.11) that leads to the minimum 

mean of yielded cost ($960.84, in Figure 6.9) is generated by the GAs optimization under 

a normal distribution of incoming die yield, the results can be qualitatively verified using 

the Trichy et al. model discussed in Chapter 2. The procedure of verification can be 

described as following: 

1. Choose a specific value from the full range of fault coverages (above 10% 

threshold, 0.2, 0.3, etc.). 

2. Calculate the mean of yielded costs for each designated fault coverage by 

running the Trichy et al. model with a Monte Carlo method included to 

sample the value from input yield distribution (See Table 6.5). 
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Figure 6.12: Mean of yielded costs varies with the various fault coverage. 
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3. Plot the mean of yielded costs with its corresponding fault coverage (see 

Figure 6.12). 

4. Check whether the minimum mean of yielded costs with the optimized fault 

coverage generated by GAs optimization is the minimum value on the plot. 

 Figure 6.12 demonstrates that the optimum yielded cost ($960.84) with its 

corresponding fault coverage (0.65) generated by the RCGAs is in fact the minimum 

given by the input distribution. From Figure 6.12, we can see the minimum of the mean 

should be lower than $964.97 with the specified fault coverage in range of 0.6 to 0.7, 

which demonstrates the minimized yielded cost of $960.84 in Figure 6.10 and the 

optimum fault coverage of 0.65 are the exact values that we need to find. 

Alternatively, when the triangular distribution shown in Figure 6.10 is used as the die 

yield input to the process flow in Figure 6.6. The mean of the triangular distribution is 

lower than the one corresponding to the normal distribution.   

 

 

Table 6.5: Mean of yielded costs with the corresponding fault coverage calculated 
using Trichy et al. model with a Monte Carlo method included. 

Fault  
coverage

Mean of  
yielded costs ($)

0.2 1280.15 
0.3 1105.35 
0.4 1020.66 
0.5 978.72 
0.6 968.21 
0.7 964.97 
0.8 977.96 
0.9 1011.06 
0.99 1140.70 
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The optimization of yielded cost for the triangular distribution input is shown in 

Figure 6.13. Figure 6.14 gives the comparison of the optimum fault coverage for the 

single value input and uncertain triangular distribution incoming die yield. The optimum 

fault coverage of 0.59 generated by RCGAs can be verified to produce the minimum 

yielded cost of $951.15 by Figure 6.15.  
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Figure 6.13: Minimum yielded cost when the single die yield                          

is represented by a triangular distribution. 
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Figure 6.14: Comparison of the optimum fault coverage for                               

single value input and a triangular distribution of incoming die yield. 
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Figure 6.15: Mean of yielded costs varies with the various fault coverage                   

under the triangular distribution input of die yield. 
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The improved GAs are applicable to handling the uncertain inputs characterized by 

various probability distributions and can  find the minimum value of fitness function in a 

limited number of generations of evolution. The optimum yielded cost depends on the 

distribution shape. In the example cases performed in this section, the mean of the 

triangular distribution is lower than the mean of the normal distribution, which projects 

that the final minimums of the yielded cost from various input distributions should vary 

with each other as Figure 6.16 describes.  
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Figure 6.16: Comparison of the mean of yielded cost for different input distributions. 
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6.4.2 MCM Assembly Process Flow with Multiple TDRs and 
Uncertain Inputs 

This section discusses the application of the optimization algorithm including the  Monte 

Carlo method to the MCM assembly process flow extended to include multiple TDR 

operations. The single TDR MCM process flow in Figure 6.6 has been extended by 

adding another TDR after the final assembly of the MCM (shown in Figure 6.17). All of 

the incoming parameters for the assembly steps are the same as ones used in the single-

TDR MCM assembly except the cost and yield of the new step, ‘Final Assembly’. The 

cost of Final Assembly has been set to $200 and the step yield is 99%.  

