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Abstract

Current research in parallel programmang s focused on closing the gap between globally indezed
algorithms and the separate address spaces of processors on distributed memory multicomputers. A
set of index translation schemes have been implemented as a part of CHAOS runtime support library,
so that the library functions can be used for implementing a global index space across a collection of
separate local index spaces. These schemes include two software-cached translation schemes aimed at
adaptive irreqgular problems as well as a distributed translation table technique for statically irregular
problems. To evaluate and demonstrate the cfficiency of the software-cached translation schemes,
experiments have been performed with an adaptively irreqular loop kernel and a full-fledged 3D DSMC
code from NASA Langley on the Intel Paragon and Cray T3D. This paper also discusses and analyzes
the operational conditions under which each scheme can produce optimal performance.

1 Introduction

Distributed memory multicomputers have been widely used to solve many structured and unstructured
problems. Most of the performance gain from the distributed memory multicomputers can be obtained
by data distribution and load balancing. In such multicomputers, each processor owns a separate local
memory and is connected to an interconnection network. Processors communicate with each other by
sending and receiving messages across the network. However, since most of the applications are written
assuming a single global index space, the programming task on distributed memory multicomputers
often requires a substantial amount of effort. Thus, current research in parallel programming is focused
on closing the gap between globally indexed algorithms independent of the underlying distribution of
data and the separate address spaces of processors.

Compilers for various languages such as Fortran [8] and C++ [4] have been developed to give the
illusion of a shared address space on distributed memory multicomputers. For structured problems,
such compilers as Fortran D [8] use distribution directives to partition computation across processors.
Using the directives, the compilers can statically determine the processor that owns a data item and the
processor that requires the value of the data item. The compilers can then generate message passing
calls to directly pass this value from the owner processor to the processor that needs it. Another

*This work was supported by NASA under contract No. NAG-11560, by ONR under contract No. SC 292-1-22913 and
by ARPA under contract No. NAG-11485. The authors assume all responsibility for the contents of the paper.



Ll:don = 1, n_steps
L2: doi=1,n_edges
y(ia(i)) = 0.85 * x(ia(i)) + 0.42 * x(ib(i))
y(ib(i)) = 0.88 * x(ia(i)) + 0.44 * x(ib(i))
enddo
L3: doi=1, ngrids
x(i) = y(i)
enddo
enddo

Figure 1: An example code segment of an irregular loop

approach called Distributed Shared Memory (DSM) enables an application’s user-level code to support
shared memory and message passing efficiently [12]. Distributed shared memory is typically supported
by the processor’s address translation hardware.

This paper describes and evaluates a set of index translation schemes for implementing a global index
space across a collection of distributed memories. These schemes can be incorporated into a runtime
support library so that calls to the library functions can be invoked by manually parallelized programs
or can be generated by compilers [14]. These schemes can also be incorporated into distributed shared
memory systems such as the one used in the Wisconsin Wind Tunnel project to support user-level
shared memory [12].

To illustrate the need of runtime support for address translation, consider the Jacobi iterative method
for solving a partial differential equation on an irregular numerical grid, which arises in molecular
dynamics codes and sparse linear solvers. A typical example loop of such an irregular computation is
presented in Figure 1. The update of each grid point depends only on the values at neighboring grid
points from the previous iteration. Since the grid structure of such irregular problems is determined
only at runtime, compilers cannot fully analyze and translate globally indexed memory accesses. For
instance, in Figure 1, the data access patterns to the arrays x() and y() are determined at runtime
via the indirection arrays ia() and ib(). Thus communication patterns between processors should be
determined at runtime and accordingly the globally indexed data accesses should also be translated at
runtime.

The rest of the paper is organized as follows. Section 2 describes a distributed translation scheme
which allows us to map a globally indexed distributed array and how this scheme can be used in parallel
computation. Section 3 introduces new adaptive translation schemes which offer reduced overhead of
index translation by using software caching techniques. Experimental results performed with an irregular
loop kernel and a direct particle simulation application are presented in Section 4. We compare the
performance of the software-cached translation schemes and discuss the operational condition under
which each scheme can produce optimal performance in Section 5.

2 Distributed Translation Table

This section describes a distributed translation table which allows us to map a globally indexed dis-
tributed array onto processors in an arbitrary fashion. Briefly outlined is how the distributed translation
table can be used in the preprocessing stage of the inspector/executor model of parallelization [15, 7].
On distributed memory machines, large data arrays may not fit in a single-processor’s memory, hence
they are divided among processors. Also computational work is divided among individual processors to
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Figure 2: Examples of Translation Tables

achieve parallelism. Once distributed arrays have been partitioned, each processor ends up with a set of
globally indexed distributed array elements. FEach element in a distributed array A of size N is assigned
to a particular home processor. In order for any processor to be able to access a given element, A(7), of
the distributed array, the home processor and local address of A(¢) must be determined.

Generally, unstructured problems solved with irregular data distributions perform more efficiently
than with regular data distributions such as BLOCK. In the case of irregular data distribution, a
translation table is built that, for each array element, lists the home processor and the local offset. If
the data is distributed in a BLOCK or CYCLIC manner, the translation table can be simulated with
an analytic function. Otherwise, a full-fledged translation table needs to be built.  This translation
table is used for dereferencing, the process of finding the processor home of a global element and the
local offset within the processor. Figure 2(a) illustrates a replicated translation table for a given data
distribution of 12 globally indexed data items over 4 processors. For instance, a data item with a global
index 3 is stored in the third memory location within the processor P;. Thus, its home processor (1)
and local offset (2) are stored in the fourth entry of the translation table.

Memory considerations make it clear that it is not always feasible to replicate a copy of the trans-
lation table on each processor, so the translation table must be distributed across processors. This is
accomplished by distributing the translation table by blocks, i.e., putting the first N/P elements on the
first processor, the second N/P elements on the second processor, and so on, where P is the number
of processors and N is the number of globally indexed data items. Figure 2(b) illustrates a distributed
translation table obtained by partitioning the replicated translation table given in Figure 2(a).

When an element A(7) of a distributed array A is accessed, the home processor and local offset
are found in the portion of the distributed translation table stored in processor L%J A dereferencing
operation using the distributed translation table requires communication between processors to exchange
the information stored in each processor’s portion of the distributed translation table.

Figure 3 presents an example of the Jacobi iterative loop parallelized with the CHAOS runtime
library [13]. Each processor passes the procedure build_translation_table a list of global indices of



I1: ttable = build_translation_table(index,nlocal grids)
I12: call dereference(ttable,ia,offseta,proca,nlocal edges)
call dereference(ttable,ib,offsetb,procb,nlocal_edges)
13: call CHAOS functions to generate communication schedule
L1:don = 1, n_steps
E1l:call CHAOS functions to gather off-processor data elements
L2: doi=1, nlocaledges
v(iadocal(i)) = 0.85 * x(iadocal(i)) + 0.42 * x(iblocal(i))
v(ibJlocal(i)) = 0.88 * x(ialocal(i)) + 0.44 * x(iblocal(i))
enddo
E2:call CHAOS functions to scatter off-processor data elements
L3: doi=1, nlocalgrids
x(0) = y()
enddo
enddo

Figure 3: An irregular loop parallelized by CHAOS runtime library

Ll:don = 1, n_steps
L2: doi=1, n_edges
y(ia(i)) = 0.85 * x(ia(i)) + 0.42 * x(ib(i))
y(ib(i)) = 0.88 * x(ia(i)) + 0.44 * x(ib(i))
enddo
L3: doi=1, n_grids
x(i) = y(i)
enddo
S:  if (mesh redefined) then regenerate ia() and ib()
enddo

Figure 4: An example code segment of an adaptive irregular loop

array elements for which it will be responsible. To create a translation table, for example, in the first
inspector step I1 of Figure 3, each processor passes an array index(1:n_local_grids) to the runtime
function. The array index(1:n_local_grids) stores a set of global indices owned by the processor
which is determined by the current distribution of data. If a given processor needs to access a data item
that corresponds to a particular global index ¢ for a specific distributed array, the processor can consult
the distributed translation table to find the owner processor and location of that item within the local
memory of the owner processor. The next inspector step I2 carries out the dereferencing operation.
Though this step inherently incurs communication overhead, the cost of dereferencing will be amortized
over loop iterations as long as the indirection arrays ia() and ib() are not changed.