 

 
Applying the GAs with Monte Carlo methods included to the process flow in Figure 

6.18, the minimum yielded cost is found in 15 generations (less than twice the running 

time of the single-TDR case) in Table 6.6. The complexity of optimization algorithm 

relies more on the sample size for the Monte Carlo analysis than the structure of the 

process flow. The optimization process of multi-TDR MCM assembly for normally 

distributed incoming die yield is shown in Figure 6.18 and Figure 6.19 gives the optimum 

fault coverages at the minimum yielded cost for each test operation. The mean of the 
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Figure 6.17: MCM assembly process flow with multiple TDRs 
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optimized fault coverages is almost the same value as the one of single-TDR MCM 

assembly process (see Figure 6.12). Because the step yield of Final Assembly is very 

high, the two test operations function as a single test, i.e., the two test operations can be 

replaced by one.34    

 
 
 
 
 

 
 
 
 
 

                                                 
34 There is no expert suggestions included in the optimization algorithms discussed in this dissertation, e.g., 
if the yield of one step is very high (>= 95%), the two tests placed before it and after it can be combined to 
one. With more heuristics added into the algorithms, the optimization searching will be more intelligent and 
practical [96-98]. 
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Figure 6.18: Minimum yielded cost of MCM assembly process                            

with multi-TDR and a normal distribution of input die yield. 



 178

 
 
 
 
 
 
 

Table 6.6: Optimization of fault coverage                                                                     
in multi-TDR MCM assembly process flow in Figure 6.17  

Number  
of generations 

Optimum 
yielded cost ($)

Mean of 
yielded cost ($)

Optimum  
fault coverage

of Test 

Optimum  
fault coverage
of Final Test 

1 1177.28 1294.73 0.42 0.83 
2 1177.56 1208.86 0.46 0.79 
3 1176.57 1187.16 0.48 0.76 
4 1176.25 1185.41 0.48 0.76 
5 1175.38 1180.75 0.49 0.76 
6 1175.47 1185.89 0.49 0.73 
7 1175.76 1180.99 0.44 0.80 
8 1175.58 1181.21 0.50 0.76 
9 1174.53 1181.90 0.47 0.75 
10 1175.22 1182.36 0.48 0.76 
11 1175.85 1183.14 0.46 0.75 
12 1176.13 1179.47 0.46 0.76 
13 1175.40 1182.41 0.47 0.75 
14 1175.14 1182.19 0.46 0.76 
15 1175.33 1182.66 0.48 0.76 
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Figure 6.19: Optimum fault coverages of various TDRs in the process flow in Figure 6.17. 
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6.5  Summary 

This chapter extends the optimization algorithm to process flows with uncertain inputs. 

Monte Carlo methods are integrated inside the RCGAs developed in Chapter 4 to sample 

the values from the input probability distribution(s). For each set of sampled values of 

input(s), the yielded cost was calculated using the searching algorithm developed in 

Chapter 3 with the fault coverage(s) generated by the GAs. The mean of the distribution 

of yielded costs serves as the fitness of the objective function. The GAs perform the same 

genetic operations as described in Chapter 4 to find the minimum mean of yielded costs. 

The GAs with Monte Carlo methods included are applied to single test and multi-TDR 

MCM assembly cases, which demonstrates that the optimization algorithms discussed in 

this dissertation are applicable to find the minimized yielded cost under uncertain 

input(s). 
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Chapter 7 
 
 
Conclusions and Contributions 
 
 
 
The goal of this dissertation is to develop a methodology for optimizing the location(s) 

and characteristics of test/diagnosis/rework (TDR) operations for complex process flows 

in order to minimize the yielded cost of electronic systems.  

In this dissertation, a practical electronic products manufacturing and assembly 

process is analyzed and represented using a process flow model made up of a series of 

process steps. There are two kinds of information that should be included in the process 

flow model. One are step details, e.g., the step’s impact on the product’s cost and quality 

level. The other is the relationship among the process steps, i.e., which one is the 

predecessor and which one is the successor. The relationship among process steps 

determines the calculation sequence of yields and costs of products.  

There are no manufacturing processes that assure the 100% yield of product, tests to 

find the faults that exist within defective products and rework to correct the defects can 

be placed in the manufacturing and assembly process of electronic systems. When a TDR 

operation is introduced into a process flow model, the calculation of feature parameters of 

products must take into account the cost and yield impact of the TDR operation. A 
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comprehensive TDR model that includes a detailed calculation of the feature variables for 

the single TDR operation has been developed by Trichy et al. This model accurately 

formulates the calculation of the yield and cost of product when it passes through a TDR 

operation with given characteristics, e.g., fault coverage and number of rework attempts. 

The Trichy et al. model does not, however, include a functional relationship between the 

test cost and fault coverage. The Trichy et al. TDR model was extended by relating cost 

to the fault coverage of test. Multiple fault types are also considered in the model 

extensions.  