3 Software-Cached Adaptive Translation Schemes

In static irregular problems such as sparse linear systems and unstructured mesh codes, data access
patterns are determined via a level of indirection and the access patterns remain static. Thus, the
dereferenced data accesses of globally indexed data items may be reused over loop iterations by storing
the index translation information in local memory (for example, the arrays offseta() and proca()
returned from the dereference() function in Figure 3). In adaptive irregular applications which can be
found in direct particle simulation and molecular dynamics simulation, however, the data access patterns
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Figure 5: Paged Translation Tables

may change during the processing of loop iterations. Figure 4 shows the computational structure of such
adaptive irregular applications. The data access pattern in loop L2 changes whenever the indirection
arrays ia() and ib() are regenerated in the conditional statement S. Then, since the index translation
information stored in local memory can not be reused, the globally indexed data items should be
dereferenced whenever the access patterns change.

In adaptive applications such as DSMC [3] and CHARMM [5], data access patterns change fre-
quently and irregular data distribution is preferred for better performance over regular data distribu-
tion. Thus, minimization of the dereferencing cost is crucial for efficient processing of such applications
on distributed memory multicomputers. In such cases, the distributed translation table described in
Section 2 tends to be too costly to use. There are three main reasons. First, the dereferencing operation
inherently requires communication between processors to exchange the translation information. Second,
the distribution of the translation table across processors is fixed and bears no particular relationship
to the distribution of dereferencing requests. Third, even though a nonlocal global index is dereferenced
in several loop instances, the translation information obtained in the previous loop instance can not be
reused in the subsequent loop instances unless it is stored explicitly in local memory.

In many cases there is enough memory to partially replicate the translation table. The distributed
translation table is not able to replicate portions of the translation table in order to trade memory for
improved performance. This section introduces two variations of the distributed translation table which
offer reduced overhead by using extra memory: paged translation table and hashed translation table.
These translation schemes use software caching techniques so that the extra memory can be exploited
adaptively for changeable data access patterns and communication latency can be avoided.

3.1 Paged Translation Table

The paged translation table is composed of a page table and a set of page frames. Followed here is the
convention found in the virtual memory literature where the memory location associated with each



page is called a page frame. The process of generating the paged translation table is governed by two
adjustable parameters, a page size § and a replication factor R. The replication factor R is defined as
the fraction of the maximum number of pages for which extra frames are allocated by each processor.
In this scheme, the translation table is decomposed into fixed-sized pages. Each page lists the home
processors and offsets associated with a set of § contiguously numbered global indices. Suppose N is
the size of a distributed array. Then, each processor maintains a page table which has N/S§ entries, and
stores up to Nj;R pages. Each page table entry contains a reference counter and a page pointer which
points to a page for § consecutive global indices if the page pointer is not null.

Translation table information for each index must be stored somewhere. In this current paged
translation table implementation, a distributed translation table is built up as a back-end data structure
to make it simpler to dereference global indices which are not currently available in local memory.
When a paged translation table is initially created, each processor stores only the pages which include
dereferencing information of global indices assigned to the processor. Specifically, if a processor owns
a global index ¢, the L%J—th entry of the processor’s page table points to a page containing the home
processors and offsets for global indices [¢] X S, [s| xS+ 1,...,[g] xS+S5 -1

Figure 5(a) depicts an initial paged translation table for a given data distribution which is identical
to the one shown in Figure 2. Since § = 2 and R = 0.5, each processor allocates a page table with
% = 6 entries, and a page pool with Nsﬂ = 3 available page frames. On processor Fs, for example,
there is only one global index 11 owned by it. Thus, the processor P5 fetches a page frame from the
page pool, fills the page frame with home processors and offsets, and attaches it to the sixth (Léj =5)
entry of its page table.

When a processor receives a dereferencing request {j}, it looks at its L%J—th page table entry. If the
pointer field of the page table entry points to a valid page frame, then the home processor and offset
of the global index j can be fetched from the (7 mod §)-th record in the page frame. The reference
counter of the page table entry is incremented. If the pointer field of the L%J—th page table entry is
null, then a page fault occurs. When a page fault occurs, the distributed translation table is referenced
to translate the global index which caused the page fault. Then, a page frame is fetched from the page
pool and the home processor and offset of the global index is stored in it. Figure 5(b) shows a paged
translation table snapshot taken after a set of dereferencing requests {11,4,10} is processed.

In many cases where a replication factor is chosen to be less than one, page faults may occur while
no unused page frames are available in the page pool. There are basically two options in handling
the situation: the information of home processors and offsets obtained by referencing the distributed
translation table may be returned without being stored in the paged translation table, or a page may
be evicted to make room for an incoming one. The latter was chosen, since it adapts to the variation of
data access patterns. A replacement policy governs the choice of the victim when eviction of pages is in
order. Since implementation of the well-known page replacement algorithm LRU (Least-Recently-Used)
imposes too much overhead to be handled by software alone, implemented here is the NRU (Not-
Recently-Used) page replacement algorithm, one of the approximations of LRU, using the reference
counters in the page table [9].

3.2 Hashed Translation Table

The structure of a hashed translation table differs from that of a paged translation table in that a hashed
translation table consists of a hash table and a set of hash nodes instead of a page table and a set of
page frames. There is only one operational parameter, replication factor R; it is defined as the fraction
of the maximum number of indices for which hash nodes are allocated by each processor. Each hash
node includes a global index, its home processor and offset as well as a pointer field. Suppose N is the
number of globally indexed data items. Then, each processor stores up to N x R hash nodes. In this
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Figure 6: Hashed Translation Tables

current implementation of hashed translation table, the size of hash table H is determined in such a
way that H = 2% where k is the smallest number such that 2% > [N/P]. Bach entry of the hash table
includes a reference counter, a node counter and a node pointer. The reference counter field is used by
the NRU replacement algorithm, and the node counter and node pointer fields are used to maintain
a list of nodes hashed into the same entry. Since the hash table is of size 2%, a hash function h(z) is
currently used which simply masks the lower k bits of the global index z. Since a linked list is used to
store colliding indices, the simple choice of hash function has the potential to incur the high overhead of
traversing a long list in discovering the correct index. This issue shall be further addressed in Section 5.

As with the paged translation table, a distributed translation table is built up as a back-end data
structure. When a hashed translation table is initially created, each processor stores only the translation
information for globally indexed data items which the processor owns. Specifically, if a processor owns
a global index ¢, the processor adds a hash node to the A(¢)-th entry of its hash table.

Figure 6(a) depicts an initial hashed translation table for the same data distribution given in Figure 2
and Figure 5. Since the number of processors P is 4 and replication factor R is 0.5, each processor
creates a hash table of size 4 and a node pool with 6 unused hash nodes. Then, a list of (global index,
processor, offset) triplets for locally owned data items is stored in the hashed translation table. For
instance, the processor Py fetches four hash nodes from the node pool, fills each hash node with a global
index, its home processor and offset, and attaches it to the proper hash table entry. This step does not
require extra communication between processors because the information about the home processors
and offsets of locally owned data items can be obtained on the fly.