The cost of test and rework steps are associated with the corresponding characteristics – 

fault coverage and rework yield of the TDR. The quantitative relationships among these 

variables dictate that the tradeoff between the quality and cost can be balanced by 

optimizing the location(s) of test and characteristics of TDR operations to minimize the 

yielded cost of the process flow.  A general process flow may, however, have many 

different TDR activities located within it. Some type of search algorithm is needed to 

address each process step in the process flow with all possible TDR operations included. 

For the computation of the final yielded cost of the process flow, a graph-based search 

algorithm, named “Waiting Sequential Search” or WSS was developed to search all the 

process steps and perform the accumulated computations of yields and cost of products to 

determine the value of a yielded cost objective function. The search process performs the 

sequential calculations from the start to the end of process flow and the single TDR 

model is used when it encounters the step nodes of TDR operations. The search algorithm 

differs from existing graph-based search algorithms in that specific features of the 
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process flow are considered and an adjacency matrix is used to represent the information 

associated with it. 

After all the process steps have been visited, a multi-variable objective function to 

minimized the yielded cost of products can be derived from the search algorithm, in 

which the characteristics of all possible TDR operations are variables instead of 

constants. The objective function means that we can choose optimum locations of TDR 

operations and characteristics associated with them to minimize the final yielded cost of 

products. It is impossible to enumerate all the combinations of characteristics and 

locations of TDR operations, calculate the yielded cost and perform comparisons for 

complex process flows without any optimization techniques included. Optimization 

algorithms must be applied to effectively find the minimum value of the objective 

function. 

Genetic algorithm (GA) – a natural optimization method is used as the optimization 

technique to solve the minimize problem posed in this dissertation. To represent the 

variables needs to be optimized with the floating-point numbers, the real-coded genetic 

algorithms (RCGAs) are developed to diminish the drawbacks of binary-coded genetics 

algorithms (BCGAs) and overcome the shortcomings in chromosome representation 

when the process flow becomes complex and a great number of TDR operations are 

involved within it. The first step in the application of RCGAs is to set the ranges of genes 

(the variable representation in GAs), which should be the same one as defined for each 

variable itself because of the real number encoding, e.g., the range of genes of fault 

coverage is from 0 to 1 and the range of genes of rework attempts could vary from 1 to 
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10. After the range setting, the fitness function should be defined to evaluate which 

chromosome that represents a combination of alternative solutions to variables in GAs 

leads to the minimized value of it. The definition of fitness function can be divided into 

two scenarios. The first scenario is that there are no uncertain input(s) to the process flow 

that needs to be optimized, in which case the fitness function is the value of the multi-

variable objective function that has been derived by the proposed search algorithms. In 

the second case, when the inputs to the process flow are not constants but rather 

probability distributions, the mean of values of objective function for a given 

combination of variables serves as the fitness function. In this case a Monte Carlo method 

is applied inside the GAs optimization to sampling the values from the input 

distribution(s) and the distribution of objective function is produced by sampling the 

input values.  

The GAs-based optimization method applied in this dissertation provides an 

intelligent solution to the placement of TDR operations in process flow. With RCGAs 

integrated, an optimization methodology has been developed in this dissertation that 

provides suggestions as to where the TDR operations should be placed or removed and 

the optimal values of feature parameters of TDR operations based on the minimization of 

a yielded cost objective function. The optimization results can guide the placement of 

TDR operations in practical manufacturing processes and be used as the feedback to DFT 

of electronic systems. 

To validate the correctness and feasibility of the optimization model developed in this 

dissertation, a range of test cases from simple to complex branched process flow and a 
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real multichip module (MCM) assembly process are used.  To verify that the algorithms 

can find the minimum values of the objective function successfully, a comparison to 

manually calculated results generated for simple cases by choosing the test strategies and 

characteristics without any optimization techniques involved was performed. The GAs 

with Monte Carlo methods included were applied to single test and multi-TDR MCM 

assembly cases, which demonstrates that the optimization algorithms discussed in this 

dissertation are applicable to find the minimized yielded cost under uncertain inputs(s). 