Dereferencing a global index with a hashed translation table is to essentially search through a hash
table. When a dereferencing request {j} arrives, the h(j)-th hash table entry is looked up and the
linked list attached to the hash table entry is traversed to find a hash node having a matching key value
(i.e., a global index). If a matching hash node is found, then the home processor and offset of the node
is returned, and the reference counter of the hash table entry is incremented by one. Otherwise, the
distributed translation table must be referenced to translate the global index. This requires information
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Figure 7: Index translation times with R=0.3, $§=8 on the 32-node Intel Paragon

exchange between processors. Since the index translation information obtained by referencing the
distributed translation table is not in the hashed translation table, an unused hash node is fetched
from the node pool and is used to store the translation information. If there are no unused hash nodes
available in the node pool, the NRU replacement algorithm is applied using the reference counters in

the hash table.

4 Comparison of Experimental Results

This section describes the experiments performed and discusses the results. A number of different
experiments were carried out using (1) an irregular loop kernel which has a similar structure to an
irregular Jacobi iteration, and (2) a real world application, 3-dimensional Direct Simulation Monte Carlo
(DSMC) code. The remainder of this section presents and compares results from distributed translation
table, paged translation table and hashed translation table with various operational parameters.

4.1 Experiments with an irregular loop kernel

The sample adaptive loop described in Figure 4 was run with an irregular mesh with 100,000 grid
points. To emphasize the effect of index translation operation, the assumption that the structure of the
mesh is redefined every time step by the statement S in Figure 4 was used. Thus, the CHAOS function
dereference() must be invoked every time step to run the code on distributed memory multicomputers.
The same experiments have been performed on the Caltech CCSF Paragon with 512 processing nodes
and the Jet Propulsion Laboratory (JPL) Cray T3D with 256 processing nodes.

Figure 7 and Figure 8 compare the costs of three index translation schemes (i.e., the processing
costs of dereference() function invocations) at each of 20 time steps on the 32-node Paragon and on
the 32-node T3D, respectively. The same replication factor (R=0.3) has been used for both the paged
and hashed translation schemes, and the same page size (§=8) for the paged translation scheme.
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Figure 8: Index translation times with R=0.3, §=8 on the 32-node Cray T3D

Though the actual costs of the three index translation schemes differ by an order of magnitude on
different machines, the index translation schemes show common characteristics. While the performance
of the distributed translation scheme is almost invariant during all the time steps, the costs of the other
schemes are much higher in the initial time steps and lower in the remaining time steps than that of
the distributed translation scheme. This is due to the fact that a number of nonlocal global indices are
translated and cached into the paged or hashed translation table in the initial time steps, and most of
the global indices are translated locally in the subsequent time steps. It is also observed that the cost
of the paged translation scheme is much higher than that of the hashed translation scheme in the initial
time steps. This is due to the coarse-grained memory management of the paged translation scheme.
In other words, the paged translation scheme needs to translate and cache all the indices in the page
frames that should be brought in local memory. This property increases the number of dereferencing
requests beyond the required number of indices.

The effect of page size on the performance of the paged translation scheme is shown in Figure 9
and Figure 10. The replication factor was 0.05 in the experiments performed on the 512-node Paragon,
and it was 0.10 in the experiments performed on the 128-node T3D. The results shown in both of the
figures indicate that the performance of the paged translation scheme is very sensitive to the choice
of page size. The paged translation scheme with relatively small page sizes significantly outperformed
the distributed translation scheme. However, when larger page sizes were chosen, the performance of
the paged translation scheme became even worse than that of the distributed translation scheme. Such
performance degradation is mainly due to page thrashing. It is more likely the page thrashing happens
with page frames of larger size because the larger the page size the higher the ratio of page faults.