7.1  Contributions 

The main contributions of this dissertation are summarized below: 

1. First known attempt to determine optimum test location(s), fault coverages, 

and number of rework attempts in a complex process flow.  The 

methodology developed in this dissertation will help manufacturers choose the 

best assembly process flow for achieving the goal of minimized yielded cost by 

enabling the identification of optimum test locations and their characteristics.  

The optimization results can also be used as the feedback to Design for Test 

(DFT) of electronic systems. 

2. Demonstrated that the optimum yielded cost resulting from the 

methodology developed in this dissertation is an average of 6.85% lower 

than that obtained when using test strategies based on selecting specific 

fault coverages as in [74]. The optimization results always lead to equal or 

lower yielded cost than that found by manually choosing test strategies and 

characteristics without any optimization techniques involved. Furthermore, in a 
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complicated process flow, it would be impossible to enumerate all the 

combinations of fault coverages with various inputs. The optimization 

methodology developed in this dissertation will effectively find the optimized 

solution in less time than traditional approaches. 

3. Extended and enhanced TDR modeling to include: the functional 

relationships among the feature parameters, e.g., the costs of test and 

rework in terms of fault coverage and rework yield respectively and 

representation for multiple faults, and multiple fault types. A quantitative 

relationship has been derived to relate the fault coverage to the testing cost and 

used to replace the constant representation used in Trichy et al. model. A 

method to represent multiple fault types is also addressed in this dissertation and 

can be integrated into the optimization algorithm for the single fault type.  

4. Developed a graph-based search algorithm for efficiently traversing a 

general process flow for the purpose of deriving a multi-variable objective 

function to minimize yielded cost of process flow.  Waiting Sequential Search 

(WSS) was proposed to traverse every process step in the graph representation 

of process flow and control the accumulative calculation of final cost and yield 

of products to derive the yielded cost objective function. WSS is efficient 

because every step is visited only once in the entire search and there is no 

recurring traverse repeated in WSS. The complexity of WSS depends on the 

number of process steps in the process flow.  
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7.2  Recommendations for Future Work 

In order to build a practical cost estimation and optimization system for real electronic 

systems assembly, several extensions will be needed to this research. Below are the some 

of suggestions for future extensions: 

1. Multiple fault coverages (corresponding to different fault types) associated 

with a test. It is not uncommon that there are multiple types of faults occurring to 

electronic systems assembly process. The optimization methodology developed in 

this dissertation should be enhanced to optimize multiple fault coverages 

associated with one test operation.   

2. Expert suggestions and heuristics. There are no expert suggestions or heuristics 

applied in this dissertation. TDR operations are placed in all possible locations in 

the process flow before the optimization. Actually, in the practical manufacturing 

of electronic systems, some locations cannot be set test or rework, i.e., the number 

of variables to represent the characteristics of TDR that need to be optimized can 

be reduced depending on the specific manufacturing and assembly process of 

products. The time and cost to finish the optimization of a complex process flow 

can be reduced by introducing the experts’ suggestions. 

3. Robust optimization. The robust optimization incorporates uncertainty in the 

problem design itself, and thereby generates solutions, which are less sensitive to 

realizations of the model data [99-102]. The robust optimization results in the 

design, which performs optimally under the variable (or uncertain) operating 

conditions over the entire lifetime of the design. The optimization algorithm will 
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produce a less sensitive optimum solution to various inputs when the robust 

techniques are included into it. 

4. Application-specific modeling. For the real electronic products manufacturing, 

the test process and rework operation are different from each other. The TDR 

model discussed in this dissertation doesn’t consider the details for each kind of 

products and provides no ideas about how similar manufacturing and assembly 

process can be grouped. For example, the rework operation of the MCM assembly 

is different from repairing a printed circuit board, in which the bad parts of the 

MCM will be replaced by good ones therefore the rework yield and rework cost 

depend on how many die have been replaced and the single TDR model should be 

modified to it. The future extension to this research can categorize the test and 

rework operation based on the specific manufacturing and assembly process and 

provides application-specific cost model.   

5. Finding the “best” optimization method. There are several categories of 

optimization methods that are applicable to the minimization problem discussed 

in this dissertation. Different optimization methods applied to minimizing the 

yielded cost of process flows should be compared according to their efficiency 

and robustness, some of which can be combined together to get rid of 

shortcomings of a single optimization method. 

It is expected that the recommended future extension will enhance the usefulness of 

this research, and will result in development of a fully robust and practical cost 

estimation and optimization system for electronic systems assembly. 
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