4.2 Experiments with a direct particle simulation

This section presents experiments which were carried out with a 3D Corner Flow Direct Simulation
Monte Carlo (DSMC) code from NASA Langley. DSMC is a well-established technique for modelling
rarefied gas dynamics via direct particle simulation on a grid [3]. It has been widely used in aerospace
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Figure 9: Index translation times with varying page sizes on the 512-node Intel Paragon (R=0.05)

Table 1: Effects of replication factor in DSMC computation

(the numbers in the parentheses are the percentage of the translation overhead)

Times in Translation Schemes
seconds Distributed Paged Hashed | Hashed/T3D
Rep. Factor pagesz=16 | pagesz=256

0.025 11.3 (33) 17.5 (40) 22.9 (47) 17.0 (40) 37.1 (58)
0.050 9.5 (27) 19.5 (43) 9.8 (27) 10.1 (28)
0.075 8.9 (25) 13.1 (34) 8.3 (25) 6.3 (19)
0.100 8.2 (24) 10.7 (29) 7.1 (21) 3.4 (11)
0.125 7.5 (22) 10.0 (28) 6.4 (20) 2.7 (09)
0.150 6.7 (20) 9.3 (26) 6.0 (19) 2.4 (08)
0.175 6.5 (20) 8.5 (25) 5.9 (18) 2.4 (08)
0.200 6.6 (20) 7.8 (23) 6.1 (18) 2.4 (07)

applications such as upper-atmosphere flows for hypersonic cruise vehicles and rocket plumes, and in
vacuum-related technologies for the semiconductor industry modelling plasma etching or chemical vapor
deposition [2].

The DSMC method includes movement and collision handling of simulated particles on a spatial
flow field domain overlaid by a Cartesian mesh. The spatial location of each particle is associated with
a Cartesian mesh cell. The key concept of the DSMC method is that particle movement is decoupled
from particle collisions. That is, the computation of a time step can be split into the calculation
of physical quantities of collided particles and the relocation of moved particles. Furthermore, since
the computations associated with performing probabilistic chemistry and collisions can be distributed
across processors cell by cell, the DSMC method in principle is a good match for parallel processing on
distributed memory multicomputers [16, 10].

Changes in position coordinates may cause the particles to move across cell boundaries. In the

10
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Figure 10: Index translation times with varying page sizes on the 128-node Cray T3D (R=0.10)

particular corner flow DSMC code presented here, about 30 percent of the particles change their cell
locations every time step. However, particle movements are local enough that particles only move
between neighboring cells. The relocation of particles must be done every time step to move them to
their new cells. Thus, the index translation must also be done every time step to find the particles’ new
owner processors. The corner flow DSMC code simulates a 3-dimensional flow field with 77,760 cells
and about 600,000 particles.

Figure 11 shows index translation costs of three translation schemes measured at each time step on
the 53-node Paragon. The experiments discussed here focused on the first 80 time steps of transient
phase. During the transient time steps, the number of particles keeps increasing because the number
of entering particles is greater than that of leaving particles. This explains the fact that the cost of the
distributed translation scheme increases as the computation proceeds.

Another key point of the experiments is that the problem domain (that is, cells) of the DSMC code
is repartitioned across processors periodically to balance the work load. In these particular experiments,
the domain was repartitioned every 20 time steps. If the problem domain is repartitioned, a translation
table must be regenerated and the cached information of nonlocal global indices must be invalidated.
Thus, the costs of paged translation and hashed translation schemes are far higher in the time steps
after domain repartitioning because a number of nonlocal global indices are translated and cached into
the paged or hashed translation table.

Table 1 shows the performance of the translation schemes with varying replication factors. The
numbers in the parentheses represent the ratio of the translation time to the total elapsed time. The
experiments shown in this table were carried out with the same corner flow DSMC code simulating
9,720 cells and about 50,000 particles. The performance numbers were measured in seconds for the
first 200 time steps on the 32-node Paragon except the last column which was obtained using the
hashed translation scheme on the 32-node T3D. The replication factor has a significant effect on the
performance of the paged and hashed translation schemes. However, when the replication factor becomes
large enough to avoid frequent page or node replacements, the performance is almost invariant with

11
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Figure 11: Index translation times of the 3D DSMC code (R = 0.2 and S = 16)

respect to varying replication factors. It is also observed that large page frames use up replicated
memory fast and may cause severe performance degradation due to page thrashing.

5 Discussion

Through the experimental results presented in this paper, it has been demonstrated that both the paged
and hashed translation schemes significantly outperform the distributed translation scheme. When com-
paring the results from the paged and hashed translation schemes, the hashed translation scheme slightly
outperformed the paged translation scheme in most of the cases. This is due mainly to the difference in
the granularity of the replicated memory management. That is, the finer-grained memory management
of the hashed translation table adapts better to the highly random access patterns encountered in both
experiments with the irregular loop kernel and with the NASA Langley DSMC code.

However, it is anticipated that the paged translation scheme will outperform the hashed translation
scheme in other applications where the access patterns change slowly and bear high locality. In deref-
erencing a global index, if the global index has already been cached into the local memory, the paged
translation scheme guarantees a constant translation cost. On the other hand, the hashed translation
table may suffer from skew built in the hash table. That is, if a particular choice of a hash function
generates long lists of collided hash nodes, then the overhead of traversing a long list of hash nodes
in discovering the key index may be high. Consequently, to stabilize the performance of the hashed
translation scheme, it is necessary to choose a good hash function which does not entail such a hash
skew.

When the hash skew hurts the performance of the hashed translation scheme, one of a collection
of randomly generated hash functions can be selected to ensure a good performance. This is done
by simulating the use of the individual functions with the globally indexed data items owned by each
processor. For this purpose, the current implementation of the hashed translation scheme allows the
option of choosing a hash function from a universaly class of hash functions Hy defined in [6]. It is
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experimentally shown that for a given set of keys, by choosing functions at random from the class Hy,
the theoretically predicted performance of the hash functions can be achieved in practice, independent
of the key distribution [11].

These translation schemes have been implemented as a part of the CHAOS runtime support library
on various distributed memory multicomputers such as Intel Paragon, IBM SP-1/2, Thinking Machine
CM-5 and Cray T3D. The current implementation has used vendor-supplied message passing libraries.
It should be noted, though, that the translation schemes have been further optimized using the low
latency shared memory functions on the Cray T3D [1]. The shared memory functions copy blocks
of data directly from one processor’s memory to another. These shared memory functions remove a
substantial amount of overhead for synchronization. The last two columns in Table 1 demonstrate the
optimized performance obtained from Cray T3D over that from Intel Paragon.

Another issue of the translation schemes is memory requirement. Suppose that NV is the total number
of global indices, P is the number of processors, § is a page size, and R is a replication factor. Then,
the memory complexity of the paged translation scheme is given by O(N x (% +R)). In order to keep
the amount of replicated memory scalable with large numbers of processors and large problems, it is
desirable to make the page size § proportional to the number of processors P. However, the need for
a large page size may result in severe performance degradation due to page thrashing. Thus, it may
be a complicated process to choose an optimal page size under various situations. On the other hand,
the hashed translation scheme requires O(N X (% 4 R)) memory, which makes the hashed translation
scheme ideally scalable. Accordingly, the hashed translation table may be more desirable in a situation
where the memory constraint is tight.

6 Conclusions

This paper has presented a set of index translation schemes for implementing a user-level global index
space across a collection of local index spaces on distributed memory multicomputers. These schemes
have been incorporated into the CHAQOS runtime support library so that calls to the library functions
can be generated by compilers.

For unstructured problems with irregular data distributions, a distributed translation table can be
built to list the home processor and offset for each globally indexed data item. Cached translation
schemes use software caching techniques to reduce the dereferencing costs for adaptive irregular appli-
cations which require frequent index translations. Experiments have been performed with an adaptively
irregular loop kernel and a 3-dimensional NASA Langley DSMC code. It has been observed that the
software-cached translation schemes significantly outperform the distributed translation table for such
problems with changeable data access patterns. For example, the hashed translation scheme achieved
about 46 percent improvement with the DSMC code on the 32-node Paragon.

The performance of the software-cached translation schemes is sensitive to the choice of parameters
which these schemes are governed by. Future work may include the extension of these schemes so that
automatic selection of the parameters can be done using runtime information such as the amount of
available memory and the fraction of locally accessed global indices.
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